Recap of Water Withdrawals and Projections

Alex Pellett

Hydrologist SC Department of Natural Resources Land, Water and Conservation

Broad River Basin Council – Meeting #5 August 10th, 2022

Reported Surface Water Withdrawals by Category in 2021

Reported Surface Water Withdrawals by Sub-Basin in 2021

Reported Surface Water Withdrawal by Categories

Reported Monthly Surface Water Withdrawal by Categories

→ 2011 → 2012 → 2013 → 2014 → 2015 → 2016 → 2017 → 2018 → 2019 → 2020 → 2021

Forecast

- Educated guess.
- Based on expected conditions and actions.
- Timeframe limited by predictability of future conditions.
- Aim to be accurate.

Projection

- Extrapolation of trend.
- Based on hypothetical scenarios.
- Timeframe can extend beyond the limits of effective forecasting.
- Aim to be informative.

Equation 1: Water Demand Mass Balance

Demand = Withdrawal + Purchase + Reuse – Sales – Loss – ΔStorage + Shortage

Where:

Demand Withdrawal	: Off-stream water demand : Total water withdrawal from source water bodies
Durchase	 Total nurchases of water from distributors
Pausa	. Total rayse of water proviously used for another purpose
Reuse	The first of water previously used for another purpose
Sales	: Iotal wholesale transfers of water to another user or distributor
Loss	: Total losses of water preventing it from being put to use
∆Storage	: Net change in off-stream storage
Shortage	: Water not available to meet the objectives of water users

Equation 2: Return Flow Mass Balance

Return Flow = Discharge - Inflow & Infiltration

Where:

Return Flow	:	Water returned to the environment after non-consumptive uses
Discharge	:	Concentrated discharges to surface water bodies (NPDES data)
Inflow & Infiltration	:	Waste-water resulting from inflow and infiltration (I/I)

Table 1.1: Drivers of Water Demand				
Category	Primary driver			
Thermo-electric power	Electricity production			
Public and domestic supply	Population			
Manufacturing	Economic production			
Agriculture and Golf Courses	Irrigated acres			

- Preliminary draft results, not yet vetted.
- For demonstration purposes only.
- Only includes users of surface water in the Broad basin.
- There will be modifications to these draft projections based on continued stakeholder feedback.
- All values are plotted as Million Gallons per Month

Mining

- Only one mine uses surface water in the Broad basin, a granite quarry.
- Mining water demand is not projected to change over time.

Golf Courses

- 9 golf courses use surface water in the Broad basin.
- Golf course irrigation is not projected to change over time.

Golf Detail

Agricultural Irrigation

I propose projecting no growth in agricultural irrigation in the Broad basin.

Thermoelectric Water Demand

- No planned expansions have been reported for VC Summer. Filed for extension of license to 2062. No change is water demand is projected.
- Prior to 2014, water demand (and consumption) was greater than in recent years.
- Apparently, maintenance/refueling is carried out in alternative spring and fall seasons.
- Will there be a new nuclear plant in the future? Cherokee or William States Lee...

Manufacturing

Public Supply

- Many Drinking Water Distributors are interconnected by wholesale purchases and sales.
- Public Supply Systems are represented as the total of all interconnected withdrawal and distribution permits.
- Population served by each distributor is projected based on the county listed on the distribution permit.

Total water demand of public suppliers that withdraw surface water in the Broad Basin.

Selected Public Supply Projections

- Clinton consumes ~50% and returns to Saluda basin.
- Columbia gets about half of its water from Lake Murray. All returns go to Saluda basin.
- Gaffney consumes ~45%
- Spartanburg consumes ~75%

Questions?

Public Supply in North Carolina

