# GROUND-WATER RESOURCES OF CLARENDON COUNTY, SOUTH CAROLINA

STATE OF SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES

LAND, WATER AND CONSERVATION DIVISION



WATER RESOURCES REPORT 40 2006

# GROUND-WATER RESOURCES OF CLARENDON COUNTY, SOUTH CAROLINA

by

Roy Newcome, Jr.

## STATE OF SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES



## LAND, WATER AND CONSERVATION DIVISION

## WATER RESOURCES REPORT 40

2006

This document is available on the Department of Natural Resources web site: http://www.dnr.sc.gov/





## **STATE OF SOUTH CAROLINA** The Honorable Mark H. Sanford, Governor

## South Carolina Department of Natural Resources

## **Board Members**

| Michael G. McShane, Chairman           |                            |
|----------------------------------------|----------------------------|
| R. Michael Campbell, II, Vice-Chairman | 2nd Congressional District |
| Vacant                                 | 1st Congressional District |
| Stephen L. Davis                       | 3rd Congressional District |
| Norman F. Pulliam                      | 4th Congressional District |
| Frank Murray, Jr                       | 5th Congressional District |
| John P. Evans                          | 6th Congressional District |

John E. Frampton, Director

### Land, Water and Conservation Division

Alfred H. Vang, Deputy Director

A.W. Badr, Ph.D., Chief, Hydrology Section

### CONTENTS

## Page

| Abstract                                      |   |
|-----------------------------------------------|---|
| Introduction                                  |   |
| Location and physiography of Clarendon County | 1 |
| Climate                                       |   |
| Population and industry                       | 1 |
| Water supply                                  | 4 |
| Aquifers of Clarendon County                  |   |
| Wells                                         |   |
| Aquifer hydraulics                            | 4 |
| Water quality                                 |   |
| Water levels                                  |   |
| Summary                                       |   |
| Selected references                           |   |
|                                               |   |

### FIGURES

| 1.  | Map showing location and drainage of Clarendon County | 2  |
|-----|-------------------------------------------------------|----|
| 2.  | Map showing topographic-map coverage                  | 3  |
| 3.  | Map showing formation contours                        | 6  |
| 4.  | Map showing bedrock contours                          | 7  |
| 5.  | Map showing electric-log locations                    | 8  |
| 6.  | Electric log near Manning                             | 10 |
| 7.  | Map showing locations of large wells                  | 11 |
| 8.  | Map showing locations of pumping tests                | 14 |
| 9.  | Time-distance-drawdown graphs                         | 16 |
| 10. | Map showing chemical-analysis locations               | 18 |
| 11. | Map showing potentiometric levels                     | 20 |

### TABLES

| 1. | Public water-supply systems     | 5  |
|----|---------------------------------|----|
|    | Sand intervals on electric logs |    |
| 3. | Descriptions of major wells     | 12 |
| 4. | Results of pumping tests        | 15 |
| 5. | Chemical analyses               | 19 |

### GROUND-WATER RESOURCES OF CLARENDON COUNTY, SOUTH CAROLINA

by

Roy Newcome, Jr.

#### ABSTRACT

Clarendon County is well endowed with ground water suitable for all uses. Quantities obtainable from wells are adequate for public supplies, industrial uses, and irrigation. Well yields as great as 1,500 gallons per minute are obtained, and many wells can produce more than 100 gallons per minute. The water is of good quality, being soft and low in mineral content.

The Black Creek and Middendorf Formations, of Cretaceous age, contain sand aquifers throughout the Coastal Plain of South Carolina, and these aquifers supply most of the wells in Clarendon County. The deepest well recorded is 950 feet, but most wells are less than 500 feet.

Aquifer transmissivities ranging from 1,900 to 60,000 gallons per day per foot of aquifer width have been calculated from approximately 20 pumping tests of the aforementioned aquifers in Clarendon County and nearby in adjacent counties. Electric logs of wells indicate numerous sand aquifers to a depth of about 900 feet.

#### **INTRODUCTION**

Twenty-eight years ago (1978), Phillip Johnson of the U. S. Geological Survey (USGS) produced a report titled "Reconnaissance of the Ground-Water Resources of Clarendon and Williamsburg Counties, South Carolina." Published by the South Carolina Water Resources Commission as Report No. 13, the work was, in the opinion of this writer, considerably more than a reconnaissance. It provided a detailed description of the ground water in that area, leaving for later workers only the task of updating the evaluation of the resource in the light of information that has become available over the years. It is the intent of this report to reexamine Johnson's findings in Clarendon County and update them with newer data, particularly with regard to aquifer availability and hydraulics and water quality.

#### Location and Physiography of Clarendon County

Clarendon County is at the center of South Carolina's Coastal Plain. The county has a land area of 607 square miles and is bounded on the northwest by Sumter County, on the northeast and east by Florence and Williamsburg Counties, and on the south and southwest by Berkeley, Orangeburg, and Calhoun Counties (Fig. 1). The center of the county is about 60 miles from the coastline. In area, Clarendon ranks 24<sup>th</sup> among the State's 46 counties.

Slightly more than half of Clarendon County is drained by the Black River (Great Pee Dee River basin); the rest (southern part) is in the Santee River subbasin. The latter includes Lake Marion, which occupies about 100 square miles along the border with Berkeley, Orangeburg, and Calhoun Counties. The central part of the county is drained by the Pocotaligo River before it flows into the Black River near the eastern border.

All or part of 21 USGS topographic maps, at a scale of 1:24,000, are included in the coverage of Clarendon County (Fig. 2). Land elevations above sea level range from 30 to

190 ft (feet). The highest elevations are in the northwest corner of the county and the lowest are in the southeast. In most of the county, the land surface can be described as gently sloping.

#### Climate

Typical of South Carolina's Coastal Plain, the climate is humid-subtropical in Clarendon County. Records at two long-term weather stations, Rimini near the west edge of the county and Manning in the center, reveal 45- and 48-inch average annual rainfall, respectively. The wettest months are June, July, and August, and the driest are October and November.

July is the warmest month, with a mean maximum temperature of  $92.5^{\circ}$  F, and January is the coldest, with a mean minimum of  $34.7^{\circ}$  F. The long-term average annual temperature is  $64^{\circ}$  F, and this is an indicator of the shallow ground-water temperature. The growing season for crops is generally from early March to late November, or about 200 days.

#### **Population and Industry**

The population of Clarendon County numbers about 33,400, more than 6,000 of whom have non-farm employment (U.S. Census 2000). The largest industrial employers are Federal Mogul (650), Arvin/Meritor Automotives (285), Trimaco Industries (210), Yanagawa of South Carolina (198), Southwoods-Arauco Lumber and Millwork (120), and Kaycee Manufacturing (100). There are numerous other private and public employers.

The chief farm product at present (2006) is chickens. Clarendon ranks second among the State's counties in corn production, with more than 1.5 million bushels (2002).

Manning is the largest town, with 4,025 people (Census 2000). Summerton has 1,061, Turbeville 602, and Paxville 248.

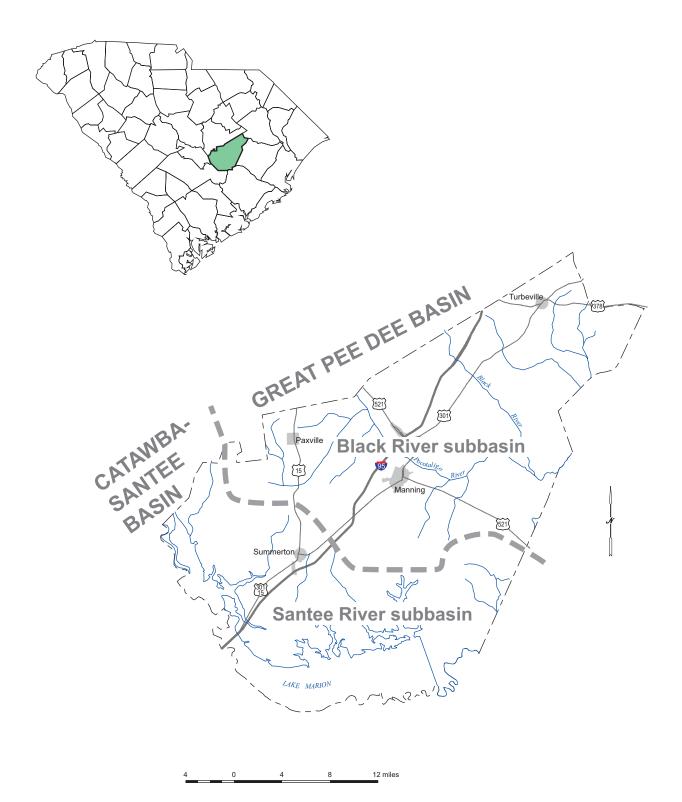



Figure 1. Location and drainage of Clarendon County, S.C.

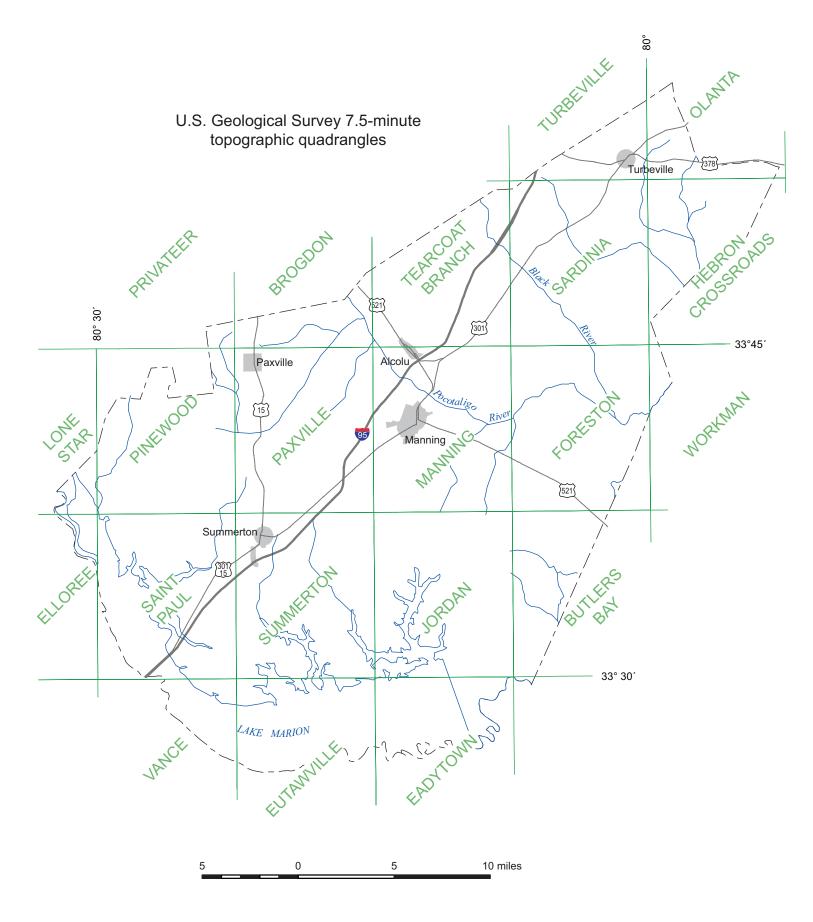



Figure 2. Topographic-map coverage of Clarendon County, S.C.

#### Water Supply

Wells serve the five public water-supply systems in Clarendon County. Table 1 contains descriptions of these systems. In 2005, the systems had the following pumpage rates, in millions of gallons per day (South Carolina Department of Health and Environmental Control):

| Alcolu Water System    | 0.05 |
|------------------------|------|
| Barrineau Water System | 0.09 |
| Manning                | 1.07 |
| Summerton              | 0.33 |
| Turbeville             | 0.30 |

The Alcolu and Barrineau water systems support a water use of less than 100 gallons/day per person, indicating that those systems are basically rural domestic in type. The three towns, Manning, Summerton, and Turbeville, have per capita water uses of 194, 158, and 288 gallons/day. This reflects the commercial and industrial use of water from these municipal systems.

Few of the industries in Clarendon County have their own wells. The many irrigation wells attest to the agricultural development of the county. The large farms have numerous high-yield wells, some capable of pumping 1,000 to 1,500 gpm (gallons per minute).

#### AQUIFERS OF CLARENDON COUNTY

Sand beds of Cretaceous age constitute the chief aquifers of this county. Less important aquifers of Tertiary and Quaternary ages overlie the Cretaceous formations. The major Cretaceous aquifers are in the Black Creek Formation and underlying Middendorf Formation (formerly known as Tuscaloosa Formation). These two formations, probably 65 to 80 million years old, are difficult to differentiate in drilling operations and geophysical logging. From a hydrological standpoint, the aquifer descriptions and hydraulic properties permit little or no differentiation. Two prominent sources of maps using the names Black Creek and Middendorf are Colquhoun and others (1983) and Aucott and others (1987). For Clarendon County, these two sources do not differ greatly in their mapping of the two units (see Fig. 3). It can be said, in general, that the Black Creek Formation ranges in thickness from 350 ft at the northeast end of the county to 500 ft at the south end and the Middendorf thickness from 325 to 750 ft over the same distance.

The uppermost Cretaceous unit is the Peedee Formation. It overlies the Black Creek Formation and is 125 to 225 ft thick in Clarendon County. Although the Peedee contains some sand beds capable of supplying domestic and small irrigation wells, it is not a likely source for large public, industrial, and irrigation supplies. The Black Mingo Formation, of Tertiary age, lies on the Peedee Formation and crops out in the middle third of Clarendon County. Its thickness in the county is 25 to 150 ft, and it is a mostly clayey unit with minor sand beds. Domestic wells obtain water from the Black Mingo and from the shallow water-table aquifer that lies above it.

Of more practical use in the search for water supplies is the total thickness of the Coastal Plain sediments, for it is this that defines the depth limit of the resource. Figure 4 suggests the base of the sediments (top of bedrock) to be 750 to 1,600 ft below sea level in Clarendon County. Available data indicate that freshwater exists in all the aquifers above the bedrock in the county.

Electric logs of wells provide the best means of locating aquifers. Clarendon County is in the fortunate position of being relatively well covered by these logs. Figure 5 shows their locations, and Table 2 lists the sand intervals (aquifers) that are indicated by the logs. An example of an electric log is depicted in Figure 6.

It should be noted here that the interpretation of electric logs is subjective to some extent. What appears to be a high-resistivity trace representing sand could instead be a shell bed or marl. It is always desirable to have carefully collected samples of the materials penetrated during drilling. The sand intervals listed in Table 2 are based on the writer's interpretation of the electric logs. The significant aquifers are indicated in Table 2 and often supply major wells for which yield and chemical-quality information is available; much of it is included later in this report.

#### WELLS

Water wells in Clarendon County are generally less than 300 ft deep, but at least one well reached 950 ft. Casings range in diameter from 4 inches to 16 inches. Nearly all of the aquifers are sand and require well screens. These have openings selected on the basis of sand-grain size and variation. The wells routinely are gravel-walled—that is, gravel of selected size is emplaced in the annular space between the well screen and the drilled hole. The gravel has the purpose of increasing the effective size of the well by allowing the finest grains of aquifer sand to pass through the screen while facilitating the bridging of coarser material that will gradually inhibit the movement of the fine material toward the well. In this manner, a well is "developed" by pumping until the discharge contains little or no sand.

The largest well yield in DNR records for Clarendon County is 1,500 gpm from a 420-ft irrigation well (CLA-55) near Turbeville. Many wells yield, or are capable of yielding, 100 gpm or more and several yield more than 500 gpm. Locations of wells, for which DNR has records and which either yield more than 100 gpm or have been reported by the well drillers to have that capacity, are shown on the map of Figure 7. The wells are briefly described in Table 3.

#### **AQUIFER HYDRAULICS**

The capacities of wells and aquifers to produce water are measured by pumping tests. By pumping a well at a constant rate and measuring the resulting decline (drawdown) of the water level in the well, a graphical plot permits calculation of aquifer transmissivity, well specific capacity, and well

| System and pumpage                         | Well name or location                                                        | Owner<br>no.     | Depth<br>(feet)                 | Yield<br>(gpm)                  | Electric<br>log       | Chemical<br>analysis | Pumping<br>test | County<br>number                                | S.C. grid<br>number                            | Date<br>drilled                                  |
|--------------------------------------------|------------------------------------------------------------------------------|------------------|---------------------------------|---------------------------------|-----------------------|----------------------|-----------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Alcolu Water System                        | At elevated tank<br>West of elevated tank                                    | 1<br>2           | 86<br>86                        | 100<br>70                       | X                     |                      |                 | CLA-28<br>CLA-24                                | 21S-c1<br>21R-w1                               | 2/1972<br>2/1972                                 |
| Barrineau Water System                     | Elevated tank<br>Intersection of roads 53 and 5                              | 1<br>7 2         | 470<br>393                      | 210<br>220                      | X<br>X                | Х                    | Х               | CLA-60<br>CLA-61                                | 17Q-o1<br>18R-b1                               | 6/1986<br>8/1986                                 |
| Manning                                    | Boundary St. (standby)<br>Hwy 301<br>Hwy 521<br>Keitt St.<br>Industrial park | 2<br>3<br>4<br>5 | 650<br>717<br>670<br>764<br>750 | 350<br>675<br>643<br>750<br>800 | X<br>X<br>X<br>X<br>X | x<br>x               | X<br>X<br>X     | CLA-20<br>CLA-29<br>CLA-27<br>CLA-64<br>CLA-146 | 21S-m1<br>21S-y1<br>21S-s1<br>21S-r4<br>22T-i1 | 1/1965<br>10/1974<br>9/1963<br>11/1994<br>2/2005 |
| Summerton                                  | Old well by small tank<br>New well by large tank                             | 1<br>2           | 625<br>750                      | 400<br>500                      | x                     | Х                    |                 | CLA-14<br>CLA-25                                | 23T-s2<br>23T-v1                               | 1934<br>7/1970                                   |
| Turbeville     Elevated tank       Hwy 378 |                                                                              | 2<br>3           | 420<br>475                      | 180<br>500                      | X                     |                      | X<br>X          | CLA-30<br>CLA-63                                | 19Q-i3<br>19Q-f1                               | 2/1976<br>12/1993                                |
|                                            | •                                                                            |                  | •                               | •                               | Data a                | vailable in [        | ONR files       |                                                 |                                                |                                                  |

Table 1. Description of public water supplies in Clarendon County, S.C.

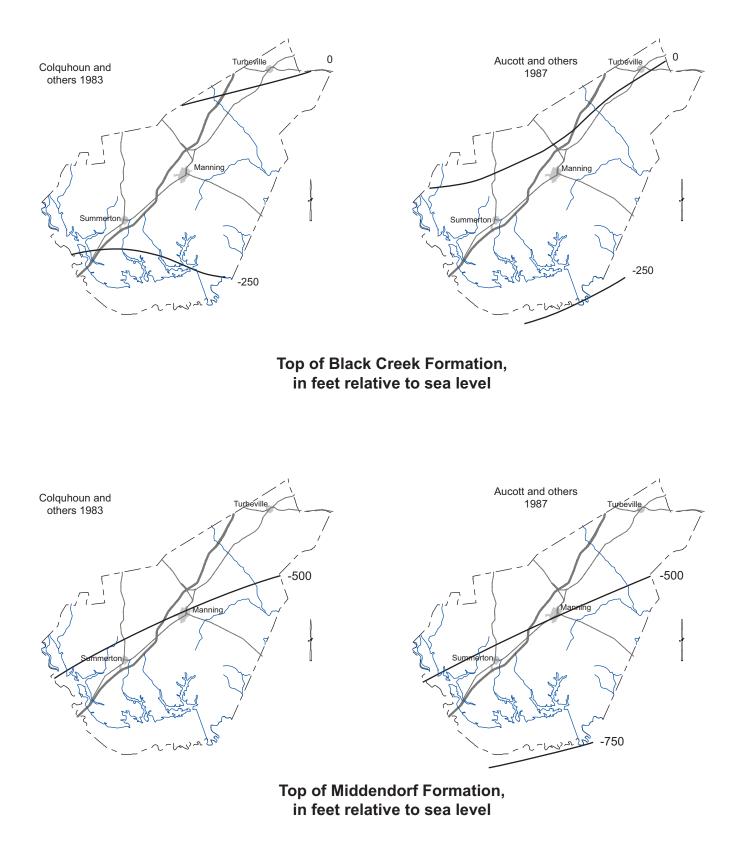



Figure 3. Comparison of formation tops as mapped by two published sources.

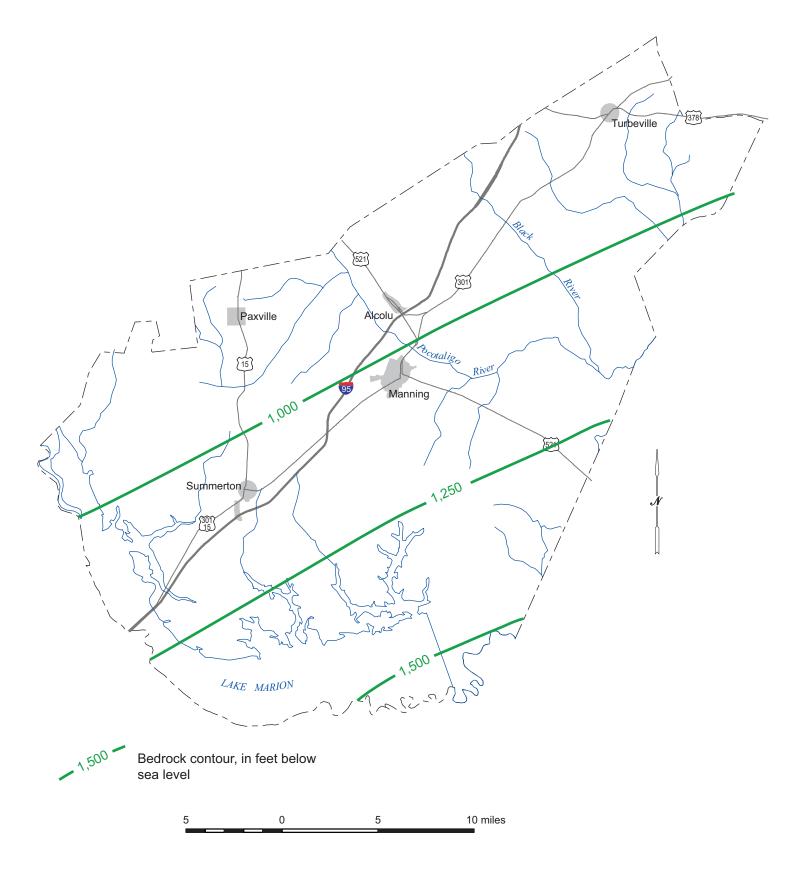



Figure 4. Bedrock contours in Clarendon County.

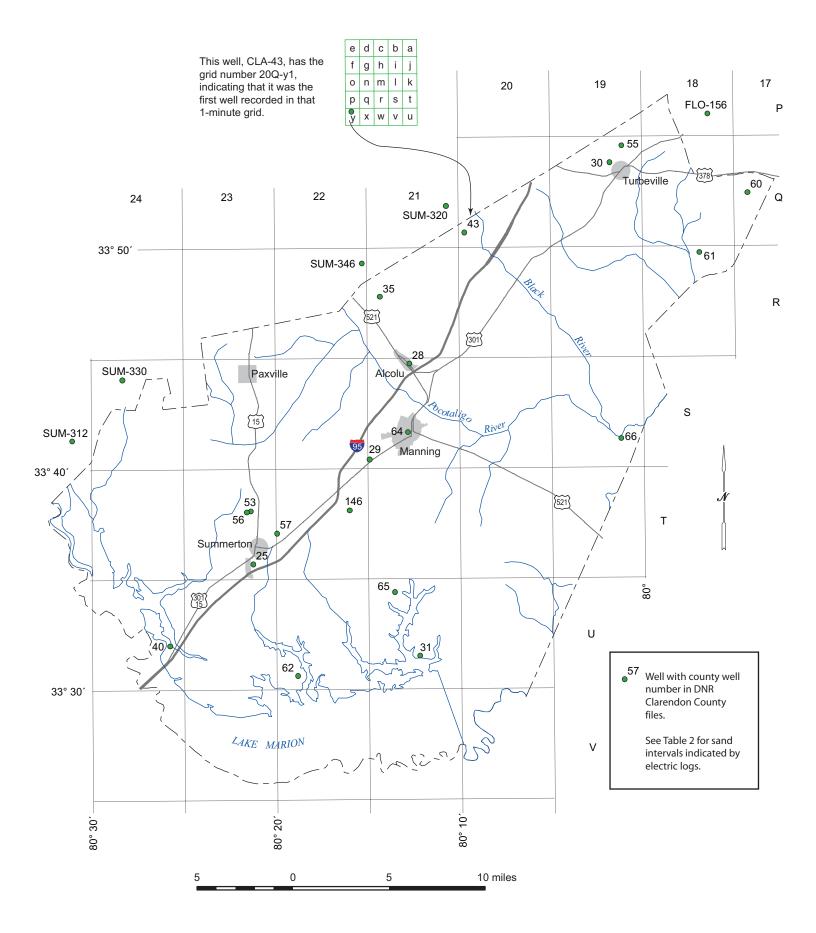



Figure 5. Locations of wells in and near Clarendon County for which electric logs are available.

| Table 2. Sand Intervals ind   | icated by el | een ie logs | or wens ma |                    |         | Junty (see         | - Fig. 5 101 1 | locations |         |         |         |         |
|-------------------------------|--------------|-------------|------------|--------------------|---------|--------------------|----------------|-----------|---------|---------|---------|---------|
| County well number            | CLA-25       | CLA-28      | CLA-29     | CLA-30             | CLA-31  | CLA-35             | CLA-40         | CLA-43    | CLA-53  | CLA-55  | CLA-56  | CLA-57  |
| S.C. grid number              | 23T-v1       | 21S-c1      | 21S-y1     | 19Q-i3             | 21U-r1  | 21R-01             | 24U-t2         | 20Q-y1    | 23T-I1  | 19Q-b1  | 23T-i1  | 22T-01  |
| Elevation, in feet MSL        | 130          | 110         | 137        | 120                | 80      | 135                | 82             | 120       | 140     | 118     | 140     | 133     |
| Log depth (ft)                | 754          | 410         | 768        | 423                | 354     | 181                | 758            | 358       | 485     | 540     | 943     | 716     |
|                               | 170-180      | 5-32        | 45-80      | 132-144            | 65-95   | 24-40              | 20-100         | -37       | 11-50   | 200-214 | 345-394 | 18-50   |
|                               | 196-278      | 64-84       | 150-165    | 164-188            | 120-145 | 68-78              | 115-164        | 52-75     | 123-135 | 230-284 | 438-450 | 100-124 |
|                               | 636-742      | 106-140     | 188-216    | 212-216            | 200-235 | 88-106             | 195-213        | 226-238   | 150-220 | 324-334 | 470-488 | 168-300 |
|                               |              |             | 518-540    | 230-254            | 270-350 | 124-172            | 225-236        | 290-309   | 370-385 | 346-394 | 510-568 | 456-489 |
| Sand intervals,               |              |             | 616-656    | 276-300            |         |                    | 246-310        | 315-336   |         | 410-424 | 593-692 | 500-566 |
| in feet below land            |              |             | 660-704    | 356-370            |         |                    | 410-438        |           |         | 462-478 | 712-734 | 590-640 |
| surface                       |              |             | 710-734    | 404-420            |         |                    | 480-544        |           |         | 498-540 | 786-880 | 645-716 |
|                               |              |             |            |                    | 1       |                    | 588-618        |           |         |         |         |         |
|                               |              |             |            |                    |         |                    | 632-647        |           |         |         |         |         |
|                               |              |             |            |                    |         |                    | 652-734        |           |         |         |         |         |
|                               |              |             |            |                    |         |                    | 740-758        |           |         |         |         |         |
| Well yield (gpm)              | 350          | 150         | 750        | 500                |         |                    |                |           |         | 1,500   |         | 300     |
| County well number            | CLA-60       | CLA-61      | CLA-62     | CLA-64             | CLA-65  | CLA-66             | CLA-146        | FLO-156   | SUM-312 | SUM-320 | SUM-330 | SUM-346 |
| S.C. grid number              | 17Q-01       | 18R-b1      | 22U-x1     | 21S-r4             | 21U-d1  | 19S-s1             | 22T-i1         | 18P-v1    | 25S-s4  | 21Q-t1  | 24S-d3  | 22R-a1  |
| Elevation, in feet MSL        | 90           | 80          | 80         | 125                | 107     | 90                 | 135            | 100       | 147     | 130     | 175     | 138     |
| Log depth (ft)                | 490          | 430         | 519        | 765                | 238     | 500                | 770            | 520       | 725     | 335     | 835     | 668     |
|                               | 150-160      | 223-230     | 30-55      | 102-116            | 30-58   | 22-55              | 115-130        | 105-121   | 160-207 | 12-50   | 20-70   | 75-90   |
|                               | 180-235      | 304-318     | 192-215    | 150-198            | 65-102  | 80-91              | 183-210        | 145-186   | 412-430 | 53-78   | 120-128 | 112-138 |
|                               | 245-290      | 354-395     | 285-303    | 268-276            | 125-150 | 94-101             | 233-276        | 195-222   | 490-500 | 162-175 | 142-180 | 263-300 |
|                               | 300-340      |             | 427-454    | 512-526            | 158-162 | 103-108            | 365-382        | 268-284   | 530-535 | 190-200 | 380-408 | 330-425 |
| Sand intervals,               | 350-475      |             | 470-501    | 530-550            | 170-198 | 111-120            | 396-404        | 304-320   | 630-715 | 220-265 | 420-495 | 435-493 |
| in feet below land<br>surface |              |             |            | 560-575            | 202-224 | 185-202            | 456-463        | 360-390   |         | 328-335 | 513-524 | 510-525 |
| Sullace                       |              |             |            | 580-590            |         | 248-260            | 500-532        | 410-420   |         |         | 579-636 | 570-668 |
|                               |              |             |            | 1                  | 1       |                    | = 10 = 00      | 438-444   |         |         | 000 740 |         |
|                               |              |             |            | 654-668            |         | 285-305            | 540-560        | 430-444   |         |         | 682-740 |         |
|                               |              |             |            | 654-668<br>720-760 |         | 285-305<br>310-321 | 634-724        | 468-520   |         |         | 682-740 |         |
|                               |              |             |            |                    |         |                    |                |           |         |         | 682-740 |         |

Table 2. Sand intervals indicated by electric logs of wells in and near Clarendon County (see Fig. 5 for locations)

NOTE: Significant aquifers are shaded.



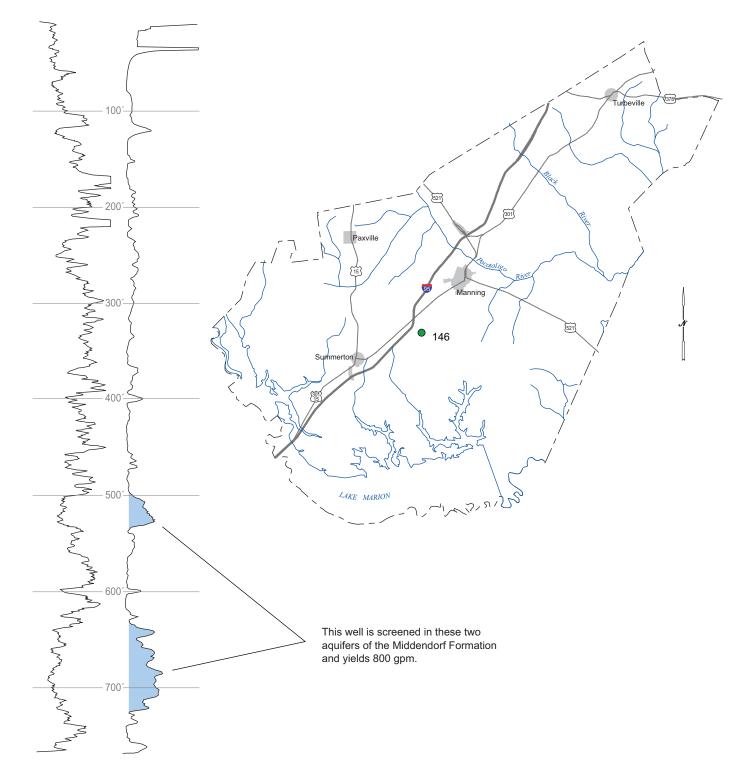



Figure 6. Electric log of a well near Manning, illustrating the identification of aquifers by means of the electrical resistivity.

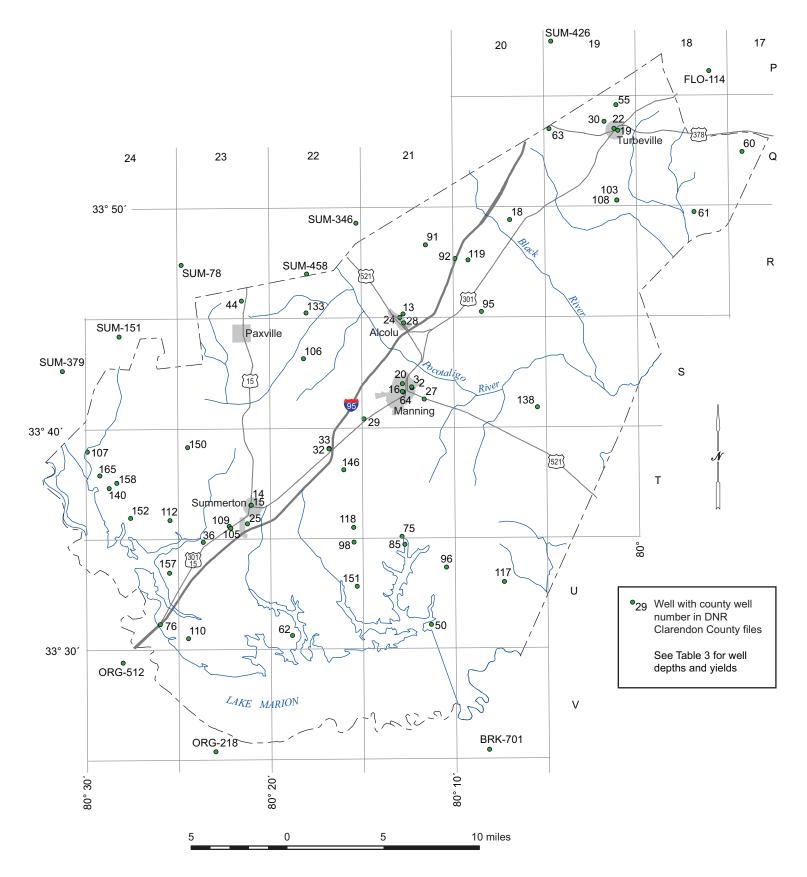



Figure 7. Locations of wells capable of yielding more than 100 gpm in Clarendon County and selected large wells in adjacent counties.

|                    |                  |               | CLAREN         | DON  | COUNTY             |                  |               |                |
|--------------------|------------------|---------------|----------------|------|--------------------|------------------|---------------|----------------|
| County<br>well no. | S.C.<br>grid no. | Depth<br>(ft) | Yield<br>(gpm) |      | County<br>well no. | S.C.<br>grid no. | Depth<br>(ft) | Yield<br>(gpm) |
| CLA-2              | 21S-r1           | 480           | 250            |      | CLA-76             | 24U-s1           | 275           | 160            |
| CLA-3              | 21S-r2           | 600           | 250            |      | CLA-85             | 21U-c2           | 210           | 180            |
| CLA-13             | 21R-w3           | 550           | 250            |      | CLA-91             | 21R-i1           | 626           | 1,000          |
| CLA-14             | 23T-s2           | 625           | 474            |      | CLA-92             | 20R-o1           | 625           | 1,200          |
| CLA-15             | 23T-s1           | 675           | 675            |      | CLA-95             | 20R-x1           | 570           | 600            |
| CLA-16             | 21S-r3           | 610           | 200            |      | CLA-96             | 21U-j1           | 310           | 600            |
| CLA-18             | 20R-b1           | 457           | 500            |      | CLA-98             | 22U-a1           | 240           | 120            |
| CLA-19             | 19Q-i2           | 352           | 500            |      | CLA-103            | 19Q-v1           | 430           | 500            |
| CLA-20             | 21S-m1           | 650           | 350            |      | CLA-105            | 23T-w2           | 786           | 1,000          |
| CLA-22             | 19Q-i1           | 322           | 150            |      | CLA-106            | 22S-g1           | 338           | 150            |
| CLA-24             | 21R-w1           | 86            | 150            |      | CLA-107            | 24T-f2           | 210           | 300            |
| CLA-25             | 23T-v1           | 750           | 525            |      | CLA-108            | 19Q-v2           | 475           | 300            |
| CLA-27             | 21S-s1           | 670           | 643            |      | CLA-109            | 23T-w3           | 239           | 200            |
| CLA-28             | 21S-c1           | 86            | 150            |      | CLA-110            | 23U-y1           | 349           | 800            |
| CLA-29             | 21S-y1           | 717           | 754            |      | CLA-112            | 24T-u1           | 700           | 300            |
| CLA-30             | 19Q-i3           | 420           | 503            |      | CLA-117            | 20U-h1           | 200           | 400            |
| CLA-32             | 22T-b1           | 213           | 200            |      | CLA-118            | 22T-u1           | 240           | 200            |
| CLA-33             | 22T-b2           | 216           | 200            |      | CLA-119            | 20R-o2           | 528           | 400            |
| CLA-36             | 23U-d1           | 491           | 150            |      | CLA-133            | 22R-x1           | 195           | 300            |
| CLA-44             | 23R-b1           | 100           | 130            |      | CLA-138            | 20S-u1           | 620           | 300            |
| CLA-50             | 21U-s1           | 140           | 150            |      | CLA-140            | 24T-n1           | 275           | 500            |
| CLA-55             | 19Q-b1           | 420           | 1,500          |      | CLA-146            | 22T-i1           | 750           | 800            |
| CLA-60             | 17Q-01           | 470           | 305            |      | CLA-150            | 23T-e2           | 270           | 325            |
| CLA-61             | 18R-b1           | 393           | 608            |      | CLA-151            | 22U-k1           | 260           | 300            |
| CLA-62             | 22U-x1           | 320           | 140            |      | CLA-152            | 24T-w1           | 240           | 500            |
| CLA-63             | 19Q-f1           | 475           | 500            |      | CLA-157            | 24U-j1           | 419           | 1,000          |
| CLA-64             | 21S-r4           | 764           | 780            |      | CLA-158            | 24T-n2           | 230           | 300            |
| CLA-75             | 21T-w2           | 210           | 180            |      | CLA-165            | 24T-o2           | 210           | 40             |
|                    |                  |               | ADJACE         | NT C | OUNTIES            |                  |               |                |
| County             | S.C.             | Depth         | Yield          |      | County             | S.C.             | Depth         | Yield          |
| well no.           | grid no.         | (ft)          | (gpm)          |      | well no.           | grid no.         | (ft)          | (gpm)          |
| ORG-218            | 23V-x1           | 424           | 1,250          |      | SUM-78             | 23R-01           | 317           | 900            |
| ORG-512            | 24V-d2           | 335           | 600            |      | SUM-151            | 24S-d1           | 750           | 500            |
|                    |                  |               |                |      | SUM-346            | 22R-a1           | 670           | 1,200          |
| BRK-701            | 20V-x1           | 240           | 200            |      | SUM-379            | 25S-17           | 695           | 400            |
|                    |                  |               |                |      | SUM-426            | 19P-01           | 521           | 1,000          |
| FLO-114            | 18P-s1           | 343           | 450            |      | SUM-458            | 22R-m1           | 497           | 1,000          |

 Table 3. Descriptions of major wells shown on Figure 7 (yields greater then 100 gpm)

efficiency. If an observation well is available, another parameter, storage coefficient, can be calculated. Most frequently, pumping tests in South Carolina involve only the pumped well; however, because in nearly all cases artesian conditions prevail, a storage coefficient can be assumed for the purpose of predicting drawdown effects for various times and distances.

More than 20 pumping tests are available in DNR files for Clarendon County and for nearby sites in adjacent counties. Most of these are shown on the map of Figure 8 and described in Table 4. The practical use of transmissivity values obtained from pumping tests is illustrated by the graphs of Figure 9. These graphs can be used to predict the drawdown effects, at various times and distances, of pumping at selected discharge rates from aquifers representing a wide range of transmissivity.

Factors controlling transmissivity are aquifer thickness and hydraulic conductivity (permeability). Transmissivity determined by a pumping test is divided by aquifer thickness to obtain hydraulic conductivity (K). Examination of the test results of Table 4 reveals a wide range in K values. Needless to say, a thick and highly permeable aquifer is most desirable where large well production is needed.

#### WATER QUALITY

Complete or partial chemical analyses are available for 23 wells in Clarendon County (Fig. 10). Aquifers represented by the analyses are in the Middendorf, Black Creek, Peedee, and Black Mingo Formations. An examination of the analyses indicates water of good quality. Total dissolved-solids concentrations in 15 samples from wells in the Middendorf and Black Creek aquifers averaged 128 mg/L (milligrams per liter) and did not exceed 165 mg/L (Table 5). Few analyses are available for wells in the shallower formations, the Black Mingo and Peedee, but they suggest good water also.

The ground water usually is soft, and the pH typically is around 7.0 or slightly above. Few samples indicate acidic water. Iron concentrations are significantly above the recommended limit of 0.3 mg/L in only 3 of 23 samples tested.

#### WATER LEVELS

Potentiometric (water-level) maps of the Coastal Plain (Hockensmith, 2003) show that ground water in aquifers of the Middendorf Formation is moving in a generally southeast direction in Clarendon County (Fig. 11A). Elevations of water levels range, approximately, from 65 to 95 ft above sea level along the northwest boundary of the county to 50 ft along the southeast boundary. Figure 11B shows that ground-water in aquifers of the Black Creek Formation is moving toward the east, south, and west from a high of 100 ft above sea level in the central part of the county.

The potentiometric maps of Figure 11 are presented to give the reader a general impression of ground-water levels for these formations. It should be borne in mind that the Middendorf and Black Creek Formations both contain numerous sand aquifers (see Table 2), and it is likely that the lowermost and uppermost aquifers in each formation may have significantly different potentiometric levels.

Maps presented by Aucott and Speiran (1985) and Hockensmith (2003a and 2003b) suggest approximate potentiometric-surface declines of about 25 ft and 20 ft for the Black Creek and Middendorf Formations, respectively, between 1982 and 2001.

#### SUMMARY

Clarendon County has abundant ground-water resources of good quality. Considering yields of wells, depths of aquifers, and quality of water, the county is in a fortunate position for obtaining adequate water for domestic and public supplies, industry, and irrigation. Water is obtained chiefly from sand aquifers in the Black Creek and Middendorf Formations.

The files of DNR contain records of more than 65 wells in or closely proximate to Clarendon County that yield, or were reported by their drillers to be capable of yielding, 100 gpm or more. Of these, 9 wells yield 1,000 to 1,500 gpm and 19 others yield 500 gpm or more. The deepest of the high-yield wells is 786 ft. Only 5 of the wells are less than 200 ft deep.

Quality of the ground water is generally good, as indicated by the available chemical analyses. The water is soft and low in total dissolved solids, and the pH is usually above 7.0. Iron does not appear to be present in excessive concentrations.

Ground water is flowing generally coastward in the main aquifers of Clarendon County. Potentiometric levels have declined approximately 1 ft per year, on the average, for the last 25 years.

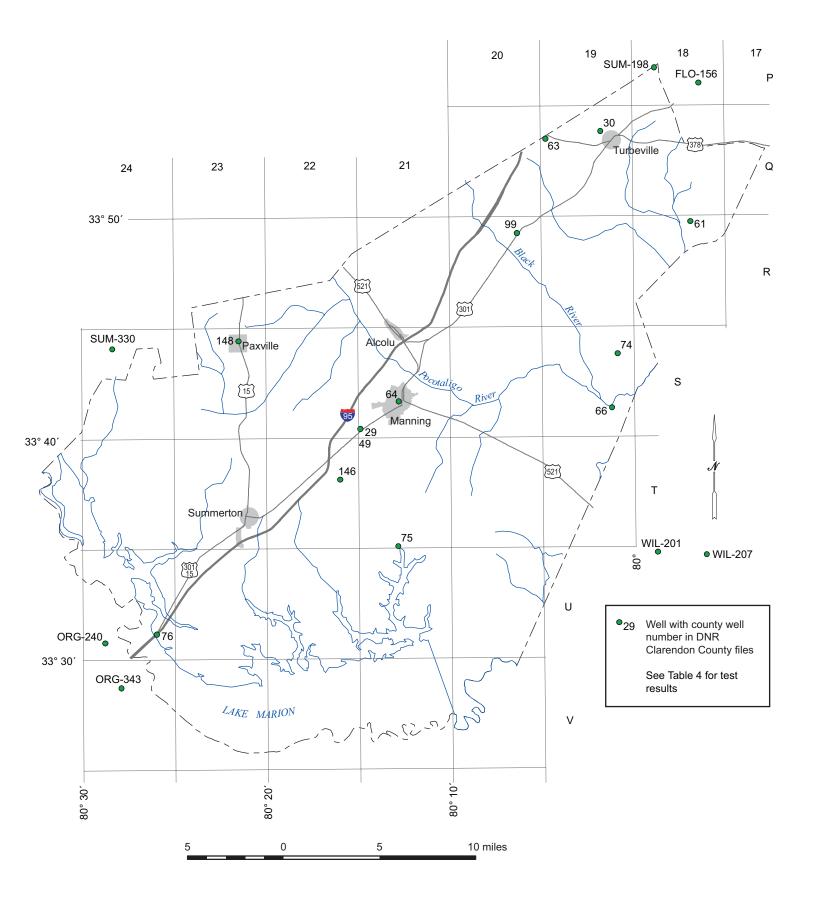


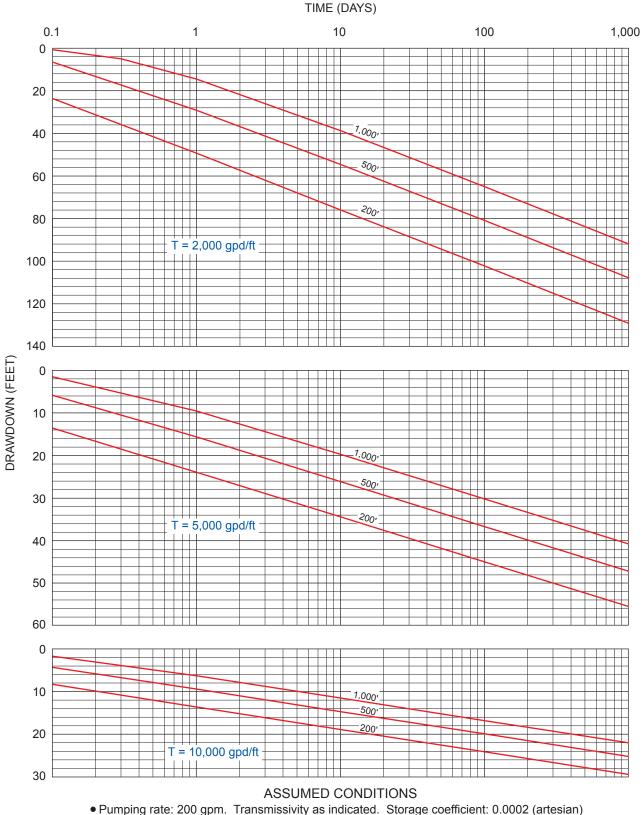

Figure 8. Locations of wells, in and near Clarendon County, for which pumping tests were made.

| County<br>well no. | S.C.<br>grid no. | Location               | Elec.<br>log | Depth<br>(ft) | Aquifer/<br>thick. (ft) | Date of test | Duration (hr)<br>(dd/recov) | Static<br>WL (ft) | Q<br>(gpm) | Trans.<br>(gpd/ft) | Sp. cap.<br>(gpm/ft) | Well effic.<br>(percent) |
|--------------------|------------------|------------------------|--------------|---------------|-------------------------|--------------|-----------------------------|-------------------|------------|--------------------|----------------------|--------------------------|
| CLARENDON COUNTY   |                  |                        |              |               |                         |              |                             |                   |            |                    |                      |                          |
| CLA-29             | 21S-y1           | Manning (west of town) | Х            | 717           | M/105                   | 11/7/1974    | 24/1                        | 23                | 754        | 40,000             | 15                   | 75                       |
| CLA-30             | 19Q-i3           | Turbeville             | Х            | 420           | BC/65                   | 3/2/1976     | 24/1                        | 13                | 503        | 23,000             | 13                   | 100                      |
| CLA-49             | 21S-y3           | Manning (SW of town)   |              | 100           | BM/20                   | 4/8/1982     | 24/                         | 21                | 40         | 2,500              | 1                    | 90                       |
| CLA-61             | 18R-b1           | Turbeville, 6 mi SE    | Х            | 393           | BC/50                   | 8/1986       | 19/                         | 26                | 608        | 27,000             | 4.8                  | 35                       |
| CLA-62             | 22U-x1           | Goat Island            | Х            | 320           | BC/50                   | 12/13/1995   | 27/4                        | 17                | 157        | 2,000              | 1.0                  | 100                      |
| CLA-63             | 19Q-f1           | Turbeville (prison)    |              | 475           | BC/                     | 4/1/1993     | 24/                         | 24                | 500        | 20,000             | 7.7                  | 75                       |
| CLA-64             | 21S-r4           | Manning (Keitt St.)    | Х            | 764           | M/50                    | 11/21/1994   | 24/                         | 30                | 757        | 31,000             | 9.8                  | 65                       |
| CLA-66             | 19S-s1           | Manning, 10 mi E       | Х            | 500           | BC/                     | 6/23/1997    | 24/4                        | 23                | 80         | 7,700              | 2.1                  | 55                       |
| CLA-74             | 19S-j1           | Foreston, 7 mi NNE     |              | 420           | BC/60                   | 12/31/2002   | 6/                          | 25                | 24         | 4,000              | 2.5                  | 100                      |
| CLA-75             | 21T-w2           | Manning, 7 1/2 mi S    |              | 210           | BC/50                   | 2/16/2001    | 24/8                        | 26                | 185        | 15,000             | 3.9                  | 50                       |
| CLA-76             | 24U-s1           | North Santee           |              | 275           | BC/                     | 6/10/2003    | 24/2                        | 22                | 160        | 5,000              | 2.3                  | 90                       |
| CLA-99             | 20R-b2           | Gable                  |              | 280           | BC/60                   | 10/13/2000   | 6/                          | 17                | 32         | 6,300              | 1.4                  | 70                       |
| CLA-146            | 22T-i1           | Manning, 6 mi SW       | Х            | 750           | M/100                   | 2/14/2005    | 24/3                        | 50                | 800        | 60,000             | 21                   | 70                       |
| CLA-148            | 23S-b2           | Paxville               |              | 242           | BC/90                   | 7/5/2005     | 6/                          | 46                | 35         | 1,900              | 3.0                  | 100                      |
| FLORENC            | E COUNTY         | ,                      |              |               |                         |              |                             |                   |            |                    |                      |                          |
| FLO-156            | 18P-v1           | Olanta (water tank)    | Х            | 225           | BC/30                   | 5/3/1968     | 36/                         | 5                 | 300        | 7,500              | 3.3                  | 85                       |
| ORANGEE            |                  | NTY                    |              |               |                         |              |                             |                   |            |                    |                      |                          |
| ORG-240            | 24U-x1           | Santee State Park      |              | 185           | BM/19                   | 4/22/1971    | 24/1.5                      | 12                | 150        | 6,600              | 1.4                  | 40                       |
| ORG-343            | 24V-h1           | Santee, 1 mi SE        | Х            | 349           | BM,BC/90                | 9/15/1986    | 26/1.5                      | 60                | 402        | 12,000             | 4.0                  | 70                       |
| SUMTER O           | COUNTY           |                        |              |               |                         |              |                             |                   |            |                    |                      |                          |
| SUM-198            | 18P-q1           | Woods Bay State Park   |              | 575           | M/                      | 9/8/1976     | 8/                          | 27                | 115        | 8,700              | 3.1                  | 70                       |
| SUM-330            | 24S-d3           | Pinewood               | Х            | 741           | M/55                    | 9/8/1993     | 24/3                        | 62                | 351        | 22,000             | 5.7                  | 50                       |
| WILLIAMS           | BURG COL         | JNTY                   |              |               |                         |              |                             |                   |            |                    |                      |                          |
| WIL-201            | 18U-d1           | Greeleyville           | Х            | 695           | BC/150                  | 6/7/1994     | 24/1                        | 18                | 301        | 8,400              | 4.1                  | 100                      |
| WIL-207            | 18U-b1           | Greeleyville, 3 mi E   |              | 1,129         | M/                      | 12/10/2001   | 24/14                       | 50                | 952        | 30,000             | 8.2                  | 55                       |

Table 4. Results of pumping tests made in and near Clarendon County

Explanation of table-heading abbreviations:

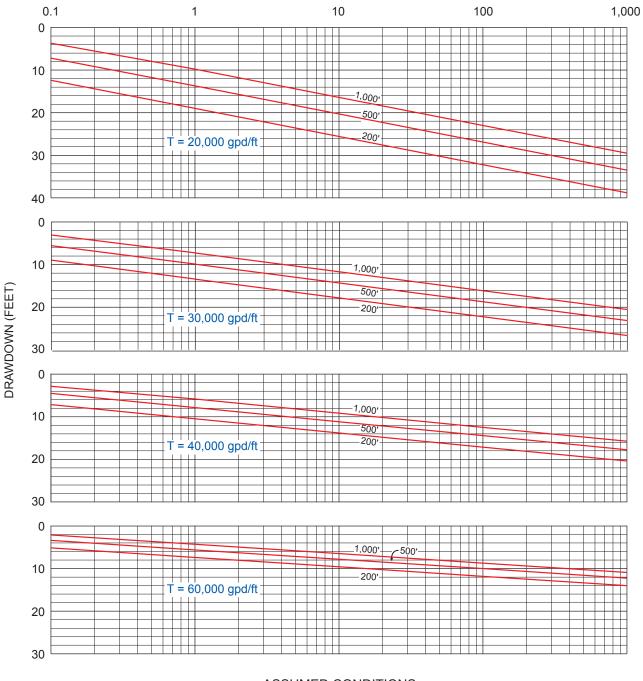
Elec. log – Electric log. X indicates that one is on file.


Aquifer/thick. (ft) – Name of aquifer. BM is Black Mingo Fm., BC is Black Creek Fm., M is Middendorf Fm. Thickness is given when it is apparent on electric log. Static WL (ft) – Nonpumping water level.

Q (gpm) – Pumping rate, in gallons per minute, for test.

Trans. (gpd/ft) – Transmissivity, in gallons per day per foot of aquifer width. Divide by 7.48 to obtain units of cubic feet per day per foot.

Sp. cap. (gpm/ft) – Specific capacity in gallons per minute produced for each foot of water-level drawdown.


Well effic. (percent) - Well efficiency, the specific capacity achieved compared with what it should be for the indicated transmissivity.



- Pumping rate: 200 gpm. Transmissivity as indicated. Storage coefficient: 0.0002 (artesian)
   For other pumping rates, the drawdown will vary in direct proportion. For example, doubling the pumping rate will double the drawdown at a given distance and time.
- Transmissivity is given here in gallons per day per foot of aquifer width. To convert to cubic feet per day per foot (ft²/d), divide by 7.48.

Figure 9a. Predicted pumping effects, at various times and distances, for the aquifers of Clarendon County, S.C.

TIME (DAYS)



### ASSUMED CONDITIONS

- Pumping rate: 500 gpm. Transmissivity as indicated. Storage coefficient: 0.0002 (artesian)
- For other pumping rates, the drawdown will vary in direct proportion. For example, doubling the pumping rate will double the drawdown at a given distance and time.
- Transmissivity is given here in gallons per day per foot of aquifer width. To convert to cubic feet per day per foot (ft²/d), divide by 7.48.

Figure 9b. Predicted pumping effects, at various times and distances, for the aquifers of Clarendon County, S.C.

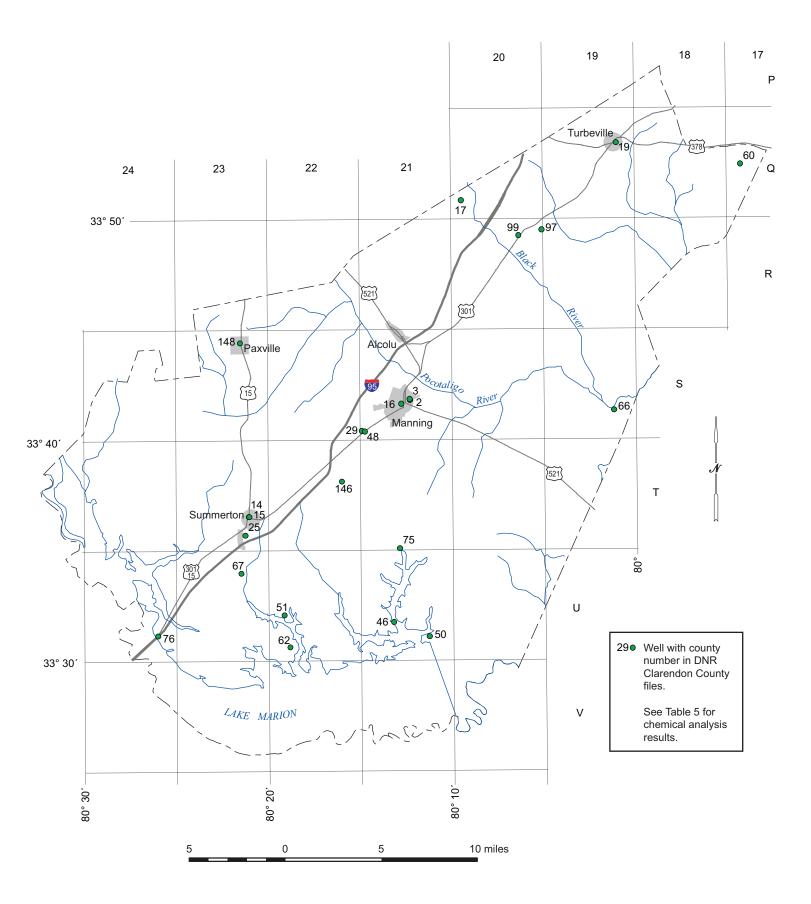



Figure 10. Locations of wells for which chemical analyses appear in Table 5.

| County<br>well no. | S.C. grid no. | Date    | Depth (ft) | Aquifer | Silica | Iron  | Manganese | Calcium | Magnesium | Sodium | Potassium | Bicarbonate | Sulfate | Chloride | Fluoride | Nitrate | Dissolved<br>solids | Hardness | Hq  | Analyst |
|--------------------|---------------|---------|------------|---------|--------|-------|-----------|---------|-----------|--------|-----------|-------------|---------|----------|----------|---------|---------------------|----------|-----|---------|
| CLA-2              | 21S-r1        | 1/1955  | 480        | Μ       | 27     | 0.00  | -         | 4.6     | 1.1       | 38     | 3.6       | 95          | 8.6     | 8.0      | 0.5      | 2.1     | 138                 | 16       | 7.3 | U       |
| CLA-3              | 21S-r2        | 1/1955  | 600        | Μ       | 11     | .00   | -         | 2.6     | .6        | 33     | 2.0       | 83          | 8.1     | 2.8      | .4       | .5      | 102                 | 9        | 7.5 | U       |
| CLA-14             | 23T-s2        | 10/1956 | 625        | BC      | 12     | .01   | -         | 3       | .2        | 54     | 2.2       | 137         | 8.5     | 4.0      | .6       | .2      | 147                 | 9        | -   | U       |
| CLA-15             | 23T-s1        | 10/1956 | 675        | Μ       | 12     | .01   | -         | 3.7     | .2        | 52     | 1.9       | 135         | 7.0     | 1.5      | .6       | .5      | 144                 | 10       | 7.5 | U       |
| CLA-16             | 21S-r3        | 1/1955  | 610        | Μ       | 13     | .08   | -         | 2.3     | .5        | 30     | 2.0       | 76          | 3.0     | 2.2      | .3       | .9      | 97                  | 8        | 7.6 | U       |
| CLA-17             | 20Q-y2        | 9/1957  | 350        | BC      | 36     | .20   | -         | 12      | 3.5       | 4.6    | 10        | 68          | 5.1     | 3.0      | .1       | .5      | 107                 | 44       | 7.1 | U       |
| CLA-19             | 19Q-i2        | 3/1959  | 352        | BC      | 34     | < .12 | -         | 7.2     | .5        | 20     | 4.8       | 73          | 6.0     | .7       | .2       | .2      | 108                 | 20       | 7.9 | U       |
| CLA-25             | 23T-v1        | 7/1970  | 750        | М       | -      | .02   | 0.0       | 2.8     | .0        | (4     | 3)        | 156         | 1.0     | 4        | -        | -       | 160                 | 7        | 8.9 | С       |
| CLA-29             | 21S-y1        | 11/1974 | 717        | М       | -      | .01   | .0        | 4       | .5        | (5     | 0)        | 120         | 11      | 5        | .5       | -       | 132                 | 12       | 8.5 | С       |
| CLA-46             | 21U-q1        | 5/1977  | 212        | PD      | 10     | 4.00  | .03       | 11      | 5.8       | -      | -         | 61          | 5       | 7        | .2       | -       | -                   | -        | 7.6 | С       |
| CLA-48             | 21S-y2        | 1/1982  | 110        | BM      | -      | .31   | -         | 35      | 1.0       | 4.6    | 1.9       | 128         | 5.0     | 6.0      | 1.2      | < .1    | 120                 | 92       | 7.5 | С       |
| CLA-50             | 21U-s1        | 1/1980  | 140        | PD      | -      | < .02 | < .01     | 2.6     | 1.7       | 6.9    | 2.9       | 31          | < 5.0   | 5.0      | .25      | .7      | 40                  | 13       | 6.1 | С       |
| CLA-51             | 22U-o1        | 2/1983  | 315        | BC      | -      | .20   | .65       | -       | -         | -      | -         | -           | -       | 0        | -        | -       | -                   | 21       | 5.2 | С       |
| CLA-60             | 17Q-01        | 7/1986  | 470        | BC      | -      | < .02 | < .01     | .2      | .1        | 27     | 1.8       | 57          | 8.0     | 1.1      | .11      | < .01   | 70                  | 1        | 7.1 | С       |
| CLA-62             | 22U-x1        | 12/1995 | 320        | BC      | -      | < .05 | < .02     | 16      | 1.4       | 47     | 6.3       | 192         | 4.0     | 3.2      | < .20    | < .02   | 156                 | 45       | 8.8 | С       |
| CLA-66             | 19S-s1        | 6/1997  | 500        | BC      | -      | < .05 | < .02     | 1.8     | .2        | 49     |           | 140         | 5.7     | 2.1      | .73      | < .5    | 140                 | 4        | 9.1 | С       |
| CLA-67             | 23U-i1        | 9/1997  | 23         | BM      | 10     | .00   | .00       | 2.6     | 2.9       | 17     | 2.9       | 188         | .5      | 19       | .10      | 9.0     | 101                 | 18       | 4.1 | U       |
| CLA-75             | 21T-w2        | 4/2001  | 210        | BC      | -      | < .04 | < .01     | 36      | 8.8       | 14     | -         | 185         | 2.4     | 4.2      | .21      | < .5    | 165                 | 126      | 6.9 | С       |
| CLA-76             | 24U-s1        | 6/2003  | 275        | BC      | -      | .65   | .03       | -       | -         | 12     | -         | 76          | -       | 2.3      | .33      | < .5    | 93                  | -        | 6.9 | С       |
| CLA-97             | 20R-a1        | 5/2000  | 248        | BC      | -      | < .04 | < .01     | -       | -         | -      | -         | -           | -       | -        | -        | < .5    | -                   | -        | -   | С       |
| CLA-99             | 20R-b2        | 9/2000  | 280        | BC      | -      | < .04 | < .01     | -       | -         | -      | -         | -           | -       | -        | -        | < .5    | -                   | -        | -   | С       |
| CLA-146            | 22T-i1        | 2/2005  | 750        | Μ       | -      | .00   | .00       | 5.5     | .3        | 60     | 1.8       | 168         | 9.1     | 2.3      | .96      | < .05   | 165                 | 15       | 8.9 | С       |
| CLA-148            | 23S-b2        | 6/2005  | 242        | BC      | -      | 1.5   | .03       | -       | -         | -      | -         | -           | -       | -        | -        | < .5    | -                   | -        | -   | С       |

Table 5. Chemical analyses of water from wells in Clarendon County, S.C. (constituents and hardness are in milligrams per liter)

Note: Where bicarbonate, dissolved solids, or hardness was not reported, it was calculated if the available data permitted.

Aquifer: BM, Black Mingo; PD, Peedee; BC, Black Creek; M, Middendorf

Analyst: C, commercial; U, U.S. Geological Survey

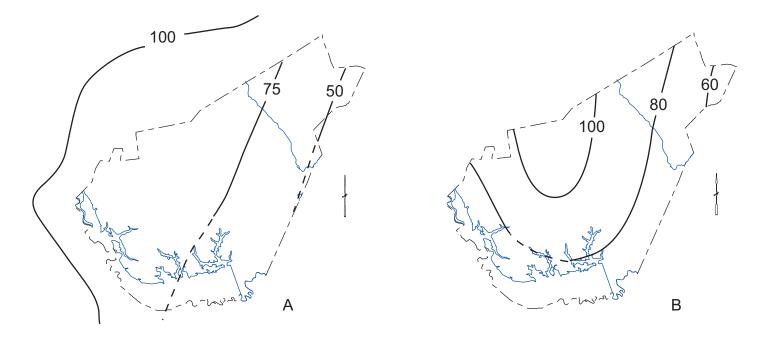



Figure 11. Potentiometric levels, in feet above sea level, of ground water in the Middendorf Formation (A) and Black Creek Formation (B) in Clarendon County (from Hockensmith, 2003).

#### SELECTED REFERENCES

- Aucott, W.R., and Speiran, G.K., 1985, Potentiometric surfaces of November 1982 and declines in the potentiometric surface between the period prior to development and November 1982 for the Coastal Plain aquifers of South Carolina: U.S. Geological Survey Water-Resources Investigations Report 85-4215, 7 sheets.
- Aucott, W.R., Davis, M.E., and Speiran, G.K., 1987, Geohydrologic framework of the Coastal Plain aquifers of South Carolina: U.S. Geological Survey Water-Resources Investigations Report 85-4271, 7 sheets.
- Colquhoun, D.J., Woollen, I.D., Van Nieuwenhuise, D.S., Padgett, G.G., Oldham, R.W., Boylan, D.C., Bishop, J.W., and Howell, P.D., 1983, Surface and subsurface stratigraphy, structure and aquifers of the South Carolina Coastal Plain: University of South Carolina, Department of Geology, 78 p.
- Hockensmith, B.L., 2003a, Potentiometric surface of the Middendorf aquifer in South Carolina November 2001: South Carolina Department of Natural Resources Water Resources Report 28, 1 sheet.
- 2003b, Potentiometric surface of the Black Creek aquifer in South Carolina November 2001: South Carolina Department of Natural Resources Water Resources Report 29, 1 sheet.
- Johnson, P.W., 1978, Reconnaissance of the ground-water resources of Clarendon and Williamsburg Counties, South Carolina: South Carolina Water Resources Commission Report No.13, 44 p.
- Newcome, Roy, Jr., 1989, Ground-water resources of South Carolina's Coastal Plain 1988: South Carolina Water Resources Commission Report 167.
- 1993, Pumping tests of the Coastal Plain aquifers in South Carolina with a discussion of aquifer and well characteristics: South Carolina Water Resources Commission Report 174.
- 1997, Well efficiency its importance and its calculation, *in* Contributions to the hydrology of South Carolina: South Carolina Department of Natural Resources Water Resources Report 14, p. 45-47.
- 2005, Results of pumping tests in the Coastal Plain of South Carolina (second supplement to Water Resources Commission Report 174): South Carolina Department of Natural Resources Open-File Report 10, 28 p.
- Park, A.D., 1980, The ground-water resources of Sumter and Florence Counties, South Carolina: South Carolina Water Resources Commission Report 133, 43 p.