

Simulation of Groundwater Flow in the Edisto River Basin, South Carolina

Greg Cherry, Matt Petkewich, and Andrea Hughes

US Geological Survey – South Atlantic Water Science Center

Overview of Scenarios

Base Scenario	Modifications
High Growth	Relocate Future Pumping Demand and Reduce Irrigation Pumping by 15%: Projected increases in water use for the Crouch Branch aquifer wells in Calhoun County were moved to the McQueen Branch aquifer. In addition, a 15% reduction in irrigation pumping was applied.
Moderate Growth	Relocate Future Pumping Demand and Reduce Irrigation Pumping by 15%: Projected increases in water use for the Crouch Branch aquifer wells in Calhoun County were moved to the McQueen Branch aquifer. In addition, a 15% reduction in irrigation pumping was applied.

Overview of Simulation Results

Potentiometric Maps • Breach of Aquifer Maps • Hydrographs of Index Wells

Potentiometric Maps: Gordon aquifer maps were excluded because they are largely unchanged. New scenario results are presented side-by-side with the base scenario from which they were produced.

Breach of Aquifer Maps: Breach of aquifer maps from the newest scenario results are compared side-by-side with the current groundwater use scenario and the base scenario from which the newest scenario results were produced.

Hydrographs: hydrographs for the new scenarios are presented for the Crouch Branch and McQueen Branch index wells (3 wells for each aquifer).

High Growth Scenario Comparison (2070) Crouch Branch aquifer (layer 9)

U.S. Department of the Interior U.S. Geological Survey

High Growth Scenario Comparison (2070) Crouch Branch aquifer (layer 9)

U.S. Department of the Interior U.S. Geological Survey

High Growth Scenario Comparison (2070) Crouch Branch aquifer (layer 9)

60 feet below top of aquifer

High Growth (75 MGD)

50 feet below top of aquifer

Combined Scenario: Relocate Pumping and Reduce Irrigation

32 feet below top of aquifer

High Growth Scenario Comparison (2070) McQueen Branch aquifer (layer 11)

High Growth (23 MGD)

Relocate New Pumping

Combined Scenario Relocate Pumping and Reduce Irrigation

U.S. Department of the Interior U.S. Geological Survey

High Growth Scenario Comparison (2070) McQueen Branch aquifer (layer 11)

High Growth (23 MGD)

Relocate New Pumping

Combined Scenario Relocate Pumping and Reduce Irrigation

U.S. Department of the Interior U.S. Geological Survey

HAL2	The Area of Concern for the McQueen Branch is the cone of depression near Gaston, so I think only one circle and callout per map showing the changes to that cone (if any) showing the changes to the changes t
	Hughes, Andrea L, 6/19/2022

Slide 8

Current (14 MGD)

24 feet below top of aquifer

High Growth Scenario Comparison (2070) McQueen Branch aquifer (layer 11)

142 feet below top of aquifer

Combined Scenario: Relocate Pumping and Reduce Irrigation

93 feet below top of aquifer

Moderate Growth Scenario Comparison (2070) Crouch Branch aquifer (layer 9)

Relocate Pumping and Reduce Irrigation

U.S. Department of the Interior U.S. Geological Survey

(69 MGD)

Moderate Growth Scenario Comparison (2070) Crouch Branch aquifer (layer 9)

Combined Scenario Relocate Pumping and Reduce Irrigation

U.S. Department of the Interior U.S. Geological Survey

(69 MGD)

Below -50 -50 to 0 0 to 50 50 to 100 Above 100

29 feet below top of aquifer

ORANGERUR

Moderate Growth Scenario Comparison (2070) McQueen Branch aquifer (layer 11)

U.S. Department of the Interior U.S. Geological Survey

Moderate Growth Scenario Comparison (2070) McQueen Branch aquifer (layer 11)

U.S. Department of the Interior U.S. Geological Survey

HAL3 Same as before the focus is the cone of depression near Lexington for the McQueen Branch Aquifer. Hughes, Andrea L, 6/19/2022

Current (14 MGD)

Moderate Growth Scenario Comparison (2070) McQueen Branch aquifer (layer 11)

Moderate Growth (20 MGD)

24 feet below top of aquifer

84 feet below top of aquifer

Combined Scenario: Relocate Pumping and Reduce Irrigation

91 feet below top of aquifer

Maximum Breach of Aquifer Depths at Areas of Concern

U.S. Department of the Interior U.S. Geological Survey Zero for the vertical axis is the location of the top of each aquifer.

Simulated water levels in the Crouch Branch aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

–∆– Current

- High Growth
- Relocate Pumping
- Combined Scenarios

Simulated water levels in the Crouch Branch aquifer showing approximate top of aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

–∆– Current

- High Growth
- Relocate Pumping
- Combined Scenarios

Simulated water levels in the Crouch Branch aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

→ Current

- Moderate Growth
- -O- Reduce Irrigation
- Combined Scenarios

Simulated water levels in the Crouch Branch aquifer showing approximate top of aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

→ Current

- Moderate Growth
- -O- Reduce Irrigation
- Combined Scenarios

Simulated water levels in the McQueen Branch aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

– ∠ Current

- High Growth
- Relocate Pumping
- Combined Scenarios

Simulated water levels in the McQueen Branch aquifer showing approximate top of aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

– ∠ Current

- High Growth
- Relocate Pumping
- Combined Scenarios

Simulated water levels in the McQueen Branch aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

- -∆- Current
- Moderate Growth
- Reduce Irrigation
- Combined Scenarios

Simulated water levels in the McQueen Branch aquifer showing approximate top of aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

→ Current

- Moderate Growth
- -O- Reduce Irrigation
- Combined Scenarios

Andrea Hughes ahughes@usgs.gov 803-543-4729 Greg Cherry gccherry@usgs.gov 470-557-0868

Matt Petkewich mdpetkew@usgs.gov 803-727-9041

Supplemental slides

Simulated water levels in the Gordon aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

–∆– Current

- High Growth
- Relocate Pumping
- Combined Scenarios

EXPLANATION

High Growth

Current

Simulated water levels in the Gordon aquifer showing approximate top of aquifer

U.S. Department of the Interior U.S. Geological Survey

Simulated water levels in the Gordon aquifer

Provisional – All data is considered provisional and subject to revision.

EXPLANATION

→ Current

- Moderate Growth
- Reduce Irrigation
- Combined Scenarios

EXPLANATION

Reduce Irrigation

Current

Simulated water levels in the Gordon aquifer showing approximate top of aquifer

U.S. Department of the Interior U.S. Geological Survey

14141112 DARLINGTON. NEWBERRY KERSHWM GUL WOOD E CILAND 9 JKH R ITS NOT R COLOR DATES EDGEFIEL CLARENDON RANCEB_PO 14.00 3°K-09-4 OF HOLE BAY CO BERNELEY BAMBERG DOSCHER 884.64 ALLENDALE. CL STON EXPLANATION 10.1144 HAMPTON **Forebold the chicado** AS THE Ă BEALFOR

Area of concern near Calhoun County where top of Crouch Branch aquifer is less deep than other parts of the Edisto River Basin

U.S. Department of the Interior U.S. Geological Survey

Provisional – All data is considered provisional and subject to revision.

Hydrogeologic Framework