

From: Alexander, Leslee (Greenville) <Leslee.Alexander@aecom.com>
Sent: Wednesday, June 10, 2020 5:49 PM
To: Devlin, Cynde <devlincl@dhec.sc.gov>
Cc: Berresford, James <berresjl@dhec.sc.gov>; Bill Penn - UTC (william.penn@rtx.com) <william.penn@rtx.com>; Washington, Melinda <melinda.washington@collins.com>; Fitzgerald, Conan <conan.fitzgerald@aecom.com>
Subject: Delavan Spray Technologies Site, Bamberg SC - Deep Groundwater Delineation Tech Memo

*** Caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***
Cynde,

I have attached the Deep Groundwater Delineation Technical Memorandum for the Delavan Spray Technologies Site in Bamberg, South Carolina, for your review. A hard copy of this document will also be sent to you via FedEx. If you have any questions, please feel free to contact me.

Best regards,
Leslee

Leslee Alexander, PG
Project Manager / Hydrogeologist
D +1-864-234-2282
M +1-864-787-6916
leslee.alexander@aecom.com

AECOM
10 Patewood Drive
Building 6, #500
Greenville, SC 29615, USA
T +1-864-234-3000
aecom.com

*Email Scanned
PM Copy*

AECOM
10 Patewood Drive
Building 6, Suite 500
Greenville, South Carolina 29615
www.aecom.com

864 234 3000 tel
864 234 3069 fax

MEMORANDUM

TO: Cynde Devlin, SCDHEC
FROM: Leslee J. Alexander, AECOM
COPY: William Penn, Raytheon Technologies Corporation
 Melinda Washington, Delavan Spray Technologies
 Conan Fitzgerald, AECOM
 AECOM Project File 60314964/60590866
RE: Deep Groundwater Delineation Technical Memorandum
 Delavan Spray LLC
 Bamberg, South Carolina
 VCC 13-4762-RP
DATE: June 10, 2020

RECEIVED

JUN 17 2020

**SITE ASSESSMENT,
REMEDIATION, &
REVITALIZATION**

This *Deep Groundwater Delineation Technical Memorandum* documents environmental investigation activities completed for the Delavan Spray Technologies Site ("Delavan"), a Delavan Spray LLC manufacturing facility located at 4334 Main Highway in Bamberg, South Carolina. The memorandum has been prepared by AECOM Technical Services, Inc. (AECOM) on behalf of Delavan Spray LLC, a Collins Aerospace company. This memorandum provides a brief background, followed by a summary of activities completed and the results of the investigation.

1.0 Background

Following the *Post Remedial Investigation (RI) Report* (AECOM, May 2016), the South Carolina Department of Health and Environmental Control (SCDHEC) requested a work plan to delineate site-related constituents of concern (COCs) in the shallow (surficial) and deep (limestone) groundwater beneath the site. The *Groundwater Delineation Work Plan* (AECOM, September 2016), which included groundwater screening with temporary wells and permanent monitoring well installation, was approved by SCDHEC in correspondence dated October 31, 2016, and was implemented between March 27, 2017 and May 10, 2017. The results of the investigation, which are documented in the *Groundwater Delineation Report* (AECOM, June 2017), confirmed the presence of tetrachloroethene (PCE) concentrations greater than the maximum contaminant level (MCL) in the limestone aquifer monitoring wells ~3,200 feet south/southwest of the Site.

SCDHEC approved the *Groundwater Delineation Report* in correspondence dated June 26, 2017 and agreed with the report's recommendation that additional delineation was needed for PCE in the limestone aquifer south/southwest of the monitoring well network. The *Limestone Aquifer Assessment Work Plan* was submitted to SCDHEC on October 13, 2017 to address these recommendations. Delavan and AECOM participated in a conference call with SCDHEC on June 27, 2018 to discuss potential next steps and revisions to the additional assessment activities proposed in the *Limestone Aquifer Assessment Work Plan* (AECOM, October 2017). The revised work plan was submitted on August 27, 2018 and approved in

correspondence from SCDHEC dated September 20, 2018. This technical memorandum summarizes the work plan implementation and results.

2.0 Pre-Investigation Activities

Pre-investigation activities consisted of the following:

- Obtaining well installation permits from SCDHEC;
- Securing access to drilling locations; and
- Utility clearance of each monitoring well location.

The monitoring wells permit application was submitted as an attachment to the work plan (AECOM, August 2018). SCDHEC provided the permit in correspondence dated September 20, 2018, which also documented their approval of the revised work plan.

The four monitoring well locations proposed for the deep limestone aquifer were located off-Site; therefore, access agreements were obtained from each property owner prior to the installation of the monitoring wells. The final location for each well is shown on Figure 1 and was determined based on accessibility and input from each property owner. After obtaining off-Site property access and prior to conducting intrusive sampling activities, the South Carolina One-Call public utility service was contacted to mark public utilities at the well locations and vicinity. GEL Geophysics, LLC, a private utility locator from Charleston, South Carolina, was contracted to confirm the one-call markings and to mark the location of potential private subsurface utilities in the area of the proposed sampling locations.

3.0 Investigation Activities

Between November 18th and 25th, 2019, the following assessment activities were completed:

- Soil boring and monitoring well installation,
- Monitoring well development,
- Groundwater sampling,
- Slug testing,
- Equipment decontamination,
- Investigation-derived waste (IDW) management, and
- Surveying.

These activities are described in the section below.

Monitoring Well Drilling

Cascade Drilling, from New Ellenton, South Carolina, provided drilling services for the groundwater delineation. A track-mounted Geoprobe® 8140LC sonic rig was used to advance each boring to the target depth. The sonic rig utilized a 6-inch diameter outer casing and a 4-inch diameter inner core barrel. Soil samples were extruded from the inner core barrel into plastic sleeves for lithological logging and soil screening by an AECOM geologist. Soil samples were screened for organic vapors using a MiniRAE 2000 hand-held volatile organic compound (VOC) monitor (i.e., a photoionization detector [PID]). Boreholes were logged in accordance with Section 2.3 of the *Limestone Aquifer Assessment Work Plan* (AECOM, October 2017). Lithologic details, organic vapor screening results, and other observations were recorded by the AECOM geologist on the Test Boring Reports included in Attachment A.

Monitoring Well Installation

Based on the lithologic and organic vapor screening, four Type III monitoring wells were drilled and installed to depths of approximately 64 to 79 feet below ground surface (bgs) to provide long-term monitoring of the groundwater plume (Figure 1). In accordance with the SCDHEC-approved work plan, the outer sonic casing served as a temporary surface casing, providing a sufficient seal for the upper surficial aquifer during drilling and subsequent limestone aquifer well installation.

Each monitoring well was installed through the center of the sonic core barrel and was constructed of 2-inch diameter, schedule 40 polyvinylchloride (PVC) casing and 10 feet of 0.010-inch machine slotted PVC screen. Filter sand was placed into the annular space of each well to approximately two feet or more above the top of the well screen. A pelletized bentonite clay seal with a minimum thickness of two feet was placed in the annular space above the filter sand and hydrated with potable water, as needed. As the filter sand and bentonite clay were added, the core barrels were pulled from the borehole to ensure the annulus was completely filled. Depths to sand and bentonite were monitored with a weighted tape measure as the installation progressed. A neat cement-bentonite grout was then injected from above the bentonite seal to land surface via a tremie pipe as the core barrel was pulled.

The surface completions for the Type III monitoring wells were finished with a steel above-ground casing and a locking well cap. The steel casings were set into a two-foot by two-foot square by 6-inch thick concrete pad. The monitoring well construction details are provided in the Monitoring Well Construction Diagrams in Attachment A and are summarized in Table 1.

Well Development

Upon installation, the groundwater monitoring wells were developed so that they produced representative groundwater samples. The monitoring wells were developed by AECOM personnel by surging and pumping with an electric submersible pump. Groundwater indicator parameters (e.g., pH, temperature, specific conductance, dissolved oxygen [DO], oxidation-reduction potential [ORP] and turbidity) were measured using a YSI 556 water quality meter and recorded on AECOM Monitoring Well Development logs included

in Attachment A. Development of monitoring wells continued until parameters were stabilized to within approximately 10% (0.2 s.u. for pH) and the turbidity of the water was reduced as much as possible.

Groundwater Sampling

Following well development, groundwater samples were collected from each new monitoring well using low flow/low stress sampling methods in accordance with Section 2.9 of the *Limestone Aquifer Assessment Work Plan* (AECOM, October 2017). Groundwater sampling was completed using a peristaltic pump and a YSI 556 water quality meter equipped with a flow-through cell was utilized for field parameter measurement.

Groundwater samples were kept chilled on ice to approximately 4 degrees Celsius and under chain-of-custody protocol until they were shipped to the analytical laboratory. Groundwater samples were analyzed for target compound list (TCL) VOCs by USEPA Method 8260B, methane, ethane, and ethene by USEPA Method RSK 147, nitrate, nitrite, and sulfate by USEPA Method 9056, and total organic carbon (TOC) by USEPA Method 5310. All groundwater samples were analyzed by SGS North American Inc., a National Environmental Lab Accreditation Program (NELAP) -accredited laboratory and State of South Carolina certified laboratory located in Orlando, Florida.

To provide quantitative data on the precision and accuracy of the sampling and analysis program, quality assurance and quality control (QA/QC) samples were collected in accordance with Section 2.11 of the *Limestone Aquifer Assessment Work Plan* (AECOM, October 2017). One field duplicate, one matrix spike/matrix spike duplicate (MS/MSD), and one trip blank were collected to meet the QA/QC requirements.

Groundwater sampling details for each well were recorded on the Field Data Logs for Groundwater Sampling included in Attachment A. Laboratory analytical data are provided in Attachment B and the sample results are discussed in Section 4.0 below.

Slug Testing

Slug tests were performed in the newly installed limestone monitoring wells MW-33D, MW-34D, MW-35D, and MW-36D in order to evaluate hydrologic properties of limestone aquifer at the new well locations. Falling and rising head slug tests were conducted using a solid PVC cylinder (aka, "slug"). Falling head tests were conducted by quickly inserting a decontaminated, solid PVC slug into the well, observing an instantaneous rise in the water level, and monitoring the water level as it declined downward toward the static level. Rising head tests were conducted by quickly removing the slug from a well and monitoring the water level as it rose up toward the static level. Due to the rapid response in the newly installed wells, rising head slug test were also conducted using a submersible pump to induce rapid drawdown in each well and then monitoring the subsequent water level return to static.

Prior to initiating the test, the static water level in the well was measured with an electronic water level meter and recorded. A decontaminated pressure transducer was then lowered at least 8 to 10 feet below the static water level or within one foot of the bottom of the well. The static water level was again measured and recorded and the measurement was repeated until water level equilibrium was verified (i.e., two equal

readings taken at least five minutes apart). The slug was then attached to clean, new synthetic rope. The falling head test was initiated by instantaneously lowering the cylinder into the well, resulting in an immediate water level rise. The data logger was activated to measure the declining (falling) water levels. When the water level had returned to static conditions, the rising head slug test was conducted. For the rising head test, the data logger was activated as the cylinder was instantaneously removed from the well (resulting in an immediate water level decline) and the rising water levels were measured. Water levels were monitored until they were within 10 percent of their original static level. Multiple tests were conducted on each well to ensure a representative test result.

Once the PVC slug was removed and the water level returned to static, new polyethylene tubing was attached to the submersible pump and it was inserted into the well until it was located a few feet above the pressure transducer. A check valve was also installed between the pump and the tubing to prevent backflow down the tubing into the well. Once the water level returned to static after the pump installation, flow was initiated, and the well was pumped as quickly as possible to drawdown the water level in the well. The pump was then turned off and the water level in the well was recorded as it returned to static.

Slug test data are provided in Attachment C and the results are discussed in Section 4.0 below

Equipment Decontamination

Single-use, factory cleaned sampling equipment was used when possible. Water interface probes and pumps were washed with a detergent (e.g. Liqui-Nox®) and rinsed with de-ionized (DI) water between monitoring wells. Water quality meters and flow-through cells were rinsed with DI water between sampling locations, and thoroughly washed with detergent and DI water at the end of the day. Core barrels were decontaminated using a high-pressure steam-cleaner between each boring.

IDW Management

Waste materials consisting of decontamination water, well development/purge water, and soils from drilling activities were designated as investigation-derived waste (IDW). Personal protective equipment was consolidated and disposed daily as non-hazardous solid waste in municipal trash collection containers.

Soil and groundwater IDW were containerized in Department of Transportation (DOT) compliant 55-gallon steel drums, labeled, and temporarily staged at a designated location on the Delavan Spray Technologies Site until receipt of characterization analysis. Details for each drum, including dates filled and media contained, were recorded on the IDW Management Form included in Attachment A.

For characterization and disposal purposes, drums of IDW soil were sampled for Toxicity Characteristic Leaching Procedure (TCLP) VOCs by USEPA Method 8260B, TCLP semi-volatile organic compounds (SVOCs) by USEPA Method 8270D, and TCLP Priority Pollutant Metals by USEPA Methods 6010C and 7470B. Drums of well development/purge water were sampled for TCL VOCs (USEPA Method 8260B), TCL SVOCs (USEPA Method 8270D), and Priority Pollutant Metals (USEPA Methods 6010C and 7470B). All IDW characterization samples were analyzed by SGS North America, Inc. Analytical data for

characterization samples are provided in Attachment B and the results are discussed in Section 4.0 below. Following receipt of IDW characterization and monitoring well groundwater sampling data, Delavan facility personnel coordinator transportation and disposal of the IDW drums with their disposal contractor.

Surveying

Following the well installation activities, the top of casing elevation, land surface elevation, and the horizontal locations of the new monitoring wells were surveyed on December 5, 2020 by an AECOM professional land surveyor licensed in South Carolina. Horizontal locations were reported in South Carolina State Plane Coordinates referenced to the North American Datum of 1983 (NAD83) to the nearest 0.01 foot. Ground surface elevations and well top of casing measuring point elevations were referenced to the North American Vertical Datum of 1988 (NAVD88) to the nearest 0.01 foot. Survey data is provided for each monitoring well in Table 1.

4.0 Investigation Results

Findings from the Limestone Aquifer delineation activities are summarized in the paragraphs below.

Drilling Observations

Soil lithologies encountered during drilling activities for off-site monitoring wells MW-33D through MW-36D (Figure 1) were similar to those previously observed beneath the site and off-site areas. Typical for the surficial aquifer in the Site vicinity, sand mixed with varying amounts of silt and/or clay was observed in each boring from the ground surface to depths ranging between 10 ft bgs (MW-36D) and 42.5 ft bgs (MW-34D). During previous work at the site, the surficial aquifer deposits have been encountered to depths of approximately 25 ft to 35 ft bgs.

Below the surficial aquifer deposits, pale yellow to pale brown limestone (Limestone 1) was encountered to depths of 34 ft to 51.5 ft bgs and consisted primarily of sand and small shells with occasional cemented shells and limestone fragments. This unit has previously been referred to as a coquina limestone in the RI Work Plan (Hart and Hickman, August 2013) and previous reports, and has been observed to depths of approximately 38 ft to 48 ft bgs.

A second limestone unit (Limestone 2), which was white with predominantly coarser-grained sand, larger shells and limestone fragments, and some moderately- to well-cemented zones, was encountered beneath the pale-yellow limestone. This lower limestone unit correlates to the unit described previously as a “fossiliferous limestone” (Hart and Hickman, August 2013) and reportedly extended to an approximate depth of 60 ft bgs. In borings MW-33D through MW-36D, the white limestone unit extended to the bottom of the borings, at total depths of 64 ft to 84 ft bgs.

Beneath the “fossiliferous limestone” (Limestone 2), Hart and Hickman (August 2013) described a calcareous clayey sandstone extending to an unknown depth in MW-3D1 and characterized by loose to moderately-cemented, fine to medium sand particles. The sandstone was not encountered in the borings for MW-33D through MW-36D. However, a fining of the grain size in the white limestone was observed at a depth of approximately 67 ft to 74 ft in MW-33D and MW-35D and below 77 ft in MW-34D. In the case of MW-33D, MW-34D and MW-35D, the sand-sized particles were predominantly shells and/or calcareous in origin as opposed to silica-derived. It is uncertain if this represents a facies change between MW-3D1 and MW-15D1 in the facility vicinity and the down-gradient area near the newly installed monitoring wells, or if the cemented “sandstone” previously described was actually finer-grained cemented limestone that was mis-characterized in the field.

Groundwater Sampling Results

Following installation and development, groundwater samples from monitoring wells MW-33D through MW-36D were analyzed for VOCs and monitored natural attenuation (MNA) parameters (i.e., methane, ethane, ethane, nitrate, nitrite, sulfate, and total organic carbon). Groundwater analytical data packages are presented in Attachment B and sampling results for new groundwater monitoring wells are presented in Table 2 and discussed briefly below.

PCE and its degradation products (trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE], and vinyl chloride) were not detected in any of the new limestone aquifer monitoring wells (Table 2). The PCE results were contoured with the fall 2019 semi-annual groundwater monitoring results (Figure 2) and the resulting isoconcentration contour map illustrates that the new wells complete the delineation of PCE to below the MCL (5 micrograms per liter [$\mu\text{g/L}$]) in the limestone aquifer downgradient of the Delavan Facility.

Chloroform was detected at low, estimated concentrations in two of the monitoring wells, MW-34D and MW-36D. As documented in the *Fall 2014 Semi-Annual Groundwater Monitoring Report* (AECOM, January 2015), chloroform has been shown to be present in the potable water source at the facility, which was used as the water source for drilling operations. Toluene was also detected at low concentrations in each groundwater sample and in the associated trip blank. Toluene has not been detected in any off-site monitoring well south of Main Hwy (Figure 1 and Appendix D of the *Fall 2019 Semi-Annual Groundwater Monitoring Report*, AECOM, February 2020) and is not attributed to past site activities.

Results of field parameters and MNA parameters were within the ranges previously reported for limestone aquifer. As summarized in the inset table below, pH, ORP, sulfate, and TOC are all within favorable ranges for anaerobic biodegradation (USEPA, 1998). Dissolved oxygen levels were elevated in a few of the wells but, given the ORP values are indicative of reducing conditions, the dissolved oxygen readings may be artificially higher due to aeration caused by surging during the well development.

Analysis	Minimum	Maximum	Average	Optimal Range for Anaerobic Biodegradation Processes*
pH (S.U.)	7.61	7.89	7.79	5 < pH < 9 - Optimal range for reductive pathway 5 > pH > 9 - Outside optimal range for reductive pathway
Dissolved Oxygen (mg/L)	0.14	0.86	0.50	<0.5 mg/L - Tolerated, suppresses the reductive pathway at higher concentrations >5 mg/L - Not tolerated; however, VC may be oxidized aerobically
ORP (mV)	-204.9	-4.8	-84.6	<50 millivolts (mV) - Reductive pathway possible <-100mV - Reductive pathway likely
Nitrate (µg/L)	ND	1,300	-	<1,000 µg/L - At higher concentrations may compete with reductive pathway
Nitrite (µg/L)	ND	340	-	
Sulfate (µg/L)	2,200	4,400	3,375	<20,000 µg/L - At higher concentrations may compete with reductive pathway
TOC (µg/L)	440	660	565	>20,000 µg/L - Carbon and energy source; drives dechlorination; can be natural or anthropogenic
Methane (µg/L)	0.68	3.1	1.5	<500 µg/L - VC oxidizes >500 µg/L - Ultimate reductive daughter product, VC Accumulates
Ethane (µg/L)	ND	0.6	-	>10 µg/L - Daughter product of VC/ethene
Ethene (µg/L)	ND	ND	-	>10 µg/L - Daughter product of VC/ethene

* - from the *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water* (USEPA, 1998).

ND - not detected

Field duplicate and trip blank results are presented in Tables 3 and 4, respectively, and the data validation report (DAR) is included in Attachment B. Detections of toluene in samples were qualified “/B/T” due to the presence of the analyte in the associated trip blank sample. Detections of TOC in samples associated with batch GP34002 were qualified “/B/K” due to the presence of the analyte in the associated method blank sample, indicating TOC is not considered site-related per USEPA data evaluation guidance. The data validation process did not result in the rejection of any data. Therefore, the data associated with this event should be considered compliant and adequate for its intended use.

IDW Results

Results of the IDW characterization samples are compared to the USEPA Toxicity Characteristic values (40CFR§261.24 Toxicity Characteristic, July 1, 2007) in Table 5. The analytical data show that the solid and aqueous IDW were non-hazardous. The IDW analytical data were provided to Delavan’s Environment, Health, and Safety (EHS) Manager for waste profiling and disposal.

Slug Test Results

Slug test data were analyzed using Aqtesolv® version 4.5 – Professional (Duffield, 2007), a commercially available software package, and the methods of Bouwer and Rice (1976), Bouwer (1989), Springer and Gelhar (1991), and Hyder and others (1994). The Bouwer and Rice technique is valid for water table or confined aquifers with partially- or fully-penetrating wells and was used for all shallow wells where slug tests were conducted at the Site. The Springer and Gelhar solution extends the Bouwer and Rice method to include inertial effects in the test well and accounts for oscillatory water-level response sometimes observed

in aquifers of high hydraulic conductivity. Since some of the limestone aquifer monitoring wells exhibited an oscillatory response, the Springer and Gelhar solution was used to analyze slug tests from these wells. The KGS method (Hyder and others, 1994) was used for wells that did not exhibit an oscillatory response but where the response was too rapid to use Bouwer and Rice (i.e., there were too few points in the "recommended head range"). The Bouwer and Rice method was used to analyze slug tests from select deeper aquifer monitoring wells where sufficient data were available within recommended head range, as described below.

In certain situations, the data from the wells exhibit what is known as the "double straight-line effect" in response to a slug test. Graphs of slug test data exhibiting this effect are concave-up, and the multiple "straight-line" portions of the graph can lead to erroneous matching. Butler (1998) recommends matching to a normalized head (i.e., displacement at any given time divided by the initial displacement) range of 0.20 to 0.30 to increase the reliability of matching when using Bouwer and Rice. This correction is incorporated in the Aqtesolv® software package and was utilized for the analyses included in Attachment C. The recommended head range is distinguished by horizontal dotted lines on the graphs in Attachment C and was utilized as a guide for wells exhibiting the "double straight-line effect".

Table C-1 in Attachment C summarizes the slug test results. The estimated horizontal hydraulic conductivity values from the newly installed limestone aquifer monitoring wells ranged from 45.22 feet per day (ft/day) in MW-33D to 121.6 ft/day in MW-36D, with a geometric mean of 85.57 ft/day ft/day. These values are within the range of those previously estimated for deeper aquifer wells in the Site vicinity (10.7 ft/day to 161 ft/day; AECOM, October 2017).

Conceptual Site Model Update

Using the additional information gained during the Deep Groundwater Delineation activities, updated cross-sections were created to illustrate the current understanding of the conceptual site model (CSM). As shown in Figure 3, the deposits of sands, clays, and silts that comprise the surficial aquifer encompass the top 20 to 40 ft of soil beneath the site. Hydraulic conductivity values estimated from this unit range from 0.215 ft/day to 0.701 ft/day (AECOM, October 2017). The highest concentrations of PCE detected have been in monitoring wells in the immediate vicinity of the facility near the former PCE degreasers (near MW-19 and MW-20) and the former PCE UST (near MW-21; cross-section A-A', Figure 3).

Although the primary flow direction in the surficial aquifer is to the west/southwest towards Half Moon Branch, groundwater impacted with PCE also migrates into the limestone aquifer beneath the facility. While further vertical migration is limited by the cemented "sandstone" in the vicinity of MW-3D1, PCE impacted groundwater has migrated at least 5,000 feet to the south/southwest in the limestone aquifer, which is highly conductive to groundwater flow, with estimated hydraulic conductivities ranging from 10.7 ft/day to 161 ft/day and a geometric mean hydraulic conductivity of 62.7 ft/day (AECOM, May 2016; October 2017; and this report).

Groundwater concentrations of PCE decrease below the detection limit before they reach newly installed monitoring wells MW-34D, MW-35D and MW-36D (cross-sections A-A' and B-B', Figure 3), approximately

6,500 feet south of the Delavan Facility. Based on the detected PCE concentrations in off-site limestone aquifer monitoring wells and the detected PCE concentration (2.4 µg/L; AECOM, February 2018) in a surface water sample from Lemon Creek at Highway 601 (approximately 500 feet south of MW-36D), limestone aquifer groundwater impacted with PCE appears to discharge to Lemon Creek (and/or the lower reaches of Half Moon Branch near the confluence with Lemon Creek), which limits further migration in the limestone aquifer.

5.0 Upcoming Work

Multiple phases of investigation work have been completed since the RI (AECOM, July 2014), resulting in the delineation of site-related COCs in surficial aquifer and limestone aquifer groundwater. However, additional work needs to be done to fully characterize the magnitude of the impacts beneath the Delavan Facility near former source areas, such as the former PCE degreasers (near MW-19 and MW-20), the former PCE underground storage tank (UST; near MW-21) and the former PCE secondary containment area (near MW-1; Figure 1). This additional data will be instrumental to evaluate and design a successful remedy to address residual contamination at the site. To meet this need, a Pre-Pilot Study High Resolution Source Characterization Work Plan (AECOM, February 2019) was submitted, which leverages membrane interface probe / hydraulic profiling tool (MiHPT) technology to provide detailed information related to chlorinated VOC impacts in "hot spots" beneath and immediately adjacent to the Facility building. SCDHEC approved the work plan in correspondence dated March 1, 2019 and the work, originally scheduled for spring 2020, had to be postponed due to health concerns related to COVID-19. Delavan and AECOM are currently working with the subcontractors to schedule the work for early summer 2020.

Based on their review of the Fall 2019 Semi-Annual Monitoring Report (AECOM, February 2020) and discussion during a February 25, 2020 meeting between SCDHEC, Raytheon Technologies (formerly United Technologies Corporation), and AECOM, SCDHEC requested sampling of the unnamed tributary to Lemon Creek (SCDHEC, March 2020). A plan was proposed to sample four surface water locations, including the unnamed tributary to Lemon Creek (AECOM, March 2020). SCDHEC approved the plan (SCDHEC, April 2020) and it was implemented during the April 2020 semi-annual groundwater monitoring. Sample results are pending and will be included in the upcoming monitoring report, expected to be submitted in June 2020.

6.0 References

- AECOM, January 8, 2015. *Fall 2014 Semi-Annual Groundwater Monitoring Report, United Technologies Corporation, Delavan Spray Technologies Site, 4334 Main Highway, Bamberg, South Carolina.*
- AECOM, June 29, 2015. *Post Remedial Investigation Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina.*
- AECOM, May 17, 2016. *Post Remedial Investigation Report, Delavan Spray Technologies Site, Bamberg, South Carolina.*
- AECOM, September 13, 2016. *Groundwater Delineation Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, June 14, 2017. *Spring 2017 Semi-Annual Groundwater Monitoring Report, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, June 23, 2017. *Groundwater Delineation Report, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, October 13, 2017. *Limestone Aquifer Assessment Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, February 15, 2018. *Technical Memorandum – Residential Sampling Activities and Results, Delavan Spray LLC, Bamberg, South Carolina.*

AECOM, August 17, 2018. *Revised Limestone Aquifer Groundwater Assessment Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, February 21, 2020. *Fall 2019 Semi-Annual Groundwater Monitoring Report, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, March 25, 2020. *Correspondence Re: Response to Correspondence dated March 31, 2020 for the Fall 2019 Semi-Annual Groundwater Monitoring Report, Delavan Spray Technologies Site, Bamberg, South Carolina, SCDHEC VCC Number 13-4762-RP.*

Bouwer, H., 1989. The Bouwer and Rice slug test--an update, *Ground Water*, vol. 27, no. 3, pp. 304-309.

Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, *Water Resources Research*, vol. 12, no. 3, pp. 423-428.

Butler, J.J., Jr., 1998. *The Design, Performance, and Analysis of Slug Tests*, Lewis Publishers, Boca Raton, Florida, 252p.

Code of Federal Regulations, 2007. Toxicity Characteristic, Title 40, Section 261.24 (40CFR§261.24, 2007).

Duffield, G.M., 2007. *AQTESOLV for Windows Version 4.5 User's Guide*, HydroSOLVE, Inc., Reston, VAH&H, August 29, 2003, *Ground water assessment report, Delavan Spray Technologies Facility, Bamberg, South Carolina.*

Hart & Hickman, August 1, 2013, *Remedial Investigation Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina.*

Hyder, Z, J.J. Butler, Jr., C.D. McElwee and W. Liu, 1994. Slug tests in partially penetrating wells, *Water Resources Research*, vol. 30, no. 11, pp. 2945-2957.

SCDHEC, July 3, 2013. Voluntary Cleanup Contract 13-4762-RP.

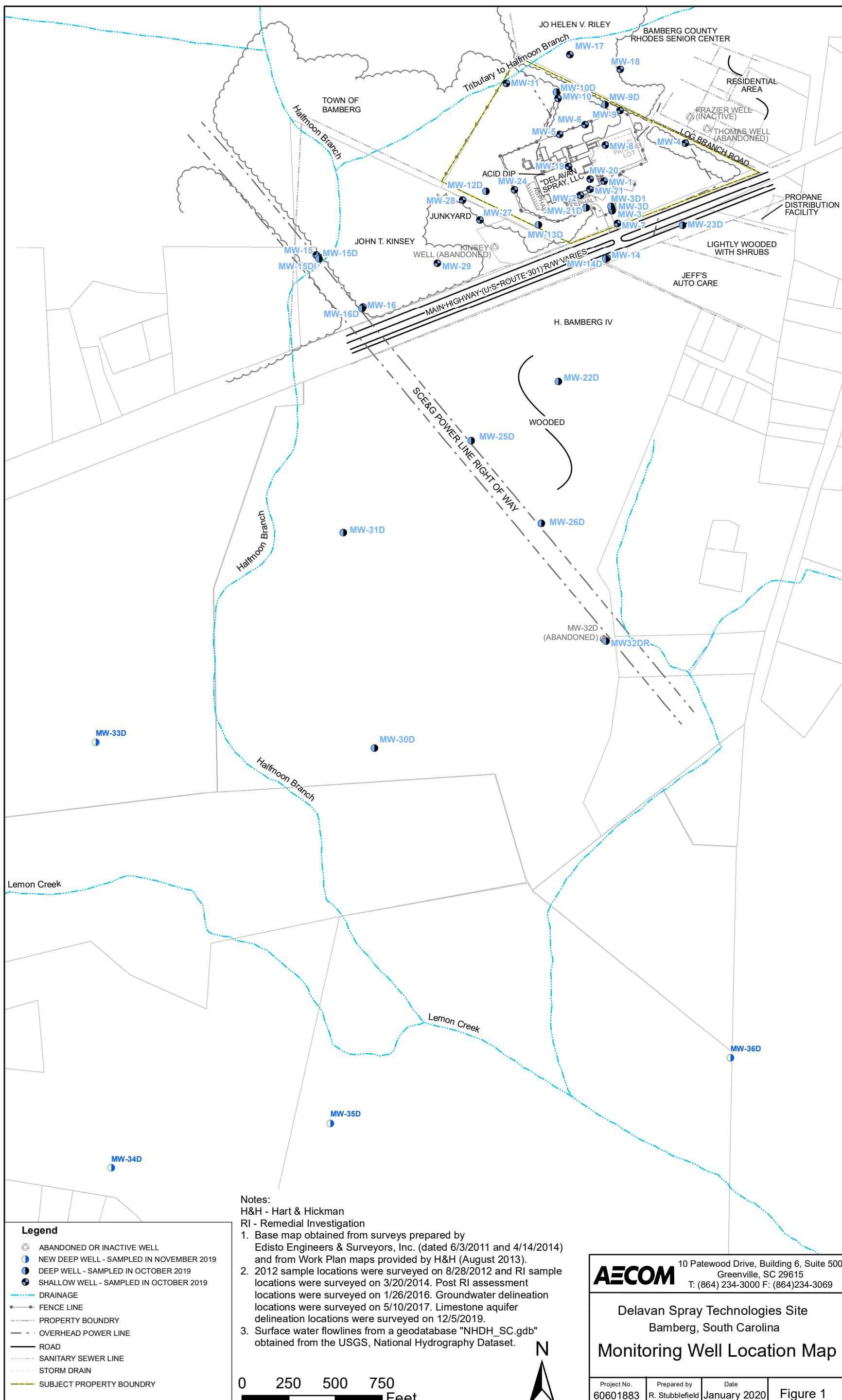
SCDHEC, October 31, 2016. Correspondence Re: Groundwater Delineation Work Plan dated September 13, 2016, Goodrich Delavan Spray Technology Site, Bamberg County, VCC #13-4762-RP.

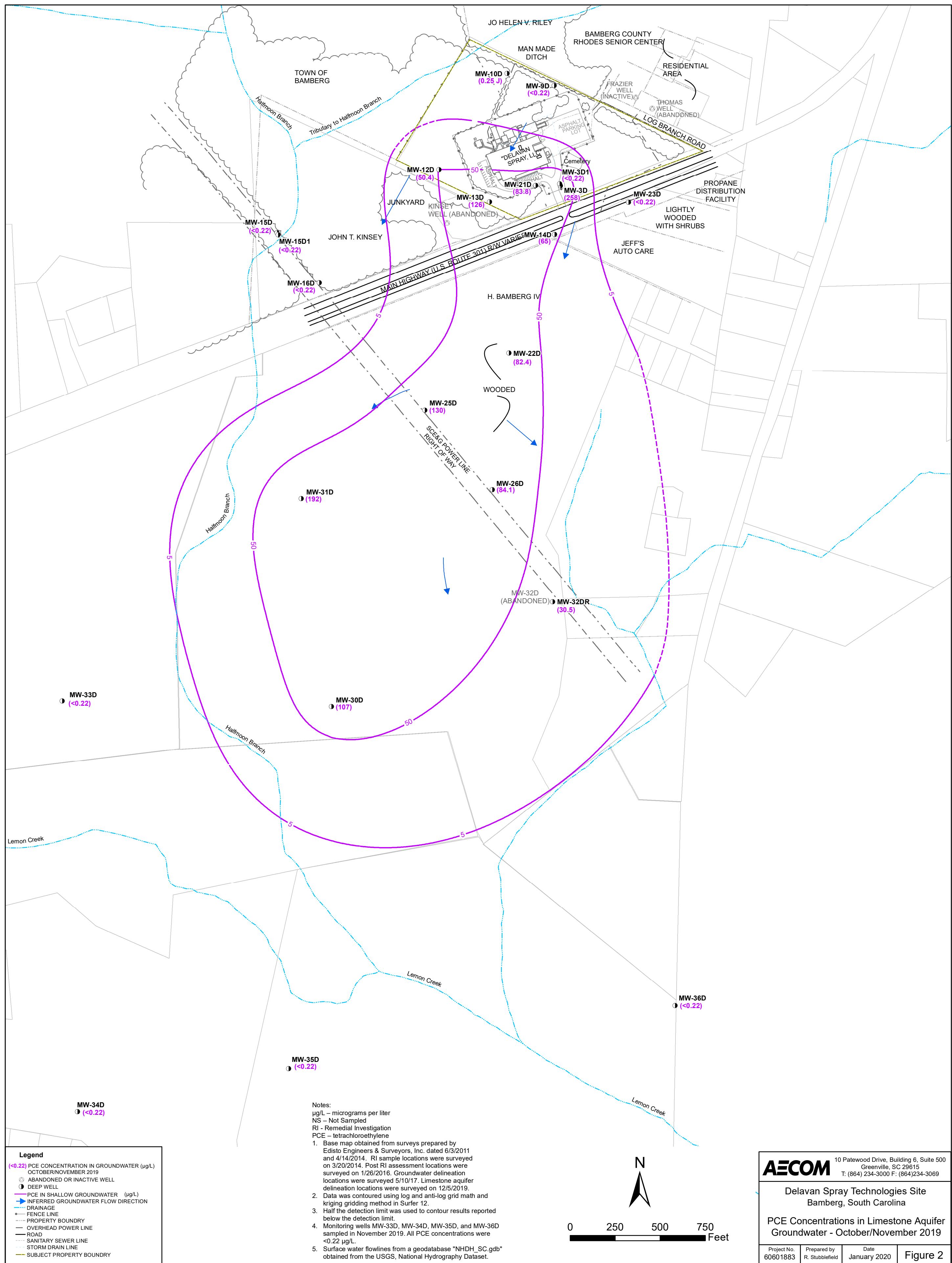
SCDHEC, June 26, 2017. Correspondence Re: Groundwater Delineation Report dated June 23, 2017, Goodrich Delavan Spray Technology Site, Bamberg County, VCC #13-4762-RP

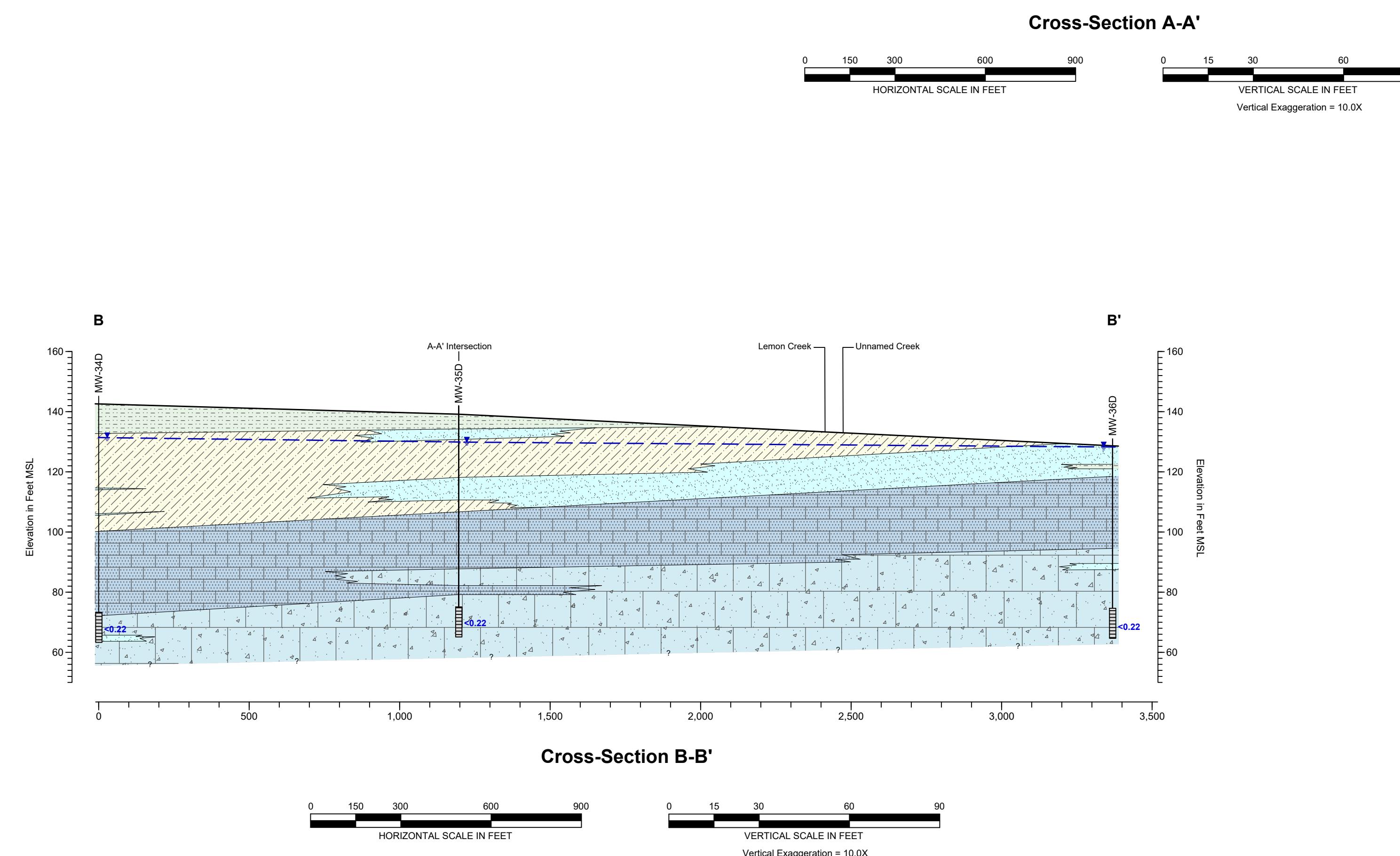
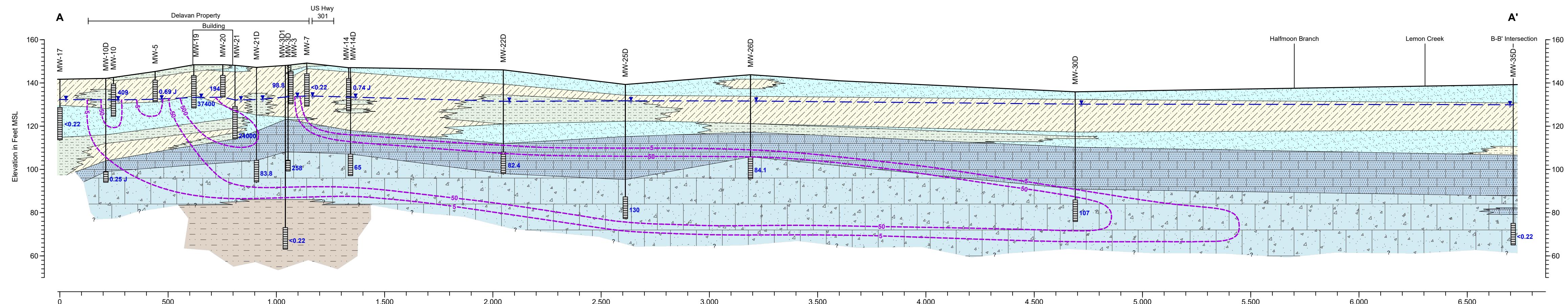
SCDHEC, December 18, 2017. Correspondence Re: Limestone Aquifer Assessment Work Plan dated October 13, 2017, Goodrich Delavan Spray Technology Site, Bamberg County, VCC #13-4762-RP

SCDHEC, September 20, 2018. Correspondence Re: Delavan Spray Technology Site, Revised Limestone Aquifer Groundwater Assessment Work Plan, Bamberg, SC, File #51778.

SCDHEC, March 1, 2019. Correspondence Re: Delavan Spray Technology Site, Pre-Pilot Study High Resolution Source Characterization Work Plan, Bamberg, SC, File #51778

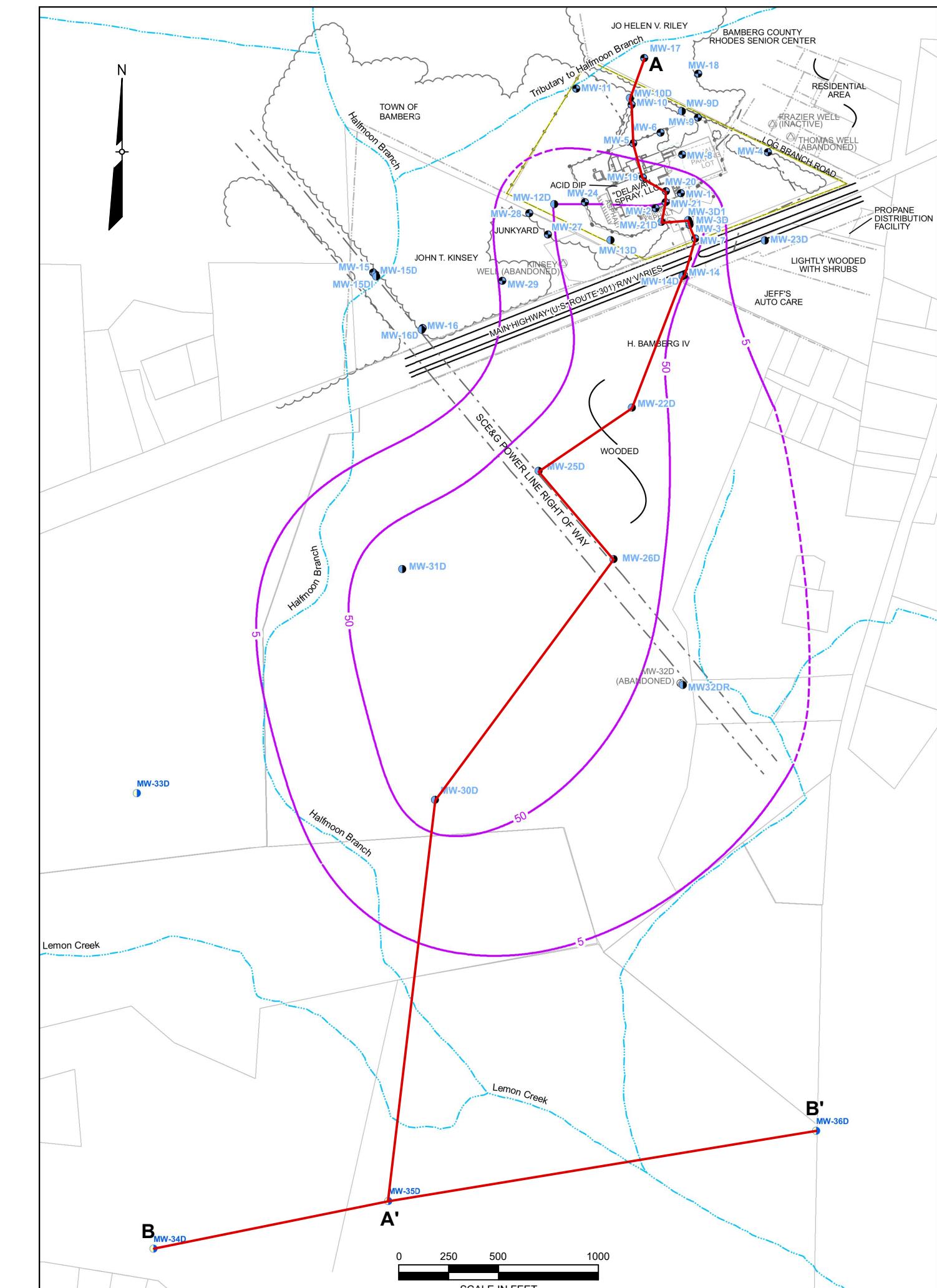

SCDHEC, March 13, 2020. Correspondence Re: Delavan Spray Technology Site, Fall 2019 Semi-Annual Groundwater Monitoring Report, Bamberg County, File #51778


SCDHEC, April 7, 2020. Correspondence Re: Delavan Spray Technology Site, Surface Water Sampling Plan Correspondence dated March 25, 2020, Bamberg County, File #51778



Springer, R.K. and L.W. Gelhar, 1991. Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts, U.S. Geol. Surv. Water Res. Invest. Rep. 91-4034, pp. 36-40.

USEPA, 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water

Figures



Legend

Monitoring Well Data	
Well ID	MW-35D
Groundwater Elevation	Blue dashed line with cross markers
PCE Contour	Purple dashed line
October/November 2019 PCE Concentration ($\mu\text{g/L}$)	65
Well Screen	Blue line with vertical segments

Lithology	
Clayey Sand/Sandy Clay and Clay	Diagonal hatching
Silt and Sandy Silt/Silty Sand	Horizontal hatching
Sand	Light blue
Pale Yellow Limestone, Sand and Small-Size Shell Hash	Dark blue
White Limestone, Fossils and Larger Shell Fragments, Some Cementation	Light grey
Clayey Sandstone	Light brown

AECOM

10 Patowmack Drive, Building 6, Suite 500
Greenville, SC 29615
T: (864) 234-3000 F: (864) 234-3069

Cross-Section A-A' and Cross-Section B-B'

Delavan Spray Technologies Site
Bamberg, South Carolina

PROJECT NO. 60595986 DRAWN BY RJS DATE April 2020

Figure 2

Tables

Table 1
New Monitoring Well Construction Details
Delavan Spray Technologies Site
Bamberg, South Carolina

Well Number	Northing ¹	Easting ¹	Date Installed	Installed By	Equipment	Ground Surface Elevation ² (ft MSL)	Top of Casing Elevation ² (ft MSL)	Stick-up Height (ft)	Well Diameter (Inches)	Casing Type	Total Depth (ft bgs)	Classification	Surface Casing Depth (ft bgs)	Screen Interval (ft bgs)
MW-33D	524374.0762	1983244.145	11/20/2019	AECOM / Cascade Drilling	Geoprobe 8140LC (Soinc)	142.14	144.79	2.65	2	PVC	74.39	Deep	NA ³	64.09 - 74.02
MW-34D	522094.6577	1983329.007	11/19/2019	AECOM / Cascade Drilling	Geoprobe 8140LC (Soinc)	142.70	145.71	3.01	2	PVC	79.78	Deep	NA ³	69.44 - 79.40
MW-35D	522333.3569	1984500.874	11/19/2019	AECOM / Cascade Drilling	Geoprobe 8140LC (Soinc)	139.26	141.95	2.69	2	PVC	74.56	Deep	NA ³	64.25 - 74.18
MW-36D	522684.1082	1986644.707	11/21/2019	AECOM / Cascade Drilling	Geoprobe 8140LC (Soinc)	128.57	130.93	2.37	2	PVC	64.29	Deep	NA ³	53.99 - 63.92

Notes:

bgs - below ground surface

ft - feet

ft MSL - feet above mean sea level

NA - not applicable

¹ - Horizontal coordinates are referenced to the State Plane Coordinate System and the North American Datum of 1983 (NAD 83).

² - Vertical locations are referenced to the North American Vertical Datum of 1988 (NAVD 88).

³ - The outer geoprobe casing was used as a temporary surface casing during advancement of the borehole and well installation.

Table 2
Summary of Analytical Results in Groundwater
Delavan Spray Technologies Site
Bamberg, South Carolina

Sample ID Lab Sample ID Date Collected	USEPA MCL	MW-33D FA70346-3 11/25/2019	MW-34D FA70346-6 11/25/2019	MW-35D FA70346-2 11/25/2019	MW-36D FA70346-5 11/25/2019
Volatile Organic Compounds by Method 8260B (µg/L)					
1,1,1-Trichloroethane	200	< 0.25	< 0.25	< 0.25	< 0.25
1,1,2,2-Tetrachloroethane	—	< 0.3	< 0.3	< 0.3	< 0.3
1,1,2-Trichloroethane	5	< 0.47	< 0.47	< 0.47	< 0.47
1,1-Dichloroethane	—	< 0.34	< 0.34	< 0.34	< 0.34
1,1-Dichloroethylene	7	< 0.32	< 0.32	< 0.32	< 0.32
1,2-Dichloroethane	5	< 0.31	< 0.31	< 0.31	< 0.31
1,2-Dichloropropane	5	< 0.43	< 0.43	< 0.43	< 0.43
2-Butanone (MEK)	—	< 2	< 2	< 2	< 2
2-Hexanone	—	< 2	< 2	< 2	< 2
4-Methyl-2-pentanone (MIBK)	—	< 1	< 1	< 1	< 1
Acetone	—	< 10	< 10	< 10	< 10
Benzene	5	< 0.31	< 0.31	< 0.31	< 0.31
Bromodichloromethane	80 ¹	< 0.24	< 0.24	< 0.24	< 0.24
Bromoform	80 ¹	< 0.41	< 0.41	< 0.41	< 0.41
Carbon Disulfide	—	< 0.53	< 0.53	< 0.53	< 0.53
Carbon Tetrachloride	5	< 0.36	< 0.36	< 0.36	< 0.36
Chlorobenzene	100	< 0.2	< 0.2	< 0.2	< 0.2
Chloroethane	—	< 0.67	< 0.67	< 0.67	< 0.67
Chloroform	80 ¹	< 0.3	0.88 J//	< 0.3	0.61 J//
cis-1,2-Dichloroethylene	70	< 0.28	< 0.28	< 0.28	< 0.28
cis-1,3-Dichloropropene	—	< 0.29	< 0.29	< 0.29	< 0.29
Dibromochloromethane	80 ¹	< 0.28	< 0.28	< 0.28	< 0.28
Ethylbenzene	700	< 0.36	< 0.36	< 0.36	< 0.36
Methyl Bromide	—	< 0.59	< 0.59	< 0.59	< 0.59
Methyl Chloride	—	< 0.5	< 0.5	< 0.5	< 0.5
Methylene Chloride	5	< 2	< 2	< 2	< 2
Styrene	100	< 0.22	< 0.22	< 0.22	< 0.22
Tetrachloroethylene	5	< 0.22	< 0.22	< 0.22	< 0.22
Toluene	1000	1 /B/T	1.1 /B/T	1.2 /B/T	0.78 J/B/T
trans-1,2-Dichloroethylene	100	< 0.22	< 0.22	< 0.22	< 0.22
trans-1,3-Dichloropropene	—	< 0.21	< 0.21	< 0.21	< 0.21
Trichloroethylene	5	< 0.35	< 0.35	< 0.35	< 0.35
Vinyl Chloride	2	< 0.41	< 0.41	< 0.41	< 0.41
Xylene (total)	10000	< 0.72	< 0.72	< 0.72	< 0.72
Total Organic Carbon by Method 5310 (mg/L)					
Total Organic Carbon	—	0.55 J/B/K	0.61 J/B/K	0.44 J/B/K	0.66 J/B/K
Nitrate, Nitrite, Sulfate by Method 9056 (mg/L)					
Nitrogen, Nitrate	10000	1.3	0.28	0.65	< 0.05
Nitrogen, Nitrite	1000	0.34	< 0.05	< 0.05	< 0.05
Sulfate	250000 ²	2.2	4.4	4.1	2.8
Ethane, Ethene, Methane by Method RSK147 (ug/L)					
Ethane	—	< 0.32	0.36 J//	< 0.32	0.6 J//
Ethene	—	< 0.43	< 0.43	< 0.43	< 0.43
Methane	—	0.91	1.4	0.68	3.1

Notes:

µg/L - micrograms per liter (parts per billion)

Table 3
Summary of Field Duplicate Samples
Delavan Spray Technologies Site
Bamberg, South Carolina

Sample ID Lab Sample ID Date Collected	MW-33D FA70346-3 11/25/2019	MW-33D-A FA70346-4 11/25/2019	Relative Percent Difference		
Volatile Organic Compounds by Method 8260B (µg/L)					
1,1,1-Trichloroethane	< 0.25	< 0.25	NC		
1,1,2,2-Tetrachloroethane	< 0.3	< 0.3	NC		
1,1,2-Trichloroethane	< 0.47	< 0.47	NC		
1,1-Dichloroethane	< 0.34	< 0.34	NC		
1,1-Dichloroethylene	< 0.32	< 0.32	NC		
1,2-Dichloroethane	< 0.31	< 0.31	NC		
1,2-Dichloropropane	< 0.43	< 0.43	NC		
2-Butanone (MEK)	< 2	< 2	NC		
2-Hexanone	< 2	< 2	NC		
4-Methyl-2-pentanone (MIBK)	< 1	< 1	NC		
Acetone	< 10	< 10	NC		
Benzene	< 0.31	< 0.31	NC		
Bromodichloromethane	< 0.24	< 0.24	NC		
Bromoform	< 0.41	< 0.41	NC		
Carbon Disulfide	< 0.53	< 0.53	NC		
Carbon Tetrachloride	< 0.36	< 0.36	NC		
Chlorobenzene	< 0.2	< 0.2	NC		
Chloroethane	< 0.67	< 0.67	NC		
Chloroform	< 0.3	< 0.3	NC		
cis-1,2-Dichloroethylene	< 0.28	< 0.28	NC		
cis-1,3-Dichloropropene	< 0.29	< 0.29	NC		
Dibromochloromethane	< 0.28	< 0.28	NC		
Ethylbenzene	< 0.36	< 0.36	NC		
Methyl Bromide	< 0.59	< 0.59	NC		
Methyl Chloride	< 0.5	< 0.5	NC		
Methylene Chloride	< 2	< 2	NC		
Styrene	< 0.22	< 0.22	NC		
Tetrachloroethylene	< 0.22	< 0.22	NC		
Toluene	1	/B/T	0.8	J/B/T	NC
trans-1,2-Dichloroethylene	< 0.22	< 0.22	NC		
trans-1,3-Dichloropropene	< 0.21	< 0.21	NC		
Trichloroethylene	< 0.35	< 0.35	NC		
Vinyl Chloride	< 0.41	< 0.41	NC		
Xylene (total)	< 0.72	< 0.72	NC		

Notes:

-A - Indicates a field duplicate sample.

NC - Not Calculated

µg/L - micrograms per liter (parts per billion)

Bold font and shading indicate the concentration is detected.

See Table 6 for explanation of data qualifiers.

Table 4
Summary of Trip Blank Results
Delavan Spray Technologies Site
Bamberg, South Carolina

Sample ID	TRIP BLANK
Lab Sample ID	FA70346-1
Date Collected	11/25/2019
Volatile Organic Compounds by Method 8260B (µg/L)	
1,1,1-Trichloroethane	< 0.25
1,1,2,2-Tetrachloroethane	< 0.3
1,1,2-Trichloroethane	< 0.47
1,1-Dichloroethane	< 0.34
1,1-Dichloroethylene	< 0.32
1,2-Dichloroethane	< 0.31
1,2-Dichloropropane	< 0.43
2-Butanone (MEK)	< 2
2-Hexanone	< 2
4-Methyl-2-pentanone (MIBK)	< 1
Acetone	< 10
Benzene	< 0.31
Bromodichloromethane	< 0.24
Bromoform	< 0.41
Carbon Disulfide	< 0.53
Carbon Tetrachloride	< 0.36
Chlorobenzene	< 0.2
Chloroethane	< 0.67
Chloroform	< 0.3
cis-1,2-Dichloroethylene	< 0.28
cis-1,3-Dichloropropene	< 0.29
Dibromochloromethane	< 0.28
Ethylbenzene	< 0.36
Methyl Bromide	< 0.59
Methyl Chloride	< 0.5
Methylene Chloride	< 2
Styrene	< 0.22
Tetrachloroethylene	< 0.22
Toluene	1.9
trans-1,2-Dichloroethylene	< 0.22
trans-1,3-Dichloropropene	< 0.21
Trichloroethylene	< 0.35
Vinyl Chloride	< 0.41
Xylene (total)	< 0.72

Notes:

µg/L - micrograms per liter (parts per billion)

Bold font and shading indicate the concentration is detected.

Table 5
Summary of IDW Results
Delavan Spray Technologies Site
Bamberg, South Carolina

Sample ID Lab Sample ID Date Collected	USEPA Toxicity Characteristic	AQUEOUS IDW FA70346-8 11/25/2019		SOIL IDW FA70346-7 11/25/2019
Volatile Organic Compounds by Method 8260B (µg/L)				
1,1,1-Trichloroethane	—	<	0.25	NA
1,1,2,2-Tetrachloroethane	—	<	0.3	NA
1,1,2-Trichloroethane	—	<	0.47	NA
1,1-Dichloroethane	—	<	0.34	NA
1,1-Dichloroethylene	700	<	0.32	< 3.2
1,2-Dichloroethane	500	<	0.31	29.8
1,2-Dichloropropane	—	<	0.43	NA
1,4-Dichlorobenzene	7500		NA	< 2.6
2-Butanone (MEK)	200,000	<	2	< 20
2-Hexanone	—	<	2	NA
4-Methyl-2-pentanone (MIBK)	—	<	1	NA
Acetone	—	<	10	NA
Benzene	500	<	0.31	< 3.1
Bromodichloromethane	—	<	0.24	NA
Bromoform	—	<	0.41	NA
Carbon Disulfide	—	<	0.53	NA
Carbon Tetrachloride	500	<	0.36	< 3.6
Chlorobenzene	100,000	<	0.2	< 2
Chloroethane	—	<	0.67	NA
Chloroform	6,000	0.88	J//	< 3
cis-1,2-Dichloroethylene	—	<	0.28	NA
cis-1,3-Dichloropropene	—	<	0.29	NA
Dibromochloromethane	—	<	0.28	NA
Ethylbenzene	—	<	0.36	NA
Methyl Bromide	—	<	0.59	NA
Methyl Chloride	—	<	0.5	NA
Methylene Chloride	—	<	2	NA
Styrene	—	<	0.22	NA
Tetrachloroethylene	700	<	0.22	< 2.2
Toluene	—	0.81	J/B/T	NA
trans-1,2-Dichloroethylene	—	<	0.22	NA
trans-1,3-Dichloropropene	—	<	0.21	NA
Trichloroethylene	500	<	0.35	< 3.5
Vinyl Chloride	200	<	0.41	< 4.1
Xylene (total)	—	<	0.72	NA
Semivolatile Organic Compounds by Method 8270D (µg/L)				
1,2,4-Trichlorobenzene	—	<	1.1 /M/D	NA
1,2-Dichlorobenzene	—	<	0.5 /M/D	NA
1,3-Dichlorobenzene	—	<	0.5 /M/D	NA
1,4-Dichlorobenzene	7,500	<	0.5 /M/D	< 5
2,2'-Oxybis(1-chloropropane)	—	<	0.75 /M/D	NA
2,4,5-Trichlorophenol	400,000	<	0.73 /J/i	< 7.4
2,4,6-Trichlorophenol	2,000	<	0.74 /J/i	< 7.5
2,4-Dichlorophenol	—	<	0.83 /J/i	NA
2,4-Dimethylphenol	—	<	0.73 /J/i	NA
2,4-Dinitrophenol	—	<	5 /J/i	NA
2,4-Dinitrotoluene	130	<	0.8	< 8.1
2,6-Dinitrotoluene	—	<	0.71	NA
2-Chloronaphthalene	—	<	0.5	NA
2-Chlorophenol	—	<	0.62 /J/i	NA
2-Methylnaphthalene	—	<	0.59	NA
2-Methylphenol	200,000	<	0.55 /J/i	< 5.6
2-Nitroaniline	—	<	1.8	NA
2-Nitrophenol	—	<	0.84 /J/i	NA
3&4-Methylphenol	200,000	<	0.97 /J/i	< 9.8
3,3'-Dichlorobenzidine	—	<	0.64 /M/Dm	NA
3-Nitroaniline	—	<	0.87	NA
4,6-Dinitro-o-cresol	—	<	2 /J/i	NA
4-Bromophenyl Phenyl Ether	—	<	0.84	NA
4-Chloro-3-methyl Phenol	—	<	0.59 /J/i	NA
4-Chloroaniline	—	<	0.62	NA
4-Chlorophenyl Phenyl Ether	—	<	0.53	NA
4-Nitroaniline	—	<	1.2	NA

Table 5
Summary of IDW Results
Delavan Spray Technologies Site
Bamberg, South Carolina

Semivolatile Organic Compounds by Method 8270D (µg/L)				
4-Nitrophenol	—	<	5	/J/i
Acenaphthene	—	<	0.62	NA
Acenaphthylene	—	<	0.63	NA
Anthracene	—	<	0.79	NA
Benzo(a)anthracene	—	<	0.75	NA
Benzo(a)pyrene	—	<	0.78	NA
Benzo(b)fluoranthene	—	<	0.77	NA
Benzo(g,h,i)perylene	—	<	0.81	NA
Benzo(k)fluoranthene	—	<	0.85	NA
Benzoic Acid	—	<	9.9	NA
Benzyl Alcohol	—	<	0.61	/J/i
bis(2-Chloroethoxy)methane	—	<	0.8	/M/D
bis(2-Chloroethyl)ether	—	<	0.72	/M/D
bis(2-Ethylhexyl)phthalate	—	<	0.99	NA
Butyl Benzyl Phthalate	—	<	0.99	NA
Carbazole	—	<	0.59	/J/i
Chrysene	—	<	0.84	NA
Di-n-butyl Phthalate	—	<	0.99	NA
Di-n-octyl Phthalate	—	<	0.99	NA
Dibenzo(a,h)anthracene	—	<	0.8	NA
Dibenzofuran	—	<	0.6	NA
Diethyl Phthalate	—	<	0.99	NA
Dimethyl Phthalate	—	<	0.99	NA
Fluoranthene	—	<	0.55	NA
Fluorene	—	<	0.69	NA
Hexachlorobenzene	130	<	0.69	< 6.9
Hexachlorobutadiene	500	<	0.5	/M/D < 5
Hexachlorocyclopentadiene	—	<	1.8	/M/D NA
Hexachloroethane	3,000	<	1.6	/M/D < 16
Indeno(1,2,3-cd)pyrene	—	<	0.71	NA
Isophorone	—	<	0.77	NA
N-Nitrosodi-n-propylamine	—	<	0.66	/M/D NA
N-Nitrosodiphenylamine	—	<	0.8	NA
Naphthalene	—	<	0.5	/M/D NA
Nitrobenzene	2,000	<	0.92	< 9.3
Pentachlorophenol	100,000	<	5	/J/i < 50
Phenanthrene	—	<	0.86	NA
Phenol	—	<	0.5	/J/i NA
Pyrene	—	<	0.68	NA
Pyridine	5000		NA	< 20
Metals by Method 6010C/7470B (µg/L)				
Antimony	—	<	1	NA
Arsenic	5,000	<	1.3	< 13
Barium	100,000		NA	89 J//
Beryllium	—	<	0.2	NA
Cadmium	1,000	<	0.2	< 2
Chromium	5,000		1.6 J//	< 10
Copper	—	<	1	NA
Lead	5,000	<	1.1	< 11
Nickel	—	<	0.4	NA
Selenium	1,000		3.8 J//	31 J//
Silver	5,000	<	0.7	< 7
Thallium	—	<	1.4	NA
Zinc	—		11.6 J//	NA
Mercury by Method 7470 (µg/L)				
Mercury	200	<	0.03	< 0.5

Notes:

— - No Standard

IDW - Investigation Derived Waste

µg/L - micrograms per liter (parts per billion)

USEPA Toxicity Characteristic - United States Environmental Protection

Agency Maximum Concentration of Contaminants for the Toxicity

Characteristic (40CFR§261.24 Toxicity Characteristic, July 1, 2007).

Bold font and shading indicates the analyte was detected.

See Table 6 for explanation of data qualifiers.

Table 6
Definitions of Data Qualifiers
Delavan Spray Technologies Site
Bamberg, South Carolina

<u>Modifier</u>	<u>Description</u>
<	Indicates not detected at the reporting limit indicated.
"/"	Separates the laboratory added data qualifiers from the validation data qualifiers. The laboratory added data qualifiers precede the first "/." The result qualifiers follow the first "/," and the analysis qualifiers follow the second "/." The result qualifiers are a product of the data validation process, and the analysis qualifiers define the type of QC excursion.

Laboratory Data Qualifiers

<u>Qualifier</u>	<u>Description</u>
J	Estimated concentration above the method detection limit and below the reporting limit.

Result Data Qualifiers

<u>Qualifier</u>	<u>Description</u>
B	The analyte was found in an associated blank as well as in the sample.
J	The quantitation is an estimation.
M	A matrix effect was present.

Analysis Data Qualifiers

<u>Qualifier</u>	<u>Description</u>
D	Percent difference of matrix spike duplicate exceeded established criteria.
i	Surrogate recovery below the lower limit.
K	An analyte detected in the sample at a concentration less than or equal to five times the concentration detected in the associated method blank. Professional judgment must be used to determine if the detect is site-related.
m	Matrix spike recovery below established criteria.
M	Matrix spike recovery above established criteria.
T	Detected in the associated trip blank.

Attachment A
Field Forms

Americas

Daily Tailgate Meeting

S3AM-209-FM5

Instructions: Conduct meeting prior to sending crews to individual tasks. Require attendance of all AECOM employees and subcontractors. Invite personnel from simultaneous operations for coordination purposes. Review scope of work and briefly discuss required and applicable topics. **This meeting is a daily refresher, not a full orientation.** Task-specific discussions associated with Task Hazard Assessment (THA) follow this meeting at the task location immediately before individual task is started.

AECOM Supervisor Name: Leslie Alexander
Phone Number:
AECOM SH&E Rep. Name: M. Rockwell
Phone Number: 919 356 5438
Meeting Leader: M. Rockwell

Date: 11/18/19	Project Name/Location: UTC Delavan	Project Number: 60570866
----------------	------------------------------------	--------------------------

Today's Scope of Work:

Well installation / MOB day

Muster Point Location: front of property	First Aid Kit Location: Vehicles	Fire Extinguisher Location: equipment	Spill Kit Location: rig																								
1. Required Topics <table border="0"> <tr> <td><input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out</td> <td><input checked="" type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable</td> </tr> <tr> <td><input checked="" type="checkbox"/> Required training (incl. task specific) completed and current</td> <td><input checked="" type="checkbox"/> Biological/ Chemical / Electrical Hazards</td> </tr> <tr> <td><input checked="" type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.)</td> <td><input checked="" type="checkbox"/> Ergonomics - Lifting, Body Position</td> </tr> <tr> <td><input checked="" type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting</td> <td><input checked="" type="checkbox"/> Lock Out / Tag Out</td> </tr> <tr> <td><input checked="" type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA</td> <td>Short Service Employees - visual identifier and mentor/oversight assignment</td> </tr> <tr> <td><input checked="" type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition</td> <td><input checked="" type="checkbox"/> Simultaneous/ Neighbouring Operations</td> </tr> <tr> <td><input checked="" type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location</td> <td><input checked="" type="checkbox"/> Slip/ Trip/ Fall Hazards</td> </tr> <tr> <td><input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all</td> <td><input checked="" type="checkbox"/> Specialized PPE Needs</td> </tr> <tr> <td><input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified</td> <td><input checked="" type="checkbox"/> Traffic Control</td> </tr> <tr> <td><input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public</td> <td><input checked="" type="checkbox"/> Waste Management/ Decontamination</td> </tr> <tr> <td><input type="checkbox"/> Required checklists/records available, understood (describe):</td> <td><input checked="" type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress</td> </tr> <tr> <td><input type="checkbox"/> Lessons Learned / SH&E improvements (describe):</td> <td><input checked="" type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.)</td> </tr> </table>				<input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out	<input checked="" type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable	<input checked="" type="checkbox"/> Required training (incl. task specific) completed and current	<input checked="" type="checkbox"/> Biological/ Chemical / Electrical Hazards	<input checked="" type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.)	<input checked="" type="checkbox"/> Ergonomics - Lifting, Body Position	<input checked="" type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting	<input checked="" type="checkbox"/> Lock Out / Tag Out	<input checked="" type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA	Short Service Employees - visual identifier and mentor/oversight assignment	<input checked="" type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition	<input checked="" type="checkbox"/> Simultaneous/ Neighbouring Operations	<input checked="" type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location	<input checked="" type="checkbox"/> Slip/ Trip/ Fall Hazards	<input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all	<input checked="" type="checkbox"/> Specialized PPE Needs	<input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified	<input checked="" type="checkbox"/> Traffic Control	<input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public	<input checked="" type="checkbox"/> Waste Management/ Decontamination	<input type="checkbox"/> Required checklists/records available, understood (describe):	<input checked="" type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress	<input type="checkbox"/> Lessons Learned / SH&E improvements (describe):	<input checked="" type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.)
<input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out	<input checked="" type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable																										
<input checked="" type="checkbox"/> Required training (incl. task specific) completed and current	<input checked="" type="checkbox"/> Biological/ Chemical / Electrical Hazards																										
<input checked="" type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.)	<input checked="" type="checkbox"/> Ergonomics - Lifting, Body Position																										
<input checked="" type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting	<input checked="" type="checkbox"/> Lock Out / Tag Out																										
<input checked="" type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA	Short Service Employees - visual identifier and mentor/oversight assignment																										
<input checked="" type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition	<input checked="" type="checkbox"/> Simultaneous/ Neighbouring Operations																										
<input checked="" type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location	<input checked="" type="checkbox"/> Slip/ Trip/ Fall Hazards																										
<input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all	<input checked="" type="checkbox"/> Specialized PPE Needs																										
<input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified	<input checked="" type="checkbox"/> Traffic Control																										
<input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public	<input checked="" type="checkbox"/> Waste Management/ Decontamination																										
<input type="checkbox"/> Required checklists/records available, understood (describe):	<input checked="" type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress																										
<input type="checkbox"/> Lessons Learned / SH&E improvements (describe):	<input checked="" type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.)																										
2. Discuss if Applicable to Today's Work <table border="0"> <tr> <td><input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach):</td> </tr> <tr> <td><input type="checkbox"/> Other Topics (describe/attach):</td> </tr> <tr> <td><input type="checkbox"/> Client specific requirements (describe):</td> </tr> </table>				<input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach):	<input type="checkbox"/> Other Topics (describe/attach):	<input type="checkbox"/> Client specific requirements (describe):																					
<input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach):																											
<input type="checkbox"/> Other Topics (describe/attach):																											
<input type="checkbox"/> Client specific requirements (describe):																											
3. Daily Check Out by Site Supervisor <table border="0"> <tr> <td>Describe incidents, near misses, observations or Stop Work interventions from today:</td> <td>Describe Lessons Learned/ Improvement Areas from today:</td> </tr> </table>				Describe incidents, near misses, observations or Stop Work interventions from today:	Describe Lessons Learned/ Improvement Areas from today:																						
Describe incidents, near misses, observations or Stop Work interventions from today:	Describe Lessons Learned/ Improvement Areas from today:																										

The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above.

Site Supervisor Name: Mariah Rockwell	Signature:	Date 11/18/19
		Time (at end of day / shift) 1730

Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached.

Daily Tailgate Meeting (S3AM-209-FM5)

Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.
- Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.
- Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
Philip Bradley Cascade	<i>Philip Bradley</i>	In & Fit 9:49 PB	Out & Fit 1730 PB
J. Hall Cascade	<i>J. Hall</i>	In & Fit 9:49 <i>JH</i>	Out & Fit 1730 <i>JH</i>
Chuck Suddeth AECOM	<i>Chuck K Suddeth</i>	In & Fit 9:49 CKS	Out & Fit 1725 CKS
Mike Rodriguez Cascade	<i>Mike Rodriguez</i>	In & Fit 9:49 MMR	Out & Fit 1730 MMR
Mariah Rockwell AECOM	<i>Mariah Rockwell</i>	In & Fit 0949 MR	Out & Fit 1730 MR
Michael Gettins Cascade	<i>Michael Gettins</i>	In & Fit 12:52 MG	Out & Fit 1730 MG
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets: _____

SITE VISITOR / SITE REPRESENTATIVE

Name	Company Name	Arrival Time	Departure Time	Signature

Americas

Task Hazard Assessment

S3AM-209-FM6

Customer	UTC	Permit No.
Location	Bamberg, SC (Delavan)	Job No.
Description of Task	WIFI installation	Date 10/18/19

Basic Task Steps (explain how the task will be carried out)	Hazards (identify all hazards and potential hazards)	Risk (initial)	Precautions (describe how that hazard will be controlled)	Risk (final)	Initials
See THA for Sonic Drilling and MOB/deMOB					

Review and attach to Tailgate Meeting as required. Number and attach additional pages if necessary.

Worker/Visitor acknowledgement and review of this content on back of this document.

Risk Matrix on Reverse

Originator

Marion Rockwell

R-1-A-N-11

Services

Print Name Mariah Rockwell

914 N

Highest Risk Index

Signature

1

111

Signature

THIS FORM IS TO BE KEPT ON JOB SITE

Americas

Daily Tailgate Meeting

S3AM-209-FM5

Instructions: Conduct meeting prior to sending crews to individual tasks. Require attendance of all AECOM employees and subcontractors. Invite personnel from simultaneous operations for coordination purposes. Review scope of work and briefly discuss required and applicable topics. **This meeting is a daily refresher, not a full orientation.** Task-specific discussions associated with Task Hazard Assessment (THA) follow this meeting at the task location immediately before individual task is started.

AECOM Supervisor Name: <i>Leslie Alexander</i>
Phone Number:
AECOM SH&E Rep. Name: <i>M. Rockwell</i>
Phone Number: <i>919 356 5438</i>
Meeting Leader: <i>M. Rockwell</i>

Date: 11/19/19	Project Name/Location: UTC Delavan	Project Number: 605908166
Today's Scope of Work: <i>well installation</i>		

Muster Point Location: front of property	First Aid Kit Location: vehicles	Fire Extinguisher Location: equipment	Spill Kit Location: rig
1. Required Topics		2. Discuss if Applicable to Today's Work	
<input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out <input checked="" type="checkbox"/> Required training (incl. task specific) completed and current <input type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.) <input checked="" type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting <input checked="" type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA <input type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition <input checked="" type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location <input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all <input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified <input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public <input type="checkbox"/> Required checklists/records available, understood (describe): <input type="checkbox"/> Lessons Learned / SH&E improvements (describe):		<input checked="" type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable <input checked="" type="checkbox"/> Biological/ Chemical / Electrical Hazards <input type="checkbox"/> Ergonomics - Lifting, Body Position <input type="checkbox"/> Lock Out/ Tag Out Short Service Employees - visual identifier and mentor/ oversight assignment <input type="checkbox"/> Simultaneous/ Neighbouring Operations <input checked="" type="checkbox"/> Slip/ Trip/ Fall Hazards <input type="checkbox"/> Specialized PPE Needs <input type="checkbox"/> Traffic Control <input type="checkbox"/> Waste Management/ Decontamination <input type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress <input checked="" type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.) <input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach): <input type="checkbox"/> Other Topics (describe/attach): <input type="checkbox"/> Client specific requirements (describe):	
3. Daily Check Out by Site Supervisor			
Describe incidents, near misses, observations or Stop Work interventions from today:		Describe Lessons Learned/ Improvement Areas from today:	

The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above.

Site Supervisor Name <i>Manah Rockwell</i>	Signature <i>M. Rockwell</i>	Date 11/19/19
		Time (at end of day / shift) 1650

Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached.

Daily Tailgate Meeting (S3AM-209-FM5)
Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.
- Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.
- Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
Mariah Rockwell AECOM		In & Fit 0810 MR	Out & Fit 1645 MR
Chuck Suddeth AECOM		In & Fit 0810 CKS	Out & Fit 1130 CKS
J. Hall Cascade		In & Fit 0800 #	Out & Fit 400 #
Michael Grollings Cascade		In & Fit 0800 #	Out & Fit 400 #
Michael Rodriguez Cascade		In & Fit 0800 #	Out & Fit 1645 #
Philip Bradley Cascade		In & Fit 0800	Out & Fit 1645
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets: _____

SITE VISITOR / SITE REPRESENTATIVE

Name	Company Name	Arrival Time	Departure Time	Signature

Americas

Task Hazard Assessment

S3AM-209-FM6

Customer	UTC	Permit No.
Location	Bamberg	Job No. 60590864
Description of Task	well insta!!	Date 11 19 19

Basic Task Steps (explain how the task will be carried out)	Hazards (identify all hazards and potential hazards)	Risk (initial)	Precautions (describe how that hazard will be controlled)	Risk (final)	Initials
See THA for Sonic Drilling					

Review and attach to Tailgate Meeting as required. Number and attach additional pages if necessary.

Worker/Visitor acknowledgement and review of this content on back of this document.

Risk Matrix on Reverse

Originator Mariela Rockwell
Print Name
Supervisor Mariah Rockwell
Print Name

ni Rebeul
Signature
ni Rebeul
Signature

THIS FORM IS TO BE KEPT ON JOB SITE.

WORKER SIGN ON

NAME (Please Print) **SIGNATURE**

I participated in the development and understand the content of this Task Hazard Assessment.

Mariah Rockwell	Marie Rockwell
Chuck Sutherland	Charles K. Sutherland
J. H. H. H.	J. H. H.
Michael Grabings	Michael Grabings
Michael Rockwells	Michael Rockwells
Phillip Bradley	Philip Bradley

VISITOR SIGN ON

NAME (Please Print)

SIGNATURE TIME

TIME

Risk Rating Matrix

Probability	Severity				
	5 - Catastrophic	4 - Critical	3 - Major	2 - Moderate	1 - Minor
5 - Frequent	25	20	15	10	6
4 - Probable	20	16	12	8	4
3 - Occasional	15	12	9	6	3
2 - Remote	10	8	6	4	2
1 - Improbable	6	4	3	2	1

Risk Rating (Probability x Severity)	Risk Acceptance Authority
1 to 4 (Low)	Risk is tolerable, manage at local level
5 to 9 (Medium)	Risk requires approval by Operations Lead/Supervisor & Safety Manager
10 to 25 (High)	Risk requires the approval of the Operations Manager & Safety Director

Severity – Potential Consequences				
	People	Property Damage	Environmental Impact	Public Image/Reputation
Catastrophic	Fatality, Multiple Major Incidents	>\$1M USD Structural collapse	Offsite impact requiring remediation	Government intervention
Critical	Permanent impairment, Long term injury/illness	>\$250K to \$1M USD	Onsite impact requiring remediation	Media intervention
Major	Lost/Restricted Work	> \$10K to \$250K USD	Release at/above reportable limit	Owner intervention
Moderate	Medical Treatment	> \$1K to \$10K USD	Release below reportable limit	Community or local attention
Minor	First Aid	<=\$1K USD	Small chemical release contained onsite	Individual complaint

Probability		
Frequent	Expected to occur during task/activity	9/10
Probable	Likely to occur during task/activity	1/10
Occasional	May occur during the task/activity	1/100
Remote	Unlikely to occur during task/activity	1/1,000
Improbable	Highly unlikely to occur, but possible during task/activity	1/10,000

Emergency Meeting / Assembly Area

front of property

Emergency Contact #

911

911

Emergency Radio Channel

Digitized by srujanika@gmail.com

Area is safe and housekeeping completed at the end of task/shift.

Supervisor (print name) Maricela Parkhill

Signature ni Brelle

Task Hazard Assessment (S3AM-209-FM6)

Task Hazard Assessment (THA)
Revision 5 December 15, 2016

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

2 of 2

Americas

Daily Tailgate Meeting

S3AM-209-FM5

Instructions: Conduct meeting prior to sending crews to individual tasks. Require attendance of all AECOM employees and subcontractors. Invite personnel from simultaneous operations for coordination purposes. Review scope of work and briefly discuss required and applicable topics. **This meeting is a daily refresher, not a full orientation.** Task-specific discussions associated with Task Hazard Assessment (THA) follow this meeting at the task location immediately before individual task is started.

AECOM Supervisor Name: <i>Leslie Alexander</i>
Phone Number:
AECOM SH&E Rep. Name: <i>M. Ruckwell</i>
Phone Number: 919 356 5438
Meeting Leader: <i>M. Ruckwell</i>

Date: 11/20/19	Project Name/Location: UTC Delavan	Project Number: 60590866
Today's Scope of Work: well installation w/ sonic Rig		

Muster Point Location: <i>front of property</i>	First Aid Kit Location: <i>vehicles</i>	Fire Extinguisher Location: <i>equipment</i>	Spill Kit Location: <i>rig</i>
1. Required Topics <ul style="list-style-type: none"> <input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out <input checked="" type="checkbox"/> Required training (incl. task specific) completed and current <input checked="" type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.) <input type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting <input type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA <input type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition <input type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location <input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all <input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified <input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public <input type="checkbox"/> Required checklists/records available, understood (describe): <input type="checkbox"/> Lessons Learned / SH&E improvements (describe): 		2. Discuss if Applicable to Today's Work <ul style="list-style-type: none"> <input checked="" type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable <input checked="" type="checkbox"/> Biological/ Chemical / Electrical Hazards <input checked="" type="checkbox"/> Ergonomics - Lifting, Body Position <input checked="" type="checkbox"/> Lock Out/ Tag Out Short Service Employees - visual identifier and mentor/ oversight assignment <input type="checkbox"/> Simultaneous/ Neighbouring Operations <input checked="" type="checkbox"/> Slip/ Trip/ Fall Hazards <input checked="" type="checkbox"/> Specialized PPE Needs <input type="checkbox"/> Traffic Control <input checked="" type="checkbox"/> Waste Management/ Decontamination <input checked="" type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress <input checked="" type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.) <input type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach): <input type="checkbox"/> Other Topics (describe/attach): <input type="checkbox"/> Client specific requirements (describe): 	

3. Daily Check Out by Site Supervisor <p>Describe incidents, near misses, observations or Stop Work interventions from today:</p>		Describe Lessons Learned/ Improvement Areas from today:
--	--	---

The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above.

Site Supervisor Name <i>Marian Ruckwell</i>	Signature <i>M. Ruckwell</i>	Date 11/20/19
		Time (at end of day / shift) 1640

Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached.

Daily Tailgate Meeting (S3AM-209-FM5)
Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.
- Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.
- Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
Mariah Rockwell AECOM	<i>Mariah Rockwell</i>	In & Fit 0800 MR	Out & Fit 1630 MR
J. Hall Cascade	<i>J. Hall</i>	In & Fit 0800 MR	Out & Fit 1630
Mike Rodriguez Cascade	<i>Mike Rodriguez</i>	In & Fit 0800 MR	Out & Fit 1630 MR
Phillip Bradley Cascade	<i>Phillip Bradley</i>	In & Fit 0800 PB	Out & Fit 1630 PB
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets: _____

SITE VISITOR / SITE REPRESENTATIVE				
Name	Company Name	Arrival Time	Departure Time	Signature

Americas

Task Hazard Assessment

S3AM-209-FM6

Customer	UTC	Permit No.
Location	Bamberg, SC (UTC Delavan)	Job No. 60590866
Description of Task	well installation	Date 11 20 19

Basic Task Steps (explain how the task will be carried out)	Hazards (identify all hazards and potential hazards)	Risk (initial)	Precautions (describe how that hazard will be controlled)	Risk (final)	Initials
See THA for 'sonic Drilling'					

Review and attach to Tailgate Meeting as required. Number and attach additional pages if necessary.

Worker/Visitor acknowledgement and review of this content on back of this document.

Risk Matrix on Reverse

Originator

Manah Rockwell

Print Name

Supervisor

Print Name Manah Rockwell

Print Name

Highest Risk Index

81-2000

Signature

THIS FORM IS TO BE KEPT ON JOB SITE.

WORKER SIGN ON

NAME (Please Print)

SIGNATURE

I participated in the development and understand the content of this Task Hazard Assessment.

Mariah Rockwell

T. Rockwell

JNA/1

Michael Rodrigues

J. Rodrigues

Phillip Bradley

P. Bradley

VISITOR SIGN ON

NAME (Please Print)

SIGNATURE

TIME

Risk Rating Matrix

Probability	Severity				
	5 - Catastrophic	4 - Critical	3 - Major	2 - Moderate	1 - Minor
5 - Frequent	25	20	16	10	6
4 - Probable	20	16	12	8	4
3 - Occasional	15	12	9	6	3
2 - Remote	10	8	6	4	2
1 - Improbable	5	4	3	2	1

Risk Rating (Probability x Severity)		Risk Acceptance Authority
1 to 4 (Low)		Risk is tolerable, manage at local level
5 to 9 (Medium)		Risk requires approval by Operations Lead/Supervisor & Safety Manager
10 to 25 (High)		Risk requires the approval of the Operations Manager & Safety Director

Severity - Potential Consequences				
	People	Property Damage	Environmental Impact	Public Image/Reputation
Catastrophic	Fatality, Multiple Major Incidents	>\$1M USD, Structural collapse	Offsite impact requiring remediation	Government intervention
Critical	Permanent impairment, Long term injury/illness	>\$250K to \$1M USD	Onsite impact requiring remediation	Media intervention
Major	Lost/Restricted Work	> \$10K to \$250K USD	Release at/above reportable limit	Owner intervention
Moderate	Medical Treatment	> \$1K to \$10K USD	Release below reportable limit	Community or local attention
Minor	First Aid	<= \$1K USD	Small chemical release contained onsite	Individual complaint

Probability		
Frequent	Expected to occur during task/activity	9/10
Probable	Likely to occur during task/activity	1/10
Occasional	May occur during the task/activity	1/100
Remote	Unlikely to occur during task/activity	1/1,000
Improbable	Highly unlikely to occur, but possible during task/activity	1/10,000

Emergency Meeting / Assembly Area

front of property

Emergency Contact #

911

Emergency Radio Channel

Area is safe and housekeeping completed at the end of task/shift.

Supervisor

(print name)

Mariah Rockwell

Signature

T. Rockwell

Americas

Daily Tailgate Meeting

S3AM-209-FM5

Instructions: Conduct meeting prior to sending crews to individual tasks. Require attendance of all AECOM employees and subcontractors. Invite personnel from simultaneous operations for coordination purposes. Review scope of work and briefly discuss required and applicable topics. **This meeting is a daily refresher, not a full orientation.** Task-specific discussions associated with Task Hazard Assessment (THA) follow this meeting at the task location immediately before individual task is started.

AECOM Supervisor Name: *LesLee Aleksander*
Phone Number:

AECOM SH&E Rep. Name: *M. Rockwell*
Phone Number: *919-356-5438*

Meeting Leader: *M. Rockwell*

Date: 11/21/19	Project Name/Location: UTC Delaware	Project Number: 60590866
----------------	-------------------------------------	--------------------------

Today's Scope of Work:

Well installation @ MW-33D

Muster Point Location: <i>front of property</i>	First Aid Kit Location: <i>Vehicle</i>	Fire Extinguisher Location: <i>equipment</i>	Spill Kit Location: <i>Rig</i>
<p>1. Required Topics</p> <p><input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out <input checked="" type="checkbox"/> Required training (incl. task specific) completed and current <input type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.) <input type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting <input type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA <input type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition <input type="checkbox"/> Emergency Response Plan -- including muster point, first aid kit, fire extinguisher, clinic/hospital location <input type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all <input type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified <input type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public <input type="checkbox"/> Required checklists/records available, understood (describe): <input type="checkbox"/> Lessons Learned / SH&E improvements (describe):</p>			
<p>2. Discuss if Applicable to Today's Work</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable <input checked="" type="checkbox"/> <input type="checkbox"/> Biological/ Chemical / Electrical Hazards <input checked="" type="checkbox"/> <input type="checkbox"/> Ergonomics - Lifting, Body Position <input type="checkbox"/> <input checked="" type="checkbox"/> Lock Out/ Tag Out Short Service Employees - visual identifier and mentor/ oversight assignment <input type="checkbox"/> <input checked="" type="checkbox"/> Simultaneous/ Neighbouring Operations <input checked="" type="checkbox"/> <input type="checkbox"/> Slip/ Trip/ Fall Hazards <input type="checkbox"/> <input checked="" type="checkbox"/> Specialized PPE Needs <input checked="" type="checkbox"/> <input type="checkbox"/> Traffic Control <input checked="" type="checkbox"/> <input type="checkbox"/> Waste Management/ Decontamination <input checked="" type="checkbox"/> <input type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress <input checked="" type="checkbox"/> <input type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.) <input type="checkbox"/> <input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach): <input type="checkbox"/> <input type="checkbox"/> Other Topics (describe/attach): <input type="checkbox"/> <input type="checkbox"/> Client specific requirements (describe):</p>			
<p>3. Daily Check Out by Site Supervisor</p> <p>Describe incidents, near misses, observations or Stop Work interventions from today:</p>			

Describe Lessons Learned/ Improvement Areas from today:

The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above.

Site Supervisor Name <i>M. Rockwell</i>	Signature <i>M. Rockwell</i>	Date 11/21/19 Time (at end of day / shift)
--	---------------------------------	---

Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached.

Daily Tailgate Meeting (S3AM-209-FM5)
Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.
- Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.
- Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
Manah Rockwell AECOM		In & Fit 0800 MR	Out & Fit 1700 MR
J. Hall Cascade		In & Fit 0800 fit	Out & Fit 1700
Phillip Bradley Cascade		In & Fit 0800 PB	Out & Fit 1700 PB
Mike Rodriguez Cascade		In & Fit 0800 me	Out & Fit 1700 me
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets: _____

SITE VISITOR / SITE REPRESENTATIVE

Name	Company Name	Arrival Time	Departure Time	Signature

WORKER SIGN ON

NAME (Please Print)

SIGNATURE

I participated in the development and understand the content of this Task Hazard Assessment.

Mariah Rockwell *M. Rockwell*

Phillip Bradley *Phillip Bradley*

J. Hall *J. Hall*

Mike Rodriguez *Mike Rodriguez*

VISITOR SIGN ON

NAME (Please Print)

SIGNATURE

TIME

Risk Rating Matrix

Probability	Severity				
	5 - Catastrophic	4 - Critical	3 - Major	2 - Moderate	1 - Minor
5 - Frequent	25	20	15	10	5
4 - Probable	20	16	12	8	4
3 - Occasional	15	12	9	6	3
2 - Remote	10	8	6	4	2
1 - Improbable	5	4	3	2	1

Risk Rating (Probability x Severity)	Risk Acceptance Authority
1 to 4 (Low)	Risk is tolerable, manage at local level
5 to 9 (Medium)	Risk requires approval by Operations Lead/Supervisor & Safety Manager
10 to 25 (High)	Risk requires the approval of the Operations Manager & Safety Director

Severity - Potential Consequences				
	People	Property Damage	Environmental Impact	Public Image/Reputation
Catastrophic	Fatality, Multiple Major Incidents	>\$1M USD, Structural collapse	Offsite impact requiring remediation	Government intervention
Critical	Permanent impairment, Long term injury/illness	>\$250K to \$1M USD	Onsite impact requiring remediation	Media intervention
Major	Lost/Restricted Work	> \$10K to \$250K USD	Release at/above reportable limit	Owner intervention
Moderate	Medical Treatment	> \$1K to \$10K USD	Release below reportable limit	Community or local attention
Minor	First Aid	<=\$1K USD	Small chemical release contained onsite	Individual complaint

Probability		
Frequent	Expected to occur during task/activity	9/10
Probable	Likely to occur during task/activity	1/10
Occasional	May occur during the task/activity	1/100
Remote	Unlikely to occur during task/activity	1/1,000
Improbable	Highly unlikely to occur, but possible during task/activity	1/10,000

Emergency Meeting / Assembly Area

front of property

Emergency Contact #

911

Emergency Radio Channel

Task Hazard Assessment Follow-Up/Review.

First Break

Initial

Lunch Break

Initial

Second Break

Initial

Area is safe and housekeeping completed at the end of task/shift.

Supervisor

(print name)

Mariah Rockwell

Signature

M. Rockwell

Americas

Daily Tailgate Meeting

S3AM-209-FM5

Instructions: Conduct meeting prior to sending crews to individual tasks. Require attendance of all AECOM employees and subcontractors. Invite personnel from simultaneous operations for coordination purposes. Review scope of work and briefly discuss required and applicable topics. This meeting is a daily refresher, not a full orientation. Task-specific discussions associated with Task Hazard Assessment (THA) follow this meeting at the task location immediately before individual task is started.

AECOM Supervisor Name: Leslie Alexander

Phone Number:

AECOM SH&E Rep. Name: M. Reekwell

Phone Number: 919-356-5438

Meeting Leader: M. Reekwell

Date: 11/22/19

Project Name/Location: UTC Delaware

Project Number: 60590846

Today's Scope of Work:

Grout, surface completions, cleanup, deMOB

Muster Point Location: front of property	First Aid Kit Location: Vehicles	Fire Extinguisher Location: equipment	Spill Kit Location: rig
<p>1. Required Topics</p> <p><input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out</p> <p><input checked="" type="checkbox"/> Required training (incl. task specific) completed and current</p> <p><input checked="" type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.)</p> <p><input checked="" type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting</p> <p><input checked="" type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA</p> <p><input checked="" type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition</p> <p><input checked="" type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location</p> <p><input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all</p> <p><input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified</p> <p><input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public</p> <p><input type="checkbox"/> Required checklists/records available, understood (describe):</p> <p><input type="checkbox"/> Lessons Learned / SH&E improvements (describe):</p>			
<p>2. Discuss if Applicable to Today's Work</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Biological/ Chemical / Electrical Hazards</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Ergonomics - Lifting, Body Position</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Lock Out/ Tag Out</p> <p>Short Service Employees - visual identifier and mentor/ oversight assignment</p> <p><input type="checkbox"/> <input checked="" type="checkbox"/> Simultaneous/ Neighbouring Operations</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Slip/ Trip/ Fall Hazards</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Specialized PPE Needs</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Traffic Control</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Waste Management/ Decontamination</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress</p> <p><input checked="" type="checkbox"/> <input type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.)</p> <p><input type="checkbox"/> <input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach):</p> <p><input type="checkbox"/> <input type="checkbox"/> Other Topics (describe/attach):</p> <p><input type="checkbox"/> <input type="checkbox"/> Client specific requirements (describe):</p>			
<p>3. Daily Check Out by Site Supervisor</p> <p>Describe incidents, near misses, observations or Stop Work interventions from today:</p> <p>Describe Lessons Learned/ Improvement Areas from today:</p>			

The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above.

Site Supervisor Name

Marion Reekwell

Signature

Z. Reekwell

Date 11/22/19

Time (at end of day / shift) 1740

Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached.

Daily Tailgate Meeting (S3AM-209-FM5)
Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:

- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.
- Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.
- Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

11-22-2019

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
Marieh Rockwell AECOM	<i>Marieh Rockwell</i>	In & Fit 0745 MR	Out & Fit 1100 MR
Phillip Bradley Cascade	<i>Phillip Bradley</i>	In & Fit 1745 PB	Out & Fit 1745 PB
Mike Rodriguez Cascade	<i>Mike Rodriguez</i>	In & Fit 1745 MR	Out & Fit 1745 MR
Randy Morgan	<i>Randy Morgan</i>	In & Fit RM 1745 RM	Out & Fit 1200 RM
Randy Morgan AECOM	<i>Randy Morgan</i>	In & Fit RM	Out & Fit 1200 RM
Mike Rodriguez Cascade	<i>Mike Rodriguez</i>	In & Fit 8:00 AM	Out & Fit 1200 AM
Phillip Bradley Cascade	<i>Phillip Bradley</i>	In & Fit 8:00 PB	Out & Fit 1200 PB
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets: _____

SITE VISITOR / SITE REPRESENTATIVE

Name	Company Name	Arrival Time	Departure Time	Signature

Americas

Task Hazard Assessment

S3AM-209-FM6

Customer	UTC	Permit No.
Location	Bamberg, SC (Delavan)	Job No. 60590846
Description of Task	demo B, Clean up, surface completion	Date 11-22-19

Review and attach to Tailgate Meeting as required. Number and attach additional pages if necessary.

Worker/Visitor acknowledgement and review of this content on back of this document.

Risk Matrix on Reverse

Originator

Mariah Rockwell

Print Name

Supervisor

Print Name
Mariah Rockwell

Print Name

THIS FORM IS TO BE KEPT ON JOB SITE

Task Hazard Assessment (S3AM-209-FM6)
Revision 5 December 15, 2016

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

WORKER SIGN ON

NAME (Please Print)

SIGNATURE

I participated in the development and understand the content of this Task Hazard Assessment.

Mariah Rockwell *Mariah Rockwell*

Philip Bradley *Philip Bradley*

Michael Rodriguez *Michael Rodriguez*

Risk Rating Matrix

Probability	Severity				
	5 - Catastrophic	4 - Critical	3 - Major	2 - Moderate	1 - Minor
5 - Frequent	25	20	15	10	5
4 - Probable	20	16	12	8	4
3 - Occasional	15	12	9	6	3
2 - Remote	10	8	6	4	2
1 - Improbable	6	4	3	2	1

Risk Rating (Probability x Severity)		Risk Acceptance Authority
1 to 4 (Low)		Risk is tolerable, manage at local level
5 to 9 (Medium)		Risk requires approval by Operations Lead/Supervisor & Safety Manager
10 to 25 (High)		Risk requires the approval of the Operations Manager & Safety Director

Severity - Potential Consequences				
	People	Property Damage	Environmental Impact	Public Image/Reputation
Catastrophic	Fatality/ Multiple Major Incidents	>\$1M USD, Structural collapse	Offsite impact requiring remediation	Government intervention
Critical	Permanent impairment, Long term injury/illness	>\$250K to \$1M USD	Onsite impact requiring remediation	Media intervention
Major	Loss/Restricted Work	> \$10K to \$250K USD	Release at/above reportable limit	Owner intervention
Moderate	Medical Treatment	> \$1K to \$10K USD	Release below reportable limit	Community or local attention
Minor	First Aid	<=\$1K USD	Small chemical release contained onsite	Individual complaint

Probability		
Frequent	Expected to occur during task/activity	9/10
Probable	Likely to occur during task/activity	1/10
Occasional	May occur during the task/activity	1/100
Remote	Unlikely to occur during task/activity	1/1,000
Improbable	Highly unlikely to occur, but possible during task/activity	1/10,000

Emergency Meeting / Assembly Area

Vehicles

Emergency Contact

911

Emergency Radio Channel

VISITOR SIGN ON

NAME (Please Print)

SIGNATURE

TIME

Area is safe and housekeeping completed at the end of task/shift.

Supervisor

(print name)

Mariah Rockwell
Mariah Rockwell

Signature

Americas

Daily Tailgate Meeting

S3AM-209-FM5

Instructions: Conduct meeting prior to sending crews to individual tasks. Require attendance of all AECOM employees and subcontractors. Invite personnel from simultaneous operations for coordination purposes. Review scope of work and briefly discuss required and applicable topics. **This meeting is a daily refresher, not a full orientation.** Task-specific discussions associated with Task Hazard Assessment (THA) follow this meeting at the task location immediately before individual task is started.

AECOM Supervisor Name: *Leslie Alexander*
 Phone Number:
 AECOM SH&E Rep. Name: *Mariah Rockwell*
 Phone Number: *919-356-5428*
 Meeting Leader: *M. Rockwell*

Date: 11/25/19	Project Name/Location: ITC Delaware	Project Number: 60590866
----------------	-------------------------------------	--------------------------

Today's Scope of Work:

slug testing

Muster Point Location: <i>front of property</i>	First Aid Kit Location: <i>Vehicle</i>	Fire Extinguisher Location: <i>Vehicle</i>	Spill Kit Location: <i>Vehicle</i>		
1. Required Topics <ul style="list-style-type: none"> <input checked="" type="checkbox"/> Fitness for Duty requirements, all sign in / sign out <input checked="" type="checkbox"/> Required training (incl. task specific) completed and current <input type="checkbox"/> SH&E Plan onsite - understood, reviewed, signed by all (incl. scope, preplanning hazard assessments / risk registers, controls, procedures, requirements, etc.) <input checked="" type="checkbox"/> Task Hazard Assessments (THAs) are to be reviewed and completed for each task immediately prior to conducting <input checked="" type="checkbox"/> STOP WORK Right & Responsibility- all task changes/changed conditions re-assess with THA <input checked="" type="checkbox"/> Requirement to report to supervisor any injury, illness, damage, near miss, unsafe act / condition <input checked="" type="checkbox"/> Emergency Response Plan – including muster point, first aid kit, fire extinguisher, clinic/hospital location <input checked="" type="checkbox"/> Personal Protective Equipment (PPE) - Required items per hazard assessments in good condition / in use by all <input checked="" type="checkbox"/> Equipment/machinery inspected (documented as required) and in good condition - operators properly trained/certified <input checked="" type="checkbox"/> Work area set up and demarcation/ barricades in place to protect workers, site staff, and the public <input type="checkbox"/> Required checklists/records available, understood (describe): <input type="checkbox"/> Lessons Learned / SH&E improvements (describe): 					
2. Discuss if Applicable to Today's Work <ul style="list-style-type: none"> <input checked="" type="checkbox"/> <input type="checkbox"/> Check <input checked="" type="checkbox"/> as reviewed or mark <input type="checkbox"/> as not applicable <input checked="" type="checkbox"/> <input type="checkbox"/> Biological/ Chemical / Electrical Hazards <input checked="" type="checkbox"/> <input type="checkbox"/> Ergonomics - Lifting, Body Position <input type="checkbox"/> <input checked="" type="checkbox"/> Lock Out / Tag Out <input type="checkbox"/> <input type="checkbox"/> Short Service Employees - visual identifier and mentor/ oversight assignment <input type="checkbox"/> <input checked="" type="checkbox"/> Simultaneous/ Neighbouring Operations <input checked="" type="checkbox"/> <input type="checkbox"/> Slip/ Trip/ Fall Hazards <input checked="" type="checkbox"/> <input type="checkbox"/> Specialized PPE Needs <input checked="" type="checkbox"/> <input type="checkbox"/> Traffic Control <input checked="" type="checkbox"/> <input type="checkbox"/> Waste Management/ Decontamination <input checked="" type="checkbox"/> <input type="checkbox"/> Weather Hazards / Heat Stress / Cold Stress <input type="checkbox"/> <input checked="" type="checkbox"/> Subcontractor Requirements (e.g., JHAs, THAs, procedures, reporting, etc.) <input type="checkbox"/> <input checked="" type="checkbox"/> Work Permits / Plans required (e.g., Fall Protection, Confined Space, Hot Work, Critical Lifts, etc.); in place, understood (identify/attach): <input type="checkbox"/> <input type="checkbox"/> Other Topics (describe/attach): <input checked="" type="checkbox"/> <input type="checkbox"/> Client specific requirements (describe): <i>see HASP</i> 					
3. Daily Check Out by Site Supervisor <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">Describe incidents, near misses, observations or Stop Work interventions from today:</td> <td style="width: 50%;">Describe Lessons Learned/ Improvement Areas from today:</td> </tr> </table>				Describe incidents, near misses, observations or Stop Work interventions from today:	Describe Lessons Learned/ Improvement Areas from today:
Describe incidents, near misses, observations or Stop Work interventions from today:	Describe Lessons Learned/ Improvement Areas from today:				

The site is being left in a safe condition and work crew checked out as fit unless otherwise specified as above.

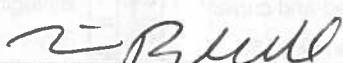
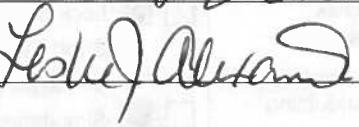
Site Supervisor Name <i>Mariah Rockwell</i>	Signature <i>M. Rockwell</i>	Date 11/25/19
		Time (at end of day / shift) / 745

Worker Acknowledgement / Sign In Sign Out sheets applicable to this meeting are on reverse and, if applicable, attached.

Daily Tailgate Meeting (S3AM-209-FM5)
 Revision 9 January 15, 2019

PRINTED COPIES ARE UNCONTROLLED. CONTROLLED COPY IS AVAILABLE ON COMPANY INTRANET.

All employees:



- STOP WORK if concerned / uncertain about safety / hazard or additional precaution is not recorded on the THA.
- Be alert and communicate any changes in personnel or conditions at the worksite to the supervisor.
- Reassess task, hazards, & mitigations on an ongoing basis; amend the THA if needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): Your signature below means that you understand:

- * The requirement to participate in creating, reviewing, & updating hazard assessments (THA) applicable to your task(s).
- * The hazards & control measures associated with each task you are about to perform.
- * The permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).
- * That no tasks or work is to be performed without a hazard assessment.
- * Your authority & obligation to "Stop Work" intervene, speak up/ listen up.

Your initials (right columns) certify that you arrived & departed fit for duty, & have reported all incidents/near misses; meaning:

- * You are physically and mentally fit for duty and have inspected your required PPE to ensure satisfactory condition.
- * You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.
- * You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or impairment/fatigue issue to the AECOM Supervisor.
- * You signed out as fit / uninjured unless you have otherwise informed the AECOM Supervisor.

Print Name & Company	Signature	Initials & Sign In Time	Initials & Sign Out Time
Manah Rockwell AECOM		In & Fit 1000 MR	Out & Fit 1745 MR
Leslie Alexander AECOM		In & Fit 1000 GA	Out & Fit 1745
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit
		In & Fit	Out & Fit

(Attach additional Site Worker sign-in/out sheets if needed) Identify number of attached sheets: _____

SITE VISITOR / SITE REPRESENTATIVE

Name	Company Name	Arrival Time	Departure Time	Signature

Photo / Flame-Ionization Detector Calibration Certificate

AECOM

Cal Standard

PID	Lot #	Expiration	Post-Cal Reading	Acceptable Range
Isobutylene	1131-248-100	12-2022	100.6	98 - 102

100 ppm

FID	Lot #	Expiration	Post-Cal Reading	Acceptable Range
Methane		11/17		98 - 102

100 ppm

Pump Flow mL/min	Acceptable Range
360	350 - 450

Model MRN1 Rac 3K S/N 592-920986
Lamp 16-6

Project Name VTC

Project # 60590866

Calibrated By

Date of Calibration

11-14-19

Signed:

FIELD INSTRUMENT CALIBRATION LOG

Project Name: WTC Delavan
 Project Number: 1005908666
 Calibrated By: C. Suddeth
 Signature: _____

Model: 3000 SN: 592-920986
 YSI 556 SN: _____

Turbidity Meter Model/SN: _____

Additional Equipment SN: _____

Date: 11/18/19

Operation Notes:

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance.

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature; and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures

Temp. C.	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

Temp C.	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727
18	9.467	23	8.578	28	7.827	33	7.183	38	6.620
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515

YSI 556 Calibration

Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure				mmHg
Temperature (Saturated Air)				C
Temperature (Calibration Solution)				C
DO				mg/L
pH 7				SU
pH 4				SU
pH 10				SU
Specific Conductance				mS/cm
ORP				mV

MicroTPW Calibration

Calibrations performed 0.02, 10, and 1,000 NTU	Calibrations accepted: <input type="checkbox"/> Yes <input type="checkbox"/> No (circle one)
--	---

Calibrated to ambient air and 100 ppm isobutyl/care. Reading = 100.0 ppm

FIELD INSTRUMENT CALIBRATION LOG

Project Name: WTC Delawear
 Project Number: 6003908666
 Calibrated By: M. Rockwell
 Signature: M. Rockwell

Mini Ral 3000
 SN 592-920986
 Turbidity Meter Model/SN: _____
 Additional Equipment SN: _____
 Date: 11/19/19

Operation Notes:

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance.

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature; and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures					
Temp. C.	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

Temp C.	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO
15	10.084	20	9.092	25	8.263	30	7.559
16	9.870	21	8.915	26	8.113	31	7.430
17	9.665	22	8.743	27	7.968	32	7.305
18	9.467	23	8.578	28	7.827	33	7.183
19	9.276	24	8.418	29	7.691	34	7.065

YSI 556 Calibration

Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure				mmHg
Temperature (Saturated Air)				C
Temperature (Calibration Solution)				C
DO				mg/L
pH 7	,			SU
pH 4				SU
pH 10				SU
Specific Conductance				mS/cm
ORP				mV

MicroTPW Calibration

Calibrations performed 0.02, 10, and 1,000 NTU	Calibrations accepted: <input checked="" type="radio"/> Yes <input type="radio"/> No (circle one)
--	--

Calibrated to ambient air and 100 ppm gas. Reading = 100.0 ppm

FIELD INSTRUMENT CALIBRATION LOG

Project Name:
Project Number:
Calibrated By:
Signature:

UTC Delavan
(005908640)
M. Rockwell
11/20/19

Mini Rose 3000
YSI 556 SN: SN 592-9209186
Turbidity Meter Model/SN:
Additional Equipment SN:
Date: 11/20/19

Operation Notes:

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance.

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature; and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures					
Temp. C	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

Temp C.	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO
15	10.084	20	9.092	25	8.263	30	7.559
16	9.870	21	8.915	26	8.113	31	7.430
17	9.665	22	8.743	27	7.968	32	7.305
18	9.467	23	8.578	28	7.827	33	7.183
19	9.276	24	8.418	29	7.691	34	7.065

YSI 556 Calibration

Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure				mmHg
Temperature (Saturated Air)				C
Temperature (Calibration Solution)				C
DO				mg/L
pH 7				SU
pH 4				SU
pH 10				SU
Specific Conductance				mS/cm
ORP				mV

MicroTPW Calibration

Calibrations performed 0.02, 10, and 1,000 NTU	Calibrations accepted: <input checked="" type="radio"/> Yes <input type="radio"/> No (circle one)
--	--

Calibrated w/ ambient air and 1000 ppm gas Reading = 100.0 ppm

FIELD INSTRUMENT CALIBRATION LOG

Project Name: UTC Delaware
 Project Number: 100590866
 Calibrated By: M. Rockwell
 Signature: Mike

Model: Mini Roc 3000 SN: 592-920986

Turbidity Meter Model/SN:

Additional Equipment SN:

Date: 11/21/19

Operation Notes:

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance.

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature; and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures

Temp. C	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2280	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

Temp C.	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO
15	10.084	20	9.092	25	8.263	30	7.559
16	9.870	21	8.915	26	8.113	31	7.430
17	9.665	22	8.743	27	7.968	32	7.305
18	9.467	23	8.578	28	7.827	33	7.183
19	9.276	24	8.418	29	7.691	34	7.065

YSI 556 Calibration

Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure				mmHg
Temperature (Saturated Air)				C
Temperature (Calibration Solution)				C
DO				mg/L
pH 7				SU
pH 4				SU
pH 10				SU
Specific Conductance				mS/cm
ORP				mV

MicroTPW Calibration

Calibrations performed 0.02, 10, and 1,000 NTU	Calibrations accepted: <input checked="" type="radio"/> Yes <input type="radio"/> No (circle one)
--	--

Calibrated w/ ambient air and 100 ppm gas Reading = 100.0 ppm

YSI 556 MPS / Water Quality Calibration Certificate

AECOM

Cal Standard

Temp, LAB, C : 21.0Temp, FIELD, C :

Conductivity

1413 UMHO/CM
@ 25°C

	Lot #	Expiration	Post-Cal, LAB	Post-Cal, FIELD	Acceptable Range
	7903107	3/21	<u>1.28</u>		(+/- .5%)

PH 4.00

@ 25°C

	Lot #	Expiration	Post-Cal, LAB	Post-Cal, FIELD	Acceptable Range
	7903469	4/21	<u>4.00</u>		(+/- 0.2 units)

PH 7.01

@ 25°C

	Lot #	Expiration	Post-Cal, LAB	Post-Cal, FIELD	Acceptable Range
	7904223	4/21	<u>7.13</u>		(+/- 0.2 units)

PH 10.01

@ 25°C

	Lot #	Expiration	Post-Cal, LAB	Post-Cal, FIELD	Acceptable Range
	7904157	4/21	<u>10.01</u>		(+/- 0.2 units)

ORP

ZOBELLS

231.0 MV @ 25°C

	Lot #	Expiration	Post-Cal, LAB	Post-Cal, FIELD	Acceptable Range
	7911075	2/20	<u>237.5</u>		(+/- 20 MV)

Dissolved Oxygen

(Saturated Air)

Post-Cal, LAB	Temp, C	% Saturation	mg/L	Acceptable Range
	<u>22.7</u>	<u>96.0</u>	<u>8.28</u>	
Post-Cal, FIELD				(+/- 2%) / (+/- 2%)

New DO Membrane

 Yes No

Do Cap Color

 Black Blue Yellow

Model

YSI - PRO PLUS

S/N

5489

Cable

N/A

Calibration referenced to the temperature of the calibration standards.

Turbidity

.02 NTU

10 NTU

1000 NTU

	Lot #	Expiration	Post-Cal, LAB	Post-Cal, FIELD
	70801	AUG-19	<u>6.02</u>	
	81037	OCT-20	<u>10.01</u>	
	70803	AUG-19	<u>9.82.5</u>	

Acceptable Range

(.0196 to .0204)

(9.8 to 10.2)

(970 to 1031)

Model

Micro TPW

S/N

201809172

Calibrated By

Eric Olson

Date of Calibration 11-18-19

Project Name

UTC

Project number

60590866

Signed :

Eric Olson

FIELD INSTRUMENT CALIBRATION LOG

Project Name: LTC DeJavon
Project Number: 62518310.02
Calibrated By: Randy Murray
Signature:

3101
YSI 566 SN
Turbidity Meter Model/SN
Additional Equipment SN
Date: 11-20-2019

Operation Notes

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature, and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures

Table 1. Calibration Values At Various Temperatures					
Temp. C	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Table 2 Atmospheric Pressure / Altitude Table					
Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

Temp C	DO	Temp C	DO	Temp C	DO	Temp C.	DO	Temp C.	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727
18	9.467	23	8.578	28	7.827	33	7.183	38	6.620
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515

YSI 556 Calibration

TSI 350 Calibration				
Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure	960.9		1605	mmHg
Temperature (Saturated Air)	21.9	22.1	1605	°C
Temperature (Calibration Solution)	21.8	22.3	1625	°C
DO	9.05	8.67	1605	mg/L
pH 7	7.12	7.07	1613	SU
pH 4	3.99	4.00	1617	SU
pH 10	10.01	10.05	1621	SU
Specific Conductance	1.28	1.28	1609	mS/cm
ORP	232.0	237.5	1625	mV

MicroTPW Calibration

Calibrations performed 0.02, 10, and 1,000 NTU Calibrations accepted Yes No
(circle one)

FIELD INSTRUMENT CALIBRATION LOG

Project Name: _____
Project Number: _____
Calibrated By: _____
Signature: _____

UTC Delon
60590866.02
Key Marg
Fancy Marg

YSI 550 SN: 5707
Turbidity Meter Model/SN: 201809192
Additional Equipment SN:
Date: 11-21-2019

Operation Notes

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature, and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures

Table 1: Calibration Values At Various Temperatures					
Temp. C	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Table 2: Atmospheric Pressure / Altitude Table					
Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

Temp C.	DO	Temp C	DO	Temp C	DO	Temp C.	DO	Temp C	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727
18	9.467	23	8.578	28	7.827	33	7.183	38	6.629
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515

YSI 556 Calibration

Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure	759.9		0830	mmHg
Temperature (Saturated Air)	22.1	22.4	0830	°C
Temperature (Calibration Solution)	21.4	21.6	0850	°C
DO	8.69	8.60	0830	mg/L
pH 7	7.12	7.02	0838	SU
pH 4	3.97	4.00	0842	SU
pH 10	9.99	10.03	0846	SU
Specific Conductance	1.27	1.28	0834	mS/cm
ORP	241.9	232.5	0850	mV

MicroTPW Calibration

Calibrations performed 0, 02, 10, and 1,000 NTU	Calibrations accepted	<input checked="" type="radio"/> Yes	No
(circle one)			

FIELD INSTRUMENT CALIBRATION LOG

Project Name: 60590866.02
Project Number: Ready to use
Calibrated By: Ready to use
Signature: Ready to use

YSI 560-SN 5489
Turbidity Meter Model/SN 201809172
Additional Equipment SN Date 11-22-2019

Operation Notes:

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature, and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values At Various Temperatures					
Temp. C	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table

Table 2. Atmospheric Pressure / Altitude Table					
Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO % Saturation Vs. Temperature

DO Saturation vs Temperature									
Temp C	DO	Temp C	DO	Temp C	DO	Temp C	DO	Temp C	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727
18	9.467	23	8.578	28	7.827	33	7.183	38	6.620
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515

YSI 556 Calibration

PGR 3000 Calibration				
Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure	754.5		07445	mmHg
Temperature (Saturated Air)	21.8	22.0	0745	°C
Temperature (Calibration Solution)	20.0	22.2	0806	°C
DO	8.87	8.67	0745	mg/L
pH 7	7.11	7.02	0754	SU
pH 4	4.04	4.00	0758	SU
pH 10	9.99	10.03	0802	SU
Specific Conductance	1.28	1.28	0750	mS/cm
ORP	236.9	237.5	0806	mV

MicroTPW Calibration

Calibrations performed 0, 02, 10, and 1,000 NTU	Calibrations accepted	Yes	No
		(circle one)	

FIELD INSTRUMENT CALIBRATION LOG

Project Name:
Project Number:
Calibrated By:
Signature:

4TC Delavan
Randy Mory —
Randy Mory

YSI 566 SN: 3401
Turbidity Meter Model/SN: 20180917-2
Additional Equipment SN:
Date: 11-25-2019

Operation Notes:

- 1) Turn meter on in Run mode and allow to warm up 10 to 15 minutes prior to calibration.
- 2) Observe DO % for 2-3 minutes when meter is initially turned on. The unit should display decreasing values until it is stabilized near 100%.
- 3) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance.

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards, not ambient temperature; and be sure the temperature sensor is submerged in the solution.

Table 1: Calibration Values at Various Temperatures					
Temp. C	pH 4	pH 7	pH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = millimeters of mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table						
Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)	Pressure (mmHg)	Altitude feet (asl)
0	760	1126	730	2290	699	
278	752	1413	722	2587	692	
558	745	1703	714	2887	684	
841	737	1995	707	3190	676	

Table 3: DO % Saturation Vs. Temperature										
Temp C	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO	Temp C.	DO	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950	
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837	
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727	
18	9.467	23	8.578	28	7.827	33	7.183	38	6.620	
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515	

YSI 556 Calibration

Parameter	Before Calibration	After Calibration	Time	Units
Barometric Pressure	755.6	753.0	0730	mmHg
Temperature (Saturated Air)	18.0	18.3	0730	°C
Temperature (Calibration Solution)	20.1	20.2	0750	°C
DO	9.99	9.36	0730	mg/L
pH 7	7.04	7.02	0738	SU
pH 4	4.03	4.00	0742	SU
pH 10	10.00	10.03	0746	SU
Specific Conductance	1.28	1.28	0734	mS/cm
ORP	239.4	237.5	0750	mV

MicroTPW Calibration

Calibrations performed 0.02, 10, and 1,000 NTU Calibrations accepted: Yes No
(circle one)

Test Boring Report

BORING NO. MW-33D
PAGE 1 OF 7

PROJECT: UTC Delavan Spray Technologies Site
CLIENT: UTC
CONTRACTOR: Cascade
EQUIPMENT: Geoprobe 8140LC / Sonic Rig

PROJECT NO: 60590866
LOCATION: _____
ELEVATION: _____
DATE START: 11/20/2019
DATE FINISH: _____
DRILLER: M. RODRIGUEZ
PREPARED BY: M. ROCKWELL

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	6"	4"	6"
					SIZE ID			
					HAMMER WT			
					HAMMER FALL			
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
2.5				Run 0-4'	TOPSOIL DRY, DARK BROWN (4/4 7.5YR), MOSTLY ROOT MATERIAL, ORGANIC-RICH, MOSTLY SAND, STRONG ORGANIC ODOR, NON-PLASTIC			
	23.1							
	38.8				POORLY GRADED SAND DRY, BROWNISH YELLOW (6/6 10YR), MOSTLY FINE SAND, SOME MED SAND, TRACE ROOT MATERIAL, NON-PLASTIC			
	42.7							
					NO RECOVERY (NR) from 4-9' bgs			
	5.0							
	7.5							
	10.2				POORLY GRADED SAND AS ABOVE			
10.0				Run 9-14'				
BLOWS/FT.		DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES
0-4	VERY LOOSE		0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE		3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE		5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE		9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE		16-30	VERY STIFF		TRACE	<5%	
			31+	HARD				

Test Boring Report

BORING NO. MW-33D
PAGE 2 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
10.0			Run 9-14'	POORLY GRADED SAND DRY, VERY PALE BROWN (8/3 10YR), MOSTLY FINE SAND, SOME MED SAND, NON-PLASTIC				
				CLAYEY SAND MOIST, YELLOWISH RED (5/8 5YR), MOSTLY FINE SAND, LITTLE CLAY, NON-PLASTIC				
	9.1			CLAY MOIST, BANDING OF REDDISH YELLOW (6/8 5YR) AND PINKISH GRAY (7/2 5YR), MOSTLY CLAY, MORE REDDISH YELLOW AT TOP, GRADES TO MORE GRAY TOWARDS BOTTOM				
	12.5							
	8.4							
	2.3							
	15.0			NO RECOVERY (NR) from 14-25.5' bgs				
17.5			Run 14-19'					
20.0			Run 19-24'					
22.5								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING		
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED		
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ		
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY		
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%			
		31+	HARD					

Test Boring Report

BORING NO. MW-33D
PAGE 3 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
22.5			Run 19- 24'	NO RECOVERY (NR) from 14-25.5' bgs				
25.0			Run 24- 29'	SANDY CLAY MOIST, YELLOWISH RED (5/6 5YR), MOSTLY CLAY, SOME FINE SAND, TRACE MED SAND, NON-PLASTIC				
27.5	1.7		Run 29- 34'	SAND MOIST, LIGHT REDDISH BROWN (6/3 5YR), MOSTLY FINE-MED SAND, TRACE COARSE SAND, TRACE ROOT MATERIAL, NON-PLASTIC				
30.0	0.6			SAME AS ABOVE VERY PALE BROWN (8/3 10YR), MORE FINE SAND				
32.5	0.8			CLAY MOIST, RED (4/8 2.5YR) THEN CHANGES TO WHITE (N8 7.5YR), MOSTLY CLAY, MED PLASTICITY, VERY HARD TO CUT THROUGH				
35.0	1.1		Run 34- 39'	SAND W/LIMESTONE MOIST, PALE YELLOW (7/4 2.5Y), MOSTLY FINE-MED SAND, LIMESTONE CEMENTED SHELL MATRIX FRAGMENTS (MED-COARSE GRAVEL SIZE)				
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-33D
PAGE 4 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
35.0	1.3		Run 34- 39'	SANDY LIMESTONE WET, YELLOW (8/6 10YR), MOSTLY SHELL FRAGMENTS, SOME LIMESTONE CEMENTED SHELL FRAGMENTS UP TO 2" WIDE CORES, FEW FINE SANDS, NON-PLASTIC				
	0.4							
	0.6							
	0.6							
37.5			Run 39- 44'					
40.0			Run 44- 49'					
42.5			Run 44- 49'	SAME AS ABOVE COLOR GRADES LIGHTER WITH DEPTH, VERY PALE BROWN (8/4 10YR)				
45.0			Run 44- 49'					
47.5			Run 44- 49'					

Test Boring Report

BORING NO. MW-33D
PAGE 5 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
47.5			Run 44- 49'	SANDY LIMESTONE WET, WHITE (8/2 10YR), MOSTLY SHELL FRAGMENTS FINE TO COARSE SAND SIZE, SOME LIMESTONE CEMENTED SHELL MATRIX UP TO 2" WIDE, FEW FINE SAND, TRACE CLAY, NON- PLASTIC				
50.0			Run 49- 54'	SAME AS ABOVE CONTINUES TO GET LIGHTER IN COLOR, PALE YELLOW (8/4 2.5Y)				
52.5								
55.0			Run 54- 64'					
57.5								
60								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS			NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD	WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE	NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR	NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR	NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE	<5%		
		31+	HARD					

Test Boring Report

BORING NO. MW-33D
PAGE 6 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
60.0			Run 54- 64'	LIMESTONE WET, WHITE (8/1 10YR), MOSTLY LIMESTONE CEMENTED SHELL MATRIX, LARGER SHELLS (>0.5" DIAMETER)				
62.5	1.1							
65.0	0.6			SAME AS ABOVE WHITE (N8 2.5Y)				
67.5			Run 64- 74'	SANDY LIMESTONE WET, WHITE (N8 2.5Y), MOSTLY MED SAND, MOSTLY SHELL FRAGMENTS, SOME LIMESTONE CEMENTED SAND MATRIX FRAGMENTS GRADES TO FINER-SIZE FRAGMENTS AND FINER SHELL FRAGMENTS				
70.0								
72.5								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD	WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE	NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR	NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR	NO RECOVERY
50+	VERY DENSE	16-30 31+	VERY STIFF HARD		TRACE	<5%		

Test Boring Report

BORING NO. MW-33D
PAGE 7 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
72.5			Run 64- 74'	SANDY LIMESTONE WET, WHITE (N8 2.5Y), MOSTLY FINE-MED SAND, SOME FINE SHELL FRAGMENTS, LITTLE LIMESTONE CEMENTED SAND/SHELL MATRIX FRAGMENTS		
75.0				END OF BORING @ 74'BGS		
77.5						
80.0						
82.5						
85.0						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

PROJECT:	UTC Delavan Spray Technologies Site							
CLIENT:	UTC							
CONTRACTOR:	Cascade							
EQUIPMENT:	Geoprobe 8140LC / Sonic Rig							
GROUND WATER	DEPTH TO:	CASING	SAMPLER	CORE BARREL				
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	6"	4"	6"
					SIZE ID			
					HAMMER WT			
					HAMMER FALL			

BORING NO. MW-34D
PAGE 1 OF 7

PROJECT NO: 60590866
LOCATION: _____
ELEVATION: _____
DATE START: 11/18/2019
DATE FINISH: _____
DRILLER: M. RODRIGUEZ
PREPARED BY: M. ROCKWELL

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
2.5	0.4			TOPSOIL/ORGANIC ROOT MATERIAL				
				SILTY SAND DAMP, VERY PALE BROWN (7/3 10YR), MOSTLY FINE SAND, LITTLE SILT, NON-PLASTIC				
				SANDY SILT DAMP, VERY PALE BROWN (7/4 10YR), MOSTLY SILT, LITTLE FINE SAND, LOW PLASTICITY				
				SILT DAMP, VERY PALE BROWN (7/4 10YR), MOSTLY SILT, FEW TO TRACE FINE SAND, TRACE CLAY, LOW PLASTICITY				
				SAME AS ABOVE ORGANIC ROOT MATERIAL				
				SILT DAMP, VERY PALE BROWN (7/4 10YR), MOSTLY SILT, FEW FINE SAND, TRACE CLAY, MEDIUM PLASTICITY				
				SAME AS ABOVE IRON STAINING AT 7'BGS				
5.0	0.1							
7.5	0.1							
10.0	0.1							
BLOWS/FT.		DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-34D
PAGE 2 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
10.0			Run 9-14'	CLAY W/SAND DAMP, VERY PALE BROWN (7/4 10YR), MOSTLY CLAY, LITTLE FINE SAND, SOME SILT, MED-HIGH PLASTICITY				
	0.5							
	0.3			CLAY W/SAND DAMP, VERY PALE BROWN (7/4 10YR), MOSTLY CLAY, LITTLE FINE MED SAND, TRACE SILT, LOW PLASTICITY				
	0.2							
	1.7			CLAY W/ SAND DAMP, VERY PALE BROWN (7/3 10YR), MOSTLY CLAY, LITTLE FINE SAND, FEW MED SAND, SOME IRON STAINING, LOW PLASTICITY				
	0.2							
	0.1			SANDY CLAY DAMP, VERY PALE BROWN (7/4 10YR), MOSTLY CLAY, SOME FINE SAND, LITTLE MED SAND, LOW PLASTICITY				
	0.1							
20.0	0.1		Run 14-24'	CLAY WET, BROWNISH YELLOW (6/8 10YR), MOSTLY CLAY, FEW SILT, IRON STAINING (WATER), HIGH PLASTICITY				
	0.1							
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING	
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED	
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR NOT READ	
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR NO RECOVERY	
50+	VERY DENSE	16-30	VERY STIFF		TRACE	<5%		
		31+	HARD					

Test Boring Report

BORING NO. MW-34D
PAGE 3 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
22.5	0.2		Run 14- 24'	CLAY W/SAND WET, WHITE (8/1 10YR), MOSTLY CLAY, FEW-LITTLE FINE SAND, LITTLE-FEW SILT, HIGH PLASTICITY, CALCIUM-RICH SAND (LIMESTONE HEAVY WEATHERED)		
	0.2					
	0.1			CLAYEY SAND WET, WHITE (8/1 5YR), MOSTLY FINE SAND, SOME CLAY, TRACE SILT, LOW PLASTICITY		
	0.2			GRAVEL W/SAND WET, WHITE (8/1 5YR) TO PINKISH WHITE (8/2 5YR), MOSTLY GRAVEL (FINE), SOME FINE-MED SAND, TRACE CLAY & SILT		
				SANDY CLAY WET, WHITE (8/1 10YR) W/IRON STAINING, MOSTLY CLAY, SOME FINE SAND, LITTLE SILT, MED PLASTICITY		
	0.1			CLAY WET, BROWNISH YELLOW (6/6 10YR), MOSTLY CLAY, SOME SILT, TRACE FINE SAND, HIGH PLASTICITY		
27.5			Run 24- 34'	CLAY W/SAND WET, LIGHT OLIVE BROWN (5/4 2.5Y), MOSTLY CLAY, LITTLE FINE QUARTZ-RICH SAND (OCCURS IN THIN LENSES), RELIC FOLIATION STRUCTURE, LOW PLASTICITY		
	0.1					
	0.1					
	0.1					
	0.1					
30.0			Run 34- 44'			
32.5						
35.0						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-34D
PAGE 4 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
35.0		Run 34-44'	35.0' - 47.5'	CLAY W/SAND WET, LIGHT OLIVE BROWN (5/4 2.5Y), MOSTLY CLAY, LITTLE FINE QUARTZ-RICH SAND (OCCURS IN THIN LENSES), RELIC FOLIATION STRUCTURE, LOW PLASTICITY		
	0.1			SAND WET, LIGHT GRAY (N7 2.5Y), MOSTLY FINE-MED SAND, TRACE CLAY, TRACE SILT, NON-PLASTIC		
	0.1			CLAYEY SAND WET, REDDISH YELLOW (6/8 7.5YR), MOSTLY CLAY, SOME FINE SAND, TRACE SILT, TRACE MED SAND, RELIC FOLIATION?, LOW-MED PLASTICITY		
	0.1			CLAYEY SAND WET, OLIVE YELLOW (6/6 2.5Y), MOSTLY MED-FINE SAND, SOME CLAY, LIMESTONE FRAGMENTS (<2"), MOST AVG SIZE IS FINE GRAVELS OF LIMESTONE (SHELLS ARE DIAGNOSTIC FEATURE)		
	0.2				-LIMESTONE-	
	0.2					
	0.4			SAME AS ABOVE PALE YELLOW (7/4 2.5Y), MORE SOLID FRAGMENTS (STILL WEATHERED)		
	0.1					
	0.2					
	0.2					
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-34D
PAGE 5 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
47.5			Run 44- 54'	LIMESTONE WET, PALE YELLOW (8/4 2.5Y), MOSTLY FINE SAND, SOME CLAY, LIMESTONE FRAGMENTS FINE GRAVEL SIZE, LITTLE SHELL FRAGMENTS, LOW PLASTICITY		
	0.1					
	0.3					
52.5			Run 54- 64'			
	0.2					
	0.1					
	0.1					
55.0				SAME AS ABOVE VERY PALE BROWN (8/3 10YR)		
	0.2					
	0.1					
57.5						
	0.2					
	0.1					
60						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-34D
PAGE 6 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
60.0	0.1		Run 54- 64'	LIMESTONE WET, VERY PALE BROWN (8/3 10YR), MOSTLY FINE SAND, SOME CLAY, MOSTLY LIMESTONE AND SHELL FRAGMENTS, LOW PLASTICITY		
	0.1					
			Run 64- 74'			
	0.1					
	0.1					
62.5						
65.0						
	0.1					
67.5	0.2					
70.0	0.2			SAME AS ABOVE VERY PALE BROWN (7/3 10YR)		
	0.2					
72.5				SAME AS ABOVE WHITE (8/1 10YR)		
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-34D
PAGE 7 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
72.5			Run 64- 74'	LIMESTONE WET, WHITE (8/1 10YR), MOSTLY FINE SAND, SOME CLAY, MOSTLY LIMESTONE AND SHELL FRAGMENTS, LOW PLASTICITY		
	0.2			SAME AS ABOVE LIGHT GRAY (7/2 10YR)		
75.0	0.3		Run 74- 79'			
	0.2					
77.5			Run 79- 84'	SAND WET, LIGHT GRAY (7/2 10YR), MOSTLY FINE-MED SAND, LITTLE CLAY, TRACE SHELL FRAGMENTS, NON-PLASTIC, TRACE LIMESTONE		
	0.2					
80.0	0.2					
	0.2					
82.5						
	0.2					
	0.4					
85.0				BENTONITE FROM 81-84'BGS		
				END OF BORING @ 84'BGS		
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-35D
PAGE 1 OF 7

PROJECT: UTC Delavan Spray Technologies Site
CLIENT: UTC
CONTRACTOR: Cascade
EQUIPMENT: Geoprobe 8140LC / Sonic Rig

PROJECT NO: 60590866
LOCATION: _____
ELEVATION: _____
DATE START: 11/19/2019
DATE FINISH: _____
DRILLER: M. RODRIGUEZ
PREPARED BY: M. ROCKWELL

GROUND WATER		DEPTH TO:		CASING		SAMPLER	CORE BARREL	
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	6"	4"	6"
					SIZE ID			
					HAMMER WT			
					HAMMER FALL			
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
2.5				Run 0-4'	TOPSOIL DRY, DARK REDDISH GRAY (4/2 5YR), MOSTLY MED SAND, LITTLE ROOT MATERIAL, ORGANIC ODOR, NON-PLASTIC			
	12.9							
	6.4							
	1.6							
	5.0				SILTY SAND DRY, REDDISH GRAY (5/2 5YR), MOSTLY FINE TO COARSE SAND, LITTLE SILT, NON-PLASTIC			
	1.7							
7.5				Run 4-9'				
	6.3				SAME AS ABOVE VERY DARK GRAY (3/1 5YR)			
	10.0				SANDY CLAY DRY, BANDING OF REDDISH YELLOW (6/8 7.5YR) AND PINKISH WHITE (8/2 7.5YR), MOSTLY CLAY, SOME FINE SAND, LOW-MED PLASTICITY, IRON STAINING = REDDISH YELLOW			
BLOWS/FT.		DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES
0-4	VERY LOOSE		0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE		3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE		5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE		9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE		16-30	VERY STIFF		TRACE	<5%	
			31+	HARD				

Test Boring Report

BORING NO. MW-35D
PAGE 2 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
10.0				SANDY CLAY DRY TO MOIST, REDDISH YELLOW (6/8 7.5YR) BANDING IN PINKISH WHITE (8/2 7.5YR), MOSTLY CLAY, SOME FINE SAND, TRACE SILT, LOW PLASTICITY (IRON STAINING)		
	9.6		Run 9-14'			
12.5						
	44.5			NO RECOVERY (NR) FROM 14-21'BGS		
15.0			Run 14-19'			
17.5						
20.0			Run 19-24'			
	1.6			POORLY GRADED SAND WET, LIGHT BROWNISH GRAY (6/2 10YR), MOSTLY MED-COARSE SAND, LITTLE FINE SAND, WELL-ROUNDED GRAINS, NON-PLASTIC		
22.5						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-35D
PAGE 3 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS					
22.5	6.8		Run 19- 24'	POORLY GRADED SAND WET, LIGHT BROWNISH GRAY (6/2 10YR), MOSTLY MED-COARSE SAND, LITTLE FINE SAND, WELL-ROUNDED GRAINS, NON-PLASTIC					
	3.4								
			Run 24- 29'						
	1.2								
	1.0			FAT CLAY WET, YELLOWISH RED (5/6 5YR) AND LIGHT RED (6/8 2.5YR), MOSTLY FAT CLAY, TRACE SILT, RELIC FOLIATION, SOME POCKETS OF HIGHLY WEATHERED (LIMESTONE) SAPROLITE, TRACE SHELL FRAGMENTS					
27.5	0.6		Run 29- 34'	CLAYEY SAND / LIMESTONE WET, LIGHT YELLOWISH BROWN (6/4 10YR), MOSTLY FINE-MED SAND, SOME CLAY, SOME SHELL FRAGMENTS, CEMENTED LIMESTONE MATRIX					
	0.8								
			Run 34- 39'						
	35.0								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD	WHILE DRILLING	
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE	NOT ENCOUNTERED	
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR	NOT READ	
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR	NO RECOVERY	
50+	VERY DENSE	16-30	VERY STIFF		TRACE	<5%			
		31+	HARD						

Test Boring Report

BORING NO. MW-35D
PAGE 4 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
35.0				CLAYEY SAND / LIMESTONE WET, LIGHT YELLOWISH BROWN (6/4 10YR), MOSTLY FINE-MED SAND, SOME CLAY, SOME SHELL FRAGMENTS, CEMENTED LIMESTONE MATRIX				
				Run 34-39'				
	0.7							
37.5								
	1.6			SAME AS ABOVE GRADES TO COARSER SAND, LESS CLAY W/DEPTH				
40.0	1.5							
				Run 39-44'				
42.5	4.0							
	6.8			SAME AS ABOVE TRACE CLAY, MOSTLY COARSE SAND, YELLOW (7/6 10YR)				
45.0								
				Run 44-49'				
	3.2							
47.5								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING	
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED	
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR NOT READ	
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR NO RECOVERY	
50+	VERY DENSE	16-30	VERY STIFF		TRACE	<5%		
		31+	HARD					

Test Boring Report

BORING NO. MW-35D
PAGE 5 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS					
47.5			Run 44- 49'	SANDY LIMESTONE WET, YELLOW (7/6 10YR), MOSTLY COARSE SAND, SOME LIMESTONE CEMENTED FRAGMENTS W/LARGE SHELLS (0.5-2"), LITTLE FINE-MED SAND					
	1.8								
50.0			Run 49- 54'						
	2.5			SAME AS ABOVE GRADING TO LIGHTER COLOR, PINKISH WHITE (8/2 7.5YR)					
52.5	1.9								
	3.0								
55.0			Run 54- 59'						
57.5	1.6			SAME AS ABOVE VERY PALE BROWN (8/3 10YR)					
	0.8								
60			Run 59- 64'						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY	50-100%	WD	WHILE DRILLING	
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME	30-45%	NE	NOT ENCOUNTERED	
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE	15-25%	UR	NOT READ	
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW	5-10%	NR	NO RECOVERY	
50+	VERY DENSE	16-30	VERY STIFF		TRACE	<5%			
		31+	HARD						

Test Boring Report

BORING NO. MW-35D
PAGE 6 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
60.0				SANDY LIMESTONE WET, WHITE (8/0 7.5YR), MOSTLY LIMESTONE CEMENTED MATRIX, SOME MED-COARSE SAND, SOME COARSE-SAND-SIZE SHELL FRAGMENTS, TRACE CLAY		
	2.1					
62.5	1.3		Run 59- 64'			
65.0	0.9					
67.5	0.6		Run 64- 69'	SAME AS ABOVE SMALLER SHELL FRAGMENTS, BECOMING MORE LIMESTONE CEMENTED SAND/SHELL MATRIX		
70.0	1.8					
72.5	2.0		Run 69- 74'			
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-35D
PAGE 7 OF 7

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
72.5			Run 69- 74'	LIMESTONE WET, WHITE (8/0 7.5YR), MOSTLY LIMESTONE CEMENTED SAND/ SHELL MATRIX, SOME MED SAND, TRACE SILT, NON-PLASTIC		
	1.2			END OF BORING @ 74'BGS		
75.0						
77.5						
80.0						
82.5						
85.0						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

PROJECT: UTC Delavan Spray Technologies Site
CLIENT: UTC
CONTRACTOR: Cascade
EQUIPMENT: Geoprobe 8140LC / Sonic Rig

GROUND WATER		DEPTH TO:			CASING		SAMPLER	CORE BARREL
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	6"	4"	6"
					SIZE ID			
					HAMMER WT			
					HAMMER FALL			

BORING NO. MW-36D
PAGE 1 OF 6

PROJECT NO: 60590866
LOCATION: _____
ELEVATION: _____
DATE START: 11/21/2019
DATE FINISH: _____
DRILLER: M. RODRIGUEZ
PREPARED BY: M. ROCKWELL

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
2.5	43.1		Run 0-4'	TOPSOIL/GRASS/ROOT MATERIAL		
				SAND WET, DARK REDDISH GRAY (3/1 10R), MOSTLY COARSE SAND, SOME FINE-MED SAND, LITTLE ROOT MATERIAL, STRONG ORGANIC ODOR, NON-PLASTIC		
	26.8		Run 4-9'	SAND WET, DARK GRAY (4/0 2.5YR), MOSTLY COARSE SAND, SOME MED-FINE SAND, STRONG ORGANIC ODOR, NON-PLASTIC		
				GRADES FINER		
5.0	16.3			SILTY SAND WET, GRAY (5/0 2.5YR), MOSTLY FINE-MED SAND, LITTLE SILT, NON-PLASTIC		
7.5	4.8		Run 9-14'	CLAY WET, LIGHT OLIVE GRAY (6/2 5Y), MOSTLY CLAY, HIGH PLASTICITY		
				SAND WET, YELLOW (7/8 10YR), MOSTLY COARSE SAND, SOME FINE-MED SAND, LITTLE LIMESTONE CEMENTED SHELL MATRIX FRAGMENTS, TRACE SILT, NON-PLASTIC		
10.0	1.6					

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-36D
PAGE 2 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
10.0			Run 9-14'	SANDY LIMESTONE WET, YELLOW (7/8 10YR), MOSTLY LIMESTONE CEMENTED SHELL MATRIX FRAGMENTS (~1-2"), SOME FINE-MED SAND, SOME FINE-MED GRAVEL-SIZED SHELL FRAGMENTS			
	0.8						
	12.5			SAME AS ABOVE YELLOW (8/6 10YR)			
				NO RECOVERY (NR) FROM 14-19'BGS			
15.0			Run 14-19'				
	17.5						
20.0	0.9		Run 19-24'	SAME AS ABOVE LIGHT GRAY (7/2 2.5Y)			
	0.6						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING	
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED	
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ	
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY	
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%		
		31+	HARD				

Test Boring Report

BORING NO. MW-36D
PAGE 3 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
22.5			Run 19- 24'	SANDY LIMESTONE WET, LIGHT GRAY (7/2 2.5Y), MOSTLY LIMESTONE CEMENTED SHELL/SAND MATRIX, SOME FINE SAND, LITTLE CLAY, NON- PLASTIC		
	0.7			SHELL FRAGMENTS DECREASING IN SIZE		
25.0			Run 24- 29'			
	1.1					
27.5						
	0.9					
30.0			Run 29- 34'	SAME AS ABOVE VERY PALE BROWN (7/4 10YR)		
	0.6					
32.5						
	1.7					
35.0			Run 34- 39'	SAME AS ABOVE WHITE (8/2 2.5Y)		
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-36D
PAGE 4 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
35.0			Run 34- 39'	SANDY LIMESTONE WET, WHITE (8/2 10YR), MOSTLY LIMESTONE CEMENTED SHELL/SAND MATRIX (FINER THAN PREVIOUS DESCRIPTION~COARSE SAND SIZE), SOME FINE SAND/SHELL FRAGMENTS, TRACE CLAY, NON-PLASTIC		
	1.1					
	0.6					
				SANDYLIMESTONE / SHELL FRAGMENTS WET, VERY PALE BROWN (8/4 10YR), MOSTLY MED SAND SIZE SHELL FRAGMENTS, NON-PLASTIC		
40.0			Run 39- 44'	LIMESTONE WET, WHITE (8/1 10YR), MOSTLY LIMESTONE SHELL CEMENTED MATRIX, FINER SIZE SHELLS THAN PREVIOUS 'SANDY LIMESTONE'		
	0.8					
	0.2					
	0.7			SAME AS ABOVE WHITE (8/1 2.5Y), GETTING LIGHTER IN COLOR W/DEPTH		
47.5			Run 44- 49'			
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-36D
PAGE 5 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
47.5			Run 44- 49'	LIMESTONE WET, WHITE (8/1 2.5Y), MOSTLY LIMESTONE CEMENTED SHELL MATRIX, FINE-SAND TO COARSE-SAND-SIZED SHELLS, 1-2" CUTTINGS, NON-PLASTIC				
	0.4							
50.0			Run 49- 54'					
	1.3							
52.5								
	0.9		Run 54- 59'					
55.0								
	0.7							
57.5								
60			Run 59- 64'					
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING		
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED		
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ		
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY		
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%			
		31+	HARD					

Test Boring Report

BORING NO. MW-36D
PAGE 6 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
60.0	0.1		Run 59- 64'	LIMESTONE WET, WHITE (8/1 2.5Y), MOSTLY LIMESTONE CEMENTED SHELL MATRIX, FINE-SAND TO COARSE-SAND-SIZED SHELLS, 1-2" CUTTINGS, NON-PLASTIC		
	0.4					
				END OF BORING @ 64'BGS		
65.0						
67.5						
70.0						
72.5						
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

TYPE III GROUNDWATER MONITORING WELL INSTALLATION DETAIL

Project Name:	Delavan Spray Technologies	Drilling Co:	Cascade	Well Number:	MW-33D
Location:	Bamberg, South Carolina	Driller:	M. Rodriguez	Job Number:	60590866
Client:	United Technology Corporation	Drilling Method:	Sonic	Date Completed:	11/20/2019
Geologist:	Mariah Rockwell	Static Water Level	b.TOC	Survey Datum:	State Plan NAVD 88

4-inch square locking protective casing **Top Of Casing** Elevation **144.79** ft msl **2.65** ft Stickup

Grass, Asphalt/Concrete **Land Surface** Elevation **142.14** ft msl

Concrete Surface Pad (2 ft x 2 ft x 6 in)

COMMENTS

Approx Depth to Limestone
30 feet

Diameter of Borehole (nominal) **6** in

Bentonite/Cement Grout From **0.0** ft to **57.0** ft

Bentonite Pellet Seal Type: **Holeplug** From **57.0** ft to **61.0** ft

Top of Screen Depth **64.09** ft
Screen Type: **SCH-40 PVC**
Screen Slot Size: **0.010-in** ID **2** in
Screen Length: **9.93** ft

Filter Sand for Screen Sand Type: **No.1** From **61.0** ft to **74.0** ft

Diameter of Borehole (nominal) **4** in

Plug = 0.375"

Bottom of Well Depth **74.39** ft

Bottom of Boring (estimated) Depth **74** ft

Total Depth of Well, below Top of Casing Depth **77.04** ft

Note:
Drawing Not to Scale
All Depths are Referenced to Ground Surface except where noted

TYPE III GROUNDWATER MONITORING WELL INSTALLATION DETAIL

Project Name:	Delavan Spray Technologies	Drilling Co:	Cascade	Well Number:	MW-34D
Location:	Bamberg, South Carolina	Driller:	M. Rodriguez	Job Number:	60590866
Client:	United Technology Corporation	Drilling Method:	Sonic	Date Completed:	11/19/2019
Geologist:	Mariah Rockwell	Static Water Level	b.TOC	Survey Datum:	State Plan NAVD 88

4-inch square locking protective casing **Top Of Casing** Elevation **145.71** ft **3.01** ft
Stickup

Grass, Asphalt/Concrete **Land Surface** Elevation **142.70** ft

Concrete Surface Pad
(2 ft x 2 ft x 6 in)

COMMENTS

Approx Depth to Limestone
30 feet

Diameter of Borehole (nominal) **6** in

Bentonite/Cement Grout From **0.0** ft to **64.0** ft

Bentonite Pellet Seal Type: **Holeplug** From **64.0** ft to **67.0** ft

Top of Screen Depth **69.44** ft
Screen Type: **SCH-40 PVC**
Screen Slot Size: **0.010-in** ID **2** in
Screen Length: **9.96** ft

Filter Sand for Screen Sand Type: **No.1** From **67.0** ft to **81.0** ft

Diameter of Borehole (nominal) **4** in

Plug = 0.375"

Bottom of Well Depth **79.78** ft
(Note - 3 ft of bentonite installed from 81-84 ft)

Bottom of Boring (estimated) Depth **84.00** ft

Total Depth of Well, b. Top of Casing Depth **82.79** ft

Note:
Drawing Not to Scale
All Depths are Referenced to Ground Surface except where noted

TYPE III GROUNDWATER MONITORING WELL INSTALLATION DETAIL

Project Name:	Delavan Spray Technologies	Drilling Co:	Cascade	Well Number:	MW-35D
Location:	Bamberg, South Carolina	Driller:	M. Rodriguez	Job Number:	60590866
Client:	United Technology Corporation	Drilling Method:	Sonic	Date Completed:	11/19/2019
Geologist:	Mariah Rockwell	Static Water Level	b.TOC	Survey Datum:	State Plan NAVD 88

4-inch square locking protective casing **Top Of Casing** Elevation **141.95** ft **2.69** ft
Stickup

Grass, Asphalt/Concrete **Land Surface** Elevation **139.26** ft

Concrete Surface Pad
(2 ft x 2 ft x 6 in)

COMMENTS

Approx Depth to Limestone
30 feet

Diameter of Borehole (nominal) **6** in

Bentonite/Cement Grout From **0.0** ft to **56.0** ft

Bentonite Pellet Seal
Type: **Holeplug** From **56.0** ft to **62.0** ft

Top of Screen Depth **64.25** ft
Screen Type: **SCH-40 PVC**
Screen Slot Size: **0.010-in** ID **2** in
Screen Length: **9.93** ft

Filter Sand for Screen
Sand Type: **No.1** From **62.0** ft to **74.0** ft

Diameter of Borehole (nominal) **4** in

Plug = 0.375"

Bottom of Well Depth **74.56** ft

Bottom of Boring (estimated) Depth **74.00** ft

Total Depth of Well, b. Top of Casing Depth **77.25** ft

Note:
Drawing Not to Scale
All Depths are Referenced to Ground Surface except where noted

TYPE III GROUNDWATER MONITORING WELL INSTALLATION DETAIL

Project Name:	Delavan Spray Technologies	Drilling Co:	Cascade	Well Number:	MW-36D
Location:	Bamberg, South Carolina	Driller:	M. Rodriguez	Job Number:	60590866
Client:	United Technology Corporation	Drilling Method:	Sonic	Date Completed:	11/21/2019
Geologist:	Mariah Rockwell	Static Water Level	b.TOC	Survey Datum:	State Plan NAVD 88

4-inch square locking protective casing **Top Of Casing** Elevation **130.93** ft **2.37** ft
Stickup

Grass, Asphalt/Concrete **Land Surface** Elevation **128.57** ft

Concrete Surface Pad
(2 ft x 2 ft x 6 in)

COMMENTS

Approx Depth to Limestone
30 feet

Diameter of Borehole (nominal) **6** in

Bentonite/Cement Grout From **0.0** ft to **47.0** ft

Bentonite Pellet Seal Type: **Holeplug** From **47.0** ft to **52.0** ft

Top of Screen Depth **53.99** ft
Screen Type: **SCH-40 PVC**
Screen Slot Size: **0.010-in** ID **2** in
Screen Length: **10** ft

Filter Sand for Screen Sand Type: **No.1** From **52.0** ft to **64.0** ft

Diameter of Borehole (nominal) **4** in

Plug = 0.375"

Bottom of Well Depth **64.29** ft

Bottom of Boring (estimated) Depth **64.00** ft

Total Depth of Well, b. Top of Casing Depth **66.66** ft

Note:
Drawing Not to Scale
All Depths are Referenced to Ground Surface except where noted

Monitoring Well Development Log

Page 1 of 1

Date Started (yr/mo/day) 19-11-22 Date Completed (yr/mo/day) 19-11-22
Field Personnel Randy Morye
Site Name UTC Delavan Spray Technologies Site
Job # 60314964.16 60590866.02
Well ID # MW-330
Upgradient Downgradient
Weather Conditions Cloudy 15°C Partly
Air Temperature 40° 40° °F

Total Well Depth (TWD) = 76.35 TOC 1/100 ft
Depth to Ground Water (DGW) = 13.27 TOC 1/100 ft
Length of Water Column (LWC) = TWD - DGW = 63.08 1/100 ft
1 Casing Volume (OCV) = LWC x 0.16 = 10.28 gallons
5 Casing Volumes = 51.40 gallons
Method of Well Development Surging
Equipment Used Groundwater pump
Total Volume of Water Removed _____ gallons

COMMENTS/OBSERVATIONS:

104 - X6Pm
71 - 16Pm

Monitoring Well Development Log

Page 1 of 1

Date Started (yr/mo/day)	<u>2019-11-21</u>	Date Completed (yr/mo/day)	<u>2019-11-21</u>
Field Personnel	<u>Randy Morgan</u>		
Site Name	UTC Delavan Spray Technologies Site		
Job #	<u>60314964.16 60590866.02</u>		
Well ID #	<u>MW-340</u>		
Upgradient	<input checked="" type="checkbox"/>	Downdgradient	<input type="checkbox"/>
Weather Conditions	<u>Clear/Sunny</u>		
Air Temperature	<u>40's</u>		

Total Well Depth (TWD) =	<u>83.63</u>	<u>TDC</u>	1/100 ft
Depth to Ground Water (DGW) =	<u>14.38</u>	<u>TDC</u>	1/100 ft
Length of Water Column (LWC) = TWD - DGW =	<u>69.25</u>		1/100 ft
1 Casing Volume (OCV) = LWC x <u>0.16</u> =	<u>11.28</u>		gallons
5 Casing Volumes =	<u>56.43</u>		gallons
Method of Well Development	<u>Grav/Grav Pump - Surging</u>		
Equipment Used	<u>Grav/Grav Pump</u>		
Total Volume of Water Removed	<u>105</u>		gallons

Date/Time	Discharge Rate (ml/min)	Volume Purged (gallons)	Water Temp. (°C)	Specific Conductivity (ms/cm)	DO (mg/L)	pH	ORP (mV)	Turbidity/Color	Sand Content (%)	Remarks
<u>11-21-2019</u>										<u>WL</u>
<u>0910</u>	<u>26Pm</u>	<u>2</u>	<u>18.6</u>	<u>0.291</u>	<u>5.96</u>	<u>11.12</u>	<u>73.3</u>	<u>71000 Gray</u>	<u>0</u>	<u>Surged</u>
<u>0923</u>	<u>2</u>	<u>25</u>	<u>19.0</u>	<u>0.309</u>	<u>5.11</u>	<u>11.22</u>	<u>77.6</u>	<u>71000 Gray</u>	<u>0</u>	<u>Surged</u>
<u>0933</u>	<u>2</u>	<u>45</u>	<u>19.2</u>	<u>0.214</u>	<u>5.09</u>	<u>8.34</u>	<u>+24.5</u>	<u>4483 Gray</u>	<u>0</u>	<u>Surged</u>
<u>0938</u>	<u>2</u>	<u>55</u>	<u>19.3</u>	<u>0.218</u>	<u>5.05</u>	<u>8.13</u>	<u>+51.4</u>	<u>171.74 Gray</u>	<u>0</u>	
<u>0948</u>	<u>2</u>	<u>75</u>	<u>19.5</u>	<u>0.222</u>	<u>4.74</u>	<u>7.99</u>	<u>+48.1</u>	<u>27.90 clear</u>	<u>0</u>	
<u>0958</u>	<u>1</u>	<u>85</u>	<u>19.5</u>	<u>0.224</u>	<u>2.93</u>	<u>7.93</u>	<u>+22.1</u>	<u>10.67 clear</u>	<u>0</u>	
<u>1008</u>	<u>1</u>	<u>95</u>	<u>19.8</u>	<u>0.225</u>	<u>2.84</u>	<u>7.92</u>	<u>+25.9</u>	<u>7.77 clear</u>	<u>0</u>	
<u>1018</u>	<u>1</u>	<u>105</u>	<u>19.7</u>	<u>0.224</u>	<u>2.69</u>	<u>7.90</u>	<u>+21.1</u>	<u>5.13 clear</u>	<u>0</u>	

COMMENTS/OBSERVATIONS: _____

Monitoring Well Development Log

Page 1 of 1

Date Started (yr/mo/day)	<u>19-11-21</u>	Date Completed (yr/mo/day)	<u>11-19-21</u>
Field Personnel	<u>Randy Morgan</u>		
Site Name	UTC Delavan Spray Technologies Site		
Job #	<u>60314964.16 - 60598866.02</u>		
Well ID #	<u>MW-35D</u>		
	<input checked="" type="checkbox"/> Upgradient	<input type="checkbox"/> Downgradient	
Weather Conditions	<u>Clear / Sunny</u>		
Air Temperature	<u>50°</u> °F		

Total Well Depth (TWD) = 76.55 TDC 1/100 ft
Depth to Ground Water (DGW) = 12.07 TDC 1/100 ft
Length of Water Column (LWC) = TWD - DGW = 64.48 1/100 ft
1 Casing Volume (OCV) = LWC x 0.16 = 10.51 gallons
5 Casing Volumes = 52.55 gallons
Method of Well Development Surge
Equipment Used Grundfos pump
Total Volume of Water Removed 95 gallons

COMMENTS/OBSERVATIONS:

Monitoring Well Development Log

Page 1 of 1

Date Started (yr/mo/day)	<u>19-11-25</u>	Date Completed (yr/mo/day)	<u>19-11-25</u>
Field Personnel	<u>Randy Morgan</u>		
Site Name	UTC Delavan Spray Technologies Site		
Job #	<u>60314904.16</u>		
Well ID #	<u>MW-36D</u>		
	<input checked="" type="checkbox"/> Upgradient	<input type="checkbox"/> Downgradient	
Weather Conditions	<u>Clear / sunny</u>		
Air Temperature	<u>40's</u>		
	°F		

Total Well Depth (TWD) = 65.82 1/100 ft

Depth to Ground Water (DGW) = 2.72 1/100 ft

Length of Water Column (LWC) = TWD - DGW = 63.10 1/100 ft

1 Casing Volume (OCV) = LWC x 0.16 = 10.28 gallons

5 Casing Volumes = 51.42 gallons

Method of Well Development Surging

Equipment Used Grundfos Pump

Total Volume of Water Removed 92 gallons

COMMENTS/OBSERVATIONS:

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 1 of 1

Date (mo/day/yr)	Nov 25, 2019		
Field Personnel	Randy Murphy		
Site Name	UTC Detonated		
AECOM Job #	60590866.02		
Well ID*	MW-33D		
Upgradient	Downgradient	Sidegradient	Source
Weather Conditions	clear sunny		
Air Temperature	50 °F		
Total Well Depth (TWD) =	7.6.35	1/100 ft	
Depth to Ground Water (DGW) =	13.24	1/100 ft	
Length of Water Column (LWC) = TWD - DGW =	63.11	1/100 ft	
1 Casing Volume (OCV)* = LWC x	.163	= 10.28 gal	
3 Casing Volumes =	30.84	gal = Standard Evacuation Volume	
Method of Sample Evacuation	peristaltic pump		
Method of Sample Collection	peristaltic pump		
Total Volume of Water Removed	2.80	gal	

Casing Diameter	2.0		inches
Casing Material	PVC		
Measuring Point Elevation	N/A		1/100 ft
Height of Riser (above land surface)	N/A		1/100 ft
Land Surface Elevation	N/A		1/100 ft
Screened Interval	N/A		1/100 ft
Dedicated Pump or Bailer	YES	NO	X
Steel Guard Pipe Around Casing	YES	X	NO
Locking Cap	YES	X	NO
Protective Post/Abutment	YES	NO	X
Well Integrity Satisfactory	YES	X	NO
Yield	LOW	MODERATE	HIGH X
Comments/Observations	Sample Time: 1205 Fe = 0.6 dup MW-33D-a		

* - One casing volume (gallons) for a 0.5 inch well is 0.0102XLWC; for a 2 inch well is 0.163 X LWC; for a 4 inch well is 0.652 X LWC and for a 6 inch well is 1.468 X LWC.

Volume (in gallons) = $\pi r^2 h$ (7.48), where r is the radius (ft) and h is the height (ft).

FIELD ANALYSES								
VOLUME PURGED (gallons)	INITIAL	.40	.80	1.20	1.60	2.0	2.40	2.80
TIME (Military)	1125	1130	1135	1140	1145	1150	1155	1200
Water Level (ft BTOC)	13.25	13.25	13.25	13.25	13.25	13.25	13.25	13.25
pH (S.U.)	7.89	7.82	7.80	7.78	7.80	7.81	7.79	7.80
Sp. Cond. (mS/cm)	0.253	0.255	0.257	0.263	0.265	0.264	0.265	0.265
Water Temp. (°C)	18.8	19.2	19.3	19.1	19.2	19.3	19.5	20.0
Turbidity (NTUs)	40.95	94.71	71.23	44.78	44.23	40.58	38.19	36.88
DO - (mg/L)	2.68	0.54	0.49	0.50	0.53	0.52	0.51	0.51
Salinity (ppt)	0.12	0.12	0.12	0.13	0.13	0.13	0.13	0.13
ORP (mV)	95.2	65.1	54.5	41.9	20.1	9.7	4.9	-9.9

COMMENTS/OBSERVATIONS

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 1 of 1

Date (mo/day/yr)	May 25, 2019			Casing Diameter	2.0			inches	
Field Personnel	Randy Morgan			Casing Material	PVC				
Site Name	UTC Dera 41			Measuring Point Elevation	N/A			1/100 ft	
AECOM Job #	60590866.02			Height of Riser (above land surface)	N/A			1/100 ft	
Well ID*	MW-343D			Land Surface Elevation	N/A			1/100 ft	
Upgradient	Downgradient	Sidegradient	Source	Screened Interval				1/100 ft	
Weather Conditions	Clear, Sunny			Dedicated Pump or Bailer	YES	NO	X	Type	
Air Temperature	68°			Steel Guard Pipe Around Casing	YES	X	NO		
Total Well Depth (TWD) =	83.63			Locking Cap	YES	NO			
Depth to Ground Water (DGW) =	14.35			Protective Post/Abutment	YES	NO	X		
Length of Water Column (LWC) = TWD - DGW =	69.28			Well Integrity Satisfactory	YES	X	NO		
1 Casing Volume (OCV)* = LWC x	.163 = 11.29			Yield	LOW	MODERATE	HIGH		
3 Casing Volumes =	33.88 gal = Standard Evacuation Volume			Comments/Observations					
Method of Sample Evacuation	Pneumatic pump			Sample Time:	1608				
Method of Sample Collection	Pneumatic pump				Fe. 0.36				
Total Volume of Water Removed	3.20 gal								

* - One casing volume (gallons) for a 0.5 inch well is 0.0102XLWC; for a 2 inch well is 0.163 X LWC; for a 4 inch well is 0.652 X LWC and for a 6 inch well is 1.468 X LWC.

Volume (in gallons) = $\pi r^2 h$ (7.48), where r is the radius (ft) and h is the height (ft).

FIELD ANALYSES									
VOLUME PURGED (gallons)	1918	140	.80	1.20	1.60	2.0	240	2.80	3.20
TIME (Military)	1525	1520	1525	1530	1535	1540	1545	1550	1555
Water Level (ft BTOC)	14.36	14.37	14.37	14.37	14.37	14.37	14.37	14.37	14.37
pH (S.U.)	7.91	7.87	7.89	7.90	7.90	7.87	7.85	7.86	7.89
Sp. Cond. (mS/cm)	0.232	0.233	0.233	0.233	0.233	0.232	0.232	0.233	0.233
Water Temp. (°C)	18.4	18.4	18.4	18.3	18.2	18.3	18.3	18.1	18.2
Turbidity (NTU's)	86.07	77.52	73.37	69.85	57.07	50.89	38.00	40.19	39.18
DO - (mg/L)	2.39	0.76	0.53	0.48	0.49	0.48	0.52	0.47	0.50
Salinity (ppt)	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
ORP (mV)	3.4	-32.9	-62.4	-82.1	-94.5	-702.5	-110.5	-115.7	-118.9
COMMENTS/OBSERVATIONS									

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 1 of 1

Date (mo/day/yr)	November 25, 2019			Casing Diameter	2.0		inches
Field Personnel	Kathy Morgan			Casing Material	PVC		
Site Name	ATC 1000 ft ASL			Measuring Point Elevation	N/A		1/100 ft
AECOM Job #	60590866.02			Height of Riser (above land surface)	N/A		1/100 ft
Well ID*	MIN:35D			Land Surface Elevation	N/A		1/100 ft
Upgradient	Downgradient	Sidegradient	Source	Screened Interval	N/A		1/100 ft
Weather Conditions	clear sunny			Dedicated Pump or Bailer	YES	NO	X
Air Temperature	40.5 °F			Steel Guard Pipe Around Casing	YES	X	NO
Total Well Depth (TWD) =	76.55			Locking Cap	YES	X	NO
Depth to Ground Water (DGW) =	12.10			Protective Post/Abutment	YES	X	NO
Length of Water Column (LWC) = TWD - DGW =	64.45			Well Integrity Satisfactory	YES	X	NO
1 Casing Volume (OCV)* = LWC x	.163 = 10.50 gal			Yield	LOW	MODERATE	HIGH X
3 Casing Volumes =	31.51 gal = Standard Evacuation Volume			Comments/Observations	Sample Time: 1057 Fe = 0.18		
Method of Sample Evacuation	peristaltic pump						
Method of Sample Collection	1,1						
Total Volume of Water Removed	2.4 gal						

* - One casing volume (gallons) for a 0.5 inch well is 0.0102XLWC; for a 2 inch well is 0.163 X LWC; for a 4 inch well is 0.652 X LWC and for a 6 inch well is 1.468 X LWC.

Volume (in gallons) = $\pi r^2 h$ (7.48), where r is the radius (ft) and h is the height (ft).

FIELD ANALYSES							
VOLUME PURGED (gallons)	Initial	90	80	1.20	1.60	2.0	2.4
TIME (Military)	1025	1030	1035	1040	1045	1050	1055
Water Level (ft BTOC)	12.11	12.10	12.10	12.10	12.10	12.10	12.10
pH (S.U.)	7.98	7.87	7.86	7.86	7.86	7.86	7.85
Sp. Cond. (mS/cm)	0.218	0.235	0.239	0.239	0.240	0.238	0.239
Water Temp. (°C)	15.9	17.0	17.0	17.1	16.8	17.1	17.0
Turbidity (NTUs)	26.80	43.15	48.45	55.15	61.63	56.96	52.42
DO - (mg/L)	8.10	7.29	7.06	1.01	0.98	0.92	0.86
Salinity (ppt)	0.10	0.11	0.11	0.11	0.11	0.11	0.11
ORP (mV)	94.5	52.6	31.2	15.2	5.5	-1.1	-4.8
COMMENTS/OBSERVATIONS							
405							

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 1 of 1

Date (mo/day/yr)	Nov 25, 2019			inches
Field Personnel	Randy Morgan			PVC
Site Name	UTC Plots			1/100 ft
AECOM Job #	60590866.02			1/100 ft
Well ID*	MW-360			1/100 ft
Upgradient	Downgradient	Sidegradient	Source	
Weather Conditions	clear/sunny			
Air Temperature	50's			° F
Total Well Depth (TWD) =	65.82			1/100 ft
Depth to Ground Water (DGW) =	2.70			1/100 ft
Length of Water Column (LWC) = TWD - DGW =	63.12			1/100 ft
1 Casing Volume (OCV)* = LWC x	0.163 = 10.28			gal
3 Casing Volumes =	30.84			gal = Standard Evacuation Volume
Method of Sample Evacuation	gravel to pump			
Method of Sample Collection	gravel to pump			
Total Volume of Water Removed	3.60			gal
Comments/Observations				
Sample Time: 1413				
Re: 1.42				
TESTED for VOCs				

* - One casing volume (gallons) for a 0.5 inch well is 0.0102XLWC; for a 2 inch well is 0.163 X LWC; for a 4 inch well is 0.652 X LWC and for a 6 inch well is 1.468 X LWC.

Volume (in gallons) = $\pi r^2 h$ (7.48), where r is the radius (ft) and h is the height (ft).

FIELD ANALYSES										
VOLUME PURGED (gallons)	initial	.40	.80	1.20	1.60	2.0	2.4	2.8	3.20	3.60
TIME (Military)	1323	1329	1333	1338	1343	1348	1353	1358	1403	1408
Water Level (ft BTOC)	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72
pH (S.U.)	7.69	7.64	7.64	7.63	7.61	7.60	7.60	7.60	7.62	7.61
Sp. Cond. (mS/cm)	0.275	0.271	0.270	0.273	0.281	0.283	0.284	0.284	0.284	0.283
Water Temp. (°C)	18.9	18.8	18.9	19.0	19.0	18.9	19.1	18.8	18.9	18.5
Turbidity (NTUs)	46.05	65.27	91.85	136.9	152.9	95.61	68.81	40.62	38.19	39.29
DO - (mg/L)	2.51	0.37	0.30	0.23	0.20	0.18	0.17	0.15	0.14	0.14
Salinity (ppt)	0.13	0.13	0.13	0.13	0.13	0.13	0.14	0.14	0.14	0.14
ORP (mV)	-126.8	-164.4	-177.0	-187.0	-192.5	-195.5	-197.9	-200.6	-203.1	-204.9
COMMENTS/OBSERVATIONS										

SGS North America Inc - Orlando

Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
TEL: 407-425-6700 FAX: 407-425-0707

www.sgs.com

SGS - ORLANDO JOB # :

PAGE 1 OF 1

Client / Reporting Information			Project Information			SGS - ORLANDO Quote #		SKIFF #								
Company Name: <u>AECOM</u>			Project Name: <u>UTC Delavan Spray Tech</u>													
Address: <u>1 Parkwood Dr Bldg III Suite 500</u>			Street: <u>4324 Main Hwy</u>													
City: <u>Greenville</u> State: <u>SC</u> Zip: <u>29615</u>			City: <u>Bamberg SC</u> State													
Project Contact: <u>Leslie Alexander</u> Email: <u></u>			Project # <u>6059086002</u>													
Phone #: <u></u>			Fax # <u></u>													
Sampler(s) Name(s) (Printed) Sampler 1: <u>Randy Morgan</u> Sampler 2: <u></u>			Client Purchase Order #													
SGS Orlando Sample #	Field ID / Point of Collection <u>TKIP Block</u> <u>MW-35D</u> <u>MW-33D</u> <u>MW-33D-a</u> <u>MW-36D</u> <u>MW-36D-MS</u> <u>MW-36D-MSD</u> <u>MW-34D</u> <u>Sol 1 IDW</u> <u>Ag+polys IDW</u>	COLLECTION		CONTAINER INFORMATION												
		DATE	TIME	SAMPLED BY:	MATRIX	TOTAL # OF BOTTLES	OTHER	NONE	HCl	NaOH	HNO3	H2SO4	NAOH+ZNAc	DI WATER	MEOH	
		<u>11/25/19</u>	<u>1051</u>	<u>Rm</u>	<u>GW</u>	<u>9</u>	<u>X</u>	<u>X</u>	<u>X</u>							
		<u>11/25/19</u>	<u>1205</u>	<u>Rm</u>	<u>GW</u>	<u>9</u>	<u>X</u>	<u>X</u>								
		<u>11/25/19</u>	<u>1205</u>	<u>Rm</u>	<u>GW</u>	<u>3</u>	<u>X</u>									
		<u>11/25/19</u>	<u>1413</u>	<u>Rm</u>	<u>GW</u>	<u>9</u>	<u>X</u>	<u>X</u>								
		<u>11/25/19</u>	<u>1413</u>	<u>Rm</u>	<u>GW</u>	<u>3</u>	<u>X</u>									
		<u>11/25/19</u>	<u>1413</u>	<u>Rm</u>	<u>GW</u>	<u>3</u>	<u>X</u>									
		<u>11/25/19</u>	<u>1600</u>	<u>Rm</u>	<u>GW</u>	<u>9</u>	<u>X</u>	<u>X</u>								
		<u>11/25/19</u>	<u>1700</u>	<u>Rm</u>	<u>GW</u>	<u>4</u>	<u>X</u>									
<u>11/25/19</u>	<u>1625</u>	<u>Rm</u>	<u>SO</u>	<u>6</u>	<u>X</u>											
Turnaround Time (Business days)			Data Deliverable Information						Comments / Remarks							
10 Day (Business)			Approved By: / Date:						<input type="checkbox"/> COMMERCIAL "A" (RESULTS ONLY) <input type="checkbox"/> COMMERCIAL "B" (RESULTS PLUS QC) <input type="checkbox"/> REDT1 (EPA LEVEL 3) <input type="checkbox"/> FULLT1 (EPA LEVEL 4) <input type="checkbox"/> EDD'S							
7 Day																
5 Day																
3 Day RUSH																
2 Day RUSH																
1 Day RUSH																
Other																
Rush T/A Data Available VIA Email or Lablink																
Sample Custody must be documented below each time samples change possession, including courier delivery.																
Relinquished by Sampler/Affiliation		Date Time:		Received By/Affiliation				Relinquished By/Affiliation		Date Time:		Received By/Affiliation				
<u>Randy Morgan 11/25/19 845</u>		<u>11/25/19 845</u>		<u>2</u>				<u>3</u>		<u>4</u>		<u>4</u>				
Relinquished by/Affiliation		Date Time:		Received By/Affiliation				Relinquished By/Affiliation		Date Time:		Received By/Affiliation				
<u>5</u>		<u>6</u>		<u>7</u>				<u>7</u>		<u>8</u>		<u>8</u>				

Lab Use Only : Cooler Temperature (s) Celsius (corrected):

<http://www.sgs.com/en/terms-and-conditions>

IPW MANAGEMENT FORM

PROJECT: UTC Bamberg

AECOM

SITE NAME: UTC Delavan Specialty Chemicals Site

LOCATION: Bamberg, South Carolina

PROJECT #: _____

IDW MANAGEMENT FORM

PROJECT: **UTC Bamberg**

AECOM

SITE NAME: UTC Delavan Specialty Chemicals Site

LOCATION: **Bamberg, South Carolina**

PROJECT #: _____

Mc 10-17-19 Delavan

N. Menneri

0700 Leave hotel for site
0740 Arrive on site. HFS
Meeting with R. Morgan.
0745 Calibrate equipment. Finish
filling out field forms.
0820 Head to private wells and
sample
1130 Leave site
1400 Arrive back

End of Day

End of Event

Next

well install

M. Rockwell

11/18/19 47°F
0630 Leave office for site.
0930 Arrive on site. Sign in @ main
1030 office. HFS meeting w/ Cascade.
1030 walk / Drive to all four well
locations, meet w/ Mr. Coulter @
his property.
1130 Back @ main site, break for lunch.
1230 Cascade meets @ MW-34D location
to set equipment.
1300 Phillip to clear next location
w/ skid steer while we
drill @ MW-34D.
1530 @ 64' bgs MW-34D.
1700 set @ 79' bgs, then set PVC tomorrow.
Begin packing up / clean for EOD.
1730 Everyone offsite, site secured.

Mr. Rockwell
11/18/19

26

UTC Delavan

11/19/19 47°F M. Rockwood

0800 Cascade on site @ MW-34D

0830 H/S Meeting

0830 measured PVC pipes/plug

0850 Begin bentonite up,
@ 74' bgs, bentonite up 3'
then sand 2'
- bentonite @ 81" bgs

0911 - sand @ 79' bgs

0916 Dropped '1/2", total depth
@ 79.5' bgs
- sand from 79.5' to 75' bgs
- screen from 79.5' to 75'

0945 - bentonite from 67.5' to 64.5' bgs

1030 Begin grouting

1120 Grout complete up to 2' bgs
Chuck off site.

1140 Molt to MW-35D.

1230 measured PVC and plug.

1300 Off site for lunch break.

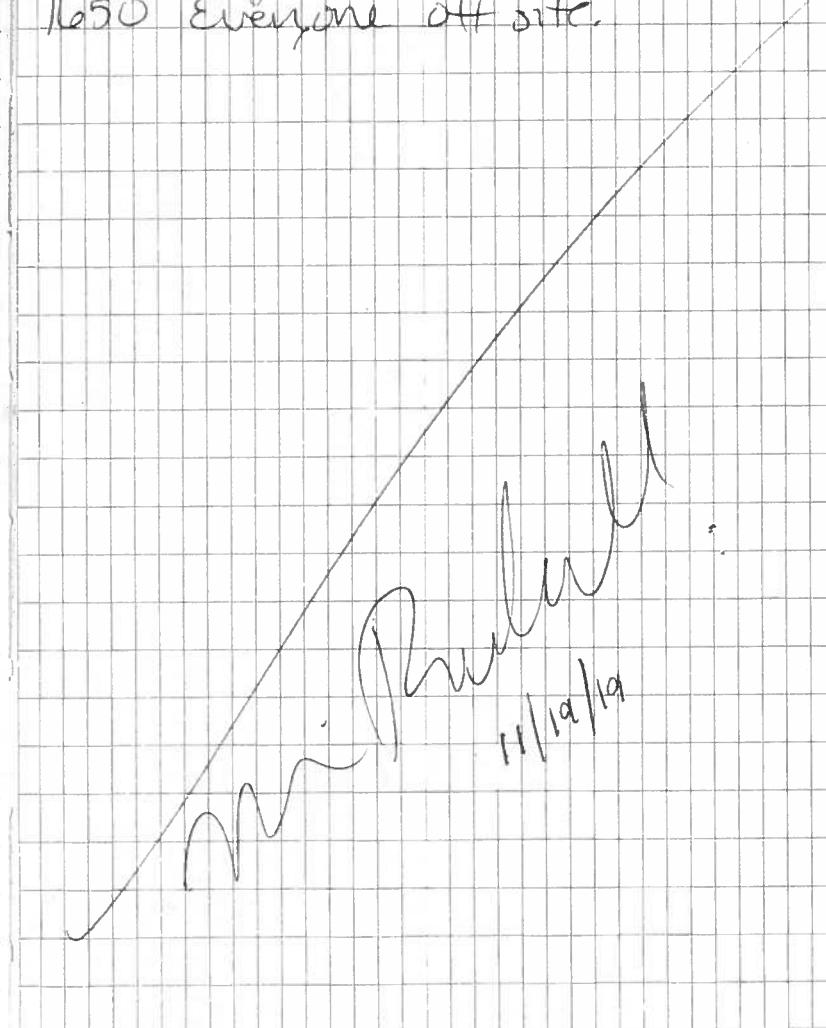
1320 Back on site. Begin drilling.

1415 MW-35D @ 34" bgs

1530 MW-35D TD = 74' bgs

1600 Mike / J. Hall off site.
Begin setting MW-35D.

LUVH


27

11/19/19 Rockwell

1630 Sand from 74' - 62' bgs
Bentonite from 62' - 56' bgs

1640 Begin decan / packup for EOD

1650 Everyone off site.

28

UTC Delavan

11/20/19 39° m. Rockwell

0800 Everyone on site. H/S meeting and discuss scope of work.

0835 Begin mixing grout @ MW-33D

0942 Grout complete up to 2' bags

0942 WL @ 9.77' from g.s.

1025 Begin prep to demob to next location MW-33D @ Mr. Johnston's property. Called Mr. Johnston to let him know we will be on his property within hr or so.

1040 Mob from Coulter Property to MW-33D location Mr. Johnston on site.

1050 Begin setting up equipment.

1135 Break for lunch.

1230 Back on site @ MW-33D

1240 Begin drilling.

1400 MW-33D @ 54' bags, cont'd

1510 J. Hall off site.

1540 Bentonite complete @ 57'

1635 Everyone off site.

11/20/19

m. Rockwell

UTC memo...

<9

11/21/19 38° m. Rockwell

0705 Leave Hotel.

0745 Arrive on site. @ MW-33D

0740 Cascade on site.

H/S Meeting, discuss scope of work for today

0830 Begin Grouting MW-33D

0920 Grout complete

1000 Decor / pack equipment to demob to MW-36D

1015 Begin clearing spot for MW-36D

1042 Ran into issue w/ water in ditch. Stop clearing. ^{call} _{coffee}

1050 Randy will pick up wood to build temp. bridge

1100 Pack skid steer and mob back to MW-33D to get remaining supplies.

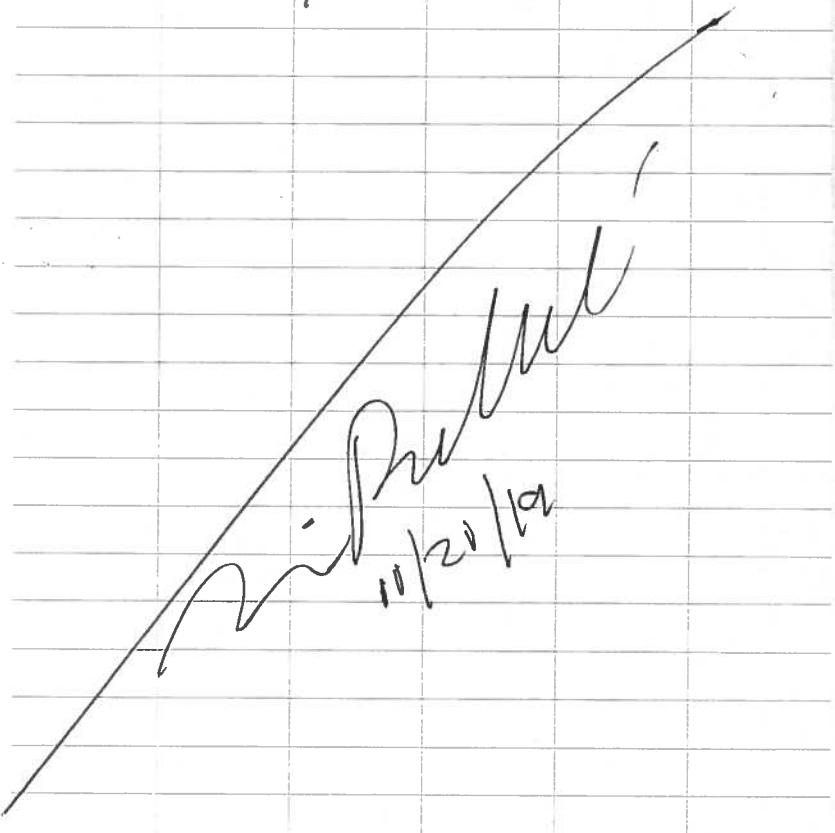
1120 @ MW-33D packing up rig
* J. Hall @ MW-36D to setup temp. bridge w/ Randy

1230 Mob w/ rig to MW-36D

1309 Break for lunch.

1326 Mariah back @ MW-36D

1336 Cascade on site. Everyone eating lunches in vehicles.

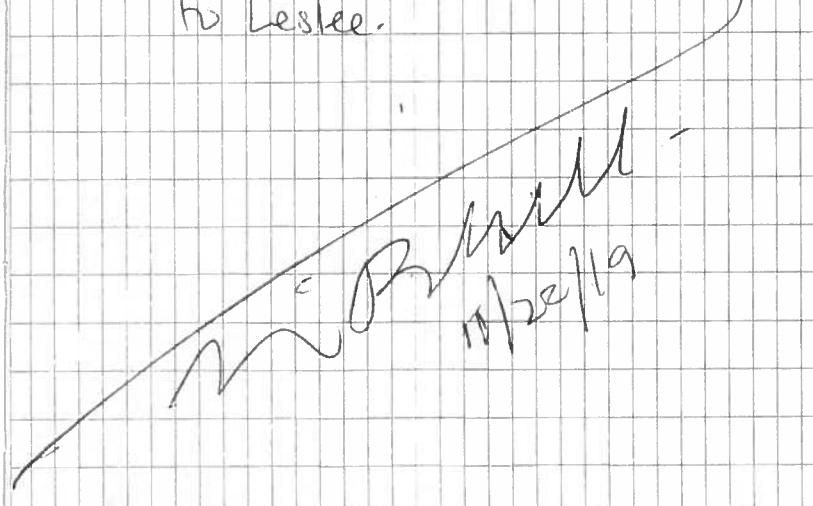

30

11/21/19

OTW to Munro.

M. Ruckell 11

1340 Begin drilling @ MW-36D
 1500 MW-36D @ 39' bgs
 The rig is having mechanical
 issues & keeps shutting down
 1630 Begin sand
 1653 Bentonite @ 47' bgs
 1700 Everyone off site.



OTW to Munro

50

M. Ruckell

0745 Leave hotel.
 0735 Arrive on site @ MW-36D
 0800 Cascade on site. H/S
 meeting, discuss scope of work.
 0825 Begin grouting MW-36D
 @ 47' - 2" bgs
 0832 Rig shut off, Mike restarts
 0928 Grouting complete. 47" - 2" bgs
 0950 Randy on site.
 1028 Call Leslie, discuss remaining
 work.
 1100 Mainan checkout w/facility.
 OTW back to GVille Office
 1330 Arrived @ office. Gave keys
 to Leslie.

L. Alexander 11/25/19

drawdown. Will get ground for pump from Randy ~~for~~ ^{from} develop ~~ment~~ ^{ment} to use for sketching.

1205 Miranda Rockwell goes to meet Randy on Mr Johnston's property to get ground for pump.

1302 MW-35D, WL @ 12.06' TDL

1312 MW-35D in 1 (slug in) test start

1315 MW-35D in 1 test stop

1316 MW-35D out 1 (slug out) test start

1318 MW-35D out 1 test stop

1320 MW-35D in 2 test start

1324 MW-35D in 2 test stop

1325 MW-35D out 2 test start

✓ 1328 MW-35D out 2 test stop

1335 MW-35D pump 1 (w/ ground for) test start

1340 MW-35D pump 1 test stop

1342 MW-35D pump 2 test start

1344 MW-35D pump 2 test stop

✓ 1345 MW-35D pump 3 test start

1347 MW-35D - pump 3 test stop

1350 pull pump & decon equipment.

1430 load truck & mob to MW-35D

1448 onsite at MW-35D.

151

11/25/19

1452 Initial DTW 13.24 ft BDC
1501 Start test MW33D-in 1
1502 Stop test MW33D-in 1
1503 Start test MW33D-out 1
1505 Stop test MW-33D-out 1
1506 Start test MW-33D-in 2
1508 Stop test MW-33D-in 2
1510 Start test MW-33D-out 2
1512 Stop test MW-33D-out 2
1515 Set up for MW-33D pump 1
w/ groundhos
21
1522 Start MW-33D pump 1
1523 Stop MW-33D pump 1
1526 Start MW-33D pump 2
1528 Stop MW-33D pump 2
1529 Pull pump & clean equipment
1535 Load truck & move to
MW-36D
1554 WL @ 2.69' BDC MW-36D
Set up on well MW-36D
1602 Start test MW-36D-in 1
1604 Stop test MW-36D-in 2
1607 Start test MW-36D-out 1
1609 Stop test MW-36D-out 1
Start test MW-36D-in 2

55

11/25/19

1613 Stop test MW-36D-in 2.
1615 Start test MW-36D-out 2
1617 Stop test MW-36D-out 2
1620 Set up for MW-36D pump 1
w/ groundhos
1624 Start test MW-36D-pump 1
1628 Stop test MW-36D-pump 1
1629 Start test MW-36D-pump 2
1631 Stop test MW-36D-pump 2
1633 Start test MW-36D-pump 3
1635 Stop test MW-36D-pump 3
1640 Clean up & load truck.
1648 Move to Belvoir to put purge water
in drums
1720 Finish dropping off water & helping
Randy Morgan clean & label drums.
1725 Move to MW21D to collect water level
1730 Collect water level -13.92 ft BDC at
MW-21D
1735 Collect water level -14.04 ft BDC
at MW-14D, Packup & Move back
to Greenville.
2020 Back onsite at Greenville office Depot
Alexander

36

UTC Delaware

12/05/19 45° M. Rockwell

0830 Leave Greenville office.

0915 Arrive @ Delavan facility, wait for Survey crew to finish @ site in point.

0930 H/S meeting, discuss scope & markers

~1040 Take measurement @ well in parking lot (MW-21D)

1057 Measurement @ MW-34D

1058 Survey @ MW-35D

1058 Survey @ MW-33D

1058 Mr. Johnson told me that he was unhappy w/dug out area in front of well and wants it filled in.

1100 Back @ MW-21D for another measurement.

1140 Everyone off site. Demobil back to Greenville.

1430 Stopped to get gas.

1500 Back @ office

Rockwell
12/05/19

UTC Delaware

57

4/14/2020 56° M. Rockwell

0515 Leave Greenville, SC OTW to Bamberg

0800 Arrive @ UTC Delavan. Meet w/ Randy, check in to facility

0900 Meet w/ Devane about purge water

0905 Cont. w/L's ? Opening wells.

1050 Return to facility. Split up equipment. Begin @ Bamberg pipelines

1110 Began purge MW-30D

1130 Sampled MW-30D

1140 Began purge MW-31D

1200 Sampled @ MW-31D

1215 Began purge MW-25D

1240 Sampled MW-25D

1255 Began purge MW-32DR

1325 Sampled MW-32DR

1330 Sampled MW-32DR-Dip

1340 Began purge MW-26D

1410 Sampled MW-26D

1415 Began purge MW-22D

1440 Sampled MW-22D

1445 Sampled MW-22D-Dip

1515 Began purge MW-33D

1540 Sampled MW-33D

1600 Dumped purgometer. Left site for Hotel / Arrived @ Hotel 1700

Dr. No. 10 4-14-20

2 (106) UTC Residential Sampling

11-20-19

1210 leave to pick up equipment
1230 leave for UTC Delavan
construction for several miles on
I-26 - one lane traffic slow
1545 in Bamberg purchase ice for
sample cooler
1605 calibrate YSI S/N 5489
1630 at 343 LCR no one at home
No water on ext system, will check
later.
1650 at 715 LCR-PRE collect
sample out of tank #1
1700 at 715 LCR-POST collect
sample out of tank #2
1710 at 13 LCT-PRE collect sample
out of tank #1
1720 at 13 LCT-POST collect
sample out of tank #2
1730 back at 343 LCR waiting to
see if anyone comes home
1800 no one comes home will check
back 11-21-2019.

Samples collected will be stored on ice
in secure location until 11-22-2019.
1840 back at Motel end of day

Randy Morgan

UTC Delavan
Limestone Aquifer GW Assessment (107)
11/21/19

0730 leave for site
0810 check in with Marshall to get
information on newly installed wells
to be developed.
0830 calibrate YSI Pro Plus S/N 5489
0840 at MW-34D get set up
to begin development of well.
0905 begin developing MW-34D
1018 complete developing MW-34D
removed 105 gallons of water.
decon pump - label drums and
begin IDW-109. for Soils & Water
1045 Marshall called needs plywood
to access MW-36D go to
local hardware in Bamberg
purchase 15 sheets of 3/4 plywood
the store delivered it.
offset getting the plywood in place.
1200 check back at 343 LCR no one
home - no water left note on 11/20/19
1210 at MW-35D set up to begin
developing
1230 begin developing MW-35D
1330 complete developing MW-35D
decon pump - removed 95 gal water
Randy Morgan 11/21/19

11-21-19 UIC 1000
Limestone Aquifer Gw Assessment
label all IDW drums at site
1415 at MW-330 drop off
drum for developing on 11-22-2019
collect water level & tag TD.
1450 at MW-360 to assist
as needed.
only used 6 sheets of plywood
called hardware store and they
will allow us to return 9 unused
plywood.
1630 returned 9 sheets of plywood
1700 drill crew is finished for
today will grout on 11-22-2019.
1715 back at 343 LCR No one
home want to see it anyone shows
up - No one comes home, water
1800 leave for motel.
1838 end of day

Randy Morgan

11-22-19 UIC 1000
Limestone Aquifer Gw Assess. 11-22-19
0705 leave for UIC Delavan
0745 calibrate YST Pro Plus SN 5489
0820 at MW-330 begin to
developing well
0920 complete development MW-330
decon pump
0950 at UIC Delavan Plant to
check on IDW Drums on (1) left
on site from Oct sampling event
with 40% water mix
1010 at MW-360 to cover for
Marshall as she will be leaving at 1100
1100 Marshall off site
1111 crew is cleaning up &
loading out supplies equipment,
getting cement for well completions
drop off 4 bags cement at each
well and the protective covers.
1200 Drillers to punch jet writer to
begin well completions.
*1100 received call from Mr. Tomson at
343 Lemon Creek Rd, He is home and
I can collect sample
1113 sampled 343 LCR - PRE
1125 sampled 343 LCR - POST
Randy Morgan 11-22-19

110 UTC Delavan
11-22-2019 Limestone Aquifer Gw Assess.
1300 Drillers back on site at
MW-340 to complete pad & cover
1345 at MW-350 to do well
completion - Pad & Pro cover
1430 at MW-330 to do well
completion - Pad & Pro cover
1515 at MW-360 for well completion
working on rig also
1600 prepare to move drums to site
Storage area - the skid steer has
a hydraulic hose fitting that will
not connect - cannot move
drums - go to the plant to see
if they are working Saturday - Yes
1745 Drillers off site to Newington
near Aiken to get parts.
Randy off site to Shealy Labs
to deliver residential samples.
1900 get residential samples to Shealy
1945 back at office - end of day.
Will return Saturday to try to
complete event.

Randy Menge

111 UTC Delavan
Limestone Aquifer Gw Assess. 11-23-19
0800 Arrive on site to try to complete
well activities, drum removed to plant
clean up. Light rain
repaired skid steer
0830 notify residents about moving
drums out - MR Cooker is OK
NO ANSWER at MR Johnstons
0900 begin moving drums & cleaning up
areas.
13 IDW Drums to be taken to
UTC Delavan site
1207 complete all work with drillers
and offsite both drillers & Randy
will return Monday to develop MW-360
and sample all 14 wells.
1515 back at AECOM Greenville.

Randy Menge

11-23-2019

11/25/2019 Limestone Aquifer Assessment
0450 leave AECOM for Delavan
Delavan Bamberg SC.
0730 arrive on site - calcrete
YSI ProPlus S/N 5489
0750 complete calibrating
0753 Set up for well development
at MW-36D
0805 begin developing MW-36D w/
gravel for pump
0805 complete developing MW-36D
AECOM pump clean up site (0811)
return to sample.
0920 take development water to
drum staging area ^{cm} at Delavan plant
1000 leave to go to MW-35D
to begin purging to sample
1025 begin pumping MW-35D
1057 Sampled MW-35D
1125 at MW-33D begin pumping MW-33D
1205 Sampled MW-33D also dug
1220 assist Leslee & Mariah with
pump test need gravel - generator
take equipment to MW-35D
1300 move to MW-36D to purge/sample
1318 at MW-36D set up

Randy Morgan 11-25-19

11/25/2019 Limestone Aquifer Assess. 11-25-19
1323 begin to monitor purge MW-36D
to sample
1328 Sampled MW-36D also ms/mwd
1430 empty purge water into 55 gal steel
drum at Delavan site
1500 at MW-34D set up to purge/sample
1515 begin to micro purge MW-34D
1600 Sampled MW-34D
1615 get water from Leslee/Mariah
1625 on site at Delavan to collect
Aqueous IDW sample
1700 collect Soil IDW sample
secure all drums/lable drums
Inventory.
16 new drums and (1) old drum
from previous event
1730 off site to pack samples
and ship FedEx Columbia SC
1900 ship samples FedEx
2045 technical equipment
2115 at AECOM office - end of
event.

Randy Morgan 11-25-19

Attachment B

Analytical Data

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and identification (ID), cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) **Data Verification** is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA, January 2017) and *USEPA National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA, January 2017). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste (SW-846), Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data associated with analytical data package FA70346 were collected on November 25, 2019 for UTC - Delavan Spray Technologies located in Bamberg, South Carolina. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash “/” and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Volatile Organic Compounds by Method 8260B

Detections of toluene in samples (not Trip Blank sample) were qualified “/B/T” due to the presence of the analyte in the associated trip blank sample.

Semivolatile Organic Compounds by Method 8270D

Results of phenolic compounds in sample Aqueous IDW were qualified “/J/I” due to surrogate recovery below the established limits of 20-155% (2-fluorophenol 19% and phenol-d5 13%). These qualifiers indicate the results are under-estimations and should be considered biased low.

Results of 3,3'-dichlorobenzidine in sample Aqueous IDW were qualified “/M/m” due to recovery in the associated matrix spike sample below the established criteria of 15-160% (6%). These qualifiers indicate the results should be considered biased low.

Results of bis (2-chloroethoxy)methane, bis (2-chloroethyl)ether, 2,2'-oxybis (1-chloropropane), 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 3,3'-dichlorobenzidine, hexachlorobutadiene, hexachlorocyclopentadiene, hexachloroethane, naphthalene n-nitrosodi-n-propylamine, and 1,2,4-trichlorobenzene in sample Aqueous IDW were qualified “/M/D” due to the relative percent difference between the matrix spike and matrix spike duplicates samples exceeding the established criteria of 35% (37, 40, 41, 40, 41, 41, 55, 42, 43, 45, 36, 38, and 38%, respectively). These qualifiers indicate imprecision with laboratory methodology, instrumentation, or matrix interference.

PP Metals by Methods 6010D/7470A

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Dissolved Gases by Method RSK-175

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Anions by Method 9056A

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Total Organic Carbon by Method 9060A

Detections of TOC in samples associated with batch GP34002 were qualified “/B/K” due to the presence of the analyte in the associated method blank sample. These qualifiers indicate the analyte is not considered site-related per EPA data evaluation guidance.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. *Test Methods for Evaluating Solid Waste (SW-846), Update IV*.

United States Environmental Protection Agency (USEPA), January 2017. *USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review*. Publication #EPA-540-R-2017-001.

United States Environmental Protection Agency (USEPA), January 2017. *USEPA National Functional Guidelines for Organic Superfund Methods Data Review*. Publication #EPA-540-R-2017-002.

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

United Technologies Corporation

AECOMSCG: Delavan Spray Technologies; Bamberg, SC

60578249.01

SGS Job Number: FA70346

Sampling Date: 11/25/19

Report to:

**AECOM Environment
10 Patewood Dr Bldg VI, Suite 500
Greenville, SC 29615
doria.cullom@aecom.com**

ATTN: Doria Cullom

Total number of pages in report: 104

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

**Caitlin Brice, M.S.
General Manager**

Client Service contact: Heather Wandrey 407-425-6700

**Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001)
DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177),
AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV**

This report shall not be reproduced, except in its entirety, without the written approval of SGS.

Test results relate only to samples analyzed.

Table of Contents

Sections:

	-1-	
Section 1: Sample Summary	3	1
Section 2: Case Narrative/Conformance Summary	4	2
Section 3: Summary of Hits	7	3
Section 4: Sample Results	9	4
4.1: FA70346-1: TRIP BLANK	10	
4.2: FA70346-2: MW-35D	12	
4.3: FA70346-3: MW-33D	16	
4.4: FA70346-4: MW-33D-A	20	
4.5: FA70346-5: MW-36D	22	
4.6: FA70346-6: MW-34D	26	
4.7: FA70346-7: SOIL IDW	30	
4.8: FA70346-8: AQUEOUS IDW	33	
Section 5: Misc. Forms	39	
5.1: Chain of Custody	40	
Section 6: MS Volatiles - QC Data Summaries	42	
6.1: Method Blank Summary	43	
6.2: Leachate Blank Summary	47	
6.3: Blank Spike Summary	48	
6.4: Matrix Spike/Matrix Spike Duplicate Summary	53	
6.5: Duplicate Summary	58	
Section 7: MS Semi-volatiles - QC Data Summaries	59	
7.1: Method Blank Summary	60	
7.2: Leachate Blank Summary	63	
7.3: Blank Spike Summary	64	
7.4: Matrix Spike/Matrix Spike Duplicate Summary	68	
7.5: Duplicate Summary	72	
Section 8: GC Volatiles - QC Data Summaries	73	
8.1: Method Blank Summary	74	
8.2: Blank Spike/Blank Spike Duplicate Summary	75	
8.3: Matrix Spike Summary	76	
8.4: Duplicate Summary	77	
Section 9: Metals Analysis - QC Data Summaries	78	
9.1: Prep QC MP36487: Sb,As,Be,Cd,Cr,Cu,Pb,Ni,Se,Ag,Tl,Zn	79	
9.2: Prep QC MP36489: Hg	85	
9.3: Prep QC MP36495: Hg	90	
9.4: Prep QC MP36502: As,Ba,Cd,Cr,Pb,Se,Ag	96	
Section 10: General Chemistry - QC Data Summaries	101	
10.1: Method Blank and Spike Results Summary	102	
10.2: Matrix Spike Results Summary	103	
10.3: Matrix Spike Duplicate Results Summary	104	

Sample Summary

United Technologies Corporation

Job No: FA70346

AECOMSCG: Delavan Spray Technologies; Bamberg, SC
Project No: 60578249.01

Sample Number	Collected Date	Time By	Received	Matrix Code Type	Client Sample ID
---------------	----------------	---------	----------	------------------	------------------

This report contains results reported as ND = Not detected. The following applies:
Organics ND = Not detected above the MDL

FA70346-1 11/25/19 00:00 RM 11/26/19 AQ Trip Blank Water TRIP BLANK

FA70346-2 11/25/19 10:57 RM 11/26/19 AQ Ground Water MW-35D

FA70346-3 11/25/19 12:05 RM 11/26/19 AQ Ground Water MW-33D

FA70346-4 11/25/19 12:05 RM 11/26/19 AQ Ground Water MW-33D-A

FA70346-5 11/25/19 14:13 RM 11/26/19 AQ Ground Water MW-36D

FA70346-5D 11/25/19 14:13 RM 11/26/19 AQ Water Dup/MSD MW-36D

FA70346-5S 11/25/19 14:13 RM 11/26/19 AQ Water Matrix Spike MW-36D

FA70346-6 11/25/19 16:00 RM 11/26/19 AQ Ground Water MW-34D

FA70346-7 11/25/19 17:00 RM 11/26/19 SO Soil SOIL IDW

FA70346-8 11/25/19 16:25 RM 11/26/19 AQ Ground Water AQUEOUS IDW

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: United Technologies Corporation

Job No: FA70346

Site: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Report Date 12/17/2019 6:41:28

7 Samples, 1 Trip Blank were collected on 11/25/2019 and were received at SGS North America Inc - Orlando on 11/26/2019 properly preserved, at 2.1 Deg. C and intact. These Samples received an SGS Orlando job number of FA70346. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section. Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

MS Volatiles By Method SW846 8260B

Matrix: AQ

Batch ID: V5E874

All samples were analyzed within the recommended method holding time.

Sample(s) FA70291-2MS, FA70291-2MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Blank Spike Recovery(s) for Acetone are outside control limits.

Matrix Spike Duplicate Recovery(s) for Acetone are outside control limits. Probable cause is due to matrix interference.

RPD(s) for MSD for Acetone are outside control limits for sample FA70291-2MSD. Probable cause is due to sample non-homogeneity.

FA70346-2 for Acetone: Associated CCV and BS outside control limits high, however sample ND.

FA70346-2: Sample was not preserved to a pH < 2.

FA70346-3 for Acetone: Associated CCV and BS outside control limits high, however sample ND.

FA70346-3: Sample was not preserved to a pH < 2.

FA70346-4 for Acetone: Associated CCV and BS outside control limits high, however sample ND.

FA70346-4: Sample was not preserved to a pH < 2.

FA70346-6 for Acetone: Associated CCV and BS outside control limits high, however sample ND.

FA70346-6: Sample was not preserved to a pH < 2.

Matrix: AQ

Batch ID: VI1975

All samples were analyzed within the recommended method holding time.

Sample(s) FA70346-5MS, FA70346-5MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

FA70346-1: Sample was not preserved to a pH < 2.

FA70346-5: Sample was not preserved to a pH < 2.

FA70346-8: Sample was not preserved to a pH < 2.

Matrix: LEACHATE

Batch ID: VC5493

Sample(s) FA70346-7DUP, FA70429-2LMS, FA70429-2LMSD were used as the QC samples indicated.

RPD(s) for Duplicate for 1,2-Dichloroethane are outside control limits for sample FA70346-7DUP. Probable cause is due to sample non-homogeneity.

MS Semi-volatiles By Method SW846 8270D

Matrix: AQ

Batch ID: OP77932

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70346-8MS, FA70346-8MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for 1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 2-Chloronaphthalene, 2-Chlorophenol, 2-Methylnaphthalene, 2-Nitrophenol, 3,3'-Dichlorobenzidine, Benzyl Alcohol, bis(2-Chloroethoxy)methane, bis(2-Chloroethyl)ether, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, N-Nitrosodi-n-propylamine, N-Nitrosodiphenylamine, Naphthalene are outside control limits. Probable cause is due to matrix interference.

Matrix Spike Duplicate Recovery(s) for 3,3'-Dichlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, N-Nitrosodiphenylamine are outside control limits. Probable cause is due to matrix interference.

RPD(s) for MSD for 1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 2,2'-Oxybis(1-chloropropane), 2-Chloronaphthalene, 2-Chlorophenol, 2-Methylnaphthalene, 2-Nitrophenol, 3,3'-Dichlorobenzidine, 4-Chloroaniline, Benzyl Alcohol, bis(2-Chloroethoxy)methane, bis(2-Chloroethyl)ether, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Isophorone, N-Nitrosodi-n-propylamine, Naphthalene, Nitrobenzene are outside control limits for sample OP77932-MSD. Probable cause is due to sample non-homogeneity.

FA70346-8 for 2,2'-Oxybis(1-chloropropane): Associated CCV outside of control limits high, sample was ND.

Matrix: LEACHATE

Batch ID: OP78150

Sample(s) FA70346-7MS, FA70346-7MSD, FA70659-2DUP were used as the QC samples indicated.

The following samples were extracted outside of holding time for method SW846 8270D: FA70346-7

GC Volatiles By Method RSKSOP-147/175

Matrix: AQ

Batch ID: GLL2437

All samples were analyzed within the recommended method holding time.

Sample(s) FA70330-6DUP, FA70330-6MS were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix Spike Recovery(s) for Methane are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Metals Analysis By Method SW846 6010D

Matrix: AQ

Batch ID: MP36487

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70398-1DUP, FA70398-1MS, FA70398-1MSD, FA70398-1PS, FA70398-1SDL were used as the QC samples for metals.

RPD(s) for Duplicate for Selenium are outside control limits for sample MP36487-D1. RPD acceptable due to low duplicate and sample concentrations.

RPD(s) for Serial Dilution for Chromium, Copper, Nickel, Selenium are outside control limits for sample MP36487-SD1.

Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Matrix: LEACHATE

Batch ID: MP36502

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70346-7DUP, FA70346-7MS, FA70346-7MSD, FA70346-7SDL, were used as the QC samples for metals.

RPD(s) for Duplicate for Selenium, Barium, Selenium are outside control limits for sample MP36502-D1, MP36502-D2. RPD acceptable due to low duplicate and sample concentrations.

RPD(s) for Serial Dilution for Selenium are outside control limits for sample MP36502-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals Analysis By Method SW846 7470A

Matrix: AQ

Batch ID: MP36489

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70348-3FDUP, FA70348-3FMS, FA70348-3FMSD, FA70348-3FSDL were used as the QC samples for metals.

Matrix: LEACHATE

Batch ID: MP36495

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70346-7DUP, FA70346-7MS, FA70346-7MSD, FA70346-7SDL were used as the QC samples for metals.

General Chemistry By Method EPA 300/SW846 9056A

Matrix: AQ

Batch ID: GP34000

All samples were prepped within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70341-4MS, FA70341-4MSD were used as the QC samples for Nitrogen, Nitrate, Sulfate.

Matrix Spike Recovery(s) for Sulfate are outside control limits. Spike recovery indicates possible matrix interference.

Matrix Spike Duplicate Recovery(s) for Sulfate are outside control limits. Probable cause is due to matrix interference.

Matrix: AQ

Batch ID: GP34040

All samples were prepped within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70343-1MS, FA70343-1MSD were used as the QC samples for Nitrogen, Nitrite.

FA70346-2 for Nitrogen, Nitrite: Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

FA70346-3 for Nitrogen, Nitrite: Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

FA70346-5 for Nitrogen, Nitrite: Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

FA70346-6 for Nitrogen, Nitrite: Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

General Chemistry By Method SM5310 B-11/SW9060A

Matrix: AQ

Batch ID: GP34002

All samples were prepped within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA70346-5MSD, FA70346-5MS were used as the QC samples for Total Organic Carbon.

Matrix Spike Recovery(s) for Total Organic Carbon are outside control limits. Spike recovery indicates possible matrix interference.

SGS Orlando certifies that this report meets the project requirements for analytical data produced for the samples as received at SGS Orlando and as stated on the COC. SGS Orlando certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SGS Orlando Quality Manual except as noted above. This report is to be used in its entirety. SGS Orlando is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:

Ariel Hartney, Client Services (signature on file)

Summary of Hits

Page 1 of 2

Job Number: FA70346

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 11/25/19

3

Lab Sample ID	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
FA70346-1 TRIP BLANK						
Toluene ^a		1.9	1.0	0.30	ug/l	SW846 8260B
FA70346-2 MW-35D						
Toluene ^a		1.2	1.0	0.30	ug/l	SW846 8260B
Methane		0.68	0.50	0.16	ug/l	RSKSOP-147/175
Nitrogen, Nitrate		0.65	0.10	0.050	mg/l	EPA 300/SW846 9056A
Sulfate		4.1	2.0	0.60	mg/l	EPA 300/SW846 9056A
Total Organic Carbon		0.44 J	1.0	0.23	mg/l	SM5310 B-11/SW9060A
FA70346-3 MW-33D						
Toluene ^a		1.0	1.0	0.30	ug/l	SW846 8260B
Methane		0.91	0.50	0.16	ug/l	RSKSOP-147/175
Nitrogen, Nitrate		1.3	0.10	0.050	mg/l	EPA 300/SW846 9056A
Nitrogen, Nitrite ^b		0.34	0.10	0.050	mg/l	EPA 300/SW846 9056A
Sulfate		2.2	2.0	0.60	mg/l	EPA 300/SW846 9056A
Total Organic Carbon		0.55 J	1.0	0.23	mg/l	SM5310 B-11/SW9060A
FA70346-4 MW-33D-A						
Toluene ^a		0.80 J	1.0	0.30	ug/l	SW846 8260B
FA70346-5 MW-36D						
Chloroform ^a		0.61 J	1.0	0.30	ug/l	SW846 8260B
Toluene ^a		0.78 J	1.0	0.30	ug/l	SW846 8260B
Methane		3.1	0.50	0.16	ug/l	RSKSOP-147/175
Ethane		0.60 J	1.0	0.32	ug/l	RSKSOP-147/175
Sulfate		2.8	2.0	0.60	mg/l	EPA 300/SW846 9056A
Total Organic Carbon		0.66 J	1.0	0.23	mg/l	SM5310 B-11/SW9060A
FA70346-6 MW-34D						
Chloroform ^a		0.88 J	1.0	0.30	ug/l	SW846 8260B
Toluene ^a		1.1	1.0	0.30	ug/l	SW846 8260B
Methane		1.4	0.50	0.16	ug/l	RSKSOP-147/175
Ethane		0.36 J	1.0	0.32	ug/l	RSKSOP-147/175
Nitrogen, Nitrate		0.28	0.10	0.050	mg/l	EPA 300/SW846 9056A
Sulfate		4.4	2.0	0.60	mg/l	EPA 300/SW846 9056A
Total Organic Carbon		0.61 J	1.0	0.23	mg/l	SM5310 B-11/SW9060A

Summary of Hits

Page 2 of 2

Job Number: FA70346

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 11/25/19

3

Lab Sample ID	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
---------------	------------------	-----------------	----	-----	-------	--------

FA70346-7 SOIL IDW

1,2-Dichloroethane	0.0298	0.010	0.0031	mg/l	SW846 8260B
Barium	0.089 J	2.0	0.050	mg/l	SW846 6010D
Selenium	0.031 J	0.10	0.029	mg/l	SW846 6010D

FA70346-8 AQUEOUS IDW

Chloroform a	0.88 J	1.0	0.30	ug/l	SW846 8260B
Toluene a	0.81 J	1.0	0.30	ug/l	SW846 8260B
Chromium	1.6 J	10	1.0	ug/l	SW846 6010D
Selenium	3.8 J	10	2.9	ug/l	SW846 6010D
Zinc	11.6 J	20	4.4	ug/l	SW846 6010D

(a) Sample was not preserved to a pH < 2.

(b) Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

Sample Results

Report of Analysis

Report of Analysis

Client Sample ID: TRIP BLANK
Lab Sample ID: FA70346-1
Matrix: AQ - Trip Blank Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	I63060.D	1	11/28/19 14:12	KB	n/a	n/a	VI1975
Run #2							

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	1.9	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	TRIP BLANK	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-1	Date Received:	11/26/19
Matrix:	AQ - Trip Blank Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
----------------	-----------------	---------------	-----------	------------	--------------	----------

75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
----------------	-----------------------------	---------------	---------------	---------------

1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	102%		79-125%
2037-26-5	Toluene-D8	95%		85-112%
460-00-4	4-Bromofluorobenzene	94%		83-118%

(a) Sample was not preserved to a pH < 2.

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-35D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-2	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	5E19313.D	1	11/28/19 12:28	SO	n/a	n/a	V5E874
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^b	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	1.2	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-35D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-2	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
----------------	-----------------	---------------	-----------	------------	--------------	----------

75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
----------------	-----------------------------	---------------	---------------	---------------

1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	101%		79-125%
2037-26-5	Toluene-D8	102%		85-112%
460-00-4	4-Bromofluorobenzene	108%		83-118%

(a) Sample was not preserved to a pH < 2.

(b) Associated CCV and BS outside control limits high, however sample ND.

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-35D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-2	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	RSKSOP-147/175		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	LL70763.D	1	12/05/19 12:56	KB	n/a	n/a	GLL2437
Run #2							

	Initial Volume	Headspace Volume	Volume Injected	Temperature
Run #1	38.0 ml	5.0 ml	500 ul	22 Deg. C
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.68	0.50	0.16	ug/l	
74-84-0	Ethane	ND	1.0	0.32	ug/l	
74-85-1	Ethene	ND	1.0	0.43	ug/l	

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-35D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-2	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Nitrogen, Nitrate	0.65	0.10	0.050	mg/l	1	11/27/19 00:37 AC	EPA 300/SW846 9056A	
Nitrogen, Nitrite ^a	0.050 U	0.10	0.050	mg/l	1	12/05/19 13:40 JB	EPA 300/SW846 9056A	
Sulfate	4.1	2.0	0.60	mg/l	1	11/27/19 00:37 AC	EPA 300/SW846 9056A	
Total Organic Carbon	0.44 J	1.0	0.23	mg/l	1	11/28/19 06:43 FN	SM5310 B-11/SW9060A	

(a) Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

RL = Reporting Limit
MDL = Method Detection Limit

U = Indicates a result < MDL
J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID:	MW-33D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-3	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	5E19314.D	1	11/28/19 12:51	SO	n/a	n/a	V5E874
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^b	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	1.0	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-33D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-3	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	102%		79-125%
2037-26-5	Toluene-D8	102%		85-112%
460-00-4	4-Bromofluorobenzene	108%		83-118%

(a) Sample was not preserved to a pH < 2.

(b) Associated CCV and BS outside control limits high, however sample ND.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-33D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-3	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	RSKSOP-147/175		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	LL70764.D	1	12/05/19 13:03	KB	n/a	n/a	GLL2437
Run #2							

	Initial Volume	Headspace Volume	Volume Injected	Temperature
Run #1	38.0 ml	5.0 ml	500 ul	22 Deg. C
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.91	0.50	0.16	ug/l	
74-84-0	Ethane	ND	1.0	0.32	ug/l	
74-85-1	Ethene	ND	1.0	0.43	ug/l	

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-33D
Lab Sample ID: FA70346-3
Matrix: AQ - Ground Water
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Nitrogen, Nitrate	1.3	0.10	0.050	mg/l	1	11/27/19	AC	EPA 300/SW846 9056A
Nitrogen, Nitrite ^a	0.34	0.10	0.050	mg/l	1	12/05/19 13:59 JB	EPA 300/SW846 9056A	
Sulfate	2.2	2.0	0.60	mg/l	1	11/27/19	AC	EPA 300/SW846 9056A
Total Organic Carbon	0.55 J	1.0	0.23	mg/l	1	11/28/19 08:03 FN	SM5310 B-11/SW9060A	

(a) Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

RL = Reporting Limit
 MDL = Method Detection Limit

U = Indicates a result < MDL
 J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: MW-33D-A
Lab Sample ID: FA70346-4
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 11/25/19**Date Received:** 11/26/19**Percent Solids:** n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	5E19315.D	1	11/28/19 13:14	SO	n/a	n/a	V5E874
Run #2							

Purge Volume
 Run #1 5.0 ml
 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^b	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	0.80	1.0	0.30	ug/l	J
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-33D-A	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-4	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	102%		79-125%
2037-26-5	Toluene-D8	102%		85-112%
460-00-4	4-Bromofluorobenzene	108%		83-118%

(a) Sample was not preserved to a pH < 2.

(b) Associated CCV and BS outside control limits high, however sample ND.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-36D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-5	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	I63063.D	1	11/28/19 17:01	KB	n/a	n/a	VI1975
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.61	1.0	0.30	ug/l	J
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	0.78	1.0	0.30	ug/l	J
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-36D
Lab Sample ID: FA70346-5
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	110%		79-125%
2037-26-5	Toluene-D8	94%		85-112%
460-00-4	4-Bromofluorobenzene	95%		83-118%

(a) Sample was not preserved to a pH < 2.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-36D
Lab Sample ID: FA70346-5
Matrix: AQ - Ground Water
Method: RSKSOP-147/175
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	LL70765.D	1	12/05/19 13:55	KB	n/a	n/a	GLL2437
Run #2							

	Initial Volume	Headspace Volume	Volume Injected	Temperature
Run #1	38.0 ml	5.0 ml	500 ul	22 Deg. C
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	3.1	0.50	0.16	ug/l	
74-84-0	Ethane	0.60	1.0	0.32	ug/l	J
74-85-1	Ethene	ND	1.0	0.43	ug/l	

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-36D
Lab Sample ID: FA70346-5
Matrix: AQ - Ground Water
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Nitrogen, Nitrate	0.050 U	0.10	0.050	mg/l	1	11/27/19 00:19	AC	EPA 300/SW846 9056A
Nitrogen, Nitrite ^a	0.050 U	0.10	0.050	mg/l	1	12/05/19 14:18	JB	EPA 300/SW846 9056A
Sulfate	2.8	2.0	0.60	mg/l	1	11/27/19 00:19	AC	EPA 300/SW846 9056A
Total Organic Carbon	0.66 J	1.0	0.23	mg/l	1	11/28/19 08:26	FN	SM5310 B-11/SW9060A

(a) Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

RL = Reporting Limit
 MDL = Method Detection Limit

U = Indicates a result < MDL
 J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID:	MW-34D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-6	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	5E19316.D	1	11/28/19 13:37	SO	n/a	n/a	V5E874
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^b	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.88	1.0	0.30	ug/l	J
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	1.1	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-34D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-6	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	101%		79-125%
2037-26-5	Toluene-D8	102%		85-112%
460-00-4	4-Bromofluorobenzene	107%		83-118%

(a) Sample was not preserved to a pH < 2.

(b) Associated CCV and BS outside control limits high, however sample ND.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-34D	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-6	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	RSKSOP-147/175		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	LL70766.D	1	12/05/19 14:02	KB	n/a	n/a	GLL2437
Run #2							

	Initial Volume	Headspace Volume	Volume Injected	Temperature
Run #1	38.0 ml	5.0 ml	500 ul	22 Deg. C
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	1.4	0.50	0.16	ug/l	
74-84-0	Ethane	0.36	1.0	0.32	ug/l	J
74-85-1	Ethene	ND	1.0	0.43	ug/l	

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-34D
Lab Sample ID: FA70346-6
Matrix: AQ - Ground Water
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 11/25/19**Date Received:** 11/26/19**Percent Solids:** n/a
 General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Nitrogen, Nitrate	0.28	0.10	0.050	mg/l	1	11/27/19 00:56 AC	EPA 300/SW846 9056A	
Nitrogen, Nitrite ^a	0.050 U	0.10	0.050	mg/l	1	12/05/19 14:37 JB	EPA 300/SW846 9056A	
Sulfate	4.4	2.0	0.60	mg/l	1	11/27/19 00:56 AC	EPA 300/SW846 9056A	
Total Organic Carbon	0.61 J	1.0	0.23	mg/l	1	11/28/19 09:46 FN	SM5310 B-11/SW9060A	

(a) Originally ran on GN83724. Re-run beyond holdtime due to CCV failure.

RL = Reporting Limit
 MDL = Method Detection Limit

U = Indicates a result < MDL
 J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID:	SOIL IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-7	Date Received:	11/26/19
Matrix:	SO - Soil	Percent Solids:	n/a
Method:	SW846 8260B SW846 1311		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	C0137615.D	10	12/04/19 13:51	SP	12/03/19 14:00	OP77946	VC5493
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCLP List

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units	Q
71-43-2	Benzene	ND	D018	0.50	0.010	0.0031	mg/l	
78-93-3	2-Butanone (MEK)	ND	D035	200	0.050	0.020	mg/l	
56-23-5	Carbon Tetrachloride	ND	D019	0.50	0.010	0.0036	mg/l	
108-90-7	Chlorobenzene	ND	D021	100	0.010	0.0020	mg/l	
67-66-3	Chloroform	ND	D022	6.0	0.010	0.0030	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.010	0.0026	mg/l	
107-06-2	1,2-Dichloroethane	0.0298	D028	0.50	0.010	0.0031	mg/l	
75-35-4	1,1-Dichloroethylene	ND	D029	0.70	0.010	0.0032	mg/l	
127-18-4	Tetrachloroethylene	ND	D039	0.70	0.010	0.0022	mg/l	
79-01-6	Trichloroethylene	ND	D040	0.50	0.010	0.0035	mg/l	
75-01-4	Vinyl Chloride	ND	D043	0.20	0.010	0.0041	mg/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	99%		79-125%
2037-26-5	Toluene-D8	96%		85-112%
460-00-4	4-Bromofluorobenzene	95%		83-118%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
 MCL = Maximum Contamination Level (40 CFR 261 7/1/11) B = Indicates analyte found in associated method blank
 E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	SOIL IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-7	Date Received:	11/26/19
Matrix:	SO - Soil	Percent Solids:	n/a
Method:	SW846 8270D SW846 3510C		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X068517.D	1	12/16/19 16:38	MV	12/16/19 10:41	OP78150	SX2815
Run #2							

	Initial Volume	Final Volume
Run #1	100 ml	1.0 ml
Run #2		

ABN TCLP List

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units	Q
95-48-7	2-Methylphenol	ND	D023	200	0.050	0.0056	mg/l	
	3&4-Methylphenol	ND	D024	200	0.050	0.0098	mg/l	
87-86-5	Pentachlorophenol	ND	D037	100	0.25	0.050	mg/l	
95-95-4	2,4,5-Trichlorophenol	ND	D041	400	0.050	0.0074	mg/l	
88-06-2	2,4,6-Trichlorophenol	ND	D042	2.0	0.050	0.0075	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.050	0.0050	mg/l	
121-14-2	2,4-Dinitrotoluene	ND	D030	0.13	0.050	0.0081	mg/l	
118-74-1	Hexachlorobenzene	ND	D032	0.13	0.050	0.0069	mg/l	
87-68-3	Hexachlorobutadiene	ND	D033	0.50	0.050	0.0050	mg/l	
67-72-1	Hexachloroethane	ND	D034	3.0	0.050	0.016	mg/l	
98-95-3	Nitrobenzene	ND	D036	2.0	0.050	0.0093	mg/l	
110-86-1	Pyridine	ND	D038	5.0	0.10	0.020	mg/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	31%		14-67%
4165-62-2	Phenol-d5	20%		10-50%
118-79-6	2,4,6-Tribromophenol	80%		33-118%
4165-60-0	Nitrobenzene-d5	75%		42-108%
321-60-8	2-Fluorobiphenyl	78%		40-106%
1718-51-0	Terphenyl-d14	83%		39-121%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

MCL = Maximum Contamination Level (40 CFR 261 7/1/11) B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: SOIL IDW
Lab Sample ID: FA70346-7
Matrix: SO - Soil
Date Sampled: 11/25/19
Date Received: 11/26/19
Percent Solids: n/a
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	MDL	Units	DF	Prep	Analyzed By	Method
Arsenic	0.013 U	D004	5.0	0.10	0.013	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²
Barium	0.089 J	D005	100	2.0	0.050	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²
Cadmium	0.0020 U	D006	1.0	0.050	0.0020	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²
Chromium	0.010 U	D007	5.0	0.10	0.010	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²
Lead	0.011 U	D008	5.0	0.050	0.011	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²
Mercury	0.00050 U	D009	0.20	0.0050	0.00050	mg/l	1	12/04/19	12/04/19	JC SW846 7470A ¹
Selenium	0.031 J	D010	1.0	0.10	0.029	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²
Silver	0.0070 U	D011	5.0	0.10	0.0070	mg/l	1	12/05/19	12/06/19	LM SW846 6010D ²

(1) Instrument QC Batch: MA16378

(2) Instrument QC Batch: MA16383

(3) Prep QC Batch: MP36495

(4) Prep QC Batch: MP36502

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

MCL = Maximum Contamination Level (40 CFR 261 7/1/11)

J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID:	AQUEOUS IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-8	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	I63064.D	1	11/28/19 17:33	KB	n/a	n/a	VI1975
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.88	1.0	0.30	ug/l	J
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	0.81	1.0	0.30	ug/l	J
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AQUEOUS IDW
Lab Sample ID: FA70346-8
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		83-118%
17060-07-0	1,2-Dichloroethane-D4	103%		79-125%
2037-26-5	Toluene-D8	95%		85-112%
460-00-4	4-Bromofluorobenzene	94%		83-118%

(a) Sample was not preserved to a pH < 2.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	AQUEOUS IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-8	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8270D SW846 3510C		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X068286.D	1	12/04/19 12:46	MV	12/02/19 07:53	OP77932	SX2807
Run #2							

	Initial Volume	Final Volume
Run #1	1010 ml	1.0 ml
Run #2		

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	50	9.9	ug/l	
59-50-7	4-Chloro-3-methyl Phenol	ND	5.0	0.59	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.62	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	0.83	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	0.73	ug/l	
51-28-5	2,4-Dinitrophenol	ND	25	5.0	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	9.9	2.0	ug/l	
95-48-7	2-Methylphenol	ND	5.0	0.55	ug/l	
	3&4-Methylphenol	ND	5.0	0.97	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.84	ug/l	
100-02-7	4-Nitrophenol	ND	25	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	25	5.0	ug/l	
108-95-2	Phenol	ND	5.0	0.50	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	0.73	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.74	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.62	ug/l	
208-96-8	Acenaphthylene	ND	5.0	0.63	ug/l	
120-12-7	Anthracene	ND	5.0	0.79	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.75	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.0	0.78	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.77	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.81	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.85	ug/l	
100-51-6	Benzyl Alcohol	ND	5.0	0.61	ug/l	
101-55-3	4-Bromophenyl Phenyl Ether	ND	5.0	0.84	ug/l	
85-68-7	Butyl Benzyl Phthalate	ND	5.0	0.99	ug/l	
86-74-8	Carbazole	ND	5.0	0.59	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.62	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.80	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.72	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane) ^a	ND	5.0	0.75	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.50	ug/l	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	AQUEOUS IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-8	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8270D SW846 3510C		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.0	0.53	ug/l	
218-01-9	Chrysene	ND	5.0	0.84	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.80	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.60	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.64	ug/l	
84-66-2	Diethyl Phthalate	ND	5.0	0.99	ug/l	
131-11-3	Dimethyl Phthalate	ND	5.0	0.99	ug/l	
84-74-2	Di-n-butyl Phthalate	ND	5.0	0.99	ug/l	
117-84-0	Di-n-octyl Phthalate	ND	5.0	0.99	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.0	0.80	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.0	0.71	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	0.99	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.55	ug/l	
86-73-7	Fluorene	ND	5.0	0.69	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.69	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.0	1.8	ug/l	
67-72-1	Hexachloroethane	ND	5.0	1.6	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.71	ug/l	
78-59-1	Isophorone	ND	5.0	0.77	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.59	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	1.8	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.87	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	1.2	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.92	ug/l	
621-64-7	N-Nitrosodi-n-propylamine	ND	5.0	0.66	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.80	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.86	ug/l	
129-00-0	Pyrene	ND	5.0	0.68	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.1	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	19%		14-67%
4165-62-2	Phenol-d5	13%		10-50%
118-79-6	2,4,6-Tribromophenol	56%		33-118%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	AQUEOUS IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-8	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8270D SW846 3510C		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	52%		42-108%
321-60-8	2-Fluorobiphenyl	48%		40-106%
1718-51-0	Terphenyl-d14	56%		39-121%

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	AQUEOUS IDW	Date Sampled:	11/25/19
Lab Sample ID:	FA70346-8	Date Received:	11/26/19
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	1.0 U	6.0	1.0	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Arsenic	1.3 U	10	1.3	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Beryllium	0.20 U	4.0	0.20	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Cadmium	0.20 U	5.0	0.20	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Chromium	1.6 J	10	1.0	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Copper	1.0 U	25	1.0	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Lead	1.1 U	5.0	1.1	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Mercury	0.030 U	0.50	0.030	ug/l	1	12/02/19	12/02/19	JC	SW846 7470A ¹
Nickel	0.40 U	40	0.40	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Selenium	3.8 J	10	2.9	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Silver	0.70 U	10	0.70	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Thallium	1.4 U	10	1.4	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²
Zinc	11.6 J	20	4.4	ug/l	1	12/02/19	12/03/19	LM	SW846 6010D ²

- (1) Instrument QC Batch: MA16371
- (2) Instrument QC Batch: MA16376
- (3) Prep QC Batch: MP36487
- (4) Prep QC Batch: MP36489

RL = Reporting Limit
 MDL = Method Detection Limit

U = Indicates a result < MDL
 J = Indicates a result > = MDL but < RL

Misc. Forms**5****Custody Documents and Other Forms**

Includes the following where applicable:

- Chain of Custody

SGS North America Inc - Orlando
Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
TEL: 407-425-6700 FAX: 407-425-0707
www.sgs.com

FA70346

SGS - ORLANDO JOB #: PAGE 1 OF 1

Client / Reporting Information		Project Information		Analytical Information		Matrix Codes									
Company Name:	AECOM	Project Name:	UTC DeFeran Spray Rins	SGS - ORLANDO Quote #:	SKIFF #	DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SO - Soil SL - Sludge OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Solid									
Address:	10 Patterson Dr Bldg 10 Suite 500	Street:	4334 Main Hwy												
City:	Greenville	State:	SC	City:	Bamberg	State:									
Project Contact:	Leslie Alexander	Email:		Project #	60590860.02										
Phone #:		Fax #:													
Sampler(s) Name(s) (Printed)		Client Purchase Order #													
Sampler 1: Randy Mays Sampler 2:															
SGS Orlando Sample #	Field ID / Point of Collection	COLLECTION		CONTAINER INFORMATION		LAB USE ONLY									
		DATE	TIME	SAMPLED BY	MATRIX		TOTAL # OF BOTTLES	OTHER	NONE	ICL	NaOH	HNO3	H2SO4	NaOH+ZMA	DIAWATER
1	TKI Blank	11/25/19	10:50	Rm GW	3	X									
2	MW-35D	11/25/19	10:51	Rm GW	3		X	X							
3	MW-35D	11/25/19	12:05	Rm GW	3		X	X							
4	MW-33D-a	11/25/19	12:05	Rm GW	3	X									
5	MW-36D	11/25/19	14:13	Rm GW	3		X								
5	MW-36D-MS	11/25/19	14:13	Rm GW	3										
5	MW-36D-MSD	11/25/19	14:13	Rm GW	3										
6	MW-34D	11/25/19	16:00	Rm GW	3	X									
7	SPRI TOW	11/25/19	17:00	Rm GW	4	X									
8	Aggress TOW	11/25/19	16:25	Rm SO	6	X									
Turnaround Time (Business days)		Data Deliverable Information		Comments / Remarks		Service Center									
10 Day (Business)	Approved By: / Date:	<input type="checkbox"/> COMMERCIAL "A" (RESULTS ONLY) <input type="checkbox"/> COMMERCIAL "B" (RESULTS PLUS QC) <input type="checkbox"/> REDT1 (EPA LEVEL 3) <input type="checkbox"/> FULLT1 (EPA LEVEL 4) <input type="checkbox"/> EDD'S				RAleigh, NC									
7 Day						PREM									
5 Day															
3 Day RUSH															
2 Day RUSH															
1 Day RUSH															
Other															
Rush T/A Data Available VIA Email or Lablink															
Sample Custody must be documented below each time samples change possession, including courier delivery.															
Relinquished by Sampler/Affiliation	Date Time:	Received By/Affiliation	Relinquished By/Affiliation	Date Time:	Received By/Affiliation	11/26/19 9:00									
1 Randy Mays-AECOM	11/25/19 18:00	FF	3 FF	4 11/26/19 9:00	5										
Relinquished by Affiliation	Date Time:	Received By/Affiliation	Relinquished By/Affiliation	Date Time:	Received By/Affiliation										
5		6	7		8										
Lab Use Only: Cooler Temperature (s) Celsius (corrected): 21															
http://www.sgs.com/en/terms-and-conditions															

ORLD-SMT-0001-03-FORM-COC (1) Rev 031318

FA70346: Chain of Custody
Page 1 of 2

SGS Sample Receipt Summary

Job Number: FA70346 **Client:** AECOM **Project:** UTC DELARAN SPRAY TECH
Date / Time Received: 11/26/2019 9:10:00 AM **Delivery Method:** FX **Airbill #s:** _____

Therm ID: IR 1; **Therm CF:** -0.8; **# of Coolers:** 1
Cooler Temps (Raw Measured) °C: Cooler 1: (2.9);
Cooler Temps (Corrected) °C: Cooler 1: (2.1);

Cooler Information		Y or N	Sample Information	Y or N	N/A
1. Custody Seals Present		<input checked="" type="checkbox"/> <input type="checkbox"/>	1. Sample labels present on bottles	<input checked="" type="checkbox"/> <input type="checkbox"/>	
2. Custody Seals Intact		<input checked="" type="checkbox"/> <input type="checkbox"/>	2. Samples preserved properly	<input checked="" type="checkbox"/> <input type="checkbox"/>	
3. Temp criteria achieved		<input checked="" type="checkbox"/> <input type="checkbox"/>	3. Sufficient volume/containers recvd for analysis:	<input checked="" type="checkbox"/> <input type="checkbox"/>	
4. Cooler temp verification		<u>IR Gun</u>	4. Condition of sample	<u>Intact</u>	
5. Cooler media		<u>Ice (Bag)</u>	5. Sample recvd within HT	<input checked="" type="checkbox"/> <input type="checkbox"/>	
Trip Blank Information		Y or N	N/A	Y or N	N/A
1. Trip Blank present / cooler		<input checked="" type="checkbox"/> <input type="checkbox"/>	6. Dates/Times/IDs on COC match Sample Label	<input checked="" type="checkbox"/> <input type="checkbox"/>	
2. Trip Blank listed on COC		<input checked="" type="checkbox"/> <input type="checkbox"/>	7. VOCs have headspace	<input type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>
		W or S	N/A	8. Bottles received for unspecified tests	<input type="checkbox"/> <input checked="" type="checkbox"/>
3. Type Of TB Received		<input checked="" type="checkbox"/> <input type="checkbox"/>		9. Compositing instructions clear	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>
				10. Voa Soil Kits/Jars received past 48hrs?	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>
				11. % Solids Jar received?	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>
				12. Residual Chlorine Present?	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>

Misc. Information

Number of Encores: 25-Gram _____ 5-Gram _____ Number of 5035 Field Kits: _____ Number of Lab Filtered Metals: _____
Test Strip Lot #: pH 0-3 _____ 230315 _____ pH 10-12 _____ 219813A _____ Other: (Specify) _____ _____
Residual Chlorine Test Strip Lot #: _____

SM001
Rev. Date 05/24/17

Technician: PETERH Date: 11/26/2019 9:10:00 A Reviewer: _____ Date: _____

Technician: PETERH Date: 11/26/2019 9:10:00 A Reviewer: _____ Date: _____

FA70346: Chain of Custody

Page 2 of 2

MS Volatiles**QC Data Summaries**

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V5E874-MB	5E19308.D	1	11/28/19	SO	n/a	n/a	V5E874

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-2, FA70346-3, FA70346-4, FA70346-6

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	14.9	25	10	ug/l	J
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

6.1.1
G

Method Blank Summary

Page 2 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V5E874-MB	5E19308.D	1	11/28/19	SO	n/a	n/a	V5E874

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-2, FA70346-3, FA70346-4, FA70346-6

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	99%	79-125%
2037-26-5	Toluene-D8	102%	85-112%
460-00-4	4-Bromofluorobenzene	107%	83-118%

Method Blank Summary

Page 1 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VI1975-MB	I63059.D	1	11/28/19	KB	n/a	n/a	VI1975

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-1, FA70346-5, FA70346-8

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l	

Method Blank Summary

Page 2 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VI1975-MB	I63059.D	1	11/28/19	KB	n/a	n/a	VI1975

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-1, FA70346-5, FA70346-8

6.1.2
6

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	101%	79-125%
2037-26-5	Toluene-D8	94%	85-112%
460-00-4	4-Bromofluorobenzene	96%	83-118%

CAS No. Tentatively Identified Compounds R.T. Est. Conc. Units Q

Total TIC, Volatile ^a 0 ug/l

(a) No TICs detected.

Leachate Blank Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77946-LB	C0137614.D	10	12/04/19	SP	12/03/19	OP77946	VC5493

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-7

6.2.1
6

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	10	3.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
127-18-4	Tetrachloroethylene	ND	10	2.2	ug/l	
79-01-6	Trichloroethylene	ND	10	3.5	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	

CAS No. Surrogate Recoveries

Limits

1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	98%	79-125%
2037-26-5	Toluene-D8	95%	85-112%
460-00-4	4-Bromofluorobenzene	97%	83-118%

Blank Spike Summary

Page 1 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V5E874-BS	5E19306.D	1	11/28/19	SO	n/a	n/a	V5E874

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-2, FA70346-3, FA70346-4, FA70346-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	205	164*	50-147
71-43-2	Benzene	25	23.3	93	81-122
75-27-4	Bromodichloromethane	25	24.4	98	79-123
75-25-2	Bromoform	25	24.0	96	66-123
78-93-3	2-Butanone (MEK)	125	149	119	56-143
75-15-0	Carbon Disulfide	25	21.4	86	66-148
56-23-5	Carbon Tetrachloride	25	25.6	102	76-136
108-90-7	Chlorobenzene	25	22.2	89	82-124
75-00-3	Chloroethane	25	25.1	100	62-144
67-66-3	Chloroform	25	23.8	95	80-124
124-48-1	Dibromochloromethane	25	24.4	98	78-122
75-34-3	1,1-Dichloroethane	25	24.8	99	81-122
107-06-2	1,2-Dichloroethane	25	23.5	94	75-125
75-35-4	1,1-Dichloroethylene	25	25.0	100	78-137
156-59-2	cis-1,2-Dichloroethylene	25	24.3	97	78-120
156-60-5	trans-1,2-Dichloroethylene	25	23.8	95	76-127
78-87-5	1,2-Dichloropropane	25	24.0	96	76-124
10061-01-5	cis-1,3-Dichloropropene	25	23.4	94	75-118
10061-02-6	trans-1,3-Dichloropropene	25	24.0	96	80-120
100-41-4	Ethylbenzene	25	22.2	89	81-121
591-78-6	2-Hexanone	125	130	104	61-129
74-83-9	Methyl Bromide	25	22.9	92	59-143
74-87-3	Methyl Chloride	25	21.3	85	50-159
75-09-2	Methylene Chloride	25	21.7	87	69-135
108-10-1	4-Methyl-2-pentanone (MIBK)	125	126	101	66-122
100-42-5	Styrene	25	22.5	90	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	25.5	102	72-120
127-18-4	Tetrachloroethylene	25	23.0	92	76-135
108-88-3	Toluene	25	22.1	88	80-120
71-55-6	1,1,1-Trichloroethane	25	25.2	101	75-130
79-00-5	1,1,2-Trichloroethane	25	23.3	93	76-119
79-01-6	Trichloroethylene	25	23.7	95	81-126
75-01-4	Vinyl Chloride	25	20.5	82	69-159
1330-20-7	Xylene (total)	75	67.2	90	80-126

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V5E874-BS	5E19306.D	1	11/28/19	SO	n/a	n/a	V5E874

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-2, FA70346-3, FA70346-4, FA70346-6

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	103%	83-118%
17060-07-0	1,2-Dichloroethane-D4	103%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	101%	83-118%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VI1975-BS	I63058.D	1	11/28/19	KB	n/a	n/a	VI1975

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-1, FA70346-5, FA70346-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	140	112	50-147
71-43-2	Benzene	25	22.1	88	81-122
75-27-4	Bromodichloromethane	25	22.2	89	79-123
75-25-2	Bromoform	25	22.3	89	66-123
78-93-3	2-Butanone (MEK)	125	127	102	56-143
75-15-0	Carbon Disulfide	25	20.9	84	66-148
56-23-5	Carbon Tetrachloride	25	23.9	96	76-136
108-90-7	Chlorobenzene	25	22.0	88	82-124
75-00-3	Chloroethane	25	24.4	98	62-144
67-66-3	Chloroform	25	22.3	89	80-124
124-48-1	Dibromochloromethane	25	22.3	89	78-122
75-34-3	1,1-Dichloroethane	25	22.9	92	81-122
107-06-2	1,2-Dichloroethane	25	21.9	88	75-125
75-35-4	1,1-Dichloroethylene	25	23.6	94	78-137
156-59-2	cis-1,2-Dichloroethylene	25	21.5	86	78-120
156-60-5	trans-1,2-Dichloroethylene	25	22.1	88	76-127
78-87-5	1,2-Dichloropropane	25	22.0	88	76-124
10061-01-5	cis-1,3-Dichloropropene	25	21.0	84	75-118
10061-02-6	trans-1,3-Dichloropropene	25	22.0	88	80-120
100-41-4	Ethylbenzene	25	22.0	88	81-121
591-78-6	2-Hexanone	125	114	91	61-129
74-83-9	Methyl Bromide	25	24.9	100	59-143
74-87-3	Methyl Chloride	25	20.6	82	50-159
75-09-2	Methylene Chloride	25	21.8	87	69-135
108-10-1	4-Methyl-2-pentanone (MIBK)	125	111	89	66-122
100-42-5	Styrene	25	21.8	87	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	21.5	86	72-120
127-18-4	Tetrachloroethylene	25	23.2	93	76-135
108-88-3	Toluene	25	21.3	85	80-120
71-55-6	1,1,1-Trichloroethane	25	22.5	90	75-130
79-00-5	1,1,2-Trichloroethane	25	21.6	86	76-119
79-01-6	Trichloroethylene	25	22.1	88	81-126
75-01-4	Vinyl Chloride	25	22.3	89	69-159
1330-20-7	Xylene (total)	75	66.1	88	80-126

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VI1975-BS	I63058.D	1	11/28/19	KB	n/a	n/a	VI1975

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-1, FA70346-5, FA70346-8

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	98%	83-118%

* = Outside of Control Limits.

6.3.2
6

Blank Spike Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VC5493-BS	C0137611.D	10	12/04/19	SP	n/a	n/a	VC5493

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	250	248	99	81-122
78-93-3	2-Butanone (MEK)	1250	1200	96	56-143
56-23-5	Carbon Tetrachloride	250	258	103	76-136
108-90-7	Chlorobenzene	250	245	98	82-124
67-66-3	Chloroform	250	256	102	80-124
106-46-7	1,4-Dichlorobenzene	250	239	96	78-120
107-06-2	1,2-Dichloroethane	250	235	94	75-125
75-35-4	1,1-Dichloroethylene	250	256	102	78-137
127-18-4	Tetrachloroethylene	250	253	101	76-135
79-01-6	Trichloroethylene	250	250	100	81-126
75-01-4	Vinyl Chloride	250	235	94	69-159

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	95%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	99%	83-118%

* = Outside of Control Limits.

6.3.3

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70291-2MS	5E19329.D	5	11/28/19	SO	n/a	n/a	V5E874
FA70291-2MSD	5E19330.D	5	11/28/19	SO	n/a	n/a	V5E874
FA70291-2 ^a	5E19312.D	5	11/28/19	SO	n/a	n/a	V5E874

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-2, FA70346-3, FA70346-4, FA70346-6

CAS No.	Compound	FA70291-2		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
67-64-1	Acetone	130	U	625	823	132	625	1070	171*	26*	50-147/21
71-43-2	Benzene	5.0	U	125	131	105	125	141	113	7	81-122/14
75-27-4	Bromodichloromethane	5.0	U	125	134	107	125	146	117	9	79-123/19
75-25-2	Bromoform	5.0	U	125	118	94	125	132	106	11	66-123/21
78-93-3	2-Butanone (MEK)	25	U	625	752	120	625	862	138	14	56-143/18
75-15-0	Carbon Disulfide	10	U	125	117	94	125	127	102	8	66-148/23
56-23-5	Carbon Tetrachloride	5.0	U	125	142	114	125	153	122	7	76-136/23
108-90-7	Chlorobenzene	5.0	U	125	119	95	125	128	102	7	82-124/14
75-00-3	Chloroethane	10	U	125	153	122	125	157	126	3	62-144/20
67-66-3	Chloroform	5.0	U	125	133	106	125	142	114	7	80-124/15
124-48-1	Dibromochloromethane	5.0	U	125	126	101	125	138	110	9	78-122/19
75-34-3	1,1-Dichloroethane	5.2		125	145	112	125	156	121	7	81-122/15
107-06-2	1,2-Dichloroethane	5.0	U	125	132	106	125	141	113	7	75-125/14
75-35-4	1,1-Dichloroethylene	5.0	U	125	134	107	125	148	118	10	78-137/18
156-59-2	cis-1,2-Dichloroethylene	5.0	U	125	130	104	125	142	114	9	78-120/15
156-60-5	trans-1,2-Dichloroethylene	2.4	I	125	134	105	125	145	114	8	76-127/17
78-87-5	1,2-Dichloropropane	5.0	U	125	134	107	125	143	114	6	76-124/14
10061-01-5	cis-1,3-Dichloropropene	5.0	U	125	128	102	125	138	110	8	75-118/23
10061-02-6	trans-1,3-Dichloropropene	5.0	U	125	129	103	125	139	111	7	80-120/22
100-41-4	Ethylbenzene	5.0	U	125	119	95	125	129	103	8	81-121/14
591-78-6	2-Hexanone	50	U	625	695	111	625	764	122	9	61-129/18
74-83-9	Methyl Bromide	10	U	125	129	103	125	138	110	7	59-143/19
74-87-3	Methyl Chloride	10	U	125	144	115	125	135	108	6	50-159/19
75-09-2	Methylene Chloride	25	U	125	121	97	125	131	105	8	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)	25	U	625	689	110	625	749	120	8	66-122/16
100-42-5	Styrene	5.0	U	125	108	86	125	123	98	13	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U	125	135	108	125	149	119	10	72-120/14
127-18-4	Tetrachloroethylene	5.0	U	125	122	98	125	129	103	6	76-135/16
108-88-3	Toluene	5.0	U	125	119	95	125	129	103	8	80-120/14
71-55-6	1,1,1-Trichloroethane	5.0	U	125	136	109	125	147	118	8	75-130/16
79-00-5	1,1,2-Trichloroethane	5.0	U	125	126	101	125	135	108	7	76-119/14
79-01-6	Trichloroethylene	5.0	U	125	130	104	125	140	112	7	81-126/15
75-01-4	Vinyl Chloride	271		125	402	105	125	394	98	2	69-159/18
1330-20-7	Xylene (total)	15	U	375	359	96	375	388	103	8	80-126/15

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70291-2MS	5E19329.D	5	11/28/19	SO	n/a	n/a	V5E874
FA70291-2MSD	5E19330.D	5	11/28/19	SO	n/a	n/a	V5E874
FA70291-2 ^a	5E19312.D	5	11/28/19	SO	n/a	n/a	V5E874

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-2, FA70346-3, FA70346-4, FA70346-6

CAS No.	Surrogate Recoveries	MS	MSD	FA70291-2	Limits
1868-53-7	Dibromofluoromethane	102%	104%	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	109%	107%	101%	79-125%
2037-26-5	Toluene-D8	96%	97%	103%	85-112%
460-00-4	4-Bromofluorobenzene	101%	100%	108%	83-118%

(a) Sample was not preserved to a pH < 2.

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70346-5MS	I63069.D	1	11/28/19	KB	n/a	n/a	VI1975
FA70346-5MSD	I63070.D	1	11/28/19	KB	n/a	n/a	VI1975
FA70346-5 ^a	I63063.D	1	11/28/19	KB	n/a	n/a	VI1975

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-1, FA70346-5, FA70346-8

CAS No.	Compound	FA70346-5		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
67-64-1	Acetone	ND		125	172	138	125	171	137	1	50-147/21
71-43-2	Benzene	ND		25	24.4	98	25	25.6	102	5	81-122/14
75-27-4	Bromodichloromethane	ND		25	24.9	100	25	26.5	106	6	79-123/19
75-25-2	Bromoform	ND		25	23.4	94	25	25.5	102	9	66-123/21
78-93-3	2-Butanone (MEK)	ND		125	156	125	125	157	126	1	56-143/18
75-15-0	Carbon Disulfide	ND		25	22.0	88	25	23.2	93	5	66-148/23
56-23-5	Carbon Tetrachloride	ND		25	25.8	103	25	27.4	110	6	76-136/23
108-90-7	Chlorobenzene	ND		25	24.0	96	25	25.1	100	4	82-124/14
75-00-3	Chloroethane	ND		25	26.6	106	25	26.7	107	0	62-144/20
67-66-3	Chloroform	0.61	J	25	25.4	99	25	26.8	105	5	80-124/15
124-48-1	Dibromochloromethane	ND		25	24.4	98	25	25.8	103	6	78-122/19
75-34-3	1,1-Dichloroethane	ND		25	25.5	102	25	26.9	108	5	81-122/15
107-06-2	1,2-Dichloroethane	ND		25	24.6	98	25	26.2	105	6	75-125/14
75-35-4	1,1-Dichloroethylene	ND		25	26.5	106	25	27.6	110	4	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND		25	24.0	96	25	24.8	99	3	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND		25	24.5	98	25	25.5	102	4	76-127/17
78-87-5	1,2-Dichloropropane	ND		25	24.3	97	25	26.0	104	7	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND		25	22.6	90	25	24.4	98	8	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND		25	23.9	96	25	25.6	102	7	80-120/22
100-41-4	Ethylbenzene	ND		25	24.2	97	25	25.1	100	4	81-121/14
591-78-6	2-Hexanone	ND		125	147	118	125	146	117	1	61-129/18
74-83-9	Methyl Bromide	ND		25	20.8	83	25	24.3	97	16	59-143/19
74-87-3	Methyl Chloride	ND		25	26.5	106	25	26.0	104	2	50-159/19
75-09-2	Methylene Chloride	ND		25	24.8	99	25	26.4	106	6	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		125	139	111	125	138	110	1	66-122/16
100-42-5	Styrene	ND		25	23.7	95	25	25.1	100	6	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	ND		25	23.6	94	25	25.2	101	7	72-120/14
127-18-4	Tetrachloroethylene	ND		25	26.4	106	25	27.8	111	5	76-135/16
108-88-3	Toluene	0.78	J	25	24.1	93	25	25.2	98	4	80-120/14
71-55-6	1,1,1-Trichloroethane	ND		25	24.7	99	25	26.0	104	5	75-130/16
79-00-5	1,1,2-Trichloroethane	ND		25	23.9	96	25	25.3	101	6	76-119/14
79-01-6	Trichloroethylene	ND		25	24.5	98	25	25.8	103	5	81-126/15
75-01-4	Vinyl Chloride	ND		25	24.0	96	25	23.9	96	0	69-159/18
1330-20-7	Xylene (total)	ND		75	72.4	97	75	76.0	101	5	80-126/15

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70346-5MS	I63069.D	1	11/28/19	KB	n/a	n/a	VI1975
FA70346-5MSD	I63070.D	1	11/28/19	KB	n/a	n/a	VI1975
FA70346-5 ^a	I63063.D	1	11/28/19	KB	n/a	n/a	VI1975

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-1, FA70346-5, FA70346-8

CAS No.	Surrogate Recoveries	MS	MSD	FA70346-5	Limits
1868-53-7	Dibromofluoromethane	103%	102%	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	107%	109%	110%	79-125%
2037-26-5	Toluene-D8	99%	98%	94%	85-112%
460-00-4	4-Bromofluorobenzene	97%	97%	95%	83-118%

(a) Sample was not preserved to a pH < 2.

* = Outside of Control Limits.

6.4.2
6

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70429-2LMS	C0137619.D	10	12/04/19	SP	n/a	n/a	VC5493
FA70429-2LMSD	C0137620.D	10	12/04/19	SP	n/a	n/a	VC5493
FA70429-2L	C0137618.D	10	12/04/19	SP	12/03/19	OP77946	VC5493

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-7

CAS No.	Compound	FA70429-2L Spike		MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD	
		ug/l	Q								
71-43-2	Benzene	ND	250	246	98	250	247	99	0	81-122/14	
78-93-3	2-Butanone (MEK)	ND	1250	1330	106	1250	1200	96	10	56-143/18	
56-23-5	Carbon Tetrachloride	ND	250	258	103	250	256	102	1	76-136/23	
108-90-7	Chlorobenzene	ND	250	246	98	250	246	98	0	82-124/14	
67-66-3	Chloroform	ND	250	252	101	250	252	101	0	80-124/15	
106-46-7	1,4-Dichlorobenzene	ND	250	234	94	250	233	93	0	78-120/15	
107-06-2	1,2-Dichloroethane	3.2	J	250	243	96	250	241	95	1	75-125/14
75-35-4	1,1-Dichloroethylene	ND	250	255	102	250	258	103	1	78-137/18	
127-18-4	Tetrachloroethylene	10.5		250	270	104	250	265	102	2	76-135/16
79-01-6	Trichloroethylene	ND	250	253	101	250	244	98	4	81-126/15	
75-01-4	Vinyl Chloride	ND	250	251	100	250	256	102	2	69-159/18	

CAS No.	Surrogate Recoveries	MS	MSD	FA70429-2L Limits
1868-53-7	Dibromofluoromethane	99%	101%	99%-118%
17060-07-0	1,2-Dichloroethane-D4	97%	98%	98%-125%
2037-26-5	Toluene-D8	98%	98%	95%-112%
460-00-4	4-Bromofluorobenzene	98%	98%	98%-118%

* = Outside of Control Limits.

6.4.3
6

Duplicate Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70346-7DUP	C0137616.D	10	12/04/19	SP	n/a	n/a	VC5493
FA70346-7	C0137615.D	10	12/04/19	SP	12/03/19	OP77946	VC5493

The QC reported here applies to the following samples:

Method: SW846 8260B

FA70346-7

CAS No.	Compound	FA70346-7		Q	RPD	Limits
		ug/l	DUP ug/l			
71-43-2	Benzene	ND	ND	nc	14	
78-93-3	2-Butanone (MEK)	ND	ND	nc	18	
56-23-5	Carbon Tetrachloride	ND	ND	nc	23	
108-90-7	Chlorobenzene	ND	ND	nc	14	
67-66-3	Chloroform	ND	ND	nc	15	
106-46-7	1,4-Dichlorobenzene	ND	ND	nc	15	
107-06-2	1,2-Dichloroethane	29.8	24.2	21*	14	
75-35-4	1,1-Dichloroethylene	ND	ND	nc	18	
127-18-4	Tetrachloroethylene	ND	ND	nc	16	
79-01-6	Trichloroethylene	ND	ND	nc	15	
75-01-4	Vinyl Chloride	ND	ND	nc	18	

CAS No.	Surrogate Recoveries	DUP	FA70346-7	Limits
1868-53-7	Dibromofluoromethane	99%	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	101%	99%	79-125%
2037-26-5	Toluene-D8	96%	96%	85-112%
460-00-4	4-Bromofluorobenzene	98%	95%	83-118%

* = Outside of Control Limits.

6.5.1

MS Semi-volatiles**QC Data Summaries**

7

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-MB	X068285.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	50	10	ug/l	
59-50-7	4-Chloro-3-methyl Phenol	ND	5.0	0.59	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.63	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	0.84	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	0.74	ug/l	
51-28-5	2,4-Dinitrophenol	ND	25	5.0	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	2.0	ug/l	
95-48-7	2-Methylphenol	ND	5.0	0.56	ug/l	
	3&4-Methylphenol	ND	5.0	0.98	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.85	ug/l	
100-02-7	4-Nitrophenol	ND	25	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	25	5.0	ug/l	
108-95-2	Phenol	ND	5.0	0.50	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	0.74	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.75	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.63	ug/l	
208-96-8	Acenaphthylene	ND	5.0	0.64	ug/l	
120-12-7	Anthracene	ND	5.0	0.80	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.76	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.0	0.78	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.78	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.82	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.86	ug/l	
100-51-6	Benzyl Alcohol	ND	5.0	0.61	ug/l	
101-55-3	4-Bromophenyl Phenyl Ether	ND	5.0	0.85	ug/l	
85-68-7	Butyl Benzyl Phthalate	ND	5.0	1.0	ug/l	
86-74-8	Carbazole	ND	5.0	0.60	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.63	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.81	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.73	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	5.0	0.76	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.50	ug/l	
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.0	0.54	ug/l	
218-01-9	Chrysene	ND	5.0	0.85	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.80	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.60	ug/l	

7
1

Method Blank Summary

Page 2 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-MB	X068285.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	5.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.64	ug/l	
84-66-2	Diethyl Phthalate	ND	5.0	1.0	ug/l	
131-11-3	Dimethyl Phthalate	ND	5.0	1.0	ug/l	
84-74-2	Di-n-butyl Phthalate	ND	5.0	1.0	ug/l	
117-84-0	Di-n-octyl Phthalate	ND	5.0	1.0	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.0	0.81	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.0	0.71	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	1.0	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.55	ug/l	
86-73-7	Fluorene	ND	5.0	0.70	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.69	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.0	1.8	ug/l	
67-72-1	Hexachloroethane	ND	5.0	1.6	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.71	ug/l	
78-59-1	Isophorone	ND	5.0	0.78	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.60	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	1.8	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.88	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	1.2	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.93	ug/l	
621-64-7	N-Nitrosodi-n-propylamine	ND	5.0	0.67	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.81	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.86	ug/l	
129-00-0	Pyrene	ND	5.0	0.68	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.1	ug/l	

CAS No.	Surrogate Recoveries	Limits	
367-12-4	2-Fluorophenol	35%	14-67%
4165-62-2	Phenol-d5	25%	10-50%

7
1

Method Blank Summary

Page 3 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-MB	X068285.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Surrogate Recoveries	Limits	
118-79-6	2,4,6-Tribromophenol	53%	33-118%
4165-60-0	Nitrobenzene-d5	68%	42-108%
321-60-8	2-Fluorobiphenyl	58%	40-106%
1718-51-0	Terphenyl-d14	63%	39-121%

Leachate Blank Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP78150-LB	X068516.D	1	12/16/19	MV	12/16/19	OP78150	SX2815

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-7

CAS No.	Compound	Result	RL	MDL	Units	Q
95-48-7	2-Methylphenol	ND	50	5.6	ug/l	
	3&4-Methylphenol	ND	50	9.8	ug/l	
87-86-5	Pentachlorophenol	ND	250	50	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	50	7.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	50	7.5	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	50	5.0	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	50	8.1	ug/l	
118-74-1	Hexachlorobenzene	ND	50	6.9	ug/l	
87-68-3	Hexachlorobutadiene	ND	50	5.0	ug/l	
67-72-1	Hexachloroethane	ND	50	16	ug/l	
98-95-3	Nitrobenzene	ND	50	9.3	ug/l	
110-86-1	Pyridine	ND	100	20	ug/l	

CAS No.	Surrogate Recoveries	Limits
367-12-4	2-Fluorophenol	35% 14-67%
4165-62-2	Phenol-d5	24% 10-50%
118-79-6	2,4,6-Tribromophenol	77% 33-118%
4165-60-0	Nitrobenzene-d5	78% 42-108%
321-60-8	2-Fluorobiphenyl	76% 40-106%
1718-51-0	Terphenyl-d14	84% 39-121%

Blank Spike Summary

Page 1 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-BS	X068284.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
65-85-0	Benzoic Acid	100	26.8	27	10-69
59-50-7	4-Chloro-3-methyl Phenol	50	37.3	75	54-103
95-57-8	2-Chlorophenol	50	30.4	61	52-98
120-83-2	2,4-Dichlorophenol	50	34.0	68	53-103
105-67-9	2,4-Dimethylphenol	50	31.3	63	43-90
51-28-5	2,4-Dinitrophenol	100	68.1	68	44-112
534-52-1	4,6-Dinitro-o-cresol	100	80.3	80	66-121
95-48-7	2-Methylphenol	50	26.8	54	43-90
	3&4-Methylphenol	100	50.1	50	36-88
88-75-5	2-Nitrophenol	50	33.3	67	53-102
100-02-7	4-Nitrophenol	100	37.4	37	18-62
87-86-5	Pentachlorophenol	100	77.8	78	61-115
108-95-2	Phenol	50	14.3	29	19-56
95-95-4	2,4,5-Trichlorophenol	50	34.8	70	62-109
88-06-2	2,4,6-Trichlorophenol	50	36.3	73	59-107
83-32-9	Acenaphthene	50	34.3	69	61-107
208-96-8	Acenaphthylene	50	35.9	72	60-104
120-12-7	Anthracene	50	35.9	72	65-108
56-55-3	Benzo(a)anthracene	50	38.9	78	66-111
50-32-8	Benzo(a)pyrene	50	36.7	73	62-107
205-99-2	Benzo(b)fluoranthene	50	38.1	76	65-114
191-24-2	Benzo(g,h,i)perylene	50	35.5	71	66-116
207-08-9	Benzo(k)fluoranthene	50	39.5	79	65-114
100-51-6	Benzyl Alcohol	50	25.8	52	46-94
101-55-3	4-Bromophenyl Phenyl Ether	50	35.5	71	65-109
85-68-7	Butyl Benzyl Phthalate	50	43.3	87	65-112
86-74-8	Carbazole	50	38.5	77	59-113
106-47-8	4-Chloroaniline	50	31.8	64	49-105
111-91-1	bis(2-Chloroethoxy)methane	50	36.0	72	51-102
111-44-4	bis(2-Chloroethyl)ether	50	33.0	66	53-100
108-60-1	2,2'-Oxybis(1-chloropropane)	50	43.3	87	45-106
91-58-7	2-Chloronaphthalene	50	32.9	66	57-103
7005-72-3	4-Chlorophenyl Phenyl Ether	50	35.0	70	62-105
218-01-9	Chrysene	50	39.0	78	66-111
53-70-3	Dibenzo(a,h)anthracene	50	34.6	69	66-119
132-64-9	Dibenzofuran	50	34.8	70	61-106

* = Outside of Control Limits.

7.3.1
7

Blank Spike Summary

Page 2 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-BS	X068284.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
95-50-1	1,2-Dichlorobenzene	50	28.2	56	48-97
541-73-1	1,3-Dichlorobenzene	50	27.8	56	45-95
106-46-7	1,4-Dichlorobenzene	50	28.0	56	45-98
91-94-1	3,3'-Dichlorobenzidine	50	35.5	71	46-117
84-66-2	Diethyl Phthalate	50	39.3	79	64-108
131-11-3	Dimethyl Phthalate	50	38.0	76	63-106
84-74-2	Di-n-butyl Phthalate	50	41.9	84	65-107
117-84-0	Di-n-octyl Phthalate	50	42.5	85	62-118
121-14-2	2,4-Dinitrotoluene	50	35.8	72	61-110
606-20-2	2,6-Dinitrotoluene	50	33.5	67	63-108
117-81-7	bis(2-Ethylhexyl)phthalate	50	42.8	86	61-117
206-44-0	Fluoranthene	50	37.0	74	63-106
86-73-7	Fluorene	50	36.1	72	62-108
118-74-1	Hexachlorobenzene	50	32.7	65	63-108
87-68-3	Hexachlorobutadiene	50	27.9	56	42-102
77-47-4	Hexachlorocyclopentadiene	50	25.5	51	39-102
67-72-1	Hexachloroethane	50	29.2	58	42-100
193-39-5	Indeno(1,2,3-cd)pyrene	50	33.7	67	64-119
78-59-1	Isophorone	50	35.9	72	43-87
91-57-6	2-Methylnaphthalene	50	31.6	63	51-102
91-20-3	Naphthalene	50	30.9	62	47-100
88-74-4	2-Nitroaniline	50	44.6	89	54-128
99-09-2	3-Nitroaniline	50	36.0	72	56-106
100-01-6	4-Nitroaniline	50	36.5	73	55-120
98-95-3	Nitrobenzene	50	36.0	72	50-104
621-64-7	N-Nitrosodi-n-propylamine	50	37.4	75	52-104
86-30-6	N-Nitrosodiphenylamine	50	37.4	75	64-108
85-01-8	Phenanthrene	50	37.5	75	66-110
129-00-0	Pyrene	50	39.0	78	64-113
120-82-1	1,2,4-Trichlorobenzene	50	28.4	57	45-97

CAS No.	Surrogate Recoveries	BSP	Limits
367-12-4	2-Fluorophenol	37%	14-67%
4165-62-2	Phenol-d5	28%	10-50%

* = Outside of Control Limits.

7.3.1
7

Blank Spike Summary

Page 3 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-BS	X068284.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

7.3.1
7

CAS No.	Surrogate Recoveries	BSP	Limits
118-79-6	2,4,6-Tribromophenol	64%	33-118%
4165-60-0	Nitrobenzene-d5	69%	42-108%
321-60-8	2-Fluorobiphenyl	63%	40-106%
1718-51-0	Terphenyl-d14	66%	39-121%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP78150-LBS	X068515.D	1	12/16/19	MV	12/16/19	OP78150	SX2815

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
95-48-7	2-Methylphenol	500	301	60	43-90
	3&4-Methylphenol	1000	556	56	36-88
87-86-5	Pentachlorophenol	1000	865	87	61-115
95-95-4	2,4,5-Trichlorophenol	500	444	89	62-109
88-06-2	2,4,6-Trichlorophenol	500	478	96	59-107
106-46-7	1,4-Dichlorobenzene	500	343	69	45-98
121-14-2	2,4-Dinitrotoluene	500	450	90	61-110
118-74-1	Hexachlorobenzene	500	429	86	63-108
87-68-3	Hexachlorobutadiene	500	368	74	42-102
67-72-1	Hexachloroethane	500	346	69	42-100
98-95-3	Nitrobenzene	500	402	80	50-104
110-86-1	Pyridine	500	221	44	23-74

CAS No.	Surrogate Recoveries	BSP	Limits
367-12-4	2-Fluorophenol	38%	14-67%
4165-62-2	Phenol-d5	26%	10-50%
118-79-6	2,4,6-Tribromophenol	85%	33-118%
4165-60-0	Nitrobenzene-d5	79%	42-108%
321-60-8	2-Fluorobiphenyl	81%	40-106%
1718-51-0	Terphenyl-d14	79%	39-121%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-MS	X068287.D	1	12/04/19	MV	12/02/19	OP77932	SX2807
OP77932-MSD	X068288.D	1	12/04/19	MV	12/02/19	OP77932	SX2807
FA70346-8	X068286.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Compound	FA70346-8		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
65-85-0	Benzoic Acid	ND	200	61.9	31	200	68.6	34	10	10-69/39	
59-50-7	4-Chloro-3-methyl Phenol	ND	100	78.0	78	100	77.9	78	0	54-103/23	
95-57-8	2-Chlorophenol	ND	100	44.5	45*	100	61.3	61	32*	52-98/25	
120-83-2	2,4-Dichlorophenol	ND	100	66.8	67	100	72.5	73	8	53-103/26	
105-67-9	2,4-Dimethylphenol	ND	100	56.8	57	100	65.7	66	15	43-90/27	
51-28-5	2,4-Dinitrophenol	ND	200	136	68	200	138	69	1	44-112/25	
534-52-1	4,6-Dinitro-o-cresol	ND	200	157	79	200	157	79	0	66-121/23	
95-48-7	2-Methylphenol	ND	100	45.2	45	100	56.8	57	23	43-90/28	
	3&4-Methylphenol	ND	200	94.3	47	200	110	55	15	36-88/28	
88-75-5	2-Nitrophenol	ND	100	45.2	45*	100	64.4	64	35*	53-102/29	
100-02-7	4-Nitrophenol	ND	200	92.8	46	200	91.9	46	1	18-62/33	
87-86-5	Pentachlorophenol	ND	200	154	77	200	149	75	3	61-115/26	
108-95-2	Phenol	ND	100	28.4	28	100	36.8	37	26	19-56/35	
95-95-4	2,4,5-Trichlorophenol	ND	100	72.0	72	100	73.5	74	2	62-109/22	
88-06-2	2,4,6-Trichlorophenol	ND	100	69.8	70	100	75.5	76	8	59-107/23	
83-32-9	Acenaphthene	ND	100	60.5	61	100	71.4	71	17	61-107/22	
208-96-8	Acenaphthylene	ND	100	62.4	62	100	72.9	73	16	60-104/22	
120-12-7	Anthracene	ND	100	68.6	69	100	69.2	69	1	65-108/20	
56-55-3	Benzo(a)anthracene	ND	100	79.6	80	100	76.7	77	4	66-111/22	
50-32-8	Benzo(a)pyrene	ND	100	70.1	70	100	68.2	68	3	62-107/23	
205-99-2	Benzo(b)fluoranthene	ND	100	77.3	77	100	74.3	74	4	65-114/23	
191-24-2	Benzo(g,h,i)perylene	ND	100	70.4	70	100	68.7	69	2	66-116/23	
207-08-9	Benzo(k)fluoranthene	ND	100	81.3	81	100	79.1	79	3	65-114/24	
100-51-6	Benzyl Alcohol	ND	100	41.5	42*	100	54.8	55	28*	46-94/27	
101-55-3	4-Bromophenyl Phenyl Ether	ND	100	68.4	68	100	71.3	71	4	65-109/23	
85-68-7	Butyl Benzyl Phthalate	ND	100	87.3	87	100	85.0	85	3	65-112/24	
86-74-8	Carbazole	ND	100	78.4	78	100	76.1	76	3	59-113/21	
106-47-8	4-Chloroaniline	ND	100	51.9	52	100	36.3	36*	35*	49-105/27	
111-91-1	bis(2-Chloroethoxy)methane	ND	100	48.5	49*	100	70.2	70	37*	51-102/28	
111-44-4	bis(2-Chloroethyl)ether	ND	100	43.3	43*	100	65.1	65	40*	53-100/27	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	100	55.5	56	100	83.9	84	41*	45-106/26	
91-58-7	2-Chloronaphthalene	ND	100	53.3	53*	100	67.6	68	24*	57-103/23	
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	100	64.5	65	100	71.1	71	10	62-105/20	
218-01-9	Chrysene	ND	100	77.5	78	100	76.1	76	2	66-111/22	
53-70-3	Dibenzo(a,h)anthracene	ND	100	68.3	68	100	68.3	68	0	66-119/24	
132-64-9	Dibenzofuran	ND	100	64.2	64	100	71.9	72	11	61-106/21	

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-MS	X068287.D	1	12/04/19	MV	12/02/19	OP77932	SX2807
OP77932-MSD	X068288.D	1	12/04/19	MV	12/02/19	OP77932	SX2807
FA70346-8	X068286.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Compound	FA70346-8		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
95-50-1	1,2-Dichlorobenzene	ND	100	39.0	39*	100	58.2	58	40*	48-97/24	
541-73-1	1,3-Dichlorobenzene	ND	100	38.4	38*	100	58.3	58	41*	45-95/25	
106-46-7	1,4-Dichlorobenzene	ND	100	38.1	38*	100	57.7	58	41*	45-98/25	
91-94-1	3,3'-Dichlorobenzidine	ND	100	5.8	6*	100	3.3	3*	55*	46-117/29	
84-66-2	Diethyl Phthalate	ND	100	76.5	77	100	78.9	79	3	64-108/21	
131-11-3	Dimethyl Phthalate	ND	100	70.1	70	100	75.8	76	8	63-106/22	
84-74-2	Di-n-butyl Phthalate	ND	100	84.5	85	100	82.3	82	3	65-107/21	
117-84-0	Di-n-octyl Phthalate	ND	100	90.2	90	100	86.7	87	4	62-118/24	
121-14-2	2,4-Dinitrotoluene	ND	100	69.3	69	100	72.1	72	4	61-110/21	
606-20-2	2,6-Dinitrotoluene	ND	100	64.0	64	100	69.0	69	8	63-108/21	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	100	87.4	87	100	84.2	84	4	61-117/23	
206-44-0	Fluoranthene	ND	100	75.5	76	100	74.8	75	1	63-106/21	
86-73-7	Fluorene	ND	100	67.8	68	100	74.0	74	9	62-108/20	
118-74-1	Hexachlorobenzene	ND	100	62.8	63	100	65.1	65	4	63-108/22	
87-68-3	Hexachlorobutadiene	ND	100	37.4	37*	100	57.4	57	42*	42-102/28	
77-47-4	Hexachlorocyclopentadiene	ND	100	33.4	33*	100	51.6	52	43*	39-102/29	
67-72-1	Hexachloroethane	ND	100	38.8	39*	100	61.3	61	45*	42-100/29	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	100	68.3	68	100	67.4	67	1	64-119/24	
78-59-1	Isophorone	ND	100	47.8	48	100	67.2	67	34*	43-87/25	
91-57-6	2-Methylnaphthalene	ND	100	47.6	48*	100	63.2	63	28*	51-102/26	
91-20-3	Naphthalene	ND	100	43.4	43*	100	62.6	63	36*	47-100/29	
88-74-4	2-Nitroaniline	ND	100	86.4	86	100	90.7	91	5	54-128/24	
99-09-2	3-Nitroaniline	ND	100	66.2	66	100	52.0	52*	24	56-106/27	
100-01-6	4-Nitroaniline	ND	100	69.0	69	100	66.2	66	4	55-120/24	
98-95-3	Nitrobenzene	ND	100	52.4	52	100	73.7	74	34*	50-104/28	
621-64-7	N-Nitrosodi-n-propylamine	ND	100	47.6	48*	100	70.1	70	38*	52-104/25	
86-30-6	N-Nitrosodiphenylamine	ND	100	62.0	62*	100	63.3	63*	2	64-108/23	
85-01-8	Phenanthrene	ND	100	72.6	73	100	74.3	74	2	66-110/21	
129-00-0	Pyrene	ND	100	76.3	76	100	75.4	75	1	64-113/23	
120-82-1	1,2,4-Trichlorobenzene	ND	100	39.1	39*	100	57.2	57	38*	45-97/28	

CAS No.	Surrogate Recoveries	MS	MSD	FA70346-8	Limits
367-12-4	2-Fluorophenol	30%	44%	19%	14-67%
4165-62-2	Phenol-d5	28%	36%	13%	10-50%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 3 of 3

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP77932-MS	X068287.D	1	12/04/19	MV	12/02/19	OP77932	SX2807
OP77932-MSD	X068288.D	1	12/04/19	MV	12/02/19	OP77932	SX2807
FA70346-8	X068286.D	1	12/04/19	MV	12/02/19	OP77932	SX2807

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-8

CAS No.	Surrogate Recoveries	MS	MSD	FA70346-8	Limits
118-79-6	2,4,6-Tribromophenol	64%	62%	56%	33-118%
4165-60-0	Nitrobenzene-d5	47%	68%	52%	42-108%
321-60-8	2-Fluorobiphenyl	49%	64%	48%	40-106%
1718-51-0	Terphenyl-d14	65%	64%	56%	39-121%

* = Outside of Control Limits.

7.4.1

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP78150-MS	X068518.D	1	12/16/19	MV	12/16/19	OP78150	SX2815
OP78150-MSD	X068519.D	1	12/16/19	MV	12/16/19	OP78150	SX2815
FA70346-7	X068517.D	1	12/16/19	MV	12/16/19	OP78150	SX2815

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-7

CAS No.	Compound	FA70346-7		Spike	MS	MS	Spike	MSD	MSD	RPD	Limits Rec/RPD
		ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%		
95-48-7	2-Methylphenol	ND		500	261	52	500	222	44	16	43-90/28
	3&4-Methylphenol	ND		1000	481	48	1000	414	41	15	36-88/28
87-86-5	Pentachlorophenol	ND		1000	817	82	1000	759	76	7	61-115/26
95-95-4	2,4,5-Trichlorophenol	ND		500	401	80	500	351	70	13	62-109/22
88-06-2	2,4,6-Trichlorophenol	ND		500	440	88	500	375	75	16	59-107/23
106-46-7	1,4-Dichlorobenzene	ND		500	342	68	500	287	57	17	45-98/25
121-14-2	2,4-Dinitrotoluene	ND		500	414	83	500	364	73	13	61-110/21
118-74-1	Hexachlorobenzene	ND		500	394	79	500	353	71	11	63-108/22
87-68-3	Hexachlorobutadiene	ND		500	363	73	500	295	59	21	42-102/28
67-72-1	Hexachloroethane	ND		500	351	70	500	279	56	23	42-100/29
98-95-3	Nitrobenzene	ND		500	375	75	500	321	64	16	50-104/28
110-86-1	Pyridine	ND		500	194	39	500	166	33	16	23-74/34

CAS No.	Surrogate Recoveries	MS	MSD	FA70346-7	Limits
367-12-4	2-Fluorophenol	32%	28%	31%	14-67%
4165-62-2	Phenol-d5	22%	19%	20%	10-50%
118-79-6	2,4,6-Tribromophenol	79%	70%	80%	33-118%
4165-60-0	Nitrobenzene-d5	73%	62%	75%	42-108%
321-60-8	2-Fluorobiphenyl	74%	64%	78%	40-106%
1718-51-0	Terphenyl-d14	76%	66%	83%	39-121%

* = Outside of Control Limits.

7.4.2

Duplicate Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP78150-DUP	X068522.D	1	12/16/19	MV	12/16/19	OP78150	SX2815
FA70659-2	X068521.D	1	12/16/19	MV	12/16/19	OP78150	SX2815

The QC reported here applies to the following samples:

Method: SW846 8270D

FA70346-7

CAS No.	Compound	FA70659-2		DUP	Q	RPD	Limits
		ug/l	ug/l				
95-48-7	2-Methylphenol	ND	ND		nc		28
	3&4-Methylphenol	ND	ND		nc		28
87-86-5	Pentachlorophenol	ND	ND		nc		26
95-95-4	2,4,5-Trichlorophenol	ND	ND		nc		22
88-06-2	2,4,6-Trichlorophenol	ND	ND		nc		23
106-46-7	1,4-Dichlorobenzene	ND	ND		nc		25
121-14-2	2,4-Dinitrotoluene	ND	ND		nc		21
118-74-1	Hexachlorobenzene	ND	ND		nc		22
87-68-3	Hexachlorobutadiene	ND	ND		nc		28
67-72-1	Hexachloroethane	ND	ND		nc		29
98-95-3	Nitrobenzene	ND	ND		nc		28
110-86-1	Pyridine	ND	ND		nc		34

CAS No.	Surrogate Recoveries	DUP	FA70659-2	Limits
367-12-4	2-Fluorophenol	32%	37%	14-67%
4165-62-2	Phenol-d5	21%	26%	10-50%
118-79-6	2,4,6-Tribromophenol	80%	84%	33-118%
4165-60-0	Nitrobenzene-d5	73%	78%	42-108%
321-60-8	2-Fluorobiphenyl	77%	83%	40-106%
1718-51-0	Terphenyl-d14	86%	89%	39-121%

* = Outside of Control Limits.

75.1

GC Volatiles**QC Data Summaries****8**

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GLL2437-MB	LL70747.D	1	12/05/19	KB	n/a	n/a	GLL2437

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FA70346-2, FA70346-3, FA70346-5, FA70346-6

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	ND	0.50	0.16	ug/l	
74-84-0	Ethane	ND	1.0	0.32	ug/l	
74-85-1	Ethene	ND	1.0	0.43	ug/l	

8.1.1
8

Blank Spike/Blank Spike Duplicate Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GLL2437-BS	LL70748.D	1	12/05/19	KB	n/a	n/a	GLL2437
GLL2437-BSD	LL70749.D	1	12/05/19	KB	n/a	n/a	GLL2437

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FA70346-2, FA70346-3, FA70346-5, FA70346-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
74-82-8	Methane	108	125	116	123	114	2	62-139/30
74-84-0	Ethane	219	238	109	233	106	2	67-141/30
74-85-1	Ethene	290	332	114	324	112	2	68-141/30

* = Outside of Control Limits.

Matrix Spike Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70330-6MS	LL70759.D	1	12/05/19	KB	n/a	n/a	GLL2437
FA70330-6	LL70750.D	1	12/05/19	KB	n/a	n/a	GLL2437

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FA70346-2, FA70346-3, FA70346-5, FA70346-6

CAS No.	Compound	FA70330-6		Spike	MS	MS	Limits
		ug/l	Q	ug/l	ug/l	%	
74-82-8	Methane	197		108	394	182* a	62-139
74-84-0	Ethane		1.0 U	219	248	113	67-141
74-85-1	Ethene		1.0 U	290	345	119	68-141

(a) Outside control limits due to high level in sample relative to spike amount.

* = Outside of Control Limits.

Duplicate Summary

Page 1 of 1

Job Number: FA70346

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA70330-6DUP	LL70758.D	1	12/05/19	KB	n/a	n/a	GLL2437
FA70330-6	LL70750.D	1	12/05/19	KB	n/a	n/a	GLL2437

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FA70346-2, FA70346-3, FA70346-5, FA70346-6

CAS No.	Compound	FA70330-6		DUP		Q	RPD	Limits
		ug/l	Q	ug/l				
74-82-8	Methane	197		218		10		30
74-84-0	Ethane	1.0 U		ND		nc		30
74-85-1	Ethene	1.0 U		ND		nc		30

* = Outside of Control Limits.

8.4.1
8

Metals Analysis**QC Data Summaries**

6

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA70346
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36487
Matrix Type: AQUEOUS

Methods: SW846 6010D
Units: ug/l

Prep Date:

12/02/19

Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1	-0.90	<6.0
Arsenic	10	1.3	1.3	-1.1	<10
Barium	200	1	1		
Beryllium	4.0	.2	.2	0.030	<4.0
Cadmium	5.0	.2	.2	0.020	<5.0
Calcium	1000	50	50		
Chromium	10	1	1	0.20	<10
Cobalt	50	.2	.2		
Copper	25	1	1	0.50	<25
Iron	300	17	17		
Lead	5.0	1	1.1	0.30	<5.0
Magnesium	5000	35	35		
Manganese	15	.5	1		
Molybdenum	50	.3	.3		
Nickel	40	.4	.4	0.0	<40
Potassium	10000	200	200		
Selenium	10	2.4	2.9	0.60	<10
Silver	10	.7	.7	-0.30	<10
Sodium	10000	500	500		
Strontium	10	.5	.5		
Thallium	10	1.1	1.4	-2.0	<10
Tin	50	.9	1		
Titanium	10	.5	1		
Vanadium	50	.5	.6		
Zinc	20	3	4.4	1.8	<20

Associated samples MP36487: FA70346-8

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36487
Matrix Type: AQUEOUSMethods: SW846 6010D
Units: ug/l

Prep Date:

12/02/19

12/02/19

Metal	FA70398-1 Original	FA70398-1 DUP	RPD	QC Limits	FA70398-1 Original	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum								
Antimony	0.0	0.0	NC	0-20	0.0	485	500	97.0
Arsenic	0.0	0.0	NC	0-20	0.0	1850	2000	92.5
Barium								
Beryllium	0.0	0.0	NC	0-20	0.0	48.2	50	96.4
Cadmium	0.0	0.0	NC	0-20	0.0	46.3	50	92.6
Calcium								
Chromium	1.4	1.6	13.3	0-20	1.4	193	200	95.8
Cobalt	anr							
Copper	2.6	2.7	3.8	0-20	2.6	244	250	96.6
Iron	anr							
Lead	0.0	0.0	NC	0-20	0.0	456	500	91.2
Magnesium								
Manganese								
Molybdenum	anr							
Nickel	5.6	5.4	3.6	0-20	5.6	477	500	94.3
Potassium								
Selenium	3.5	0.0	200.0(a)	0-20	3.5	1860	2000	92.8
Silver	0.0	0.0	NC	0-20	0.0	46.0	50	92.0
Sodium	anr							
Strontium								
Thallium	0.0	0.0	NC	0-20	0.0	1830	2000	91.5
Tin	anr							
Titanium								
Vanadium								
Zinc	45.6	44.3	2.9	0-20	45.6	506	500	92.1

Associated samples MP36487: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) RPD acceptable due to low duplicate and sample concentrations.

9.1.2

9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36487
Matrix Type: AQUEOUSMethods: SW846 6010D
Units: ug/l

Prep Date:

12/02/19

Metal	FA70398-1 Original MSD	Spikelot MPFLICP2	% Rec	MSD RPD	QC Limit
Aluminum					
Antimony	0.0	487	500	97.4	0.4
Arsenic	0.0	1850	2000	92.5	0.0
Barium					
Beryllium	0.0	47.9	50	95.8	0.6
Cadmium	0.0	46.3	50	92.6	0.0
Calcium					
Chromium	1.4	192	200	95.3	0.5
Cobalt	anr				
Copper	2.6	244	250	96.6	0.0
Iron	anr				
Lead	0.0	453	500	90.6	0.7
Magnesium					
Manganese	anr				
Molybdenum	anr				
Nickel	5.6	477	500	94.3	0.0
Potassium					
Selenium	3.5	1870	2000	93.3	0.5
Silver	0.0	45.5	50	91.0	1.1
Sodium	anr				
Strontium					
Thallium	0.0	1830	2000	91.5	0.0
Tin	anr				
Titanium					
Vanadium					
Zinc	45.6	510	500	92.9	0.8

Associated samples MP36487: FA70346-8

Results < IDL are shown as zero for calculation purposes
 (*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits
 (anr) Analyte not requested

9.1.2

9

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36487
Matrix Type: AQUEOUSMethods: SW846 6010D
Units: ug/l

Prep Date:

12/02/19

Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony	473	500	94.6	80-120
Arsenic	1800	2000	90.0	80-120
Barium				
Beryllium	47.2	50	94.4	80-120
Cadmium	46.1	50	92.2	80-120
Calcium				
Chromium	191	200	95.5	80-120
Cobalt	anr			
Copper	235	250	94.0	80-120
Iron	anr			
Lead	442	500	88.4	80-120
Magnesium				
Manganese				
Molybdenum	anr			
Nickel	467	500	93.4	80-120
Potassium				
Selenium	1810	2000	90.5	80-120
Silver	44.1	50	88.2	80-120
Sodium	anr			
Strontium				
Thallium	1770	2000	88.5	80-120
Tin	anr			
Titanium				
Vanadium				
Zinc	462	500	92.4	80-120

Associated samples MP36487: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

9.1.3
9

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36487
Matrix Type: AQUEOUSMethods: SW846 6010D
Units: ug/l

Prep Date:

12/02/19

Metal	FA70398-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony	0.00	0.00	NC	0-10
Arsenic	0.00	0.00	NC	0-10
Barium				
Beryllium	0.00	0.00	NC	0-10
Cadmium	0.00	0.00	NC	0-10
Calcium				
Chromium	1.40	0.00	100.0(a)	0-10
Cobalt	anr			
Copper	2.60	0.00	100.0(a)	0-10
Iron	anr			
Lead	0.00	0.00	NC	0-10
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	5.60	6.70	19.6 (a)	0-10
Potassium				
Selenium	3.50	0.00	100.0(a)	0-10
Silver	0.00	0.00	NC	0-10
Sodium	anr			
Strontium				
Thallium	0.00	0.00	NC	0-10
Tin	anr			
Titanium				
Vanadium				
Zinc	45.6	49.2	7.9	0-10

Associated samples MP36487: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

9.14

9

POST DIGESTATE SPIKE SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36487
Matrix Type: AQUEOUSMethods: SW846 6010D
Units: ug/l

Prep Date:

12/02/19

Metal	Sample ml	Final ml	FA70398-1 Raw	Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony	9.8	10			94	0.2	5	100	94.0	80-120
Arsenic	9.8	10			94.7	0.2	5	100	94.7	80-120
Barium										
Beryllium	9.8	10			46.69	0.2	2.5	50	93.4	80-120
Cadmium	9.8	10			45.56	0.2	2.5	50	91.1	80-120
Calcium										
Chromium	9.8	10	1.4	1.372	48.1	0.2	2.5	50	93.5	80-120
Cobalt										
Copper	9.8	10	2.6	2.548	96.8	0.2	5	100	94.3	80-120
Iron										
Lead	9.8	10			44.6	0.2	2.5	50	89.2	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel	9.8	10	5.6	5.488	97	0.2	5	100	91.5	80-120
Potassium										
Selenium	9.8	10	3.5	3.43	89.2	0.2	5	100	85.8	80-120
Silver	9.8	10			45.7	0.2	2.5	50	91.4	80-120
Sodium										
Strontium										
Thallium	9.8	10			87.5	0.2	5	100	87.5	80-120
Tin										
Titanium										
Vanadium										
Zinc	9.8	10	45.6	44.688	275	0.2	12.5	250	92.1	80-120

Associated samples MP36487: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(**) Corr. sample result = Raw * (sample volume / final volume)

(anr) Analyte not requested

9.15

6

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36489
Matrix Type: AQUEOUS

Methods: SW846 7470A
Units: ug/l

Prep Date: 12/02/19

Metal	RL	IDL	MDL	MB raw	final
Mercury	0.50	.03	.03	0.097	<0.50

Associated samples MP36489: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

9.2.1
9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36489
Matrix Type: AQUEOUSMethods: SW846 7470A
Units: ug/l

Prep Date:

12/02/19

12/02/19

Metal	FA70348-3F Original DUP	RPD	QC Limits	FA70348-3F Original MS	Spikelot HGFLWS1	% Rec	QC Limits
Mercury	0.0	0.0	NC	0-20	0.0	2.9	3 96.7 80-120

Associated samples MP36489: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

9.2.2
9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36489
Matrix Type: AQUEOUSMethods: SW846 7470A
Units: ug/l

Prep Date:

12/02/19

Metal	FA70348-3F Original	MSD HGFLWS1	Spikelot % Rec	MSD RPD	QC Limit
Mercury	0.0	2.9	3	96.7	0.0 20

Associated samples MP36489: FA70346-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

9.2.2
9

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36489
Matrix Type: AQUEOUS

Methods: SW846 7470A
Units: ug/l

Prep Date:

12/02/19

Metal	BSP Result	Spikelot HGFLWS1	QC % Rec	QC Limits
Mercury	3.0	3	100.0	80-120

Associated samples MP36489: FA70346-8

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

9.2.3
9

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36489
Matrix Type: AQUEOUS

Methods: SW846 7470A
Units: ug/l

Prep Date:

12/02/19

Metal	FA70348-3F Original	SDL 1:5	%DIF	QC Limits
Mercury	0.00	0.00	NC	0-10

Associated samples MP36489: FA70346-8

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

9.2.4
9

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA70346
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36495
Matrix Type: LEACHATE

Methods: SW846 7470A
Units: mg/l

Prep Date:

12/04/19

12/04/19

12/04/19

Metal	RL	IDL	MDL	MB raw	MB final	MB raw	MB final	MB raw	MB final
Mercury	0.00050	.00003	.00005	-0.00011	<0.00050	-0.0012	<0.0050	-0.0010	<0.0050

Associated samples MP36495: FA70346-7

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

9.3.1
9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36495
Matrix Type: LEACHATEMethods: SW846 7470A
Units: mg/l

Prep Date:

12/04/19

12/04/19

Metal	FA70346-7 Original DUP	RPD	QC Limits	FA70346-7 Original MS	Spikelot HGFLWS1	% Rec	QC Limits
Mercury	0.0	0.0	NC	0-20	0.0	0.029	0.030 96.7 80-120

Associated samples MP36495: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36495
Matrix Type: LEACHATEMethods: SW846 7470A
Units: mg/l

Prep Date:

12/04/19

12/04/19

Metal	FA70346-7 Original MSD	Spikelot HGFLWS1	MSD % Rec	QC RPD	FA70346-7 Original DUP	QC RPD	QC Limits
Mercury	0.0	0.028	0.030	93.3	3.5	20	0.0

Associated samples MP36495: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

9.3.2
9

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36495
Matrix Type: LEACHATEMethods: SW846 7470A
Units: mg/l

Prep Date:

12/04/19

12/04/19

Metal	BSP Result	Spikelot HGFLWS1	QC % Rec	BSP Limits	Spikelot HGFLWS1	QC % Rec	QC Limits	
Mercury	0.0028	0.0030	93.3	80-120	0.029	0.030	96.7	80-120

Associated samples MP36495: FA70346-7

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36495
Matrix Type: LEACHATE

Methods: SW846 7470A
Units: mg/l

Prep Date:

12/04/19

Metal	BSP Result	Spikelot HGFLWS1	QC % Rec	QC Limits
Mercury	0.029	0.030	96.7	80-120

Associated samples MP36495: FA70346-7

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

9.3.3
9

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36495

Matrix Type: LEACHATE

Methods: SW846 7470A

Units: ug/l

Prep Date:

12/04/19

Metal	FA70346-7	Original	SDL 1:5	%DIF	QC	Limits
Mercury	0.00	0.00	NC		0-10	

Associated samples MP36495: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

9.3.4
9

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA70346
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36502
Matrix Type: LEACHATE

Methods: SW846 6010D
Units: mg/l

Prep Date: 12/05/19 12/05/19

Metal	RL	IDL	MDL	MB raw	final	MB raw	final
Aluminum	0.20	.014	.014				
Antimony	0.0060	.001	.001				
Arsenic	0.010	.0013	.0013	-0.0016	<0.010	-0.010	<0.10
Barium	0.20	.001	.005	-0.00020	<0.20	0.0010	<2.0
Beryllium	0.0040	.0002	.0002				
Cadmium	0.0050	.0002	.0002	-0.000020	<0.0050	-0.00050	<0.050
Calcium	1.0	.05	.05				
Chromium	0.010	.001	.001	-0.00030	<0.010	0.0010	<0.10
Cobalt	0.050	.0002	.0002				
Copper	0.025	.001	.001				
Iron	0.30	.017	.017				
Lead	0.0050	.001	.0011	0.00020	<0.0050	0.0070	<0.050
Magnesium	5.0	.035	.035				
Manganese	0.015	.0005	.001				
Molybdenum	0.050	.0003	.0003				
Nickel	0.040	.0004	.0004				
Potassium	10	.2	.2				
Selenium	0.010	.0024	.0029	0.0032	<0.010	0.036	<0.10
Silver	0.010	.0007	.0007	0.0	<0.010	-0.0010	<0.10
Sodium	10	.5	.5				
Strontium	0.010	.0005	.0005				
Thallium	0.010	.0011	.0014				
Tin	0.050	.0009	.001				
Titanium	0.010	.0005	.001				
Vanadium	0.050	.0005	.0006				
Zinc	0.020	.003	.01				

Associated samples MP36502: FA70346-7

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36502
Matrix Type: LEACHATEMethods: SW846 6010D
Units: mg/l

Prep Date:

12/05/19

12/05/19

Metal	FA70346-7 Original	DUP	RPD	QC Limits	FA70346-7 Original	MS	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum									
Antimony									
Arsenic	0.0	0.0	NC	0-20	0.0	18.9	20.0	94.5	80-120
Barium	0.089	0.090	1.1	0-20	0.089	19.2	20.0	95.6	80-120
Beryllium									
Cadmium	0.0	0.0	NC	0-20	0.0	0.47	0.50	94.0	80-120
Calcium									
Chromium	0.0	0.0	NC	0-20	0.0	2.0	2.0	100.0	80-120
Cobalt									
Copper									
Iron									
Lead	0.0	0.0	NC	0-20	0.0	4.5	5.0	90.0	80-120
Magnesium									
Manganese									
Molybdenum									
Nickel									
Potassium									
Selenium	0.031	0.054	54.1 (a)	0-20	0.031	19.1	20.0	95.3	80-120
Silver	0.0	0.0	NC	0-20	0.0	0.48	0.50	96.0	80-120
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Vanadium									
Zinc									

Associated samples MP36502: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) RPD acceptable due to low duplicate and sample concentrations.

9.4.2
9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36502
Matrix Type: LEACHATEMethods: SW846 6010D
Units: mg/l

Prep Date:

12/05/19

12/05/19

Metal	FA70346-7 Original	MSD	Spikelot MPFLICP2	% Rec	MSD RPD	QC Limit	FA70346-7 Original	DUP	RPD	QC Limits
Aluminum										
Antimony										
Arsenic	0.0	19.3	20.0	96.5	2.1	20	0.0	0.0	NC	0-20
Barium	0.089	19.3	20.0	96.1	0.5	20	0.089	0.27	100.8(a)	0-20
Beryllium										
Cadmium	0.0	0.48	0.50	96.0	2.1	20	0.0	0.0	NC	0-20
Calcium										
Chromium	0.0	2.0	2.0	100.0	0.0	20	0.0	0.0	NC	0-20
Cobalt										
Copper										
Iron										
Lead	0.0	4.6	5.0	92.0	2.2	20	0.0	0.0	NC	0-20
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium	0.031	19.4	20.0	96.8	1.6	20	0.031	0.064	69.5 (a)	0-20
Silver	0.0	0.48	0.50	96.0	0.0	20	0.0	0.0	NC	0-20
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										

Associated samples MP36502: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) RPD acceptable due to low duplicate and sample concentrations.

9.4.2
9

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP36502
Matrix Type: LEACHATEMethods: SW846 6010D
Units: mg/l

Prep Date:

12/05/19

12/05/19

Metal	BSP Result	Spikelot MPFLICP2	QC Limits	BSP Result	Spikelot MPFLICP2	QC Limits
Aluminum						
Antimony						
Arsenic	1.9	2.0	95.0	80-120	19.0	20.0
Barium	1.9	2.0	95.0	80-120	19.1	20.0
Beryllium						
Cadmium	0.049	0.050	98.0	80-120	0.48	0.50
Calcium						
Chromium	0.20	0.20	100.0	80-120	2.0	2.0
Cobalt						
Copper						
Iron						
Lead	0.46	0.50	92.0	80-120	4.5	5.0
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium	1.9	2.0	95.0	80-120	19.2	20.0
Silver	0.048	0.050	96.0	80-120	0.48	0.50
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP36502: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

9.4.3
9

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA70346

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP36502
Matrix Type: LEACHATEMethods: SW846 6010D
Units: ug/l

Prep Date:

12/05/19

Metal	FA70346-7 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	0.00	0.00	NC	0-10
Barium	8.90	8.30	6.7	0-10
Beryllium				
Cadmium	0.00	0.00	NC	0-10
Calcium				
Chromium	0.00	0.00	NC	0-10
Cobalt				
Copper				
Iron				
Lead	0.00	0.00	NC	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	3.10	13.7	341.9(a)	0-10
Silver	0.00	0.00	NC	0-10
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP36502: FA70346-7

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

9.4.4
9

General Chemistry**QC Data Summaries**

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY
GENERAL CHEMISTRY

Login Number: FA70346
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP34000/GN83724	2.0	0.0	mg/l	50	42.4	84.8*(a)	90-110%
Chloride	GP34040/GN83794	2.0	0.0	mg/l	50	50.5	101.0	90-110%
Nitrogen, Nitrate	GP34000/GN83724	0.10	0.0	mg/l	2.5	2.32	92.8	90-110%
Nitrogen, Nitrate	GP34040/GN83794	0.10	0.0	mg/l	2.5	2.55	102.0	90-110%
Nitrogen, Nitrite	GP34040/GN83794	0.10	0.0	mg/l	2.5	2.52	100.8	90-110%
Sulfate	GP34000/GN83724	2.0	0.0	mg/l	50	49.6	99.2	90-110%
Sulfate	GP34040/GN83794	2.0	0.0	mg/l	50	50.6	101.2	90-110%
Total Organic Carbon	GP34002/GN83725	1.0	0.24	mg/l	15	13.6	90.7	90-110%

Associated Samples:

Batch GP34000: FA70346-2, FA70346-3, FA70346-5, FA70346-6
Batch GP34002: FA70346-2, FA70346-3, FA70346-5, FA70346-6

Batch GP34040: FA70346-2, FA70346-3, FA70346-5, FA70346-6

(*) Outside of QC limits

(a) No samples for Chloride reported in this run.

MATRIX SPIKE RESULTS SUMMARY
GENERAL CHEMISTRY

Login Number: FA70346
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP34040/GN83794	FA70343-1	mg/l	4.1	50	53.1	98.0	90-110%
Nitrogen, Nitrate	GP34000/GN83724	FA70341-4	mg/l	0.050 U	2.5	2.3	92.0	90-110%
Nitrogen, Nitrate	GP34040/GN83794	FA70343-1	mg/l	0.92	2.5	3.2	91.2	90-110%
Nitrogen, Nitrite	GP34040/GN83794	FA70343-1	mg/l	0.050 U	2.5	2.5	100.0	90-110%
Sulfate	GP34000/GN83724	FA70341-4	mg/l	41.1	50	84.4	86.6N(a)	90-110%
Sulfate	GP34040/GN83794	FA70343-1	mg/l	9.6	50	57.3	95.4	90-110%
Total Organic Carbon	GP34002/GN83725	FA70346-5	mg/l	0.66	15	12.9	81.6N(a)	90-110%

Associated Samples:

Batch GP34000: FA70346-2, FA70346-3, FA70346-5, FA70346-6
Batch GP34002: FA70346-2, FA70346-3, FA70346-5, FA70346-6

Batch GP34040: FA70346-2, FA70346-3, FA70346-5, FA70346-6

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(a) Spike recovery indicates possible matrix interference.

MATRIX SPIKE DUPLICATE RESULTS SUMMARY
GENERAL CHEMISTRY

Login Number: FA70346
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chloride	GP34040/GN83794	FA70343-1	mg/l	4.1	50	53.4	0.6	20%
Nitrogen, Nitrate	GP34000/GN83724	FA70341-4	mg/l	0.050 U	2.5	2.3	0.0	20%
Nitrogen, Nitrate	GP34040/GN83794	FA70343-1	mg/l	0.92	2.5	3.2	0.0	20%
Nitrogen, Nitrite	GP34040/GN83794	FA70343-1	mg/l	0.050 U	2.5	2.5	0.0	20%
Sulfate	GP34000/GN83724	FA70341-4	mg/l	41.1	50	84.2	0.2	20%
Sulfate	GP34040/GN83794	FA70343-1	mg/l	9.6	50	57.3	0.0	20%
Total Organic Carbon	GP34002/GN83725	FA70346-5	mg/l	0.66	15	14.9	14.4	20%

Associated Samples:

Batch GP34000: FA70346-2, FA70346-3, FA70346-5, FA70346-6
Batch GP34002: FA70346-2, FA70346-3, FA70346-5, FA70346-6

Batch GP34040: FA70346-2, FA70346-3, FA70346-5, FA70346-6

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

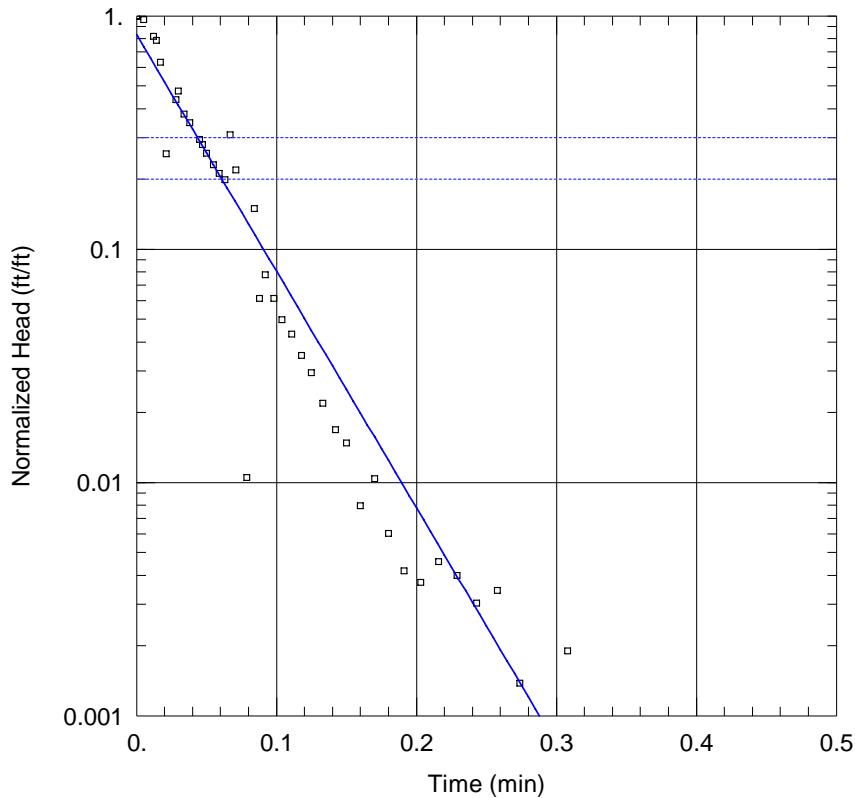
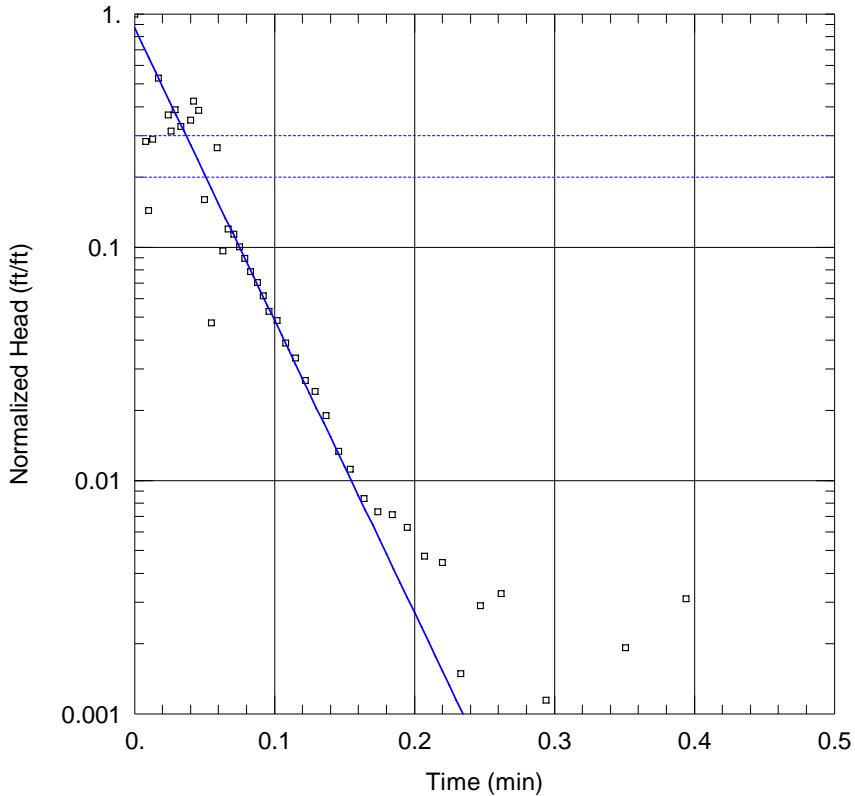

Attachment C
Slug Test Data

Table C-1
Summary of Slug Test Results
Delavan Spray Technologies Site
Bamberg, South Carolina


Well ID	Test Name	Horizontal Hydraulic Conductivity (ft/day)	Method	Comments
MW-33D	MW33D-in1	45.22	Bouwer & Rice	
MW-33D	MW33D-in2	55.85	Bouwer & Rice	noise in early data
MW-33D	MW33S-out1	61.17	Bouwer & Rice	
MW-33D	MW33D-out2	60.82	Bouwer & Rice	
MW-33D	MW33D-pump1	57.26	Bouwer & Rice	
MW-33D	MW33D-pump2	59.30	Bouwer & Rice	
MW-34D	34D-in1	79.41	Bouwer & Rice	noise in data
MW-34D	34D-in2	100	Bouwer & Rice	do not use - lots of noise in data and rapid recovery - not many points in recommended head range
MW-34D	34D-out1	88.59	Bouwer & Rice	
MW-34D	34D-out2	91.27	Bouwer & Rice	
MW-34D	34D-pump1	65.41	Bouwer & Rice	Do not use - insufficient drawdown - only one point in recommended head range
MW-34D	34D-pump2	120.0	Bouwer & Rice	
MW-34D	34D-pump4	111.6	Bouwer & Rice	
MW-35D	MW35D-in2	93.17	KGS	
MW-35D	MW35Dout1	86.24	KGS	
MW-35D	MW35D-out2	91.15	KGS	
MW-35D	MW35D-pump1	119.2	KGS	
MW-35D	MW35D-pump2	97.73	KGS	
MW-35D	MW35D-pump3	115.5	KGS	
MW-36D	MW36D-in1	90.56	Springer-Gelhar	
MW-36D	MW36D-in2	92.07	Springer-Gelhar	
MW-36D	MW36D-out1	113.2	Springer-Gelhar	
MW-36D	MW36D-out2	104.6	Springer-Gelhar	
MW-36D	MW36D-pump1	121.6	Springer-Gelhar	
Minimum		45.22		
Maximum		121.6		
Deeper Wells Geometric Mean		85.57		
MW-33D Geometric Mean		56.3		
MW-34D Geometric Mean		97.03		
MW-35DR Geometric Mean		99.76		
MW-36D Geometric Mean		103.72		

Notes:

Data with a strike-through was not used for calculation of the means.

MW33D-IN1	
Data Set: <u>C:\...\MW33D-in1.aqt</u>	
Date: <u>03/31/20</u>	Time: <u>15:54:06</u>
PROJECT INFORMATION	
Company: <u>AECOM</u>	
Client: <u>UTC</u>	
Project: <u>60590866</u>	
Location: <u>Bamberg, SC</u>	
Test Well: <u>MW-33D</u>	
Test Date: <u>11/25/19</u>	
AQUIFER DATA	
Saturated Thickness: <u>63.43 ft</u>	Anisotropy Ratio (Kz/Kr): <u>1.</u>
WELL DATA (MW-33D)	
Initial Displacement: <u>2.604 ft</u>	Static Water Column Height: <u>63.43 ft</u>
Total Well Penetration Depth: <u>63.43 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.25 ft</u>
SOLUTION	
Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
K = <u>45.22 ft/day</u>	y0 = <u>2.163 ft</u>

MW33D-IN2

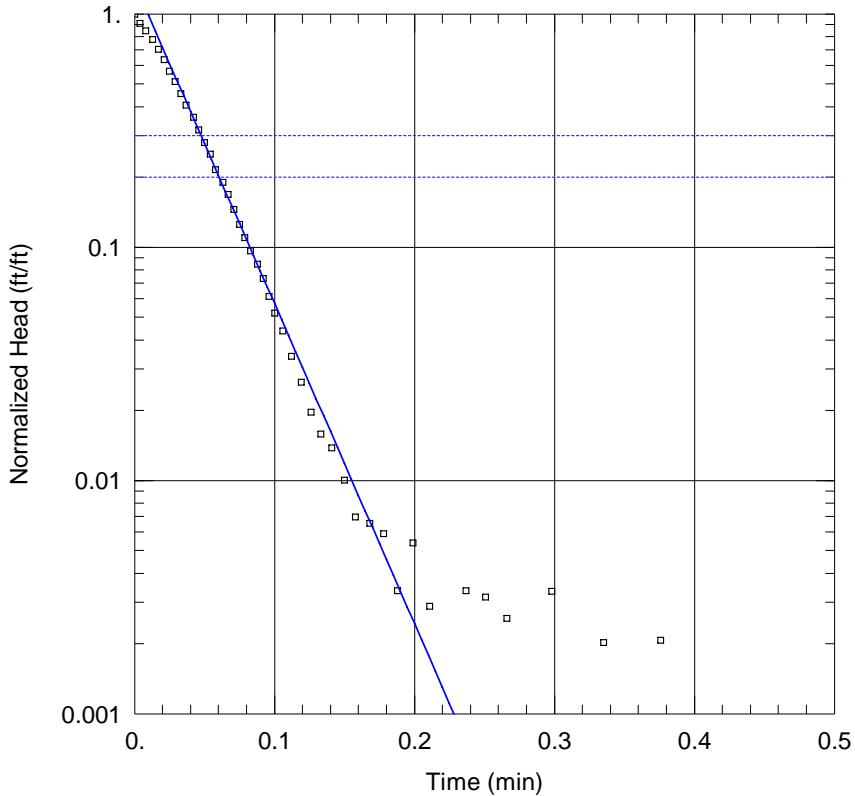
Data Set: C:\...\MW33D-in2.aqt
 Date: 03/31/20

Time: 15:54:06

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-33D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.43 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-33D)

Initial Displacement: <u>2.867 ft</u>	Static Water Column Height: <u>63.43 ft</u>
Total Well Penetration Depth: <u>63.43 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.25 ft</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
K = <u>55.85 ft/day</u>	y0 = <u>2.491 ft</u>

MW33D-OUT1

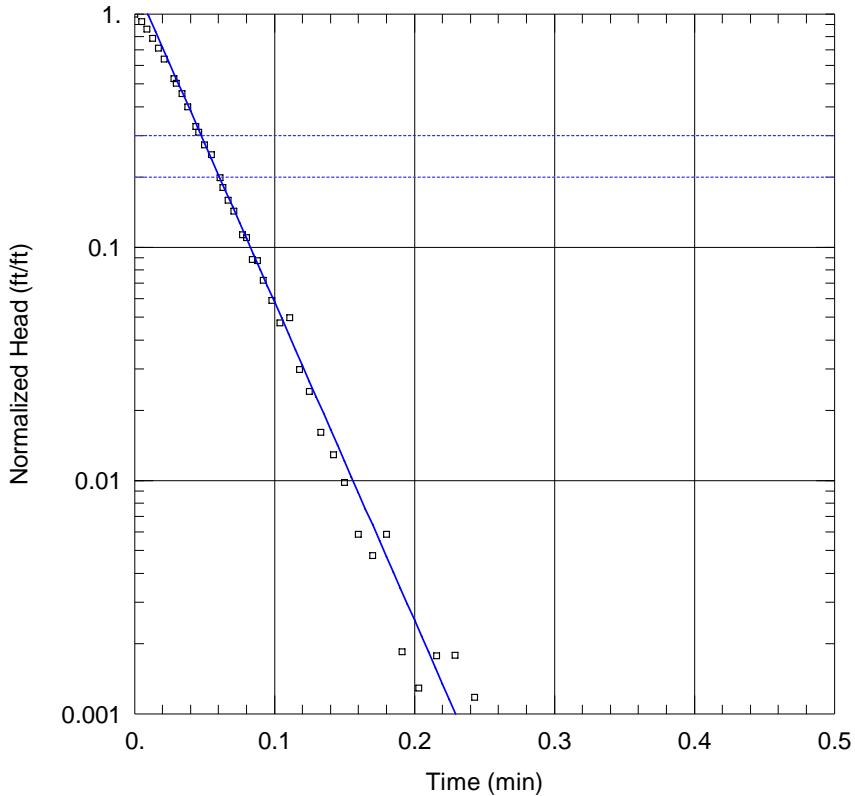
Data Set: C:\...\MW33D-out1.aqt
 Date: 03/31/20

Time: 15:54:07

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-33D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.43 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-33D)

Initial Displacement: 2.481 ft	Static Water Column Height: 63.43 ft
Total Well Penetration Depth: 63.43 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 61.17 ft/day	y0 = 3.349 ft

MW33D-OUT2

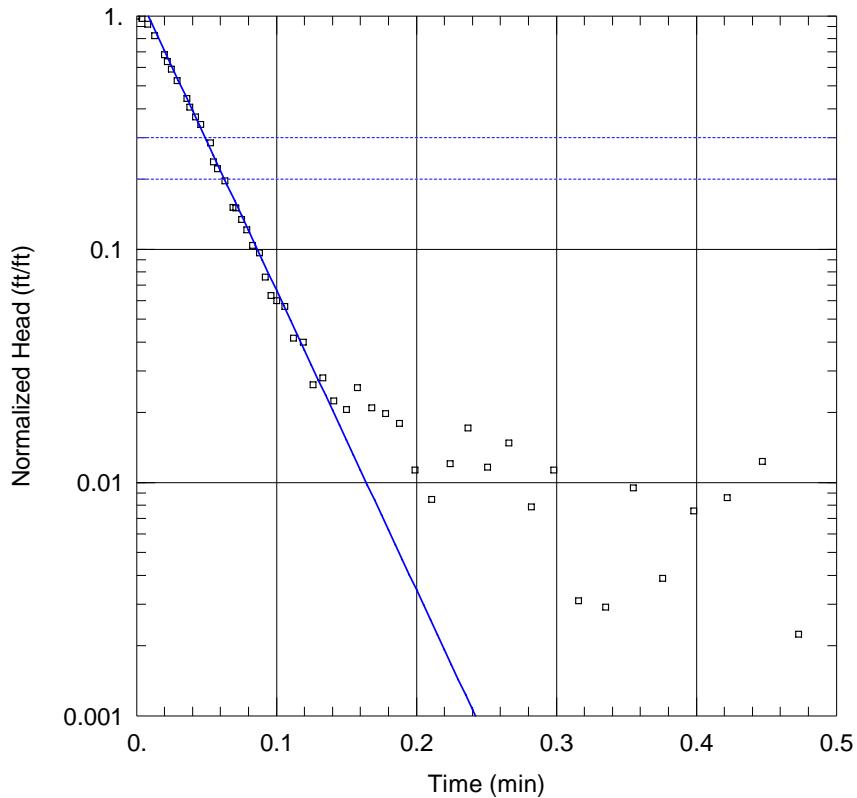
Data Set: C:\...\MW33D-out2.aqt
 Date: 03/31/20

Time: 15:54:07

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-33D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.43 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-33D)

Initial Displacement: 2.343 ft	Static Water Column Height: 63.43 ft
Total Well Penetration Depth: 63.43 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 60.82 ft/day	y0 = 3.152 ft

MW33D-PUMP1

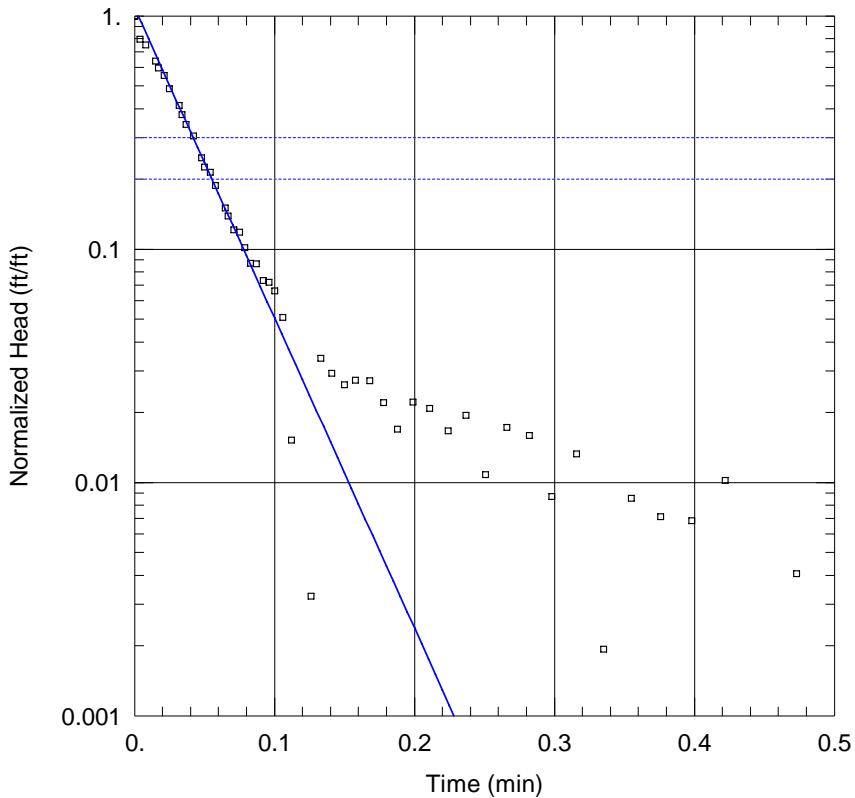
Data Set: C:\...\MW33D-pump1.aqt
 Date: 03/31/20

Time: 15:54:08

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-33D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.43 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-33D)

Initial Displacement: 0.812 ft	Static Water Column Height: 63.43 ft
Total Well Penetration Depth: 63.43 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 57.26 ft/day	y0 = 1.041 ft

MW33D-PUMP2

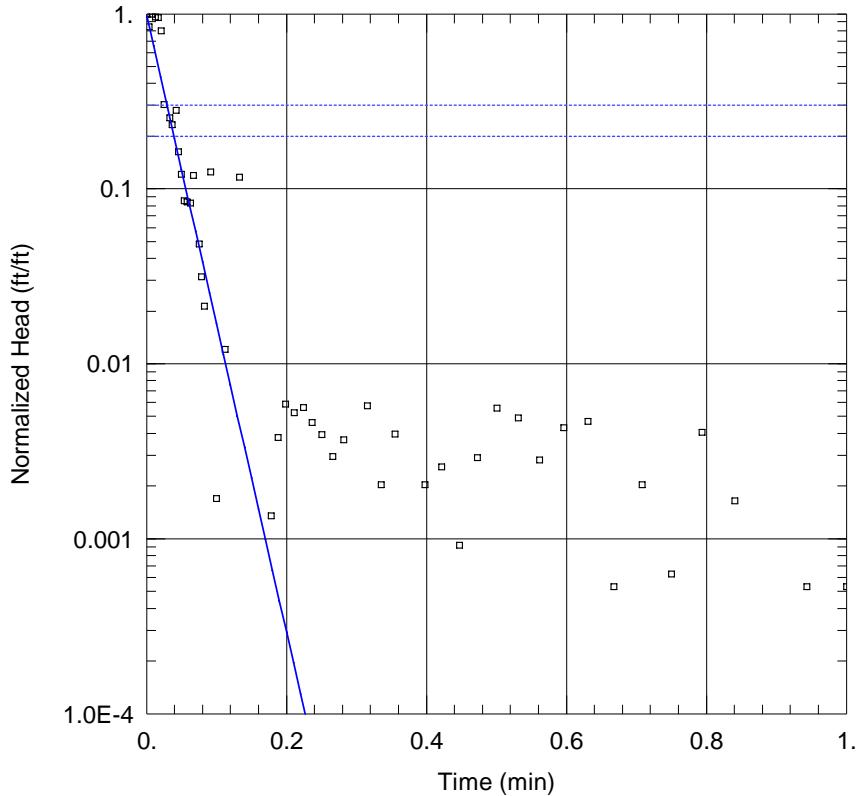
Data Set: C:\...\MW33D-pump2.aqt
 Date: 03/31/20

Time: 15:54:08

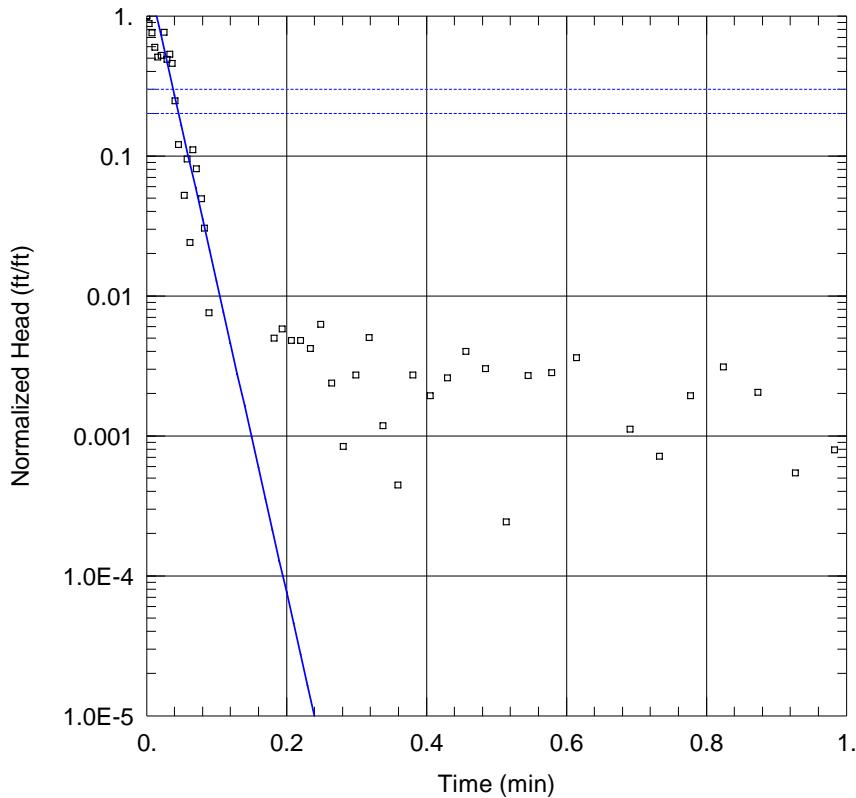
PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-33D
 Test Date: 11/25/19

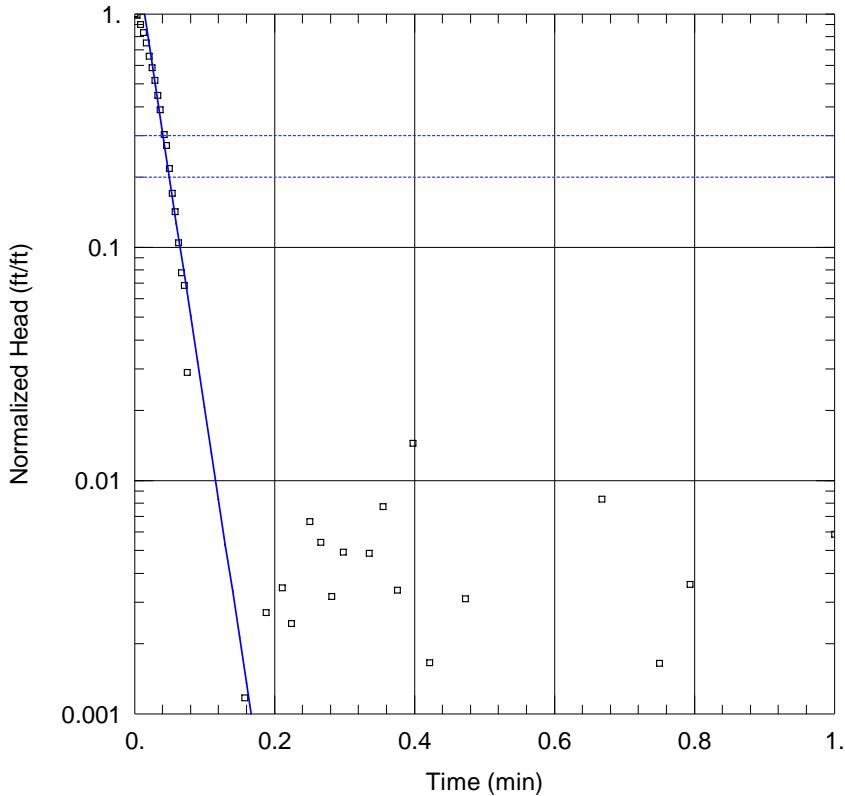
AQUIFER DATA


Saturated Thickness: 63.43 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-33D)


Initial Displacement: 0.919 ft	Static Water Column Height: 63.43 ft
Total Well Penetration Depth: 63.43 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION


Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 59.3 ft/day	y0 = 0.9968 ft

MW34D-IN1	
Data Set: <u>C:\...\MW34D-in1.aqt</u>	
Date: <u>03/31/20</u>	Time: <u>15:54:54</u>
PROJECT INFORMATION	
Company: <u>AECOM</u>	
Client: <u>UTC</u>	
Project: <u>60590866</u>	
Location: <u>Bamberg, SC</u>	
Test Well: <u>MW-34D</u>	
Test Date: <u>11/25/19</u>	
AQUIFER DATA	
Saturated Thickness: <u>68.1 ft</u>	Anisotropy Ratio (Kz/Kr): <u>1.</u>
WELL DATA (MW-34D)	
Initial Displacement: <u>2.064 ft</u>	Static Water Column Height: <u>68.1 ft</u>
Total Well Penetration Depth: <u>68.1 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.25 ft</u>
SOLUTION	
Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
K = <u>79.41 ft/day</u>	y0 = <u>2.03 ft</u>

MW34D-IN2	
Data Set: C:\...\MW34D-in2.aqt	
Date: 03/31/20	Time: 15:54:54
PROJECT INFORMATION	
Company: AECOM	
Client: UTC	
Project: 60590866	
Location: Bamberg, SC	
Test Well: MW-34D	
Test Date: 11/25/19	
AQUIFER DATA	
Saturated Thickness: 68.1 ft	Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (MW-34D)	
Initial Displacement: 2.186 ft	Static Water Column Height: 68.1 ft
Total Well Penetration Depth: 68.1 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft
SOLUTION	
Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 100. ft/day	y0 = 4.617 ft

MW34D-OUT1

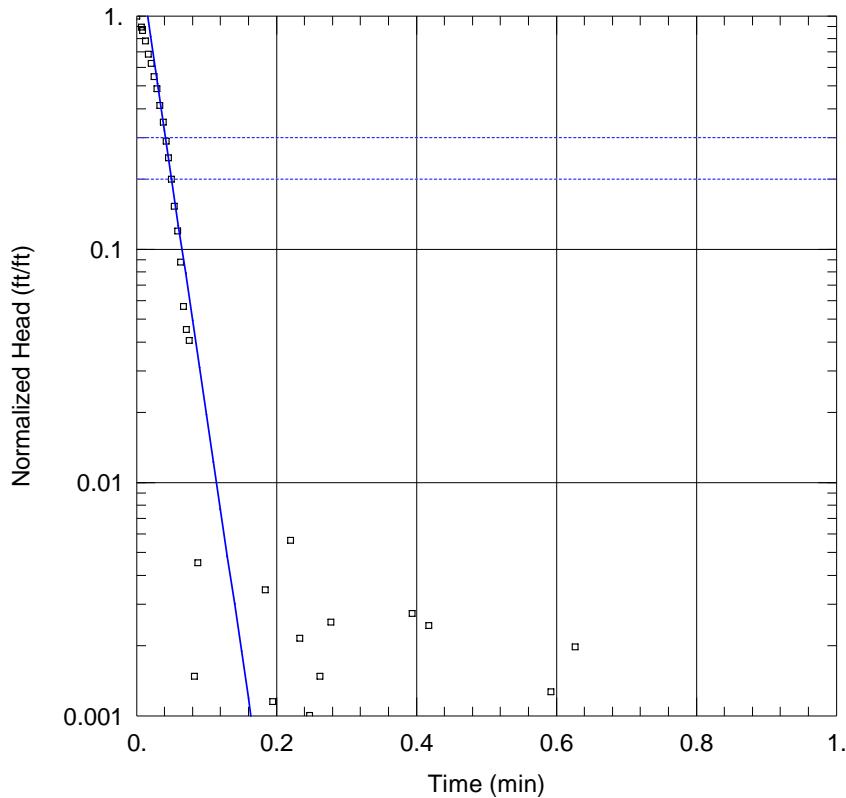
Data Set: C:\...\MW34D-out1.aqt
 Date: 03/31/20

Time: 15:54:55

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-34D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 68.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-34D)

Initial Displacement: 1.754 ft	Static Water Column Height: 68.1 ft
Total Well Penetration Depth: 68.1 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 88.59 ft/day	y0 = 3.341 ft

MW34D-OUT2

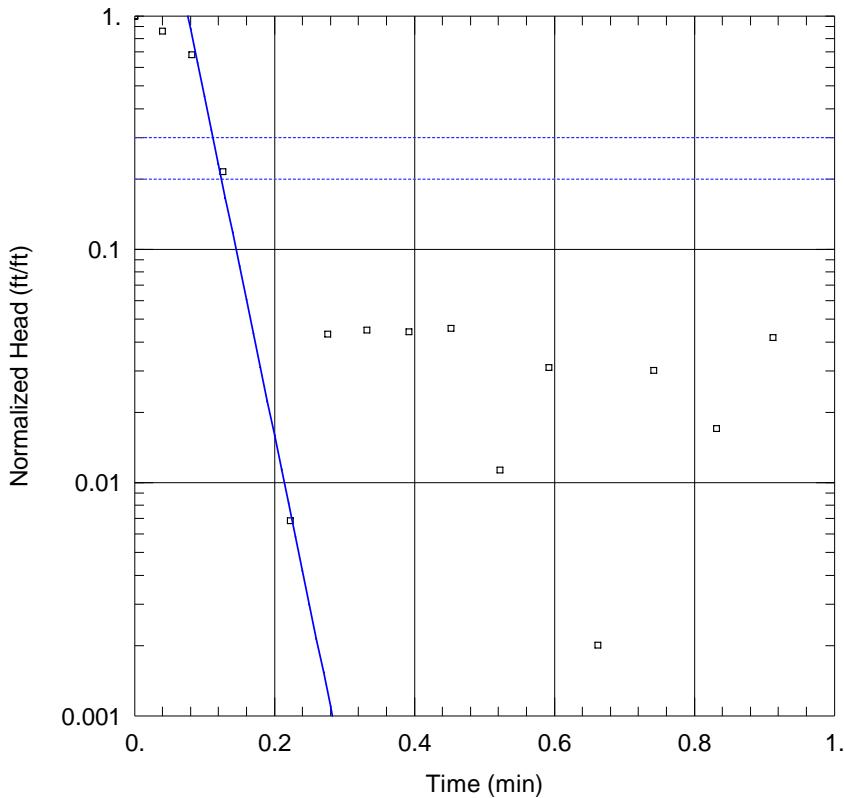
Data Set: C:\...\MW34D-out2.aqt
 Date: 03/31/20

Time: 15:54:55

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-34D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 68.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-34D)

Initial Displacement: 1.776 ft	Static Water Column Height: 68.1 ft
Total Well Penetration Depth: 68.1 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 91.27 ft/day	y0 = 3.685 ft

MW34D-PUMP1

Data Set: C:\...\MW34D-pump1.aqt
 Date: 03/31/20

Time: 15:54:56

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-34D
 Test Date: 11/25/19

AQUIFER DATA

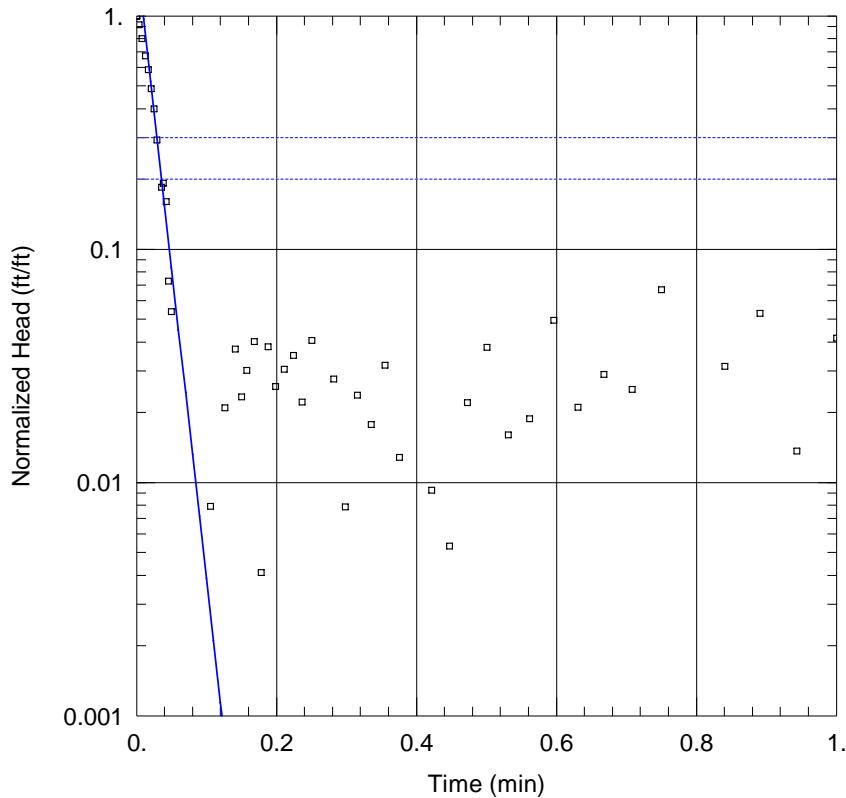
Saturated Thickness: 68.1 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-34D)

Initial Displacement: 0.2716 ft
 Total Well Penetration Depth: 68.1 ft
 Casing Radius: 0.083 ft

Static Water Column Height: 68.1 ft
 Screen Length: 10. ft
 Well Radius: 0.25 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 65.41 ft/day

y0 = 3.473 ft

MW34D-PUMP2

Data Set: C:\...\MW34D-pump2.aqt
 Date: 03/31/20

Time: 15:54:56

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-34D
 Test Date: 11/25/19

AQUIFER DATA

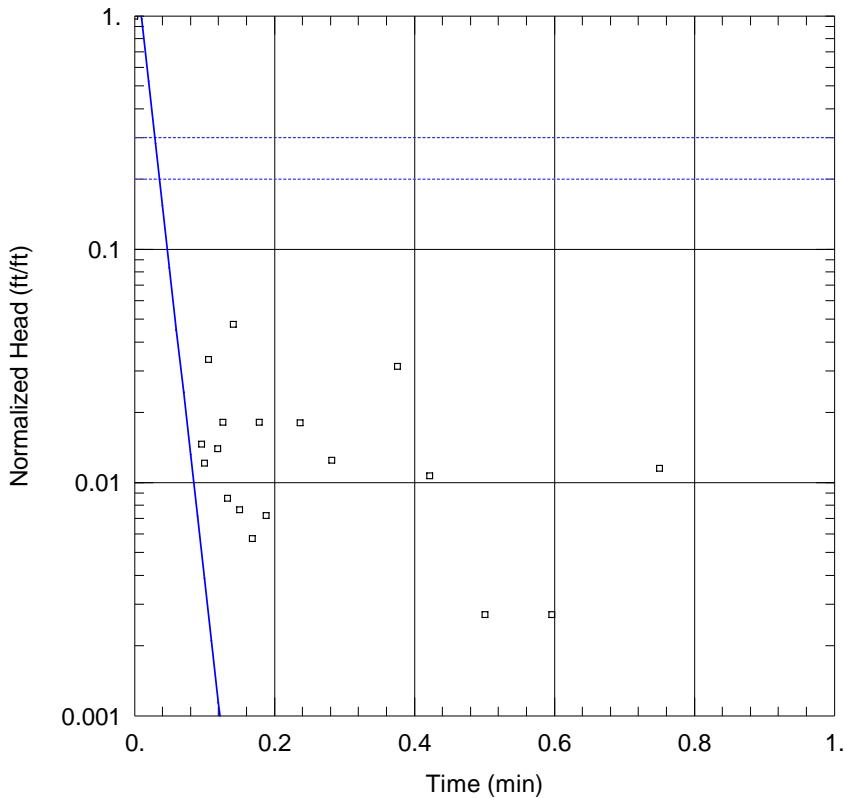
Saturated Thickness: 68.1 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-34D)

Initial Displacement: 0.1735 ft
 Total Well Penetration Depth: 68.1 ft
 Casing Radius: 0.083 ft

Static Water Column Height: 68.1 ft
 Screen Length: 10. ft
 Well Radius: 0.25 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 120. ft/day

y0 = 0.3101 ft

MW34D-PUMP3

Data Set: C:\...\MW34D-pump3.aqt
 Date: 03/31/20

Time: 15:54:56

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-34D
 Test Date: 11/25/19

AQUIFER DATA

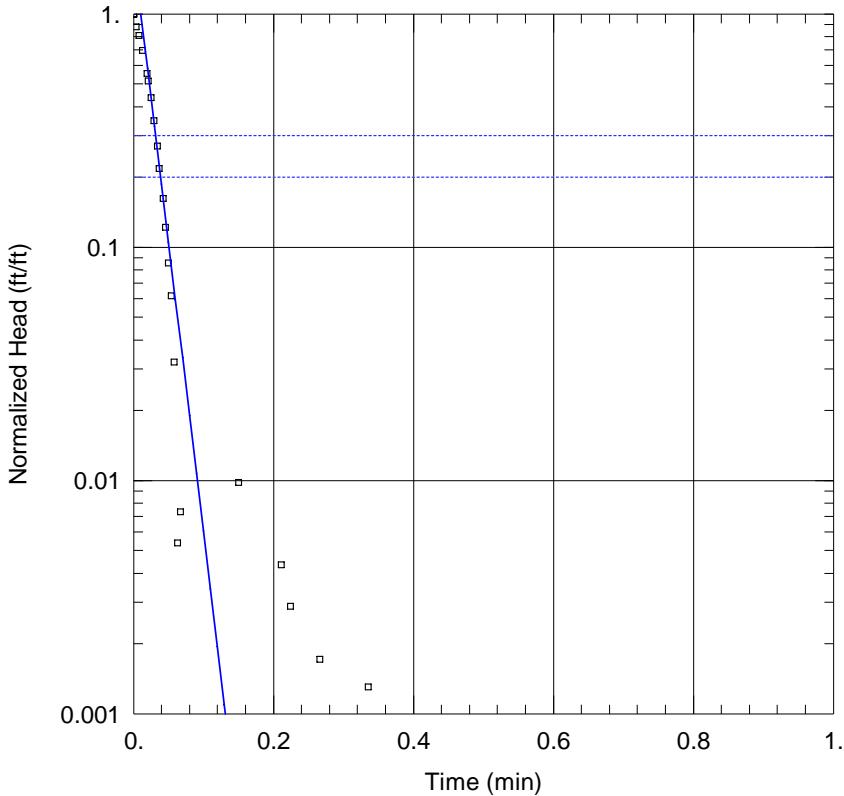
Saturated Thickness: 68.1 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-34D)

Initial Displacement: 0.1735 ft
 Total Well Penetration Depth: 68.1 ft
 Casing Radius: 0.083 ft

Static Water Column Height: 68.1 ft
 Screen Length: 10. ft
 Well Radius: 0.25 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 120. ft/day

y0 = 0.3101 ft

MW34D-PUMP4

Data Set: C:\...\MW34D-pump4.aqt
 Date: 03/31/20

Time: 15:54:57

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-34D
 Test Date: 11/25/19

AQUIFER DATA

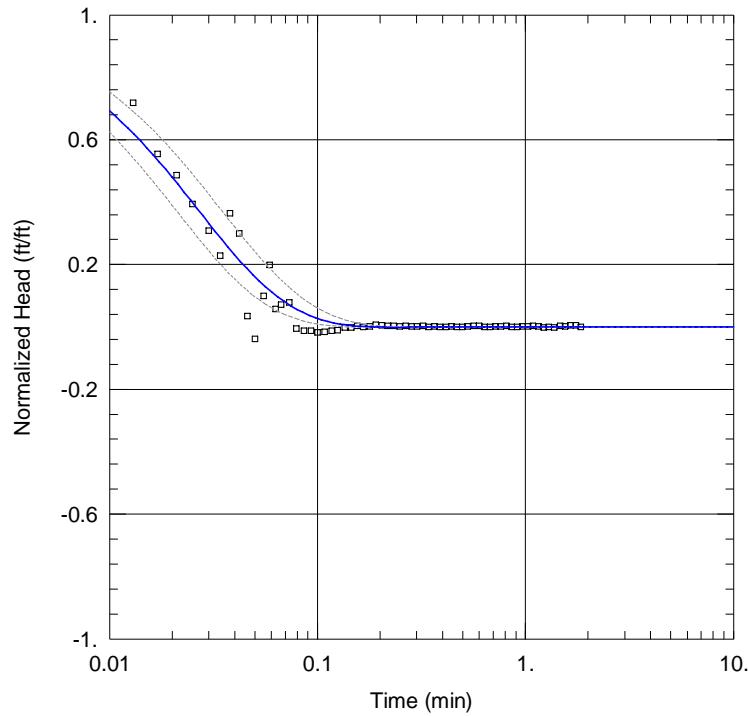
Saturated Thickness: 68.1 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-34D)

Initial Displacement: 0.5216 ft
 Total Well Penetration Depth: 68.1 ft
 Casing Radius: 0.083 ft

Static Water Column Height: 68.1 ft
 Screen Length: 10. ft
 Well Radius: 0.25 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 111.6 ft/day

y0 = 0.9516 ft

MW35D-IN2

Data Set: C:\...\MW35D-in2_KGS.aqt
 Date: 03/31/20

Time: 16:08:55

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-35D
 Test Date: 11/25/19

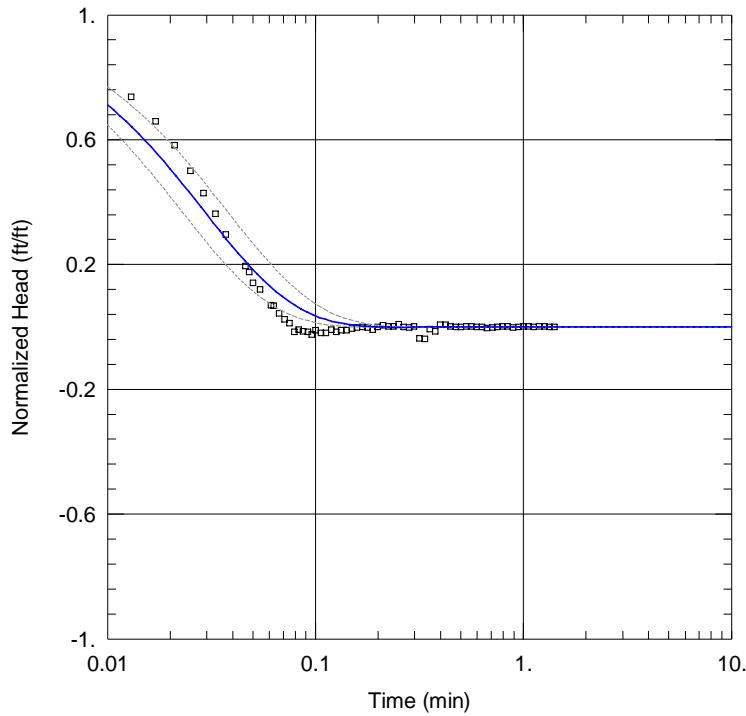
AQUIFER DATA

Saturated Thickness: 67.73 ft

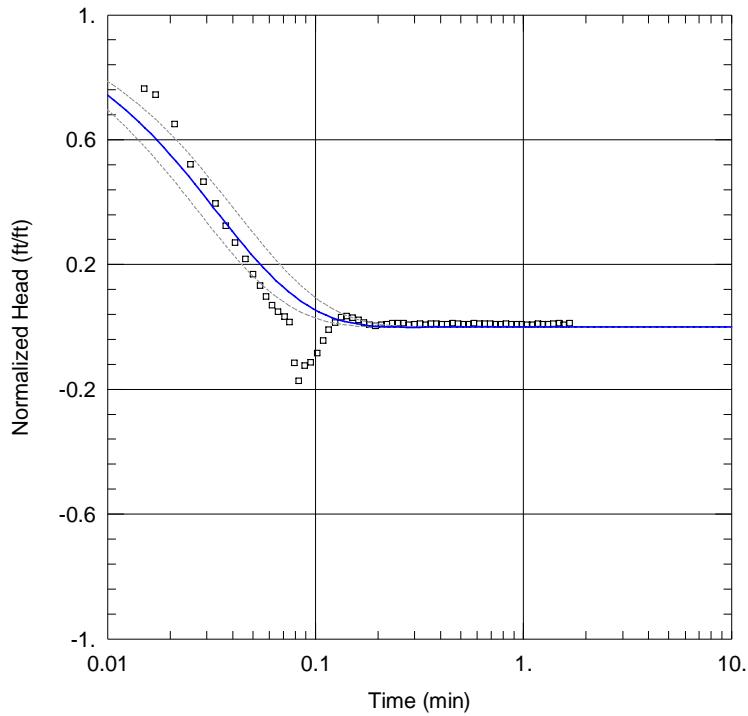
WELL DATA (MW-35D)

Initial Displacement: 1.668 ft	Static Water Column Height: 67.73 ft
Total Well Penetration Depth: 67.73 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION


Aquifer Model: Unconfined

K_r = 93.17 ft/day


K_z/K_r = 0.1

Solution Method: KGS Model

S_s = 1.476E-12 ft⁻¹

<u>MW35D-OUT1</u>	
Data Set: C:\...\MW35D-out1_KGS.aqt	
Date: 03/31/20	Time: 16:08:56
<u>PROJECT INFORMATION</u>	
Company: AECOM Client: UTC Project: 60590866 Location: Bamberg, SC Test Well: MW-35D Test Date: 11/25/19	
<u>AQUIFER DATA</u>	
Saturated Thickness: 67.73 ft	
<u>WELL DATA (MW-35D)</u>	
Initial Displacement: 2.4 ft	Static Water Column Height: 67.73 ft
Total Well Penetration Depth: 67.73 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft
<u>SOLUTION</u>	
Aquifer Model: Unconfined	Solution Method: KGS Model
K _r = 86.24 ft/day	S _s = 1.476E-12 ft ⁻¹
K _z /K _r = 0.1	

MW35D-OUT2

Data Set: C:\...\MW35D-out2_KGS.aqt

Date: 03/31/20

Time: 16:08:57

PROJECT INFORMATION

Company: AECOM

Client: UTC

Project: 60590866

Location: Bamberg, SC

Test Well: MW-35D

Test Date: 11/25/19

AQUIFER DATA

Saturated Thickness: 67.73 ft

WELL DATA (MW-35D)

Initial Displacement: 1.85 ft

Static Water Column Height: 67.73 ft

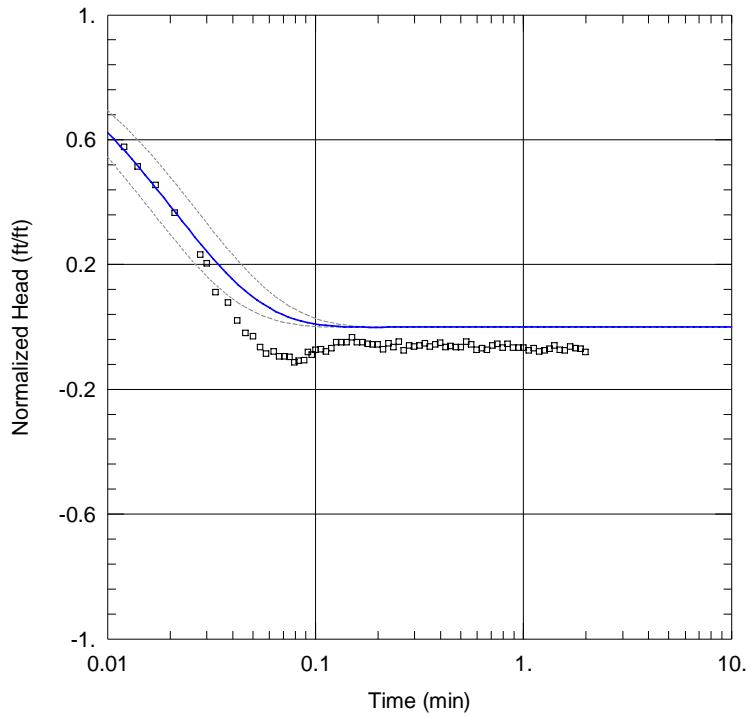
Total Well Penetration Depth: 67.73 ft

Screen Length: 10. ft

Casing Radius: 0.083 ft

Well Radius: 0.25 ft

SOLUTION


Aquifer Model: Unconfined

Solution Method: KGS Model

$K_r = 91.15 \text{ ft/day}$

$S_s = 5.119E-12 \text{ ft}^{-1}$

$K_z/K_r = 0.01135$

MW35D-PUMP1

Data Set: C:\...\MW35D-pump1_KGS.aqt
 Date: 03/31/20

Time: 16:08:57

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-35D
 Test Date: 11/25/19

AQUIFER DATA

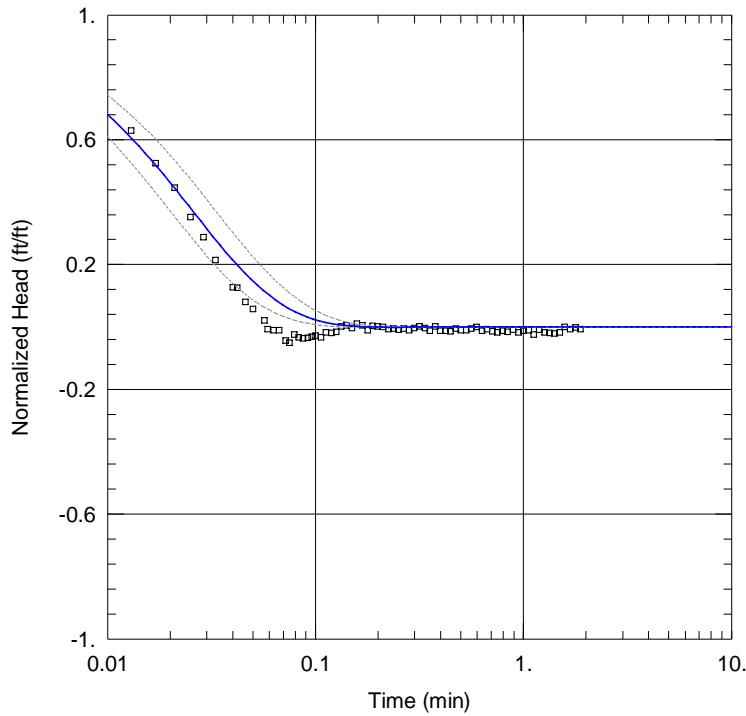
Saturated Thickness: 67.73 ft

WELL DATA (MW-35D)

Initial Displacement: 0.3822 ft
 Total Well Penetration Depth: 67.73 ft
 Casing Radius: 0.083 ft

Static Water Column Height: 67.73 ft
 Screen Length: 10. ft
 Well Radius: 0.25 ft

SOLUTION


Aquifer Model: Unconfined

Solution Method: KGS Model

K_r = 119.2 ft/day

S_s = 3.752E-12 ft⁻¹

K_z/K_r = 0.1072

MW35D-PUMP2

Data Set: C:\...\MW35D-pump2_KGS.aqt
 Date: 03/31/20

Time: 16:08:58

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-35D
 Test Date: 11/25/19

AQUIFER DATA

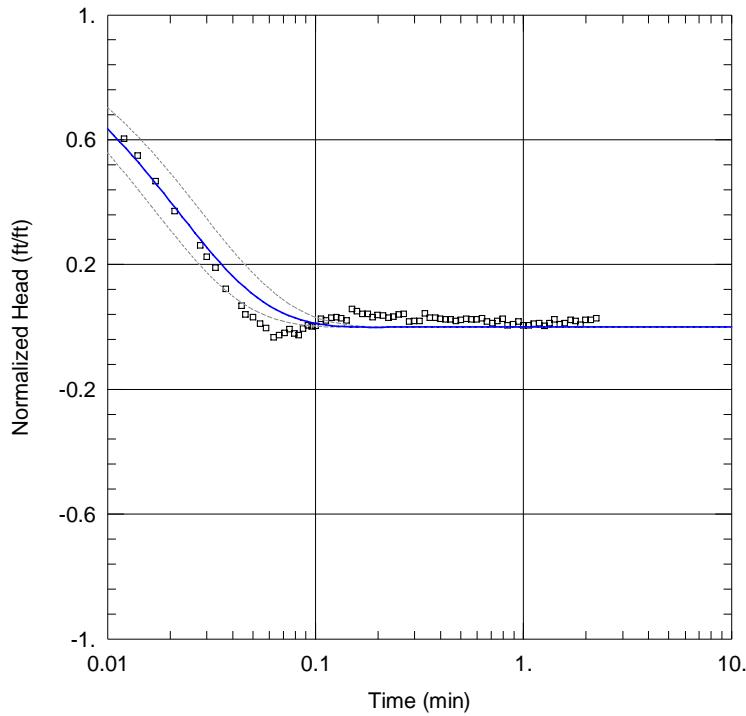
Saturated Thickness: 67.73 ft

WELL DATA (MW-35D)

Initial Displacement: 0.516 ft
 Total Well Penetration Depth: 67.73 ft
 Casing Radius: 0.083 ft

Static Water Column Height: 67.73 ft
 Screen Length: 10. ft
 Well Radius: 0.25 ft

SOLUTION


Aquifer Model: Unconfined

Solution Method: KGS Model

K_r = 97.73 ft/day

S_s = 1.476E-12 ft⁻¹

K_z/K_r = 0.1

MW35D-PUMP3

Data Set: C:\...\MW35D-pump3_KGS.aqt
 Date: 03/31/20

Time: 16:08:59

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-35D
 Test Date: 11/25/19

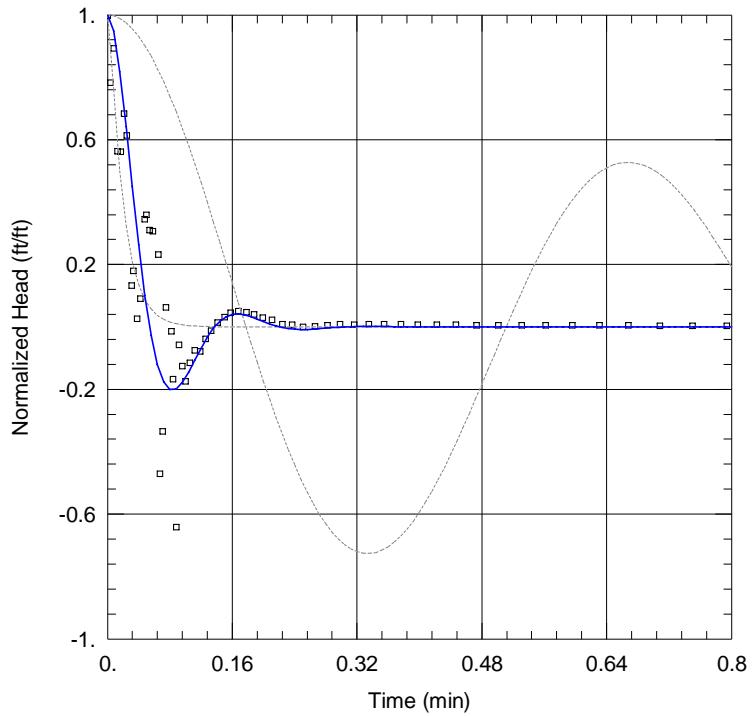
AQUIFER DATA

Saturated Thickness: 67.73 ft

WELL DATA (MW-35D)

Initial Displacement: 0.3363 ft	Static Water Column Height: 67.73 ft
Total Well Penetration Depth: 67.73 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft

SOLUTION


Aquifer Model: Unconfined

Solution Method: KGS Model

K_r = 115.5 ft/day

S_s = 1.476E-12 ft⁻¹

K_z/K_r = 0.1

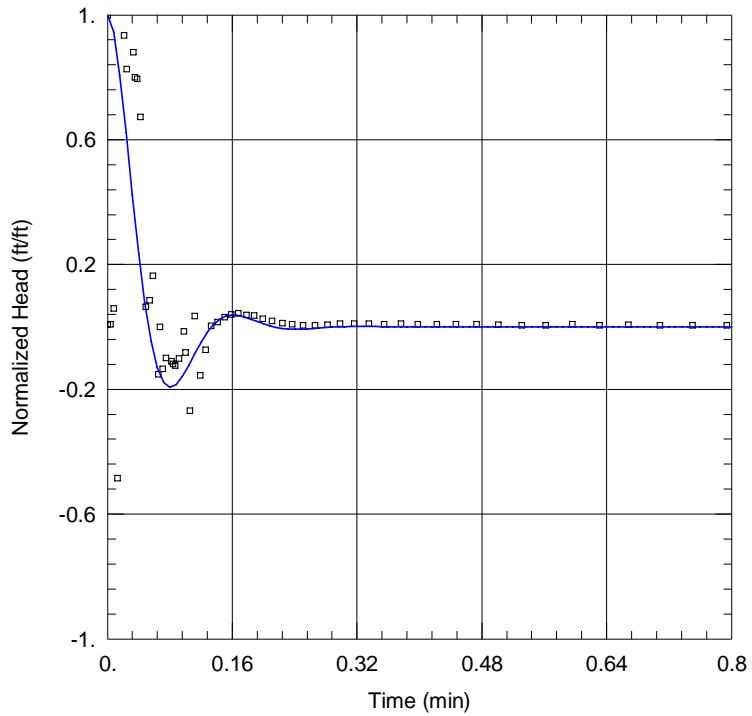
MW36D-IN1

Data Set: C:\...\MW36D-in1_springer-gelhar.aqt
 Date: 03/31/20 Time: 16:10:13

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-36D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.59 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-36D)

Initial Displacement: 2.38 ft Static Water Column Height: 63.59 ft
 Total Well Penetration Depth: 63.59 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar
 $K = 90.56$ ft/day $Le = 64.64$ ft

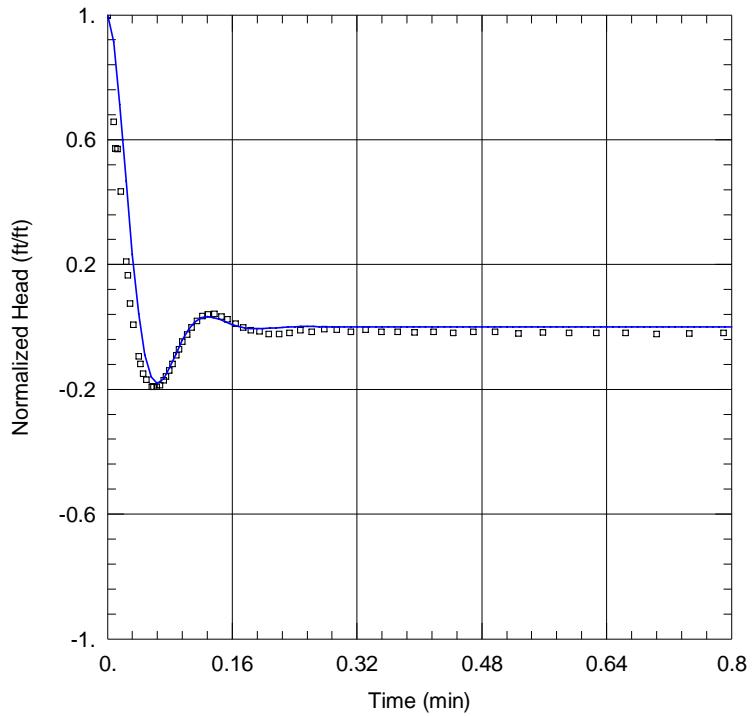
MW36D-IN2

Data Set: C:\...\MW36D-in2_springer-gelhar.aqt
 Date: 03/31/20 Time: 16:10:13

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-36D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.59 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-36D)

Initial Displacement: 2.69 ft Static Water Column Height: 63.59 ft
 Total Well Penetration Depth: 63.59 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar
 $K = 92.07$ ft/day $Le = 59.84$ ft

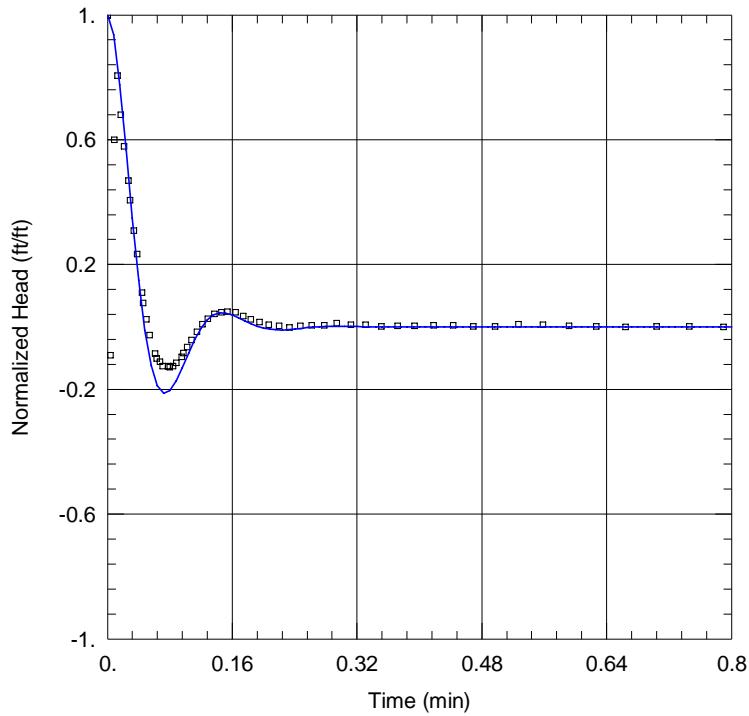
MW36D-OUT1

Data Set: C:\...\MW36D-out1_Springer-gelhar.aqt
 Date: 03/31/20 Time: 16:10:14

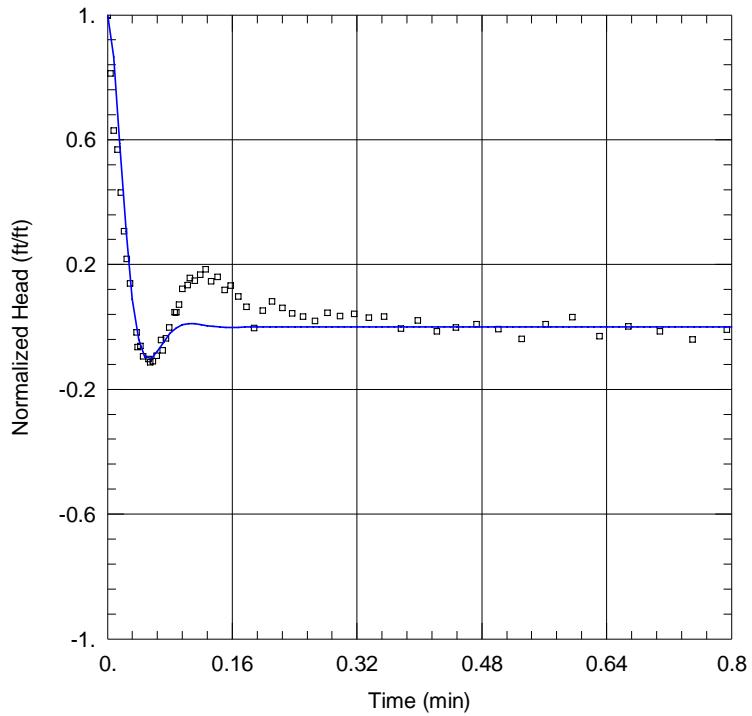
PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-36D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.59 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-36D)


Initial Displacement: 1.333 ft Static Water Column Height: 63.59 ft
 Total Well Penetration Depth: 63.59 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar
 K = 113.2 ft/day Le = 37.18 ft

<u>MW36D-OUT2</u>	
Data Set: C:\...\MW36D-out2_Springer-gelhar.aqt	
Date: 03/31/20	Time: 16:10:14
<u>PROJECT INFORMATION</u>	
Company: AECOM Client: UTC Project: 60590866 Location: Bamberg, SC Test Well: MW-36D Test Date: 11/25/19	
<u>AQUIFER DATA</u>	
Saturated Thickness: 63.59 ft	Anisotropy Ratio (Kz/Kr): 1.
<u>WELL DATA (MW-36D)</u>	
Initial Displacement: 1.606 ft	Static Water Column Height: 63.59 ft
Total Well Penetration Depth: 63.59 ft	Screen Length: 10. ft
Casing Radius: 0.083 ft	Well Radius: 0.25 ft
<u>SOLUTION</u>	
Aquifer Model: Unconfined	Solution Method: Springer-Gelhar
K = 104.6 ft/day	Le = 51.08 ft

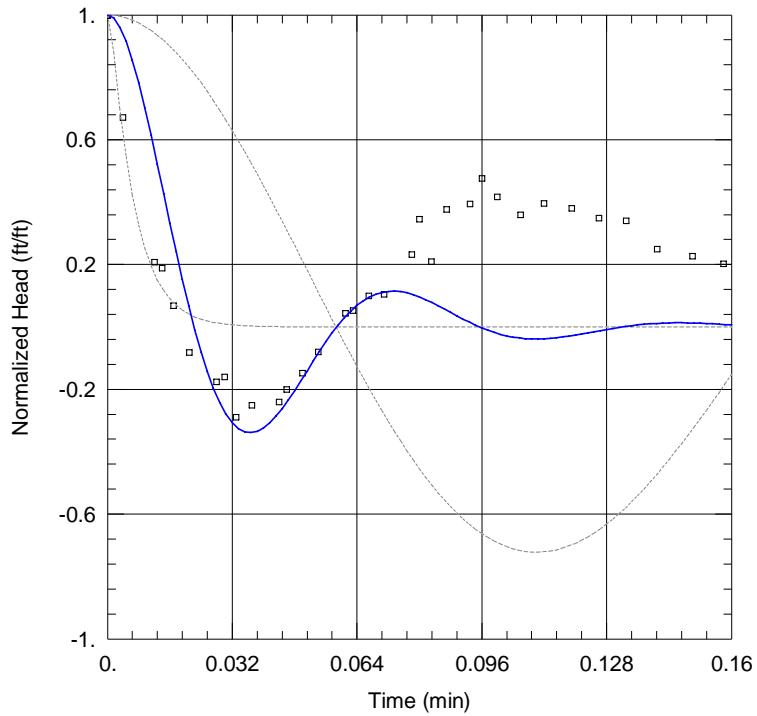
MW36D-PUMP1

Data Set: C:\...\MW36D-pump1_Springer-gelhar.aqt
 Date: 03/31/20 Time: 16:12:02

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-36D
 Test Date: 11/25/19

AQUIFER DATA


Saturated Thickness: 63.59 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-36D)

Initial Displacement: 0.2743 ft Static Water Column Height: 63.59 ft
 Total Well Penetration Depth: 63.59 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar
 K = 121.6 ft/day Le = 21.46 ft

MW36D-PUMP3

Data Set: C:\...\MW36D-pump3_Springer-gelhar.aqt
 Date: 03/31/20 Time: 16:12:02

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60590866
 Location: Bamberg, SC
 Test Well: MW-36D
 Test Date: 11/25/19

AQUIFER DATA

Saturated Thickness: 63.59 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-36D)

Initial Displacement: 0.13 ft Static Water Column Height: 63.59 ft
 Total Well Penetration Depth: 63.59 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar
 K = 269.8 ft/day Le = 14.06 ft