Objective

Quantify relationships between key flow metrics and biotic response to better inform water flow standards throughout the state of South Carolina

Frame Work

The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010

Build a hydrologic foundation of streamflow data

- 2. Classify natural river types
- 3. Determine flow-ecology relationships associated within each river type
- 4. Recommend water flow standards to achieve river condition goals

1. Build a hydrologic foundation of streamflow data

- Matching data
- 171 flow metrics for each stream segment
 - 24 metrics minimally redundant and ecologically relevant
 - Timing, magnitude, frequency, rate of change, and duration

Code	Flow regime	Description	
MA1	Magnitude	Mean daily flow (cfs)	
MA3	Magnitude	Mean of the coefficient of variation for each year	
MA41	Magnitude	Annual runoff	
MA42	Magnitude	Variability of MA41	
ML17	Magnitude	Base flow index	IVI = Magnitude
ML18	Magnitude	Variability in ML17	D - Duration
ML22	Magnitude	Specific mean annual minimum flow	D – Duration
MH14	Magnitude	Median of annual maximum flows (dimensionless)	F = Frequency
MH20	Magnitude	Specific mean annual maximum flow (cfs/mile)	
FL1	Frequency	Low flow pulse count	T = Timing
FL2	Frequency	Variability in FL1	D - Data
FH1	Frequency	High flood pulse count	R = Rale
FH2	Frequency	Variability in FH2	
DL16	Duration	Low flow pulse duration (Days)	
DL17	Duration	Variability in DL16	L = Low flow
DL18	Duration	Number of zero-flow days	
DH15	Duration	High flow pulse duration (Days)	H= High flow
DH16	Duration	Variability in DH15	
TA1	Timing	Constancy	
TL1	Timing	Julian date of annual minimum	
TL2	Timing	Variability in TL1	
TH1	Timing	Julian date of annual maximum starting at day 100	
TH2	Timing	Variability in TH1	
RA8	Rate	Number of reversals	

Frame Work

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
 - 1. Build a hydrologic foundation of streamflow data

Classify natural river types

- 3. Determine flow-ecology relationships associated within each river type
- 4. Recommend water flow standards to achieve river condition goals

2. Classify natural river types

- A. Flow-ecology relationships may differ among stream classes
- B. Relationship holds for these un-sampled streams
- C. Guide future monitoring and management efforts

Ecoregions

- Organisms differ among ecoregions
- Piedmont
- Southeastern Plains
- Middle Atlantic Plains

Frame Work

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
 - 1. Build a hydrologic foundation of streamflow data
 - 2. Classify natural river types

Determine flow-ecology relationships associated within each river type

4. Recommend water flow standards to achieve river condition goals

Biological Data:

- 492 Fish sites (streams & rivers)
 - DNR
 - 8 biological response metrics

- 530 aquatic insects sites
 DHEC
 - 6 biological response metrics

Fish Metrics

- Richness
- Shannon's diversity index
- Proportional representation of individuals in the genus Lepomis
- Proportional representation of tolerant individuals
- Proportional representation of lotic individuals
- Proportional representation of individuals belonging to a breeding strategy
 - Open substrate spawning, brood hiding, and nest spawning species

NCFISHES.com

Slideshare.com

Stonefly

Mayfly

(Ephemeroptera)

(Plecoptera)

Aquatic insects

- Richness
- Shannon's diversity index
- Proportional representation of individuals within the Orders EPT
- Proportional representation of individuals within the family Chironomidae
- The Megaloptera-Odonata index
- **Tolerance** index

Caddisfly

(Trichoptera

Frame Work

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
 - 1. Build a hydrologic foundation of streamflow data
 - 2. Classify natural river types
 - 3. Determine flow-ecology relationships associated within each river type

Recommend water flow standards to achieve river condition goals

- Major finding
- Focus on results relevant to the Edisto Basin and recommendations

Three major findings

1. We found many relationships

Three major findings

1. We found many relationships

- 2. All components of the flow regime are important
 - Timing, magnitude, frequency, rate of change, and duration
 - Not just minimum flows!

Relevance of flow regime components

- Magnitude: MA1 (mean daily flow) and ML17 (base flow)
 - Alteration of habitat
 - Reduced water quality and higher mortality
- Duration: DL16 (duration of low flow)
 - Alteration of connectivity
 - Increased duration of low water quality
 - (timing of low flow events)

Distantion of life-cycle cues (spawning, egg hatching, migration) and classes in recruitment

Invasion of the second seco

Three major findings

1. We found many relationships

2. All components of the flow regime are important

- 3. These relationships differ between stream classes
 - A single flow standard for the whole state will be inadequate

Stream class matters!!!

How can we use these relationships?

Defining biological response limits

- zones low, medium, and high change in the biological condition of streams along flow gradients
- Searching for area along flow gradients that induce changes in the biological metric

Predicting responses

If we alter flow by X amount what will be the biological response?

Mean daily flow (MA1): biological response limits

 Reductions in MA1 would negatively impact the number of species

How can we use these relationships?

Defining biological response limits

- zones low, medium, and high change in the biological condition of streams along flow gradients
- Searching for points along flow gradients that induce changes in the biological metric

Predicting responses

If we alter flow by X amount what will be the biological response?

Mean daily flow (MA1): predictions

Change in MA1

Mean daily flow (MA1): predictions

Change in MA1

Summary

- Developed a flexible framework
 - Accounts for spatial variation
 - Impact on fishes and aquatic insects
 - Counts for all components of the flow regime (Timing, magnitude, frequency, rate of change, and duration)
 - Can be applied across SC and locally
- Inform the discussion on flow standards
 - Flexibility in use and water modeling approaches

Proposal

- Incorporate 4 flow-ecology metrics as performance measures of Edisto River water use scenarios. They are:
 - Mean Daily Flow (MA1)
 - Base Flow Index (ML17)
 - Duration of Low Flow (DL16)
 - Timing of Low Flow (TL1)
- These were chosen based on:
 - Relevance to water withdrawal and drought management
 - Strength of relationship
 - Distribution: All stream classes and basin area represented
 - Readily calculable in SWAM

Proposal

- Why? This enables you to evaluate the actual impact on the basin's health and compare multiple scenarios quickly
- How to use them? There are multiple possibilities. We recommend:
 - Evaluate the performance of water use scenarios on stream and river health
 - Strategic nodes, stream reaches of interest, and selected tributaries.
 - Use them in a risk management context: high, medium, low risk (we have an example)

Proposal: Low-Med-High Risk Ranges

	Instream Flow Performance Recommendations and Risk Ranges									
Stream Type:	Southe	astern Plains	5 1 (SE1)	Southe	astern Plains	3 (SE3)	Mid-Atlantic 1 (M-A-1)			
	Risk Ranges									
	Low	Med	High	Low	Med	High	Low	Med	High	
Flow Metric										
Mean Daily Flow (FR)	>0.66	0.42-0.66	<0.42	>0.75	0.52-0.75	<0.52				
Base Flow (MR)							>0.68	0.25-0.68	<0.25	
Base Flow (MT)							>0.60	0.36-0.60	<0.36	
Low Flow Duration (FR)				<0.13	0.13-0.40	>0.40				
Low Flow Duration (FT)							<0.20	0.20-0.60	>0.60	
Calendar Day of Lowest Flow (MO)				>280	262-280	<262				
Calendar Day of Lowest Flow (FT)							>250	232-250	<232	

Proposal: Mock SWAM Output with Measures

Hydrology:												
	EDO03 SOUTH FORK EDISTO RIVER NR MONTMORE NCI, S. C. Flow (CFS)	EDO14 SOUTH FORK EDISTO RIVER ABOVE SPRINGFIEL D, SC Flow (CFS)	HUC402 Outlet Flow (CFS)	EDO05 SOUTH FORK EDISTO RIVER NEAR DENMARK, SC Flow (CFS)	EDO06 SOUTH FORK EDISTO RIVER NEAR COPE, SC Flow (CFS)	EDO07 SOUTH FORK EDISTO RIVER NEAR BAMBERG, SC Flow (CFS)	EDO11 EDISTO RIVER NEAR BRANCHVILL E, SC Flow (CFS)	HUC601 Outlet Flow (CFS)	EDO13 EDISTO RIVER NR GIVHANS, SC Flow (CFS)	EDO01 MCTIER CREEK (RD 209) NEAR MONETTA, SC Flow (CFS)	EDO02 MCTIER CREEK NEAR NEW HOLLAND, SC Flow (CFS)	Shaw Outlet Flow (CFS)
mean flow (CFS)	185	367	451	714	774	949	1890	2021	2593	24	49	132
median flow (CFS)	168	329	402	631	654	801	1452	1468	1751	18	37	116
25th percentile flow (CFS)	122	237	276	428	435	472	979	899	994	12	26	83
10th percentile flow (CFS)	95	180	206	317	322	339	725	642	658	8	17	59
5th percentile flow (CFS)	78	145	166	252	256	270	614	521	520	6	13	48
Mean Daily Flow % / Fish richness (MA1)	0.81	0.88	0.71	0.92	0.83	0.92				0.69	0.70	0.78
Base Flow Index / Macroinvertebrate richness (ML17)							0.78	0.51	0.88			
Base Flow Index / Macroinvertebrate tolerance (ML17)							0.88	0.44	0.79			
Low Flow Duration % / Fish richness (DL16)	0.16	0.21	0.11	0.24	0.18	0.12						
Low Flow Duration % / Tolerant fish (DL16)							0.14	0.33	0.13			
Calendar day of lowest flow / MO index (TL1)	291	299	281	291	289	288						
Calendar day of lowest flow / Tolerant fish (TL1)							277	237	269			
Stream Class (SE1, SE3, M-A-1)	SE3	SE3	SE3	SE3	SE3	SE3	M-A-1	M-A-1	M-A-1	SE1	SE1	SE1

Acknowledgements

- Clemson:
 - Luke Bower
 - Brandon Peoples
 - Marzieh Motallebi
 - Carl Ureta
- SCDNR:
 - Mark Scott
 - Kevin Kubach
 - Scott Harder
 - Elizabeth Miller
 - Lorianne Riggin

- **SCDHEC**:
 - David Eargle
 - Pradeep Adhikari
 - Leigh Monroe
 - Heather Preston
- **RTI**:
 - Michele Eddy
 - Benjamin Lord
- The Nature Conservancy
 - **Eric Krueger**
- Funding: The Nature Conservancy and South Carolina Water Resources Center

Luke Bower: lmbower@clemson.edu

Thank you! Questions?

Base flow (ML17)

Duration of low flow (DL16)

SE Plains: Stable baseflow

Timing of low flow (TL1)

(Timing of low flow events in Julian days)

Timing of low flow (TL1)

