STATE OF SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES

LAND, WATER AND CONSERVATION DIVISION

WATER RESOURCES REPORT 48 2009

POTENTIOMETRIC SURFACE OF THE FLORIDAN AQUIFER AND TERTIARY SAND AQUIFER IN SOUTH CAROLINA

NOVEMBER 2004

POTENTIOMETRIC SURFACE OF THE FLORIDAN AQUIFER AND TERTIARY SAND AQUIFER IN SOUTH CAROLINA

NOVEMBER 2004

by

Brenda L. Hockensmith

STATE OF SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES

LAND, WATER AND CONSERVATION DIVISION

WATER RESOURCES REPORT 48

2009

This document is available on the Department of Natural Resources web site: http://www.dnr.sc.gov/

STATE OF SOUTH CAROLINA The Honorable Mark H. Sanford, Governor

South Carolina Department of Natural Resources

Board Members

Michael G. McShane, Chairman	
R. Michael Campbell, II, Vice-Chairman	2nd Congressional District
Caroline C. Rhodes	1st Congressional District
Stephen L. Davis	
Norman F. Pulliam	4th Congressional District
Frank Murray, Jr	5th Congressional District
John P. Evans	6th Congressional District

John E. Frampton, Director

Land, Water and Conservation Division

Steven J. de Kozlowski, Acting Deputy Director

A.W. Badr, Ph.D., Chief, Hydrology Section

CONTENTS

Page

Abstract	1
ntroduction	1
Method of investigation	
Geohydrologic framework	
Ground-water flow	11
Historical trends	11
Summary and conclusions	
References	

FIGURES

1.	Hydrographs of wells ALL-373 and ORG-430	. 12
2.	Hydrographs of wells COL-16, COL-97, COL-301, CHN-44 and HAM-83	. 14
3.	Hydrographs of wells COL-301 and CHN-484 and specific conductance trends in well COL-301	. 15
4.	Hydrographs of wells BFT-429 and JAS-425	. 17

TABLE

Water-level elevations during November 2004 in wells completed in the Floridan aquifer and Tertiary sand aquifer	
in South Carolina	2

PLATE

Potentiometric surface of the Floridan aquifer and Tertiary sand aquifer in South Carolina, November 2004

POTENTIOMETRIC SURFACE OF THE FLORIDAN AQUIFER AND TERTIARY SAND AQUIFER IN SOUTH CAROLINA

NOVEMBER 2004

By Brenda L. Hockensmith

ABSTRACT

The potentiometric surface of the Floridan aquifer and its updip clastic equivalent, the Tertiary sand aquifer, shows a generally southeastward ground-water flow affected by several potentiometric depressions. These cones of depression have developed because of ground-water pumping at Summerville, North Charleston, Walterboro, and Eutawville. Water levels in Jasper and Beaufort Counties continue to be affected by pumping in the Savannah, Ga. area.

Comparing the 2004 data with historical data shows that water levels near the northwest outcrop areas have declined and near the northeast show inconsistent trends. In areas influenced by pumping, water levels have declined as much as 35 feet between 1998 and 2004.

INTRODUCTION

The Floridan aquifer and its updip clastic equivalent, the Tertiary sand aquifer, is the source of water for many public, industrial, and agricultural supplies in much of the South Carolina Coastal Plain. This important resource is monitored by regularly measuring nonpumping water levels in selected wells. The potentiometric surface of an aquifer is defined by the elevations at which water stands in tightly cased wells completed in the aquifer (Neuendorf and others, 2005). This potentiometric-surface map was prepared by the Land, Water and Conservation Division of the South Carolina Department of Natural Resources (DNR), using data collected during late 2004. Trends in groundwater levels for selected wells are shown by hydrographs.

METHOD OF INVESTIGATION

The boundaries of the Floridan aquifer and the Tertiary sand aquifer used in this investigation are those defined by Aucott and others (1987), who delineated the aquifer on the basis of geologic data (primarily geophysical logs of wells), water levels, water chemistry, and previous investigations. They acknowledged that the complex deposition of sediments in the Coastal Plain makes aquifer delineation uncertain. DNR is currently redefining the hydrogeology of the South Carolina Coastal Plain on the basis of palynological and hydrogeological data from a network of wells and coreholes in the State (Gellici, 2007a and b). This aquifer has been studied extensively by Cooke (1936), Siple (1957), Colquhoun and others (1983), Renken (1984), Aucott and Speiran (1985a, and 1985b), and Aucott (1996). Regional and local studies include Siple (1975), Johnson (1978), Hayes (1979), Crouch and others (1985), Davies and others (1985), Hassen (1985), Park (1985), Crouch and others (1987), Meadows (1987), Hughes and others (1989), Logan and Euler (1989), Gawne (1990), Whiting and Park (1990), Garza and Krause (1992), Gawne (1994), Aadland and others (1995), Ransom and

White (2000), and Hockensmith (2001b).

The potentiometric map presented here was constructed by using water levels measured in 244 wells in October and November 2004 (see table). Water-level measurements made during that period are representative of median aquifer conditions, whereas in other periods, such as late winter or early spring and midsummer, measurements represent maximum and minimum levels, respectively. Data were collected by DNR, the U.S. Department of Energy, the South Carolina Department of Health and Environmental Control (DHEC), and the U.S. Geological Survey (USGS) personnel. Wells measured by previous investigators were used, where possible, to compare 2004 data with historical potentiometric maps. Corrections for tidally influenced wells were not made because insufficient data existed. For a few wells in Beaufort County, monthly mean data for October or November were used and are noted as such in the table.

The hydrographs were constructed from measurements by DNR and USGS. Where continuous records were available, daily mean water levels were plotted to minimize tidal influence.

GEOHYDROLOGIC FRAMEWORK

The Coastal Plain formations of South Carolina compose a wedge of sediments that thickens from 0 ft (feet) at the Fall Line to more than 4,000 ft at Hilton Head Island. These sediments consist of sand, clay, and limestone of late Cretaceous and younger ages that were deposited on a pre-Cretaceous basement complex of metamorphic, igneous, and consolidated sedimentary rocks.

The Floridan aquifer generally includes the Cooper Formation, the Ocala Limestone, and the Santee Limestone (Aucott and others, 1987). These units range from Oligocene to middle Eocene in age. The updip limit of this aquifer extends from central Allendale County through northern Colleton County, central Berkeley County south of Lake Moultrie, and eastward through southern Georgetown

Remarks																											
Change in water level from 1998 to 2004, in feet	-2	6	-3	-11	6-	-7	-8			-3		1	10	2	1	-3	0	-5	-5	0	3	-1	-5	12	1	2	1
Water level elevation above or below (-) mean sea level, in feet *	258	153	145	164	161	124	124	188	235	151	127	183	166	130	148	183	130	118	118	119	3	1	-14	9	5	-11	0
Longitude, in degrees, minutes, and seconds *	812908	811711	811107	813023	813023	813021	813023	812306	812305	812304	812306	811107	810818	810044	810213	811106	810111	810040	810044	805500	804501	804302	804427	804048	804018	805358	804313
Latitude, in degrees, minutes, and seconds *	333232	330134	330545	330649	330648	330649	330648	330129	330129	330129	330129	331054	331858	330611	331749	331056	331112	330542	330540	331034	322519	323120	323303	321823	322630	322043	321545
Grid number	36U-06	34AA-r2	33Z-v1	37Z-t4	37Z-t5	37Z-t6	37Z-t7	35AA-q4	35AA-q5	35AA-q6	35AA-q8	33Y-v1	32X-g2	31Z-t1	31X-m9	33Y-v2	31Y-s1	31Z-u5	31Z-u6	30Y-u1	27HH-y1	27GG-q1	27GG-f1	27JJ-j1	27HH-t7	2911-x8	27JJ-x1
Well number	AIK-849	ALL-330	ALL-336	ALL-363	ALL-364	ALL-365	ALL-366	ALL-371	ALL-372	ALL-373	ALL-375	BAM-11	BAM-22	BAM-26	BAM-31	BAM-33	BAM-37	BAM-74	BAM-75	BAM-81	BFT-118	BFT-133	BFT-145	BFT-181	BFT-198	BFT-301	BFT-315

Grid number 28KK-e1	Latitude, in degrees, minutes, and seconds * 321455	Longitude, in degrees, minutes, and seconds * 804943	Water level elevation above or below (-) mean sea level, in feet * -7	Change in water level from 1998 to 2004, in feet	Remarks
	321353	804902	-11	1	
	322940	804643	4-	-1	
	323318	804348	-19	6-	
	321551	804911	-5	2	
	321725	803839	2	2	
	320841	804446	-9	4	
	321457	804342	-1	2	
	321035	804337	-6	-10	
	321936	802740	2	1	
	322402	802620	3	0	
	321944	802806	2	0	
	324049	805030	4	-1	
	32213	803615	4	2	
	322406	804002	2	1	
	322035	805019	-4	3	
	322431	803048	2	-2	
	321709	804853		3	
	322345	802948	2	-1	
	321502	804943	-5	4	
	321713	804850	-1	2	
	322551	804023	2	1	
	32229	803248	3	0	
	322006	803724	2	0	DHEC October monthly average
	322108	804136	4	0	
	322146	803358	6	3	
	321323	804230	-2	4	

Remarks																						DHEC November monthly average					
Change in water level from 1998 to 2004, in feet	с	4	4	4	3	3	4-	5	3	-8	2	-1	4	1	1	2	-4	5	-4	-3	1		4	-2	7		3
Water level elevation above or below (-) mean sea level, in feet *	-7	4-	-2	-10	-12	6-	6-	-2	-3	9	-2	18	9-	8-	3	4	-8	-9	0	9	5	-2	-3	2	-11	6-	0
Longitude, in degrees, minutes, and seconds *	804525	804608	804321	804553	804739	804641	804155	804109	804414	803813	804154	804418	804654	805119	803514	803935	804425	804449	803714	804535	804215	804910	804837	803657	805307	805259	805206
Latitude, in degrees, minutes, and seconds *	321113	321304	321436	320913	320754	320958	321306	321236	321333	322922	321453	322930	321055	322024	322024	322152	323438	320943	322126	322746	323010	321515	321425	322318	321657	321651	321736
Grid number	28KK-t2	28KK-i7	27KK-d4	28LL-a1	28LL-m5	28LL-b1	27KK-i2	27KK-I3	27KK-f13	26HH-d2	27KK-b2	27HH-e4	28KK-v4	2911-v1	26II-u5	26II-p1	27GG-e1	27LL-e8	26II-r6	28HH-k5	27GG-w3	28JJ-y4	28KK-d6	26II-h11	29JJ-q2	29JJ-r3	29JJ-m2
Well number	BFT-668	BFT-676	BFT-697	BFT-704	BFT-709	BFT-744	BFT-771	BFT-777	BFT-779	BFT-782	BFT-787	BFT-798	BFT-805	BFT-844	BFT-976	BFT-982	BFT-1212	BFT-1239	BFT-1292	BFT-1306	BFT-1311	BFT-1326	BFT-1330	BFT-1417	BFT-1418	BFT-1422	BFT-1452

Well number	Grid number	Latitude, in degrees, minutes, and seconds *	Longitude, in degrees, minutes, and seconds *	Water level elevation above or below (-) mean sea level, in feet *	Change in water level from 1998 to 2004, in feet	Remarks
BFT-1540	25HH-s3	322559	803158	1	-1	
BFT-1548	25II-08	322252	803422	0	0	
BFT-1583	26HH-p7	322645	803915	2	-5	
BFT-1592	26II-t3	322134	803542	-1	4-	
BFT-1599	26HH-h3	322833	803757	14	-3	
BFT-1604	24HH-q4	322608	802823	4	3	
BFT-1605	26HH-14	322707	803646	3	-1	
BFT-1609	25HH-n2	322748	803340	0	1	
BFT-1701	27II-h8	322314	804212	3	2	
BFT-1714	27HH-w3	322541	804226	3	0	
BFT-1717	27HH-q10	322625	804320	3	2	
BFT-1732	27HH-e6	322903	804451	21	-1	
BFT-1733	27GG-y3	323037	804357	5	-3	
BFT-1736	28II-b4	322419	804609	2	4	
BFT-1800	29JJ-v2	321555	805147	-13	3	
BFT-1806	28GG-c1	323446	804700	6-	-5	
BFT-1810	27JJ-q3	321603	804322	0		
BFT-1813	27KK-j5	321358	804038	-2		
BFT-1814	27KK-j6	321358	804038	-1	4	
BFT-1820	28KK-010	321214	804458	-4	3	
BFT-1822	27KK-011	321217	804457	-5	2	
BFT-1845	28JJ-p5	321650	804918	L-	1	
BFT-1846	28JJ-p6	321650	804918	12	21	
BFT-1870	29JJ-q3	321453	805028	-8	1	
BFT-1904	28LL-p3	320636	801418	-18		
BFT-1925	27HH-f16	322811	804428	22	-4	
BFT-1970	27II-127	32230	804136	4	1	

Remarks	DHEC October monthly average	DHEC November monthly average	DHEC October monthly average	DHEC November monthly average	DHEC November monthly average	DHEC October monthly average																					
Change in water level from 1998 to 2004, in feet								6-	0		4	-1	-5	1	0	1	3	3		5		2	3	L-	3		2
Water level elevation above or below (-) mean sea level, in feet *	-15	0	-5	ς	-21	3	17	47	30	27	54	-3	50	57	80	24	31	14	10	-21	-4	-4	10	24	-10	61	25
Longitude, in degrees, minutes, and seconds *	805016	804702	804830	804806	805553	803629	794751	801738	794852	794839	795809	795802	800405	800150	800820	794530	793735	800048	800130	800424	795710	795711	794621	801153	800311	795604	793926
Latitude, in degrees, minutes, and seconds *	320859	321737	321431	321524	321035	321928	330820	330902	332048	330753	331825	330152	332654	331417	332450	331713	331220	331007	330927	330621	330707	330706	325833	330611	330528	332416	331542
Grid number	59LL-j9	28JJ-m9	28KK-d19	28JJ-x6	29KK-m5	26JJ-b12	16Z-h1	22Y-w2	16W-x1	16Z-n2	18X-g1	18AA-q1	19V-p2	19Y-b2	20W-d4	16X-k1	14Y-m2	19Y-u1	19Z-b7	19Z-p2	18Z-m1	18Z-m2	16BB-i1	21Z-i1	19Z-x7	18W-b2	14X-y52
Well number	BFT-2245	BFT-2299	BFT-2303	BFT-2304	BFT-2355	BFT-2377	BRK-35	BRK-48	BRK-141	BRK-147	BRK-165	BRK-174	BRK-177	BRK-181	BRK-221	BRK-450	BRK-452	BRK-492	BRK-523	BRK-535	BRK-545	BRK-546	BRK-595	BRK-612	BRK-613	BRK-644	BRK-647

Remarks																											
Change in water level from 1998 to 2004, in feet	-2	-3	-5	-5	-3	8-	-3	-3	-3	-6	1	0	-6	-3	-3	-5	6-	-10	-11	2	-6	8-	-12	6	-11	-6	0
Water level elevation above or below (-) mean sea level, in feet *	158	152	174	174	162	162	213	240	213	-24	8-	11	-24	-23	-20	-30	-10	-24	-22	6	1	-32	-21	-32	-23	-1	7
Longitude, in degrees, minutes, and seconds *	812139	811352	811854	811853	811853	811854	812427	812427	812428	800412	801420	793403	800443	802026	795413	800158	802404	802215	800843	792815	794051	794910	794933	795916	801822	793926	793708
Latitude, in degrees, minutes, and seconds *	331337	330742	331045	331043	331044	331044	331916	331915	331915	324748	324302	330247	325022	323933	324856	325511	324836	324031	323935	331004	325529	325119	325045	325251	323455	325628	325929
Grid number	35Y-i2	33Z-n1	34Y-x2	34Y-x3	34Y-x4	34Y-x6	35X-e3	35X-e4	35X-e7	19DD-01	21EE-f3	13AA-n2	19CC-y1	23FF-a1	17DD-f1	19BB-w3	23DD-f1	23EE-v1	20FF-d1	12Y-x1	15BB-u1	16CC-p1	16CC-y11	18CC-01	22GG-d1	14BB-p2	14BB-b4
Well number	BRN-62	BRN-295	BRN-350	BRN-351	BRN-352	BRN-354	BRN-359	BRN-360	BRN-367	CHN-44	CHN-63	CHN-101	CHN-169	CHN-220	CHN-289	CHN-297	CHN-363	CHN-366	CHN-387	CHN-422	CHN-452	CHN-457	CHN-458	CHN-460	CHN-484	CHN-517	CHN-693

Remarks								DNR November monthly average																			
Change in water level from 1998 to 2004, in feet	-1			0		-35	-11	1	-8	-5	-11	-12	L-	-10	0	-13	-5			6-	-8	6-		-1		18	-5
Water level elevation above or below (-) mean sea level, in feet *	11	-18	-14	-3	-15	-28	70	-2	-13	32	-10	-17	30	-12	22	-17	30	95	20	82	L-	-5	-4	6	-17	-16	8
Longitude, in degrees, minutes, and seconds *	794014	795815	795630	792130	795630	794122	801221	803957	802517	804655	803926	802707	803551	802750	805125	803313	802603	810243	810041	805714	803641	802812	802852	803720	803542	803911	804643
Latitude, in degrees, minutes, and seconds *	325824	324637	324632	330910	324632	325458	333517	325355	323216	330003	323941	324408	330252	323534	324800	323638	330243	330149	325753	330402	323708	324809	325613	324524	324555	325149	325238
Grid number	15BB-j1	18DD-q4	18DD-s1	11Z-b1	18DD-s3	15CC-b3	21 T-r8	26CC-f1	24GG-k1	28BB-b1	26FF-e1	24EE-c1	26AA-k1	24FF-w1	29DD-11	25FF-q2	24AA-12	31AA-r1	31BB-k1	30AA-c4	26FF-12	24DD-g1	24BB-q1	26DD-w1	26DD-u1	26CC-02	28CC-12
Well number	CHN-699	CHN-736	CHN-800	CHN-803	CHN-809	CHN-813	CLA-73	COL-16	COL-51	COL-73	COL-92	COL-96	COL-97	COL-149	COL-164	COL-170	COL-189	COL-219	COL-220	COL-232	COL-243	COL-253	COL-255	COL-259	COL-262	COL-269	COL-273

Remarks																											
Change in water level from 1998 to 2004, in feet	-2		-1	-5	8-	-10		-17	1	-6	-33	-28		3	-3	-11	-6		1	3		8	1	-1	-2	-2	-2
Water level elevation above or below (-) mean sea level, in feet *	8-	-2	96	83	-6	-12	-17	-35	33	38	-12	-17	30	94	21	-43	3	23	30	25	93	101	56	77	31	9	11
Longitude, in degrees, minutes, and seconds *	804119	804157	804842	805436	802417	803757	801758	801634	801657	802706	801412	801203	802538	803826	802314	801216	791928	792704	791924	793311	811114	810646	810019	810224	805435	805249	805447
Latitude, in degrees, minutes, and seconds *	325224	324923	330743	330240	325302	324709	323042	325752	330638	331246	330323	325056	330859	331227	330052	330151	331853	332355	331953	332658	324047	325841	325357	325242	324821	324330	324131
Grid number	27CC-12	27DD-b1	28Zn1	29AA-01	23CC-f1	26DD-m2	22GG-w4	22BB-11	22Z-r1	24Y-m1	21AA-f1	21CC-u1	24Z-j2	26Y-n2	23AA-x2	21AA-r3	10X-f1	12W-h1	10X-e1	13V-q4	33EE-v1	32BB-i1	31CC-j2	31CC-m1	29DD-f1	29EE-h1	29EE-p1
Well number	COL-274	COL-275	COL-284	COL-286	COL-294	COL-295	COL-301	DOR-49	DOR-58	DOR-69	DOR-78	DOR-134	DOR-155	DOR-168	DOR-189	DOR-240	GEO-15	GEO-303	GEO-305	GEO-306	HAM-50	HAM-72	HAM-73	HAM-74	HAM-76	HAM-77	HAM-78

Remarks																											
Change in water level from 1998 to 2004, in feet	-2	0	1	1	3	12	-5			-3	-3		-3	0	17		1	1	11	-3		-23	7			-1	0
Water level elevation above or below (-) mean sea level, in feet *	5	55	110	68	91	61	58	118	-52	8-	-3	5	12	-16	-57	9	89	111	167	35	199	52	128	172	228	09	8
Longitude, in degrees, minutes, and seconds *	805103	811901	811702	810253	811534	812139	811300	811151	810657	805346	805205	810625	810329	810716	810324	805944	802440	804046	805122	802056	810734	801713	803921	805154	805154	795920	793954
Latitude, in degrees, minutes, and seconds *	324151	323940	324922	325529	324543	324403	324156	325652	320956	322733	323134	322749	323535	321753	320752	323704	331925	332058	332805	332335	332653	331837	332719	333030	333030	333452	332141
Grid number	29EE-s1	34FF-e2	34DD-b1	31BB-w1	34DD-u1	35EE-b1	33EE-q2	33BB-s1	32LL-b1	29HH-n5	29GG-r4	32HH-13	31FF-x1	32JJ-m1	31LL-n1	30FF-01	23X-e3	27W-u1	29V-i1	23W-j1	32V-r3	22X-h1	26V-02	29U-v2	29U-v3	18U-e1	15W-y1
Well number	HAM-83	HAM-122	HAM-174	HAM-175	HAM-180	HAM-181	HAM-201	HAM-228	JAS-112	JAS-298	JAS-397	JAS-402	JAS-406	JAS-420	JAS-421	JAS-425	ORG-9	ORG-40	ORG-48	ORG-92	ORG-97	ORG-425	ORG-427	ORG-430	ORG-431	WIL-187	WIL-205

* Latitude and longitude location for wells are generally estimated from topographic maps, unless surveyed or located by global positioning systems.

County (Aucott and others, 1987, as modified from Miller, 1985).

Locally, three subdivisions of the Floridan aquifer are recognized; the upper, middle, and lower Floridan. The upper Floridan corresponds to the highly permeable, bioclastic limestone of the Ocala Limestone. The middle Floridan corresponds to the permeable part of the lower Ocala Limestone and the upper Santee Limestone (Crouch and others, 1987; Gawne, 1994; Gawne and Park, 1992; and Ransom and White, 2000). The lower Floridan corresponds to the lower permeable sections of the Santee Limestone and the upper part of the Black Mingo Formation (Gawne, 1994).

The Tertiary sand aquifer is divided into upper and lower units. The upper unit is the sand facies equivalent of the Floridan aquifer. The updip limit extends from northwestern Allendale County to Orangeburg and curves eastward into southern Georgetown County (extended Floridan aquifer). It is composed of sediments from the Barnwell, McBean, and Congaree Formations and ranges in age from Early to Late Eocene. The lower unit consists of clastic sediments of Early Eocene and Paleocene ages and includes part of the Black Mingo Formation.

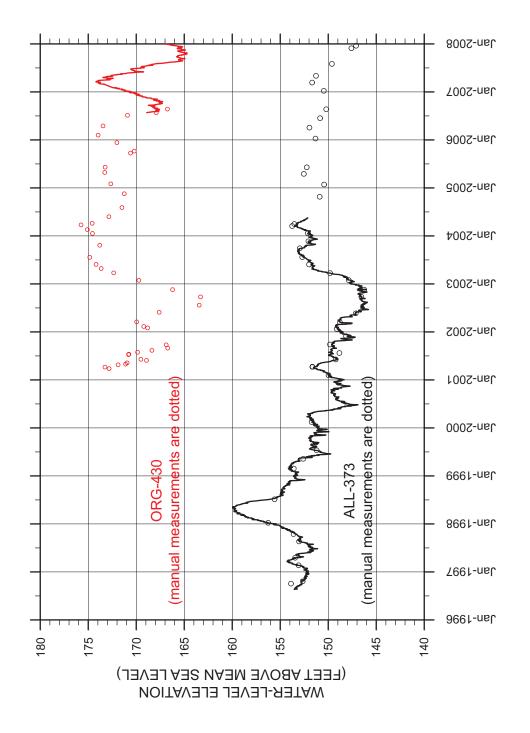
The base of the Floridan dips southeastward and is at elevation 300, -600, and -1,400 ft msl (referenced to mean sea level) at Aiken, Walterboro, and Hilton Head Island, respectively. Thickness ranges from 0 ft at the updip limit to more than 1,000 ft at Hilton Head Island.

The upper Floridan is the major aquifer of Beaufort, Jasper, and southern Hampton Counties. The lower Floridan is a source of ground water for Colleton and northern Hampton Counties. The middle Floridan is a source of water supply in north-central Hampton County, and especially for recent developments in Beaufort County. For the preparation of this map, water-level data from upper Floridan wells in Beaufort and Jasper Counties and most of Hampton County were used. Data from middle and/or lower Floridan wells were used within the boundary shown for the Floridan aquifer. Elsewhere, data from wells in the Tertiary sand aquifer were used.

GROUND-WATER FLOW

The potentiometric surface of the Floridan aquifer dips generally coastward and defines a southeastward regional ground-water flow. Water levels in Aiken, Barnwell, and northern Allendale Counties are not contoured because data are sparse and commonly represent unconfined-aquifer conditions that are influenced by surface topography. The highest water level, 258 ft msl, was noted in Aiken County. In areas where the aquifer crops out, it is recharged by rainfall. In the updip sections, where stream valleys incised the aquifer, it is drained by those streams. This is shown by the convex curving of contour lines upstream along the Santee, Savannah, Salkehatchie, and Little Salkehatchie Rivers, and the North and South Forks of the Edisto River. In the downdip sections, the aquifer discharges into overlying aquifers or through pumping wells.

Dimpling this surface are cones of depression caused by concentrated ground-water withdrawal. The potentiometric surface has been affected by pumping in Beaufort, Berkeley, Charleston, Colleton, Dorchester, and Orangeburg Counties. The greatest impact of ground-water withdrawals is in Jasper and Beaufort Counties, where water flows toward Savannah. Potentiometric levels are below -57 ft msl near Savannah and are the lowest measured in 2004.


HISTORICAL TRENDS

Potentiometric levels of the Floridan aquifer have been observed since 1916 (Siple, 1975). Aucott and Speiran estimated predevelopment potentiometric levels (1985b). When they compared their predevelopment potentiometric map with that of November 1982, they noted declines in Barnwell, Beaufort, Berkeley, Charleston, Colleton, Dorchester, Jasper, and Orangeburg Counties (Aucott and Speiran, 1985a). The 2004 data show that the potentiometric surface has continued to decline since 1982 throughout most of the areal extent of the aquifer.

One of the worst multiyear droughts on record, from June 1998 through August 2002, caused significant effects on hydrologic conditions in South Carolina (Kiuchi, 2002). Historical low flows were recorded in 2001 for numerous regulated and unregulated streams (Kiuchi, 2004). Many of the large lakes, originally built for hydroelectric power or flood control, were at their lowest levels near the end of the drought: some were substantially below desired operating levels (Gellici and Badr, 2004). Water levels in selected Floridan and Tertiary sand wells in Allendale, Charleston, Colleton, and Hampton Counties had declines ranging from 5.5 to 9.3 ft (Gellici and Harwell, 2004) as a direct result of this meteorological event or, indirectly, because of increased ground-water pumping.

A comparison of the 2004 potentiometric surface in the northwestern extent of the aquifer with that of 1998 indicates that water levels generally declined. In AIK-849, the only well measured in Aiken county, water levels declined 2 ft from 1998 to 2004. Wells in Barnwell County all declined during this same interval. Declines ranged from 2 to 5 ft with the average decline being 3.7 ft. In Allendale County, declines ranged from 3 to 11 ft (where 1998 data existed), with the exception of ALL-330, which recovered 6 ft. Water levels in ALL-373 (Fig. 1) generally declined from a high of 160 ft msl (5/11/1998) to 146 ft msl (6/21/2002) largely as a result of the drought, then recovered to 153 ft msl in March 2004 but have been variable since then. Bamberg County water-level changes from 1998 to 2004 varied from 10 to -5 ft, and averaged +0.1 ft. There is no apparent trend in the county with regard to recoveries and declines.

Water-level elevation changes between 1998 and 2004 are inconsistent in the northeastern extent of the aquifer, where data are sparse. The maximum recovery was 3 ft (GEO-306) in Georgetown County, whereas a decline of 6 ft was observed in GEO-303. Water levels differed only

slightly (0 to -1 ft) in Williamsburg County. CLA-73, the only well measured in Clarendon County, declined 11 ft in this interval.

Water-level differences in Orangeburg County are also conflicting for the same period. Little change occurred near Holly Hill (ORG-9) where water levels were nearly the same in March 1946 and November 1998 and 2004. Water levels in Eutawville (ORG-92), near Lake Marion, were 80 ft msl in September 1965, 60 ft msl in November 1982, 38 ft msl in November 1998, and 35 ft msl in November 2004, for a total decline of 45 feet. A recovery of nearly 11 ft occurred in ORG-48 from 1998 to 2004; however, water levels near Orangeburg are variable, ranging between 163 to 176 ft msl since 2001 according to the hydrograph for ORG-430 (Fig. 1).

Water levels declined significantly in eastern Dorchester and most of Charleston Counties. Among the greatest changes between 1998 and 2004 occurred along the Interstate 26 corridor between Summerville and Charleston. In the cone of depression near Summerville, water levels declined more than 17 and 11 ft, to -35 and -43 ft msl, respectively, in DOR-49 and DOR-240 during this period. Comparing these values with an estimated predevelopment level of 40 ft msl (Aucott and Speiran, 1985) indicates that historical declines are 75 to 83 ft. To the southeast, another cone of depression defined by a 30-ft contour line exists about North Charleston. The two wells defining this cone differ in water-level changes from 1998 to 2004; CHN-297 shows a 5-ft decline, whereas CHN-460 shows a 6-ft recovery for this period.

Pumping in Dorchester County contributed to the deepening of these cones of depression. Reported pumpage, primarily from the Floridan/Tertiary sand aquifer, increased by 1.6 mgd (million gallons per day) from 2001 to 2004 and averaged 4.2 mgd, in 2004 (Bristol, 2003; and Childress and Bristol, 2005).

The cone of depression defined by the -20-ft contour encompasses most of Charleston County on the 2004 map. The greatest decline noted from 1998 to 2004 occurred in CHN-813, where water levels declined 35 ft. Northeast of this well, water levels are similar to 1998 levels. CHN-44 and CHN-484, in southern Charleston County, show seasonal fluctuations and an overall decline of 6 and 11 feet, respectively, for this period (Figs. 2 and 3). Near Edisto Beach, water-level trends in COL-301 are similar to CHN-484, with a decline of 4 ft between November 2000 and November 2004 (Fig. 3). At COL-301, specific conductance, an indirect measure of dissolved mineral matter in water, shows an increase with declining water level and is an indication that saltwater intrusion is occurring.

Most Berkeley County water levels have recovered since 1998. Recoveries ranged from less than 1 ft to 5 ft. The few wells showing declines are BRK-48, BRK-174, BRK-177, and BRK-612 with declines of 9, 1, 5, and 7 ft, respectively. BRK-48 and BRK-612, with the largest declines, are located in southwestern Berkeley County near I-26. Wells in northern Berkeley County may be influenced by Lake Marion but less so by Lake Moultrie, where stages in each lake averaged 75 ft msl for November 2004.

Colleton County water levels east and southeast of Walterboro are below sea level and make the aquifer susceptible to saltwater intrusion. All but three wells in Colleton County declined between 1998 and 2004. The average decline was 7 ft and ranged from 1 to 13 ft. The potentiometric surface is dominated by a lobate curve of the -10-ft contour southeast of Walterboro. A cone of depression formerly was documented about Walterboro in July 1986 (Crouch and others, 1987), March 1991, July 1991, February 1992, November 1992, and November 1993 (Gawne, 1994) and November 1998 (Hockensmith, 2001). Prior to development the water levels were above 50 ft msl at Walterboro, but by 1982 they had declined to 25 ft msl. In 1998 the water levels were lower than -30 ft msl (COL-269), representing a total decline of 80 feet. Water levels ranged between -2 and -15 ft msl near the city. COL-269 recovered 18 ft, whereas COL-274 declined 2 ft, from 1998 to 2004. The hydrograph for COL-16 (Fig. 2) shows a variable but overall declining trend with a low of -16 ft msl occurring in late July 2002 and recovering 18 ft to 2 ft msl in August 2003.

Hampton County showed water-level recoveries in the northwest and declines in the southeast in 2004 from 1998 levels. Recoveries were greatest near the Allendale County line. HAM-72 and HAM-181 recovered 8 and 12 ft, respectively, and recoveries in other wells ranged from 1 to 3 ft. Near Furman, HAM-201 declined 5 feet to 58 ft msl, the greatest decline for the county. Predevelopment levels in this area were estimated at about 75 ft msl (Aucott and Speiran, 1985), indicating a decline of about 17 ft. In eastern Hampton County, declines averaged 2 ft. HAM-76, with a water level of 31 ft msl, indicates a decline of more than 20 feet from predevelopment levels. Water levels in HAM-83 averaged about 10 ft msl prior to 1998 but declined, with some variability, to less than 1 ft in August 2002, then recovered to 9 ft msl in March 2003 and have been more variable since then than prior to 1998 (Fig. 2).

Beaufort and Jasper Counties show the influence of ground-water pumping in the greater Savannah area, with contour lines perpendicular to the coast and declining to the southwest. Reported pumpage near Savannah ranged from 54.0 to 57.5 mgd (million gallons per day) in Chatham County from 1998 through 2004 (Bruce Crawford, DHEC, written communication, 2008). Estimates of predevelopment water levels (circa 1880) are 30 ft msl near Savannah and 10 ft msl on Hilton Head Island, the water discharging near Port Royal Sound (Counts and Donsky, 1963).

North of the Broad River, water levels remain above sea level, except for the Gardens Corner area, the northwest edge of Port Royal Island, and a small area on St. Helena Island. A cone of depression centered at Gardens Corner is -9 ft msl at its center (BFT-420) and has declined 9 ft between 1998 and 2004. Other wells within the 0-ft contour declined 3 to 5 ft during the same interval.

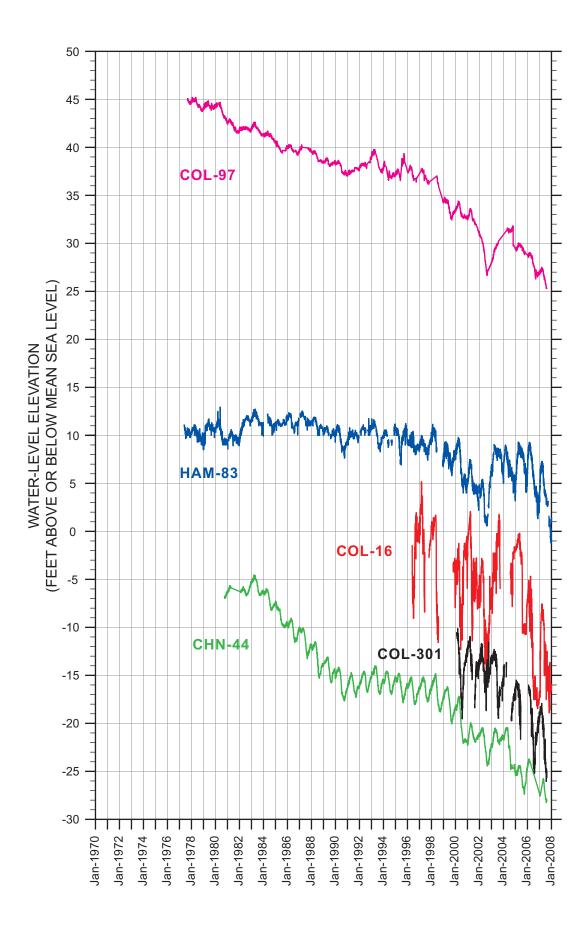
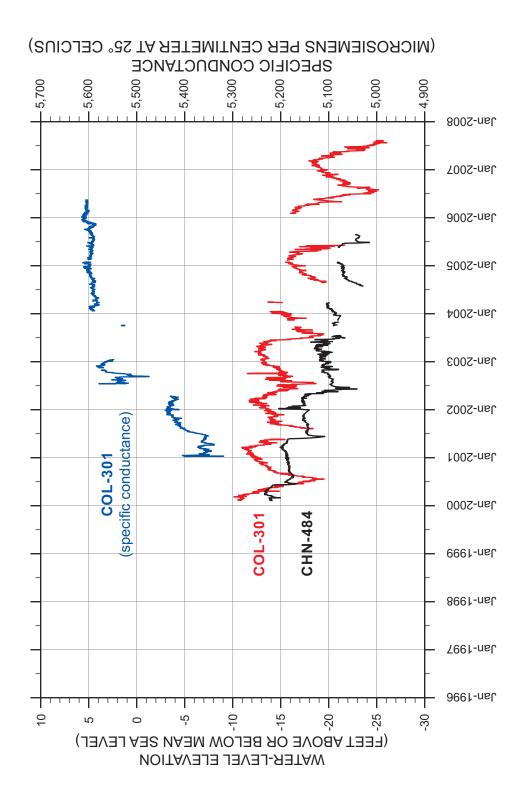



Figure 2. Hydrographs of wells COL-16, COL-97, COL-301, CHN-44 and HAM-83.

The highest water level in Beaufort County, at 22 ft msl, was in BFT-1925 on northern Port Royal Island. Water levels in this recharge mound are 1 to 4 ft lower than in 1998. A second recharge mound exists about BFT-1599, with a water level of 14 ft msl on Ladies Island. Hassen (1985) mapped a recharge mound greater than 15 ft msl (with 2-ft contour interval) in March 1984 on the island and Ransom and White (2000) noted a mound greater than 10 ft msl (5-ft contour interval) in September 1998.

On St. Helena Island, water levels range from -1 to 6 ft msl at BFT-1592 and BFT-600, respectively. A small cone of depression is indicated by the 0 contour about BFT-1592, where the water level was 4 ft lower than in 1998 and is probably caused by irrigation pumping.

South of the Broad River in Beaufort County, water levels are at or below sea level, and the direction of groundwater movement is generally southwest toward Savannah, Ga. BFT-429 shows seasonal variations superimposed on declining trends until 1990 when the downward trend in water levels ceased (Fig. 4). Another period of decline occurred between 1998 and 2001 as a result of the drought.

On Hilton Head Island, water levels appear to be 1 to 5 ft higher in 2004 than in 1998. Although tidal corrections could not be applied to the 2004 data, the trend is consistent throughout the island, including wells located in the island interior where tidal influence is small. Two wells, BFT-771 and BFT-444, with declines of 4 and 10 feet, respectively, oppose this trend and are probably influenced by nearby wells.

Total reported ground-water use in Beaufort County was 18.6 mgd in 2004. The majority (12.4 mgd) came from the upper Floridan aquifer, mostly for public supply. The second greatest pumpage is from the middle Floridan (3.8 mgd) largely for golf-course irrigation. Less than 0.2 mgd is pumped from the lower Floridan in Beaufort. The remaining ground-water pumpage is from surficial (0.2 mgd) and Cretaceous-age aquifers (2.1 mgd) (Robert Devlin, DHEC, written communication, 2008).

The lowest point on the potentiometric surface, at -57 ft msl, is in Jasper County. Predevelopment levels were estimated to be above 25 ft msl throughout the county, and ground-water flow was toward the southeast. The direction of ground-water flow has changed and now is to the southwest. The 1998 map shows water levels in the southwestern part of the county at below -70 ft msl, for a decline of more than 95 ft with documented declines ranging from 7 to 11 ft between 1982 and 1998 (JAS-109, -111, -134, and -298). Data from 2004 indicate that some recovery has occurred since 1998 so that water levels are estimated to be more than 80 ft lower than predevelopment levels. JAS-421 showed a recovery of 17 ft between 1998 and 2004, and both this well and JAS-112 indicate water levels above -60 ft msl.

In northern Jasper County the data from JAS-298 and JAS-397 show that water levels declined 3 ft between 1998 and 2004, although these wells may be tidally influenced. Water levels in JAS-425 ranged from 12 to -1 ft msl between 2000 and 2004 (Fig. 4).

Reported ground-water use in Jasper County in 2004 was 1.1 and 0.9 mgd from the upper and middle Floridan, respectively. Upper Floridan pumpage was 0.7 mgd for irrigation and 0.4 mgd for water supply. Middle Floridan pumpage was 0.1 mgd for irrigation and 0.8 mgd for water supply (Robert Devlin, DHEC, written communication, 2008).

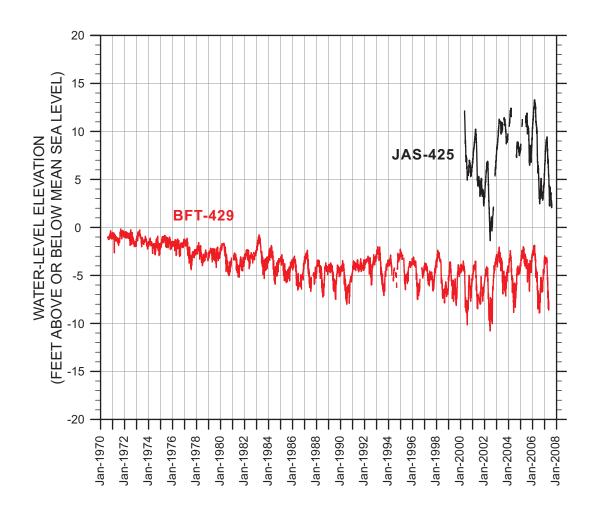
There is a need for additional observation wells in several areas of the Coastal Plain. This map was constructed with 120 fewer wells, or a 33-percent decrease from the 364 wells available in 1998. In constructing this map, several cones of depression are defined by only one or two wells (Eutawville, Summerville, and North Charleston). The declines noted along the coast are a concern and should be monitored because the aquifers are susceptible to saltwater intrusion caused by increased development and the proximity of the saltwater interface. The influence of Georgia's ground-water pumpage on the aquifer also should be closely observed. In light of pressures to provide sufficient water for all users, obtaining data in these areas should have high priority. Efforts should be intensified among ground-water users and governmental agencies to maintain existing observation wells and seek additional wells.

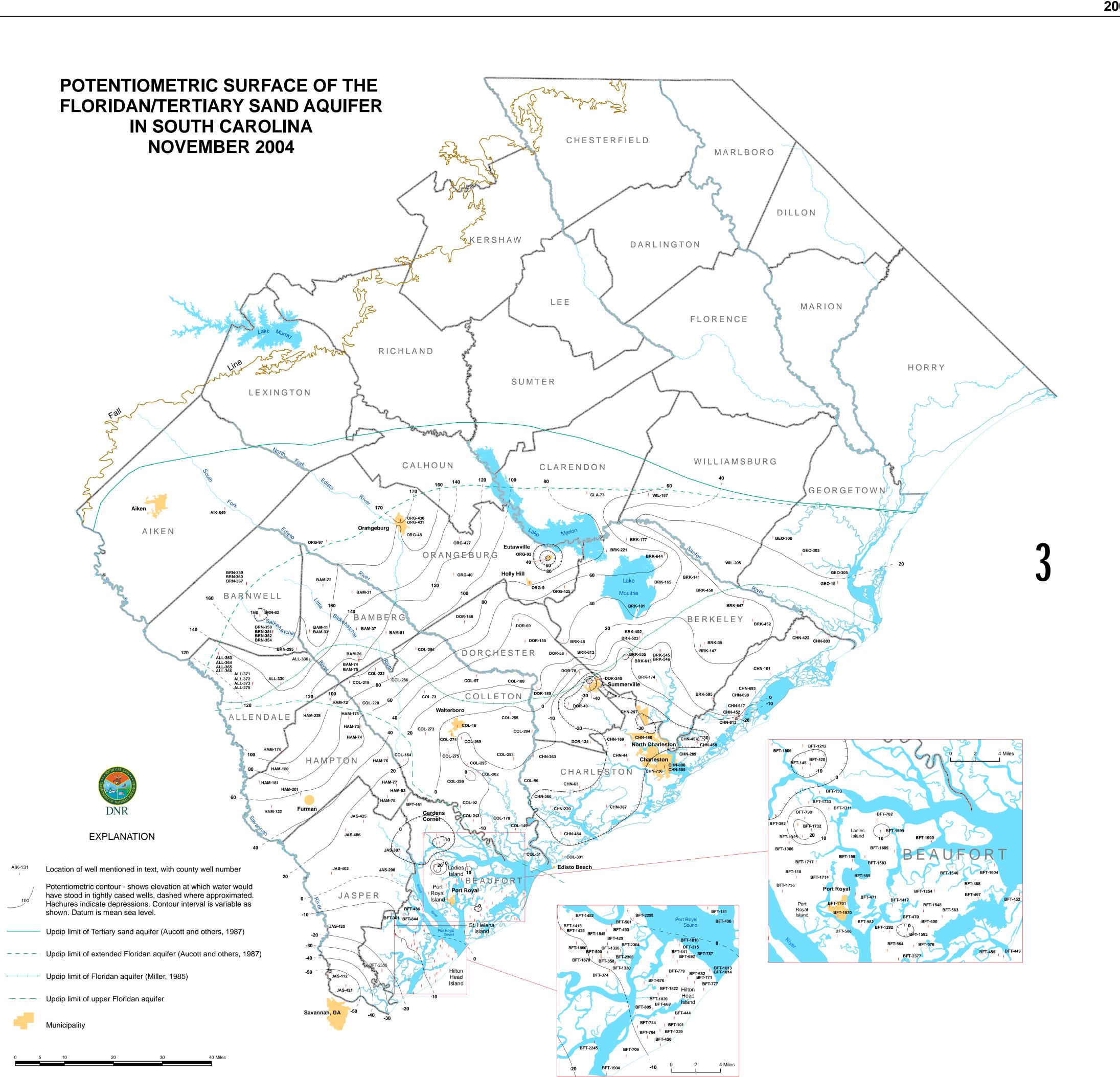
SUMMARY AND CONCLUSIONS

The potentiometric map for the Floridan aquifer and its updip equivalent, constructed by using water-level data from 244 wells measured during late 2004, shows that the generally southeastward ground-water flow is affected by several potentiometric lows. These potentiometric lows developed because of ground-water pumping around North Charleston, Summerville, Walterboro, Gardens Corner, and Eutawville. In Jasper and Beaufort Counties, the groundwater flow reversed from its predevelopment direction and now flows southwestward toward Savannah, Ga.

Historical data show that water levels declined near the northwestern aquifer outcrop area, but fluctuations have occurred in areas influenced by pumping. The greatest fluctuations occurred in southern Jasper County, where water levels have declined more than 80 ft from the estimated predevelopment level but have recovered from 1998 levels.

Potentiometric maps are only as good as the data available to construct them. A greater availability of observation wells, timely measurements, and periodic construction of potentiometric maps will provide improved understanding of the aquifer and subsequently allow better management of this resource.




Figure 4. Hydrographs of wells BFT-429 and JAS-425.

REFERENCES

- Aadland, R.K., Gellici, J.A., and Thayer, P.A., 1995, Hydrogeologic framework of west-central South Carolina: South Carolina Department of Natural Resources, Water Resources Division Report 5, 200 p, 47 plates.
- Aucott, W.R., 1996, Hydrology of the southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina: U.S. Geological Survey Professional Paper 1410-E, 83 p.
- Aucott, W.R., Davis, M.E., and Speiran, G.K., 1987, Geohydrologic framework of the Coastal Plain aquifers of South Carolina: U.S. Geological Survey Water-Resources Investigations Report 85-4271, 7 sheets.
- Aucott, W.R., and Speiran, G.K., 1984, Water-level measurements for the Coastal Plain aquifers of South Carolina prior to development: U.S. Geological Survey Open-File Report 84-803, 36 p, 1 sheet.
 - 1985a, Potentiometric surfaces of November 1982 and declines in the potentiometric surfaces between the period prior to development and November 1982 for the Coastal Plain aquifers of South Carolina: U.S. Geological Survey Water-Resources Investigations Report 84-4215, 7 sheets.
- 1985b, Potentiometric surfaces of the Coastal Plain aquifers of South Carolina prior to development: U.S. Geological Survey Water-Resources Investigations Report 84-4208, 5 sheets.
- Bristol, P.L., 2003, South Carolina water use report 2001 summary: South Carolina Department of Health and Environmental Control, Bureau of Water, 26 p.
- Childress, J.M., and Bristol, P.L., 2005, South Carolina water use report 2004 summary: South Carolina Department of Health and Environmental Control, Bureau of Water Technical Document 004-05, 39 p.
- Colquhoun, D.J., Woollen, I.D., VanNiewenhuise, D.S., Padgett, G.G., Oldham, R.W., Boylan, D.C., Bishop, J.W., and Howell, P.D., 1983, Surface and subsurface stratigraphy, structure and aquifers of the South Carolina Coastal Plain: Columbia, S.C., University of South Carolina, Department of Geology, 78 p.
- Cooke, C.W., 1936, Geology of the Coastal Plain of South Carolina: U.S. Geological Survey Bulletin 867, 196 p.
- Counts, H.B., and Donsky, Ellis, 1963, Saltwater encroachment, geology, and ground-water resources of the Savannah area, Georgia and South Carolina: U.S. Geological Survey Water-Supply Paper 1611, 100 p., 6 plates.
- Crouch, M.S., Davies, M.R., Hassen, J.A., and Hughes, W.B., 1985, Water-level conditions in the upper permeable zone of the Floridan aquifer in the South Carolina Low Country, March 1985: South Carolina Water Resources Commission Open-File Report 85-1, 9 p.
- Crouch, M.S., Hughes, W.B., Logan, W.R., and Meadows, J.K., 1987, Potentiometric surface of the Floridan Aquifer in South Carolina, July 1986: South Carolina Water Resources Commission Report 157, 1 plate.
- Davies, M.R., Hassen, J.A., and Hughes, W.B., 1985, Water-level conditions in the upper permeable zone of the Floridan aquifer in the South Carolina Low Country, June 1985: South Carolina Water Resources Commission Open-File Report 85-3, 9 p.
- Garza, Ragina, and Krause, R.E., 1992, Water-supply potential of major streams and the upper Floridan aquifer in the vicinity of Savannah, Georgia: U.S. Geological Survey Open-File Report 92-629, 49 p., 19 plates.
- Gawne, C.E., 1990, Water-level declines in Hampton County, South Carolina: South Carolina Water Resources Commission Technical Memorandum, 16 p.
- 1994, Water-level measurements and potentiometric maps for 1991-1993, Beaufort, Colleton, Hampton, and Jasper Counties, South Carolina with selected hydrographs for 1975-1993: South Carolina Water Resources Commission Open-File Report 43, 20 p., 11 plates.

- 1997, Correction for tidal effects on water-level measurements, Floridan aquifers, southern coast of South Carolina; *in* Contributions to the hydrology of South Carolina: South Carolina Department of Natural Resources, Water Resources Division Report 14, 54 p.
- Gawne, C.E., and Park, A.D., 1992, Water-supply potential of the middle Floridan aquifer in southern Beaufort County, South Carolina: Report to the Town of Hilton Head Island Water Commission, 34 p.
- Gellici, J.A., 2007a, Hydrostratigraphy of the AIK-2448 and AIK-2449 core holes in the Breezy Hill area of Aiken County, South Carolina: South Carolina Department of Natural Resources Water Resources Report 42, 31 p., 4 plates.
- 2007b, Hydrostratigraphy of the ORG-393 core hole at Orangeburg, South Carolina: South Carolina Department of Natural Resources Water Resources Report 43, 28 p., 3 plates.
- Gellici, J.A., and Badr, A.W., 2004, Lake levels in South Carolina during the June 1998 August 2002 drought *in* Hydrologic effects of the June 1998 August 2002 drought in South Carolina; compilation of hydrographs illustrating the effects of the drought on ground-water levels, lake levels, and streamflows in South Carolina: South Carolina Department of Natural Resources, Water Resources Division Report 34, 49 p.
- Gellici, J.A., and Harwell, S.A., 2004, Ground-water levels in South Carolina during the June 1998 August 2002 drought *in* Hydrologic effects of the June 1998 – August 2002 drought in South Carolina; compilation of hydrographs illustrating the effects of the drought on ground-water levels, lake levels, and streamflows in South Carolina: South Carolina Department of Natural Resources, Water Resources Division Report 34, 49 p.
- Hassen, J.A., 1985, Ground-water conditions in the Ladies and St. Helena Islands area, South Carolina: South Carolina Water Resources Commission Report 147, 56 p.
- Hayes, L.R., 1979, The ground-water resources of Beaufort, Colleton, Hampton, and Jasper Counties, South Carolina: South Carolina Water Resources Commission Report 9, 91 p.
- Hockensmith, B.L., 2001a, Water-level measurements used in construction of the 1998 potentiometric map for the Floridan aquifer and Tertiary sand aquifer in South Carolina: South Carolina Department of Natural Resources, Land, Water and Conservation Division Open-File Report 6, 23 p.
- 2001b, Potentiometric map of the Floridan aquifer and Tertiary sand aquifer in South Carolina, 1998: South Carolina Department of Natural Resources, Water Resources Report 23, 1 sheet.
- Hughes, W.B., Crouch, M.S., and Park, A.D., 1989, Hydrogeology and saltwater contamination of the Floridan aquifer in Beaufort and Jasper Counties, South Carolina: South Carolina Water Resources Commission Report 158, 52 p.
- Johnson, P.W., 1978, Reconnaissance of the ground-water resources of Clarendon and Williamsburg Counties, South Carolina: South Carolina Water Resources Commission Report 13, 43 p.
- Kiuchi, Masaaki, 2002, Multiyear-drought impact on hydrologic conditions in South Carolina, water years 1998-2001: South Carolina Department of Natural Resources (pamphlet).
- 2004, Streamflow conditions in South Carolina during the June 1998 August 2002 drought *in* Hydrologic effects of the June 1998 August 2002 drought in South Carolina; compilation of hydrographs illustrating the effects of the drought on ground-water levels, lake levels, and streamflows in South Carolina: South Carolina Department of Natural Resources, Water Resources Division Report 34, 49 p.
- Logan, W.R., and Euler, G.M., 1989, Geology and ground-water resources of Allendale, Bamberg, and Barnwell Counties and part of Aiken County, South Carolina: South Carolina Water Resources Commission Report 155, 113 p., 1 sheet.
- Meadows, J.K., 1987, Ground-water conditions in the Santee Limestone and Black Mingo Formation near Moncks Corner, Berkeley County, South Carolina: South Carolina Water Resources Commission Report 156, 38 p.

- Miller, J.A., 1985, Geohydrologic framework of the Floridan aquifer system in Florida, Georgia, and parts of Alabama and South Carolina: U.S. Geological Survey Professional Paper 1403-B, 91 p., 33 plates.
- Neuendorf, K.K.E., Mehl, J.P. Jr., Jackson, J.A., eds., 2005, Glossary of geology (5th ed.): Alexandra, VA., American Geological Institute, 779 p.
- Park, A.D., 1985, The ground-water resources of Charleston, Berkeley, and Dorchester Counties, South Carolina: South Carolina Water Resources Commission Report 139, 145 p.
- Ransom, Camille, III, and White, J.L., 2000, Potentiometric surface of the Floridan aquifer system in southern South Carolina, September 1998: South Carolina Department of Health and Environmental Control Publication 02B-99, 1 plate.
- Renken, R.A., 1984, The hydrologic framework for the sand aquifer of the Southeastern United States Coastal Plain: U.S. Geological Survey Water-Resources Investigations Report 84-4243, 30 p., 8 sheets.
- Siple, G.E., 1957, Ground water in the South Carolina Coastal Plain: Journal of the American Water Works Association, v. 49, no. 3, p. 283-300.
- 1975, Ground-water resources of Orangeburg County, South Carolina: South Carolina State Development Board, Division of Geology Bulletin No. 36, 59 p.
- Whiting, N.M., and Park, A.D., 1990, Preliminary investigation of water-level declines in wells near Estill, Hampton County, South Carolina, spring 1990: South Carolina Water Resources Commission Open-File Report 37, 18 p.

