

Technical Memorandum

То:	South Carolina Department of Natural Resources (DNR) South Carolina Department of Health and Environmental Control (DHEC)
From:	CDM Smith
Date:	March 2016
Subject:	Unimpaired Flow Methodology and Dataset for the Pee Dee River Basin (Prepared as part of the South Carolina Surface Water Quantity Modeling Program)

1.0 Introduction

Unimpaired Flows (UIFs) represent the theoretical historical rate of flow at a location in the absence of all human activity in the river channel, such as water withdrawals, discharges, and impoundments. They will be used as boundary conditions and calibration targets for natural hydrology in the computer simulation models of the eight major river basins in South Carolina. As such, they represent an important step in the South Carolina Surface Water Quantity Modeling project.

This technical memorandum (TM) summarizes the methodology and completion of the UIF dataset for the Pee Dee River Basin. The TM references the electronic database which houses the completed UIF dataset for the Pee Dee Basin, and summarizes the techniques and decisions pertaining to synthesis of data where it is unavailable, which may be specific to individual locations.

2.0 Overview of the Pee Dee Basin

The Pee Dee River basin covers 7,850 square miles, 25 percent of the land area of the State, lying within the Piedmont and Coastal Plain physiographic provinces (**Figure 2-1**). The basin's major watercourses include the Great and Little Pee Dee rivers, the Lynches River, and Black River. The Great Pee Dee River is fed by the Yadkin River in North Carolina, where its flow is heavily regulated by a series of large reservoirs, influencing the downstream behavior of the Great Pee Dee River in South Carolina. Near the coast, each of these branches pass through tidally-influenced areas before draining into the Atlantic Ocean.

Fourteen active Unites States Geological Survey (USGS) gaging stations monitor streamflow in the basin, including three on the Great Pee Dee River, one the Little Pee Dee River, two on the Lynches River, five on Black River, and the rest on coastal tributaries. The Lynches River station at Effingham (USGS 02132000) and the Black River station at Kingstree (USGS 02136000) offer the earliest period of record, both beginning in 1929. Average flow of the Little Pee Dee River is more

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 2

than 3,000 cfs at Galivants Ferry. Average annual streamflow in the Lynches River is 789 cfs near Effingham and 915 cfs in the Black River near Kingstree.

Chapter 5 of <u>The South Carolina State Water Assessment</u> (SCDNR, 2009) describes the basin's surface water and groundwater hydrology and hydrogeology, water development and use, and water quality. A summary is also provided in <u>An Overview of the Eight Major River Basins of South</u> <u>Carolina (SCDNR, 2013)</u>.

A detailed discussion of water users and dischargers is explained and presented in the Pee Dee Framework Memorandum (CDM Smith, 2015). The South Carolina DHEC has provided information and data regarding current (active) and former (inactive) water users and dischargers throughout the state. The Framework Memorandum summarizes the current water users and dischargers for the purposes of the model. The former user and dischargers are summarized below in **Tables 2-1 and 2-2** as they needed to be accounted for in the UIF development. Individual withdrawal and discharges located in coastal areas or less than 3 million gallons per month (mg/m) are generally not included in UIF calculations or in water quality modeling.

Intake ID	Facility Name	Withdrawal Tributary							
Water Supply									
29WS002S01	Town of Kershaw	Little Lynches River							
29WS002S02	Town of Kershaw	Hanging Rock Creek							
13WS002S01	Jefferson Water Plant	Lynches River							
13WS003S01	City of Pageland	Black Creek							
13WS004S01	Town of Chesterfield	Thompson Creek							
16WS004S01	City of Society Hill	Cedar Creek							
	Industrial Users								
13IN002S01	Hanson Aggregates - Brewer Facility	Black Creek							
29IN002S01	Springs Industries Kershaw Plant	Lynches River							
34IN002S01	Delta Mills Market Co Delta Plant	Great Pee Dee River							
21IN005S01	Dupont Teijin Films	Great Pee Dee River							

Table 2-1. Formerly permitted or registered surface water users in the Pee Dee Basin

Table 2-2. Formerly Permitted NPDES Discharges in the Pee Dee Basin

NPDES Pipe ID	Facility Name	Discharge Tributary
SC0001341-001	AHLSTROM NONWOVENS LLC/BETHUNE	Lynches River
SC0001490-001	REEVES BROTHERS/BISHOPVILLE	Lynches River
SC0002151-001	SCHWARZ WALLACE LLC	Great Pee Dee River
SC0002151-002	SCHWARZ WALLACE LLC	Whites Creek
SC0002500-001	CLEVELAND-CAROKNIT/JEFFERSON	Fork Creek

NPDES Pipe ID	Facility Name	Discharge Tributary
SC0002917-001	DUPONT TEIJIN FILMS/FLORENCE	Great Pee Dee River
SC0002917-002	DUPONT TEIJIN FILMS/FLORENCE	Great Pee Dee River
SC0002917-01A	DUPONT TEIJIN FILMS/FLORENCE	Great Pee Dee River
SC0002925-005	PROGRESS ENERGY/ROBINSON	Black Creek
SC0003042-007	SONOCO PRODUCTS/HARTSVILLE	Black Creek
SC0003042-008	SONOCO PRODUCTS/HARTSVILLE	Black Creek
SC0004162-001	WELLMAN INC/PALMETTO PLANT	Black Creek
SC0004171-001	GE HEALTHCARE/FLORENCE	Jeffries Creek
SC0020257-001	MARION/SOUTH MAIN STREET	Catfish Creek
SC0021351-001	PAMPLICO, TOWN OF	Great Pee Dee River
SC0022471-003	SCPSA/WINYAH STEAM STATION	Turkey Creek (South)
SC0022471-004	SCPSA/WINYAH STEAM STATION	Turkey Creek (South)
SC0022471-01A	SCPSA/WINYAH STEAM STATION	Turkey Creek (South)
SC0022471-01B	SCPSA/WINYAH STEAM STATION	Turkey Creek (South)
SC0024970-003	USAF/SHAW AIR FORCE BASE	Turkey Creek
SC0024970-004	USAF/SHAW AIR FORCE BASE	Turkey Creek
SC0024970-005	USAF/SHAW AIR FORCE BASE	Turkey Creek
SC0024970-006	USAF/SHAW AIR FORCE BASE	Turkey Creek
SC0024970-007	USAF/SHAW AIR FORCE BASE	Turkey Creek
SC0025232-001	CHESTERFIELD/THOMPSON CREEK	Thompson Creek
SC0025356-002	TIMMONSVILLE, TOWN OF	Sparrow Swamp
SC0025755-001	TURBEVILLE WWTF	Pudding Swamp
SC0025755-002	TURBEVILLE WWTF	Pudding Swamp
SC0025755-003	TURBEVILLE WWTF	Pudding Swamp
SC0030732-001	CWS/WHITES CREEK-LINCOLNSHIRE	Sampit River
SC0038164-001	LAKE CITY/LAKE SWAMP WWTF	Lynches River
SC0040088-001	GLASSCOCK TRUCKING COMPANY INC	Pocotaligo River
SC0040088-002	GLASSCOCK TRUCKING COMPANY INC	Turkey Creek
SC0040088-01A	GLASSCOCK TRUCKING COMPANY INC	Turkey Creek
SC0040479-001	HAILE GOLD MINE	Little Lynches River
SC0040479-02A	HAILE GOLD MINE	Little Lynches River
SC0040606-001	CLIO WWTF	Hagins Prong
SC0040606-01B	CLIO WWTF	Hagins Prong
SC0040657-001	BREWER GOLD COMPANY	Little Fork Creek
SC0040657-002	BREWER GOLD COMPANY	Little Fork Creek
SC0040657-01A	BREWER GOLD COMPANY	Little Fork Creek
SC0043281-001	B & M AQUACULTURE FARMS	Little Pee Dee River

Figure 2-1 South Carolina's Pee Dee River Basin and Other Major River Basins

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 5

3.0 Overview of UIF Methodology

Fundamentally, UIFs are calculated by removing known impacts from measured streamflow values at places in which flow has been measured historically. An alternate method sometimes employed utilizes rainfall-runoff modeling to estimate natural runoff tendencies, but this technique is often uncertain, and its only sure footing is in calibration to measured (and frequently impaired) streamflow records. For the Pee Dee River Basin, UIFs were calculated at every location in which a USGS gage has recorded historical flow measurements. Measured and estimated impacts of withdrawals, discharges, and impoundments were included as linear "debits" or "credits," and the measured flow was adjusted accordingly. Where historical data on river operations did not exist, values were hindcasted using various estimation techniques. Once the UIFs were developed for each USGS gage, the Period of Record (POR) for each gage was statistically extended (if necessary) to cover the range of 1929-2013 (coinciding with the longest recorded streamflow in the basin). As a final step, the UIFs in ungaged basins were estimated from UIFs in gaged basins with similar size, land use, and topography.

UIFs are intended to be used for the following purposes:

- a) Headwater input to the SWAM models
- b) Incremental flow inputs along the mainstem in the SWAM models
- c) SWAM model calibration
- d) Comparison of simulated managed flows to natural flows
- e) Other uses by DNR/DHEC outside of the SWAM models

Figure 3.1 illustrates the step-by-step methodology for computing UIFs. The same general methodology that has been previously used in the Saluda, Edisto and Broad river basins was also used in the Pee Dee. Please refer to the *Methodology for Unimpaired Flow Development* documents prepared for these basins. The methodology is also supported by the following technical memoranda, which specifically outline the steps and guidelines for UIF computation and decision-making:

- Guidelines for Standardizing and Simplifying Operational Record Extension (CDM Smith, March 2015) Included as Attachment A of this report. This includes guidelines for various techniques for operational gap filling and record extension, and which techniques are most appropriate for various circumstances.
- *Guidelines for Identifying Reference Basins for UIF Extension or Synthesis (CDM Smith, April 2015)* Included as **Attachment B** of this report.
- *Refinements to the UIF Extension Process, with an Example –* Included as Attachment C.

Step 2: Extension of UIFs for USGS Gages throughout the LONGEST Period of Record

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 6

Figure **3-2** illustrates the locations of all UIFs developed for the Pee Dee River Basin, and distinguishes between those computed by adjusting measured streamflow at USGS gages, and those computed for ungaged basins through area transposition. Additionally, **Attachment G** contains a simplified schematic of the USGS streamflow gages.

Figure 3-2 Unimpaired Flow Locations in the Pee Dee River Basin

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 9

3.1 Period of Record

While UIF estimates begin in 1929 for the Pee Dee Basin, more than half of the stream gages began operation in the 1980s or later. The records for all gages that started tracking flow after 1929 will be extended using gap filling techniques. Therefore, much of the UIFs are based on estimated flows, but the value of a lengthy record, even if approximate, is that DNR, DHEC, and other users can evaluate results over a large range of hydrologic and climate conditions. **Figure 3-3** depicts the length and timing of records available for all USGS gages in the Pee Dee basin.

Figure 3-3. Period of record for USGS gages in the Pee Dee Basin

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 10

3.2 Issues Specific to the Pee Dee Basin

3.2.1 Coastal Areas

Significant portions of the Pee Dee River Basin along the coast are tidally influenced. The Pee Dee River Basin SWAM Model Framework (**Figure 7** of the Pee Dee Framework Memo) illustrates the extent of the tidally influenced area. No attempt has been made to calculate UIFs in the tidally influenced areas of the basin. Representation of these areas will be limited in SWAM since historical flows and its UIFs cannot be accurately quantified. **Attachment G** illustrates which gages are considered coastal.

3.2.2 Existing Pee Dee River UIFs in North Carolina

Flow enters the Pee Dee River Basin from North Carolina along the Great Pee Dee River and along the Lumber River, tributary to the Little Pee Dee. UIFs from North Carolina to the Great Pee Dee River have been developed by others while UIFs for the Lumber River have not been developed.

UIFs flowing through the Great Pee Dee River Basin from North Carolina were previously developed by HDR Engineering under contract to Duke Energy Carolinas, LLC, as reported in the *Yadkin-Pee Dee Basin Operations Model Study* (HDR, 2014). The UIFs were developed for use in the CHEOPS model, a model that principally simulates hydropower operations in river networks. In support of such a tool, the UIFs were developed to help predict expected flow conditions on the main stem of the Pee Dee River. The CHEOPS UIFs along the Great Pee Dee River were verified against the Pee Dee station near Rockingham, NC (USGS 02129000) and found to be well-suited for incorporation into the SWAM model. The overall flow adjustment between the UIFs and a nearby USGS gage was minimal.

UIFs in the Lumber River have not been developed by North Carolina Department of Environmental Quality (NCDEQ). For this tributary, only the managed flows from North Carolina are included. A Lumber station at Boardman, NC (USGS 2134500) represents the flows from North Carolina as a boundary condition. Once UIFs have been developed by NCDEQ for the Lumber River, the UIF dataset may be updated to include these.

3.2.3 Groundwater

Registered and permitted (both active and inactive) groundwater withdrawal locations are shown in **Figure 3-4**. Groundwater withdrawals may lower streamflow to a point that they potentially influence UIF estimates in a significant manner if the following conditions are met:

- The withdrawal occurs in an aquifer that contributes baseflow to a stream via direct groundwater discharge.
- The withdrawals are greater than 100,000 gpd.
- A significant portion of the withdrawal is not returned to the stream as a wastewater discharge or to the surficial aquifer via onsite wastewater treatment systems (septic tanks). For example, groundwater withdrawals for irrigation of golf courses or agriculture are

Figure 3-4

Active and Inactive Groundwater Withdrawal Locations

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 11

expected to be mostly lost to evapotranspiration. Very little is returned to the stream via direct or indirect runoff.

In much of the Pee Dee basin, registered groundwater withdrawals do not meet these conditions, and can therefore be ignored when calculating UIFs; however, larger groundwater withdrawal were reviewed for consideration.

The combined net amount of groundwater withdrawals from private wells (individual wells not permitted or registered) that is not returned to the surficial aquifer system via onsite wastewater systems is not expected to significantly lower stream baseflow in any area of the basin, such that consideration of these withdrawals is not necessary in calculating UIFs.

3.2.4 Agriculture

Registered agriculture surface withdrawal locations in the Pee Dee basin are shown in **Figure 3-5**. Of the 20 registered agricultural surface water users, thirteen had reported water withdrawals greater than 3 mg/m in any one month over the last 5 years (2009-2013). Withdrawals for agricultural irrigation are currently assumed to be 100 percent consumptive; therefore, no return flows are assumed for the UIF calculations.

4.0 Quality Assurance Reviews

Quality Assurance guidelines were developed in an internal CDM Smith memorandum dated April 2015, entitled *"Quality Assurance Guidelines: Unimpaired Flow Calculations (UIFs) for the South Carolina Surface Water Quantity Models."* The document is included in this report as **Attachment C**.

The Quality Assurance results are documented in each UIF workbook in the "QAQC" worksheet. Documentation includes the name of the reviewer, requested changes, and changes made. Some review items pertaining to the UIF extension calculations exist separately from the individual UIF workbooks, but are still listed in **Attachment C**.

5.0 Summary of Operational Hindcasting

Unique circumstances involving data availability, observable trends, etc. required decisions about how to develop representative hindcast values for each individual user. A summary of hindcasting methods used for withdrawals and discharges are presented in **Table 5.1** and **Table 5.2**, respectively. Reference **Attachment A** for details on the listed methodologies.

Hindcasting of agricultural withdrawals in the Pee Dee Basin was also required for the UIF calculations. Withdrawal data reported to DHEC from 2002 and 2014 was used directly, and prior to that, values from 1950 through 2001 were hindcasted using irrigated acreage estimation techniques. These estimation techniques are described in the memorandum entitled, *Methodology for Developing Historical Surface Water Withdrawals for Agriculture Irrigation* (CDM Smith, July 2015).

Project	USGS	Stream		Withdrawal Hindcasting				
Gage ID	Number	Stream	User ID	User Name	Time Periods	Method Used		
PDE01	02131309	FORK CREEK AT JEFFERSON, SC	13GC003S01	White Plains Country Club	None	All data provided		
PDE04	02131500	LYNCHES RIVER NR	13MI003S01	Hanson Aggregates (Jefferson)	1/2006 - 12/2012	Anecdotal information and monthly averages		
		BISHOPVILLE, SC	28MI001S01	Martin Marietta Materials Plant	None	All data provided		
PDE07	02130500	JUNIPER CREEK NEAR CHERAW, SC	13GC001S01	Cheraw State Park	1/1985 - 2/2001	Long term gap filling		
			13WS001S01	Town of Cheraw	None	Non-responder		
PDE08	02130561	2130561 PEE DEE RIVER NR BENNETTSVILLE, SC	34IN005S01	Domtar Paper	11/1990 - 12/2000	Anecdotal information and monthly averages		
			34MI001S03	Hanson Aggregates (Marlboro)	None	All data provided		
PDE10	02130840	BLACK CREEK BELOW CHESTERFIELD, SC	13IN002S01	Hanson Aggregates (Brewer)	None	All data provided		
			16IN005S01 16IN005S02	Sonoco Products	1/1920 - 12/1985 1/1989 - 1/2002	Anecdotal information and monthly averages		
PDE13	02130980	QUINBY, SC	16IN006S01	Nucor Corp	None	All data provided		
			16PN001S01 16PN001S2	H.B. Robinson Nuclear Plant	1/1971 - 1/1983 1/1985 - 1/1995	Monthly averages		
			16IN004S01	Galey & Lord	1/1963 - 12/1982	Monthly averages		
PDF14	02131000	PEE DEE RIVER AT	16IN004S02	Galey & Lord	None	All data provided		
1 DLIT	02131000	02131000 PEEDEE, SC	21WS002S01	City of Florence SWPTP	None	All data provided		

Table 5.1: Summary of Methods Used for Hindcasting Withdrawals

Table 5.2: Summary of Methods Used for Hindcasting Discharges

Project Gage				Discharge Hin	dcasting	
	Number	Stream	ID	Facility Name	Time Periods	Method Used
PDE02	02131320	LITTLE FORK CREEK AT JEFFERSON, SC	SC0040657- 01A to 002	BREWER GOLD COMPANY	10/1986 - 9/1989	Hindcast to known start date (Industrial Discharge).
PDE03	02131472	HANGING ROCK CREEK NR KERSHAW, SC	SC0025798- 001	KERSHAW/HANGING ROCK CREEK	6/1975 - 1/1989	Hindcast to known start date

			Discharge Hindcasting						
Gage	Number	Stream	ID	Facility Name	Time Periods	Method Used			
			SC0001341- 001	AHLSTROM NONWOVENS LLC/BETHUNE	3/1978 - 1/1989	Hindcast to known start date. Small gap filling			
			SC0002500- 001	CLEVELAND- CAROKNIT/JEFFERSON	12/1974 - 1/1989	Hindcast to known start date			
PDE04	02131500	LYNCHES RIVER	SC0040479- 02A to 002	HAILE GOLD MINE	none	Minor gap filling.			
		SC	SCG730062- 000	HANSON AGGR SE/JEFFERSON	1/2006 - 12/2013	Permit estimate of Hanson (Jefferson)			
			SC0024767- 001	JEFFERSON WWTF	3/1978 - 1/1989	Hindcast to known start date			
			SC0021504- 001	PAGELAND/NORTHWEST WWTF	10/1981 - 1/1989	Hindcast to known start date			
			SC0035378- 001	BISHOPVILLE WWTF	10/1982 - 1/1989	Hindcast to known start date (town using GW)			
	02132000	LYNCHES RIVER AT EFFINGHAM, SC	SC0043702- 001	LAMAR WWTF	none	none			
			SC0042676- 001	LYNCHBURG WWTF	none	none			
PDE05			SC0039284- 001 to 01A	MCCALL FARMS INC	11/1983 - 1/1991	Hindcast to known start date (town using GW)			
			SC0001490- 001	REEVES BROTHERS/BISHOPVILLE	10/1973 - 1/1989	Hindcast to known start date			
			SC0025356- 001 to 002	TIMMONSVILLE, TOWN OF	4/1980 - 1/1989	Hindcast to known start date (town using GW)			
		PEE DEE RIVER	SC0020249- 001	CHERAW WWTF	1/1983 - 1/1989	Correlated with monthly withdrawal (Cheraw)			
PDE08	02130561	NR BENNETTSVILLE,	SC0025232- 001	CHESTERFIELD/THOMPSON CREEK	5/1985 - 1/1989	Hindcast to known start date			
		SC	SC0002151- 001 to 002	SCHWARZ WALLACE LLC	10/1977 - 1/1989	Hindcast to known start date			
PDE10	02130840	BLACK CREEK BELOW	SCG730286- 1AA	HANSON AGGR SE/BREWER	none	Correlated with monthly withdrawal (Hanson (Brewer))			
		SC	SC0021539- 001	PAGELAND/SOUTHEAST WWTF	10/1981 - 1/1989	Hindcast to known start date			
PDE12	02130910	BLACK CREEK NEAR HARTSVILLE, SC	SC0002925- 001 to 014	PROGRESS ENERGY/ROBINSON	1/1971 - 1/1995	Correlated with monthly withdrawal (HB Robinson)			
PDE13	02130980	BLACK CREEK NEAR QUINBY	SC0039624- 001	DARLINGTON/BLACK CREEK WWTF	none	none			

Project USGS			Discharge Hindcasting						
Gage	Number	Stream	ID	Facility Name	Time Periods	Method Used			
			SC0021580- 001	HARTSVILLE WWTF	4/1980 - 1/1989	Hindcast to known start date (town using GW)			
PDE13	02130980	NEAR QUINBY, SC	SC0003042- 001 to 008	SONOCO PRODUCTS/HARTSVILLE	1/1920 - 1/1989	Correlated with monthly withdrawal (Sonoco)			
			SC0004162- 001	WELLMAN INC/PALMETTO PLANT	3/1973 - 1/1989	Hindcast to known start date			
			SC0025178- 001	BENNETTSVILLE WWTF	1/1972 - 1/1989	Correlated with monthly withdrawal (Bennettsville)			
			SC0040606- 01A to 01C	CLIO WWTF	7/1986 - 6/1989	Hindcast to known start date (town using GW)			
			SC0042188- 001	DOMTAR PAPER CO LLC/MARLBORO MILL	7/2003 - 7/2012	Gap filling			
PDE14	02131000	31000 PEE DEE RIVER AT PEEDEE, SC	SC0002704- 001	GALEY & LORD/SOCIETY HILL	1/1963 - 1/1989	Correlated with monthly withdrawal (Galey & Lord)			
			SC0003018- 001 to 002	KOPPERS INC	none	none			
			SC0046230- 001	MARION/S. MAIN ST. WWTF	10/1994 - 10/1999	Hindcast to known start date (town using GW)			
			SC0001996- 001 to 003	MOHAWK IND/OAK RIVER PLANT	12/1974 - 8/1989	Hindcast to known start date (industrial discharge)			
PDE15	02131010	PEE DEE RIVER BELOW PEE DEE, SC	SC0002917- 01A to 002	DUPONT TEIJIN FILMS/FLORENCE	none	Hindcast to known start date			
PDE16	02131110	JEFFRIES CREEK ABOVE FLORENCE, SC	SC0004171- 001	GE HEALTHCARE/FLORENCE	8/1986 - 1/1989	Hindcast to known start date			
PDE22	02135517	POCOTALIGO RIVER AT	SC0040088- 01A to 002	GLASSCOCK TRUCKING COMPANY INC	9/1986 - 7/1993	Hindcast to known start date			
		SUMTER, SC	SC0024970- 001 to 007	USAF/SHAW AIR FORCE BASE	4/1985 - 4/1989	Hindcast to known start date			
PDE24	02135600	POCOTALIGO R	SC0000795- 001 to 002	PILGRIMS PRIDE POULTRY PROC. PLANT	6/1976 - 1/1989	Hindcast to known start date (industrial discharge)			
		INK SUIVITEK SC	SC0027707- 001	SUMTER/POCOTALIGO RIVER PLANT	10/1977 - 1/1989	Hindcast to known start date			
PDE26	02136000	BLACK RIVER AT KINGSTREE, SC	SC0020419- 001	MANNING WWTF	6/1975 - 1/1989	Hindcast to known start date (town using GW)			

Duciest				Discharge Hin	dcasting	
Gage	Number	Stream	ID	Facility Name	Time Periods	Method Used
		SC000 001 to		MARTEK BIOSCIENCES KINGSTREE	9/1985 - 2/1989	Hindcast to known start date (industrial discharge)
			SC0025755- 001 to 003	C0025755- 01 to 003		Hindcast to known start date
PDE27	02132500	LITTLE PEE DEE RIVER NEAR DILLON, S. C.	SC0041963- 001	MCCOLL WWTF	none	none
		LITTLE PEE DEE R. AT GALIVANTS	SC0021776- 001 to 004	DILLON/LITTLE PEE DEE	3/1978 - 1/1989	Hindcast to known start date (town using GW)
			SC0025348- 001	GSW&SA/LORIS WWTF	9/1978 - 1/1989	Hindcast to known start date
PDE28	02135000		SC0022284- 001	LAKE VIEW WWTF	9/1985 - 2/1990	Hindcast to known start date (town using GW)
		FERRY, SC	SC0025402- 001	LATTA, TOWN OF	6/1975 - 1/1989	Hindcast to known start date (town using GW)
			SC0029408- 001	MULLINS/WHITE OAK CREEK WWTF	8/1978 - 1/1989	Hindcast to known start date (town using GW)

6.0 Summary of Gaged UIF Flow Record Extension

A summary of the reference gages and methods used to extend the UIFs with partial periods of record is provided in **Table 6.1**. Initial candidates of reference gages are selected following guidelines outlined in **Attachment B**. See **Attachment D** for details pertaining to the decision-making process and **Attachment F** for notes associated with each individual decision.

As MOVE.1 without an initial log transform may produce negative or near-zero values, area proration (which is strictly linear and cannot produce negative flows from non-negative reference flows) replaces values below a site-specific minimum threshold determined by the overlapping period between the partial and reference gages. For example, in the overlap between PDE04 and PDE11, the lowest flow is 10 cfs. Thus, when MOVE.1 is calculated using PDE11'S untransformed flows, any days below 10 cfs are replaced with the corresponding flows of that day found from area proration. Note that if a reference gage registers a flow of zero, the extended flow for the partial gage will also be estimated as zero.

Additionally, gages from the nearby Catawba River Basin were evaluated as potential reference gages but none were found to be suitable.

USGS Gage with Partial Record				USGS Reference Gage(s)				
Project Gage ID	USGS Number	Stream	Periods of Record	Basin Area (mi²)	Project Gage ID	Stream	Basin Area (mi²)	Method of Extension
					PDE02	LITTLE FORK CREEK AT JEFFERSON, SC	15	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.3 cfs
PDE01	02131309	FORK CREEK AT JEFFERSON, SC	8/1976 - 9/1997	24	PDE03	HANGING ROCK CREEK NR KERSHAW, SC	24	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs
					PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
PDE02			40/4000		PDE01	FORK CREEK AT JEFFERSON, SC	24	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.01 cfs
	02131320	LITTLE FORK 31320 CREEK AT JEFFERSON, SC	10/1990 - 10/2000 3/2001 - 4/2001 3/2008 - 12/2012	15	PDE03	HANGING ROCK CREEK NR KERSHAW, SC	24	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.01 cfs
					PDE20	SCAPE ORE SWAMP NEAR BISHOPVILLE, S. C.	95	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
			10/1980 - 10/2003		PDE01	FORK CREEK AT JEFFERSON, SC	24	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.1 cfs
PDE03	02131472	HANGING ROCK CREEK NR KERSHAW, SC		24	PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (log transform)
		KERSHAW, SC			PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
	02131500	LYNCHES RIVER	10/1942 - 9/1971	661	PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (log transform)
F DE04	02131300	BISHOPVILLE, SC	2/2002 - 9/2014	001	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
PDE06	02120500	WHITES CREEK	10/1979 -	27	PDE09	CEDAR CREEK AT SOCIETY HILL, SC	57	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.1 cfs
	02129590	02129590 NEAR WALLACE, SC	9/1995		PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs

Table 6.1: Summary of Extending UIFs with Partial Periods of Record

USGS Gage with Partial Record					USGS Reference Gage(s)			
Project Gage ID	USGS Number	Stream	Periods of Record	Basin Area (mi²)	Project Gage ID	Stream	Basin Area (mi ²)	Method of Extension
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs
PDE07	02130500	JUNIPER CREEK NEAR CHERAW.	10/1940 -	63	PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs
		S. C.	9/1958		PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs
PDF08	02130561	PEE DEE RIVER NR	11/1990 -	113	PDE14	PEE DEE RIVER AT PEEDEE, SC	1474	MOVE.1 (log transform)
F DE08	02130301	BENNETTSVILLE, SC	9/2014	445	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
					PDE06	WHITES CREEK NEAR WALLACE, SC	27	MOVE.1 (log transform)
PDE09	02130600	CEDAR CREEK AT SOCIETY HILL, SC	10/1970 - 9/1981	57	PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (log transform)
					PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (log transform)
					PDE27	LITTLE PEE DEE RIVER NEAR DILLON, S. C.	530	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
					PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (log transform)
PDE10	02130840)2130840 BLACK CREEK BELOW CHESTERFIELD,	9/2005 - 9/2014	52	PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (no transform)
		50			PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
PDE11	02130900	BLACK CREEK	10/1959 - 9/2014	115	PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (log transform)
		NEAR WEBLE, SC	572014		PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
PDE12	02130910	BLACK CREEK NEAR	10/1960 - 9/2014	172	PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (log transform)
		HARTSVILLE, SC	9/2014		PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
PDE13	02130980	BLACK CREEK NEAR QUINBY, SC	10/2001 - 9/2014	446	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)

USGS Gage with Partial Record					U	ISGS Reference Gage(s))	
Project Gage ID	USGS Number	Stream	Periods of Record	Basin Area (mi²)	Project Gage ID	Stream	Basin Area (mi²)	Method of Extension
PDE14	02131000	PEE DEE RIVER AT PEEDEE, SC	10/1938 - 9/2014	1474	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
	02121010	PEE DEE RIVER	10/1996 -	1524	PDE14	PEE DEE RIVER AT PEEDEE, SC	1474	Area Ratio
PDEIS	02131010	SC	9/2014	1524	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
					PDE41	CHINNERS SWAMP NEAR AYNOR, SC	22	Area Ratio
PDE16	02131110	JEFFRIES CREEK ABOVE FLORENCE. SC	3/2008 - 9/2010	34	PDE13	BLACK CREEK NEAR QUINBY, SC	446	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.4 cfs
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0.4 cfs
PDE17	02131150	L31150 CATFISH CANAL AT SELLERS, SC	11/1966 - 9/1992	28	PDE27	LITTLE PEE DEE RIVER NEAR DILLON, S. C.	530	MOVE.1 (log transform)
				-	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
PDE20	02135300	SCAPE ORE SWAMP NEAR BISHOPVILLE, S. C.	7/1968 -	95	PDE11	LYNCHES RIVER NEAR BISHOPVILLE, SC	115	MOVE.1 (log transform)
			572005		PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	Area Ratio
PDE21	02135500	BLACK RIVER NEAR GABLE, SC	6/1951 - 6/1966 4/1972 - 9/1992	261	PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs
PDE22	02135517	POCOTALIGO RIVER AT	10/1992 - 1/1995 5 /1005	136	PDE20	SCAPE ORE SWAMP NEAR BISHOPVILLE, S. C.	95	MOVE.1 (log transform)
		SUMTER, SC	9/1995 - 9/1995		PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
					PDE04	LYNCHES RIVER NEAR BISHOPVILLE, SC	661	MOVE.1 (no transform), Area Ratio if MOVE.1 < 0 cfs
PDE23	02135520	TURKEY CREEK (HWY 521) AT SUMTER SC	1/2001 - 9/2003	19	PDE03	HANGING ROCK CREEK NR KERSHAW, SC	24	Area Ratio
		Solver En, SC			PDE11	BLACK CREEK NEAR MCBEE, SC	115	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	Area Ratio

	USGS	Gage with Partial R	ecord	U	SGS Reference Gage(s)			
Project Gage ID	USGS Number	Stream	Periods of Record	Basin Area (mi²)	Project Gage ID	Stream	Basin Area (mi²)	Method of Extension
PDE24	02135600	POCOTALIGO R NR SUMTER S C	10/1992 - 9/1993	192				
PDE25	02135625	POCOTALIGO RIVER AT MANNING, SC	10/1994 - 2/1995 5/1995 - 9/1995	313	PDE26	BLACK RIVER AT KINGSTREE, SC	1213	MOVE.1 (log transform)
PDE27	02132500	LITTLE PEE DEE RIVER NEAR DILLON, S. C.	4/1939 - 9/1971	530	PDE28	LITTLE PEE DEE R. AT GALIVANTS FERRY, SC	2806	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)
	02135000	02135000 LITTLE PEE DEE R. AT GALIVANTS FERRY, SC	1/1942 - 9/2014	2806	PDE27	LITTLE PEE DEE RIVER NEAR DILLON, S. C.	530	Area Ratio
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	Area Ratio
PDE41	02135060	CHINNERS 2135060 SWAMP NEAR AYNOR, SC	10/2005 - 6/2011		PDE28	LITTLE PEE DEE R. AT GALIVANTS FERRY, SC	2806	MOVE.1 (log transform)
				22	PDE14	PEE DEE RIVER AT PEEDEE, SC	1474	MOVE.1 (log transform)
					PDE05	LYNCHES RIVER AT EFFINGHAM, SC	1044	MOVE.1 (log transform)

One way to evaluate the selection of an extension method is comparing frequency curves with flows of the partial record needing extending. A sample plot for PDE08 is shown in **Figure 6-1**.

Validation graphs are available for each USGS gage. Each validation graph show the period of record for a computed UIF and the predicted flows from reference gages during that same period. A sample validation graph is shown in **Figure 6-2**. The usage of each reference gage over different ungaged periods for the target gage (prioritized by hydrologic similarity and available record) is illustrated in **Figure 6-3**. Graphs for each UIF timeseries developed at a USGS gage site are presented in **Attachment E**.

Candidate Exceedance Probabilities for PDE08 (black)

Figure 6-1: Comparison of Exceedance Probabilities for the Computed UIF and Extension Methods

Figure 6-2: Validation Graph for PDE08 with Predicted Flows from Reference Gages PDE14 and PDE05

Final Verification Timeseries for PDE08 (black)

Extended Timeseries for PDE08 (black)

7.0 Summary of Ungaged UIF Transposition

Area proration was used to transpose the UIF timeseries from gaged basins to ungaged basins. Selection of reference gages follows guidelines established in Attachment C. **Table 7.1** summarizes the information for the ungaged basins and the gaged basins used as reference. Headwater flows are used as input for each explicitly modeled tributary in SWAM whereas confluence flows are used for implicit tributaries needed for model calibration.

Table 7.1 UIFs in Ungaged Basins (Area Ratio Method Only)	

	Ungaged Basin				USGS Reference Gage				
Project ID	SWAM Usage	Stream	Basin Area (mi ²)	% Developed / % Forest	Project Gage ID	USGS Number	Stream	Basin Area (mi²)	% Developed / % Forest
PDE201	Headwater Flow	Little Fork Creek	10	10/53					
PDE202	Headwater Flow	Lynches River	51	6 / 50		02131320	LITTLE FORK CREEK AT JEFFERSON, SC	15	9 / 69
PDE217	Headwater Flow	Black Creek	1	22 / 36	1 0 2 0 2			15	5,05
PDE237	Headwater Flow	Fork Creek	1	6 / 69					
PDE203	Headwater Flow	Buffalo Creek	33	6 / 67			HANGING		
PDE204	Headwater Flow	Hanging Rock Creek	14	6 / 69	PDE03	02131472	ROCK CREEK NR KERSHAW,	24	9 / 71
PDE205	Headwater Flow	Little Lynches River	12	5/61			SC		
PDE209	Headwater Flow	Pee Dee River	8	0 / 70		02129590	WHITES CREEK NEAR WALLACE, SC	27	4 / 78
PDE210	Headwater Flow	Naked Creek	13	5 / 63					
PDE211	Headwater Flow	Crooked Creek	45	6 / 46					
PDE213	Headwater Flow	Hagins Prong	8	9 / 41	PDE06				
PDE221	Headwater Flow	Little Pee Dee River	38	10 / 38					
PDE219	Headwater Flow	Westfield Creek	11	7 / 62					
PDE102	Confluence Flow	Phils Creek	27	6 / 57					
PDE101	Confluence Flow	Huckeberry Branch	10	41 / 36					
005207	Headwater		45	7 / 64	PDE07	02130500	JUNIPER CREEK NEAR	63	6 / 72
PDE207	Headwater	зипірег Стеек	45	//61					
PDE212	Flow	Cedar Creek	2	9 / 27	PDE09	02130600	AT SOCIETY	57	5 / 59
PDE214	Flow	Back Swamp	6	3 / 51			HILL, S.C.		

	Ungaged Basin				USGS Reference Gage				
Project ID	SWAM Usage	Stream	Basin Area (mi ²)	% Developed / % Forest	Project Gage ID	USGS Number	Stream	Basin Area (mi ²)	% Developed / % Forest
PDE215	Headwater Flow	Bellyache Creek	10	11 / 54					
PDE216	Headwater Flow	Swift Creek	13	12 / 33					
PDE218	Headwater Flow	Boggy Swamp	7	6 / 27					
PDE208	Headwater Flow	Thompson Creek	1	8 / 62	PDE10	02130840	BLACK CREEK BELOW CHESTERFIELD, SC	52	9 / 68
PDE206	Headwater Flow	Sparrow Swamp	98	8 / 35					
PDE236	Headwater Flow	Jeffries Creek	34	15 / 38		02121110	JEFFRIES	24	26 / 20
PDE103	Confluence Flow	Rogers Creek	25	8 / 37	PDEIO	02131110	FLORENCE, SC	34	20/29
PDE104	Confluence Flow	Hurricane Branch	16	5 / 50					
PDE105	Confluence Flow	Tobys Creek	61	5 / 39	PDE17	02131150	CATFISH CANAL AT SELLERS, SC	28	6 / 38
PDE228	Headwater Flow	Black River	13	15 / 33	PDE20	02135300	SCAPE ORE SWAMP NEAR BISHOPVILLE, S. C.	95	4 / 72
PDE229	Headwater Flow	Pudding Swamp	19	4 / 47					.,
PDE231	Headwater Flow	Deep Creek	6	5 / 50		02135517	POCOTALIGO RIVER AT	136	25 / 38
PDE232	Headwater Flow	Bear Creek	2	7 / 59	PDE22				
PDE233	Headwater Flow	Ox Swamp	7	7 / 35			SUMITER, SC		
PDE230	Headwater Flow	Turkey Creek	3	74 / 12	PDE23	02135520	TURKEY CREEK (HWY 521) AT SUMTER, SC	19	32 / 41
PDE220	Headwater Flow	Catfish Creek	20	4 / 34	00527	02422500	LITTLE PEE DEE	520	0 (50
PDE222	Headwater Flow	Buck Swamp	91	4 / 47	PDE27	02132500	RIVER NEAR DILLON, S. C.	530	8 / 50
PDE223	Headwater Flow	Lumber River	17	9 / 34		02135060	CHINNERS SWAMP NEAR AYNOR, SC		
PDE224	Headwater Flow	Brown Swamp	6	34 / 20				22	7 / 45
PDE225	Headwater Flow	Lake Swamp	5	23 / 24	PUE41			22	/ / 45
PDE226	Headwater Flow	Chinners Swamp	15	5 / 40					

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 25

8.0 References

CDM Smith, January 2015, *Methodology for Unimpaired Flow Development, Saluda River Basin, South Carolina.*

CDM Smith, August 2015, *Methodology for Unimpaired Flow Development, Edisto River Basin, South Carolina*

CDM Smith, October 2015, Pee Dee River Basin SWAM Model Framework.

CDM Smith, July 2015, *Methodology for Developing Historical Surface Water Withdrawals for* Agriculture Irrigation

HDR., Inc. 2014. Yadkin-Pee Dee Basin Operations Model Study.

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 26

List of Attachments

- A. *Guidelines for Standardizing and Simplifying Operational Record Extension* (CDM Smith, March 2015)
- B. Guidelines for Identifying Reference Basins for UIF Extension or Synthesis (CDM Smith, April 2015)
- C. Quality Assurance Guidelines: Unimpaired Flow Calculations (UIFs) for the South Carolina Surface Water Quantity Models (CDM Smith, April 2015)
- D. Refinements to the UIF Extension Process, with an Example (CDM Smith, September 2015)
- E. UIF Timeseries Graphs at USGS Gage Locations
- F. Discussion on Reference Gage and Method Selection
- G. Schematic of USGS Streamflow Gages in the Pee Dee River Basin

ATTACHMENT A

Guidelines for Standardizing and Simplifying Operational Record Extension

(CDM Smith, March 2015) - To be included in Final Memo

ATTACHMENT B

Guidelines for Identifying Reference Basins for UIF Extension or Synthesis

(CDM Smith, April 2015) - To be included in Final Memo

Unimpaired Flow Dataset for the Pee Dee River Basin - DRAFT March 2016 Page 29

ATTACHMENT C

Quality Assurance Guidelines: UIFs for the South Carolina Surface Water Quantity Models

(CDM Smith, April 2015) - To be included in Final Memo

ATTACHMENT D

Refinements to the UIF Extension Process, with an Example

(CDM Smith, September 2015) - To be included in Final Memo

ATTACHMENT E

UIF Timeseries Graphs at USGS Gage Locations

1,000.0 -Flow (cfs, log scale) 10.0 0.1 1940 1960 1980 Date

PDE02 (MOVE.1–no transform) — PDE03 (MOVE.1–no transform) — PDE05 (MOVE.1–log transform) — PDE11 (MOVE.1–log transform)

Extended Timeseries for PDE01 (black)

Extended Timeseries for PDE02 (black)

1,000.0 -10.0 -0.1 1940 1960 1980 Date

Flow (cfs, log scale)

PDE01 (MOVE.1-no transform) PDE04 (MOVE.1-log transform) PDE05 (MOVE.1-log transform) PDE11 (MOVE.1-log transform)

Extended Timeseries for PDE03 (black)

Extended Timeseries for PDE04 (black)

PDE05 (MOVE.1-no transform) - PDE09 (MOVE.1-no transform) - PDE11 (MOVE.1-no transform)

Extended Timeseries for PDE06 (black)

PDE04 (MOVE.1-no transform) - PDE05 (MOVE.1-no transform)

Extended Timeseries for PDE07 (black)

100,000 -Flow (cfs, log scale) 10,000 -1,000 -1940 1960 1980 Date PDE05 (MOVE.1–log transform) — PDE14 (MOVE.1–log transform)

Extended Timeseries for PDE08 (black)

Extended Timeseries for PDE09 (black)

Extended Timeseries for PDE10 (black)

1,000 100 -1980 1940 1960

Flow (cfs, log scale)

Date

PDE04 (MOVE.1–log transform) — PDE05 (MOVE.1–log transform)

Extended Timeseries for PDE11 (black)

1,000 -Flow (cfs, log scale) 100 10-1980 1940 1960 Date

Extended Timeseries for PDE12 (black)

PDE04 (MOVE.1–log transform) — PDE05 (MOVE.1–log transform)

Extended Timeseries for PDE13 (black)

PDE05 (MOVE.1–log transform)

Extended Timeseries for PDE14 (black)

Extended Timeseries for PDE15 (black)

PDE05 (MOVE.1–log transform) — PDE27 (MOVE.1–log transform)

Extended Timeseries for PDE17 (black)

1,000 -Flow (cfs, log scale) 100 TW 10 -1940 1960 1980 Date PDE05 (Area Ratio) — PDE11 (MOVE.1–log transform)

Extended Timeseries for PDE20 (black)

PDE05 (MOVE.1-no transform)

Extended Timeseries for PDE21 (black)

Flow (cfs, log scale)

Extended Timeseries for PDE22 (black)

Extended Timeseries for PDE23 (black)

Extended Timeseries for PDE24.25 (black)

Extended Timeseries for PDE27 (black)

Extended Timeseries for PDE28 (black)

Extended Timeseries for PDE41 (black)

Timeseries for Complete Gages (black)

Date

ATTACHMENT F

Discussion on Reference Gage and Method Selection

Gage	Reference	Method	Notes
			Statistics for all 3 methods similar. No transform
	PDE02	MOVE.1-no transform	matches low flows the best based on exceedence plot.
PDF01			Statistics for no transform and area ratio similarly low.
TDLOI	PDE03	MOVE.1-no transform	Matches low flows better than area ratio does.
			Despite being a low flow gage, log transform matches
	PDE11	MOVE.1-log transform	best overall in both statistics and decision plots.
			Area-Ratio statistics look better but MOVE.1 log
			transform matches best in exceedence plots and
	PDE05	MOVE.1-log transform	timeseries.
			MOVE methods have lowest statistics, no transform's
FDLOI			RMSE and PRESS slightly lower. Additionally, the
	PDE01	MOVE.1-no transform	overlapping minimum <1.
			Statistics for all 3 methods similar. No transform has
	PDE03	MOVE.1-no transform	lowest error and matches low flows the best.
			Statistics for all 3 methods similar Area ratio has
PDE02			lowest error, but log transform matches best in
	PDE20	MOVE.1-log transform	exceedence plots and timeseries.
			Statistics for all 3 methods similar. Area ratio has
			lowest error, but log transform matches best in
	PDE05	MOVE.1-log transform	exceedence plots and timeseries.
			Statistics for all 3 methods similar. MOVE methods
			perform similarly in decision plots. No transform
	PDE01	MOVE.1-no transform	selected due to overlapping minimum <1.
			Statistics for all 3 methods similar. Log transform
PDE03			matches best in decision plots especially for low flows.
	PDE04	MOVE.1-log transform	Note: minimum flow is <1.
			Log transform matches best in overal statistics and
	PDE11	MOVE.1-log transform	decision plots. Note: minimum flow is <1.
00500			Log transform matches best in overal statistics and
PDE03	PDE05	MOVE.1-log transform	decision plots. Note: minimum flow is <1.
			RMSE similar for all methods, but log transform PRESS
	PDE11	MOVE.1-log transform	much lower.
PDE04			RMSE similar for all methods, but log transform PRESS
	PDE05	MOVE.1-log transform	much lower.
			No transform and area ratio have lowest errors. No
DDFOC	PDE09	MOVE.1-no transform	transform captures low flows better.
PDE06			No transform and area ratio have lowest errors. No
	PDE11	MOVE.1-no transform	transform captures low flows better.
			No transform and area ratio have lowest errors. No
PDE06	PDE05	MOVE.1-no transform	transform captures low flows better.
	PDE04	MOVE.1-no transform	Lowest RMSE and PRESS.
	PDE05	MOVE.1-no transform	Lowest RMSE and PRESS.

Gage	Reference	Method	Notes			
PDF08	PDE14	MOVE.1-log transform	Best overall statistics and decision plots.			
TDLOO			Statistics for all 3 methods similar. Log transform			
	PDE06	MOVE.1-log transform	matches best in decision plots and to low flows.			
			Statistics for all 3 methods similar. Log transform			
TDLOJ	PDE04	MOVE.1-log transform	matches best in decision plots.			
			Statistics for all 3 methods similar. Log transform			
	PDE11	MOVE.1-log transform	matches best in decision plots.			
PDF09			Area-Ratio statistics look better. Log transform			
10200	PDE27	MOVE.1-log transform	matches best to decision plots.			
			MOVE statistics look similar. Log transform matches			
	PDE05	MOVE.1-log transform	best to decision plots.			
			Log transform overpredicts slightly. Could be either			
PDE10	PDE11	MOVE.1-log transform	MOVE method.			
	PDE04	MOVE.1-no transform	Best overall statistics and decision plots.			
PDF10			Area-Ratio has slightly lower RMSE but underpredicts			
	PDE05	MOVE.1-log transform	for high flows and overpredicts for low flows.			
			Statistics are inconclusive. Log transform matches best			
	PDE04	MOVE.1-log transform	in decision plots.			
			Statistics are inconclusive. Log transform matches best			
PDE11	PDE05	MOVE.1-log transform	in decision plots.			
	PDE04	MOVE.1-log transform	High flows don't look too bad. Best overall method.			
PDE12	PDE05	MOVE.1-log transform	Best overall.			
PDE13	PDE05	MOVE.1-log transform	Lowest RMSE and PRESS.			
			MOVE methods statistics best. Log chosen as it			
			captures low flows much better and doesn't			
PDE14	PDE05	MOVE.1-log transform	overpredict high flows too badly.			
	PDE14	Area Ratio	Best overall.			
			MOVE methods statistics best. Log chosen as it			
			captures low flows much better and doesn't			
PDE15	PDE05	MOVE.1-log transform	overpredict high flows too bad.			
			None of the methods looks too fantastic. MOVE.1 no			
			transform and Area-Ratio have better statistics. Area			
			Ratio Exceedence Probabilities look best, although			
	PDE41	Area Ratio	none of the time-series looks too hot.			
			Between MOVE.1 no transform and Area-Ratio. No			
	PDE13	MOVE.1-no transform	transform Exceedence Probabilities look best.			
			Between MOVE.1 no transform and Area-Ratio. No			
PDE16	PDE05	MOVE.1-no transform	transform Exceedence Probabilities look best.			
			Statistics for all 3 methods similar. Log transform			
	PDE27	MOVE.1-log transform	decision plots match best.			
			Area-Ratio and no transform have slightly lower			
PDE17	PDE05	MOVE.1-log transform	statistics but Log Transform decision plots match best.			

Gage	Reference	Method	Notes
	PDE11	MOVE.1-log transform	Best overall.
PDE20	PDE05	Area Ratio	Best overall.
PDE21	PDE05	MOVE.1-no transform	Best overall.
			Log transform and area ratio have lowest statistics. Log
	PDE20	MOVE.1-log transform	transform matches best in decision plots.
			Area ratio has lowest PRESS but MOVE 1 log transform
PDE22	PDE05	MOVE.1-log transform	matches best in decision plots.
			MOVE.1 no transform and Area-Ratio have lowest
			errors. Very, very low gage flow. No transform looks
	PDE04	MOVE.1-no transform	better.
	PDE03	Area Ratio	RMSE similar but area ratio PRESS is lowest.
	PDE11	MOVE.1-log transform	Log transform and area ratio have lowest errors.
PDE23	PDE05	Area Ratio	Log transform and area ratio have lowest errors.
			Between one of the MOVE methods. Log transform
			chosen as the no-transform didn't capture low flows
PDE24.25	PDE26	MOVE.1-log transform	very well.
			Statistics for all 3 methods similar. Log transform
	PDE28	MOVE.1-log transform	matches best.
			Overpredicts peaks but no transform overpredicts low
PDE27	PDE05	MOVE.1-log transform	points.
	PDE27	Area Ratio	Best overall
			No transform has lowest statistics but area ratio
PDE28	PDE05	Area Ratio	performs better in decision plots.
	PDE28	MOVE.1-log transform	All methods overpredicting low flows.
	PDE14	MOVE.1-log transform	Best overall
			PDE14 and PDE05 could both be used as secondary
PDE41	PDE05	MOVE.1-log transform	reference gage.

ATTACHMENT G

Schematic of USGS Streamflow Gages in the Pee Dee River Basin

Attachment G: Schematic of USGS Streamflow Gages in the Pee Dee River Basin