

Simulation of Groundwater Flow in the Edisto River Basin, South Carolina

Greg Cherry and Matt Petkewich

US Geological Survey – South Atlantic Water Science Center

U.S. Department of the Interior U.S. Geological Survey

Thickness of Gordon aquifer (model layer 7)

Median – 35 ft Mean – 78 ft Maximum – 353 ft

(Gellici and Lautier, 2010)

U.S. Department of the Interior U.S. Geological Survey

Thickness of Crouch Branch aquifer (model layer 9)

Median – 309 ft Mean – 273 ft Maximum – 690 ft

(Gellici and Lautier, 2010)

U.S. Department of the Interior U.S. Geological Survey

Thickness of McQueen Branch aquifer (model layer 11)

Median – 130 ft Mean – 120 ft Maximum – 432 ft

(Gellici and Lautier, 2010)

U.S. Department of the Interior U.S. Geological Survey

Hydrogeologic Framework

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior U.S. Geological Survey

Hydrogeologic Framework

Hydrogeologic Framework

U.S. Department of the Interior U.S. Geological Survey

Hydrogeologic Framework

U.S. Department of the Interior U.S. Geological Survey

Simulated heads below top of aquifer in Crouch Branch (layer 9)

Permitted Scenario (2070)

U.S. Department of the Interior U.S. Geological Survey

Simulated heads below top of aquifer in Crouch Branch (layer 9)

Calhoun County area

Permitted Scenario

2070

High Growth Scenario

Moderate Growth Scenario

Current Scenario

U.S. Department of the Interior U.S. Geological Survey

Simulated heads below top of aquifer in McQueen Branch (layer 11)

Moderate Growth Scenario (2070)

U.S. Department of the Interior U.S. Geological Survey

Current Scenario

Simulated heads below top of aquifer in McQueen Branch (layer 11)

High Growth Scenario

Lexington County area

Permitted Scenario

2070

Moderate Growth Scenario

U.S. Department of the Interior U.S. Geological Survey

Groundwater Depletion

- Water-well problems
 - Power costs increase as groundwater levels decline
 - Expense of lowering pump, deepening well, or drilling a deeper replacement well
 - Yield of the well may decline below usable rates
- Reduced surface-water flows
 - Groundwater pumping can alter how water moves between an aquifer and a stream
 - Disconnection of an aquifer and a stream
- Subsidence
 - More than 80 percent of subsidence in the United States is related to the withdrawal of groundwater (Galloway and others, 1999)
- Deterioration of water quality
 - Areas of saltwater intrusion in coastal aquifers

Resources on Groundwater Depletion

Ground-Water Depletion Across the Nation U.S. Geological Survey Fact Sheet 103-03 November 2003

https://pubs.usgs.gov/fs/fs-103-03/

Sustainability of Ground-Water Resources U.S. Geological Survey Circular 1186 1999

Circular 1186 (usgs.gov)

U.S. Department of the Interior U.S. Geological Survey

Ground-Water Depletion Across the Nation

Ground-water use has many societal benefits. It is the source of drinking water for about half the nation and nearly all of the rural population, and it provides over 50 billion gallons per day in support of the Nation's agricultural economy. Ground-water depletion, a term often defined as long-term water-level declines caused by sustained ground-water pumping, is a key issue associated with ground-water use. Many areas of the United States are experiencing ground-water depletion. needed for in effects must determine th

What are s water depl

If intensiv continues, th

Sustainability of Ground-Water Resources

Groundwater Scenarios

Current groundwater use

• Constant pumping rates from 2021-2070 using average pumping rates derived from groundwater use from 2016-2020

Permitted groundwater use

 Constant pumping rates from 2021-2070 using fully permitted pumping rates

Business-as-usual water demand (Moderate Growth)

• Projections from 2021-2070 based on assumption moderate population and economic growth

High water demand trend (High Growth)

 Projections from 2021-2070 based on assumption high population and economic growth

U.S. Department of the Interior U.S. Geological Survey

Simulated pumping in the Edisto Basin

U.S. Department of the Interior U.S. Geological Survey

Simulated pumping – Current Scenario

■ Layer1_MGD ■ Layer3_MGD ■ L5_MGD ■ L7_MGD ■ L9_MGD ■ L11_MGD ■ L13_MGD ■ L15_MGD ■ L16_MGD

U.S. Department of the Interior U.S. Geological Survey

Simulated pumping – Permitted Scenario

U.S. Department of the Interior U.S. Geological Survey

Simulated pumping – Moderate Growth Scenario

■ Layer1_MGD ■ Layer3_MGD ■ L5_MGD ■ L7_MGD ■ L9_MGD ■ L11_MGD ■ L13_MGD ■ L15_MGD ■ L16_MGD

U.S. Department of the Interior U.S. Geological Survey

Simulated pumping – High Growth Scenario

■ Layer1_MGD ■ Layer3_MGD ■ L5_MGD ■ L7_MGD ■ L9_MGD ■ L11_MGD ■ L13_MGD ■ L15_MGD ■ L16_MGD

U.S. Department of the Interior U.S. Geological Survey

Moderate Growth Scenario - Gordon aquifer (layer 7)

Science for a changing world

2070 (8.9 MGD)

U.S. Department of the Interior U.S. Geological Survey

Drawdown Moderate Growth Scenario - Gordon aquifer (layer 7)

Science for a changing world

2020-2070

U.S. Department of the Interior U.S. Geological Survey

High Growth Scenario - Gordon aquifer (layer 7)

EXPLANATION

2020 (6.7 MGD)

2070 (10.0 MGD)

Branchvill

St George

Valterboro

Provisional – All data is considered provisional and subject to revision.

Hampton

20 Miles

2020-2070

Drawdown High Growth Scenario - Gordon aquifer (layer 7)

U.S. Department of the Interior U.S. Geological Survey

Provisional – All data is considered provisional and subject to revision.

Moderate Growth Scenario – Crouch Branch aquifer (layer 9)

2020 (40 MGD)

U.S. Department of the Interior U.S. Geological Survey

≊USGS

science for a changing world

Provisional – All data is considered provisional and subject to revision.

Drawdown Moderate Growth Scenario – Crouch Branch aquifer (layer 9)

2020-2070

U.S. Department of the Interior U.S. Geological Survey

Provisional – All data is considered provisional and subject to revision.

High Growth Scenario – Crouch Branch aquifer (layer 9)

2020 (40 MGD)

U.S. Department of the Interior U.S. Geological Survey

USGS

science for a changing world

Drawdown High Growth Scenario – Crouch Branch aquifer (layer 9)

2020-2070

U.S. Department of the Interior U.S. Geological Survey

Moderate Growth Scenario – McQueen Branch aquifer (layer 11)

science for a changing world 2020 (10 MGD)

U.S. Department of the Interior U.S. Geological Survey

≊USGS

Drawdown Moderate Growth Scenario - McQueen Branch aquifer (layer 11)

2020-2070

U.S. Department of the Interior U.S. Geological Survey

High Growth Scenario – McQueen Branch aquifer (layer 11)

science for a changing world

USGS

U.S. Department of the Interior **U.S. Geological Survey**

Drawdown High Growth Scenario – McQueen Branch aquifer (layer 11)

U.S. Department of the Interior U.S. Geological Survey

Current

Permitted

Simulated water levels in the Gordon aquifer

2010

2010

U.S. Department of the Interior **U.S. Geological Survey**

Simulated water levels in the Crouch Branch aquifer

U.S. Department of the Interior U.S. Geological Survey

Simulated water levels in the McQueen Branch aquifer

U.S. Department of the Interior U.S. Geological Survey

Simulated 2070 water budget in the Surficial aquifer (Edisto Basin)

Simulated 2070 water budget in the Gordon aquifer (Edisto Basin)

Scenario	NET	2070 - Edisto Basin Scenario	D Dis	Discharge to wells	
Current	85	Current	Current		
Moderate	101	Gordon confining unit Modera	Moderate		
High	108	(Layer 6) High	High		
Permitted	121	Permitte	ed	-13	
Scenario	Inflow	Gordon aquifer		Scenario	Outflow
Current	4.4	(Layer 7)		Current	-8.9
Moderate	4.1			Moderate	-8.9
High	4.4			High	-9.0
Permitted	4.7	Crouch Branch confining unit (Layer 8) Scenario	NET	Permitted	-9.4
		Current	-73		
		EXPLANATION	e -87		
		Groundwater-flow direction and rate, High	-93	1	
		102 V in millions of gallons per day Permittee	d -104		

Simulated 2070 water budget in the Crouch Branch aquifer (Edisto Basin)

Simulated 2070 water budget in the McQueen Branch aquifer (Edisto Basin)

Scenario	NET	2070 - Edisto Basin		Scenario	Disc	Discharge to wells	
Current	15	2070 - Euisto Ba		Current		-14	
Moderate	18	McOursen Branch confini	McQueen Branch confining unit (Layer 10)	Moderate		-20	
High	20	(Layer 10)		High		-23	
Permitted	19				Permitted		
Scenario	Inflow	McOueen Branch agu	ifer			Scenario	Outflow
Current	9.1	(Layer 11)	(Layer 11)			Current	-9.9
Moderate	12		\wedge			Moderate	-9.9
High	13					High	-11
Permitted	13	Charleston confining unit (Layer 12)		Scenario	NET	Permitted	-9.7
				Current	-0.3		
		EXPLANATION Groundwater-flow direction and rate		Moderate	0.4		
				High	0.9		
		1.7 V in millions of gallo	in millions of gallons per day	Permitted	0.5]	

Summary

- Simulated recharge rates were estimated with the <u>Soil-Water</u> <u>Balance</u> (SWB) model output. Rates varied from 0.09 to 1.22 feet per year.
- The number of simulated wells in the SC aquifers: Gordon (330), Crouch Branch (1,128), and McQueen Branch (648), and 700 wells in the multi-node package.
- The number of simulated wells in the SC aquifers for the Edisto Basin: Gordon (113), Crouch Branch (493), and McQueen Branch (97), and 91 wells in the multi-node package.

Summary – continued

Simulated pumping rates (MGD) in Edisto Basin (2021-2070)

	Current	Moderate Growth	High Growth	Permitted
Gordon	7.4	6.4 to 8.9	6.4 to 10	13
Crouch Branch	52	51 to 69	51 to 75	83
McQueen Branch	14	15 to 20	15 to 23	22
Total of all aquifers*	75	74 to 100	74 to 111	121

*includes aquifers not listed in this table

Maximum Drawdown (feet) in Edisto Basin (2070)

	Current	Moderate Growth	High Growth	Permitted
Gordon	10	45	50	100
Crouch Branch	50	105	150	150
McQueen Branch	75	155	170	100

U.S. Department of the Interior U.S. Geological Survey

Summary – continued

• Simulated results indicate declines below the top of the aquifer for **all** scenarios in the McQueen Branch aquifer (Lexington County) and Crouch Branch aquifer (Calhoun County).