401356 **Email Scanned**

From: Mary Ann Brookshire <mbrookshire@earthcon.com>

Sent: Monday, November 1, 2021 9:28 AM To: Kuhn, Kimberly M. <kuhnkm@dhec.sc.gov>

Cc: steve.bachellor@lennoxintl.com <steve.bachellor@lennoxintl.com>; Ungerman, Betty

<Betty.Ungerman@lennoxintl.com>; Carol Northern <cnorthern@earthcon.com>

Subject: Lennox - Former Ducane Site; Updated Assessment Report

*** Caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. *** Kim,

Here is a new link to the Updated Assessment Report for the former Ducane Company Site (Lennox) in Blackville, SC. Please let me know if you are able to access the document.

Former Ducane Site - Updated Report

Thanks, Mary Ann

Mary Ann Brookshire, CHMM Senior Scientist EarthCon Consultants, Inc. 1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062

Direct Dial: 678-569-2880

Cell: 404-317-7748

Office: 770-973-2100 x2880

Fax: 770-973-7395

Email: mbrookshire@earthcon.com

www.earthcon.com

EarthCon Consultants, Inc. 1880 West Oak Parkway Building 100, Suite 106 Marietta, Georgia 30062

> P. 770 973 2100 F: 770-973-7395 www.earthcon.com

October 28, 2021

Ms. Kimberly Kuhn South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management 2600 Bull Street Columbia, South Carolina 29201

Subject: Updated Assessment Report

Former Ducane Company Site

Blackville, Barnwell County, South Carolina

BLWM File # 401356

EarthCon Project No. 02.20160378.21

Dear Ms. Kuhn:

On behalf of our client Lennox International Inc. (Lennox), EarthCon Consultants, Inc. (EarthCon) is submitting the enclosed Updated Assessment Report for the former Ducane Company Site located in Blackville, Barnwell County, South Carolina (BLWM File # 401356). This report is being submitted in accordance with the requirements of Voluntary Cleanup Contract 16-5848-RP executed on November 17, 2016. Due to the visual nature of Plume Analytics®, we would like to arrange a meeting with you to present the results of the Plume Analytics® study prior to your final review of the enclosed report.

Please free to call us at (770) 973-2100 if you have any questions or if we can provide any additional information.

Respectfully submitted,

EARTHCON CONSULTANTS, INC.

Taral northern

Carol D. Northern Project Principal

Timothy O. Goist, P.G. (SC#1121)

Principal Geologist

Cc: Ms. Betty Ungerman, Environmental Affairs Director, Lennox International, Inc.

UPDATED ASSESSMENT REPORT

FORMER DUCANE COMPANY SITE 118 WEST MAIN STREET BLACKVILLE, BARNWELL COUNTY, SOUTH CAROLINA BLWM FILE #401356

PREPARED FOR:

LENNOX INTERNATIONAL, INC. 2140 Lake Park Boulevard Richardson, Texas 75080

PREPARED BY:

EARTHCON CONSULTANTS, INC, A MEMBER OF WSP USA.

1880 West Oak Parkway
Building 100, Suite 106
Marietta, Georgia 30062

770-973-2100

EarthCon Project No. 02.20160378.21

October 2021

CONTENTS

1.0	INT	RODUCTION	. 1
2.0	AD	DITIONAL SOIL AND GROUNDWATER DELINEATION	. 3
2.1	S	ite Lithology	. 3
2.2	S	oil Analytical Results	. 4
2	.2.1	Aromatic Hydrocarbons	. 4
2	.2.2	Chlorinated VOCs	. 5
2	.2.3	Other Constituents	. 5
2.3	G	Groundwater Analytical Results	. 6
2	.3.1	Aromatic Hydrocarbons	. 6
2	.3.2	Chlorinated VOCs	. 7
2	.3.3	Other Constituents	. 7
2.4	Ir	nvestigation-Derived Waste	. 8
3.0	VEI	RTICAL EVALUATION - WELLS MW-1D AND MW-4D	. 8
4.0	СО	MPREHENSIVE GROUNDWATER SAMPLING	. 9
4.1	F	ield Activities	. 9
4.2	G	Groundwater Flow	10
4.3		Groundwater Analytical Results	
4.4		DW Management	
5.0		OUNDWATER PLUME ANALYTICS® METHODOLOGY	
5.1	F	Ricker Method [®] Plume Stability Analysis	
_	5.1.1	•	
		Groundwater Plume Map Development	
		Statistical Methodology	
5	.1.4	Plume Center of Mass Evaluation	16
5.2	Т	otal Molar Plume Trend and Molar Fraction Analysis	16
5.3	R	Ricker Method [®] Spatial Change Indicator™ Methodology	17
6.0		OUNDWATER PLUME ANALYTICS® RESULTS	
6.1	C	Chloroethenes	21
6.2		Chloroethanes	
6.3	Α	romatic Hydrocarbons	26

6.4	MNA Paran	neters	.27
6.5	Groundwate	er Elevation Trend and Correlation	.28
6.6	Lower Shal	low Aquifer Wells (i.e., "D" wells)	.29
6.7			
7.0	RECOMMEN	DATIONS	.30
8.0	REFERENCE	S	.32
TABL	ES		
	Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7	Summary of Detected Soil Analytical Results - Organics Summary of Detected Groundwater Analytical Results - Organics Summary of PDS Groundwater Analytical Results from MW-1D and M 4D Groundwater Monitoring Well Construction Details Groundwater Level Measurements Field Parameters Groundwater MNA Results	W -
FIGU	IRES		
	Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12	Site Location Map Soil Boring Locations Cross Section Location Map Cross Section A – A' Cross Section B – B' Cross Section C – C' Cross Section D – D' Soil Analytical Results Aromatic Hydrocarbons Soil Analytical Results Chlorinated VOCs Groundwater Analytical Results Aromatic Hydrocarbons Groundwater Analytical Results Chlorinated VOCs and 1,4-Dioxane Potentiometric Surface Map – June 2021	
APPE	NDICES		
	Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I	Summary of Field Procedures – June 2021 Soil Boring Logs Data Validation Summary and Laboratory Analytical Reports – June 20 Natural Oxidant Demand Test Results Field Sampling Forms – June 2021 Groundwater Elevations Summary Groundwater Historical Data Summary Ricker Method® Plume Stability Analysis Input Data and Metrics Summ Groundwater Plume Analytics® Presentation.pptx	

Updated Assessment Report Former Ducane Company Site 1 | Page

1.0 INTRODUCTION

The former Ducane Company Site (the Site) is located at 118 West Main Street in Blackville, South Carolina (Figure 1). The Site consists of approximately 105 acres with about 19 acres developed with a production building and a research and development building. The Site is identified by Barnwell County as consisting of three parcels. One parcel is owned by the Barnwell County Economic Development Corporation. The other two parcels, which include the Site buildings, were owned by NK Newlook, Inc. and were formerly used for production of wooden commercial display cabinets. These parcels are currently owned by the Barnwell County Economic Development Corporation and are used for the production of wooden storage buildings and paper recycling.

Assessment and remediation activities have been ongoing at the Site since 1999. Constituents detected in Site soils and groundwater included chlorinated volatile organic compounds (CVOCs) and aromatic hydrocarbons. Approximately nine in-situ chemical oxidation/bio-remediation injection events were performed at the Site from July 2003 to April 2008.

On November 17, 2016, Lennox International (Lennox) entered into Voluntary Cleanup Contract 16-5848-RP (the Contract) with the South Carolina Department of Health and Environmental Control (DHEC). In accordance with the Contract requirements, comprehensive groundwater sampling of Site wells was conducted from January 30 to February 2, 2017. The groundwater samples were analyzed for volatile organic compounds (VOCs) to update the status of the known plume. Groundwater samples collected from monitoring wells MW-1, MW-3 and background well MW-6R were also analyzed for Target Analyte List (TAL) metals. The results of the comprehensive groundwater sampling event were presented in an Assessment Report dated March 24, 2017. Based on the sampling event results and the subsequent Plume Analytics® study, the Assessment Report proposed conducting semi-annual groundwater sampling for a period of two years (four total sampling events). The Assessment Report also recommended minor repairs to monitoring wells and the installation of one additional monitoring well (MW-16) north of MW-3 to address a data gap identified during the Plume Analytics® study. DHEC approved the Assessment report in letters dated May 8 and June 1, 2017.

The four semi-annual groundwater sampling events were conducted at the Site in October 2017, March 2018, October 2018 and March 2019. Groundwater sampling was conducted as described in the March 2017 Assessment Report and the Work Plan for Monitoring Well Installation dated

Updated Assessment Report Former Ducane Company Site 2 | Page

June 29, 2017 and approved by DHEC on July 17, 2017. The results for the first three semi-annual groundwater sampling events were provided to DHEC in Semi-Annual Monitoring Reports dated January 30, 2018, July 23, 2018 and January 24, 2019. The results of the fourth semi-annual groundwater sampling event conducted in March 2019 along with the updated Plume Analytics® study were provided to DHEC in the Updated Assessment Report dated July 26, 2019.

A meeting was held on August 28, 2019 to discuss future Site activities. As a result of that meeting, Lennox agreed to install one additional monitoring well (MW-17), redevelop monitoring well MW-4D, conduct one additional year of semi-annual groundwater sampling and update the Plume Analytics[®] study with the additional groundwater analytical results. The Updated Assessment Report and the additional Site activities were approved by DHEC in a letter dated August 29, 2019.

The two additional semi-annual groundwater sampling events were conducted in October 2019 and April 2020. Groundwater sampling was conducted as described in the March 2017 Assessment Report and the Work Plan for Monitoring Well Installation dated June 29, 2017 and approved by DHEC on July 17, 2017. The results of the first additional semi-annual sampling event, conducted in October 2019, were provided to DHEC in the Semi-Annual Monitoring Report dated January 22, 2020. The results of the second semi-annual sampling event, conducted in April 2020, were provided to DHEC in the Updated Assessment Report dated September 10, 2020 and discussed during a September 25, 2020 meeting. Recommendations for future activities were discussed during the September 25, 2020 meeting and a Scope of Work was presented to and discussed with DHEC in a meeting held on December 10, 2020. The Scope of Work was developed to provide additional delineation in the vicinity of monitoring well MW-3. A Work Plan for Additional Assessment Activities – 2021 was submitted on April 26, 2021 and approved by DHEC in a letter dated April 29, 2021.

This Updated Assessment Report for the Former Ducane Company Site (BLWM File #401356) is being submitted to satisfy the requirements of Voluntary Cleanup Contract 16-5848-RP executed on November 17, 2016. This report presents the results of the 2021 additional assessment activities in the vicinity of MW-3 and provides an updated Plume Analytics® study.

Updated Assessment Report Former Ducane Company Site 3 | Page

2.0 ADDITIONAL SOIL AND GROUNDWATER DELINEATION

Twenty (20) borings were advanced at the site from June 22 to June 25, 2021, to provide additional delineation of soil and groundwater at the facility (Figure 2). Fourteen (14) of the borings (DP-1 through DP-14) were advanced for the collection of soil and groundwater samples. Six soil borings (SB-101, SB-102, SB-103, SB-105, SB-106, and SB-108) were advanced to the water table for the collection of soil samples only. Eight soil borings were originally planned; however, borings SB-104 and SB-107 were not drilled due to difficulty gaining access to a heavily wooded area of the property. Appendix A provides a summary of the field procedures for the

additional soil and groundwater delineation. Appendix B provides soil boring logs.

To evaluate potential in-situ remedial technologies, one soil and one groundwater sample were collected from a presumed unimpacted area of the Site (near MW-15), and another soil and groundwater sample were collected from an impacted area of the Site (near MW-3). The samples

were analyzed for natural oxidant demand (NOD) by PeroxyChem laboratory.

2.1 Site Lithology

Lithologic information collected during the previous assessment activities (as shown on well boring logs) and the June 2021 sampling activities were used to develop cross sections to illustrate the subsurface soils beneath the Site. Figure 3 shows the orientation of the cross sections and Figures 4 to 7 present cross sections A-A', B-B', C-C', and D-D', respectively. As shown on the cross sections, the Site is underlain by discontinuous zones of interbedded clayey sand, silty sand, silt, sand, and clay layers, possibly of marine and intersected fluvial deposition.

The lithology appears to become increasingly sandy with depth.

Approximately 12 feet of sandy clay underlay the Site in the vicinity of monitoring wells MW-3/MW-3D. This zone is underlain by an approximately five foot clay layer, apparently making the uppermost saturated zone a perched water table in the sandy clay. Well MW-3 is screened in the sandy clay, just above the five-foot clay layer. Well MW-3D is screened in a saturated sand/sandy silt layer and is separated from well MW-3 by the five foot clay layer. However, the clay layer is not contiguous across the site.

Updated Assessment Report Former Ducane Company Site 4 | Page

2.2 Soil Analytical Results

Soil samples were analyzed for VOCs using USEPA Method 8260D. A summary of the detected VOC analytical results for soil samples is provided in Table 1. The laboratory analytical reports from Pace Analytical Services, LLC (Pace) (DHEC Certification No. 32010001) are provided in Appendix C. Soil samples were also collected for NOD testing by PeroxyChem. Results are provided in Appendix D and will be used in the future for assessing remedial alternatives, as necessary.

The laboratory data was validated in accordance with the *Contract Laboratory Program National Function Guidelines for Inorganic Data Review* (USEPA, 2008) and *Contract Laboratory Program National Function Guidelines for Inorganic Data Review* (USEPA, 2010). A copy of the validation summary is provided in Appendix C.

The analytical results of the soil samples indicate the presence of the following constituents:

- Acetone
- 2-Butanone
- 1,1-Dichloroethene
- Cis-1,2-dichloroethene
- Ethylbenzene
- Isopropylbenzene
- Methylacetate
- Methylcyclohexane
- Tetrachloroethene
- 1,1,2-Trichloroethane
- Trichloroethene
- Vinyl chloride
- Xylenes

2.2.1 Aromatic Hydrocarbons

Aromatic hydrocarbons (ethylbenzene, isopropylbenzene and xylenes) were detected in soil samples from boring DP-5 (1 to 3 feet bgs), DP-7 (1 to 3 feet bgs), SB-103 (1 to 3 feet bgs), and SB-108 (1 to 3 feet bgs) as shown on Figure 8. A strong fuel odor was noted at boring DP-5 and a solvent odor was noted at boring SB-103. The highest detections of aromatic hydrocarbons were from boring SB-103, where ethylbenzene was detected at 3,300 micrograms per kilogram µg/kg and xylenes were detected at 11,000 µg/kg. Boring SB-103 is located south of the former drum storage area and north of monitoring well MW-3. Relative to the other sampling locations, higher concentrations of isopropylbenzene, ethylbenzene and xylenes were also observed in

Updated Assessment Report Former Ducane Company Site 5 | Page

boring DP-5, which is located in the former solvent storage area south of monitoring well MW-3. A release of Naphtha-100 occurred at the former solvent storage area on August 27, 1999, which is described in the Phase III Environmental Site Assessment (ERM, 1999). Concentrations of the aromatic hydrocarbons were below EPA Industrial Soil Regional Screening Levels (RSLs) as indicated on Table 1.

2.2.2 Chlorinated VOCs

CVOCs (cis-1,2-dichloroethene, tetrachloroethene, 1,1,2-trichloroethane, trichloroethene, and/or vinyl chloride) were detected in borings DP-2 (6 to 7 feet bgs), DP-10 (10 to 11 feet bgs), DP-11 (10 to 11 feet bgs), DP-12 (4 to 5 and 9 to 10 feet bgs), DP-13 (19 to 20 feet bgs), and SB-102 (1 to 1.5 feet bgs) as shown on Figure 9. The highest detections of chlorinated compounds were observed at locations DP-11 and DP-12, located at the northeast corner of the building in the vicinity of the former maintenance shop (i.e., Old Maintenance Area). The concentration of chlorinated compounds in DP-12 was highest in the soil sample from 4 to 5-feet bgs and decreased with depth. Both soil samples from DP-12 were collected from a highly compacted clay. The same chlorinated compounds were detected in the soil sample collected at 19 to 20 feet bgs in DP-13, which is located approximately 130 feet west of DP-12. The chlorinated compounds in DP-11, located approximately 180 feet east of DP-12, were detected at a depth of 10 to 11 feet bgs, but were not detected at depths of 20 to 21 feet bgs. Cis-1,2-dichloroethene was also detected in boring DP-2 at a depth of 6 to 7 feet bgs, however, no chlorinated compounds were detected in soil samples obtained at depths of 10 to 11 feet bgs and 19-20 feet bgs. This boring was advanced near a storm water drain that collects surface water from the eastern parking area and appears to collect drainage from an underground pipe that runs from the building to the drain. Concentrations of the chlorinated compounds were below EPA Industrial Soil RSLs as indicated on Table 1.

2.2.3 Other Constituents

Acetone, 2-butanone, methylacetate and methylcyclohexane were also detected in the soil samples at concentrations below industrial RSLs. Acetone was detected in many of the soil samples; however, acetone is a common field and laboratory contaminant and is frequently found in soil samples preserved with sodium bisulfate. In addition, 2-butanone was detected in six samples at concentrations below the reporting limit. Methylacetate and methylcyclohexane were

Updated Assessment Report Former Ducane Company Site 6 | Page

detected only once at concentrations below the reporting limit. Due to the low concentration and frequency of 2-butanone, methylacetate and methylcyclohexane, they are not considered further.

2.3 Groundwater Analytical Results

Analytical results of the delineation groundwater samples are provided in Table 2. These samples were collected to further delineate the impacted groundwater in the vicinity of monitoring well MW-

3. The laboratory analytical reports from Pace are provided in Appendix C.

The laboratory data was validated in accordance with the *Contract Laboratory Program National Function Guidelines for Inorganic Data Review* (USEPA, 2008) and *Contract Laboratory Program National Function Guidelines for Inorganic Data Review* (USEPA, 2010). A copy of the validation summary is provided in Appendix C.

The groundwater analytical results of the delineation borings are evaluated with results from monitoring wells MW-3 and MW-3D. The analytical results of the groundwater samples indicate the presence of the following constituents:

- Acetone
- Chloroform
- 1,1-Dichloroethane
- 1,2-Dichloroethane
- 1,1-Dichloroethene
- Cis-1,2-dichloroethene
- Trans-1,2-dichloroethene
- Ethylbenzene
- Isopropylbenzene
- Methylene chloride
- Tetrachloroethene
- Toluene
- 1,1,1-Trichloroethane
- 1,1,2-Trichloroethane
- Trichloroethene
- Vinyl chloride
- Xylenes
- 1,4-Dioxane

2.3.1 Aromatic Hydrocarbons

Results of the delineation groundwater samples indicate that the aromatic hydrocarbons (ethylbenzene, toluene, isopropylbenzene, and/or xylenes) are sporadic and were detected south of monitoring well MW-3 in boring DP-5 (located in the solvent storage area) and boring DP-2 (located near the stormwater drain that collects surface water from the eastern parking area and

BUSINESS SOLUTIONS ®

Updated Assessment Report Former Ducane Company Site 7 | Page

appears to collect drainage from an underground pipe that runs from the building) as shown on Figure 10. Aromatic hydrocarbons were also detected in boring DP-7 west of MW-3 and in boring DP-12. Boring DP-12 is located northwest of the former maintenance shop in the building. The highest concentrations of aromatic hydrocarbons from a boring were observed at DP-5, where isopropylbenzene was detected at 690 micrograms per liter (μ g/L). Isopropylbenzene is a component of Naphtha-100, the solvent released in 1999 (ERM, 1999). The only aromatic hydrocarbon concentration to exceed an MCL or tap water RSL is the isopropylbenzene concentration in sample DP-5, which exceeded the tap water RSL of 45 μ g/L.

2.3.2 Chlorinated VOCs

CVOCs were detected in most of the direct-push sampling locations on the eastern side of the building and proximal to monitoring well MW-3 but at much lower concentrations than the CVOCs detected in MW-3 as shown on Figure 11. These lower concentration CVOCs were detected in samples obtained from DP-1, DP-2, DP-4, DP-5, DP-7, DP-9 and DP-10. Higher concentrations of CVOCs were observed in boring DP-12 located to the north of the building. Additionally, the groundwater sample from boring DP-12 contained parent compounds (trichloroethene and tetrachloroethene), while the groundwater sample from monitoring well MW-3 and from the directpush borings on the eastern side of the building and proximal to MW-3 contained primarily breakdown products (cis-1,2-dichloroethene, trans-,1,2-dichorooethene, 1,1-dichloroethene, and vinyl chloride). This could indicate separate releases or be the result of the two in-situ remediation events conducted in 2001 (Fenton's Reagent) and 2008 (Anaerobic BioChem Plus) in the vicinity of MW-3 (Allied Air, 2011). As indicated on Table 2, concentrations of trichloroethene, tetrachloroethene, 1,1-dichloroethene, 1,1-dichloroethane, cis-1,2-dichloroethene, trans-1,2dichloroethene, and vinyl chloride exceeded the MCL and/or EPA tap water RSL at DP-12 whereas the sample results from DP-10 exceeded the MCL for 1,1-dichloroethene and vinyl chloride and the sample results from DP-7 and DP-9 exceeded the MCL just for vinyl chloride.

2.3.3 Other Constituents

In addition to the aromatic hydrocarbons and CVOCs, 1,4-dioxane was detected at locations DP-5, DP-6, DP-7, DP-9, and DP-10 at concentrations that exceed the EPA tap water RSL. Each of these samples was collected in the vicinity of the drum storage area and the former drum/solvent storage area.

Updated Assessment Report Former Ducane Company Site 8 | Page

Acetone, chloroform, and methylene chloride were also detected in the groundwater samples at concentrations below their respective EPA tap water RSL. Acetone was detected at locations DP-6 and DP-9 at concentrations below the reporting limit. Chloroform was detected in several samples at relatively low concentrations (1.7 μ g/L and lower). Note the MCLs for total trihalomethanes, including chloroform, is 80 μ g/L while the RSL is 0.22 μ g/L. The chloroform detections may be due to potable water lines in the vicinity Methylene chloride was detected twice at 2.4 μ g/L in DP-12. Methylene chloride is a common laboratory contaminant. Due to the relatively low concentration of acetone, chloroform, and methylene chloride, they will not be considered further in the assessment.

2.4 Investigation-Derived Waste

Investigation derived waste (IDW) in the form of soil cuttings was generated during advancement of the soil borings. IDW was containerized in 55-gallon drums, properly labeled, and properly disposed offsite.

3.0 VERTICAL EVALUATION - WELLS MW-1D AND MW-4D

To evaluate the vertical distribution of contaminants in wells MW-1D and MW-4D, dual membrane passive diffusion samplers (PDS) were installed on June 1, 2021, in well MW-1D at depths of 16.2 and 36.2 feet below top of casing (bTOC) and in well MW-4D at depths of 16, 36 and 56 feet bTOC. The PDS could not be lowered to the deeper interval (80 feet) in MW-4D as originally planned due to refusal. The fact that the PDS sampler could not be lowered to 80 feet as proposed indicates the possibility of a problem with well construction. Additionally, a camera survey conducted on April 22, 2020, indicated that there were potential breaches in the well approximately 20 and 30 feet below the top of the casing.

Groundwater samples were collected from the PDS on June 21, 2021 and submitted for laboratory analysis of VOCs and 1,4-dioxane. Table 3 provides results of the PDS sampling and Table 2 provides results of the low-flow groundwater sample from these monitoring wells.

Results of the PDS groundwater samples from monitoring well MW-1D show relatively low concentrations of tetrachloroethene (3.1 and 3.5 μ g/L) and trichloroethene (1.3 and 1.4 μ g/L) in the 16.2 feet and 36.2 feet samples compared to the concentrations from the screened interval. The concentrations of tetrachloroethene and trichloroethene in the screened interval (48 to 53 feet bgs) are 62 μ g/L and 91 μ g/L, respectively. The higher concentrations in the groundwater samples

Updated Assessment Report Former Ducane Company Site 9 | Page

collected within the screened interval indicate that the constituents detected are coming from the

screened zone and not from a breach above the screened interval.

Tetrachloroethene concentrations in the PDS samples obtained from MW-4D at 16, 36, and 56 feet

are 2.1, 4.7 and 4.0 μg/L, respectively. The tetrachloroethene concentration in the screened interval

from 72 to 82 feet bgs is 19 µg/L. As mentioned above, there appears to be integrity issues with

the construction of this well. The results from the PDS sampling are inconclusive as to whether

CVOCs are coming into the well at the screened interval, at some potential breech(es) along the

casing, or a combination of both.

4.0 COMPREHENSIVE GROUNDWATER SAMPLING

4.1 Field Activities

A comprehensive groundwater sampling event was conducted at the Site from June 21 to June

25, 2021. There are 21 groundwater monitoring wells located at the Site. Prior to sampling, depth

to groundwater measurements were collected at all accessible wells. The locations of the

monitoring wells are shown on Figure 2.

Static water levels were measured on June 21, 2021 from 18 Site groundwater monitoring wells.

Permission to access well MW-9, which is located on the adjacent private property, was not

granted. Monitoring wells MW-12 and MW-13 could not be located. The monitoring well

construction details are presented in Table 4 and the water level measurements are presented in

Table 5.

Groundwater samples were collected from 18 of the 21 wells using low flow purge and sampling

techniques. Wells MW-9, MW-12 and MW-13 could not be sampled for the reasons stated above.

Prior to sampling, each well was purged, and the following field parameters were measured:

temperature, specific conductance, dissolved oxygen (DO), oxidation reduction potential (ORP),

ferrous iron and turbidity. A description of the field procedures is provided in Appendix A. Field

parameters measured during the sampling event are summarized in Table 6 and the field

sampling forms are provided in Appendix E.

BUSINESS SOLUTIONS ®

Updated Assessment Report Former Ducane Company Site 10 | Page

4.2 Groundwater Flow

The water level measurements collected on June 21, 2021 (Table 5) were used to develop a

potentiometric surface map for the Site, which is included as Figure 12. As shown on Figure 12,

groundwater elevation data indicate groundwater flow is to the north-northwest which is consistent

with groundwater flow measured in previous sampling events. A summary of historical

groundwater elevations is provided in Appendix F.

4.3 Groundwater Analytical Results

Groundwater samples were analyzed for VOCs using EPA Method 8260D and 1,4-dioxane using

EPA Method 8260D Selective Ion Monitoring (SIM). The groundwater samples were also

analyzed for the monitored natural attenuation (MNA) parameters nitrate, sulfate, sulfide, chloride,

alkalinity, total organic carbon (TOC) and dissolved gases (ethane, ethene, methane and

propane).

A summary of the VOC analyses is provided in Table 2 and the MNA parameter results are

summarized in Table 7. The laboratory analytical reports from Pace are provided in Appendix C.

The laboratory data was validated in accordance with the Contract Laboratory Program National

Function Guidelines for Inorganic Data Review (USEPA, 2008) and Contract Laboratory Program

National Function Guidelines for Inorganic Data Review (USEPA, 2010). A copy of the validation

summary is provided in Appendix C. A summary of historical groundwater analytical results is

provided in Appendix G. The June 2021 data is substantially consistent with historical data.

4.4 IDW Management

IDW in the form of purge water was generated during groundwater sampling activities. IDW was

containerized in 55-gallon drums, properly labeled, and properly disposed offsite.

5.0 GROUNDWATER PLUME ANALYTICS® METHODOLOGY

A Groundwater Plume Analytics® evaluation, including a Ricker Method® Plume Stability Analysis, was conducted for the Upper Shallow aquifer at the Site using groundwater analytical data provided by Environmental Resources Management (ERM) through 2014 and analytical data collected by EarthCon through June 2021. The Groundwater Plume Analytics® evaluation was conducted for the following constituents of concern (COC):

Chloroethenes

- Tetrachloroethene (PCE);
- Trichloroethene (TCE);
- cis-1,2-Dichloroethene (cis-1,2-DCE);
- trans-1,2-Dichloroethene (trans-1,2-DCE);
- 1,1-Dichloroethene (1,1-DCE);
- Vinyl chloride; and
- Total chloroethenes (molar basis)

Aromatic Hydrocarbons

- Toluene
- Ethylbenzene
- **Xylenes**

This Groundwater Plume Analytics® evaluation included the following elements:

- Ricker Method® Plume Stability Analysis;
- Total molar trend and molar fraction analysis for chloroethenes and chloroethanes;
- Ricker Method[®] Spatial Change Indicator™;
- Geochemical MNA isopleths; and
- Groundwater elevation trend evaluation.

The following subsections present the methodologies of the aforementioned elements of the Groundwater Plume Analytics® services. Results of the Groundwater Plume Analytics® evaluation are presented in Section 6.0.

5.1 Ricker Method® Plume Stability Analysis

The Ricker Method® Plume Stability analysis was conducted using procedures described in A Practical Method to Evaluate Ground Water Contaminant Plume Stability (Ricker, 2008). The Ricker Method® plume stability analysis compares relative changes in contaminant plume characteristics over time, including area, average concentration, and mass indicator. Note that the term "mass indicator" does not necessarily represent the entire mass in the subsurface but

- 1,1,2-trichloroethane (1,1,2-TCA)
- 1,1,1-trichloroethane (1,1,1-TCA);
- 1,2-dichloroethane (1,2-DCA);
- 1,1-dichloroethane (1,1-DCA); and
- Total chloroethanes (molar basis)

Updated Assessment Report Former Ducane Company Site 12 | Page

rather an expression of it based on a fixed assumption of aquifer thickness and porosity to serve as a way of combining plume area and average concentration into one meaningful metric. Calculation of the actual constituent subsurface mass is often a very complicated exercise, and usually more data inputs are needed than are available from typical delineation and/or remediation well information. Because the plume mass value is not necessarily a measure of actual contaminant mass, the term "mass indicator" is used to describe this plume characteristic. Since the main purpose of the plume stability analysis is to observe relative changes in plume characteristics between sampling events, applying constants (i.e., porosity and aquifer thickness) to the mass calculation has no bearing on the usefulness of the output of the analysis (i.e., relative rate of change in plume mass).

To demonstrate that a plume is decreasing or stable, temporal changes in these calculated values should result in an overall decreasing or stable trend. An increasing trend in any of these values may indicate that the plume is not stable and/or is possibly expanding. Further details concerning trend analysis and determination of a trend conclusion are provided in Section 5.1.3.

5.1.1 Data Assessment and Input File Development

Data used in the Ricker Method[®] plume stability analysis for the constituents listed above for the Upper Shallow aquifer at the Site are tabulated in Appendix H. Groundwater analytical data were available from 1999 through 2021.

Not all wells were sampled during each sampling event, and gaps were filled by either interpolating between those events with available data or by extrapolating values using available data from previous or subsequent events. Other scientific and/or statistical assumptions and adjustments to the data, consistent with the Ricker Method®, were necessary to complete the analysis. These adjustments are identified in the Ricker Method® input data set summarized in Appendix H. The assumptions and adjustments used in the analysis include the following:

• In most cases non-detect concentrations were evaluated with an assigned concentration value of the stated detection limit. Also, in cases where non-detect results with elevated detection limits were encountered, professional judgment was used to assign a concentration value. For instances in this case with detectable results or non-detect results with a lower detection limit before and after, a value was assigned by interpolation, using the events before and after. For instances with no detectable result or non-detect

result with a lower detection limit following the event in question, the last known detectable result was used. These instances are indicated by green shading in Appendix H. In every case the assigned value was based on actual results (detectable value or non-detect at a lower detection limit). Assigned values for non-detect concentrations are provided in Appendix H.

• For sampling events where a particular monitoring well was not sampled, but analytical data prior to and subsequent to are available, the events were assigned values by linearly interpolating between the closest prior and subsequent sampling event. Instances where these values are assigned are indicated by orange shading in Appendix H.

5.1.2 Groundwater Plume Map Development

As part of the Ricker Method[®] plume stability analysis, constituent concentration isopleth maps, or plume maps, were developed for the groundwater monitoring events that occurred September 1999 through June 2021 for the aforementioned constituents in the upper shallow aquifer. The lower or deep aquifer (as designated by the "D" wells) was evaluated on a well by well basis due to the limited number of wells in this aquifer zone. Plume maps for each compound were delineated to the base contour values listed below.

Constituent	Base Contour (µg/L)
PCE	5
TCE	5
1,1-DCE	7
cis-1,2-DCE	5
trans-1,2-DCE	5
vinyl chloride	2
1,1,2-TCA	5
1,1,1-TCA	5
1,2-DCA	5
1,1-DCA	5
ethylbenzene	5
toluene	5
xylenes	5

Total chloroethene plume maps were developed by converting the individual contours of PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE and vinyl chloride to a molar concentration basis, at or above their respective base contours, and summing them to calculate a total molar plume for

Updated Assessment Report Former Ducane Company Site 14 | Page

each event. Total chloroethane plume maps were developed in the same manner using the

contours for 1,1,2-TCA, 1,1,1-TCA, 1,2-DCA and 1,1-DCA.

The area of the constituent-specific plume for each sampling event was calculated using the mathematical features of the contouring software to develop the isopleth maps (i.e., Surfer® 17.1.288, by Golden Software, Inc.) The kriging gridding method was used with the default linear variogram to develop the isopleth maps. Surfer® was also used for the computation of the average concentration of each plume as described in Ricker (2008). The plume area and average concentrations were then used to calculate the plume mass indicator for each event. To calculate the plume mass indicator, a porosity of 30% and an aquifer thickness of 10 feet were used based

on the lengths of the screens for most of the wells installed in the shallow aquifer.

Concentration isopleth maps for each constituent are included in Appendix I. As discussed above, plume stability characteristics were calculated for each of the sampling events included in the analysis. The plume stability characteristics of area, average concentration, and mass indicator,

as well as the location of the center of mass, are also provided on each isopleth map.

5.1.3 Statistical Methodology

To evaluate the stability of each constituent plume, temporal trends of the characteristics were evaluated statistically. The area, average concentration, and mass indicator for each event were plotted to observe changes in each parameter from event to event. The results of the plume

stability analyses for each constituent are discussed in Section 6.0.

The temporal trends in the plume characteristic values were statistically evaluated using both linear regression techniques and the Mann-Kendall Test. Linear regression analyses were conducted using the regression analysis utility in Microsoft Excel, version 1808 (Office 365). The Mann-Kendall Tests were also conducted using procedures described in Gilbert (1987). Linear regression is a parametric statistical procedure that is typically used for analyzing trends in data over time. The Mann-Kendall Test is a non-parametric statistical test; therefore, it is not dependent upon the magnitude of the data, assumptions of distribution, or regularly spaced

sampling events.

The Mann-Kendall Test is used to assess whether a data set exhibits an increasing or decreasing trend at a predetermined level of significance (α). The test requires the calculation of a statistic

Updated Assessment Report Former Ducane Company Site 15 | Page

"S" which is the difference between the number of paired differences that are positive, minus the

number that are negative. If S is a large positive value, then there is evidence of an increasing

trend in the data. If S is a large negative value, then there is evidence of a decreasing trend in the data. The null hypothesis, H₀, for the Mann-Kendall Test is that there is no temporal trend in

the data. The alternative hypothesis, H_A, is that of either an upward trend or a downward trend.

If the null hypothesis is not rejected (i.e., no trend could be established statistically), it is expected

that the plume is stable. However, a stable plume may not in fact be evident because the

statistical test does not consider magnitude or variation in the data. For example, a data set can

exhibit a large amount of scatter, yet the test could conclude that the plume is stable. A

methodology to counter the problem of scatter in the data involves comparing the calculated S

statistic, a calculated confidence factor $(1-\alpha)$, and the coefficient of variation for the data set. The

S statistic indicates the direction of the trend, the confidence factor shows how strong the trend

is, and the coefficient of variation indicates the degree of scatter in the data.

When evaluating trends using linear regression, trends may be obscured by scatter in the data.

This condition is typically indicated by a low coefficient of determination (R²) value. Even with low

R² values (i.e., high degree of scatter) a confidence interval can still be constructed on the slope

of the regression line. As described in AFCEE (2006), assuming the sign (i.e., positive or

negative) of the estimated log-slope is correct, a level of confidence that the slope is not zero can

be easily determined. The overall trend in the data may thus still be determined, where low levels

of confidence correspond to stable or indeterminate trends and higher levels of confidence (e.g.,

> 90%) indicate the stronger likelihood of a trend.

For the plume stability analysis, significant trends are concluded when the calculated confidence

factor is greater than 90%. If the confidence factor is less than 90%, the plume is considered

stable or indeterminate (i.e., "no trend").

In many cases the statistical results for both linear regression and the Mann-Kendall Test agree

with each other. In the case where two different results are obtained (e.g., one stable trend and

one decreasing trend), visual analysis and professional judgment are used to determine the

overall trend result.

Trend analysis results for the respective constituent plume area, average concentration, and

mass indicator are discussed for each constituent in Section 6.0.

BUSINESS SOLUTIONS ®

Updated Assessment Report Former Ducane Company Site 16 | Page

5.1.4 Plume Center of Mass Evaluation

In addition to temporal trend analyses of plume characteristics, the center of plume mass (COM)

was calculated. Evaluation of COM movement should be considered in conjunction with the other

plume characteristics to assess the overall stability of a plume. For example, a stable or

decreasing plume may actually show migration of the COM in the downgradient direction in

instances when focused remediation occurred in a source area of a Site. In this case, this

downgradient shift is due to the rapid loss of mass in the upgradient portion of the plume, as

opposed to a gradual migration resulting from advective transport.

The plume COM is depicted on each constituent plume map included in Appendix I. For total

chloroethenes and total chloroethanes, the COM data is plotted on a Site map, with each COM

location (representing a discrete sampling event) color coded according to event date, to enable

visual assessment of COM location through time. Additionally, each COM movement is

represented by a vector that indicates the direction and distance of COM movement from one

sampling event to the next. The COM vectors are then plotted together with each vector tail

anchored at a common point to show variability in COM movement (similar to a wind rose

diagram).

5.2 Total Molar Plume Trend and Molar Fraction Analysis

In addition to the metrics described above, the CVOC groundwater data was also evaluated on a

molar basis for both total chloroethenes and total chloroethanes. To evaluate the CVOC plumes

on a molar basis, the total moles of the plume as well as the molar fraction of each constituent

were calculated.

It is known that during reductive dechlorination, a parent compound loses a chlorine atom and

converts to a daughter compound (e.g., TCE to DCE). Because of the extra chlorine atom, the

parent compound, on a weight basis, weighs more than the daughter compound. However, in

this conversion from parent to daughter example, one molecule of TCE produces one molecule

of DCE and are therefore equal on a molar basis. In our analysis, the total moles only decreases

once the parent-daughter compounds have been converted to ethene in the case of

chloroethenes and ethane in the case of chloroethanes, and/or have been mineralized to benign

end products (i.e., carbon dioxide, water, and chloride ions). Therefore, a decreasing trend in

Updated Assessment Report Former Ducane Company Site 17 | Page

total moles provides evidence of complete attenuation of CVOC compounds. Conversely, an increasing trend in total moles might indicate potential new or episodic releases within a plume.

Using a molar-based approach, we can also evaluate the molar fractions of individual parent-daughter compounds. As parent compounds degrade to daughter compounds, the molar fraction of the parent compounds decreases while the fraction of daughter compounds increases. Therefore, observing the molar fractions of the individual constituents along with the trend in total moles can provide further insight into various attenuation processes that may be occurring on the Site. For example, a decreasing trend in total moles with an increasing fraction of a daughter compound (i.e., cis-1,2-DCE) may indicate evidence of biological reductive dechlorination. Whereas a decreasing trend in total moles with individual constituent fractions that remain relatively constant may indicate the occurrence of non-selective destructive processes such as abiotic chemical reduction, anthropogenic recovery, or other non-biological processes.

5.3 Ricker Method[®] Spatial Change Indicator™ Methodology

The Ricker Method[®] Spatial Change Indicator[™] evaluation (US Pat. No. 10,400,583) shows relative changes in the plume over time. For this analysis, each plume map in a particular series is compared to the first plume map in the series by subtracting from a selected reference date to create a new isopleth map that shows areas of the plume that decreased in concentration (indicated by blue shading), increased in concentration (indicated by red shading), or did not change (indicated by clear or no shading). The visual aspect of this analysis allows the viewer to observe patterns of plume behavior over time.

This analysis also has a quantitative component. Each Ricker Method[®] Spatial Change Indicator[™] map also includes the percent change (increase or decrease) of the plume between each event and the baseline event in terms of area, average concentration, and mass indicator as calculated using Ricker Method[®] procedures. Additionally, for areas that increased or decreased in mass indicator, representative magnitudes of mass increase (red shaded areas) and mass decrease (blue shaded areas) are included on each map. A Spatial Change Indicator[™] analysis for total chloroethenes and total chloroethanes is included in Appendix I.

Updated Assessment Report Former Ducane Company Site 18 | Page

6.0 GROUNDWATER PLUME ANALYTICS® RESULTS

One of the primary benefits of the Groundwater Plume Analytics[®] process is the conversion of data into graphical and video outputs that make data more understandable. The following is provided as a textual summary of the visual outputs. The full graphical displays and analyses, including plume map videos, COM evaluation maps, molar trend and molar fraction evaluations, and the Spatial Change IndicatorTM results are included in Appendix I.

A Ricker Method® Plume Stability Analysis was conducted for the Site using groundwater data for each of the constituents from 1999 to 2021. Throughout Site history, numerous remedial efforts and groundwater monitoring well installations were performed. April 2008 is a significant date because it marked the end of anthropogenic remedial activities for the Site. Therefore, statistical trends were performed on the data from September 2008 through June 2021. September 2008 was selected as the start date to evaluate plume characteristics since the cessation of anthropogenic remedial activities. Statistical trends were also performed on the data from February 2017 through June 2021. This date range was selected to provide insight into more recent plume behavior. Note that trends are not provided for 1,2-DCA for the September 2008 through June 2021 timeframe and 1,1,2-TCA, and 1,1,1-TCA for the February 2017 through June 2021 timeframe due to the limited number of detected results.

Because the early well network consisted of only a few wells, the analysis was conducted inside a prescribed "window" or analytics boundary to provide a consistent view of plume behavior over time. This plume window is defined by the lateral extents of the current monitoring well network and the plume contours were truncated at the boundary of the window. As mentioned above, the full graphical displays including plume maps, plume-stability-metric charts with trends, Spatial Change Indicators™ and COM figures are available in Appendix I. The results are summarized below.

The following table summarizes the plume stability trends for area, average concentration and mass indicator from September 2008 through June 2021.

Ricker Method® Plume Stability Results (September 2008 – June 2021)

Constituent	<u>Area</u>	Average Concentration	Mass Indicator
PCE	Stable	Decreasing	Decreasing
TCE	Increasing	Decreasing	Decreasing
Cis-1,2-DCE	Decreasing	Decreasing	Decreasing
Trans-1,2-DCE	Decreasing	Decreasing	Decreasing
1,1-DCE	Decreasing	Decreasing	Decreasing
Vinyl Chloride	Decreasing	Decreasing	Decreasing
Total Chloroethenes	Decreasing	Decreasing	Decreasing
1,1,2-TCA	Decreasing	Decreasing	Decreasing
1,1,1-TCA	Decreasing	Decreasing	Decreasing
1,2-DCA	NA	NA	NA
1,1-DCA	Decreasing	Decreasing	Decreasing
Total Chloroethanes	Decreasing	Decreasing	Decreasing
Toluene	Decreasing	Decreasing	Decreasing
Ethylbenzene	Decreasing	Decreasing	Decreasing
Xylenes	Decreasing	Decreasing	Decreasing

The following table summarizes the plume stability trends for area, average concentration and mass indicator from February 2017 through June 2021.

Ricker Method® Plume Stability Results (February 2017- June 2021)

Constituent	<u>Area</u>	Average Concentration	Mass Indicator
PCE	Stable*	Stable	Stable
TCE	Stable	Stable	Stable
Cis-1,2-DCE	Stable	Stable*	Stable
Trans-1,2-DCE	Stable	Stable	Stable
1,1-DCE	Stable	Stable	Stable
Vinyl Chloride	Stable	Stable	Stable
Total Chloroethenes	Stable	Stable*	Stable*
1,1,2-TCA	NA	NA	NA
1,1,1-TCA	NA	NA	NA
1,2-DCA	Increasing*	Increasing	Increasing
1,1-DCA	Stable	Stable	Stable
Total Chloroethanes	Stable	Stable*	Stable
Toluene	Stable	Stable**	Stable
Ethylbenzene	Stable*	Increasing	Increasing
Xylenes	Stable*	Increasing	Increasing

Note: * indicates Mann-Kendall trend is increasing or stable.

Updated Assessment Report Former Ducane Company Site 20 | Page

** indicates Regression trend is increasing. However, based on professional judgement the overall trend conclusions are presented above.

The results summarized above indicate that the chloroethene, chloroethane, and aromatic hydrocarbon (toluene, ethylbenzene, and xylenes) plumes are all decreasing since September 2008.

Since February 2017, except for 1,2-DCA, ethylbenzene, and xylenes which are increasing, the other constituent plumes are stable (i.e., no trend). Additional observations of each of these plumes are discussed further below.

6.1 Chloroethenes

The results of this analysis indicate that the total chloroethene plume, on a molar basis, exhibited a strong decreasing trend following the last remedial activity in 2008, as observed in the figure below. From 2017 to June 2021, the total chloroethene plume has demonstrated a stable trend in molar mass. It is noted that the total chloroethene plume (indicated by the solid yellow plot on the graph below) is in units of moles on the primary y axis. Additionally, the individual constituent molar fractions are shown in the second graph below.

Updated Assessment Report Former Ducane Company Site 22 | Page

The molar fractions above demonstrate that in addition to the strong decreasing trend in mass since September 2008, the predominate constituent of the chloroethene plume is cis-1,2-DCE. As observed, cis-1,2-DCE represents roughly 80% to 90% of the total chloroethene plume on a molar basis. It is known that during biological reductive dechlorination, the vast majority of dichloroethene (DCE) produced by the breakdown of PCE to TCE will occur as cis-1,2-DCE. Therefore, the presence of a high percentage of cis-1,2-DCE is a strong indicator that reductive dechlorination has occurred at the Site. The rapid reduction in total moles from 2008 to 2015 is likely the result of various in-situ remediation events that occurred at the Site. The stable trend in total chloroethenes molar-mass since 2015 suggest that natural attenuation processes at the Site are maintaining plume stability.

The Ricker Method® Spatial Change Indicator™ analysis comparing September 2008 to June 2021 shows blue decreases across the Site with reductions in area, average concentration and mass indicator of 6%, 85%, and 86%, respectively. The Ricker Method® Spatial Change Indicator™ analysis comparing February 2017 to June 2021 depicts areas of decrease in the southern and western portions of the plume with slight increases in chloroethene concentrations proximal to MW-4 and stronger increases proximal to MW-3. Despite the recent concentration increase near MW-3, the overall plume continues to be stable.

The molar concentrations and molar fractions of the chloroethenes in MW-3, depicted below, demonstrate that there has been an increase of primarily cis-1,2-DCE since 2017. It is important to note that there are no indications of significant increases in the parent compounds PCE and TCE, thus indicating that there is not a "new release". The increase in concentrations observed in MW-3 may possibly be attributed to a rise in groundwater elevations across the Site as discussed further in Section 6.5.

6.2 Chloroethanes

The results of this analysis indicate that the total chloroethane plume, on a molar basis, is also decreasing since September 2008, as observed by the decreasing trend in total moles in the figure below.

Updated Assessment Report Former Ducane Company Site 25 | Page

Similar to the chloroethenes, the chloroethanes exhibit patterns consistent with a plume undergoing reductive dechlorination. Since the cessation of anthropogenic remedial activities, the fractions of 1,1,2-TCA and 1,1,1-TCA (parent compounds) are showing a decreasing trend while the daughter products 1,2-DCA and 1,1-DCA are increasing in molar fraction. The combination of decreasing total moles with decreasing parent fraction and increasing daughter fraction is a good indication of biological reductive dechlorination.

The Ricker Method® Spatial Change Indicator™ analysis comparing total chloroethanes from September 2008 to June 2021 shows that the area, average concentration, and mass indicator have decreased 11%, 88%, and 89%, respectively. The Ricker Method® Spatial Change Indicator™ analysis comparing February 2017 to June 2021 depicts an area of increase in total chloroethane concentration proximal to MW-3, similar to what was observed for the chloroethenes. Despite the recent concentration increase near MW-3, the plume continues to be stable.

The molar concentrations and molar fractions of the chloroethanes in MW-3, depicted below, explain that this increase is primarily 1,1-DCA. It is important to note that there are no indications of significant increases in the parent compounds 1,1,1-TCA and 1,1,2-TCA, thus indicating that there is not a "new release". The similar pattern between the chloroethenes and chloroethanes, observed in MW-3, support the premise that the recent increasing trends of chloroethene and chloroethane daughter products in MW-3 may be related to a recent increase in groundwater elevations liberating constituents previously trapped in the vadose zone as discussed further in Section 6.5.

6.3 Aromatic Hydrocarbons

Toluene, ethylbenzene and xylenes exhibit decreasing plume stability trends from September 2008 to June 2021. For the February 2017 to June 2021 period, the plume stability trends for ethylbenzene and xylenes are increasing. Because these two compounds are primarily detected in MW-3 and are increasing similar to what was observed for the chloroethenes and chloroethanes in MW-3, this supports the premise that the increasing trends in MW-3 is related

Updated Assessment Report Former Ducane Company Site 27 | Page

to an increase in groundwater levels. It should be noted that there were no detected concentrations of toluene, ethylbenzene or xylenes exceeding US EPA MCLs during the June 2021 event.

6.4 MNA Parameters

Isopleth maps were produced for each of the MNA parameters analyzed (dissolved oxygen, ORP, ferrous iron, methane, ethane, ethene, and total organic carbon). The MNA isopleths show strong correlation and patterns that provide evidence that biological degradation is occurring. For example, there is evidence of biodegradation through the observation of the metabolic byproducts methane, ethane, and ethene. It is known that reductive dechlorination mechanisms are most favorable under strongly reducing redox conditions (methanogenesis), which is evident at the Site by the presence of dissolved methane in most wells. Furthermore, the ethane and ethene concentrations in MW-3 were 36 µg/L and 160 µg/L, respectively, during the June 2021 event, which is strong evidence that the chloroethanes and chloroethenes are degrading via biological reductive dechlorination. The location of the metabolic byproducts and reducing conditions correspond to the highest concentration portion of the CVOC plumes, indicating that an MNA solution for the plumes could be a viable remedial approach. Additionally, the co-location of the aromatic hydrocarbon plumes with the CVOC plumes may prove beneficial from the standpoint that the aromatic hydrocarbons are providing a carbon-source and thus enhancing the anaerobic degradation of the CVOCs, which the evidence supports. MNA isopleths are included in Appendix ١.

6.5 Groundwater Elevation Trend and Correlation

Groundwater elevations were also evaluated to assess a potential relationship between groundwater elevations and variability observed in concentration data. Groundwater data from May 2000 through June 2021 were contoured using kriging, and the average groundwater elevation was determined for each event using Ricker Method® techniques. These data were plotted to assess temporal trends in average groundwater elevation for the Site. As shown below, no trend in groundwater elevation from May 2010 to June 2021 is apparent for the Site, suggesting that the variability in groundwater elevation at the Site is seasonal in nature and not a sustained rise or fall of the regional groundwater level. It is noted that there is approximately four feet of variability in the average groundwater elevation over the time-period analyzed.

The figure below depicts the Site average groundwater elevation for each event in relation to the historical average groundwater elevation for the Site from May 2000 through June 2021. The Site historical average groundwater elevation is 274.24 ft. The April 2020 average groundwater elevation was 275.38 ft, which is 1.14 ft above the historical average. A prolonged above-average groundwater elevation has the potential to liberate contaminants bound up in the vadose zone by way of diffusion. This intermittent diffusion may serve as a useful mechanism for depleting the residual mass in a former source area by transporting contaminants to the groundwater where they can be degraded via processes such as biological reductive dechlorination, which the evidence supports as occurring at the site. The June 2021 average groundwater elevation was 274.21, which is very near the historical average. This reduction in Site average groundwater elevation is paired with an observed slight decrease in the most recent sampling event of total chloroethenes, total chloroethanes, and aromatic hydrocarbon concentrations in MW-3, further supporting the case that changes in groundwater elevation may be the causation of some variability in contaminant concentrations.

6.6 Lower Shallow Aquifer Wells (i.e., "D" wells)

As mentioned previously, a Groundwater Plume Analytics[®] plume analysis could not be conducted for the four deeper wells. In instances where this occurs due to lack of a "plume" over the well network, a well-by-well depiction of data can be presented. Appendix I presents a well-by-well display of the four lower shallow aquifer wells (MW-1D, MW-2D, MW-3D, and MW-4D).

The data show that wells MW-2D and MW-3D did not have detectable concentrations of CVOCs in the most recent sampling event. MW-4D had a detectable level of PCE above the MCL and an estimated result for TCE and 1,1-DCE below the MCL. As described in Section 3.0, there are integrity concerns regarding the casing for well MW-4D which may potentially be allowing shallow-impacted groundwater to discharge into the well. Therefore, the concern is that CVOC concentrations in MW-4D may be attributed to apparent breach(es) in the well casing. MW-1D had detectable concentrations of PCE and TCE above MCLs, which appear to be in an increasing trend and worthy of further evaluation.

6.7 Summary

Based on the Groundwater Plume Analytics[®] analysis conducted on the upper shallow aquifer wells as described herein, it appears that both the chloroethene and chloroethane plumes are stable and show strong evidence of attenuation through natural processes, primarily through reductive dechlorination. The upper shallow aquifer plume is also delineated by the boundary

Updated Assessment Report Former Ducane Company Site 30 | Page

wells surrounding the plume. Additionally, the aromatic hydrocarbon plumes also appear to be

attenuating and are probably serving as a carbon source for reducing bacteria. Lastly, there does

appear to be a recent positive correlation between CVOC concentrations and groundwater levels at the Site. Therefore, fluctuations or variability in the CVOC data may be influenced by

groundwater levels. This correlation can be evaluated further with future temporal data.

The deep wells MW-1D and MW-4D have indications of recent increases in PCE and TCE.

However, due to well integrity issues observed for MW-4D, the data from this well should be

considered suspect. The increasing PCE and TCE concentrations observed in MW-1D are worth

further trend evaluation to assess whether this is historical variability or an increasing trend.

7.0 RECOMMENDATIONS

Based on the decreasing trends of total chloroethenes, total chloroethanes, and aromatic

hydrocarbons observed in the upper shallow aquifer at the Site and the delineation of the plume

by perimeter groundwater monitoring wells in the upper shallow aquifer, the current data strongly

support that a monitored natural attenuation remedy would be appropriate and worth pursuing as

a future Site remedy for the upper shallow aquifer, once CVOC concentrations in the area

proximal to MW-3 and potentially other areas are further decreased. Additionally, based on the

Groundwater Plume Analytics®, the plume is stable and not migrating off site. Therefore, it is our

opinion that the current monitoring well network in the upper shallow aguifer is sufficient to

evaluate plume behavior.

However, based upon the detection of CVOCs in DP-12, we are recommending the installation of

an additional shallow monitoring well in this location to evaluate groundwater conditions in this

area and to serve as a remedial progress well for the future. Additionally, to complete the

delineation of the interior of the plume and to evaluate a future remedial approach, we recommend

collecting one additional grab groundwater sample from a temporary point inside the building

between MW-3 and MW-5.

Based upon the sampling results for the two sample points identified above, we would then

recommend a remedial approach to first knock down the CVOC concentrations at the site in the

vicinity of MW-3 and DP-12, and potentially other areas depending on the results of the additional

sampling described above, prior to proceeding to a monitored natural attenuation remedy for the

Updated Assessment Report Former Ducane Company Site 31 | Page

shallow aquifer. As part of this remedy, the stability of the various groundwater plumes will continue to be evaluated.

For monitoring well MW-1D in the deep aquifer, we recommend continued monitoring. Additionally, due to the potential breaches in the MW-4D well casing at 20 and 30 feet, it may be appropriate to abandon and replace this well. Alternatively, and if feasible, MW-4D can be abandoned and in lieu of installing a new well, perhaps a deep groundwater grab sample can be obtained through direct-push techniques.

Lastly, due to the visual nature of Plume Analytics[®], Lennox strongly recommends that a meeting be held to present the results of the Groundwater Plume Analytics[®] services to DHEC. This meeting should be held prior to final DHEC review of this document.

8.0 REFERENCES

- Air Force Center for Environmental Excellence (AFCEE), March 2006, Monitoring and Remediation Optimization System (MAROS) SOFTWARE Version 2.2 User's Guide
- Allied Air, 2011. *Site Assessment Work Plan Blackville, South Carolina*, Allied Air Enterprises, February 14, 2011.
- ERM, 1999. Phase III Environmental Site Assessment, The Ducane Company, Blackville, SC, Environmental Resources Management, September 1999.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. New York. John Wiley & Sons, Inc.
- Ricker, J.A. 2008. A Practical Method to Evaluate Ground Water Contaminant Plume Stability.

 Groundwater Monitoring & Remediation 28, no. 4: 85–94
- USEPA. 2008. Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency Office of Emergency and Remedial Response. EPA540/R-99/008. June 2008.
- USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. United States Environmental Protection Agency. Office of Solid Waste and Emergency Response. January 2010.

TABLE 1. SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS - ORGANICS
Former Ducane Company Site
Blackville, Barnwell County, South Carolina
BLWM File # 401356

	Constituent (u		Acetone	2-Butanone	1,1-Dichloroethene	cis-1,2-Dichloroethene	Ethylbenzene	Isopropylbenzene	Methylacetate	Methylcyclohexane	Tetrachloroethene	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylenes (total)
	RSL (ug/k	g)	67,000,000	19,000,000	100,000	230,000	25,000	990,000	120,000,000	NA	39,000	630	1,900	1,700	250,000
Boring	Depth (ft bgs)	Date Sampled													
DP-1	10-11	6/25/21	<28	<28	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<14
DP-2	6-7	6/24/21	15 J	<18	<4.4	7.0	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.8
DP-2	10-11	6/24/21	<20	<20	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.8
DP-2	19-20	6/24/21	<19	<19	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.5
DP-3	10-11	6/24/21	10 J	<22	<5.5	<5.5	<5.5	<5.5	<5.5	<5.5	<5.5	<5.5	<5.5	<5.5	<11
DP-4	1-3	6/25/21	19 J	<20	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.9
DP-4	10-11	6/25/21	17 J	<18	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<9.1
DP-5	1-3	6/25/21	<980	<980	<250	<250	210 J	8100	200 J	<250	<250	<250	<250	<250	3600
DP-5	10-11	6/25/21	<17	<17	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.7
DP-6	10-11	6/24/21	<20	<20	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10
DP-7	1-3	6/25/21	48	<22	<5.6	<5.6	4.6 J	57	<5.6	4.8 J	<5.6	<5.6	<5.6	<5.6	7.7 J
DP-7	10-11	6/25/21	<20	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
DP-8	10	6/25/21	<18	<18	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<8.9
DP-9	1-3	6/25/21	56	5.3 J	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<11
DP-9	10-11	6/25/21	<20	<20	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10
DP-10	1-3	6/25/21	43	3.8 J	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4
DP-10	10-11	6/25/21	<21	<21	53	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<5.3	<11
DP-11	10-11	6/25/21	32	<15	<3.8	26	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	5.0	<7.7
DP-11	20-21	6/25/21	<20	<20	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.8
DP-12	4-5	6/23/21	<18	<18	<4.5	17	<4.5	<4.5	<4.5	<4.5	77	11	69	<4.5	<9.0
DP-12	9-10	6/23/21	<10	<10	<2.6	15	<2.6	<2.6	<2.6	<2.6	21	3.3	27	<2.6	<5.2
DP-13	10-11	6/23/21	11 J	<20	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10
DP-13	19-20	6/23/21	19	<18	<4.4	5.7	<4.4	<4.4	<4.4	<4.4	3.3 J	4.4	6.9	<4.4	<8.8
SB-101	1-3	6/25/21	<25	<25	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<13
SB-102	1-1.5	6/24/21	36	<17	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	3.0 J	3.2 J	<4.1	3.6 J	<8.3
SB-103	1-3	6/24/21	48	4.7 J	<4.5	<4.5	3300	8.2	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	11000
SB-105	1-2	6/24/21	68	4.5 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
SB-106	1-3	6/24/21	57	5.1 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<9.9
SB-108	1-3	6/24/21	100	16 J	<4.4	<4.4	2.8 J	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	8.7 J

ug/kg - micrograms per kilogram
< less than the noted limit of quantitation (LOQ)

J - estimated concentration

RSL - Industrial Soil RSLs (TR=1E-06, HQ=0.1)- US EPA Regional Screening Level Summary Table (May 2021)

NA - not available

Bold - Constituent detected above LOQ or DL

No soil sample collected at DP-14

Prepared by: MAB 7/20/21 Checked by: CDN 10/18/21

TABLE 2. SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS - ORGANICS

Former Ducane Company Site
Blackville, Barnwell County, South Carolina
BLWM File # 401356

	Constituent (ug/L)		Acetone	Chloroform	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Isopropylbenzene	Methylene Chloride	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylenes (total)	1,4-Dioxane*
	MCL (ug/L) RSL (ug/L)		1400	80** 0.22	2.8	5	7	70	100	700	 45	5	5	1000	200	5	5	2	10000	0.46
Well	Screened Interval/Sample Depth (bgs)	Date Sampled	1400	0.22	2.0						43									0.40
MW-1	5 - 20	6/23/21	<400	<20	<20	<20	<20	1700	8.1 J	97 J	<20	<20	<20	<20	<20	<20	<20	64	400 J	<1.0
MW-1D	48 - 53	6/25/21	<20	<1.0	<1.0	<1.0	<1.0	0.94 J	<1.0	<1.0	<1.0	<1.0	62	<1.0	<1.0	<1.0	9.1	<1.0	<1.0	<1.0
MW-2	5 - 15	6/22/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2D	39 - 44	6/22/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	5 - 15	6/23/21	<4,000	<200	1500	100 J	760	24000	210	520	<200	<200	<200	190 J	<200	<200	<200	1400	2300	260
MW-3D	20 - 25	6/23/21	<20	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.78 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-4	8 - 18	6/24/21	<20	<1.0	<1.0	<1.0	<1.0	8.7	<1.0	<1.0	<1.0	<1.0	4.2	<1.0	<1.0	0.93 J	6.9	<1.0	<1.0	<1.0
MW-4D	72 - 82	6/25/21	<20	<1.0	<1.0	<1.0	0.47 J	<1.0	<1.0	<1.0	<1.0	<1.0	19	<1.0	<1.0	<1.0	0.73 J	<1.0	<1.0	<1.0
MW-5	15 - 20	6/24/21	<100 J	<5.0 J	4.7 J	<5.0 J	2.4 J	370 J	3.7 J	2.7 J	<5.0 J	<5.0 J	120 J	<5.0 J	<5.0 J	<5.0 J	210 J	8.8 J	<5.0 J	13
MW-6R	5 - 15	6/23/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	2 - 12	6/22/21	<20	<1.0	<1.0	<1.0	<1.0	190	0.71 J	7.4	<1.0	<1.0	<10	<10	<1.0	<10	0.69 J	21	24	<1.0
MW-8	2 - 12	6/22/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	2 - 12	6/23/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	2 - 12	6/24/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-14	2 - 12	6/24/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	8.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	9 - 19	6/22/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	10 - 20	6/22/21	<20	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	20 - 30	6/22/21	<20	0.81 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DP-1	20	6/25/21	<20	<1.0	<1.0	<1.0	<1.0	13	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	4.2	<1.0	<1.0	<1.0
DP-2	16	6/24/21	<20	1.7	<1.0	<1.0	<1.0	52	0.83 J	<1.0	<1.0	<1.0	<1.0	0.46 J	<1.0	<1.0	0.47 J	1.9	1.8	<1.0
DP-3	20	6/24/21	<20	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DP-4	20	6/25/21	<20	0.40 J	<1.0	<1.0	0.70 J	12	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<1.0
DP-5	20	6/25/21	<100	<5.0	<5.0	<5.0	<5.0	2.4 J	<5.0	16	690	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	5.0
DP-6	20	6/24/21	6.8 J	0.47 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.9 J
DP-7	20	6/25/21	<20 J	0.42 J	<1.0 J	1.2 J	0.79 J	14 J	<1.0 J	3.0 J	2.9 J	<1.0 J	0.83 J	<1.0 J	<1.0	<1.0 J	0.65 J	6.4 J	8.4 J	1.6 J
DP-8	20	6/25/21	<20	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DP-9	20	6/25/21	6.0 J	<1.0	<1.0	<1.0	<1.0	0.91 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0	21
DP-10	20	6/25/21	<20	0.50 J	<1.0	<1.0	7.2	0.66 J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.5	<1.0	1.6 J
DP-12	20	6/23/21	<20	<1.0	10	0.41 J	110	120	2.4	8.7	<1.0	2.4	2100 J	<1.0	1.6	280 J	5800 J	7.0	86	<1.0
DP-14	10	6/24/21	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0

Notes
ug/L - micrograms per liter
< less than the noted limit of quantitation (LOQ)

J - estimated concentration

* - 1,4-dioxane reported to the detection limit (DL)

** - MCL for total Trihalomethanes

MCL - US EPA Maximum Contaminant Level
RSL - US EPA Regional Screening Level for Tap Water
Bold - Constituent detected above LOQ or DL
Bold and Shaded - Constituent detected above the RSL or MCL

Prepared by: MAB 7/20/21 Checked by: CDN 10/18/21

TABLE 3. SUMMARY OF PDS GROUNDWATER ANALYTICAL RESULTS FROM MW-1D AND MW-4D

Former Ducane Company Site Blackville, Barnwell County, South Carolina BLWM File # 401356

	Constituent (ug/L) MCL (ug/L) RSL (ug/L)		-: Acetone	Chloroform 6.22	8 1,1-Dichloroethane	ا م 1,2-Dichloroethane	. 4 1,1-Dichloroethene	d cis-1,2-Dichloroethene	trans-1,2-Dichloroether	. Cthylbenzene	் ப Tetrachloroethene	9uang 1000	i o 1,1,2-Trichloroethane	. G Trichloroethene	5 Vinyl Chloride	1 0000 (total)	94.0 1 1,4-Dioxane*
Well	Sample Depth (ft bTOC)	Date Sampled		0.22	2.0												0.10
MW-1D	16.2	6/21/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	<1.0	1.3	<1.0	<1.0	<1.0
MW-1D	36.2	6/21/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.5	<1.0	<1.0	1.4	<1.0	<1.0	<1.0
MW-4D	16	6/21/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-4D	36	6/21/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-4D	56	6/21/21	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes

ug/L - micrograms per liter

< less than the noted limit of quantitation (LOQ)

J - estimated concentration

* - 1,4-dioxane reported to the detection limit (DL)

** - MCL for total Trihalomethanes

MCL or total Trinalometrianes
MCL - US EPA Maximum Contaminant Level
RSL - US EPA Regional Screening Level for Tap Water
PDS - passive diffusion sampler
ft bTOC - feet below top of casing
Bold - Constituent detected above LOQ or DL

TABLE 4. GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS

Former Ducane Company Site Blackville, Barnwell County, South Carolina BLWM File # 401356

Monitoring Well	Installation Date	Date Completion Elevation (TOC) Elevation feet, bgs			Screen Length	Well Depth	Total Boring Depth		
			feet, NAVD	feet, NAVD	Тор	Bottom	feet	feet, bgs	feet, bgs
MW-1	09/01/99	Stick-up	279.09	282.05	5	20	15	20	30
MW-1D	09/01/99	Stick-up	279.08	282.08	48	53	5	53	53
MW-2	09/01/99	Stick-up	274.76	277.71	5	15	10	15	20
MW-2D	09/02/99	Stick-up	274.72	277.61	39	44	5	44	44
MW-3	09/01/99	Stick-up	277.09	279.68	5	15	10	15	15
MW-3D	09/02/99	Stick-up	277.11	279.94	20	25	5	25	25
MW-4	09/01/99	Stick-up	276.89	279.74	8	18	10	18	20
MW-4D	06/25/01	Stick-up	277.05	279.91	72	82	10	82	96
MW-5	05/12/00	Flush	280.23	279.85	15	20	5	20	20
MW-6R	09/24/12	Flush	277.24	277.73	5	15	10	15	15
MW-7	03/26/01	Stick-up	277.65	280.76	2	12	10	12	12
MW-8	03/27/01	Flush	277.11	276.83	2	12	10	12	12
MW-9	03/28/01	Stick-up	278.76	279.66	2	12	10	12	12
MW-10	03/28/01	Stick-up	276.70	278.12	2	12	10	12	12
MW-11	03/28/01	Stick-up	279.56	280.64	2	12	10	12	12
MW-12	03/28/01	Stick-up	NA	NA	2	12	10	12	12
MW-13	10/14/02	Stick-up	NA	NA	3	10	7	10	10
MW-14	10/14/02	Stick-up	278.98	280.81	2	12	10	12	12
MW-15	09/24/12	Stick-up	280.68	282.82	9	19	10	19	20
MW-16	10/18/17	Stick-up	275.31	278.48	10	20	10	20	20
MW-17	10/17/19	Stick-up	282.14	285.28	20	30	10	30	30

Notes

bgs - below ground surface

NAVD - North American Vertical Datum of 1988

Well construction information obtained from boring logs or the Groundwater and Soil Assessment Report, dated January 2013.

Elevations based on survey by American Engineering Consultants, Inc. dated November 12, 2017; Well MW-17 surveyed on 10/18/19.

Prepared by: TJM 11/19/19

Checked by: CDN 01/16/20

NA - not available; wells MW-12 and MW-13 could not be located

TABLE 5. GROUNDWATER LEVEL MEASUREMENTS

Former Ducane Company Site Blackville, Barnwell County, South Carolina BLWM File # 401356

		June 21,	, 2021		
Monitoring Well	Top of Casing (TOC) Elevation feet, NAVD	Depth to Water feet below TOC	Groundwater Elevation feet		
MW-1	282.05	6.94	275.11		
MW-1D	282.08	10.32	271.76		
MW-2	277.71	3.71	274.00		
MW-2D	277.61	5.72	271.89		
MW-3	279.68	5.19	274.49		
MW-3D	279.94	4.85	275.09		
MW-4	279.74	7.65	272.09		
MW-4D	279.91	12.64	267.27		
MW-5	279.85	6.27	273.58		
MW-6R	277.73	2.05	275.68		
MW-7	280.76	5.35	275.41		
MW-8	276.83	0.70	276.13		
MW-10	278.12	4.61	273.51		
MW-11	280.64	7.10	273.54		
MW-14	280.81	7.20	273.61		
MW-15	282.82	6.85	275.97		
MW-16	278.48	5.00	273.48		
MW-17	285.28	9.76	275.52		

Notes

NAVD - North American Vertical Datum of 1988

Prepared by: TJM 7/30/21 Checked by: MAB 7/30/21 TOC - top-of-casing

TABLE 6. FIELD PARAMETERS

Former Ducane Company Site Blackville, Barnwell County, South Carolina BLWM File # 401356

Monitoring Well	Sample Date	Purge Volume Gallons	Temperature °C	pH Standard Units	Dissolved Oxygen mg/L	ORP mV	Conductivity µs/cm	Turbidity NTU	Ferrous Iron mg/L
MW-1	6/23/21	0.25	22.7	4.95	1.23	88.9	92.1	4.45	0.91
MW-1D	6/25/21	0.50	22.6	5.56	2.31	228.3	19.5	1.42	0.57
MW-2	6/22/21	0.35	26.2	4.41	0.24	401.9	51.2	0.38	0.10
MW-2D	6/22/21	0.65	23.5	5.55	4.77	346.7	25.7	1.38	0.11
MW-3	6/23/21	0.70	22.1	4.67	0.03	0.8	196.1	1.37	2.70
MW-3D	6/23/21	0.55	21.0	4.35	2.78	418.6	87.0	0.98	0.06
MW-4	6/24/21	0.70	18.9	4.94	0.11	111.7	42.6	8.80	0.25
MW-4D	6/25/21	1.00	18.7	4.75	1.09	302.5	19.2	0.83	0.12
MW-5	6/24/21	0.60	19.0	4.61	0.27	210.7	85.9	1.07	1.59
MW-6R	6/23/21	0.60	19.4	5.47	0.39	168.3	35.2	10.00	0.17
MW-7	6/22/21	0.23	23.2	5.89	5.90	104.4	74.6	41.20	0.59
MW-8	6/22/21	0.46	21.6	5.45	6.35	110.4	101.3	26.50	0.31
MW-10	6/23/21	0.55	20.2	4.80	0.27	223.5	47.6	2.13	0.57
MW-11	6/24/21	0.65	21.2	6.24	0.10	-34.8	289	2.50	0.71
MW-14	6/24/21	0.50	19.0	5.09	0.19	107.7	48.6	4.00	1.92
MW-15	6/22/21	0.60	20.7	4.87	0.02	171.9	96.9	4.11	0.39
MW-16	6/22/21	0.65	20.1	4.03	4.47	408.1	109.6	2.99	0.10
MW-17	6/22/21	0.75	19.4	4.31	2.18	428.7	56.9	3.33	0.06

Notes

°C - degrees Celsius mg/L - milligrams per liter

mV - millivolts

μs/cm - microsiemens per centimeter

NTU - nephelometric turbidity units

ORP - oxidation reduction potential

ORP values were not consistent with historical measurements which may indicate a calibration error. Results are suspect.

Prepared by: TJM 7/30/21 Checked by: MAB 7/30/21

TABLE 7. GROUNDWATER MNA RESULTS

Former Ducane Company Site
Blackville, Barnwell County, South Carolina
BLWM File # 401356

Monitoring Well/Boring ID	Screened Interval/ Sample Depth (bgs)	Sample Date	Alkalinity mg/L	Chloride mg/L	Nitrate-N mg/L	Sulfate mg/L	Sulfide mg/L	TOC mg/L	Ethane ug/L	Ethene ug/L	Methane ug/L	Propane ug/L
MW-1	5 - 20	6/23/21	<20	21	<0.020	2.4	<1.0	1.4	<10	19	740	<15
MW-1D	48 - 53	6/25/21	<20	2.2	<0.020	0.74 J	1.3	2.8	<10	<10	2.6 J	<15
MW-2	5 - 15	6/22/21	<20	7.1	1.5	<1.0	1.7	<1.0	<10	<10	2.7 J	<15
MW-2D	39 - 44	6/22/21	<20	2.9	0.25	1.3	1.6	<1.0	<10	<10	3.4 J	<15
MW-3	5 - 15	6/23/21	<20	40	<0.020	37	3.0	21	36	160	8500	<15
MW-3D	20 - 25	6/23/21	<20	13	3.4	0.57 J	1.2	<1.0	<10	<10	5.7 J	<15
MW-4	8 - 18	6/24/21	<20	6.7	<0.020	1.2	<4.0	0.74 J	<10	<10	140	<15
MW-4D	72 - 82	6/25/21	<20	1.8	0.015 J	0.93 J	<1.0	1.7	<10	<10	<10	<15
MW-5	15 - 20	6/24/21	<20	19	0.27	0.47 J	<1.1	<1.0	<10	3.8 J	1800	<15
MW-6R	5 - 15	6/23/21	<20	2.5	0.15	1.3	<1.0	7.4	<10	<10	4.6 J	<15
MW-7	2 - 12	6/22/21	22	4.7	<0.020	2.4	<1.0	9.1	<10	<10	15	<15
MW-8	2 - 12	6/22/21	<20	1.1	0.51	4.3	<1.0	6.7	<10	<10	2.8 J	<15
MW-10	2 - 12	6/23/21	<20	7.1	<0.020	2.7	<1.0	1.9	<10	<10	140	<15
MW-11	2 - 12	6/24/21	120	4.8	<0.020	3.3	<1.0	2.6	<10	<10	390	<15
MW-14	2 - 12	6/24/21	<20	3.0	<0.020	6.8	<1.1	0.60 J	<10	<10	80	<15
MW-15	9 - 19	6/22/21	<20	4.3	<0.020	12	4.5	<1.0	<10	<10	5.3 J	<15
MW-16	10 - 20	6/22/21	<20	13	5.6	<1.0	1.1	<1.0	<10	<10	3.3 J	<15
MW-17	20 - 30	6/22/21	<20	8.3	1.8	0.29 J	<1.0	<1.0	<10	<10	3.2 J	<15
DP-1	20	6/25/20	na	na	na	na	na	na	<10	<10	3.7 J	<15
DP-2	16	6/24/21	na	na	na	na	na	na	<10	<10	10	<15
DP-3	20	6/24/21	na	na	na	na	na	na	<10	<10	17	<15
DP-4	20	6/25/21	na	na	na	na	na	na	6.2 J	5.2 J	16	<15
DP-5	20	6/25/21	na	na	na	na	na	na	<10	<10	420	<15
DP-6	20	6/24/21	na	na	na	na	na	na	2.8 J	3.0 J	9.3 J	<15
DP-7	20	6/25/21	na	na	na	na	na	na	<10	<10	9.4 J	<15
DP-8	20	6/25/21	na	na	na	na	na	na	<10	<10	6.7 J	<15
DP-9	20	6/25/21	na	na	na	na	na	na	<10	<10	290	<15
DP-10	20	6/25/21	na	na	na	na	na	na	<10	<10	64	<15
DP-12	20	6/23/21	na	na	na	na	na	na	<10	<10	80	<15
DP-14	10	6/24/21	na	na	na	na	na	na	2.9 J	2.5 J	57	<15

mg/L - milligrams per liter

ug/L - micrograms per liter

bgs - below ground surface

na - not analyzed

TOC - total organic carbon

J - estimated concentration above the detection limit (DL)

Bold - Constituent detected above limit of quantitation (LOQ) or DL

Prepared by: MAB 7/20/21

Checked by: CDN 10/18/21

Appendix A

Summary of Field Procedures – June 2021

APPENDIX A: SUMMARY OF FIELD PROCEDURES - JUNE 2021

A soil and groundwater sampling event was conducted in June 2021 at the Former Ducane Company Site. The field activities are described in the following sections. Soil boring logs are provided in Appendix B. Laboratory analytical reports are provided in Appendices C and D. Field sampling forms are provided in Appendix E.

ADDITIONAL SOIL AND GROUNDWATER DELINEATION

Twenty (20) borings were advanced at the site from June 22 to June 25 to provide additional delineation of soil and groundwater at the facility (Figure 2). Fourteen (14) of the borings (DP-1 through DP-14) were advanced for the collection of soil and groundwater samples. Six (6) of the eight (8) planned soil borings (SB-101 to SB-108) were advanced for the collection of soil samples only. Borings SB-104 and SB-107 were not drilled due to lack of access to a heavily wooded area of the property.

Borings DP-1 through DP-14 were advanced using a Sonic rig to a depth of 20 feet below ground surface (bgs). Soil borings SB-101, SB-102, SB-103, SB-105, SB-106 and SB-108 were advanced using the Sonic rig to 3 feet bgs except for sample SB-102 and SB-105, where saturated soils were observed at a more shallow depth. Table 1 provides the depths of the soil samples collected from the borings. Soil samples were collected continuously from ground surface to boring termination, logged for lithologic descriptions, and screened using a photoionization detector (PID). The work plan indicated that groundwater samples would be collected from each of the 14 borings at depths of 10 and 20 feet bgs. If elevated PID readings were noted in the saturated zone at an alternate depth, one additional groundwater sample would be collected at the location of the highest PID reading. However, field observations from several borings indicated a zone of highly compacted clay and sandy clay that did not produce water. The scope was modified to collect a soil sample if groundwater could not be collected. With the exception of boring DP-14 where groundwater was observed at the 10-foot interval, soil samples were collected at 10 feet bgs. Groundwater samples were collected at 20 feet bgs from each of the borings except DP-2, DP-11, DP-13 and DP-14. Soil samples were collected at 20 feet bgs from DP-2, DP-11 and DP-13. No sample was collected at 20 feet bgs from DP-14 for chemical analysis. The soil samples were placed in laboratory-supplied containers and transported, under chain-of-custody protocols, to Pace Analytical Services, LLC (SCDHEC Certification No. 32010001) in Columbia, SC (Pace). The soil samples were analyzed for VOCs using EPA Method 8260D.

Groundwater samples were collected from the borings by advancing the rods to the desired depth, retracting the sheath and rod, and collecting a groundwater sample from the screen. A peristaltic pump and polyethylene tubing were used to collect the groundwater samples. The groundwater samples were collected from the intake end of the dedicated polyethylene discharge tubing after the peristaltic pump was stopped and the tubing was removed from the borehole. Groundwater samples were not collected from borings DP-11 or DP-13 because groundwater was not observed

in these borings. Because groundwater was observed at a more shallow depth in boring DP-14, a groundwater sample was collected at 10 feet bgs. Table 2 provides the depths of the groundwater samples from the soil borings. The groundwater samples were placed in laboratory-supplied containers and transported, under chain-of-custody protocols, to Pace where they were analyzed for VOCs using EPA Method 8260D and 1,4-dioxane using EPA Method 8260D SIM. The samples were also analyzed for dissolved gases (methane, ethane, ethane and propane) using Method RSK-175.

NATURAL OXIDANT DEMAND TESTING

To evaluate potential in-situ chemical oxidation remedial technologies, one soil and groundwater sample were collected from a presumed unimpacted areas of the site and another soil and groundwater sample were collected from an impacted area of the site. The samples were analyzed for natural oxidant demand (NOD) by PeroxyChem, an Evonik Company laboratory. The analytical results are provided in Appendix D.

GROUNDWATER SAMPLING

Comprehensive Groundwater Sampling Event

A groundwater sampling event was conducted from June 22 to June 25, 2021 and 18 of the 21 Site monitoring wells were sampled. Monitoring wells MW-12 and MW-13 could not be located while monitoring well MW-9 is located on private property and access could not be obtained. Well construction details are provided in Table 4.

Groundwater sampling was conducted in general accordance with the United States Environmental Protection Agency (USEPA) Region 4 Laboratory Services and Applied Science Division (LSASD) Operating Procedure (OP) for *Groundwater Sampling* (as updated) using low-flow techniques. Prior to sampling, water level measurements were collected from each well and water quality parameters were measured. Water level measurements are presented in Table 5. The field parameters measured at the time of groundwater sampling are provided on the field forms in Appendix E and presented in Table 6.

Sample Containers

The laboratory provided sample containers that met the sampling requirements of the study. The laboratory verified the cleanliness of each batch of containers prior to use. The laboratory supplied the necessary preservation solutions and shipped these with the sample containers.

The field samplers took responsibility for properly identifying the location of each sample taken and for recording the sample date, the type of sample, the preservative used, and the applicable project number. This information was documented in the field book/field form. This same information was then placed on the sample identification label and the chain-of-custody record. Sample labels were filled out with indelible ink. If the field sampler determined that additional

information was pertinent to a sample being taken, such data was recorded in the field book or on the field form.

Groundwater Level Measurement

Prior to well sampling, depth to groundwater and total well depth were measured using an electronic tape or water level indicator. A fixed point was marked with an indelible marker on each well to serve as a reference point for measurement. Depths were measured to the nearest 0.01 foot and recorded on the field sheet. The tape was cleaned with phosphate-free laboratory detergent and water and rinsed with distilled water prior to each use.

Well Purging

The monitoring wells were purged using a low flow/low volume method with a peristaltic pump and dedicated, disposable, polyethylene tubing. The groundwater parameters of temperature, pH, specific conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity were measured during purging.

Purging continued until a minimum of three consecutive stable readings were measured with five to fifteen-minute intervals between readings. Pumping rates were reduced as much as possible to reduce the amount of drawdown in the wells.

Purging was considered complete after the depth to water and water quality parameters stabilized. Purge water from the wells was temporarily placed in five-gallon buckets and emptied into a 55-gallon steel drum. Additional information regarding the purging and sampling activities including the volume of water in each well, purge rate, and depth to water during the purge process are provided in the field sampling forms in Appendix E.

Groundwater Sampling and Analysis

Groundwater samples were collected after the water level in the well stabilized and after the pH and specific conductance measurements stabilized. A peristaltic pump and polyethylene tubing were used to collect the groundwater samples. The groundwater samples were collected from the intake end of the dedicated polyethylene discharge tubing after the peristaltic pump was stopped and the tubing was removed from the well. The groundwater samples were placed into laboratory supplied pre-preserved containers, labeled, and recorded on a Chain-of-Custody form. The containers were then placed in a cooler on ice, and transported to Pace.

The groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260D and 1,4-dioxane using EPA Method 8260D SIM. Groundwater samples were also analyzed for the monitored natural attenuation (MNA) parameters nitrate, sulfate, sulfide, chloride, alkalinity, total organic carbon (TOC) and dissolved gasses (ethane, ethene, methane and propane). Field measurements of ferrous iron were also collected. A summary of the organic analytical results is provided in Table 2 while the MNA results are provided in Table 7. The laboratory analytical reports are provided in Appendix C.

Well Evaluation MW-1D and MW-4D

To evaluate the vertical distribution of contaminants in wells MW-1D and MW-4D, dual membrane passive diffusion samplers (PDS) were installed on June 1, 2021 in well MW-1D at depths of 16.2 and 36.2 feet below top of casing (bTOC) and in well MW-4D at depths of 16, 36, and 56 feet bTOC. The PDS could not be lowered to the deeper interval (80 feet) originally planned due to refusal. The PDS were allowed to equilibrate for a minimum of 3 weeks. The PDS were then retrieved, and groundwater samples collected on June 21, 2021.

The groundwater samples were placed in laboratory-supplied containers and transported, under chain-of-custody protocols, to Pace where they were analyzed for VOCs using EPA Method 8260D and 1,4-dioxane using EPA Method 8260D SIM. The samples were also analyzed for dissolved gases (methane, ethane and propane) using Method RSK-175. The analytical results are provided in Table 3 and the laboratory reports are provided in Appendix C.

Decontamination Procedures

Decontamination procedures consisted of the use of dedicated, disposable tubing at each sampling location. Equipment such as the water level indicator and field measurement instrumentation were cleaned with phosphate-free laboratory detergent and rinsed with distilled water in general accordance with the EPA Region 4 LSASD Operating Procedure for *Field Equipment Cleaning and Decontamination* (as updated). The equipment was allowed to air dry. Nitrile gloves were also worn and changed between each sampling location.

Equipment Calibration

Equipment used to perform field testing on groundwater samples included a Hanna HI98703 turbidity meter and a YSI PRODSS with flow thru cell meter to measure pH, specific conductivity, temperature, dissolved oxygen, ORP, and turbidity. Equipment calibration was verified daily.

Field Sampling Forms

Field personnel maintained a permanently bound, water resistant field notebook. Field activities were recorded with indelible ink. Additionally, sampling field forms were completed for each groundwater sample from the monitoring wells (excluding the vertical delineation samples). The notebook, sampling forms, and chain-of-custody records contain sufficient information to allow reconstruction of the sample collection and handling procedures at a later time.

Chain-of-Custody

Sample custody was documented from the time of sample collection when the labeled sample was placed into an iced cooler in the possession of the sampling technician. A corresponding line item on the chain-of-custody record was filled out and initialed by the sampling technicians. The chain-of-custody record is used to track custody of samples during transport and shipping. Upon completion of appropriate line items, or upon sample pick-up, the field representative signed, dated, listed the time, and confirmed the completeness of descriptive information

contained on the form. The chain-of-custody form accompanied the samples and terminated upon laboratory receipt of samples. All entries were recorded in ink. Each sample had a corresponding entry on a chain-of-custody record with the exceptions of samples EB-01-062421 and DP-04-10-11-SS, which were received by the laboratory but not listed on the chain-of-custody record. These samples were added for laboratory testing. Furthermore, sample DP-10(10-11)-SS was recorded on the chain-of-custody record but not received by the laboratory. The sample was submitted on a later date.

Analytical Procedures and QA/QC

Soil and groundwater samples were transported to Pace under chain-of-custody protocols. The samples were analyzed for VOCs by EPA Method 8260D and 1,4-dioxane by EPA Method 8260D SIM. Quality control samples, consisting of blind duplicates, trip blanks, and laboratory method blanks were also collected and analyzed for these parameters. The data validation summary and laboratory analytical reports are provided in Appendix C.

Appendix B

Soil Boring Logs

Note: Termination of boring at 20' BGS

SOIL BORING LOG BORING NUMBER: DP-1

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/25/2021 NORTHING (SC State Plane): 554356.09 **BOREHOLE DIAMETER (in):** 8.25 EASTING (SC State Plane): 1915527.04 GROUND ELEV (ft. NAVD88): 278.51 .ITHOLOGIC % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) LOG **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 SILTY SAND dark olive/ tan 1 0.472 2 SM 0.567 3. 0.391 moist 0.138 ОН CLAY dark olive 5 0.272 dry CLAY light grey/orange high plasticity, high compaction 6 0.189 7-0.093 ОН 8 0.209 9 1.591 10 0.392 10-11' no GW SANDY CLAY light grey/orange soil sample taken high plasticity, high compaction 11 4.081 12 1.002 13 1.089 ОН 14 2.181 dry 15 0.889 16 4.614 17 CLAYEY SAND lense, light grey/ orange moist 1.3 SC streaks 18 0.347 SANDY CLAY, light grey/ orange streaks high plasticity/ high compaction 19 ОН 1.062 dry 20 2.141 20-21' GW sample 21 22

SOIL BORING LOG BORING NUMBER:

DP-2

Page 1 of 1

									Page 1 01 1
	PI	ROJE	CT II	NFORMATIO	N		DRILLING	INFORMAT	ΓΙΟΝ
	JECT:			Lennox Into			DRILLING COMPANY:	Cascade Drill	-
SITE	LOCAT	ION:				Blackville, SC	DRILLERS:	Richard A. Mo	ooney, B 1435
	JECT N			02.201603			DRILLING METHOD:	Sonic	
	JECT M	IANAGI	ER:	Carol North			DRILLING EQUIPMENT:	TSI CC-150	
l	GER:			Steve Tyle			INSTALLATION DATE:	6/25/2021	
l	RTHING	•		•			BOREHOLE DIAMETER (in):	8.25	
l	TING (S			•	1				
GRU		_Εν (π.	NAVD	88): 275.73					
(ft.)	% RECOVERY	Œ			\ }	LOG			
L 王	%C	PID (ppm)	nscs		INTERVAL	100 r			
рертн	C EC	PID	S)	SAMPLE ID	E	는 H	SOIL DESCRIPTION		0014451170
	œ			SAIVIPLE ID			SOIL DESCRIPTION		COMMENTS
0_	ı			Ι	1				
1-		0.454					SANDY SILT, dark olive		
2-		2.451							
		1.568	SM						
3-		2.178							
4-		3.281							wet
5-		4.627				//////	SANDY CLAY, light grey/orange plasticity/ high compaction	streak, high	
6-		0.945			000	//////	plasticity/ flight compaction		6-7' soil sample
7-									o r son sample
8-		7.621							
		2.772	ОН						
9-		0.824							dry
10 -		0.659			XXX				10-11' no GW,
11 –		0.832			XXX				soil sample
12 –		1.343							
 13 –							SILTY SAND, tan/light grey, loos	se/no	
		0.983					compaction		
14 –		1.361	SM						
15 –		2.828	Civi						wet
16 –		1.789							16-17'
17 –		1.892			XXX		CANDY CLAY limbt	otrooks bi-b	GW sample
18 –		2.807				//////	SANDY CLAY, light grey/orange plasticity/ high compaction	sueaks, nign	
 19 –			ОН		~~~				de.
20 –		2.117							dry
		3.789							19-20' soil sample
21 –									
22									

Note: GW DUP

DP-DUP1-GW is from DP2 16-17' Termination of boring at 20' BGS

Termination of boring at 20' BGS

SOIL BORING LOG BORING NUMBER: DP-3

Page 1 of 1

				20710110					Page 1 of 1
	PI	ROJE	CT IN	NFORMATIC	N		DRI	LLING INFORMA	ATION
PRO PRO LOG NOF	DJECT: LOCAT DJECT N DJECT M GGER: RTHING STING (S	UMBEFIANAGE (SC State C State	ER: ate Plar e Plane)	02.201603 Carol Nort Steve Tyle ne): 554354.25): 1915734.9	in St, I 378.21 hern er	onal Blackville, SC	DRILLING COMPANDRILLERS: DRILLING METHOD DRILLING EQUIPM INSTALLATION DAT BOREHOLE DIAME	rilling Mooney, B 1435	
		_Εν (π.	NAVD	88): 278.08		()			
DEPTH (ft.)	% RECOVERY	PID (ppm)	nscs	SAMPLE ID	INTERVAL	LITHOLOGIC	SOIL DESCR	IPTION	COMMENTS
0									
1- 2- 3-		0.780 1.239 4.785	SM				SANDY SILT, dark olivicompaction	e, low plasticity/ low	Septic odor
4-	1	1.208					CLAY, olive, high plas	ticity/ high compaction	wet
5- 6- 7-		4.682 13.55 2.442	ОН					, ,	dry
8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18-		2.653 4.623 14.80 8.068 19.79 4.234 7.111 2.019 4.008 2.364 2.784	ОН				CLAY with sand, olive/ plasticity/ high compac	orange streaks, high stion	10-11' no GW, took soil sample
19 - 20 - 21 - 22 -		1.624 11.48							20-21' wet GW sample
Torn	-14	fhoring	-t 001 D	00					

SOIL BORING LOG BORING NUMBER:

DP-4

Page 1 of 1

	D			JEODMATIO	. N. I		DDILLING		TION.
DD(DJECT:	KUJE		NFORMATIO Lennox Inte		onal	DRILLING I DRILLING COMPANY:	Cascade Drill	
	E LOCAT	TION:				, Blackville, S0			ooney, B 1435
	JECT N		₹:	02.201603		, 2.0.0	DRILLING METHOD:	Sonic	
	DJECT M			Carol North	nern		DRILLING EQUIPMENT:	TSI CC-150	
.00	GER:			Steve Tyle	r		INSTALLATION DATE:	6/25/2021	
1OF	RTHING	(SC Sta	ite Plar	ne): 554481.58			BOREHOLE DIAMETER (in):	8.25	
	STING (S			•	7		554		
3RC	DUND EI	_EV (ft.	NAVD	88): 276.41					
(ft.)	% RECOVERY	п)			AL	LITHOLOGIC			
DEPTH (ft.)	% C	PID (ppm)	USCS		INTERVAL)LO			
H	EC	PID	Š	SAMPLE ID	Ē	H H	SOIL DESCRIPTION		COMMENTS
_	<u> </u>			SAMI LL ID			SOIL DESCRIPTION		COMMENTS
0_	1						CANDY CILT. deals alive	,	
1-	-	0.247	SM				SANDY SILT, dark olive		1-3' soil sample
2-	_		OIVI						moist
3-		0.637					CLAY, olive/tan/orange, high plast	icity/high	
		0.389	ОН				compaction	Joney/ingii	
4-	1	0.107							
5-	1	1.382					CLAY, dark olive, high plasticity/hi	gh	
6-	1	2.111	ОН				compaction		dry
7-	-	0.818					CANDY OLAY Enla manyanana		
8-	-	0.637					SANDY CLAY, light grey/orange, r plasticity and compaction	noderate	
9-	-	3.827							
0 -									40.441 0044
1 –		20.56							10-11' no GW, soil sample
		3.354							
2 -]	0.928	ОН			//////			
3 –	1	3.854				//////			
4 –	1	4.126				//////			
5 -	1	0.954				//////			
6 -	-	1.147				//////			
7 –	-	3.965				//////			wet
8 –	-	0.972							
9 –	1		SP				SAND, tan with few fines		
		0.719	ОН				SANDY CLAY, light grey/orange s moderate plasticity and moderate		
:0 –		4.752					sasiate plasticity and moderate		20-21' GW sample
21 –	1				XXX	1			
22 -						1			

SOIL BORING LOG BORING NUMBER:

BORING NUMBER **DP-5**

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/25/2021 NORTHING (SC State Plane): 554477.69 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915652.77 GROUND ELEV (ft. NAVD88): 276.72 .ITHOLOGIC % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) LOG **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Concrete 1 232.8 1-3' soil sample SAND, olive green, fine grained 2-480.3 SP strong solvent odor; fill likely 3. 1086 wet 872.1 SANDY SILT, black 5 4.586 SM 6 2.500 SANDY CLAY, light grey/orange streaks, high 7-1.636 plasticity/high compaction 8 5.736 9 10.03 10 10-11' no GW 10.84 soil sample 11 44.4 dry 12 48.2 ОН 13 64.91 14 14.26 15 8.867 16 0.894 17 1.718 18 3.401 wet SAND, some clay, light grey/orange 19 10.16 20 55.98 20-21' GW sample 21 22

Termination of boring at 20' BGS

GW at 18' to 21' BGŠ was artesian, came to 3" above ground

SOIL BORING LOG BORING NUMBER: DP-6

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554485.88 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915759.03 GROUND ELEV (ft. NAVD88): 278.44 LITHOLOGIC LOG % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 SANDY SILT, olive/dark olive 1 2.250 SM 2-2.943 SP SAND, olive/tan, fine grained, loose 3. 1.731 SANDY CLAY, olive 0.170 ОН 5 0.709 6 0.381 CLAY, some sand, light grey/orange streaks, high plasticity/high compaction 7-1.101 8 10.02 9 2.245 dry ОН 10 9.821 10-11' no GW soil sample 11 0.573 12 2.910 13 0.590 14 1.158 CLAY, olive, high plasticity/high compaction 15 1.348 ОН 16 2.070 17 0.138 CLAYEY SAND, light grey/orange, loose, low compaction 18 1.508 SC 19 1.723 wet 20 2.103 20-21' GW sample 21 2.966 22 Termination of boring at 20' BGS

Termination of boring at 20' BGS

SOIL BORING LOG BORING NUMBER: DP-7

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/25/2021 NORTHING (SC State Plane): 554630.61 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915560.99 GROUND ELEV (ft. NAVD88): 275.98 LITHOLOGIC LOG % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Concrete 1 3.575 SP 1-3' soil sample SAND, tan, fine/ few fines 2-4.551 wet CLAY, grey/orange/olive, high plasticity/ high compaction 3. 0.706 dry 2.151 ОН 5 4,384 6-7.008 7-8.004 SANDY CLAY, light grey/orange streaks, high compaction/ high plasticity 8 13.38 9 6.143 10 15.82 10-11' soil sample 11 17.02 12 OH 3.406 13 7.856 14 18.87 dry 15 1.436 16 2.780 17 3.090 SAND, white/orange, few fines 18 4.113 wet CLAYEY SAND, white/orange streaks 19 SC 2.407 20 1.997 20-21' GW sample 21 22

SOIL BORING LOG BORING NUMBER:

DP-8

Page 1 of 1

		_	_				<u>'</u>		
		ROJE	CT IN	NFORMATIO			DRILLING I		
	JECT: E LOCAT	TION:		Lennox Inte 118 W. Mai		onal , Blackville, S0	DRILLING COMPANY: DRILLERS:	Cascade Drill Richard A. Mo	ing ooney, B 1435
	JECT N			02.2016037	78.21		DRILLING METHOD:	Sonic	
	JECT M	IANAGE	ER:	Carol North			DRILLING EQUIPMENT:	TSI CC-150	
	GER:	(00.01	. DI	Steve Tyler	•			6/25/2021	
	RTHING TING (S	•		•	3		BOREHOLE DIAMETER (in):		
	•			88): not availabl			554		
(ft.)	% RECOVERY	Œ			Je.	LITHOLOGIC LOG			
DEPTH (ft.)	%OVE	PID (ppm)	nscs		INTERVAL	-06 010			
岜	ZEC		Š	SAMPLE ID	Ĭ	Ĭ E	SOIL DESCRIPTION		COMMENTS
_									COMMILIATO
0_					I		SANDY SILTY, dark olive		
1-		1.391	011				CANDI CILIT, dalk olivo		
2-		0.008	SM						moist
3-		0.012							moiot
4-							CLAY, dark olive/tan, high compact plasticity	tion and high	
5-		0.135	ОН						
		0.781	ОП						
6-		0.788							
7-		2.567					SANDY CLAY, light grey/orange st	treaks, light	dry
8-	-	1.167				//////	compaction and light plasticity		
9-		1.191	ОН						
0 –		0.098			XXX	//////			10-11' no GW
1 –		0.039							soil sample
2 –		0.645					SANDY CLAY, light grey/orange st moderate plasticity and moderate of		
3 –			ОН						
- 4 –		0.540							
5 -		0.154				/////			
		0.387					CLAYEY SAND, light grey/orange grained, moderate compaction and	streaks, fine	
6 – –		0.313					gramed, moderate compaction and	a low plasticity	
7 –		0.024	SC			<u> </u>			moist
8 –		0.044							
9 –		0.136							
0 –		0.457			XXX	////			20-21' GW sample
1 –					$\Diamond \Diamond \Diamond \Diamond$				

SOIL BORING LOG BORING NUMBER:

DP-9

Page 1 of 1

	PROJECT INFORMATION						DRILLING	INFORMAT	Fage For F
PRC	JECT:	\OJL	<u> </u>	Lennox Inte		onal	DRILLING COMPANY:	Cascade Drill	
	ELOCAT	ION:				Blackville, S0			ooney, B 1435
PRC	JECT N	UMBEF	₹:	02.201603	78.21		DRILLING METHOD:	Sonic	
PRC	JECT M	IANAGE	ER:	Carol North	nern		DRILLING EQUIPMENT:	TSI CC-150	
LOG	GER:			Steve Tyle	-		INSTALLATION DATE:	6/24/2021	
NOF	RTHING	(SC Sta	ite Plar	ne): 554678.93			BOREHOLE DIAMETER (in):	8.25	
	TING (S			•	4		554		
GRO	DUND EI	_EV (ft.	NAVD	88): 275.58					
(ff.)	% RECOVERY	m)			/AL	LITHOLOGIC			
DЕРТН (ft.)	% OVE	PID (ppm)	NSCS		INTERVAL)LO			
	REC	PID	Š	SAMPLE ID	<u> </u>	보고 보	SOIL DESCRIPTION		COMMENTS
	ш.			G/ IIVII EE 1B			GOIL BEGOIN TION		COMMENTS
0_							Concrete		
1-		0.373					SILTY SAND, olive	/	1-3' soil sample
2-	-	3.067	SP						
3-	1	0.522			XXX				wet
4-		0.558					CLAY, grey/dark olive, moderate pmoderate compaction	olasticity and	
5-		2.721	ОН						
6-		4.013							
7-		2.793					SANDY CLAY, light grey/orange s	streaks	
8-		1.835				//////	or more of the second of the s		
9-	-	3.743	ОН						
10 -		5.691							10-11' no GW
11 –		3.891							soil sample
12 –	1	0.210					SANDY CLAY, white, high plastici	ty and high	
13 –		0.835					compaction		
14 –	1	0.515	ОН						
15 -	1	1.785				//////			
16 –	1	7.094						-	
17 –	1	1.0244	SP				SAND, tan/light grey, fine grained/loose	few fines,	wet
18 –	1	1.378				7,7,7	SANDY CLAY, light grey/orange		
19 –	1	1.011	ОН						
20 –	1	3.267				//////			20-21' GW sample
21 –	1								
22 -									

DUP2 is DP DUP2-SO-(1-3) DP-9 soil 1-3'

Termination of boring at 20' BGS

SOIL BORING LOG BORING NUMBER: **DP-10**

Page 1 of 1

									Page 1 of 1
		ROJE	CT II	NFORMATIC	N		DRILLING	INFORMA	ΓΙΟΝ
	DJECT:			Lennox Int			DRILLING COMPANY:	Cascade Dril	-
l	E LOCAT					, Blackville, S0			ooney, B 1435
	DJECT N			02.201603			DRILLING METHOD:	Sonic	
	DJECT M	IANAGI	ER:	Carol North			DRILLING EQUIPMENT:	TSI CC-150	
	GER:	(CC Ct-	-4- DI-	Steve Tyle			INSTALLATION DATE:	6/25/2021	
	RTHING STING (S	•		•			BOREHOLE DIAMETER (in):		
	•			88): not availab			58		
				Tot availab	1	()			
DEPTH (ft.)	% RECOVERY	PID (ppm)			\\	TITHOLOGIC			
I F	% <u>S</u>) (pg	nscs		INTERVAL	100 roc			
	ZEC			SAMPLE ID	=	<u>E</u>	SOIL DESCRIPTION		COMMENTS
									OOMMENTO
0_							Assissal		
1-		3.106		-	~~		Asphaslt		1-3' soil sample
2-			SP				SAND, tan/olive, fine grained, loo	ose	1-3 Soil Sample
		0.385	01						likely fill
3-	1	20.44	SM				SANDY SILT, dark olive, loose, I	ow compaction	moist
4-	1	4.921		-			SANDY CLAY, light grey, light co	ompaction and	wet
5-	1	1.627					plasticity		
6-		1.604							
 ₇₋						Y////			
		0.835							
8-]	1.564							
9-	1	0.702							
10 –	1	6.961							10-11' no GW
11 -	-	3.048	ОН			//////			soil sample
12 -		3.602				//////			
 13 –						11/1/1/			
10 14 -		4.007				//////			
]	1.698				//////			dry
15 -	1	1.117				//////			
16 -	1	3.267							
17 -	1	4.002					(a a b a c a a a a a a a a a a a a a a a		
18 –	-	9.621	SP				SAND, tan, few fines		moist
 19 –			ОН			/////	SANDY CLAY, tan/light grey		
		4.304	SP				CLAYEY SAND, tan/light grey, n compaction/low plasticity	noderate	wet
20 -	1	3.078				<u> </u>	Compaction/low plasticity		20-21' GW sample
21 -	1					1			
22 -									
	-in4! -	f b a mi	-1 001 5	00					
ıern	nination o	Doring	at 20 B	GS					

SOIL BORING LOG BORING NUMBER:

BORING NUMBER **DP-11**

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/25/2021 NORTHING (SC State Plane): 554742.19 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915581.35 GROUND ELEV (ft. NAVD88): 276.01 % RECOVERY **ITHOLOGIC** NTERVAL DEPTH (ft.) PID (ppm) LOG **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 SANDY SILT, tan/dark olive, moderate compaction 1 0.093 SC 2 0.076 CLAY, grey/dark olive, moderate compact/ 3. 0.185 moist moderate plasticity 0.583 5 2.009 ОН 6 0.845 7-6.806 dry 8 1.069 SANDY CLAY, light grey, high plasticity/ high compaction 9 4.029 10 10-11' no GW 5.263 ОН soil sample 11 0.342 12 2.110 13 2.494 РΤ Degraded wood/tree 14 10.77 SANDY CLAY, olive, high compaction/ high 15 plasticity 5.202 ОН 16 5.608 17 1.448 SANDY CLAY, light grey/orange streaks 18 4.857 ОН 19 4.311 20 8.650 20-21' no GW soil sample 21 22 Termination of boring at 20' BGS

Termination of boring at 20' BGS

SOIL BORING LOG BORING NUMBER:

DP-12

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/23/2021 NORTHING (SC State Plane): 554803.58 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915424.13 GROUND ELEV (ft. NAVD88): 275.69 ITHOLOGIC % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) LOG **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 SANDY SILT, olive/tan SM 1 0.156 2-3.124 moist SC CLAYEY SAND, tan/orange, fine grained 3. 4.781 CLAY, red/olive, high plasticity/ high compaction 52.7 4-5' no GW soil sample 5 102.3 ОН 6-29.72 dry 7-7.921 8 CLAYEY SAND, olive/tan, fine grained, high 12.32 SC compaction 9 58.7 CLAY, olive/tan, high plasticity/ high compaction 10 9-10' no GW 124.9 soil sample ОН 11 57.7 12 100.4 13 84.7 CLAY, grey/orange, moderate plasticity/ moderate compaction 14 38.62 15 45.82 ОН 16 13.801 17 5.827 18 9.78 CLAYEY SAND, tan/grey, loose, low plasticity/ 19 SC low compaction 15.19 wet 20 7.206 20-21' GW sample 21 22

SOIL BORING LOG BORING NUMBER: **DP-13**

Page 1 of 1

	D		OT 18	JEODNATIO	. N. I		DDII I INC I		FION
		ROJE	CIIN	NFORMATIO			DRILLING I		
SITE	JECT: LOCAT				in St.	, Blackville, S0			ing poney, B 1435
	JECT N			02.201603	-		DRILLING METHOD:	Sonic	
	JECT M GER:	IANAGE	EK.	Carol North Steve Tyle			DRILLING EQUIPMENT: INSTALLATION DATE:	TSI CC-150 6/23/2021	
		(SC Sta	ite Plar	ne): 554824.68			BOREHOLE DIAMETER (in):		
	TING (S	•		•				1824.68	
RC	OUND EI	_EV (ft.	NAVD	88): 278.70					
— (₩	% RECOVERY	Ē.			JA.	LITHOLOGIC			
DEPTH (ft.)	% O.	PID (ppm)	nscs		INTERVAL	000			
Ü	REC	PIC	⊃	SAMPLE ID	Ξ	<u> </u>	SOIL DESCRIPTION		COMMENTS
0									
							SANDY SILT, brown/olive, loose		
1-		0.156	SM						
2-		0.215					CLAY, some sand, brown, low pla	sticity/ low	
3-		0.945	ОН				compaction		wet
1 —		0.817							
5-		0.115				<i>[</i>	CLAY, tan/orange/olive, high plast	icity	dry
3-		3.101	ОН				OD (1), taliforally of onvo, high place	orty	
7 —		3.740					CLAV white/alice him		
3-		2.841				//////	CLAY, some sand, white/olive, hig high compaction	in piasticity/	
9-		3.948	ОН			//////			
) –		8.721			KXXX	//////			10-11' no GW
-		3.760							dry after 30 min soil sample
2			SC				SAND, some clay, white/tan		30ii 3airipie
3 –		1.530				(:/::/::/::/::/::/::/::/::/::/::/::/::/:			
, -		1.340	ОН				CLAY, white/olive, high plasticity/ I compaction	high	
; ; –		4.601					33		
		2.330	SC			<i>[]</i>	SAND lense, fine grained, tan		
; ,		5.311					CLAY, olive/tan, high plasticity/ hig	gh compaction	
7 —		8.941							
3 –		0.904	ОН						
9 –		4.735							
0 –		8.820		-	XXX	<i>//////</i>			19-20' dry
1 –									no GW after 30 min soil sample
2 -									

Termination of boring at 20' BGS

SOIL BORING LOG BORING NUMBER:

DP-14

Page 1 of 1

DRILLING INFORMATION PROJECT INFORMATION PROJECT: **DRILLING COMPANY:** Lennox International Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT: TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554877.10 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1914975.80 GROUND ELEV (ft. NAVD88): 277.00 ITHOLOGIC % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) LOG **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 SANDY SILT with clay, olive/tan 1 0.514 SM wet 2-1.321 CLAY, tan/orange, high plasticity/ low 3. 1.812 compaction 2.127 ОН 5 2.345 dry 6-0.803 SANDY SILT, loose, grey 7-0.486 SM 8 0.578 CLAY, olive/orange/tan, high plasticity/ high compaction ОН 9 1.825 wet 10 2.340 10-11' GW sample CLAYEY SAND, white/olive, high compaction 11 0.703 SC 12 1.018 13 1.713 CLAY, tan/orange/olive, high plasticity/ high compaction 14 4.110 15 ОН 3.015 dry 16 0.115 17 0.735 CLAY, white/olive, high plasticity/ high compaction, some sands 18 4.015 ОН 19 3.931 20 2.780 20-21' no GW sample dry after 30 min 21 22

SOIL BORING LOG | BORING NUMBER: **SB-101**

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: **DRILLING COMPANY:** Cascade Drilling Lennox International SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Hand auger PROJECT MANAGER: Carol Northern **DRILLING EQUIPMENT:** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/25/2021 NORTHING (SC State Plane): 554525.18 **BOREHOLE DIAMETER (in):** 3.25 EASTING (SC State Plane): 1915656.31 GROUND ELEV (ft. NAVD88): 277.03 ITHOLOGIC % RECOVERY PID (ppm) NTERVAL DEPTH (ft.) **USCS** LOG SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 SILTY SAND, olive/tan, fine grained, loose/low compaction 0.817 SM 2 3.261 1-3 soil sample 3 2.897 Concrete 5

This was the 5th hand auger attempt, starting at original SB-101 and moving East to the fence. No odor was noticed at any location. Took sample at East SB-101 boring attempt about 5' off fence. Below grade concrete may be part of concrete vault for drainage/water line/sewer system in the same area. Kept hitting concrete about 3-4' BGS.

Termination of boring at 5' BGS

6.25.21 DTW @ 1'5"

SOIL BORING LOG | BORING NUMBER:

SB-102

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: Lennox International DRILLING COMPANY: Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern DRILLING EQUIPMENT: TSI CC-150 LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554566.45 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915619.83 GROUND ELEV (ft. NAVD88): 277.80 LITHOLOGIC LOG % RECOVERY INTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Asphalt, crush-n-run (57 m) 1-0.456 1-1.5 soil sample SILTY SAND, olive 2 1.786 3. SM 2.155 wet 4 1.886 5-2.432 6

SOIL BORING LOG | BORING NUMBER: **SB-103**

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: Lennox International DRILLING COMPANY: Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern DRILLING EQUIPMENT: **TSI CC-150** LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554572.18 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915669.12 GROUND ELEV (ft. NAVD88): 276.99 LITHOLOGIC LOG % RECOVERY INTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Concrete, crush-n-run 1-39.11 1-3 soil sample SILTY SAND, olive/orange loose, low compaction 2 127.3 old solvent odor 3. SM 140.9 186.7 5-78.6 6

Termination of boring at 5' BGS 6.25.21 DTW @ 3'1' Old solvent odor in soils

SOIL BORING LOG | BORING NUMBER: **SB-105**

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: Lennox International **DRILLING COMPANY:** Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern DRILLING EQUIPMENT: TSI CC-150 LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554649.20 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915618.38 GROUND ELEV (ft. NAVD88): 275.86 LITHOLOGIC LOG % RECOVERY NTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Asphalt, crush-n-run 1-7.231 1-2' soil sample SILTY SAND 2 10.121 SM 3. 12.72 wet 6.120 dry CLAY, olive/light grey, high plasticity/ high compaction ОН 5-3.132 6

Termination of boring at 5' BGS 6.25.21 DTW @ 2'3"

Termination of boring at 5' BGS

6.25.21 DTW @ 1'8"

SOIL BORING LOG | BORING NUMBER:

SB-106

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: Lennox International **DRILLING COMPANY:** Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern DRILLING EQUIPMENT: TSI CC-150 LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554634.92 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915649.29 GROUND ELEV (ft. NAVD88): 276.28 LITHOLOGIC LOG % RECOVERY INTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Concrete, crush-n-run 1-0.923 1-3' soil sample SILTY SAND, olive/tan, loose, low compaction 2 3.124 3. SM 2.076 wet 0.941 5-0.870 6

SOIL BORING LOG | BORING NUMBER: **SB-108**

Page 1 of 1

PROJECT INFORMATION DRILLING INFORMATION PROJECT: Lennox International DRILLING COMPANY: Cascade Drilling SITE LOCATION: 118 W. Main St., Blackville, SC DRILLERS: Richard A. Mooney, B 1435 PROJECT NUMBER: 02.20160378.21 **DRILLING METHOD:** Sonic PROJECT MANAGER: Carol Northern DRILLING EQUIPMENT: TSI CC-150 LOGGER: Steve Tyler **INSTALLATION DATE:** 6/24/2021 NORTHING (SC State Plane): 554421.62 BOREHOLE DIAMETER (in): 8.25 EASTING (SC State Plane): 1915606.64 GROUND ELEV (ft. NAVD88): 277.06 LITHOLOGIC LOG % RECOVERY INTERVAL DEPTH (ft.) PID (ppm) **USCS** SAMPLE ID SOIL DESCRIPTION **COMMENTS** 0 Asphalt SILTY SAND, dark olive/tan 1-.217 1-3' soil sample 2 3.916 SM 3. 4.9424 wet 2.384 dry CLAY, olive ОН 5-3.3 6

Termination of boring at 5' BGS 6.25.21 DTW @ 3'2"

Appendix C

Data Validation Summary and Laboratory Analytical Results – June 2021

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, Georgia, 30062

P: 770-973-2100 F: 770-973-7395 www.earthcon.com

MEMORANDUM

DATE: July 23, 2021

TO: Carol Northern, EarthCon Consultants

FROM: Mary Ann Brookshire

SUBJECT: Quality Assurance Review

PROJECT: Lennox International SAMPLING DATES: June 21 to 25, 2021

PROJECT NUMBER: 02.20160378.21

1.0 Introduction

This quality assurance review presents the cursory validation of the sample analyses listed in Table 1. The analyses were performed by Pace Analytical Services, LLC., formally Shealy Environmental Services, Inc., located in West Columbia, South Carolina.

The criteria used to qualify data are from the *Contract Laboratory Program National Functional Guidelines for Inorganic and Organic Data Review* (USEPA 2010 and 2008), the analytical methods, or the professional judgment of the validation chemist. The following laboratory deliverables were reviewed during the validation process:

- Chain-of-custody (COC) documentation to assess holding times and verify report completeness
- Laboratory quality control (QC) sample results, including method blanks, surrogate spikes, laboratory control samples (LCS), matrix spike/matrix spike duplicates (MS/MSD), and laboratory duplicates
- Analytical results to verify reporting limits
- Field QC samples to assess field blank contamination and field duplicate precision

The qualified data are summarized in Section 6 of this memorandum. Data qualifier flags have been added to the attached sample results and database files.

Table 1—Sample Data Reviewed

Sample ID	Laboratory ID	VOAª	Dissolved Gases ^b	General Chem ^c
MW-01D-16.2'	WF22061-001	Х	Х	
MW-01D-36.2'	WF22061-002	Χ	X	
MW-04D-16'	WF22061-003	Χ	X	
MW-04D-36'	WF22061-004	Χ	X	
MW-04D-56'	WF22061-005	Χ	X	
MW-2	WF22061-006	Χ	X	X
MW-2D	WF22061-007	Χ	X	X
MW-15	WF22061-008	Χ	X	X
MW-16	WF22061-009	Χ	X	X
MW-17	WF22061-010	Χ	X	X
MW-8	WF22061-011	Χ	X	X
MW-7	WF22061-012	Χ	X	X
TRIP BLANK	WF22061-013	X		
MW-3	WF23091-001	Х	Χ	Χ
MW-3D	WF23091-002	Χ	X	X
MW-6R	WF23091-003	Χ	X	X
MW-01	WF23091-004	Χ	X	X
DUP-01	WF23091-005	Χ	X	X
MW-10	WF23091-006	Χ	X	X
TRIP BLANK 1	WF23091-007	Χ		
TRIP BLANK 2	WF23091-008	Χ		
MW-4	WF25024-001	Χ	X	X
MW-14	WF25024-002	Χ	X	X
MW-11	WF25024-003	X	X	X
MW-5	WF25024-004	Χ	X	X
TB-1	WF25024-005	Χ		
DP-2-SO (10-11)	WF25024-006	Χ		
DP-2-SO (19-20)	WF25024-007	Χ		
DP-13-SO (10-11)	WF25024-008	Χ		
DP-13-SO (19-20)	WF25024-009	X		
DP-2-SO (6-7)	WF25024-010	X		
DP-12-SO (4-5)	WF25024-011	Χ		
DP-6-SO (10-11)	WF25024-012	Χ		
DP-12-SO (9-10)	WF25024-013	Χ		
DP-3-SO (10-11)	WF25024-014	Χ		
TB-2	WF25024-015	Χ		
DP-2-16/17-GW	WF25024-016	Χ	Χ	
DP-DUP1-GW	WF25024-017	Χ	Χ	
DP-3-20-GW	WF25024-018	Χ	Χ	
DP-12-20-GW	WF25024-019	Χ	Χ	
DP-14-10-GW	WF25024-020	Χ	X	
EB-01-062421	WF25024-021	Χ	X	X

a Volatile Organic Compounds by Method 8260D and/or 8260D SIM (USEPA 1996)
 b Dissolved Gases by Method RSK-175 (USEPA 1994)

^c Alkalinity by Method SM 2320B; chloride, nitrate, and sulfate by Method 9056A; sulfide by method SM4500-S2 F; and TOC by method 9060A (APHA 1998 and USEPA 1996)

Sample ID	Laboratory ID	VOAª	Dissolved Gases ^b	General Chem ^c
SB-103-SO (1-3)	WF26008-001	Χ		
SB-108-SO (1-3)	WF26008-002	Χ		
SB-105-SO (1-2)	WF26008-003	X		
SB-106-SO (1-3)	WF26008-004	Χ		
SB-102-SS (1-1.5)	WF26008-005	Χ		
DP-06-20-21-GW	WF26008-006	Χ	X	
SB-101-SS (1-3)	WF26008-007	Χ		
DP-01-10-11-SS	WF26008-008	X		
DP-01-20-GW	WF26008-009	Χ	X	
DP-08-10-SS	WF26008-010	Χ		
EB-01-062521	WF26008-011	X	X	
DP-04 (1-3) SS	WF26008-012	X		
TRIP BLANK	WF26008-013	Χ		
MW-4D	WF26008-014	Χ	X	Χ
MW-1D	WF26008-015	X	X	X
DP-04-10-11-SS	WF26008-016	Χ		
DP-08-20-GW	WF26011-001	Χ	Χ	
DP-10 (1-3)-SS	WF26011-002	Χ		
DP-04-20-GW	WF26011-004	Χ	X	
DP-05 (1-3')-SS	WF26011-005	X		
DP-05 (10-11')-SS	WF26011-006	Χ		
DP-10-20-GW	WF26011-007	X	X	
DP-07 (1-3)-SS	WF26011-008	Χ		
DP-07 (10-11)-SS	WF26011-009	Χ		
DP-05-20-GW	WF26011-010	X	X	
DP-09 (1-3)-SS	WF26011-011	Χ		
DUP-02-SÓ	WF26011-012	Χ		
DP-09 (10-11)-SS	WF26011-013	Χ		
DP-07-20-21-GW	WF26011-014	Χ	Χ	
DP-11 (10-11)-SS	WF26011-015	Χ		
DP-11 (20-21)-SS	WF26011-016	Χ		
DP-09 (20-21)GW	WF26011-017	Χ	Χ	
DP-10 (10-11)-SS	WF29028-001	Χ		

2.0 Data Validation Findings

2.1 Custody, Preservation, and Completeness

Sample custody was maintained as required from sample collection to receipt at the laboratory. The samples were received intact and were properly preserved. The reports are complete and contain results for the samples and tests requested on the COC forms with the following exceptions.

- Sample EB-01-062421 was received at the laboratory but not listed on the COC form. The sample was added for laboratory testing as required.
- Sample DP-04-10-11-SS was received by the laboratory but not listed on the COC. The sample was added for laboratory testing as required.

- Sample DP-10(10-11)-SS was listed on the COC for SDG WF26011 but not included in the shipment to the laboratory. The sample was submitted in a separate SDG (WF29028).
- The 500 mL plastic and 250 mL H₂SO₄ preserved containers for samples MW-1D and MW-4D were submitted to the laboratory but were not listed on the COC. The associated analyses were added as required.

2.2 Volatile Organic Analyses by Methods 8260B and 8260B SIM

2.2.1 Holding Times

The samples were analyzed within the required holding time of 14 days from collection for soil and preserved water samples with the following exceptions:

- Sample MW-5 was analyzed for VOCs 1 day past the 14-day holding time. The associated sample results are qualified as estimated (J) based on the holding time.
- The dilution for sample DP-12-20-GW was analyzed 1 day past the 14-day holding time. The analytes reported from the dilution (tetrachloroethene, trichloroethene, and 1,1,2-trichloroethane) are qualified as estimated (J) based on the holding time.
- Sample DP-07-20-21-GW was analyzed 5 days past the 14-day holding time. The sample was initially run within holding time at a dilution then reanalyzed with no dilution. The undiluted reanalysis results were reported. The associated sample results are qualified as estimated (J) based on the holding time.

2.2.2 Blank Analyses

2.2.2.1 Method Blanks

Method blanks were analyzed at the required frequency. Target analytes were not detected above the detection limits in the method blank samples.

2.2.2.2 Field Blanks

Six trip blanks and two equipment blank samples are associated with the samples. Target analytes were not detected above the detection limits in the trip blank or equipment blank samples.

2.2.3 Surrogate Analyses

Surrogate compounds were added to samples, blanks, and QC samples as required. The recovery values are within the laboratory QC limits.

2.2.4 Matrix Spike/Matrix Spike Duplicate Analyses

MS/MSD or MS/duplicate analyses were reported at the project frequency of one per 20 field samples. The recovery and relative percent difference (RPD) values are within the laboratory QC limits with the following exception:

 The recovery values for cyclohexane in samples MW-10 MS and MSD were 140 and 131 percent, respectively, which exceed the laboratory QC limits of 70 to 130 percent. Data qualification was not required as the bias is high and the associated sample results are non-detect. The laboratory "S" qualifier was removed from the associated result.

2.2.5 Laboratory Control Sample Analyses

LCS or LCS/LCSD were analyzed at the required frequency of one per batch. The recovery and RPD values of target analytes are within the laboratory QC limits with the following exceptions.

- The recovery value for dichlorodifluoromethane was 145 percent in the LCS run with batch 98224 (SDG WF25024), which exceeds the laboratory QC limit of 60 to 140 percent. Data qualification is not required as the bias is high and the associated sample results are non-detect. The laboratory "L" qualifier was removed from the associated sample results.
- The recovery values for dichlorodifluoromethane (144%) and methylcyclohexane (136 %) in the LCSD for batch 97424 (SDG WF26008) exceeded the laboratory QC limits of 70 to 130 percent. Data qualification is not required as the bias is high and the associated sample results are non-detect. The laboratory "L" qualifier was removed from the associated sample results.
- The RPD values for chloromethane (21), cyclohexane (32), dichlorodifluoromethane (59), methylcyclohexane (38), 1,1,2-trichloro-1,2,2-trifloroethane (34),trichlorofluoromethane (32) and vinyl chloride (24) for the LCS/LCSD analyzed in batch 97424 (SDG WF26008) exceed the laboratory QC limit of 20. Associated detections of these compounds are qualified as estimated.
- The LCS recovery value for cyclohexane was 144 percent in the LCS run for batch 98261 (SDG WF26011). Data qualification is not required as the bias is high and the associated sample results are non-detect. The laboratory "L" qualifier was removed from the associated sample results.

Laboratory Reporting Limits

The laboratory limits of quantitation (LOQ) are consistent with method reporting limits.

2.2.6 Field Duplicates

Three field duplicate pairs (MW-01/DUP-01, DP-2-16/17-GW/DP-DUP1-GW, and DP-09(1-3)-SS/DUP-02-SO) were collected. The RPD values are within the QC guideline of less than 30 for groundwater samples and less than 50 for soil with the exceptions of the ethylbenzene and xylenes RPD for MW-01/DUP-01 as shown in the table below. Associated ethylbenzene and xylenes results are qualified as estimated (J).

Sample ID	Duplicate ID	Analyte	Units	Sample Value	Duplicate Value	RPD
MW-01	DUP-01	cis-1,2-Dichloroethene	μg/L	1700	2100	21
		trans-1,2-Dichloroethene	μg/L	8.1 J	8.3 J	NC
		Ethylbenzene	μg/L	97	170	55
		Vinyl Chloride	μg/L	64	87	30
		Xylenes	μg/L	400	750	61
DP-2-16/17-GW	DP-DUP1-GW	Chloroform	μg/L	1.7	1.7	0.0
		cis-1,2-Dichloroethene	μg/L	52	53	1.9
		trans-1,2-Dichloroethene	μg/L	0.83 J	0.87 J	NC
		Toluene	μg/L	0.46 J	0.43 J	NC
		Trichloroethene	μg/L	0.47 J	0.45 J	NC
		Vinyl Chloride	μg/L	1.9	1.9	0.0
		Xylenes	μg/L	1.8	1.7	5.7
DP-09(1-3)-SS	DUP-02-SO	Acetone	ug/kg	56	56	0.0
` '		2-Butanone	ug/kg	5.3 J	5.1 J	NC
		Methylene Chloride	ug/kg	<5.3	1.9 J	NC

NC - not calculable. One or both results are below the limit of quantitation

2.2.7 Overall Assessment of Data Usability

The usability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here; the data are acceptable with qualification.

2.3 Dissolved Gases

2.3.1 Holding Times

The samples were analyzed within the required holding time of 14 days from collection for preserved water samples.

2.3.2 Blank Analyses

2.3.2.1 Method Blanks

Method blanks were analyzed at the required frequency of one per batch. Dissolved gases were not detected above the detection limits in the method blanks:

2.3.2.2 Trip Blanks

The trip blank samples were not analyzed for dissolved gases.

2.3.2.3 Equipment Blanks

Two equipment blank samples were collected. The equipment blanks were analyzed at the required frequency. Dissolved gases were not detected above the detection limits in the equipment blank samples with the following exception:

 Methane was detected in equipment blank EB-01-062421 at an estimated concentration of 3.5 ug/L. Functional Guidelines prescribes two qualification schemes for blank contamination at concentrations above the LOQ; (1) associated sample concentrations less than the LOQ are qualified as undetected (U) at the reporting limit, (2) associated sample concentrations greater than the LOQ are qualified based on professional judgment. The data were not qualified because the methane concentrations in the associated samples were significantly higher than the equipment blank concentration.

2.3.3 Surrogate Analyses

Surrogate compounds are not required for dissolved gas analyses.

2.3.4 Matrix Spike/Matrix Spike Duplicate Analyses

Matrix spike and matrix spike duplicate analyses were performed at the required frequency. The recovery and RPD values were within laboratory QC limits with the following exception:

The propane recovery values for samples MW-10 MS and MW-10 MSD are 178
and 181 percent, respectively, which exceed the laboratory QC limit of 70 to 130
percent. Data qualification is not required as the bias is high, and the associated
sample result is non-detect. The laboratory "S" qualifier was removed from the
associated result.

2.3.5 Laboratory Control Sample Analyses

LCS/LCSDs were analyzed as required. The recovery and RPD values of target analytes are within the laboratory QC limits.

2.3.6 Laboratory Reporting Limits

The laboratory limits of quantitation (LOQ) are consistent with method reporting limits.

2.3.7 Field Duplicates

Two field duplicate pairs (MW-01/DUP-01 and DP-2-16/17-GW/DP-DUP1-GW) were collected. The RPD values are within the QC guideline of less than 30 for groundwater samples and less than 50 for soil as shown in the table below.

Sample ID	Duplicate ID	Analyte	Units	Sample Value	Duplicate Value	RPD
MW-01	DUP-01	Ethane	μg/L	<10	2.6 J	NC
		Ethene	μg/L	19	23	19.0
		Methane	μg/L	740	890	18.4
DP-2-16/17-GW	DP-DUP1-GW	Methane	μg/L	10	6.7 J	NC

NC - not calculable. One or both results are below the limit of quantitation

2.3.8 Overall Assessment of Data Usability

The usability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here; the data are acceptable without qualification.

2.4 General Chemistry Analyses

The field samples were analyzed for alkalinity, chloride, nitrate, sulfate, sulfide, and total organic carbon (TOC).

2.4.1 Holding Times

The samples were analyzed within the method-required holding times. The nitrate result for sample DUP-01 was qualified by the laboratory as "H", missed holding time. Upon review of the field sampling information, the analysis was performed within the 48-hour holding time and the "H" qualifier was removed.

2.4.2 Blank Analyses

2.4.2.1 Method Blanks

Method blanks were analyzed at the required frequency. Target analytes were not detected above the detection limits in the method blank samples.

2.4.2.2 Equipment Blanks

The equipment blanks were analyzed at the required frequency. Target analytes were not detected above the detection limits in the equipment blank with the following exception:

• Sulfide was detected in equipment blank EB-01-062421 at a concentration of 1.5 mg/L. Functional Guidelines prescribes two qualification schemes for blank contamination at concentrations above the LOQ; (1) associated sample concentrations less than the LOQ are qualified as undetected (U) at the reporting limit, (2) associated sample concentrations greater than the LOQ are qualified based on professional judgment. The sulfide results for samples MW-4, MW-5, MW-11, and MW-14 are qualified as undetected (U) because the concentrations in these samples are above the LOQ but not significantly higher than the blank concentration. Data are qualified as outlined in Section 5.

2.4.3 Matrix Spike/Matrix Spike Duplicate Analyses

MS/MSD analyses were reported at the project frequency of one pair per 20 field samples for chloride, nitrate, sulfate, and TOC. Duplicate analyses were reported for alkalinity and sulfide (matrix spikes are not required for these methods). The recovery and RPD values are within the laboratory QC limits.

2.4.4 Laboratory Control Sample Analyses

LCSs or LCS/LCSDs were analyzed at the required frequency of one per batch. The recovery and RPD values are within the laboratory QC limits.

2.4.5 Laboratory Reporting Limits

The laboratory limits of quantitation (LOQ) are consistent with method reporting limits.

2.4.6 Field Duplicates

One field duplicate pair (MW-01/DUP-01) was collected. The RPD values are within the QC guideline of 30 for groundwater samples as shown in the table below.

Sample ID	Duplicate ID	Analyte	Units	Sample Value	Duplicate Value	RPD
MW-01	DUP-01	Chloride	mg/L	21	21	0
		Sulfate	mg/L	2.4	2.5	4.1
		TOC	mg/L	1.4	1.3	7.4

2.4.7 Overall Assessment of Data Usability

The usability of the data is based on the EPA guidance documents noted previously. Upon consideration of the information presented here; the data are acceptable with qualification.

3.0 Assessment of Data Quality Indicators

3.1 Precision

Precision is a measure of the mutual agreement among individual measurements of the same property, under prescribed similar conditions. Precision is determined through analysis of MS/MSD, sample duplicates, and field duplicate samples. Duplicate samples are evaluated for precision in terms of relative percent difference. Relative percent difference is defined as the difference between the duplicate results divided by the mean and expressed as a percent.

The precision of the VOC, dissolved gases, and general chemistry data is very good. The RPD values for the site-specific MS/MSD, LCS/LCSD, and field duplicates are within the laboratory QC limits with the exception of the LCS/LCSD RPD for seven VOCs and field duplicate RPDs for two VOCs. Associated detected results are qualified as estimated.

3.2 Accuracy

Accuracy is the degree of agreement between a measurement and the accepted reference or true value. The level of accuracy is determined by examination of surrogates, MS/MSDs, LCSs, method blanks, and field blanks. The surrogate, matrix spike, and LCS recovery values were compared to the laboratory QC limits. Method and field blanks are analyzed to identify compounds that could be introduced during the sampling, extraction, or analysis phases (i.e., laboratory contaminants) and lead to inaccurate results.

The accuracy of the VOC, dissolved gases, and general chemistry data is very good. The LCS, site-specific MS/MSDs, and surrogate recoveries are within the laboratory QC limits. LCS recovery values were high for three VOCs and one dissolved gas. Associated samples did not require qualification as the bias was high and the associated results were non-detect. The method blanks, equipment blanks, and trip blank are free of contamination with the exceptions of methane and sulfide in an equipment blank sample. Associated data were qualified in accordance with Functional Guidelines criteria. The use of Functional Guidelines qualification reduces the impact

of blank contamination to the data by reducing the probability of reporting false positive or biased high data.

3.3 Representativeness

Representativeness is the extent to which the data reflect the actual contaminant levels present in the samples. Representativeness is assessed through method and field blanks, and proper preservation and handling. Method and field blank analyses allow for the detection of artifacts that may be reported as false positive results. Proper sample preservation and handling are necessary so that sample results reflect the actual sample concentrations.

The data are assumed to be representative because the samples were properly preserved and handled with the exceptions of three VOC samples analyzed past the holding time. Results were qualified as estimated. Target analytes were not detected in the method blanks, equipment blanks or trip blank with the exceptions of one dissolved gas and sulfide detected in an equipment blank sample. The use of Functional Guidelines qualification reduces the impact of method blank contamination to the data by reducing the probability of reporting false positive or biased high data.

3.4 Comparability

Comparability is a measure of how easily the data set can be compared and combined with other data sets. The data are assumed to be comparable since standard EPA methods were used to analyze the samples, the method QC criteria were generally met, and routine detection limits were reported.

3.5 Completeness

Completeness is expressed as the ratio of valid results to the amount of data expected to be obtained under normal conditions. Completeness is determined by assessing the number of samples for which valid results were obtained versus the number of samples that were submitted to the laboratory for analysis. Valid results are results that are determined to be usable during the data validation review process.

The completeness of this data set is 100 percent.

4.0 Data Qualifier Definitions

4.1 Inorganic Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are from the *Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*.

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

R The data are unusable. (Note: Analyte may or may not be present)

4.2 Organic Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are from the *Contract Laboratory Program National Functional Guidelines for Organic Data Review*.

- U The analyte was analyzed for but not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the samples and meet quality control criteria. The presence or absence of the analyte cannot be verified.

5.0 References

USEPA. 1996. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) Third Edition, Updates I, II, IIA, IIB, and III. United States Environmental Protection Agency. Office of Solid Waste. December 1996.

USEPA. 1999a. Methods and Guidance for Analysis of Water, Version 2.0. United States Environmental Protection Agency Office of Science and Technology. EPA 821-C-99-004. CD ROM. June 1999.

USEPA. 2008. Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency Office of Emergency and Remedial Response. EPA540/R-99/008. June 2008.

USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. United States Environmental Protection Agency. Office of Solid Waste and Emergency Response. January 2010.

6.0 Summary of Data Qualification

The following data qualifiers were applied based on the quality assurance review of this data set.

Sample ID	Analyte	Qualifier	Reason for Qualification
MW-5	VOCs	J and UJ	Holding time exceeded
DP-12-20-GW	Tetrachloroethene Trichloroethene 1,1,2- Trichloroethane	J	Holding time exceeded
DP-07-20-21-GW	VOCs	J and UJ	Holding time exceeded
SB-102-SS	Vinyl Chloride	J	LCS/LCSD RPD > QC limit
MW-01	Ethylbenzene Total Xylenes	J	Field duplicate RPD > QC limit
DUP-01	Ethylbenzene Total Xylenes	J	Field duplicate RPD > QC limit
DUP-01	Nitrate	Remove H	Erroneous laboratory flag
MW-4	Sulfide	U	Equipment blank detection > LOQ
MW-5	Sulfide	U	Equipment blank detection > LOQ
MW-11	Sulfide	U	Equipment blank detection > LOQ
MW-14	Sulfide	U	Equipment blank detection > LOQ

Description: MW-01D-16.2'

Date Sampled: 06/21/2021 1620 Date Received: 06/22/2021

Laboratory ID: WF22061-001 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1210 BWS	·	97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.40	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	3.1	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-01D-16.2'

Date Sampled:06/21/2021 1620
Date Received: 06/22/2021

Laboratory ID: WF22061-001

Matrix: Aqueous

Volatile Organic Compounds by GC/MS	/olatile	Organic	Compounds	by GC/MS
-------------------------------------	----------	---------	-----------	----------

Run Prep Method 1 5030B	Analytical Method D 8260D	ilution 1	Analysis D 07/01/2021	ate Analysi 1210 BWS	t Prep D	Date	Batch 97592			
Parameter		Num		alytical /lethod	Result	Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-1	3-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	2-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	5-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	0-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene		79-0	1-6	8260D	1.3		1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	9-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride		75-0	1-4	8260D	ND		1.0	0.40	ug/L	1
Xylenes (total)		1330-2	0-7	8260D	ND		1.0	0.40	ug/L	1

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		104	70-130
1,2-Dichloroethane-d4		104	70-130
Toluene-d8		99	70-130

Volatile Organic Compounds by GC/MS (SIM)

	V Olatile O	1 yarric	Compounds by	GONNO (C) [VI			
Run Prep Method	Analytical Method	Dilution A	Analysis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1 0	6/29/2021 2351 CJL2		97322			
		CA	AS Analytical					
Parameter		Numb	er Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-	-1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate			ceptance Limits					
1.2-Dichloroethane-d4		99	40-170					

Dissolved Gases

Run Prep Method	Analytical Method RSK - 175		nalysis Date Analyst /25/2021 1022 TML	Prep D	ate Batch 96775			
Parameter		CAS Numbe	ruidiy ilour	Result (Q LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	6.1	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and > DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-01D-36.2' Date Sampled: 06/21/2021 1635 Date Received: 06/22/2021

Laboratory ID: WF22061-002

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1234 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	3.5	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation Q = Surrogate failure B = Detected in the method blank ND = Not detected at or above the DL L = LCS/LCSD failure N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and ≥ DL S = MS/MSD failure W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-01D-36.2'

Date Sampled:06/21/2021 1635

Date Received: 06/22/2021

Laboratory ID: WF22061-002

Matrix: Aqueous

Volatile Organic Compounds by	y GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1234 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	1.4	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

	Surrogate	Q	Run 1 % Recovery	Acceptanc Limits
_	Bromofluorobenzene		105	70-130
	1,2-Dichloroethane-d4		100	70-130
	Toluene-d8		98	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	•	rsis Date Analyst 2021 0016 CJL2	Prep Date	Batch 97322			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Accept Limi						
1.2-Dichloroethane-d4		99	40-1	70					

Dissolved Gases

Dissolved Gases											
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch						
1	RSK - 175	1	06/25/2021 1038 TML		96775						

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.3 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

The state of the s				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight hasis			S = MS/MSD failure

Description: MW-04D-16'

Date Sampled:06/21/2021 1505 Date Received: 06/22/2021 Laboratory ID: WF22061-003

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run 1	Prep Method 5030B	Analytical Method 8260D	Analysis Date Analysis 07/01/2021 1259 BWS	Prep Date	Batch 97592			
Dara	motor		CAS Analytical	Daguit O	100	D.	11-4-	D

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	2.1	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-04D-16' Date Sampled:06/21/2021 1505 Date Received: 06/22/2021

Laboratory ID: WF22061-003

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1259 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptanc Limits
Bromofluorobenzene		106	70-130
1,2-Dichloroethane-d4		105	70-130
Toluene-d8		101	70-130

Volatile Organic Compounds by GC/MS (SIM)

		- · 9 · · · ·		mp camae ay		1-				
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	•	sis Date Analyst 2021 0041 CJL2	Prep	Date	Batch 97322			
Parameter			CAS nber	Analytical Method	Result		LOQ	DL	Units	Run
1,4-Dioxane		123-9	91-1	8260D (SIM)	ND		3.0	1.0	ug/L	1
Surrogate		Run 1	Accept Lim							
1,2-Dichloroethane-d4		100	40-1	70						······································

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175	Dilution 1	•	rsis Date Analyst 2021 1054 TML	Prep Da	Batch 96775			
Parameter			CAS	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	34-0	RSK - 175	ND	10	2.5 .	ug/L	1
Ethene		74-8	35-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-8	32-8	RSK - 175	3.0 J	10	2.5	ug/L	1
Propane		74-9	98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-04D-36'

Date Sampled:06/21/2021 1520
Date Received:06/22/2021

Laboratory ID: WF22061-004
Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1324 BWS		97592	

	CAS	Analytical			.		_
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	. 1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	4.7	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-04D-36'

Date Sampled:06/21/2021 1520 Date Received: 06/22/2021

Xylenes (total)

Run Prep Method

Laboratory ID: WF22061-004

1.0

Batch

0.40

Matrix: Aqueous

ug/L

1

Run Prep Method 1 5030B	Analytical Method 8260D		alysis Date Analyst 1/2021 1324 BWS	Prep Date	Batch 97592			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	1.0	0.40	ug/L	1

8260D

ND

Prep Date

1330-20-7

Run 1 Acceptance Surrogate Q % Recovery Limits Bromofluorobenzene 107 70-130 1,2-Dichloroethane-d4 107 70-130 Toluene-d8 102 70-130

Volatile Organic Compounds by GC/MS (SIM)

		9				. – , -	,			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1		ysis Date Analyst /2021 0105 CJL2	Prep	Date	Batch 97322			
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	ND		3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Accept Lim							
1,2-Dichloroethane-d4		100	40-1	70						

Dissolved Gases

Analytical Method Dilution Analysis Date Analyst

1	RSK - 175	1 06/25/	2021 1110 TML		96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	2.6 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and > DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight hasis		-	S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-04D-56' Date Sampled:06/21/2021 1535

Date Received: 06/22/2021

Laboratory ID: WF22061-005

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1348 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	4.0	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL P = The RPD between two GC columns exceeds 40% L = LCS/LCSD failure N = Recovery is out of criteria $J = Estimated result < LOQ and <math>\geq DL$ S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: **MW-04D-56'**Date Sampled:**06/21/2021 1535**

Date Received: 06/22/2021

Laboratory ID: WF22061-005

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1348 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
Bromofluorobenzene		103	70-130
1,2-Dichloroethane-d4		99	70-130
Toluene-d8		96	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method	Analytical Method	Dilution	•	is Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	8260D (SIM) 1 06/30/2021 0130 CJL2			97322				
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptan Limits						
1,2-Dichloroethane-d4		100	40-170						

Dissolved Gases

Run Prep Method Analytical Method Dilution Analysis Date Analysis 1 RSK - 175 1 06/25/2021 1126 TML		Prep Date	Batch 96775					
Parameter		CAS Numbe	- / many moun	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	1 RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	2.9 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Page 15 of 68

Description: MW-2

Date Sampled:06/22/2021 1435
Date Received: 06/22/2021

Laboratory ID: WF22061-006

Matrix: Aqueous

Inorganic non-metals

	morganio non motalo								
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch				
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0614 DAK	-	96695				
1	(Chloride) 9056A	1	06/23/2021 1044 MSG		96562				
1	(Nitrate - N) 9056A	1	06/23/2021 1044 MSG		96565				
2	(Sulfate) 9056A	1	06/30/2021 0541 AMR		97448				
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945				
1	(TOC) 9060A	1	06/25/2021 0140 AAB		96702				

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	7.1	1.0	0.25	mg/L	1
Nitrate - N		9056A	1.5	0.020	0.0050	mg/L	1
Sulfate		9056A	ND	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.7	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1413 BWS		97592	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.027 - 0.076				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes (total)

Date Sampled:06/22/2021 1435 Date Received: 06/22/2021

Laboratory ID: WF22061-006

Matrix: Aqueous

0.40

0.40

0.40

0.40

0.40

1.0

1.0

1.0

1.0

1.0

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

Volatile	Organic	Com	pounds	by	GC/MS	

79-00-5

79-01-6

75-69-4

75-01-4

1330-20-7

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1413 BWS	Prep I	Date	Batch 97592			
Parameter		Num	CAS	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-3	35-4	8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	60-5	8260D	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	37-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-4	1-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-7	'8-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-8	32-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0)4-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-8	7-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-0	9-2	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-4	2-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-1	8-4	8260D	ND		1.0	0.40	ug/L	1
Toluene		108-8	8-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-1	3-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	2-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	5-6	8260D	ND		1.0	0.40	ug/L	1

Surrogate	Q	% Recovery	Acceptance Limits
Bromofluorobenzene		109	70-130
1,2-Dichloroethane-d4		107	70-130
Toluene-d8		104	70-130

Volatile Organic Compounds by GC/MS (SIM)

8260D

8260D

8260D

8260D

8260D

ND

ND

ND

ND

ND

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	-	sis Date Analyst 2021 0155 CJL2	Prep Date	Batch 97322			
Para	meter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-D	Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2

Run Prep Method

Date Sampled:06/22/2021 1435 Date Received: 06/22/2021

Laboratory ID: WF22061-006

Matrix: Aqueous

Surrogate	Q		Acceptance Limits
1,2-Dichloroethane-d4		101	40-170

Dissolved Gases

Prep Date

Batch

Analytical Method Dilution Analysis Date Analyst

1	RSK - 1/5	1 06/25/	2021 1142 TML		96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	2.7 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: MW-2D

Date Sampled:06/22/2021 1345 Date Received: 06/22/2021

Laboratory ID: WF22061-007

Matrix: Aqueous

Inorganic non-metals

			3		
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0618 DAK		96695
1	(Chloride) 9056A	1	06/23/2021 1105 MSG		96562
1	(Nitrate - N) 9056A	1	06/23/2021 1105 MSG		96565
2	(Sulfate) 9056A	1	06/30/2021 0643 AMR		97448
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1	(TOC) 9060A	1	06/25/2021 0252 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	2.9	1.0	0.25	mg/L	1
Nitrate - N		9056A	0.25	0.020	0.0050	mg/L	1
Sulfate		9056A	1.3	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.6	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

		VOIGE	ic Orga	inic Compounds i	by coninc	
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1438 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	. 8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0 - 0				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2D

Date Sampled:06/22/2021 1345
Date Received: 06/22/2021

Laboratory ID: WF22061-007

Matrix: Aqueous

Volatile Organic Compounds by	GC/MS
-------------------------------	-------

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		is Date Analyst 021 1438 BWS	Prep Date	Batch 97592			
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-41-4		8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-78-6		8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-82-8		8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-	87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-4	42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % F	Run 1 / Recovery	Acceptan Limits	ce					
Bromofluorobenzene		101	70-130						
1,2-Dichloroethane-d4		97	70-130						
Toluene-d8		96	70-130						

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)		•	sis Date Analyst 2021 0219 CJL2	Prep I	Date	Batch 97322			
Para	meter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,4-D	ioxane		123-	91-1	8260D (SIM)	ND		3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2D

Run Prep Method

Date Sampled:06/22/2021 1345
Date Received: 06/22/2021

Laboratory ID: WF22061-007

Matrix: Aqueous

Matrix: Aqueous

Batch

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
1,2-Dichloroethane-d4		96	40-170

Dissolved Gases

Analytical Method Dilution Analysis Date Analyst

1	RSK - 175	1 06/25	/2021 1158 TML		96775	96775		
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	3.4 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Description: MW-15

Date Sampled:06/22/2021 0950
Date Received: 06/22/2021

Laboratory ID: WF22061-008

Matrix: Aqueous

nc					

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analysi	t Prep Date	Batch	
1		(Alkalinity @) SM 2320B-2011	1	06/24/2021 0625 DAK		96695	
1		(Chloride) 9056A	1	06/23/2021 0900 MSG		96562	
1		(Nitrate - N) 9056A	1	06/23/2021 0900 MSG		96565	
2		(Sulfate) 9056A	1	06/30/2021 0704 AMR		97448	
1		(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945	
1		(TOC) 9060A	1	06/25/2021 0316 AAB		96702	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	4.3	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	12	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	4.5	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1502 BWS		97592	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.287 - 0.326				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-15

Date Sampled:06/22/2021 0950 Date Received: 06/22/2021 Laboratory ID: WF22061-008

Matrix: Aqueous

Volatile	Organic	Comp	pounds	by	GC/MS	

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1502 BWS		97592

CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
75-35-4	8260D	ND	1.0	0.40	ug/L	1
156-59-2	8260D	ND	1.0	0.40	ug/L	1
156-60-5	8260D	ND	1.0		-	1
78-87-5	8260D	ND	1.0			1
10061-01-5	8260D	ND	1.0		_	1
10061-02-6	8260D	ND	1.0			1
100-41-4	8260D	ND	1.0	0.40	_	1
591-78-6	8260D	ND	10	2.0	-	1
98-82-8	8260D	ND	1.0	0.40	-	1
79-20-9	8260D	ND	1.0	0.40		1
1634-04-4	8260D	ND	1.0	0.40	-	1
108-10-1	8260D	ND	10	2.0	-	1
108-87-2	8260D	ND	5.0	0.40	•	1
75-09-2	8260D	ND	1.0	0.40	•	1
100-42-5	8260D	ND	1.0	0.41	•	1
79-34-5	8260D	ND	1.0	0.40	ug/L	1
127-18-4	8260D	ND	1.0		ug/L	1
108-88-3	8260D	ND	1.0	0.40	ug/L	1
76-13-1	8260D	ND	1.0	0.42	ug/L	1
120-82-1	8260D	ND	1.0		ug/L	1
71-55-6	8260D	ND	1.0		ug/L	1
79-00-5	8260D	ND	1.0		-	1
79-01-6	8260D	ND	1.0	0.40	ug/L	1
75-69-4	8260D	ND	1.0	0.40	ug/L	1
75-01-4	8260D	ND	1.0	0.40	ug/L	1
1330-20-7	8260D	ND	1.0	0.40	ug/L	1
	75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 591-78-6 98-82-8 79-20-9 1634-04-4 108-10-1 108-87-2 75-09-2 100-42-5 79-34-5 127-18-4 108-88-3 76-13-1 120-82-1 71-55-6 79-00-5 79-01-6 75-69-4 75-01-4	Number Method 75-35-4 8260D 156-59-2 8260D 156-60-5 8260D 78-87-5 8260D 10061-01-5 8260D 10061-02-6 8260D 100-41-4 8260D 591-78-6 8260D 98-82-8 8260D 79-20-9 8260D 1634-04-4 8260D 108-10-1 8260D 108-87-2 8260D 75-09-2 8260D 100-42-5 8260D 79-34-5 8260D 127-18-4 8260D 108-88-3 8260D 76-13-1 8260D 71-55-6 8260D 79-00-5 8260D 79-01-6 8260D 75-69-4 8260D 75-01-4 8260D	Number Method Result Q 75-35-4 8260D ND 156-59-2 8260D ND 156-60-5 8260D ND 78-87-5 8260D ND 10061-01-5 8260D ND 10061-02-6 8260D ND 100-41-4 8260D ND 591-78-6 8260D ND 98-82-8 8260D ND 79-20-9 8260D ND 108-40-4 8260D ND 108-87-2 8260D ND 75-09-2 8260D ND 100-42-5 8260D ND 127-18-4 8260D ND 108-88-3 8260D ND 76-13-1 8260D ND 79-00-5 8260D ND 79-01-6 8260D ND 75-69-4 8260D ND 75-01-4 8260D ND	Number Method Result Q LOQ 75-35-4 8260D ND 1.0 156-59-2 8260D ND 1.0 156-60-5 8260D ND 1.0 78-87-5 8260D ND 1.0 10061-01-5 8260D ND 1.0 10061-02-6 8260D ND 1.0 100-41-4 8260D ND 1.0 591-78-6 8260D ND 1.0 98-82-8 8260D ND 1.0 98-82-8 8260D ND 1.0 1634-04-4 8260D ND 1.0 108-10-1 8260D ND 1.0 108-87-2 8260D ND 1.0 75-09-2 8260D ND 1.0 100-42-5 8260D ND 1.0 79-34-5 8260D ND 1.0 127-18-4 8260D ND 1.0 120-82-1 8260D ND	Number Method Result Q LOQ DL 75-35-4 8260D ND 1.0 0.40 156-59-2 8260D ND 1.0 0.40 156-60-5 8260D ND 1.0 0.40 78-87-5 8260D ND 1.0 0.40 10061-01-5 8260D ND 1.0 0.40 10061-02-6 8260D ND 1.0 0.40 100-41-4 8260D ND 1.0 0.40 591-78-6 8260D ND 1.0 0.40 591-78-6 8260D ND 1.0 0.40 79-20-9 8260D ND 1.0 0.40 79-20-9 8260D ND 1.0 0.40 108-10-1 8260D ND 1.0 0.40 108-87-2 8260D ND 1.0 0.40 75-09-2 8260D ND 1.0 0.40 100-42-5 8260D	Number Method Result Q LOQ DL Units 75-35-4 8260D ND 1.0 0.40 ug/L 156-69-2 8260D ND 1.0 0.40 ug/L 156-60-5 8260D ND 1.0 0.40 ug/L 78-87-5 8260D ND 1.0 0.40 ug/L 10061-02-6 8260D ND 1.0 0.40 ug/L 100-41-4 8260D ND 1.0 0.40 ug/L 98-82-8 8260D ND 1.0 0.40 ug/L 98-82-8 8260D ND 1.0 0.40 ug/L 79-20-9 8260D ND 1.0 0.40 ug/L 108-40-4 8260D ND 1.0 0.40 ug/L 108-87-2 8260D ND 1.0 0.40 ug/L 108-87-2 8260D ND 1.0 0.40 ug/L 75-09-2

Surrogate	Q	Run 1 % Recovery	Acceptanc Limits
Bromofluorobenzene		100	70-130
1,2-Dichloroethane-d4		99	70-130
Toluene-d8		95	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D (SIM)	1	06/30/2021 0244 CJL2	•	97322

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Pace Analytical Services, LLC *(formerly Shealy Environmental Services, Inc.)*106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-15

Date Sampled:06/22/2021 0950
Date Received: 06/22/2021

Laboratory ID: WF22061-008

Matrix: Aqueous

Surrogate Q Run 1 Acceptance Limits
1,2-Dichloroethane-d4 100 40-170

Dissolved Gases

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	RSK - 175	1	06/25/2021 1214 TML		96775

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	5.3 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation
ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: MW-16

Date Sampled:06/22/2021 1050
Date Received: 06/22/2021

Laboratory ID: WF22061-009

Matrix: Aqueous

					-m		

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/24/2021 0628 DAK		96695
1		(Chloride) 9056A	1	06/23/2021 0921 MSG		96562
1		(Nitrate - N) 9056A	1	06/23/2021 0921 MSG		96565
2		(Sulfate) 9056A	1	06/30/2021 0725 AMR		97448
1		(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1		(TOC) 9060A	1	06/25/2021 0340 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	13	1.0	0.25	mg/L	1
Nitrate - N		9056A	5.6	0.020	0.0050	mg/L	1
Sulfate		9056A	ND	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.1	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Run P	rep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1527 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.6	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0 - 0				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-16

Date Sampled:06/22/2021 1050 Date Received: 06/22/2021

Laboratory ID: WF22061-009

Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1527 BWS	Prep Date	Batch 97592			
Parameter		CAS Analytical Number Method R		Result Q	LOQ	DL	Units	Run	
1,1-Dichloroethene		75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-0	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-4	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-3	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-	32-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	37-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-0	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-4	12-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-1	8-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	38-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0)1-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogata	0 % 5	Run 1	Accept	ance					

Surrogate % Recovery Limits Bromofluorobenzene 70-130 108 1,2-Dichloroethane-d4 106 70-130 Toluene-d8 102 70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	Analysis Date Analys 06/30/2021 0308 CJL2	•	Batch 97322			
Para	ameter			CAS Analytical	Result O	100	וח	Unite	Run

Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure B = Detected in the method blank ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and ≥ DL L = LCS/LCSD failure H = Out of holding time S = MS/MSD failure W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-16

Run Prep Method

Date Sampled: 06/22/2021 1050 Date Received: 06/22/2021

Laboratory ID: WF22061-009

Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits 40-170

1,2-Dichloroethane-d4 100

Dissolved Gases

Prep Date

Batch

Analytical Method Dilution Analysis Date Analyst

1 RSK - 175		1 06/25/2021 1230 TML 96775									
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run			
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1			
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1			
Methane		74-82-8	RSK - 175	3.3 J	10	2.5	ug/L	1			
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1			

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and > DL Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

W = Reported on wet weight basis Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-17

Date Sampled: 06/22/2021 1200 Date Received: 06/22/2021

Laboratory ID: WF22061-010

Matrix: Aqueous

Inorganic non-metals

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/24/2021 0639 DAK		96695
1		(Chloride) 9056A	1	06/23/2021 1003 MSG		96562
1		(Nitrate - N) 9056A	1	06/23/2021 1003 MSG		96565
2		(Sulfate) 9056A	1	06/30/2021 0828 AMR		97448
1		(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1		(TOC) 9060A	1	06/25/2021 0404 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	8.3	1.0	0.25	mg/L	1
Nitrate - N		9056A	1.8	0.020	0.0050	mg/L	1
Sulfate		9056A	0.29 J	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

							_
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1552 BWS		97592	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	.8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.81 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0 - 0				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-17

Vinyl chloride

Xylenes (total)

1,4-Dioxane

Date Sampled:06/22/2021 1200 Date Received: 06/22/2021

Laboratory ID: WF22061-010

Matrix: Aqueous

V	O	a	til	le	0	rg	ar	nic	C	on	np	0	ur	ıds	sk	y	G	C/N	ИS	

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	-	ysis Date Analyst /2021 1552 BWS	Prep	Date	Batch 97592			
Parameter		Num	CAS	Analytical Method	Result	0	LOQ	DL	Units	Run
1,1-Dichloroethene		75-3		8260D	ND	ч	1.0	0.40	ug/L	1
cis-1.2-Dichloroethene		156-5		8260D	ND		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6		8260D	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	37-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-4	1-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-7	'8-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-8	32-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-8	7-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-0	9-2	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-4	2-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-1	8-4	8260D	ND		1.0	0.40	ug/L	1
Toluene		108-8	8-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-1	3-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	2-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	5-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	0-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene		79-0	1-6	8260D	ND		1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	9-4	8260D	ND		1.0	0.40	ug/L	1

Run 1 Acceptance Surrogate Q % Recovery Limits Bromofluorobenzene 70-130 101 1,2-Dichloroethane-d4 99 70-130 Toluene-d8 97 70-130

Volatile Organic Compounds by GC/MS (SIM)

8260D

8260D

ND

ND

ND

1.0

1.0

3.0

0.40

0.40

1.0

75-01-4

1330-20-7

123-91-1

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	•	is Date Analyst 021 0333 CJL2	Prep Date	Batch 97322			
Parai	meter		CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run

8260D (SIM)

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	M = Deported on wet weight basis			C = MC/MCD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com ug/L

ug/L

ug/L

1

1

Description: MW-17

Date Sampled:06/22/2021 1200
Date Received: 06/22/2021

Laboratory ID: WF22061-010

Batch

96775

Matrix: Aqueous

Surrogate Q Run 1 Acceptance Limits
1,2-Dichloroethane-d4 98 40-170

Dissolved Gases

06/25/2021 1246 TML

				·	
Run Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Da

RSK - 175

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.2 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Page 30 of 68

Description: MW-8

Date Sampled:06/22/2021 1100
Date Received: 06/22/2021

Laboratory ID: WF22061-011

Matrix: Aqueous

Inorganic non-metals

			gaine men motare			
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0644 DAK		96695	
1	(Chloride) 9056A	1	06/23/2021 0942 MSG		96562	
1	(Nitrate - N) 9056A	1	06/23/2021 0942 MSG		96565	
2	(Sulfate) 9056A	1	06/30/2021 0849 AMR		97448	
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945	
1	(TOC) 9060A	1	06/25/2021 0429 AAB		96702	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	1.1	1.0	0.25	mg/L	1
Nitrate - N		9056A	0.51	0.020	0.0050	mg/L	1
Sulfate		9056A	4.3	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	6.7	1.0	0.42	mg/L	1

					, <u> </u>		
Run	Prep Method	Analytical Method	Dilution	n Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1617 BWS		97592	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 6.347 - 6.877				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-8

Date Sampled: 06/22/2021 1100 Date Received: 06/22/2021

Laboratory ID: WF22061-011

Matrix: Aqueous

	Volatile	Organic	Comp	ounds	by GC/MS
--	----------	---------	------	-------	----------

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1617 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
	75-35-4						1
1,1-Dichloroethene		8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Limits
Bromofluorobenzene		98	70-130
1,2-Dichloroethane-d4		97	70-130
Toluene-d8		95	70-130

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D (SIM)	1	06/30/2021 0358 CJL2		97322

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-8

Date Sampled: 06/22/2021 1100 Date Received: 06/22/2021

Laboratory ID: WF22061-011

Matrix: Aqueous

Acceptance Run 1 Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 96

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175		nalysis Date Analyst 6/25/2021 1302 TML	Prep Date	Batch 96775			
Parameter		CA Numbe	,,	Result Q	LOQ	DL	Units	Run
Ethane		74-84-	0 RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-	1 RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-	8 RSK - 175	2.8 J	10	2.5	ug/L	1
Propane		74-98-	6 RSK - 175	ND	15	5.0	ug/L	1

Q = Surrogate failure LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit ND = Not detected at or above the DL P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and \ge DL$ L = LCS/LCSD failure N = Recovery is out of criteria H = Out of holding time W = Reported on wet weight basis

Description: MW-7

Date Sampled: 06/22/2021 1235 Date Received: 06/22/2021

Laboratory ID: WF22061-012 Matrix: Aqueous

Inorganic non-metals

			. J			
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0651 DAK		96695	
1	(Chloride) 9056A	1	06/23/2021 1023 MSG		96562	
1	(Nitrate - N) 9056A	1	06/23/2021 1023 MSG		96565	
2	(Sulfate) 9056A	1	06/30/2021 0910 AMR		97448	
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945	
1	(TOC) 9060A	1	06/25/2021 0541 AAB		96702	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	22	20	20	mg CaCO3/L	1
Chloride		9056A	4.7	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	2.4	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	9.1	1.0	0.42	mg/L	1

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1642 BWS		97592	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 9.016 - 9.081				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-7

Date Sampled:06/22/2021 1235
Date Received: 06/22/2021

Laboratory ID: WF22061-012

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/01/2021 1642 BWS		97592	
				CAS Analytical			

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	190		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	0.71	J	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	7.4		1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND		1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND		1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	0.69	J	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	21		1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	24		1.0	0.40	ug/L	1

Run 1 A Q % Recovery	Acceptance Limits	
108	70-130	
103	70-130	
100	70-130	
	Q % Recovery 108 103	Q % Recovery Limits 108 70-130 103 70-130

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	•	s Date Analyst 21 0422 CJL2	Prep Date	Batch 97322			
D			CAS	Analytical	DI4 O	100	D.I	l la ita	D

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-7

Date Sampled:06/22/2021 1235
Date Received: 06/22/2021

Laboratory ID: WF22061-012

Matrix: Aqueous

SurrogateQRun 1 RecoveryAcceptance Limits1,2-Dichloroethane-d49540-170

Dissolved Gases

Run Prep Method 1	Analytical Method Dil RSK - 175		Analysis Date Analyst 06/25/2021 1318 TML	Prep Date	Batch 96775
		C	AS Analytical		

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	15	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: TRIP BLANK

Date Sampled: 06/22/2021 Date Received: 06/22/2021 Laboratory ID: WF22061-013

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1120 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL.	Units	Run
Acetone	67-64-1	8260D	ND ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug <i>l</i> L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: TRIP BLANK

Date Sampled: 06/22/2021 Date Received: 06/22/2021 Laboratory ID: WF22061-013

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	-	Date Analyst 21 1120 BWS	Prep Date	Batch 97592			
Parameter		Num		Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-1	3-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	0-5	8260D	ND	1.0	0.40	ug/L	. 1
Trichloroethene		79-0	1-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	9-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	1-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 A Recovery	Acceptano Limits	e					
Bromofluorobenzene		107	70-130						
1,2-Dichloroethane-d4		106	70-130						
Toluene-d8		103	70-130						

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and \geq DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: TRIP BLANK 1 Date Sampled: 06/23/2021

Date Received: 06/23/2021

Laboratory ID: WF23091-007

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1050 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: TRIP BLANK 1

Date Sampled: 06/23/2021 Date Received: 06/23/2021

Toluene-d8

Laboratory ID: WF23091-007

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 1050 TML	Prep Date	Batch 97729			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND .	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		100	70-130						
1,2-Dichloroethane-d4		100	70-130	1					

70-130

101

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: TRIP BLANK 2

Date Sampled:06/23/2021 Date Received: 06/23/2021

Toluene-d8

Laboratory ID: WF23091-008

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		is Date Analyst 021 1112 TML	Prep Date	Batch 97729			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % I	Run 1 Recovery	Acceptar Limits						
Bromofluorobenzene		97	70-13	0					
1,2-Dichloroethane-d4		106	70-13	0					

70-130

98

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Description: MW-3

Date Sampled:06/23/2021 1100 Date Received: 06/23/2021

Laboratory ID: WF23091-001

Matrix: Aqueous

Inorganic non-metals

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analys	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/25/2021 1926 DAK		96947
1		(Chloride) 9056A	1	06/24/2021 2316 AMR		96871
1		(Nitrate - N) 9056A	1	06/24/2021 2316 AMR		96869
1		(Sulfate) 9056A	1	06/24/2021 2316 AMR		96866
1		(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1		(TOC) 9060A	1	06/25/2021 0605 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	40	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	37	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	3.0	1.0	1.0	mg/L	1
TOC		9060A	21	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	200	07/02/2021 1738 TML		97729	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	4000	1000	ug/L	1
Benzene	71-43-2	8260D	ND	200	80	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	200	80	ug/L	1
Bromoform	75-25-2	8260D	ND	200	80	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	400	80	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	2000	400	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	200	80	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	200	80	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	200	80	ug/L	1
Chloroethane	75-00-3	8260D	ND	400	80	ug/L	1
Chloroform	67-66-3	8260D	ND	200	80	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	200	100	ug/L	1
Cyclohexane	110-82-7	8260D	ND	200	80	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	200	80	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	200	80	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	200	80	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	200	80	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	200	80	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	200	80	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	400	120	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	1500	200	80	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	100 J	200	80	ug/L	1

TOC Range: 20.732 - 20.98

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-3

Date Sampled:06/23/2021 1100 Date Received: 06/23/2021 Laboratory ID: WF23091-001

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	200	07/02/2021 1738 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	760	200	80	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	24000	200	80	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	210	200	80	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	200	80	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	200	80	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	200	80	ug/L	1
Ethylbenzene	100-41-4	8260D	520	200	80	ug/L	1
2-Hexanone	591-78-6	8260D	ND	2000	400	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	200	80	ug/L	1
Methyl acetate	79-20-9	8260D	ND	200	80	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	200	80	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	2000	400	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	1000	80	ug/L	1
Methylene chloride	75-09-2	8260D	ND	200	80	ug/L	1
Styrene	100-42-5	8260D	ND	200	82	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	200	80	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	200	80	ug/L	1
Toluene	108-88-3	8260D	190 J	200	80	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	200	84	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	200	80	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	200	80	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	200	80	ug/L	1
Trichloroethene	79-01-6	8260D	ND	200	80	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	200	80	ug/L	1
Vinyl chloride	75-01-4	8260D	1400	200	80	ug/L	1
Xylenes (total)	1330-20-7	8260D	2300	200	80	ug/L	1
	Run 1 Accept	ance					

Surrogate	Q	Run 1 % Recovery	Acceptance Limits	
Bromofluorobenzene		100	70-130	
1,2-Dichloroethane-d4		106	70-130	
Toluene-d8		105	70-130	

Run P	rep Method 5030B	Analytical Method 8260D (SIM)		-	is Date Analyst 021 0603 CJL2	Prep D	Date	Batch 97674			
Parame	eter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,4-Dio	xane		123-	91-1	8260D (SIM)	260		15	5.0	ug/L	2

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight hasis			S = MS/MSD failure

Description: MW-3

Date Sampled: 06/23/2021 1100 Date Received: 06/23/2021

Laboratory ID: WF23091-001 Matrix: Aqueous

Acceptance Limits Run 2 % Recovery Q

Surrogate 40-170 1,2-Dichloroethane-d4 98

Dissolved Gases

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	RSK - 175	1	06/25/2021 1334 TML		96775
2	RSK - 175	10	06/30/2021 0908 TML		97348

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	36	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	160	10	2.5	ųg/L	1
Methane	74-82-8	RSK - 175	8500	100	25	ug/L	2
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

S = MS/MSD failure

Description: MW-3D

Date Sampled:06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-002

Matrix: Aqueous

Inc	organ	ıic n	on-m	etals
***	9~.		•	0

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/25/2021 1929 DAK		96947
1		(Chloride) 9056A	1	06/24/2021 2337 AMR		96871
1		(Nitrate - N) 9056A	1	06/24/2021 2337 AMR		96869
1		(Sulfate) 9056A	1	06/24/2021 2337 AMR		96866
1		(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1		(TOC) 9060A	1	06/25/2021 0629 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	13	1.0	0.25	mg/L	1
Nitrate - N		9056A	3.4	0.020	0.0050	mg/L	1
Sulfate		9056A	0.57 J	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	1.2	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1243 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.1	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.073 - 0.148				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-3D

Date Sampled:06/23/2021 0945
Date Received: 06/23/2021

Laboratory ID: WF23091-002

Matrix: Aqueous

Volatile	e Organic (Compounds	by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1243 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	0.78 J	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachioroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1
	Run 1 Accepta	ance					

Surrogate	Q	% Recovery	Limits	
Bromofluorobenzene		105	70-130	
1,2-Dichloroethane-d4		107	70-130	
Toluene-d8		106	70-130	

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
2	5030B	8260D (SIM)	1	07/01/2021 2352 CJL2		97674	
				CAS Analytical	w		

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	2

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-3D

Run Prep Method

Date Sampled: 06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-002

Matrix: Aqueous

Run 2 Acceptance Surrogate Q % Recovery Limits 1,2-Dichloroethane-d4 40-170 101

ח	lic	00	ık	\sim d	C	20	es
	13	SU	יוי	сu	J	as	C 3

Prep Date

Batch

Analytical Method Dilution Analysis Date Analyst

1	RSK - 175	1 06/25/	2021 1350 TML		96775						
Parameter		CAS Number	Analytical Method	Result 0	Q LOQ	DL	Units	Run			
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1			
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1			
Methane		74-82-8	RSK - 175	5.7 J	J 10	2.5	ug/L	1			
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1			

LOQ = Limit of Quantitation Q = Surrogate failure B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and \ge DL$ L = LCS/LCSD failure H = Out of holding time W = Reported on wet weight basis S = MS/MSD failure

Description: MW-6R

Date Sampled: 06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-003

Matrix: Aqueous

Inorganic non-metals

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/25/2021 1933 DAK		96947
1		(Chloride) 9056A	1	06/24/2021 2358 AMR		96871
1		(Nitrate - N) 9056A	1	06/24/2021 2358 AMR		96869
1		(Sulfate) 9056A	1	06/24/2021 2358 AMR		96866
1		(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1		(TOC) 9060A	1	06/25/2021 0653 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	2.5	1.0	0.25	mg/L	1
Nitrate - N		9056A	0.15	0.020	0.0050	mg/L	1
Sulfate		9056A	1.3	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
тос		9060A	7.4	1.0	0.42	mg/L	1

					.	
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1305 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 7.281 - 7.539				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-6R

Date Sampled:06/23/2021 0945
Date Received: 06/23/2021

Laboratory ID: WF23091-003

Matrix: Aqueous

			V	oıa	ITH	e (Jrg	ganı	C	0	m	po	oui	na	s t	Эy	GC	/IVI	5
_	_		 								_	_	-	-	_	_	_		

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1305 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		100	70-130
1,2-Dichloroethane-d4		109	70-130
Toluene-d8		105	70-130

Volatile Organic Compounds by GC/MS (SIM)

					/	/	
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D (SIM)	1	07/01/2021 0029 CJL2		97508	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank ND = Not detected at or above the DL ND = Not detected at or above the DL H = Out of holding time W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure DL = Let CS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-6R

Run Prep Method

Propane

Date Sampled:06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-003

Matrix: Aqueous

ug/L

Acceptance Limits Run 1 Q % Recovery Surrogate 1,2-Dichloroethane-d4 96 40-170

Dissolved Gases

Prep Date

ND

Batch

15

5.0

Analytical Method Dilution Analysis Date Analyst

74-98-6

1	RSK - 175	1 06/25	/2021 1406 TML		96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	4.6 J	10	2.5	ug/L	1

RSK - 175

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and <math>\geq DL$ L = LCS/LCSD failure H = Out of holding time W = Reported on wet weight basis S = MS/MSD failure

Description: MW-01

Date Sampled:06/23/2021 1205
Date Received: 06/23/2021

Laboratory ID: WF23091-004

Matrix: Aqueous

ľ	1	0	ľ	Ç	1	а	r	1	ĺ	C	;	r	١	0	ľ	1	-	r	r	١	е	t	ć	ì	1	3	

1 (Alkalinity @) SM 2320B-2011 1 06/25/2021 1938 DAK 96947 1 (Chloride) 9056A 1 06/25/2021 0019 AMR 96871 1 (Nitrate - N) 9056A 1 06/25/2021 0019 AMR 96869 1 (Sulfate) 9056A 1 06/25/2021 0019 AMR 96866 1 (Sulfide) SM 4500-S2 F-2011 1 06/30/2021 1714 GDC 97493	Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1 (Nitrate - N) 9056A 1 06/25/2021 0019 AMR 96869 1 (Sulfate) 9056A 1 06/25/2021 0019 AMR 96866 1 (Sulfide) SM 4500-S2 F-2011 1 06/30/2021 1714 GDC 97493	1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1938 DAK		96947
1 (Sulfate) 9056A 1 06/25/2021 0019 AMR 96866 1 (Sulfide) SM 4500-S2 F-2011 1 06/30/2021 1714 GDC 97493	1	(Chloride) 9056A	1	06/25/2021 0019 AMR		96871
1 (Sulfide) SM 4500-S2 F-2011 1 06/30/2021 1714 GDC 97493	1	(Nitrate - N) 9056A	1	06/25/2021 0019 AMR		96869
,	1	(Sulfate) 9056A	1	06/25/2021 0019 AMR		96866
1 (TOC) 0000A	1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1 (100) 9000A 1 00/25/2021 0/17 AAB 96/02	1	(TOC) 9060A	1	06/25/2021 0717 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	21	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	2.4	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	1.4	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	20	07/02/2021 1630 TML		97729	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	400	100	ug/L	1
Benzene	71-43-2	8260D	ND	20	8.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	20	8.0	ug/L	1
Bromoform	75-25-2	8260D	ND	20	8.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	40	8.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	200	40	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	20	8.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	20	8.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	20	8.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	40	8.0	ug/L	1
Chloroform	67-66-3	8260D	ND	20	8.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	20	10	ug/L	1
Cyclohexane	110-82-7	8260D	ND	20	8.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	20	8.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	20	8.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	20	8.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	20	8.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	20	8.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	20	8.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	40	12	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	20	8.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	20	8.0	ug/L	1

TOC Range: 1.357 - 1.436				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-01

Date Sampled:06/23/2021 1205 Date Received: 06/23/2021

Laboratory ID: WF23091-004

Matrix: Aqueous

Volatile	Organic	Compounds	by GC/MS
----------	---------	-----------	----------

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 20		ysis Date Analyst /2021 1630 TML	Prep Date	Batch 97729			
Parameter		Num	CAS iber	Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75-3	35-4	8260D	ND	20	8.0	ug/L	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	1700	20	8.0	ug/L	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	8.1 J	20	8.0	ug/L	1
1,2-Dichloropropane		78-8	37-5	8260D	ND	20	8.0	ug/L	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND	20	8.0	ug/L	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND	20	8.0	ug/L	1
Ethylbenzene		100-4	1-4	8260D	97 J	20	8.0	ug/L	1
2-Hexanone		591-7	8-6	8260D	ND	200	40	ug/L	1
Isopropylbenzene		98-8	2-8	8260D	ND	20	8.0	ug/L	1
Methyl acetate		79-2	0-9	8260D	ND	20	8.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND	20	8.0	ug/L	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND	200	40	ug/L	1
Methylcyclohexane		108-8	7-2	8260D	ND	100	8.0	ug/L	1
Methylene chloride		75-0	9-2	8260D	ND	20	8.0	ug/L	1
Styrene		100-4	2-5	8260D	ND	20	8.2	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND	20	8.0	ug/L	1
Tetrachloroethene		127-1	8-4	8260D	ND	20	8.0	ug/L	1
Toluene		108-8	8-3	8260D	ND	20	8.0	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	!	76-1	3-1	8260D	ND	20	8.4	ug/L	1
1,2,4-Trichlorobenzene		120-8	2-1	8260D	ND	20	8.0	ug/L	1
1,1,1-Trichloroethane		71-5	5-6	8260D	ND	20	8.0	ug/L	1
1,1,2-Trichloroethane		79-0	0-5	8260D	ND	20	8.0	ug/L	1
Trichloroethene		79-0	1-6	8260D	ND	20	8.0	ug/L	1
Trichlorofluoromethane		75-6	9-4	8260D	ND	20	8.0	ug/L	1
Vinyl chloride		75-0	1-4	8260D	64	20	8.0	ug/L	1
Xylenes (total)		1330-2	0-7	8260D	400 J	20	8.0	ug/L	1
Surrogate	Q % R	Run 1 A lecovery	ccepta Limi						
Bromofluorobenzene		100	70-1	30					
1.2-Dichloroethane-d4		102	70-1	30					

70-130 1,2-Dichloroethane-d4 102 Toluene-d8 97 70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	,	sis Date Analyst 2021 0053 CJL2	Prep Date	Batch 97508			
Para	meter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-0	Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-01

Run Prep Method

Date Sampled:06/23/2021 1205
Date Received: 06/23/2021

Laboratory ID: WF23091-004

Matrix: Aqueous

Surrogate Q Run 1 Acceptance Limits
1,2-Dichloroethane-d4 99 40-170

Dissolved Gases

Prep Date

Batch

Analytical Method Dilution Analysis Date Analyst

1	RSK - 175	1 06/28	5/2021 1421 TML		96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	19	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	740	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and ≥ DL L = LCS/LCSD failure S = MS/MSD failure S = MS

Description: DUP-01

Date Sampled:06/23/2021
Date Received:06/23/2021

Laboratory ID: WF23091-005

Matrix: Aqueous

Inorganic non-metals

	morganio non motaro								
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch				
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1943 DAK		96947				
1	(Chloride) 9056A	1	06/25/2021 0040 AMR		96871				
1	(Nitrate - N) 9056A	1	06/25/2021 0040 AMR		96869				
1	(Sulfate) 9056A	1	06/25/2021 0040 AMR		96866				
1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493				
1	(TOC) 9060A	1	06/25/2021 0741 AAB		96702				

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	21	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND A	0.020	0.0050	mg/L	1
Sulfate		9056A	2.5	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	1.2	1.0	1.0	mg/L	1
TOC		9060A	1.3	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

					, <u> </u>	
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	20	07/02/2021 1653 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	400	100	ug/L	1
Benzene	71-43-2	8260D	ND	20	8.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	20	8.0	ug/L	1
Bromoform	75-25-2	8260D	ND	20	8.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	40	8.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	200	40	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	20	8.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	20	8.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	20	8.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	40	8.0	ug/L	1
Chloroform	67-66-3	8260D	ND	20	8.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	20	10	ug/L	1
Cyclohexane	110-82-7	8260D	ND	20	8.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	20	8.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	20	8.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	20	8.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	20	8.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	20	8.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	20	8.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	40	12	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	20	8.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	20	8.0	ug/L	1

TOC Range: 1.264 - 1.304				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: **DUP-01**Date Sampled:06/23/2021
Date Received: 06/23/2021

Laboratory ID: WF23091-005

Matrix: Aqueous

Volatile Organic Compou	ands by GC/MS
-------------------------	---------------

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	20	07/02/2021 1653 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND	20	8.0	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	2100	20	8.0	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	8.3 J	20	8.0	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	20	8.0	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	20	8.0	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	20	8.0	ug/L	1
Ethylbenzene	100-41-4	8260D	170 J	20	8.0	ug/L	1
2-Hexanone	591-78-6	8260D	ND	200	40	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	20	8.0	ug/L	1
Methyl acetate	79-20-9	8260D	ND	20	8.0	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	20	8.0	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	200	40	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	100	8.0	ug/L	1
Methylene chloride	75-09-2	8260D	ND	20	8.0	ug/L	1
Styrene	100-42-5	8260D	ND	20	8.2	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	20	8.0	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	20	8.0	ug/L	1
Toluene	108-88-3	8260D	ND	20	8.0	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	20	8.4	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	20	8.0	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	20	8.0	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	20	8.0	ug/L	1
Trichloroethene	79-01-6	8260D	ND	20	8.0	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	20	8.0	ug/L	1
Vinyl chloride	75-01-4	8260D	87	20	8.0	ug/L	1
Xylenes (total)	1330-20-7	8260D	750 J	20	8.0	ug/L	1

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		89	70-130
1,2-Dichloroethane-d4		97	70-130
Toluene-d8		105	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D (SIM)	1	07/01/2021 0118 CJL2		97508	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DUP-01 Date Sampled:06/23/2021 Date Received: 06/23/2021 Laboratory ID: WF23091-005

Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

1,2-Dichloroethane-d4 102 40-170

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175		-	is Date Analyst 021 1437 TML	Prep	Date	Batch 96775			
Parameter		Num	CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ethane		74-8	84-0	RSK - 175	2.6	J	10	2.5	ug/L	1
Ethene		74-8	B 5-1	RSK - 175	23		10	2.5	ug/L	1
Methane		74-8	32-8	RSK - 175	890		10	2.5	ug/L	1
Propane		74.0	98-6	RSK - 175	ND		15	5.0	ua/l	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and > DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-10

Date Sampled:06/23/2021 1415
Date Received: 06/23/2021

Laboratory ID: WF23091-006 Matrix: Aqueous

Inorganic non-metals

	morganio non-incluis										
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch						
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1946 DAK	•	96947						
1	(Chloride) 9056A	1	06/25/2021 0101 AMR		96871						
1	(Nitrate - N) 9056A	1	06/25/2021 0101 AMR		96869						
1	(Sulfate) 9056A	1	06/25/2021 0101 AMR		96866						
1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493						
1	(TOC) 9060A	1	06/25/2021 0805 AAB		96702						

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	7.1	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	2.7	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	1.9	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run Pr 1	rep Method 5030B	Analytical Method 8260D	Dilution 1	-	sis Date Analyst 2021 1220 TML	Prep Date	Batch 97729			
Parame	ter		(Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone			67-6	34-1	8260D	ND	20	5.0	ug/L	1
Benzene	e		71-4	13-2	8260D	ND	1.0	0.40	ua/l	1

Parameter	VAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10		ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	2.0 0.40	ug/L ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0		ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	-	1
Chloroethane	75-00-3	8260D	ND		0.40	ug/L	1
				2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND &	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
·							•

TOC Range: 1.873 - 1.952				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-10

Date Sampled:06/23/2021 1415
Date Received: 06/23/2021

Laboratory ID: WF23091-006

Matrix: Aqueous

Volatile	Organic	Compounds	by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		s Date Analyst 21 1220 TML	Prep Date	Batch 97729			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-	82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-4	42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127~	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % F	Run 1 /	Acceptano Limits	:e					
Bromofluorobenzene		93	70-130						
1,2-Dichloroethane-d4		107	70-130						
Toluene-d8		99	70-130						

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	-	sis Date Analyst 2021 0143 CJL2	Prep	Date	Batch 97508			
Paran	neter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,4-Di	oxane		123-	91-1	8260D (SIM)	ND		3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-10

Run Prep Method

Date Sampled:06/23/2021 1415 Date Received: 06/23/2021

Laboratory ID: WF23091-006

Matrix: Aqueous

Run 1 Acceptance % Recovery Surrogate Q Limits

1,2-Dichloroethane-d4 40-170 97

Dissolved Gases

Prep Date

Batch

Analytical Method Dilution Analysis Date Analyst

2	RSK - 175	1 06/30	1 06/30/2021 1029 TML		97348			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	140	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND 38	15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Description: MW-4

Date Sampled:06/24/2021 0845
Date Received: 06/24/2021

Laboratory ID: WF25024-001

Matrix: Aqueous

Inorganic non-metals

			garno mom motaro	'	
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1952 DAK		96947
2	(Chloride) 9056A	1	07/01/2021 1606 MSG		97742
1	(Nitrate - N) 9056A	1	06/25/2021 1905 AMR		97474
2	(Sulfate) 9056A	1	07/01/2021 1606 MSG		97739
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1	(TOC) 9060A	1	06/27/2021 1033 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	6.7	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	1.2	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	4.0 U	1.0	1.0	mg/L	1
тос		9060A	0.74 J	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/08/2021 1159 BWS		98224	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND ,	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND 1	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.607 - 0.864				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4

Date Sampled:06/24/2021 0845
Date Received: 06/24/2021

Laboratory ID: WF25024-001

Matrix: Aqueous

Run Prep Method An 1 5030B	alytical Method 8260D	Dilution 1		s Date Analyst 21 1159 BWS	Prep	Date	Batch 98224			
Parameter		CAS Number		Analytical Method		Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75-	35-4	8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	8.7		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	60-5	8260D	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	87-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-4	41-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-78-6		8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-8	82-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	10-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-8	37-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-0	09-2	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-4	12-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-1	18-4	8260D	4.2		1.0	0.40	ug/L	1
Toluene		108-8	38-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-1	13-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	0.93	J	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	6.9		1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	39-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND		1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND		1.0	0.40	ug/L	1
Surrogate	Q % F	Run 1 A	Acceptano Limits	:e						
Bromofluorobenzene		92	70-130							
1,2-Dichloroethane-d4		100	70-130							
Toluene-d8		99	70-130							

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)			vsis Date Analyst 2021 1552 JWO	Prep I	Date	Batch 97631			
Para	meter			CAS nber	Analytical Method	Result	Q.	LOQ	DL	Units	Run
1,4-D	ioxane		123-	91-1	8260D (SIM)	ND		3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and > DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4

Run Prep Method

Methane

Propane

Date Sampled:06/24/2021 0845
Date Received:06/24/2021

Laboratory ID: WF25024-001

Matrix: Aqueous

Surrogate Run 1 Acceptance
Q % Recovery Limits

1,2-Dichloroethane-d4 102 40-170

Dissolved Gases

Prep Date

140

ND

Batch

10

15

2.5

5.0

ug/L

ug/L

1

1

Analytical Method Dilution Analysis Date Analyst

74-82-8

74-98-6

1	RSK - 175	1 06/28	/2021 1343 TML		97011			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1

RSK - 175

RSK - 175

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Description: MW-14

Date Sampled:06/24/2021 0950
Date Received: 06/24/2021

Laboratory ID: WF25024-002

Matrix: Aqueous

Inorganic non-metals

D D 15.42 1					5 / 1
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 2005 DAK		96947
2	(Chloride) 9056A	1	07/01/2021 1627 MSG		97742
1	(Nitrate - N) 9056A	1	06/25/2021 1926 AMR		97474
2	(Sulfate) 9056A	5	07/02/2021 0706 MSG		97739
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1	(TOC) 9060A	1	06/27/2021 1145 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	3.0	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	6.8	5.0	1.3	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.1 U	1.0	1.0	mg/L	1
тос		9060A	0.60 J	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/08/2021 1224 BWS		98224	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL.	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND 🗶	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.551 - 0.628				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-14

Date Sampled: 06/24/2021 0950 Date Received: 06/24/2021

Laboratory ID: WF25024-002

Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	•	S Date Analyst 21 1224 BWS	Prep Date	98224			
Parameter				Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-	82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-	87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100	42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-	88-3	8260D	8.2	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 Recovery	Acceptano Limits	e					
Bromofluorobenzene		92	70-130						
1,2-Dichloroethane-d4		98	70-130						
Toluene-d8		98	70-130						

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	•	sis Date Analyst 2021 1617 JWO	Prep [ate	Batch 97631			
Para	meter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,4-D	ioxane		123-	91-1	8260D (SIM)	ND		3.0	1.0	ug/L	1

		······································		
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-14

Run Prep Method

Date Sampled: 06/24/2021 0950 Date Received: 06/24/2021

Laboratory ID: WF25024-002

Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits 1,2-Dichloroethane-d4

104

Analytical Method Dilution Analysis Date Analyst

Dissolved Gases

Prep Date

Batch

1	RSK - 175	1 06/28/	2021 1359 IML		97011			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	80	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

S = MS/MSD failure

Description: MW-11

Date Sampled:06/24/2021 1205 Date Received: 06/24/2021 Laboratory ID: WF25024-003

Matrix: Aqueous

i	ln	0	r	q	a	n	ĺ	C	n	0	n	-1	η	ıe	ta	s

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 2011 DAK		96947
2	(Chloride) 9056A	1	07/01/2021 1648 MSG		97742
1	(Nitrate - N) 9056A	1	06/25/2021 1947 AMR		97474
2	(Sulfate) 9056A	1	07/01/2021 1648 MSG		97739
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1	(TOC) 9060A	1	06/27/2021 1210 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	120	20	20	mg CaCO3/L	1
Chloride		9056A	4.8	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	3.3	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.0 U	1.0	1.0	mg/L	1
тос		9060A	2.6	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/08/2021 1250 BWS		98224	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND /	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 2.558 - 2.642				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and > DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-11

Date Sampled:06/24/2021 1205 Date Received: 06/24/2021

Laboratory ID: WF25024-003

Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1250 BWS					
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-4	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-8	82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	37-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-0	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-4	12-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-1	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	38-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethand	е	76-1	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0)1-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % F	Run 1 A	Accept Lim						
Bromofluorobenzene		93	70-1	30					
1,2-Dichloroethane-d4		101	70-1	30					

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		93	70-130
1,2-Dichloroethane-d4		101	70-130
Toluene-d8		98	70-130

1,4-Dioxane

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	•	sis Date Analyst 2021 1641 JWO	Prep Date	97631			
Para	ımeter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run

8260D (SIM)

ND

3.0

123-91-1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Pace Analytical Services, LLC *(formerly Shealy Environmental Services, Inc.)*106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

1.0

ug/L

Description: MW-11

Date Sampled: 06/24/2021 1205 Date Received: 06/24/2021

Laboratory ID: WF25024-003

Matrix: Aqueous

Run 1 % Recovery Acceptance Limits Surrogate Q

1,2-Dichloroethane-d4

Run Prep Method

104 40-170

Analytical Method Dilution Analysis Date Analyst

Dissolved Gases

Prep Date

Batch

1	RSK - 175	1 06/30/		97348				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	390	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation DL = Detection Limit Q = Surrogate failure B = Detected in the method blank E = Quantitation of compound exceeded the calibration range L = LCS/LCSD failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and <math>\geq DL$ S = MS/MSD failure W = Reported on wet weight basis H = Out of holding time

Description: MW-5

Date Sampled:06/24/2021 1500 Date Received: 06/24/2021

Laboratory ID: WF25024-004

Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch			
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 2015 DAK		96947			
2	(Chloride) 9056A	1	07/01/2021 1709 MSG		97742			
1	(Nitrate - N) 9056A	1	06/25/2021 2050 AMR		97474			
2	(Sulfate) 9056A	1	07/01/2021 1709 MSG		97739			
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672			
1	(TOC) 9060A	1	06/27/2021 1234 AAB		96944			

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	19	1.0	0.25	mg/L	2
Nitrate - N		9056A	0.27	0.020	0.0050	mg/L	1
Sulfate		9056A	0.47 J	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.1 U	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/09/2021 0429 JDF		98339

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND AT (J 100	25	ug/L	1
Benzene	71-43-2	8260D	ND ⊭	5.0	2.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND 🖊	5.0	2.0	ug/L	1
Bromoform	75-25-2	8260D	ND M	5.0	2.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND X	10	2.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND ₩	50	10	ug/L	1
Carbon disulfide	75-15-0	8260D	ND #	5.0	2.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND 🖟	5.0	2.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND H	5.0	2.0	ug/L	1
Chloroethane	75-00-3	8260D	ND H	10	2.0	ug/L	1
Chloroform	67-66-3	8260D	ND H	5.0	2.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND H	5.0	2.5	ug/L	1
Cyclohexane	110-82-7	8260D	ND ⊬	5.0	2.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND H	5.0	2.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND H	5.0	2.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND H	5.0	2.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND H	5.0	2.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND H	5.0	2.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND A	5.0	2.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND # `	V 10	3.0	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	4.7 HJ ~	J 5.0	2.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND # (LJ 5.0	2.0	ug/L	1

TOC Range: 0.211 - 0.237				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Pace Analytical Services, LLC *(formerly Shealy Environmental Services, Inc.)*106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-5

Date Sampled:06/24/2021 1500 Date Received: 06/24/2021

Laboratory ID: WF25024-004

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/09/2021 0429 JDF		98339

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	2.4	出り	5.0	2.0	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	370	ИĴ	5.0	2.0	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	3.7	ガゴ	5.0	2.0	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	H UJ	5.0	2.0	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	H	5.0	2.0	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	KV	5.0	2.0	ug/L	1
Ethylbenzene	100-41-4	8260D	2.7	HJ J	5.0	2.0	ug/L	1
2-Hexanone	591-78-6	8260D	ND	W W	50	10	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	H	5.0	2.0	ug/L	1
Methyl acetate	79-20-9	8260D	ND	#	5.0	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	H	5.0	2.0	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	br	50	10	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	H	25	2.0	ug/L	1
Methylene chloride	75-09-2	8260D	ND	H	5.0	2.0	ug/L	1
Styrene	100-42-5	8260D	ND	H/	5.0	2.1	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	A	5.0	2.0	ug/L	1
Tetrachloroethene	127-18-4	8260D	120	H J	5.0	2.0	ug/L	1
Toluene	108-88-3	8260D	ND	H WJ	5.0	2.0	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D		₩ 1	5.0	2.1	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	#	5.0	2.0	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	H	5.0	2.0	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	H 1	5.0	2.0	ug/L	1
Trichloroethene	79-01-6	8260D	210	K J	5.0	2.0	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	H UJ	5.0	2.0	ug/L	1
Vinyl chloride	75-01-4	8260D	8.8	A J	5.0	2.0	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	A UJ	5.0	2.0	ug/L	1

Surrogate	Q	Run 1 / % Recovery	Acceptance Limits
Bromofluorobenzene	Н	95	70-130
1,2-Dichloroethane-d4	Н	104	70-130
Toluene-d8	Н	101	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1		ysis Date Analyst /2021 0107 CJL2	Prep Date	Batch 97674			
Para	meter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-0	Dioxane		123-	91-1	8260D (SIM)	13	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria $J = Estimated result < LOQ and \ge DL$ L = LCS/LCSD failure H = Out of holding time W = Reported on wet weight basis S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-5

Date Sampled:06/24/2021 1500 Date Received: 06/24/2021

Laboratory ID: WF25024-004

Matrix: Aqueous

Run 1 Acceptance Q % Recovery Surrogate Limits 101

1,2-Dichloroethane-d4

Run Prep Method

Analytical Method Dilution Analysis Date Analyst

Dissolved Gases

Prep Date

Batch

1	RSK - 175	1 06/30/	/2021 1101 TML	•		97348			
Parameter		CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND		10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	3.8	J	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	1800		10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND		15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TB-1

Date Sampled:06/24/2021 Date Received: 06/24/2021 Laboratory ID: WF25024-005

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1043 BWS	-	98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND /	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TB-1

Date Sampled: 06/24/2021 Date Received: 06/24/2021 Laboratory ID: WF25024-005

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1043 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL '	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1
	D . 4 . 4						

Acceptance Limits Run 1 % Recovery Surrogate Q Bromofluorobenzene 89 70-130 1,2-Dichloroethane-d4 96 70-130 Toluene-d8 95 70-130

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (10-11)

Date Sampled: 06/24/2021 1000

Date Received: 06/24/2021

Laboratory ID: WF25024-006

Matrix: Solid

% Solids: 84.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method And 1 5035	alytical Method Dil 8260D			ysis Date Analyst /2021 0455 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.00		
Parameter		Num	AS ber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-6	4-1	8260D	ND	20	7.9	ug/kg	1
Benzene		71-4	3-2	8260D	ND	4.9	2.0	ug/kg	1
Bromodichloromethane		75-2	7-4	8260D	ND	4.9	2.0	ug/kg	1
Bromoform		75-2	5-2	8260D	ND	4.9	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-8	3-9	8260D	ND	4.9	2.9	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	ND	20	3.9	ug/kg	1
Carbon disulfide		75-1	5-0	8260D	ND	4.9	2.0	ug/kg	1
Carbon tetrachloride		56-2	3-5	8260D	ND	4.9	2.0	ug/kg	1
Chlorobenzene		108-9	0-7	8260D	ND	4.9	2.0	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND	4.9	2.0	ug/kg	1
Chloroform		67-6	6-3	8260D	ND	4.9	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	7-3	8260D	ND	4.9	2.9	ug/kg	1
Cyclohexane		110-82	2-7	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-1		8260D	ND	4.9	2.0	ug/kg	1
Dibromochloromethane		124-48		8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-93	3-4	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichlorobenzene		95-50	D-1	8260D	ND	4.9	2.0	ug/kg	1
1,3-Dichlorobenzene		541-73	3-1	8260D	ND	4.9	2.0	ug/kg	1
1,4-Dichlorobenzene		106-46		8260D	ND	4.9	2.0	ug/kg	1
Dichlorodifluoromethane		75-7		8260D	ND	4.9	2.9	ug/kg	1
1,1-Dichloroethane		75-34		8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloroethane		107-06		8260D	ND	4.9	2.0	ug/kg	1
1,1-Dichloroethene		75-35		8260D	ND	4.9	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-59	9-2	8260D	ND	4.9	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-60)-5	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloropropane		78-87		8260D	ND	4.9	2.0	ug/kg	1
cis-1,3-Dichloropropene	10	0061-01		8260D	ND	4.9	2.0	ug/kg	1
trans-1,3-Dichloropropene		0061-02		8260D	ND	4.9	2.0	ug/kg	1
Ethylbenzene		100-41		8260D	ND	4.9	2.0	ug/kg	1
2-Hexanone		591-78		8260D	ND	9.8	3.9	ug/kg ug/kg	1
Isopropylbenzene		98-82		8260D	ND	4.9	2.0	ug/kg ug/kg	1
Methyl acetate		79-20		8260D	ND	4.9	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1	1634-04		8260D	ND	4.9	2.0	ug/kg ug/kg	1
4-Methyl-2-pentanone		108-10		8260D	ND	9.8	3.9	ug/kg ug/kg	1
Methylcyclohexane		108-87		8260D	ND	4.9	2.0	ug/kg ug/kg	1
Methylene chloride		75-09		8260D	ND	4.9	2.0	ug/kg ug/kg	1
Styrene		100-42		8260D	ND	4.9	2.0	ug/kg ug/kg	1
1,1,2,2-Tetrachloroethane		79-34		8260D 8260D	ND	4.9			1
Tetrachloroethene		127-18		8260D 8260D	ND		2.0 2.0	ug/kg	•
Toluene		108-88		8260D 8260D	ND ND	4.9 4.9	2.0	ug/kg ug/kg	1 1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and > DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (10-11)

Date Sampled:06/24/2021 1000

Date Received: 06/24/2021

Laboratory ID: WF25024-006

Matrix: Solid

% Solids: 84.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0455 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.00		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-	13-1	8260D	ND	4.9	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.9	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.9	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.9	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.9	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.9	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.9	2.9	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.8	3.9	ug/kg	1
Surrogate	Q % 1	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		97	47-138						
1,2-Dichloroethane-d4		99	53-142						
Toluene-d8		104	68-124						

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Description: DP-2-SO (19-20)

Date Sampled: 06/24/2021 1010

Date Received: 06/24/2021

Laboratory ID: WF25024-007

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Analy 1 5035	vtical Method Dilution 8260D 1		lysis Date Analyst 0/2021 0518 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.05		
Parameter	N	CAS lumber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	6	67-64-1	8260D	ND	19	7.6	ug/kg	1
Benzene	7	'1-43-2	8260D	ND	4.7	1.9	ug/kg	1
Bromodichloromethane	7	75-27-4	8260D	ND	4.7	1.9	ug/kg	1
Bromoform	7	75-25-2	8260D	ND	4.7	1.9	ug/kg	1
Bromomethane (Methyl bromide)	7	4-83-9	8260D	ND	4.7	2.8	ug/kg	1
2-Butanone (MEK)	7	'8-93-3	8260D	ND	19	3.8	ug/kg	1
Carbon disulfide	7	′5-15-0	8260D	ND	4.7	1.9	ug/kg	1
Carbon tetrachloride	5	6-23-5	8260D	ND	4.7	1.9	ug/kg	1
Chlorobenzene	10	8-90-7	8260D	ND	4.7	1.9	ug/kg	1
Chloroethane	7	5-00-3	8260D	ND	4.7	1.9	ug/kg	1
Chloroform	6	7-66-3	8260D	ND	4.7	1.9	ug/kg	1
Chloromethane (Methyl chloride)	7	4-87-3	8260D	ND	4.7	2.8	ug/kg	1
Cyclohexane	11	0-82-7	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	g	6-12-8	8260D	ND	4.7	1.9	ug/kg	1
Dibromochloromethane	12	4-48-1	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dibromoethane (EDB)	10	6-93-4	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dichlorobenzene	9	5-50-1	8260D	ND	4.7	1.9	ug/kg	1
1,3-Dichlorobenzene	54	1-73-1	8260D	ND	4.7	1.9	ug/kg	1
1,4-Dichlorobenzene	10	6-46-7	8260D	ND	4.7	1.9	ug/kg	1
Dichlorodifluoromethane	7	5-71-8	8260D	ND	4.7	2.8	ug/kg	1
1,1-Dichloroethane	7	5-34-3	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dichloroethane	10	7-06-2	8260D	ND	4.7	1.9	ug/kg	1
1,1-Dichloroethene	7	5-35-4	8260D	ND	4.7	1.9	ug/kg	1
cis-1,2-Dichloroethene	15	6-59-2	8260D	ND	4.7	1.9	ug/kg	1
trans-1,2-Dichloroethene	15	6-60-5	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dichloropropane	7	8-87-5	8260D	ND	4.7	1.9	ug/kg	1
cis-1,3-Dichloropropene	1006	1-01-5	8260D	ND	4.7	1.9	ug/kg	1
trans-1,3-Dichloropropene	1006	1-02-6	8260D	ND	4.7	1.9	ug/kg	1
Ethylbenzene	10	0-41-4	8260D	ND	4.7	1.9	ug/kg	1
2-Hexanone	59	1-78-6	8260D	ND	9.5	3.8	ug/kg	1
Isopropylbenzene	9	8-82-8	8260D	ND	4.7	1.9	ug/kg	1
Methyl acetate	7	9-20-9	8260D	ND	4.7	1.9	ug/kg	1
Methyl tertiary butyl ether (MTBE)	163	4-04-4	8260D	ND	4.7	1.9	ug/kg	1
4-Methyl-2-pentanone	10	8-10-1	8260D	ND	9.5	3.8	ug/kg	1
Methylcyclohexane	10	8-87-2	8260D	ND	4.7	1.9	ug/kg	1
Methylene chloride	7	5-09-2	8260D	ND	4.7	1.9	ug/kg	1
Styrene	10	0-42-5	8260D	ND	4.7	1.9	ug/kg	1
1,1,2,2-Tetrachloroethane	7	9-34-5	8260D	ND	4.7	1.9	ug/kg	1
Tetrachloroethene		7-18-4	8260D	ND	4.7	1.9	ug/kg	1
Toluene	10	8-88-3	8260D	ND	4.7	1.9	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (19-20)

Date Sampled:06/24/2021 1010

Date Received: 06/24/2021

Laboratory ID: WF25024-007

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	Date Analyst 1 0518 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.05		
Parameter			CAS .	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.7	1.9	ug/kg	1
1,2,4-Trichlorobenzene		120-8	82-1	8260D	ND	4.7	1.9	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.7	1.9	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	4.7	1.9	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.7	1.9	ug/kg	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	4.7	1.9	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	4.7	2.8	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	9.5	3.8	ug/kg	1
Surrogate	Q %	Run 1 / Recovery	Acceptanc Limits	е					
Bromofluorobenzene		97	47-138						
1,2-Dichloroethane-d4		99	53-142						
Toluene-d8		102	68-124						

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

J = Estimated result < LOQ and ≥ DL

Q = Surrogate failure L = LCS/LCSD failure

S = MS/MSD failure

Description: DP-13-SO (10-11)

Date Sampled: 06/23/2021 1500

Date Received: 06/24/2021

Laboratory ID: WF25024-008

Matrix: Solid

% Solids: 81.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Ana 1 5035	lytical Method Di 8260D			ysis Date Analyst /2021 0541 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.06		
Parameter		C Num	AS ber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-6	4-1	8260D	11 J	20	8.1	ug/kg	1
Benzene		71-4	3-2	8260D	ND	5.1	2.0	ug/kg	1
Bromodichloromethane		75-2	7-4	8260D	ND	5.1	2.0	ug/kg	1
Bromoform		75-2	5-2	8260D	ND	5.1	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-8	3-9	8260D	ND	5.1	3.0	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	ND	20	4.0	ug/kg	1
Carbon disulfide		75-1	5-0	8260D	ND	5.1	2.0	ug/kg	1
Carbon tetrachloride		56-2	3-5	8260D	ND	5.1	2.0	ug/kg	1
Chlorobenzene		108-90	0-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND	5.1	2.0	ug/kg	1
Chloroform		67-6	6-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	7-3	8260D	ND	5.1	3.0	ug/kg	1
Cyclohexane		110-82	2-7	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-12	2-8	8260D	ND	5.1	2.0	ug/kg	1
Dibromochloromethane		124-48	3-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-93	3-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene		95-50	D-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene		541-73	3-1	8260D	ND	5 <i>.</i> 1	2.0	ug/kg	1
1,4-Dichlorobenzene		106-46	3-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodifluoromethane		75-7°	1-8	8260D	ND	5.1	3.0	ug/kg	1
1,1-Dichloroethane		75-34	4-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloroethane		107-06	6-2	8260D	ND	5.1	2.0	ug/kg	1
1,1-Dichloroethene		75-35	5-4	8260D	ND	5.1	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-59	9-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-60)-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropane		78-87	7-5	8260D	ND	5.1	2.0	ug/kg	1
cis-1,3-Dichloropropene	1	0061-01	I-5	8260D	ND	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	1	0061-02	2-6	8260D	ND	5.1	2.0	ug/kg	1
Ethylbenzene		100-41	-4	8260D	ND	5.1	2.0	ug/kg	1
2-Hexanone		591-78	3-6	8260D	ND	10	4.0	ug/kg	1
Isopropylbenzene		98-82	2-8	8260D	ND	5.1	2.0	ug/kg	1
Methyl acetate		79-20)-9	8260D	ND	5.1	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-04	1-4	8260D	ND	5.1	2.0	ug/kg	1
4-Methyl-2-pentanone		108-10)-1	8260D	ND	10	4.0	ug/kg	1
Methylcyclohexane		108-87	'-2	8260D	ND	5.1	2.0	ug/kg	1
Methylene chloride		75-09	9-2	8260D	ND	5.1	2.0	ug/kg	1
Styrene		100-42	2-5	8260D	ND	5.1	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-34	I-5	8260D	ND	5.1	2.0	ug/kg	1
Tetrachloroethene		127-18	3-4	8260D	ND	5.1	2.0	ug/kg	1
Toluene		108-88	3-3	8260D	ND	5.1	2.0	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: **DP-13-SO (10-11)**

Date Sampled:06/23/2021 1500

Date Received: 06/24/2021

Laboratory ID: WF25024-008

Matrix: Solid

% Solids: 81.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Metho 82600		-	Date Analyst 21 0541 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.06		
Parameter		Nui	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	-13-1	8260D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	-00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.1	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.0	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptano Limits	e					
Bromofluorobenzene		96	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		103	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

D = Detection Limit

Q = Surrogate failure

D = Detection Limit

Q = Surrogate failure

D = Estimated result < LOQ and ≥ DL

E = LOS/LCSD failure

S = MS/MSD failure

Description: DP-13-SO (19-20) Date Sampled:06/23/2021 1600

Date Received: 06/24/2021

Laboratory ID: WF25024-009

Matrix: Solid

% Solids: 89.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)	
1	5035	8260D	1	06/30/2021 0604 CJL2		97321	6.33	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run	
Acetone	67-64-1	8260D	19	18	7.1	ug/kg	1	
Benzene	71-43-2	8260D	ND	4.4	1.8	ug/kg	1	
Bromodichloromethane	75-27-4	8260D	ND	4.4	1.8	ug/kg	1	
Bromoform	75-25-2	8260D	ND	4.4	1.8	ug/kg	1	
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.4	2.6	ug/kg	1	
2-Butanone (MEK)	78-93-3	8260D	ND	18	3.5	ug/kg	1	
Carbon disulfide	75-15-0	8260D	ND	4.4	1.8	ug/kg	1	
Carbon tetrachloride	56-23-5	8260D	ND	4.4	1.8	ug/kg	1	
Chlorobenzene	108-90-7	8260D	ND	4.4	1.8	ug/kg	1	
Chloroethane	75-00-3	8260D	ND	4.4	1.8	ug/kg	1	
Chloroform	67-66-3	8260D	ND	4.4	1.8	ug/kg	1	
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.4	2.6	ug/kg	1	
Cyclohexane	110-82-7	8260D	ND	4.4	1.8	ug/kg	1	
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.4	1.8	ug/kg	1	
Dibromochloromethane	124-48-1	8260D	ND	4.4	1.8	ug/kg	1	
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.4	1.8	ug/kg	1	
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.4	1.8	ug/kg	1	
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.4	1.8	ug/kg	1	
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.4	1.8	ug/kg	1	
Dichlorodifluoromethane	75-71-8	8260D	ND	4.4	2.6	ug/kg	1	
1,1-Dichloroethane	75-34-3	8260D	ND	4.4	1.8	ug/kg	1	
1,2-Dichloroethane	107-06-2	8260D	ND	4.4	1.8	ug/kg	1	
1,1-Dichloroethene	75-35-4	8260D	ND	4.4	1.8	ug/kg	1	
cis-1,2-Dichloroethene	156-59-2	8260D	5.7	4.4	1.8	ug/kg	1	
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.4	1.8	ug/kg	1	
1,2-Dichloropropane	78-87-5	8260D	ND	4.4	1.8	ug/kg	1	
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.4	1.8	ug/kg	1	
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.4	1.8	ug/kg	1	
Ethylbenzene	100-41-4	8260D	ND	4.4	1.8	ug/kg	1	
2-Hexanone	591-78-6	8260D	ND	8.8	3.5	ug/kg	1	
Isopropylbenzene	98-82-8	8260D	ND	4.4	1.8	ug/kg	1	
Methyl acetate	79-20-9	8260D	ND	4.4	1.8	ug/kg	1	
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.4	1.8	ug/kg	1	
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.8	3.5	ug/kg	1	
Methylcyclohexane	108-87-2	8260D	ND	4.4	1.8	ug/kg	1	
Methylene chloride	75-09-2	8260D	ND	4.4	1.8	ug/kg	1	
Styrene	100-42-5	8260D	ND	4.4	1.8	ug/kg	1	
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.4	1.8	ug/kg	1	
Tetrachloroethene	127-18-4	8260D	3.3 J	4.4	1.8	ug/kg	1	
Toluene	108-88-3	8260D	ND	4.4	1.8	ug/kg	1	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: **DP-13-SO (19-20)**Date Sampled:06/23/2021 1600

Laboratory ID: WF25024-009

Matrix: Solid

% Solids: 89.6 06/26/2021 1851

Date Received: 06/24/2021

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0604 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.33		
Parameter		Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-1	13-1	8260D	ND	4.4	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.4	1.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.4	1.8	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	4.4	4.4	1.8	ug/kg	1
Trichloroethene		79-0	01-6	8260D	6.9	4.4	1.8	ug/kg	1
Trichlorofluoromethane		75-6	59-4	8260D	ND	4.4	1.8	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	4.4	2.6	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	8.8	3.5	ug/kg	1
Surrogate		Run 1 / Recovery	Acceptan Limits						
Bromofluorobenzene		97	47-138	}					
1,2-Dichloroethane-d4		98	53-142	!					
Toluene-d8		99	68-124	,					

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-2-SO (6-7)

Date Sampled:06/24/2021 1020

Date Received: 06/24/2021

Laboratory ID: WF25024-010

Matrix: Solid

% Solids: 89.9 06/26/2021 1851

Volatile Organic Compounds by GC/MS

RunPrep MethodAnalytical Method150358260D			ysis Date Analyst /2021 0627 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.29		
Parameter	C Num	AS ber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-6	4-1	8260D	15 J	18	7.1	ug/kg	1
Benzene	71-4	3-2	8260D	ND	4.4	1.8	ug/kg	1
Bromodichloromethane	75-2	7-4	8260D	ND	4.4	1.8	ug/kg	1
Bromoform	75-2	5-2	8260D	ND	4.4	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-8	3-9	8260D	ND	4.4	2.7	ug/kg	1
2-Butanone (MEK)	78-9	3-3	8260D	ND	18	3.5	ug/kg	1
Carbon disulfide	75-1	5-0	8260D	ND	4.4	1.8	ug/kg	1
Carbon tetrachloride	56-2	3-5	8260D	ND	4.4	1.8	ug/kg	1
Chlorobenzene	108-90	0-7	8260D	ND	4.4	1.8	ug/kg	1
Chloroethane	75-0	0-3	8260D	ND	4.4	1.8	ug/kg	1
Chloroform	67-6	6-3	8260D	ND	4.4	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-8	7-3	8260D	ND	4.4	2.7	ug/kg	1
Cyclohexane	110-82	2-7	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12	2-8	8260D	ND	4.4	1.8	ug/kg	1
Dibromochloromethane	124-48	B-1	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93	3-4	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50	0-1	8260D	ND	4.4	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73	3-1	8260D	ND	4.4	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46	3-7	8260D	ND	4.4	1.8	ug/kg	1
Dichlorodifluoromethane	75-7	1-8	8260D	ND	4.4	2.7	ug/kg	1
1,1-Dichloroethane	75-34	4-3	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichloroethane	107-06	3-2	8260D	ND	4.4	1.8	ug/kg	1
1,1-Dichloroethene	75-3	5-4	8260D	ND	4.4	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59	9-2	8260D	7.0	4.4	1.8	ug/kg	1
trans-1,2-Dichloroethene	156-60	0-5	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichloropropane	78-87	7-5	8260D	ND	4.4	1.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01	1-5	8260D	ND	4.4	1.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02	2-6	8260D	ND	4.4	1.8	ug/kg	1
Ethylbenzene	100-41	1-4	8260D	ND	4.4	1.8	ug/kg	1
2-Hexanone	591-78	3-6	8260D	ND	8.8	3.5	ug/kg	1
Isopropylbenzene	98-82	2-8	8260D	ND	4.4	1.8	ug/kg	1
Methyl acetate	79-20	0-9	8260D	ND	4.4	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04	4-4	8260D	ND	4.4	1.8	ug/kg	1
4-Methyl-2-pentanone	108-10)-1	8260D	ND	8.8	3.5	ug/kg	1
Methylcyclohexane	108-87	7-2	8260D	ND	4.4	1.8	ug/kg	1
Methylene chloride	75-09	9-2	8260D	ND	4.4	1.8	ug/kg	1
Styrene	100-42	2-5	8260D	ND	4.4	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34	4-5	8260D	ND	4.4	1.8	ug/kg	1
Tetrachloroethene	127-18	3-4	8260D	ND	4.4	1.8	ug/kg	1
Toluene	108-88	3-3	8260D	ND	4.4	1.8	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: **DP-2-SO (6-7)**

Date Sampled:06/24/2021 1020

Date Received: 06/24/2021

Laboratory ID: WF25024-010

Matrix: Solid

% Solids: 89.9 06/26/2021 1851

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	Date Analyst 21 0627 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.29		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane)	76-	13-1	8260D	ND	4.4	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.4	1.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.4	1.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.4	1.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.4	1.8	ug/kg	1
Trichlorofluoromethane		75-0	69-4	8260D	ND	4.4	1.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.4	2.7	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.8	3.5	ug/kg	1
Surrogate		Run 1 A	Acceptano Limits	e					
Bromofluorobenzene		100	47-138						
1,2-Dichloroethane-d4		102	53-142						
Toluene-d8		100	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

 $\mathsf{P} = \mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: DP-12-SO (4-5)

Date Sampled:06/23/2021 1500

Date Received: 06/24/2021

Laboratory ID: WF25024-011

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D		Anal	ysis Date Analyst /2021 0650 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.35		
Parameter		Num	CAS iber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-6	34-1	8260D	ND	18	7.2	ug/kg	1
Benzene		71-4	13-2	8260D	ND	4.5	1.8	ug/kg	1
Bromodichloromethane		75-2	27-4	8260D	ND	4.5	1.8	ug/kg	1
Bromoform		75-2	25-2	8260D	ND	4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)		74-8	33-9	8260D	ND	4.5	2.7	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	ND	18	3.6	ug/kg	1
Carbon disulfide		75-1	5-0	8260D	ND	4.5	1.8	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND	4.5	1.8	ug/kg	1
Chlorobenzene		108-9	0-7	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND	4.5	1.8	ug/kg	1
Chloroform		67-6	6-3	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)		74-8	37-3	8260D	ND	4.5	2.7	ug/kg	1
Cyclohexane		110-8	2-7	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCF	P)	96-1	2-8	8260D	ND	4.5	1.8	ug/kg	1
Dibromochloromethane	•	124-4	8-1	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichlorobenzene		95-5	0-1	8260D	ND	4.5	1.8	ug/kg	1
1,3-Dichlorobenzene		541-7	3-1	8260D	ND	4.5	1.8	ug/kg	1
1,4-Dichlorobenzene		106-4	6-7	8260D	ND	4.5	1.8	ug/kg	1
Dichlorodifluoromethane		75-7	1-8	8260D	ND	4.5	2.7	ug/kg	1
1,1-Dichloroethane		75-3	4-3	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND	4.5	1.8	ug/kg	1
1,1-Dichloroethene		75-3	5-4	8260D	ND	4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	17	4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloropropane		78-8	7-5	8260D	ND	4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND	4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND	4.5	1.8	ug/kg	1
Ethylbenzene		100-4	1-4	8260D	ND	4.5	1.8	ug/kg	1
2-Hexanone		591-7	8-6	8260D	ND	9.0	3.6	ug/kg	1
Isopropylbenzene		98-8	2-8	8260D	ND	4.5	1.8	ug/kg	1
Methyl acetate		79-2	0-9	8260D	ND	4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND	4.5	1.8	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND	9.0	3.6	ug/kg	1
Methylcyclohexane		108-8	7-2	8260D	ND	4.5	1.8	ug/kg	1
Methylene chloride		75-0	9-2	8260D	ND	4.5	1.8	ug/kg	1
Styrene		100-4	2-5	8260D	ND	4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND	4.5	1.8	ug/kg	1
Tetrachloroethene		127-1	8-4	8260D	77	4.5	1.8	ug/kg	1
Toluene		108-8	8-3	8260D	ND	4.5	1.8	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-12-SO (4-5)

Date Sampled:06/23/2021 1500

Date Received: 06/24/2021

Laboratory ID: WF25024-011

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Volutile Organie Compounds by Comic	Volatile	Organic	Compound	s by	GC/MS
-------------------------------------	----------	---------	----------	------	-------

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	Date Analyst 21 0650 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.35		
Parameter			CAS ,	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	11	4.5	1.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	69	4.5	1.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.0	3.6	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptano Limits	е					
Bromofluorobenzene		96	47-138						
1,2-Dichloroethane-d4		100	53-142						
Toluene-d8		102	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-6-SO (10-11)

Date Sampled:06/24/2021 1130

Date Received: 06/24/2021

Laboratory ID: WF25024-012

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)	
1	5035	8260D	1	06/30/2021 0712 CJL2		97321	5.99	

		1 00,00,202107.12 0022			0.00		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	8.2	ug/kg	1
Benzene	71-43-2	8260D	ND	5.1	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.1	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.1	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.1	3.1	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	4.1	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.1	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.1	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.1	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.1	3.1	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.1	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.1	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.1	3.1	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.1	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.1	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.1	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.1	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.1	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	10	4.1	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	5.1	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.1	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.1	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	4.1	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.1	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.1	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	5.1	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.1	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.1	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	5.1	2.0	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and \geq DL

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-6-SO (10-11) Date Sampled:06/24/2021 1130

Laboratory ID: WF25024-012

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Date Received: 06/24/2021

Volatile	Organic	Compounds	by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	Date Analyst 1 0712 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 5.99		
Parameter		(Num		Analytical Method	Result Q	LOQ	DL	Units	Kun
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-1	13-1	8260D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	5.1	3.1	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	10	4.1	ug/kg	1
Surrogate	Q % I	Run 1 A	Acceptano Limits	е					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		104	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

Description: DP-12-SO (9-10) Date Sampled: 06/23/2021 1700

Date Received: 06/24/2021

Laboratory ID: WF25024-013 Matrix: Solid

% Solids: 85.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1		ysis Date Analyst 0/2021 0735 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 11.29		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL.	Units	Run
Acetone		67-	64-1	8260D	ND	10	4.1	ug/kg	1
Benzene		71-	43-2	8260D	ND	2.6	1.0	ug/kg	1
Bromodichloromethane		75-	27-4	8260D	ND	2.6	1.0	ug/kg	1
Bromoform		75-	25-2	8260D	ND	2.6	1.0	ug/kg	1
Bromomethane (Methyl bromide)		74-	83-9	8260D	ND	2.6	1.6	ug/kg	1
2-Butanone (MEK)		78-	93-3	8260D	ND	10	2.1	ug/kg	1
Carbon disulfide		75-	15-0	8260D	ND	2.6	1.0	ug/kg	1
Carbon tetrachloride		56-	23-5	8260D	ND	2.6	1.0	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND	2.6	1.0	ug/kg	1
Chloroethane		75-0	00-3	8260D	ND	2.6	1.0	ug/kg	1
Chloroform		67-	66-3	8260D	ND	2.6	1.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	87-3	8260D	ND	2.6	1.6	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-	12-8	8260D	ND	2.6	1.0	ug/kg	1
Dibromochloromethane	,	124-4	18-1	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dichlorobenzene		95-	50-1	8260D	ND	2.6	1.0	ug/kg	1
1,3-Dichlorobenzene		541-7	73-1	8260D	ND	2.6	1.0	ug/kg	1
1,4-Dichlorobenzene		106-4	16-7	8260D	ND	2.6	1.0	ug/kg	1
Dichlorodifluoromethane		75-	71-8	8260D	ND	2.6	1.6	ug/kg	1
1,1-Dichloroethane		75-3	34-3	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dichloroethane		107-0	06-2	8260D	ND	2.6	1.0	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND	2.6	1.0	ug/kg	1
cis-1,2-Dichloroethene		156-	59-2	8260D	15	2.6	1.0	ug/kg	1
trans-1,2-Dichloroethene		156-6	30-5	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dichloropropane		78-8	37-5	8260D	ND	2.6	1.0	ug/kg	1
cis-1,3-Dichloropropene		10061-0)1-5	8260D	ND	2.6	1.0	ug/kg	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	2.6	1.0	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND	2.6	1.0	ug/kg	1
2-Hexanone		591-7	78-6	8260D	ND	5.2	2.1	ug/kg	1
Isopropylbenzene		98-8	32-8	8260D	ND	2.6	1.0	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND	2.6	1.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0)4-4	8260D	ND	2.6	1.0	ug/kg	1
4-Methyl-2-pentanone		108-1	10-1	8260D	ND	5.2	2.1	ug/kg	1
Methylcyclohexane		108-8	37-2	8260D	ND	2.6	1.0	ug/kg	1
Methylene chloride		75-0	09-2	8260D	ND	2.6	1.0	ug/kg	1
Styrene		100-4	12-5	8260D	ND	2.6	1.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND	2.6	1.0	ug/kg	1
Tetrachloroethene		127-1	8-4	8260D	21	2.6	1.0	ug/kg	1
Toluene		108-8	38-3	8260D	ND	2.6	1.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: DP-12-SO (9-10) Date Sampled: 06/23/2021 1700

Date Received: 06/24/2021

Laboratory ID: WF25024-013

Matrix: Solid

% Solids: 85.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0735 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 11.29		
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane)	76-	-13-1	8260D	ND	2.6	1.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	-82-1	8260D	ND	2.6	1.0	ug/kg	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	2.6	1.0	ug/kg	1
1,1,2-Trichloroethane		79-	-00-5	8260D	3.3	2.6	1.0	ug/kg	1
Trichloroethene		79	-01-6	8260D	27	2.6	1.0	ug/kg	1
Trichlorofluoromethane		75-	-69-4	8260D	ND	2.6	1.0	ug/kg	1
Vinyl chloride		75-	-01-4	8260D	ND	2.6	1.6	ug/kg	1
Xylenes (total)		1330-	-20-7	8260D	ND	5.2	2.1	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		100	47-138						
1,2-Dichloroethane-d4		110	53-142						
Toluene-d8		99	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: DP-3-SO (10-11) Date Sampled:06/24/2021 1130

Date Received: 06/24/2021

Laboratory ID: WF25024-014

Matrix: Solid

% Solids: 83.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260D	1	06/30/2021 0758 CJL2		97321	5.45

1 0000	1 00,00	20210100 0022		0.02.	0.10		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	10 J	22	8.8	ug/kg	1
Benzene	71-43-2	8260D	ND	5.5	2.2	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.5	2.2	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.5	2.2	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.5	3.3	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	22	4.4	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.5	2.2	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.5	2.2	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.5	2.2	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.5	2.2	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.5	2.2	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.5	3.3	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.5	2.2	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.5	2.2	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.5	2.2	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.5	2.2	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.5	2.2	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.5	2.2	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.5	2.2	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.5	3.3	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.5	2.2	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.5	2.2	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.5	2.2	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.5	2.2	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.5	2.2	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.5	2.2	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.5	2.2	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.5	2.2	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.5	2.2	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	11	4.4	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	5.5	2.2	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.5	2.2	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.5	2.2	ug/kg	1
4-Methyi-2-pentanone	108-10-1	8260D	ND	11	4.4	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.5	2.2	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.5	2.2	ug/kg	1
Styrene	100-42-5	8260D	ND	5.5	2.2	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.5	2.2	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.5	2.2	ug/kg	1
Toluene	108-88-3	8260D	ND	5.5	2.2	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: **DP-3-SO (10-11)**Date Sampled:**06/24/2021 1130**

Oliciti. Lartifoon oonsultants, inc.

Date Received: 06/24/2021

Laboratory ID: WF25024-014

Matrix: Solid

% Solids: 83.2 06/26/2021 1851

Volatile Organic Compo	ounds by (GC/MS
------------------------	------------	-------

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0758 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 5.45		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-	13-1	8260D	ND	5.5	2.2	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.5	2.2	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.5	2.2	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.5	2.2	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.5	2.2	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.5	2.2	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.5	3.3	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	11	4.4	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		99	47-138						
1,2-Dichloroethane-d4		98	53-142	:					
Toluene-d8		104	68-124	•					

LOQ = Limit of Quantitation
ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: **TB-2**Date Sampled: 06/24/2021
Date Received: 06/24/2021

Laboratory ID: WF25024-015
Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1108 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-27-4 75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-95-3 75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon disdinge Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Chloromethane (Methyl chloride)	110-82-7	8260D	ND	1.0	0.50	ug/L ug/L	1
Cyclohexane	96-12-8	8260D	ND	1.0	0.40	ug/L ug/L	1
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane	90-12-0 124-48-1	8260D	ND ND	1.0	0.40	ug/L ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Discontinue (EDB)	95-50-1	8260D	ND	1.0	0.40	ug/L ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1.4-Dichlorobenzene	106-46-7	8260D	ND .	1.0	0.40	ug/L ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND al	2.0	0.40	ug/L	1
1,1-Dichloroethane	75-71-8 75-34-3	8260D	ND AZ	1.0		ug/L	1
1,2-Dichloroethane	75-34-3 107-06-2	8260D	ND	1.0	0.40	_	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40 0.40	ug/L ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L ug/L	1
trans-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L ug/L	1
2-Hexanone	591-78-6	8260D	ND	1.0		ug/L ug/L	, 1
Isopropylbenzene	98-82-8	8260D	ND	1.0	2.0 0.40	ug/L ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	1.0	2.0	ug/L ug/L	1
•	108-87-2	8260D	ND	5.0		ug/L ug/L	1
Methylcyclohexane Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L ug/L	1
•	75-09-2 100-42-5	8260D	ND ND	1.0	0.40		1
Styrene					0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

W = Reported on wet weight basis

N = Recovery is out of criteria

13

J = Estimated result < LOQ and \geq DL

S = MS/MSD failure

Description: TB-2

Toluene-d8

Date Sampled:06/24/2021 Date Received: 06/24/2021 Laboratory ID:WF25024-015

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	•	is Date Analyst 021 1108 BWS	Prep Date	Batch 98224			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % I	Run 1 Recovery	Acceptar Limits						
Bromofluorobenzene		96	70-130)					
1,2-Dichloroethane-d4		97	70-13)					

70-130

100

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-2-16/17-GW

Date Sampled: 06/24/2021 1010 Date Received: 06/24/2021

Laboratory ID: WF25024-016 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D			sis Date Analyst 2021 1315 BWS	Prep	Date	Batch 98224	-		
Parameter		C Numi	AS ber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-64	4-1	8260D	ND		20	5.0	ug/L	1
Benzene		71-43	3-2	8260D	ND		1.0	0.40	ug/L	1
Bromodichloromethane		75-27	7-4	8260D	ND		1.0	0.40	ug/L	1
Bromoform		75-25	5-2	8260D	ND		1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)		74-83	3-9	8260D	ND		2.0	0.40	ug/L	1
2-Butanone (MEK)		78-93	3-3	8260D	ND		10	2.0	ug/L	1
Carbon disulfide		75-15	5-0	8260D	ND		1.0	0.40	ug/L	1
Carbon tetrachloride		56-23	3-5	8260D	ND		1.0	0.40	ug/L	1
Chlorobenzene		108-90)-7	8260D	ND		1.0	0.40	ug/L	1
Chloroethane		75-00	0-3	8260D	ND		2.0	0.40	ug/L	1
Chloroform		67-66	3-3	8260D	1.7		1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87	7-3	8260D	ND		1.0	0.50	ug/L	1
Cyclohexane		110-82	2-7	8260D	ND		1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-12	2-8	8260D	ND		1.0	0.40	ug/L	1
Dibromochloromethane	,	124-48	3-1	8260D	ND		1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)		106-93	3-4	8260D	ND		1.0	0.40	ug/L	1
1,2-Dichlorobenzene		95-50)-1	8260D	ND		1.0	0.40	ug/L	1
1,3-Dichlorobenzene		541-73	3-1	8260D	ND		1.0	0.40	ug/L	1
1,4-Dichlorobenzene		106-46	S-7	8260D	ND		1.0	0.40	ug/L	1
Dichlorodifluoromethane		75-71	1-8	8260D	- ND	\checkmark	2.0	0.60	ug/L	-1
1,1-Dichloroethane		75-34	1-3	8260D	ND		1.0	0.40	ug/L	1
1.2-Dichloroethane		107-06	5-2	8260D	ND		1.0	0.40	ug/L	1
1,1-Dichloroethene		75-35		8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59	9-2	8260D	52		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-60)-5	8260D	0.83	J	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-87	7-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-01	1-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-02		8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-41		8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-78	3-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-82		8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-20)-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-10		8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-87		8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-09		8260D	ND		1.0	0.40	ug/L	1
Styrene		100-42		8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34		8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-18		8260D	ND		1.0	0.40	ug/L	1
Toluene		108-88		8260D		j	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation $\ensuremath{\mathsf{ND}}$ = Not detected at or above the $\ensuremath{\mathsf{DL}}$

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Description: DP-2-16/17-GW Date Sampled:06/24/2021 1010

Date Received: 06/24/2021

Laboratory ID: WF25024-016

Matrix: Aqueous

			V	ola	tile	e C) r	gani	c (30	m	pe	ou	nd	S	by	/ (3C,	/M	3
*****	 	 						-									_			
										_	_					_	_	_		

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1315 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	0.47 J	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	1.9	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	1.8	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
Bromofluorobenzene		92	70-130
1,2-Dichloroethane-d4		97	70-130
Toluene-d8		95	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D (SIM)	1	07/01/2021 1706 JWO		97631	

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

1,4-Dioxane		120-0	71-1 02	OOD (ONVI)	ND	0.0	1.0
		Run 1 A	Acceptance				
Surrogate	Q	% Recovery	Limits				

1,2-Dichloroethane-d4 107 40-170

Dissolved Gases

Run Prep Method	Analytical Method RSK - 175	Dilution 1	-	sis Date Analyst 2021 1117 TML	Prep Date	Batch 97348			
Parameter		Nun	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	34-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-8	35-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-8	32-8	RSK - 175	10	10	2.5	ug/L	1
Propane		74-9	98-6	RSK - 175	ND	15	5.0	ug/L	1

E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure LOQ = Limit of Quantitation B = Detected in the method blank P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and \ge DL$ L = LCS/LCSD failure ND = Not detected at or above the DL N = Recovery is out of criteria S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Description: DP-DUP1-GW
Date Sampled:06/24/2021

Date Received: 06/24/2021

Laboratory ID: WF25024-017

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1341 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.7	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND 1	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	53	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	0.87 J	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	0.43 J	1.0	0.40	ug/L	1

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

¹⁰⁶ Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: DP-DUP1-GW

Date Sampled:06/24/2021 Date Received: 06/24/2021 Laboratory ID: WF25024-017

Matrix: Aqueous

Volatile Organic Compounds by GC/M	unds by GC/MS	nuoamo	: C	rganic	atile	Vol
------------------------------------	---------------	--------	-----	--------	-------	-----

Run Prep Method 1 5030B	Analytical Method 8260D	•	vsis Date Analyst 2021 1341 BWS	Prep Date	Batch 98224			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01-6	8260D	0.45 J	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01-4	8260D	1.9	1.0	0.40	ug/L	1
Xylenes (total)		1330-20-7	8260D	1.7	1.0	0.40	ug/L	1
Surrogate	Q % I	Run 1 Accept Recovery Limi						
Bromofluorobenzene		96 70-1	30					

70-130

99 70-130 1,2-Dichloroethane-d4 70-130 Toluene-d8 99

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		-	Analysis Date Analyst Prep 07/01/2021 1731 JWO		Batch 97631			
			CAS	Analytical					
Parameter		Nun	nber	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limit						
1.2-Dichloroethane-d4		105	40-17	0					

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175	Dilution 1	•	sis Date Analyst 2021 1133 TML	Prep	Date	Batch 97348			
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ethane		74-8	34-0	RSK - 175	ND		10	2.5	ug/L	1
Ethene		74-8	35-1	RSK - 175	ND		10	2.5	ug/L	1
Methane		74-	82-8	RSK - 175	6.7	j	10	2.5	ug/L	1
Propane		74-9	98-6	RSK - 175	ND		15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and > DL

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time W = Reported on wet weight basis Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

S = MS/MSD failure

Description: DP-3-20-GW
Date Sampled:06/24/2021 1200
Date Received: 06/24/2021

Laboratory ID: WF25024-018

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1407 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.6	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND J	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/Ļ	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L ·	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	. 1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Description: DP-3-20-GW Date Sampled:06/24/2021 1200 Date Received: 06/24/2021

Laboratory ID: WF25024-018

Matrix: Aqueous

0.40

0.40

ug/L

ug/L

1.0

1.0

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution Analysis Date Analyst 1 07/08/2021 1407 BWS		Prep Date	Batch 98224				
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1

8260D

8260D

ND

ND

75-01-4

1330-20-7

Volatile Organic Compounds by GC/MS

Acceptance Limits Run 1 Q % Recovery Surrogate 70-130 Bromofluorobenzene 90 1,2-Dichloroethane-d4 97 70-130 95 70-130 Toluene-d8

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	an include 2 lates 7 lines, yet 2 lates 7 lines, yet 2 lates 2			Batch 97631				
Para	ameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-[Dioxane		123-9	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

Run 1 Acceptance Surrogate % Recovery 107 40-170

1,2-Dichloroethane-d4

Vinyl chloride

Xylenes (total)

Run Prep Method	Analytical Method RSK - 175	Dilution 1	Analysis Date Analyst F 06/30/2021 1149 TML		Prep Date	Batch 97348			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-8	85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-8	82-8	RSK - 175	17	10	2.5	ug/L	1
Propane		74-9	98-6	RSK - 175	ND	15	5.0	ug/L	1

Dissolved Gases

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and > DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: **DP-12-20-GW**Date Sampled:06/23/2021 1810

Date Received: 06/24/2021

Laboratory ID: WF25024-019
Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/06/2021 1829 TML		97934
2	5030B	8260D	100	07/08/2021 1826 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	10	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	0.41 J	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	110	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	120	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	2.4	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	8.7	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	2.4	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	2100 H	J 100	40	ug/L	2

LOQ = Limit of Quantitation
ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-12-20-GW

Date Sampled:06/23/2021 1810 Date Received: 06/24/2021

Laboratory ID: WF25024-019

Matrix: Aqueous

	Volatii	<u>e Orga</u>	inic Compounds i	by GC/IVIS		
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	

97934 5030B 8260D 07/06/2021 1829 TML 1 1 98224 2 5030B 8260D 100 07/08/2021 1826 BWS

Parameter	CAS Number	Analytical Method	Result C	LOQ	DL	Units	Run
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	1.6	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	280 H	J 100	40	ug/L	2
Trichloroethene	79-01-6	8260D	5800 H	レ 丁 100	40	ug/L	2
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	7.0	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	86	1.0	0.40	ug/L	1

Acceptance Run 2 Acceptance Run 1 % Recovery % Recovery Q Surrogate Q Limits Limits Bromofluorobenzene 104 70-130 Н 92 70-130 110 70-130 Н 100 70-130 1,2-Dichloroethane-d4 98 70-130 104 70-130 Н Toluene-d8

Volatile Organic Compounds by GC/MS (SIM)

Analytical Method Dilution Analysis Date Analyst Prep Date Run Prep Method Batch 8260D (SIM) 07/01/2021 1820 JWO 97631 5030B

	CAS	Analytical					_
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

Run 1 Acceptance Surrogate % Recovery Limits 40-170 105

1,2-Dichloroethane-d4

Dissolved Gases							
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch		
1	RSK - 175	1	06/30/2021 1205 TML		97348		

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	80	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and ≥ DL L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Description: DP-14-10-GW Date Sampled: 06/24/2021 1130 Date Received: 06/24/2021

Laboratory ID: WF25024-020 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

					<u> </u>		
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	5	07/08/2021 1800 BWS		98224	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL.	Units	Run
Acetone	67-64-1	8260D	ND	100	25	ug/L	1
Benzene	71-43-2	8260D	ND	5.0	2.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	5.0	2.0	ug/L	1
Bromoform	75-25-2	8260D	ND	5.0	2.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	10	2.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	50	10	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	5.0	2.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	5.0	2.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	5.0	2.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	10	2.0	ug/L	1
Chloroform	67-66-3	8260D	ND	5.0	2.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.0	2.5	ug/L	1
Cyclohexane	110-82-7	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.0	2.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.0	2.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.0	2.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.0	2.0	ug/L	, 1
Dichlorodifluoromethane	75-71-8	8260D	ND /	10	3.0	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.0	2.0	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.0	2.0	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.0	2.0	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.0	2.0	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.0	2.0	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.0	2.0	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	5.0	2.0	ug/L	1
2-Hexanone	591-78-6	8260D	ND	50	10	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	5.0	2.0	ug/L	1
Methyl acetate	79-20-9	8260D	ND	5.0	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.0	2.0	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	50	10	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	25	2.0	ug/L	1
Methylene chloride	75-09-2	8260D	ND	5.0	2.0	ug/L	1
Styrene	100-42-5	8260D	ND	5.0	2.1	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.0	2.0	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	5.0	2.0	ug/L	1
Toluene	108-88-3	8260D	ND	5.0	2.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-14-10-GW

Date Sampled:06/24/2021 1130 Date Received: 06/24/2021

Laboratory ID: WF25024-020

Matrix: Aqueous

Volatile	Organic	Compound	de k	w (GC/MS
vulatile	Uluallic	Compount	45 1	JV'	

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/08/2021 1800 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	5.0	2.1	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	5.0	2.0	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	5.0	2.0	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	5.0	2.0	ug/L	1
Trichloroethene	79-01-6	8260D	ND	5.0	2.0	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	5.0	2.0	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	5.0	2.0	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	5.0	2.0	ug/L	1

Run 1 % Recovery	Limits
93	70-130
100	70-130
100	70-130
	% Recovery 93 100

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		Analysis Date Analys 07/01/2021 2328 CJL2	•	Batch 97674			
Parameter			CAS Analytical	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptance Limits					
1.2-Dichloroethane-d4	· · · · · · · · · · · · · · · · · · ·	100	40-170					

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175	Dilution 1	•	vsis Date Analyst 2021 1221 TML	Prep	Date	Batch 97348			
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ethane		74-	84-0	RSK - 175	2.9	J	10	2.5	ug/L	1
Ethene		74-	85-1	RSK - 175	2.5	J	10	2.5	ug/L	1
Methane		74-	82-8	RSK - 175	57		10	2.5	ug/L	1
Propane		74-	98-6	RSK - 175	ND		15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: EB-01-062421 Date Sampled:06/24/2021 1705 Date Received: 06/24/2021

Laboratory ID: WF25024-021

Matrix: Aqueous

Inorganic non-metals

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	-	(Alkalinity @) SM 2320B-2011	1	06/25/2021 2018 DAK		96947	
2		(Chloride) 9056A	1	07/01/2021 1730 MSG		97742	
1		(Nitrate - N) 9056A	1	06/25/2021 2111 AMR		97474	
2		(Sulfate) 9056A	1	07/01/2021 1730 MSG		97739	
1		(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672	
1		(TOC) 9060A	1	06/27/2021 1346 AAB		96944	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	ND	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	ND	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.5	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/08/2021 1133 BWS		98224	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND 📈	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC	Range:	0 - 0
-----	--------	-------

H = Out of holding time

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated result < LOQ and <math>\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: EB-01-062421

Date Sampled:06/24/2021 1705 Date Received: 06/24/2021

Laboratory ID: WF25024-021

Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

1,2-Dichloroethane-d4 100 40-170

Dissolved Gases

Run Prep Method A	nalytical Method Dilution RSK - 175 1	O6/30/2021		ep Date	Batch 97348			
Parameter	Nu	CAS A	nalytical Method Resu	ult Q	LOQ	DL	Units	Run
Ethane	74	-84-0	RSK - 175 N	D	10	2.5	ug/L	1
Ethene	74	-85-1	RSK - 175 N	D	10	2.5	ug/L	1
Methane	74	-82-8	RSK - 175 3.	5 J	10	2.5	ug/L	1
Propane	74	-98-6	RSK - 175 N	D	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: SB-103-SO (1-3) Date Sampled: 06/24/2021 1740

Date Received: 06/25/2021

Laboratory ID: WF26008-001

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)	
1	5035	8260D	1	06/30/2021 1835 JM1		97424	6.46	
2	5035 High	8260D	1	07/02/2021 1752 JM1		97802	6.44	
3	5035 High	8260D	4	07/08/2021 1328 JM1		98260	6.44	

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	48		18	7.2	ug/kg	1
Benzene	71-43-2	8260D	ND		4.5	1.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND		4.5	1.8	ug/kg	1
Bromoform	75-25-2	8260D	ND		4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND		4.5	2.7	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	4.7	J	18	3.6	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND		4.5	1.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND		4.5	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND		4.5	1.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND		4.5	1.8	ug/kg	1
Chloroform	67-66-3	8260D	ND		4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND		4.5	2.7	ug/kg	1
Cyclohexane	110-82-7	8260D	ND		4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND		4.5	1.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND		4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND		4.5	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND		4.5	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND		4.5	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND		4.5	1.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	مر	4.5	2.7	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND		4.5	1.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND		4.5	1.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND		4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND		4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND		4.5	1.8	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND		4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND		4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND		4.5	1.8	ug/kg	1
Ethylbenzene	100-41-4	8260D	3300		260	110	ug/kg	2
2-Hexanone	591-78-6	8260D	ND		8.9	3.6	ug/kg	1
Isopropylbenzene	98-82-8	8260D	8.2		4.5	1.8	ug/kg	1
Methyl acetate	79-20-9	8260D	ND		4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND		4.5	1.8	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND		8.9	3.6	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND		4.5	1.8	ug/kg	1
Methylene chloride	75-09-2	8260D	ND		4.5	1.8	ug/kg	1
Styrene	100-42-5	8260D	ND		4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND		4.5	1.8	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: SB-103-SO (1-3) Date Sampled: 06/24/2021 1740

Date Received: 06/25/2021

Laboratory ID: WF26008-001

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)	
1	5035	8260D	1	06/30/2021 1835 JM1		97424	6.46	
2	5035 High	8260D	1	07/02/2021 1752 JM1		97802	6.44	
3	5035 High	8260D	4	07/08/2021 1328 JM1		98260	6.44	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Tetrachloroethene	127-18-4	8260D	ND	4.5	1.8	ug/kg	1
Toluene	108-88-3	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	4.5	1.8	ug/kg	1
Trichloroethene	79-01-6	8260D	ND	4.5	1.8	ug/kg	1
Trichlorofluoromethane	75-69-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride	75-01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)	1330-20-7	8260D	11000	2100	840	ug/kg	3

Surrogate	Q	Run 1 A % Recovery	Acceptance Limits	Q	Run 2 A % Recovery	cceptance Limits	Q	Run 3 % Recovery	Acceptance Limits
Bromofluorobenzene		112	47-138		113	47-138		108	47-138
1,2-Dichloroethane-d4		99	53-142		105	53-142		112	53-142
Toluene-d8		108	68-124		103	68-124		98	68-124

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure

Description: SB-108-SO (1-3) Date Sampled: 06/24/2021 1750

Date Received: 06/25/2021

Laboratory ID: WF26008-002

Matrix: Solid

% Solids: 83.1 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method I	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260D	1	07/06/2021 1211 JM1		97945	6.77

2 5035	8260D 1 07/06	/2021 1211 JM1		97945	6.77		
Parameter	CAS Number	Analytical Method	Result	Q LOQ	DL	Units	Run
Acetone	67-64-1	8260D	100	18	7.1	ug/kg	2
Benzene	71-43-2	8260D	ND	4.4	1.8	ug/kg	2
Bromodichloromethane	75-27-4	8260D	ND	4.4	1.8	ug/kg	2
Bromoform	75-25-2	8260D	ND	4.4	1.8	ug/kg	2
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.4	2.7	ug/kg	2
2-Butanone (MEK)	78-93-3	8260D	16	J 18	3.6	ug/kg	2
Carbon disulfide	75-15-0	8260D	ND	4.4	1.8	ug/kg	2
Carbon tetrachloride	56-23-5	8260D	ND	4.4	1.8	ug/kg	2
Chlorobenzene	108-90-7	8260D	ND	4.4	1.8	ug/kg	2
Chloroethane	75-00-3	8260D	ND	4.4	1.8	ug/kg	2
Chloroform	67-66-3	8260D	ND	4.4	1.8	ug/kg	2
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.4	2.7	ug/kg	2
Cyclohexane	110-82-7	8260D	ND	4.4	1.8	ug/kg	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.4	1.8	ug/kg	2
Dibromochloromethane	124-48-1	8260D	ND	4.4	1.8	ug/kg	2
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.4	1.8	ug/kg	2
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.4	1.8	ug/kg	2
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.4	1.8	ug/kg	2
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.4	1.8	ug/kg	2
Dichlorodifluoromethane	75-71-8	8260D	ND	4.4	2.7	ug/kg	2
1,1-Dichloroethane	75-34-3	8260D	ND	4.4	1.8	ug/kg	2
1,2-Dichloroethane	107-06-2	8260D	ND	4.4	1.8	ug/kg	2
1,1-Dichloroethene	75-35-4	8260D	ND	4.4	1.8	ug/kg	2
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.4	1.8	ug/kg	2
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.4	1.8	ug/kg	2
1,2-Dichloropropane	78-87-5	8260D	ND	4.4	1.8	ug/kg	2
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.4	1.8	ug/kg	2
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.4	1.8	ug/kg	2
Ethylbenzene	100-41-4	8260D	2.8	J 4.4	1.8	ug/kg	2
2-Hexanone	591-78-6	8260D	ND	8.9	3.6	ug/kg	2
Isopropylbenzene	98-82-8	8260D	ND	4.4	1.8	ug/kg	2
Methyl acetate	79-20-9	8260D	ND	4.4	1.8	ug/kg	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.4	1.8	ug/kg	2
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.9	3.6	ug/kg	2
Methylcyclohexane	108-87-2	8260D	ND	4.4	1.8	ug/kg	2
Methylene chloride	75-09-2	8260D	ND	4.4	1.8	ug/kg	2
Styrene	100-42-5	8260D	ND	4.4	1.8	ug/kg	2
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.4	1.8	ug/kg	2
Tetrachloroethene	127-18-4	8260D	ND	4.4	1.8	ug/kg	2
Toluene	108-88-3	8260D	ND	4.4	1.8	ug/kg	2

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: SB-108-SO (1-3) Date Sampled: 06/24/2021 1750

Date Received: 06/25/2021

Laboratory ID: WF26008-002

Matrix: Solid

% Solids: 83.1 06/26/2021 1851

Run Prep Method 2 5035	Analytical Method 8260D	Dilution 1	-	sis Date Analyst 021 1211 JM1	Prep Da	97945	Sample Wt.(g) 6.77		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	13-1	8260D	ND	4.4	1.8	ug/kg	2
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.4	1.8	ug/kg	2
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.4	1.8	ug/kg	2
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.4	1.8	ug/kg	2
Trichloroethene		79-	01-6	8260D	ND	4.4	1.8	ug/kg	2
Trichlorofluoromethane		75-	69-4	8260D	ND	4.4	1.8	ug/kg	2
Vinyl chloride		75-	01-4	8260D	ND	4.4	2.7	ug/kg	2
Xylenes (total)		1330-	20-7	8260D	8.7 J	8.9	3.6	ug/kg	2
Surrogate	Q %	Run 2 Recovery	Acceptar Limits						
Bromofluorobenzene		96	47-13	8					
1,2-Dichloroethane-d4		100	53-14	2					
Toluene-d8		101	68-12	4					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-105-SO (1-2) Date Sampled: 06/24/2021 1830

Date Received: 06/25/2021

Laboratory ID: WF26008-003

Matrix: Solid

% Solids: 91.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method A 1 5035	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1923 JM1	Prep	Date	Batch 97424	Sample Wt.(g) 5.50		
Parameter		Num	CAS	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-6	34-1	8260D	68		20	8.0	ug/kg	1
Benzene		71-4	13-2	8260D	ND		5.0	2.0	ug/kg	1
Bromodichloromethane		75-2	27-4	8260D	ND		5.0	2.0	ug/kg	1
Bromoform		75-2	25-2	8260D	ND		5.0	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-8	33-9	8260D	ND		5.0	3.0	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	4.5	J	20	4.0	ug/kg	1
Carbon disulfide		75-1	15-0	8260D	ND		5.0	2.0	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND		5.0	2.0	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND		5.0	2.0	ug/kg	1
Chloroethane		75-0	00-3	8260D	ND		5.0	2.0	ug/kg	1
Chloroform		67-6	66-3	8260D	ND		5.0	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	37-3	8260D	ND		5.0	3.0	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCF	P)	96-1	12-8	8260D	ND		5.0	2.0	ug/kg	1
Dibromochloromethane	•	124-4	18-1	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dichlorobenzene		95-5	50-1	8260D	ND		5.0	2.0	ug/kg	1
1,3-Dichlorobenzene		541-7	'3-1	8260D	ND		5.0	2.0	ug/kg	1
1,4-Dichlorobenzene		106-4	16-7	8260D	ND		5.0	2.0	ug/kg	1
Dichlorodifluoromethane		75-7	71-8	8260D	ND	V	5.0	3.0	ug/kg	1
1,1-Dichloroethane		75-3	34-3	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND		5.0	2.0	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND		5.0	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND		5.0	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-6	60-5	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dichloropropane		78-8	37-5	8260D	ND		5.0	2.0	ug/kg	1
cis-1,3-Dichloropropene		10061-0)1-5	8260D	ND		5.0	2.0	ug/kg	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		5.0	2.0	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND		5.0	2.0	ug/kg	1
2-Hexanone		591-7	'8-6	8260D	ND		10	4.0	ug/kg	1
Isopropylbenzene		98-8	32-8	8260D	ND		5.0	2.0	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND		5.0	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0)4-4	8260D	ND		5.0	2.0	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		10	4.0	ug/kg	1
Methylcyclohexane		108-8	37-2	8260D	ND	X	5.0	2.0	ug/kg	1
Methylene chloride		75-0	9-2	8260D	ND		5.0	2.0	ug/kg	1
Styrene		100-4		8260D	ND		5.0	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3		8260D	ND		5.0	2.0	ug/kg	1
Tetrachloroethene		127-1		8260D	ND		5.0	2.0	ug/kg	1
			-							

LOQ = Limit of Quantitation

Toluene

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

8260D

ND

5.0

Q = Surrogate failure

1

ug/kg

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

2.0

108-88-3

Description: SB-105-SO (1-2) Date Sampled: 06/24/2021 1830

Date Received: 06/25/2021

Laboratory ID: WF26008-003

Matrix: Solid

% Solids: 91.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D		Analysis 06/30/202	Date Analyst 21 1923 JM1	Prep Date	Batch 97424	Sample Wt.(g) 5.50		
Parameter			CAS .	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-	13-1	8260D	ND	5.0	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.0	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.0	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.0	2.0	ug/kg	1
Trichloroethene		79-6	01-6	8260D	ND	5.0	2.0	ug/kg	1
Trichlorofluoromethane		75-0	69-4	8260D	ND	5.0	2.0	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	5.0	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.0	ug/kg	1
Surrogate	Q %	Run 1 A	Acceptano Limits	e					
Bromofluorobenzene		114	47-138						
1,2-Dichloroethane-d4		97	53-142						
Toluene-d8		106	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

Description: **SB-106-SO (1-3)**Date Sampled:06/24/2021 1810

Date Received: 06/25/2021

Laboratory ID: WF26008-004

Matrix: Solid

% Solids: 89.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Ana 1 5035	llytical Method I 8260D	Dilution 1		ysis Date Analyst /2021 1957 JM1	Prep	Date	Batch 97424	Sample Wt.(g) 5.66		
Parameter		O Num	CAS ber	Analytical Method	Result	Q	LOQ	DL	Units	Rur
Acetone		67-6	4-1	8260D	57		20	7.9	ug/kg	1
Benzene		71-4	3-2	8260D	ND		5.0	2.0	ug/kg	1
Bromodichloromethane		75-2	7-4	8260D	ND		5.0	2.0	ug/kg	1
Bromoform		75-2	5-2	8260D	ND		5.0	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-8	3-9	8260D	ND		5.0	3.0	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	5.1	J	20	4.0	ug/kg	1
Carbon disulfide		75-1	5-0	8260D	ND		5.0	2.0	ug/kg	1
Carbon tetrachloride		56-2	3-5	8260D	ND		5.0	2.0	ug/kg	1
Chlorobenzene		108-9	0-7	8260D	ND		5.0	2.0	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND		5.0	2.0	ug/kg	1
Chloroform		67-6	6-3	8260D	ND		5.0	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	7-3	8260D	ND		5.0	3.0	ug/kg	1
Cyclohexane		110-8	2-7	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-1	2-8	8260D	ND		5.0	2.0	ug/kg	1
Dibromochloromethane		124-4	8-1	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dichlorobenzene		95-5	0-1	8260D	ND		5.0	2.0	ug/kg	1
1,3-Dichlorobenzene		541-7	3-1	8260D	ND		5.0	2.0	ug/kg	1
1,4-Dichlorobenzene		106-4	6-7	8260D	ND		5.0	2.0	ug/kg	1
Dichlorodifluoromethane		75-7	1-8	8260D	ND	V	5.0	3.0	ug/kg	1
1,1-Dichloroethane		75-3	4-3	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND		5.0	2.0	ug/kg	1
1,1-Dichloroethene		75-3	5-4	8260D	ND		5.0	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND		5.0	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND		5.0	2.0	ug/kg	1
1,2-Dichloropropane		78-8	7-5	8260D	ND		5.0	2.0	ug/kg	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND		5.0	2.0	ug/kg	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		5.0	2.0	ug/kg	1
Ethylbenzene		100-4	1-4	8260D	ND		5.0	2.0	ug/kg	1
2-Hexanone		591-7	8-6	8260D	ND		9.9	4.0	ug/kg	1
Isopropylbenzene		98-8	2-8	8260D	ND		5.0	2.0	ug/kg	1
Methyl acetate		79-2	0-9	8260D	ND		5.0	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND		5.0	2.0	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		9.9	4.0	ug/kg	1
Methylcyclohexane		108-8		8260D	ND	¥	5.0	2.0	ug/kg	1
Methylene chloride		75-0		8260D	ND	•	5.0	2.0	ug/kg	1
Styrene		100-4		8260D	ND		5.0	2.0	ug/kg	1
			-							

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

8260D

8260D

8260D

ND

ND

ND

DL = Detection Limit

5.0

5.0

5.0

Q = Surrogate failure

1

1

ug/kg

ug/kg

ug/kg

ND = Not detected at or above the DL H = Out of holding time

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Toluene

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

2.0

2.0

2.0

79-34-5

127-18-4

108-88-3

Description: SB-106-SO (1-3) Date Sampled:06/24/2021 1810

Date Received: 06/25/2021

Laboratory ID: WF26008-004

Matrix: Solid

% Solids: 89.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D		Analysis 06/30/202	Date Analyst 1 1957 JM1	Prep Date	Batch 97424	Sample Wt.(g) 5.66		
Parameter			CAS /	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-	13-1	8260D	ND	5.0	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.0	2.0	ug/kg	⁻ 1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.0	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.0	2.0	ug/kg	1 -
Trichloroethene		79-	01-6	8260D	ND	5.0	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.0	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.0	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.9	4.0	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptanc Limits	е					
Bromofluorobenzene		113	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		106	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

Description: SB-102-SS (1-1.5) Date Sampled: 06/24/2021 1700

Date Received: 06/25/2021

Laboratory ID: WF26008-005

Matrix: Solid

% Solids: 87.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 2021 JM1	Prep	Date	Batch 97424	Sample Wt.(g) 6.92		
Parameter		Num	CAS ber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-6	4-1	8260D	36		17	6.6	ug/kg	1
Benzene		71-4	3-2	8260D	ND		4.1	1.7	ug/kg	1
Bromodichloromethane		75-2	7-4	8260D	ND		4.1	1.7	ug/kg	1
Bromoform		75-2	5-2	8260D	ND		4.1	1.7	ug/kg	1
Bromomethane (Methyl bromide)		74-8	3-9	8260D	ND		4.1	2.5	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	ND		17	3.3	ug/kg	1
Carbon disulfide		75-1	5-0	8260D	ND		4.1	1.7	ug/kg	1
Carbon tetrachloride		56-2	3-5	8260D	ND		4.1	1.7	ug/kg	1
Chlorobenzene		108-9	0-7	8260D	ND		4.1	1.7	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND		4.1	1.7	ug/kg	1
Chloroform		67-6	6-3	8260D	ND		4.1	1.7	ug/kg	1
Chloromethane (Methyl chloride)		74-8	7-3	8260D	ND		4.1	2.5	ug/kg	1
Cyclohexane		110-8	2-7	8260D	ND		4.1	1.7	ug/kg	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-1	2-8	8260D	ND		4.1	1.7	ug/kg	1
Dibromochloromethane		124-4	8-1	8260D	ND		4.1	1.7	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND		4.1	1.7	ug/kg	1
1,2-Dichlorobenzene		95-5	0-1	8260D	ND		4.1	1.7	ug/kg	1
1,3-Dichlorobenzene		541-7	3-1	8260D	ND		4.1	1.7	ug/kg	1
1,4-Dichlorobenzene		106-4	6-7	8260D	ND		4.1	1.7	ug/kg	1
Dichlorodifluoromethane		75-7	1-8	8260D	ND	1	4.1	2.5	ug/kg	1
1,1-Dichloroethane		75-3	4-3	8260D	ND		4.1	1.7	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND		4.1	1.7	ug/kg	1
1,1-Dichloroethene		75-3	5-4	8260D	ND		4.1	1.7	ug/kg	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND		4.1	1.7	ug/kg	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND		4.1	1.7	ug/kg	1
1,2-Dichloropropane		78-8	7-5	8260D	ND		4.1	1.7	ug/kg	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND		4.1	1.7	ug/kg	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		4.1	1.7	ug/kg	1
Ethylbenzene		100-4	1-4	8260D	ND		4.1	1.7	ug/kg	1
2-Hexanone		591-7	8-6	8260D	ND		8.3	3.3	ug/kg	1
Isopropylbenzene		98-8	2-8	8260D	ND		4.1	1.7	ug/kg	1
Methyl acetate		79-2	0-9	8260D	ND		4.1	1.7	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND		4.1	1.7	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		8.3	3.3	ug/kg	1
Methylcyclohexane		108-8	7-2	8260D	ND	¥	4.1	1.7	ug/kg	1
Methylene chloride		75-0	9-2	8260D	ND		4.1	1.7	ug/kg	1
Styrene		100-4	2-5	8260D	ND		4.1	1.7	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND		4.1	1.7	ug/kg	1
Tetrachloroethene		127-1	8-4	8260D	3.0	J	4.1	1.7	ug/kg	1
Toluene		108-8	8-3	8260D	ND		4.1	1.7	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL N = Recovery is out of criteria

Q = Surrogate failure

H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and \geq DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-102-SS (1-1.5) Date Sampled:06/24/2021 1700

Date Received: 06/25/2021

Laboratory ID: WF26008-005

Matrix: Solid

% Solids: 87.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Metho 82601		Analysi 06/30/20	s Date Analyst 21 2021 JM1	Prep	Date	Batch 97424	Sample Wt.(g) 6.92		
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL.	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND		4.1	1.7	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND		4.1	1.7	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND		4.1	1.7	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	3.2	J	4.1	1.7	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND		4.1	1.7	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND		4.1	1.7	ug/kg	1
Vinyl chloride		75-	01-4	8260D	3.6	NJ	4.1	2.5	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND		8.3	3.3	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits							
Bromofluorobenzene		115	47-138							
1,2-Dichloroethane-d4	•	100	53-142							
Toluene-d8		105	68-124							

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

W = Reported on wet weight basis Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

 $J = Estimated result < LOQ and \ge DL$

Description: DP-06-20-21-GW Date Sampled:06/24/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26008-006

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1617 TML		98213

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	6.8 J	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.47 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

S = MS/MSD failure

Description: DP-06-20-21-GW Date Sampled: 06/24/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26008-006

Matrix: Aqueous

Volatil	e Organic Comp	ounds by	GC/MS
		A	

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	· 1	07/08/2021 1617 TML		98213

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Run 1 Acceptance Surrogate % Recovery Limits Bromofluorobenzene 96 70-130 1,2-Dichloroethane-d4 97 70-130 Toluene-d8 93 70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	•		t Prep	Date	Batch 97674					
Para	meter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
	Dioxane		123-9	91-1	8260D (SIM)	1.9	J	3.0	1.0	ug/L	1
Surrogate Q %			Run 1 / Recovery	Accepta Limit							

1,2-Dichloroethane-d4 103 40-170

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	•	Analysis Date Analyst 7/06/2021 1142 TML		Date	Batch 97890			
Parameter		Num	CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ethane		74-8	34-0	RSK - 175	2.8	J	10	2.5	ug/L	2
Ethene		74-8	35-1	RSK - 175	3.0	J	10	2.5	ug/L	2
Methane		74-8	32-8	RSK - 175	9.3	J	10	2.5	ug/L	2
Propane		74-9	98-6	RSK - 175	ND		15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-101-SS (1-3) Date Sampled:06/25/2021 0915

Date Received: 06/25/2021

Laboratory ID: WF26008-007

Matrix: Solid

% Solids: 88.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260D	1	06/30/2021 2044 JM1		97424	4.48

1 0000	02000 1 00/00/	ZOZ I ZO-I-I UMI			,,,,		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	25	10	ug/kg	1
Benzene	71-43-2	8260D	ND	6.3	2.5	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	6.3	2.5	ug/kg	1
Bromoform	75-25-2	8260D	ND	6.3	2.5	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	6.3	3.8	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	25	5.1	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	6.3	2.5	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	6.3	2.5	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	6.3	2.5	ug/kg	1
Chloroethane	75-00-3	8260D	ND	6.3	2.5	ug/kg	1
Chloroform	67-66-3	8260D	ND	6.3	2.5	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	6.3	3.8	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	6.3	2.5	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	6.3	2.5	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	6.3	2.5	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	6.3	2.5	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND 📈	6.3	3.8	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	6.3	2.5	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	6.3	2.5	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	6.3	2.5	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	6.3	2.5	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	6.3	2.5	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	6.3	2.5	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	6.3	2.5	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	13	5.1	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	6.3	2.5	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	6.3	2.5	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	6.3	2.5	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	13	5.1	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND /	6.3	2.5	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	6.3	2.5	ug/kg	1
Styrene	100-42-5	8260D	ND	6.3	2.5	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	6.3	2.5	ug/kg	1
Tetrachloroethene	79-34-3 127-18-4	8260D	ND	6.3	2.5 2.5	ug/kg ug/kg	1
	108-88-3	8260D	ND	6.3	2.5	ug/kg ug/kg	1
Toluene	100-08-3	020UD	IND	0.3	2.0	ug/kg	'

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: SB-101-SS (1-3) Date Sampled: 06/25/2021 0915

Date Received: 06/25/2021

Laboratory ID: WF26008-007

Matrix: Solid

% Solids: 88.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	Analysis 06/30/202	Date Analyst 1 2044 JM1	Prep Date	Batch 97424	Sample Wt.(g) 4.48		-
Parameter			CAS /	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	6.3	2.5	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	6.3	2.5	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	6.3	2.5	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	6.3	2.5	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	6.3	2.5	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	6.3	2.5	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	6.3	3.8	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	13	5.1	ug/kg	1
Surrogate	Q %1	Run 1 Recovery	Acceptano Limits	е					
Bromofluorobenzene		106	47-138						
1,2-Dichloroethane-d4		100	53-142						
Toluene-d8		101	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

Q = Surrogate failure L = LCS/LCSD failure

 $J = Estimated result < LOQ and <math>\geq DL$ S = MS/MSD failure

Date Sampled: 06/25/2021 0930

Description: DP-01-10-11-SS

Date Received: 06/25/2021

Laboratory ID: WF26008-008

Matrix: Solid

% Solids: 85.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run 1	Prep Method 5035	Analytical Method 8260D	Dilution 1		lysis Date Analyst 0/2021 2339 JM1	Prep Date	Batch 97504	Sample Wt.(g) 4.24		
Para	ameter	-		CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acet	one		67-	64-1	8260D	ND	28	11	ug/kg	1
Benz	zene		71-	43-2	8260D	ND	6.9	2.8	ug/kg	1
Bron	nodichloromethane		75-	27-4	8260D	ND	6.9	2.8	ug/kg	1
Bron	noform		75-	25-2	8260D	ND	6.9	2.8	ug/kg	1
Bron	nomethane (Methyl bromide)		74-	83-9	8260D	ND	6.9	4.2	ug/kg	1
2-Bu	itanone (MEK)		78-	93-3	8260D	ND	28	5.5	ug/kg	1
Carb	oon disulfide		75-	15-0	8260D	ND	6.9	2.8	ug/kg	1
Carb	oon tetrachloride		56-	23-5	8260D	ND	6.9	2.8	ug/kg	1
Chlo	robenzene		108-	90-7	8260D	ND	6.9	2.8	ug/kg	1
Chlo	roethane		75-	00-3	8260D	ND	6.9	2.8	ug/kg	1
Chlo	roform		67-	66-3	8260D	ND	6.9	2.8	ug/kg	1
Chlo	romethane (Methyl chloride)		74-	87-3	8260D	ND	6.9	4.2	ug/kg	1
Cycle	ohexane		110-	82-7	8260D	ND	6.9	2.8	ug/kg	1
1,2-0	Dibromo-3-chloropropane (DBC	CP)	96-	12-8	8260D	ND	6.9	2.8	ug/kg	1
Dibro	omochloromethane		124-	48-1	8260D	ND	6.9	2.8	ug/kg	1
1,2-0	Dibromoethane (EDB)		106-	93-4	8260D	ND	6.9	2.8	ug/kg	1
1,2-0	Dichlorobenzene		95-	50-1	8260D	ND	6.9	2.8	ug/kg	1
1,3-0	Dichlorobenzene		541-	73-1	8260D	ND	6.9	2.8	ug/kg	1
1,4-0	Dichlorobenzene		106-	46-7	8260D	ND	6.9	2.8	ug/kg	1
Dichl	lorodifluoromethane		75-	71-8	8260D	ND	6.9	4.2	ug/kg	1
1,1-E	Dichloroethane		75-	34-3	8260D	ND	6.9	2.8	ug/kg	1
1,2-0	Dichloroethane		107-	06-2	8260D	ND	6.9	2.8	ug/kg	1
1,1-E	Dichloroethene		75-	35-4	8260D	ND	6.9	2.8	ug/kg	1
cis-1	,2-Dichloroethene		156-	59-2	8260D	ND	6.9	2.8	ug/kg	1
trans	-1,2-Dichloroethene		156-6	30-5	8260D	ND	6.9	2.8	ug/kg	1
1,2-0	Dichloropropane		78-	87-5	8260D	ND	6.9	2.8	ug/kg	1
cis-1	,3-Dichloropropene		10061-	01-5	8260D	ND	6.9	2.8	ug/kg	1
trans	-1,3-Dichloropropene		10061-	02-6	8260D	ND	6.9	2.8	ug/kg	1
Ethyl	lbenzene		100-	41-4	8260D	ND	6.9	2.8	ug/kg	1
2-He	xanone		591-	78-6	8260D	ND	14	5.5	ug/kg	1
Isopr	opylbenzene		98-	32-8	8260D	ND	6.9	2.8	ug/kg	1
Meth	yl acetate		79-	20-9	8260D	ND	6.9	2.8	ug/kg	1
Meth	yl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	6.9	2.8	ug/kg	1
4-Me	thyl-2-pentanone		108-	10-1	8260D	ND	14	5.5	ug/kg	1
Meth	ylcyclohexane		108-	37-2	8260D	ND	6.9	2.8	ug/kg	1
Meth	ylene chloride		75-	09-2	8260D	ND	6.9	2.8	ug/kg	1
Styre	ene		100-4	12-5	8260D	ND	6.9	2.8	ug/kg	1
1,1,2	,2-Tetrachloroethane		79-	34-5	8260D	ND	6.9	2.8	ug/kg	1
Tetra	achloroethene		127-	18-4	8260D	ND	6.9	2.8	ug/kg	1
Tolue	ene		108-	38-3	8260D	ND	6.9	2.8	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Description: DP-01-10-11-SS Date Sampled:06/25/2021 0930

Date Received: 06/25/2021

Laboratory ID: WF26008-008

Matrix: Solid

% Solids: 85.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 82600		Analysis 06/30/202	Date Analyst 1 2339 JM1	Prep Date	Batch 97504	Sample Wt.(g) 4.24		
Parameter			CAS /	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260D	ND	6.9	2.8	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	6.9	2.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	6.9	2.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	6.9	2.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	6.9	2.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	6.9	2.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	6.9	4.2	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	14	5.5	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptanc Limits	е					
Bromofluorobenzene		117	47-138						
1,2-Dichloroethane-d4		107	53-142						
Toluene-d8		107	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Description: **DP-01-20-GW**Date Sampled:06/25/2021 0945

Date Received: 06/25/2021

Laboratory ID: WF26008-009

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

RunPrep MethodAnalytical MethodDilutionAnalysis DateAnalystPrep DateBatch15030B8260D107/09/2021 0439JDF98336

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	13	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachioroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	1.5	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

- Out of Holding time

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-01-20-GW Date Sampled:06/25/2021 0945 Date Received: 06/25/2021

Laboratory ID: WF26008-009

Matrix: Aqueous

Vola	tile	Or	ganic	C	on	ıρ	ou	nds	s b	y G	C/N	1S
			- T									

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	•	Date Analyst 1 0439 JDF	Prep Date	Batch 98336			
Parameter			CAS A	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	4.2	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % I	Run 1 Recovery	Acceptanc Limits	е					
Bromofluorobenzene		95	70-130						
1,2-Dichloroethane-d4		100	70-130						
Toluene-d8		97	70-130						

Volatile Organic Compounds by GC/MS (SIM)

	TOIGHIO 1	J . 9 a	o oompoundo	~, ~~, ~,				
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	Analysis Date Anal 07/02/2021 0156 CJI	•	Batch 97674			
Parameter			CAS Analytical nber Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits					
1,2-Dichloroethane-d4		106	40-170					

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	•	sis Date Analyst 2021 0927 TML	Prep Date	Batch 98028			
Parameter		Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	34-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	35-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-8	32-8	RSK - 175	3.7 J	10	2.5	ug/L	2
Propane		74-9	98-6	RSK - 175	ND	15	5.0	ug/L	2

Q = Surrogate failure DL = Detection Limit LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range L = LCS/LCSD failure $J = Estimated result < LOQ and <math>\geq DL$ P = The RPD between two GC columns exceeds 40% ND = Not detected at or above the DL N = Recovery is out of criteria S = MS/MSD failure H = Out of holding timeW = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: DP-08-10-SS

Date Sampled:06/25/2021 1020

Date Received: 06/25/2021

Laboratory ID: WF26008-010

Matrix: Solid

% Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method An	alytical Method 8260D	Dilution 1		ysis Date Analyst /2021 0003 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.71		
Parameter		(Num	CAS iber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-6	64-1	8260D	ND	18	7.1	ug/kg	1
Benzene		71-4	13-2	8260D	ND	4.5	1.8	ug/kg	1
Bromodichloromethane		75-2	27-4	8260D	ND	4.5	1.8	ug/kg	1
Bromoform		75-2	25-2	8260D	ND	4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)		74-8	33-9	8260D	ND	4.5	2.7	ug/kg	1
2-Butanone (MEK)		78-9	93-3	8260D	ND	18	3.6	ug/kg	1
Carbon disulfide		75-1	15-0	8260D	ND	4.5	1.8	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND	4.5	1.8	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane		75-0	00-3	8260D	ND	4.5	1.8	ug/kg	1
Chloroform		67-6	6-3	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)		74-8	37-3	8260D	ND	4.5	2.7	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-1	12-8	8260D	ND	4.5	1.8	ug/kg	1
Dibromochloromethane		124-4	8-1	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichlorobenzene		95-5	50-1	8260D	ND	4.5	1.8	ug/kg	1
1,3-Dichlorobenzene		541-7	'3-1	8260D	ND	4.5	1.8	ug/kg	1
1,4-Dichlorobenzene		106-4	16-7	8260D	ND	4.5	1.8	ug/kg	1
Dichlorodifluoromethane		75-7	71-8	8260D	ND	4.5	2.7	ug/kg	1
1,1-Dichloroethane		75-3	34-3	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND	4.5	1.8	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND	4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND	4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloropropane		78-8	37-5	8260D	ND	4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND	4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND	4.5	1.8	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND	4.5	1.8	ug/kg	1
2-Hexanone		591-7	'8-6	8260D	ND	8.9	3.6	ug/kg	1
Isopropylbenzene		98-8	32-8	8260D	ND	4.5	1.8	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND ·	4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0)4-4	8260D	ND	4.5	1.8	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND	8.9	3.6	ug/kg	1
Methylcyclohexane		108-8	37-2	8260D	ND	4.5	1.8	ug/kg	1
Methylene chloride		75-0	9-2	8260D	ND	4.5	1.8	ug/kg	1
Styrene		100-4		8260D	ND	4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3		8260D	ND	4.5	1.8	ug/kg	1
Tetrachloroethene		127-1		8260D	ND	4.5	1.8	ug/kg	1

LOQ = Limit of Quantitation

Toluene

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

8260D

4.5

ND

Q = Surrogate failure

1

ug/kg

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

1.8

108-88-3

Description: DP-08-10-SS

Date Sampled:06/25/2021 1020

Date Received: 06/25/2021

Laboratory ID: WF26008-010

Matrix: Solid

% Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	Analysis 07/01/20	s Date Analyst 21 0003 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.71		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.5	1.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.5	1.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.9	3.6	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptane Limits	ce					
Bromofluorobenzene		121	47-138						
1,2-Dichloroethane-d4		112	53-142						
Toluene-d8		109	68-124						

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Description: EB-01-062521 Date Sampled:06/25/2021 1100 Date Received: 06/25/2021

Laboratory ID: WF26008-011

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

		10101		u		
Run	Prep Method	Analytical Method	d Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	82600) 1	07/09/2021 0414 JDF		. 98336

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	. 1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: EB-01-062521

Date Sampled:06/25/2021 1100 Date Received: 06/25/2021

Laboratory ID: WF26008-011

Matrix: Aqueous

Volatile	Organic	Compounds	by GC/MS
----------	---------	-----------	----------

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 0414 JDF		98336

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 A % Recovery	Acceptance Limits
Bromofluorobenzene		93	70-130
1,2-Dichloroethane-d4		101	70-130
Toluene-d8		99	70-130

Volatile Organic Compounds by GC/MS (SIM)

		J . 9 w		~~,	00,,,,				
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	Analysis Date 07/01/2021 2238	•	Prep Date	Batch 97674			
Parameter			CAS Analyti	cal	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1 8260D	(SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits						
1,2-Dichloroethane-d4		102	40-170						

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	•	is Date Analyst 021 0943 TML	Prep Date	Batch 98028			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-	84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-	85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-	82-8	RSK - 175	ND	10	2.5	ug/L	2

74-98-6

LOQ = Limit of Quantitation

Propane

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

RSK - 175

ND

15

5.0

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

2

ug/L

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: DP-04 (1-3) SS Date Sampled:06/25/2021 1100

Date Received: 06/25/2021

Laboratory ID: WF26008-012

Matrix: Solid

% Solids: 78.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method A 1 5035	Analytical Method 8260D	Dilution 1		lysis Date Analyst 1/2021 0027 JM1	Prep Date	97504	Sample Wt.(g) 6.48		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-	64-1	8260D	19 J	20	7.9	ug/kg	1
Benzene		71-	43-2	8260D	ND	4.9	2.0	ug/kg	1
Bromodichloromethane		75-	27-4	8260D	ND	4.9	2.0	ug/kg	1
Bromoform		75-	25-2	8260D	ND	4.9	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-	83-9	8260D	ND	4.9	3.0	ug/kg	1
2-Butanone (MEK)		78-	93-3	8260D	ND	20	3.9	ug/kg	1
Carbon disulfide		75-	15-0	8260D	ND	4.9	2.0	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND	4.9	2.0	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND	4.9	2.0	ug/kg	1
Chloroethane		75-0	00-3	8260D	ND	4.9	2.0	ug/kg	1
Chloroform		67-6	36-3	8260D	ND	4.9	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	87-3	8260D	ND	4.9	3.0	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP	")	96-	12-8	8260D	ND	4.9	2.0	ug/kg	1
Dibromochloromethane	•	124-4	18-1	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichlorobenzene		95-	50-1	8260D	ND	4.9	2.0	ug/kg	1
1,3-Dichlorobenzene		541-7	73-1	8260D	ND	4.9	2.0	ug/kg	1
1,4-Dichlorobenzene		106-4	16-7	8260D	ND	4.9	2.0	ug/kg	1
Dichlorodifluoromethane		75-	71-8	8260D	ND	4.9	3.0	ug/kg	1
1.1-Dichloroethane		75-3	34-3	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloroethane		107-0	06-2	8260D	ND	4.9	2.0	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND	4.9	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	4.9	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-6	30-5	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloropropane		78-8	37-5	8260D	ND	4.9	2.0	ug/kg	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND	4.9	2.0	ug/kg	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	4.9	2.0	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND	4.9	2.0	ug/kg	1
2-Hexanone		591-7	78-6	8260D	ND	9.9	3.9	ug/kg	1
Isopropylbenzene		98-	32-8	8260D	ND	4.9	2.0	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND	4.9	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	4.9	2.0	ug/kg	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	9.9	3.9	ug/kg	1
Methylcyclohexane		108-8	37-2	8260D	ND	4.9	2.0	ug/kg	1
Methylene chloride		75-0	09-2	8260D	ND	4.9	2.0	ug/kg	1
Styrene		100-4	1 2-5	8260D	ND	4.9	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND	4.9	2.0	ug/kg	1
Tetrachloroethene		127-		8260D	ND	4.9	2.0	ug/kg	1
Toluene		108-8		8260D	ND	4.9	2.0	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: DP-04 (1-3) SS Date Sampled:06/25/2021 1100

Date Received: 06/25/2021

Laboratory ID: WF26008-012

Matrix: Solid

% Solids: 78.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	Analysis 07/01/202	Date Analyst 1 0027 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.48		
Parameter			CAS A	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.9	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.9	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.9	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.9	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.9	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.9	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.9	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.9	3.9	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptanc Limits	e					
Bromofluorobenzene		121	47-138						
1,2-Dichloroethane-d4		125	53-142						
Toluene-d8		108	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: TRIP BLANK Date Sampled:06/25/2021 1145 Date Received: 06/25/2021

Laboratory ID: WF26008-013

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1039 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: TRIP BLANK Date Sampled:06/25/2021 1145 Date Received: 06/25/2021

1,2-Dichloroethane-d4

Toluene-d8

Laboratory ID: WF26008-013

Matrix: Aqueous

Volatile Organic Compounds by GC/MS Analytical Method Dilution Analysis Date Analyst Prep Date

Run Prep Method 1 5030B	Analytical Method 8260D		ysis Date Analyst 1/2021 1039 TML	Prep Date	Batch 98390			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 Accep Recovery Lim						
Bromofluorobenzene		103 70-	130					

70-130

70-130

111

108

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-4D

Date Sampled:06/25/2021 0920 Date Received: 06/25/2021 Laboratory ID: WF26008-014

Matrix: Aqueous

Inorganic non-metals

	morganio non motale									
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch					
1	(Alkalinity @) SM 2320B-2011	1	07/01/2021 2155 DAK		97676					
1	(Chloride) 9056A	1	06/26/2021 1854 AMR		97480					
1	(Nitrate - N) 9056A	1	06/26/2021 1854 AMR		97479					
1	(Sulfate) 9056A	1	06/26/2021 1854 AMR		97481					
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672					
1	(TOC) 9060A	1	06/27/2021 1410 AAB		96944					

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND		20	20	mg CaCO3/L	1
Chloride		9056A	1.8		1.0	0.25	mg/L	1
Nitrate - N		9056A	0.015	j	0.020	0.0050	mg/L	1
Sulfate		9056A	0.93	J	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND		1.0	1.0	mg/L	1
тос		9060A	1.7		1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

		7 9 10 (1	5 -	anno oompoumas a	,	
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1238 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chiorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 1.642 - 1.676				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4D

Date Sampled:06/25/2021 0920 Date Received: 06/25/2021

Laboratory ID: WF26008-014

Matrix: Aqueous

Volatile	Organic	Compounds	b'	y GC/MS

Run Prep Method An 1 5030B	alytical Method 8260D	Dilution 1		Date Analyst 21 1238 TML	Prep	Date	Batch 98390			
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-	35-4	8260D	0.47	J	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-	60-5	8260D	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100	41-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-	78-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-	82-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-	20-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-	87-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-	09-2	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-	42-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-	18-4	8260D	19		1.0	0.40	ug/L	1
Toluene		108-	88-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane			13-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	0.73	J	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND		1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND		1.0	0.40	ug/L	1
Surrogate	Q % I	Run 1 Recovery	Acceptano Limits	:e						
Bromofluorobenzene		101	70-130							
1,2-Dichloroethane-d4		109	70-130							
Toluene-d8		110	70-130							

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method Analytical Method 5030B 8260D (SIM)		Dilution 1	Dilution Analysis Date Analyst 1 07/02/2021 0221 CJL2		Date	Batch 97674			
Para	meter			CAS Analy	/tical thod Resul	t Q	LOQ	DL	Units	Run
1,4-0	Dioxane		123-	91-1 8260	O (SIM) ND		3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4D

Date Sampled:06/25/2021 0920 Date Received: 06/25/2021

Laboratory ID: WF26008-014

Matrix: Aqueous

Acceptance Limits Run 1 Q % Recovery Surrogate 40-170

102 1,2-Dichloroethane-d4

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	lution Analysis Date Analyst 1 07/07/2021 0959 TML		Prep Date	Batch 98028			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL .	Units	Run
Ethane		74-8	84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-8	82-8	RSK - 175	ND	10	2.5	ug/L	2
Propane		74-9	98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-1D

Date Sampled: 06/25/2021 1045 Date Received: 06/25/2021

Laboratory ID: WF26008-015

Matrix: Aqueous

Inorganic non-metals

	morganio non motato									
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch					
1	(Alkalinity @) SM 2320B-2011	1	07/01/2021 2202 DAK		97676					
1	(Chloride) 9056A	1	06/26/2021 1957 AMR		97480					
1	(Nitrate - N) 9056A	1	06/26/2021 1957 AMR		97479					
1	(Sulfate) 9056A	1	06/26/2021 1957 AMR		97481					
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672					
1	(TOC) 9060A	1	06/27/2021 1434 AAB		96944					

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	2.2	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	0.74 J	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	1.3	1.0	1.0	mg/L	1
TOC		9060A	2.8	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

		T Olutio	J . 9 4	ino compoundo	J,	
Run	Prep Method	Analytical Method Dile	ution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1302 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acetone	67-64-1	8260D	ND .	20	5.0	ug/L	. 1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 2.776 - 2.82				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-1D

Bromofluorobenzene

Toluene-d8

1,2-Dichloroethane-d4

Date Sampled:06/25/2021 1045 Date Received: 06/25/2021 Laboratory ID: WF26008-015
Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		sis Date Analyst 2021 1302 TML	Prep	Date	Batch 98390			
Parameter		Num	CAS iber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-3	5-4	8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	0.94	J	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	7-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-4	1-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-7	8-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-8	2-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-2	:0-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-8	7-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-0	9-2	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-4	2-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-1	8-4	8260D	62		1.0	0.40	ug/L	1
Toluene		108-8	8-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-1	3-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	2-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	5-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	0-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene		79-0	1-6	8260D	9.1		1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	9-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride		75-0	1-4	8260D	ND		1.0	0.40	ug/L	1
Xylenes (total)		1330-2	:0-7	8260D	ND		1.0	0.40	ug/L	1
Surrogate		Run 1 A Recovery	Accepta Limit							

Volatile Organic Compounds by GC/MS (SIM)

70-130 70-130

70-130

100

111

107

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	-	sis Date Analyst 021 0246 CJL2	Prep [tch 674		
Parar	neter			CAS nber	Analytical Method	Result	Q LO	Q DL	Units	Run
1,4-Di	ioxane		123-	91-1	8260D (SIM)	ND	3.	0 1.0	ug/L	1

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Description: MW-1D

Date Sampled:06/25/2021 1045 Date Received: 06/25/2021

Laboratory ID: WF26008-015

Matrix: Aqueous

Acceptance Limits Run 1 % Recovery Q Surrogate 40-170 1,2-Dichloroethane-d4 102

Dissolved Gases

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch			
2		RSK - 175	1	07/07/2021 1015 TML		98028			
			(CAS Analytical			 	_	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane	74-82-8	RSK - 175	2.6 J	10	2.5	ug/L	2
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and ≥ DL Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-04-10-11-SS Date Sampled: 06/25/2021 1130

Date Received: 06/26/2021

Laboratory ID: WF26008-016

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Ana 1 5035	llytical Method 8260D	Dilution 1		ysis Date Analyst /2021 0051 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.37		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-	64-1	8260D	17 J	18	7.3	ug/kg	1
Benzene		71-4	43-2	8260D	ND	4.5	1.8	ug/kg	1
Bromodichloromethane		75-2	27-4	8260D	ND	4.5	1.8	ug/kg	1
Bromoform		75-2	25-2	8260D	ND	4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)		74-8	83-9	8260D	ND	4.5	2.7	ug/kg	1
2-Butanone (MEK)		78-	93-3	8260D	ND	18	3.6	ug/kg	1
Carbon disulfide		75-	15-0	8260D	ND	4.5	1.8	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND	4.5	1.8	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane		75-0	00-3	8260D	ND	4.5	1.8	ug/kg	1
Chloroform		67-6	66-3	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)		74-8	87-3	8260D	ND	4.5	2.7	ug/kg	1
Cyclohexane		110-8	82-7	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-	12-8	8260D	ND	4.5	1.8	ug/kg	1
Dibromochloromethane		124-4	48-1	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichlorobenzene		95-	50-1	8260D	ND	4.5	1.8	ug/kg	1
1,3-Dichlorobenzene		541-	73-1	8260D	ND	4.5	1.8	ug/kg	1
1,4-Dichlorobenzene		106-4	46-7	8260D	ND	4.5	1.8	ug/kg	1
Dichlorodifluoromethane		75-	71-8	8260D	ND	4.5	2.7	ug/kg	1
1,1-Dichloroethane		75-	34-3	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloroethane		107-0	06-2	8260D	ND	4.5	1.8	ug/kg	1
1,1-Dichloroethene		75-	35-4	8260D	ND	4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene		156-6	60-5	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloropropane		78-	87-5	8260D	ND	4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND	4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	4.5	1.8	ug/kg	1
Ethylbenzene		100-4	41-4	8260D	ND	4.5	1.8	ug/kg	1
2-Hexanone		591-7	78-6	8260D	ND	9.1	3.6	ug/kg	1
Isopropylbenzene		98-	82-8	8260D	ND	4.5	1.8	ug/kg	1
Methyl acetate		79-	20-9	8260D	ND	4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	4.5	1.8	ug/kg	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	9.1	3.6	ug/kg	1
Methylcyclohexane		108-	87-2	8260D	ND	4.5	1.8	ug/kg	1
Methylene chloride		75-	09-2	8260D	ND	4.5	1.8	ug/kg	1
Styrene		100-4	42-5	8260D	ND	4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	4.5	1.8	ug/kg	1
Tetrachloroethene		127-		8260D	ND	4.5	1.8	ug/kg	1
Toluene		108-		8260D	ND	4.5	1.8	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-04-10-11-SS Date Sampled: 06/25/2021 1130

Date Received: 06/26/2021

Laboratory ID: WF26008-016

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	-	is Date Analyst 021 0051 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.37		
Parameter		Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-1	13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane		79-0	0-5	8260D	ND	4.5	1.8	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.5	1.8	ug/kg	1
Trichlorofluoromethane		75-6	39-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride		75-0)1-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	9.1	3.6	ug/kg	1
Surrogate	Q %1	Run 1 A	Acceptan Limits						
Bromofluorobenzene		117	47-138	3					
1,2-Dichloroethane-d4		108	53-142	2					
Toluene-d8		107	68-124	ļ					

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

Description: DP-08-20-GW Date Sampled:06/25/2021 1045 Date Received: 06/25/2021

Laboratory ID: WF26011-001

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

1 5030B 8260D 1 07/09/2021 0349 JDF 90330	Run	Prep Method	•	Dilution	Analysis Date Analyst	Prep Date	Batch	
	1	5030B	8260D	1	07/09/2021 0349 JDF		98336	

Barameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Parameter	67-64-1	8260D	ND ND	20	5.0	ug/L	1
Acetone Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-27- 4 75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.1	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: DP-08-20-GW

Date Sampled:06/25/2021 1045 Date Received: 06/25/2021

Methane

Propane

Laboratory ID: WF26011-001

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Met	thod A	nalytical Method	Dilution	Analysis Date A	nalyst	Prep Date	Batch
1 50	030B	8260D	1	07/09/2021 0349	JDF	-	98336

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
Bromofluorobenzene		97	70-130
1,2-Dichloroethane-d4		100	70-130
Toluene-d8		100	70-130

Volatile Organic Compounds by GC/MS (SIM)

	TOIGHIC (or gain	o oompounds by		,,,,,			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	Analysis Date Analyst 07/02/2021 0310 CJL2	Prep Date	Batch 97674			
			CAS Analytical					
Parameter		Nur	nber Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits					
1,2-Dichloroethane-d4		101	40-170					

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	•	vsis Date Analyst 12021 1118 TML	Prep Date	Batch 98028			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	85-1	RSK - 175	ND	10	2.5	ug/L	2

74-82-8

74-98-6

RSK - 175

RSK - 175

ND

6.7 J

10

15

2.5

5.0

ug/L

ug/L

2

2

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and > DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DP-10 (1-3)-SS Date Sampled: 06/25/2021 1220

Date Received: 06/25/2021

Laboratory ID: WF26011-002

Matrix: Solid

% Solids: 90.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run 1	Prep Method 5035	Analytical Method 8260D	Dilution 1		lysis Date Analyst 2/2021 0155 CJL2	Prep	Date	Batch 97675	Sample Wt.(g) 6.60		
Para	ımeter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acet	one		67-	64-1	8260D	43		17	6.7	ug/kg	1
Benz	ene		71-	43-2	8260D	ND		4.2	1.7	ug/kg	1
Brom	nodichloromethane		75-	27-4	8260D	ND		4.2	1.7	ug/kg	1
Brom	noform		75-	25-2	8260D	ND		4.2	1.7	ug/kg	1
Brom	nomethane (Methyl bromide)		74-	83-9	8260D	ND		4.2	2.5	ug/kg	1
2-Bu	tanone (MEK)		78-	93-3	8260D	3.8	J	17	3.4	ug/kg	1
Carb	on disulfide		75-	15-0	8260D	ND		4.2	1.7	ug/kg	1
Carb	on tetrachloride		56-	23-5	8260D	ND		4.2	1.7	ug/kg	1
Chlor	robenzene		108-	90-7	8260D	ND		4.2	1.7	ug/kg	1
Chlor	roethane		75-	00-3	8260D	ND		4.2	1.7	ug/kg	1
Chlor	roform		67-	66-3	8260D	ND		4.2	1.7	ug/kg	1
Chlor	romethane (Methyl chloride)		74-	87-3	8260D	ND		4.2	2.5	ug/kg	1
Cyclo	ohexane		110-	82-7	8260D	ND		4.2	1.7	ug/kg	1
1,2-D	Dibromo-3-chloropropane (DBC	CP)	96-	12-8	8260D	ND		4.2	1.7	ug/kg	1
Dibro	omochloromethane		124-	48-1	8260D	ND		4.2	1.7	ug/kg	1
1,2-D	Dibromoethane (EDB)		106-	93-4	8260D	ND		4.2	1.7	ug/kg	1
1,2-D	Dichlorobenzene		95-	50-1	8260D	ND		4.2	1.7	ug/kg	1
1,3-D	Dichlorobenzene		541-	73-1	8260D	ND		4.2	1.7	ug/kg	1
1,4-D	Dichlorobenzene		106-	46-7	8260D	ND		4.2	1.7	ug/kg	1
Dichl	orodifluoromethane		75-	71-8	8260D	ND		4.2	2.5	ug/kg	1
1,1-D	Dichloroethane		75-	34-3	8260D	ND		4.2	1.7	ug/kg	1
1,2-D	Dichloroethane		107-	06-2	8260D	ND		4.2	1.7	ug/kg	1
1,1-D	Dichloroethene		75-	35-4	8260D	ND		4.2	1.7	ug/kg	1
cis-1,	,2-Dichloroethene		156-	59-2	8260D	ND		4.2	1.7	ug/kg	1
trans	-1,2-Dichloroethene		156-	60-5	8260D	ND		4.2	1.7	ug/kg	1
1,2-D	Dichloropropane		78-	87-5	8260D	ND		4.2	1.7	ug/kg	1
cis-1,	,3-Dichloropropene		10061-	01-5	8260D	ND		4.2	1.7	ug/kg	1
trans	-1,3-Dichloropropene		10061-	02-6	8260D	ND		4.2	1.7	ug/kg	1
Ethyl	benzene		100-	41-4	8260D	ND		4.2	1.7	ug/kg	1
2-He	xanone		591-	78-6	8260D	ND		8.4	3.4	ug/kg	1
Isopr	opylbenzene		98-	82-8	8260D	ND		4.2	1.7	ug/kg	1
Meth	yl acetate		79-	20-9	8260D	ND		4.2	1.7	ug/kg	1
Meth	yl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND		4.2	1.7	ug/kg	1
4-Me	thyl-2-pentanone		108-	10-1	8260D	ND		8.4	3.4	ug/kg	1
Meth	ylcyclohexane		108-	87-2	8260D	ND		4.2	1.7	ug/kg	1
Meth	ylene chloride		75-	09-2	8260D	ND		4.2	1.7	ug/kg	1
Styre	ene		100-	42-5	8260D	ND		4.2	1.7	ug/kg	1
1,1,2	,2-Tetrachloroethane		79-	34-5	8260D	ND		4.2	1.7	ug/kg	1
Tetra	achloroethene		127-	18-4	8260D	ND		4.2	1.7	ug/kg	1
Tolue	ene		108-	88-3	8260D	ND		4.2	1.7	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and \geq DL

Description: DP-10 (1-3)-SS Date Sampled:06/25/2021 1220

Date Received: 06/25/2021

Laboratory ID: WF26011-002

Matrix: Solid

% Solids: 90.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

	VOIALI	ie Oiga	anno ot	Jinpounus	by GOTIVIC	<i></i>			
Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0155 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.60		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.2	1.7	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.2	1.7	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.2	1.7	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.2	1.7	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.2	1.7	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.2	1.7	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.2	2.5	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.4	3.4	ug/kg	1
Surrogate	Q % l	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		107	53-142	!					
Toluene-d8		102	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria

P = The RPD between two GC columns exceeds 40%

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-04-20-GW Date Sampled: 06/25/2021 1150 Date Received: 06/25/2021

Laboratory ID: WF26011-004

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/09/2021 1326 TML		98390	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.40 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	0.70 J	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	12	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	1.2	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-04-20-GW

Date Sampled:06/25/2021 1150 Date Received: 06/25/2021

Laboratory ID: WF26011-004

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

	7 0 100		×1110 0	ompounac	,				
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		s Date Analyst 21 1326 TML	Prep Date	Batch 98390			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	2.6	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		100	70-130						
1,2-Dichloroethane-d4		110	70-130						
Toluene-d8		105	70-130						

Volatile Organic Compounds by GC/MS (SIM)

	Volatile	Jigaiii	c Compounds b	y CONTION	J1141/			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		Analysis Date Analys 07/02/2021 0335 CJL2	t Prep Date	Batch 97674			
Parameter			CAS Analytical	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-		ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits					
1,2-Dichloroethane-d4		105	40-170					

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	•	sis Date Analyst 021 1134 TML	Prep	Date	Batch 98028			
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ethane		74-	84-0	RSK - 175	6.2	J	10	2.5	ug/L	2
Ethene		74-	85-1	RSK - 175	5.2	J	10	2.5	ug/L	2
Methane		74-	82-8	RSK - 175	16		10	2.5	ug/L	2
Propane		74-	98-6	RSK - 175	ND		15	5.0	ug/L	2

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of critería W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-05 (1-3')-SS Date Sampled:06/25/2021 1315

Date Received: 06/25/2021

Laboratory ID: WF26011-005

Matrix: Solid

% Solids: 89.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run 3	Prep Method 5035 High	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1350 JM1	Prep	Date	Batch 98261	Sample Wt.(g) 6.42		
Para	meter		Nur	CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aceto	one		67-	64-1	8260D	ND		980	390	ug/kg	3
Benz	ene		71-	43-2	8260D	ND		250	98	ug/kg	3
Brom	odichloromethane		75-	27-4	8260D	ND		250	98	ug/kg	3
Brom	oform		75-	25-2	8260D	ND		250	98	ug/kg	3
Brom	nomethane (Methyl bromide)		74-	83-9	8260D	ND		250	150	ug/kg	3
2-But	tanone (MEK)		78-	93-3	8260D	ND		980	200	ug/kg	3
Carb	on disulfide		75-	15-0	8260D	ND		250	98	ug/kg	3
Carb	on tetrachloride		56-	23-5	8260D	ND		250	98	ug/kg	3
Chlor	robenzene		108-	90-7	8260D	ND		250	98	ug/kg	3
Chlor	roethane		75-	00-3	8260D	ND		250	98	ug/kg	3
Chlor	roform		67-	66-3	8260D	ND		250	98	ug/kg	3
Chlor	romethane (Methyl chloride)		74-	87-3	8260D	ND		250	150	ug/kg	3
Cyclo	phexane		110-	82-7	8260D	ND	\swarrow	250	98	ug/kg	3
1,2-D)ibromo-3-chloropropane (DBC	CP)	96-	12-8	8260D	ND		250	98	ug/kg	3
Dibro	mochloromethane		124-	48-1	8260D	ND		250	98	ug/kg	3
1,2-D	Dibromoethane (EDB)		106-	93-4	8260D	ND		250	98	ug/kg	3
1,2-D	ichlorobenzene		95-	50-1	8260D	ND		250	98	ug/kg	3
1,3-D	ichlorobenzene		541-	73-1	8260D	ND		250	98	ug/kg	3
1,4-D	ichlorobenzene		106-	46-7	8260D	ND		250	98	ug/kg	3
Dichl	orodifluoromethane		75-	71-8	8260D	ND		250	150	ug/kg	3
1,1-D	Dichloroethane		75-	34-3	8260D	ND		250	98	ug/kg	3
1,2-D	Dichloroethane		107-	06-2	8260D	ND		250	98	ug/kg	3
1,1-D	Dichloroethene		75-	35-4	8260D	ND		250	98	ug/kg	3
cis-1,	,2-Dichloroethene		156-	59-2	8260D	ND		250	98	ug/kg	3
trans	-1,2-Dichloroethene		156-	60-5	8260D	ND		250	98	ug/kg	3
1,2-D	ichloropropane		78-	87-5	8260D	ND		250	98	ug/kg	3
cis-1,	,3-Dichloropropene		10061-	01-5	8260D	ND		250	98	ug/kg	3
trans	-1,3-Dichloropropene		10061-	02-6	8260D	ND		250	98	ug/kg	3
Ethy	lbenzene		100-	41-4	8260D	210	J	250	98	ug/kg	3
2-He	xanone		591-	78-6	8260D	ND		490	200	ug/kg	3
Isopi	ropylbenzene		98-	82-8	8260D	8100		250	98	ug/kg	3
Meth	yl acetate		79-	20-9	8260D	200	J	250	98	ug/kg	3
Meth	yl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND		250	98	ug/kg	3
4-Me	thyl-2-pentanone		108-	10-1	8260D	ND		490	200	ug/kg	3
Meth	ylcyclohexane		108-	87-2	8260D	ND		250	98	ug/kg	3
Meth	ylene chloride		75-	09-2	8260D	ND		250	98	ug/kg	3
Styre	ene		100-	42-5	8260D	ND		250	98	ug/kg	3
1,1,2	,2-Tetrachloroethane		79-	34-5	8260D	ND		250	98	ug/kg	3
Tetra	chloroethene		127-	18-4	8260D	ND		250	98	ug/kg	3
Tolue	ene		108-	88-3	8260D	ND		250	98	ug/kg	3

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Description: DP-05 (1-3')-SS Date Sampled:06/25/2021 1315

Date Received: 06/25/2021

Laboratory ID: WF26011-005

Matrix: Solid

% Solids: 89.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 3 5035 High	Analytical Method 8260D	Dilution 1	-	s Date Analyst 21 1350 JM1	Prep Date	Batch 98261	Sample Wt.(g) 6.42		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	-13-1	8260D	ND	250	98	ug/kg	3
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	250	98	ug/kg	3
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	250	98	ug/kg	3
1,1,2-Trichloroethane		79-	-00-5	8260D	ND	250	98	ug/kg	3
Trichloroethene		79-	-01-6	8260D	ND	250	98	ug/kg	3
Trichlorofluoromethane		75-	-69-4	8260D	ND	250	98	ug/kg	3
Vinyl chloride		75-	01-4	8260D	ND	250	150	ug/kg	3
Xylenes (total)		1330-	20-7	8260D	3600	490	200	ug/kg	3
Surrogate	Q % I	Run 3 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		99	47-138						
1,2-Dichloroethane-d4		117	53-142						
Toluene-d8		118	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $\label{eq:J} \textbf{J} = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

S = MS/MSD failure

Description: DP-05 (10-11')-SS Date Sampled: 06/25/2021 1330 Date Received: 06/25/2021

Laboratory ID: WF26011-006

Matrix: Solid

% Solids: 82.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260D	1	07/02/2021 0217 CJL2		97675	6.97

Davamatav	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Parameter	67-64-1	8260D	ND ND	17	6.9	ug/kg	1
Acetone	71-43-2	8260D 8260D	ND	4.3	6.9 1.7	ug/kg ug/kg	1
Benzene	71-43-2 75-27-4	8260D	ND	4.3		ug/kg ug/kg	1
Bromodichloromethane				4.3	1.7	ug/kg ug/kg	1
Bromoform	75-25-2	8260D	ND ND	4.3 4.3	1.7	ug/kg ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D			2.6		1
2-Butanone (MEK)	78-93-3	8260D	ND	17	3.5	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.3	1.7	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.3	1.7	ug/kg	
Chlorobenzene	108-90-7	8260D	ND	4.3	1.7	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.3	1.7	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.3	1.7	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.3	2.6	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.3	1.7	ug/kg 	1
Dibromochloromethane	124-48-1	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.3	1.7	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.3	1.7	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.3	1.7	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.3	2.6	ug/kg	- 1
1,1-Dichloroethane	75-34-3	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.3	1.7	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.3	1.7	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.3	1.7	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.3	1.7	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.3	1.7	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.3	1.7	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.3	1.7	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	8.7	3.5	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.3	1.7	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.3	1.7	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.3	1.7	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.7	3.5	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.3	1.7	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.3	1.7	ug/kg	1
Styrene	100-42-5	8260D	ND	4.3	1.7	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.3	1.7	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.3	1.7	ug/kg	1
Toluene	108-88-3	8260D	ND	4.3	1.7	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

Description: DP-05 (10-11')-SS Date Sampled:06/25/2021 1330

Date Received: 06/25/2021

Laboratory ID: WF26011-006

Matrix: Solid

% Solids: 82.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0217 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.97		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	13-1	8260D	ND	4.3	1.7	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.3	1.7	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.3	1.7	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.3	1.7	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.3	1.7	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.3	1.7	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.3	2.6	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.7	3.5	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		103	53-142						
Toluene-d8		103	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Description: **DP-10-20-GW**Date Sampled:06/25/2021 1245

Date Received: 06/25/2021

Laboratory ID: WF26011-007
Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1349 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.50 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	. 75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	7.2	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	0.66 J	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: **DP-07 (1-3)-SS**Date Sampled:**06/25/2021 1500**

Laboratory ID: WF26011-008

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Date Received: 06/25/2021

Volatile Organic Compounds by GC/MS

Run Prep Method Analytica 1 5035	I Method Dilutio 8260D 1		ilysis Date Analyst 2/2021 0240 CJL2	Prep	Date	Batch 97675	Sample Wt.(g) 5.49		
Parameter	N	CAS umber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone	6	7-64-1	8260D	48		22	8.9	ug/kg	1
Benzene	7	1-43-2	8260D	ND		5.6	2.2	ug/kg	1
Bromodichloromethane	7	5-27-4	8260D	ND		5.6	2.2	ug/kg	1
Bromoform	7	5-25-2	8260D	ND		5.6	2.2	ug/kg	1
Bromomethane (Methyl bromide)	7-	4-83-9	8260D	ND		5.6	3.3	ug/kg	1
2-Butanone (MEK)	7	8-93-3	8260D	ND		22	4.5	ug/kg	1
Carbon disulfide	7	5-15-0	8260D	ND		5.6	2.2	ug/kg	1
Carbon tetrachloride	5	6-23-5	8260D	ND		5.6	2.2	ug/kg	1
Chlorobenzene	10	3-90-7	8260D	ND		5.6	2.2	ug/kg	1
Chloroethane	7	5-00-3	8260D	ND		5.6	2.2	ug/kg	1
Chloroform	6	7-66-3	8260D	ND		5.6	2.2	ug/kg	1
Chloromethane (Methyl chloride)	7-	4-87-3	8260D	ND		5.6	3.3	ug/kg	1
Cyclohexane	11	0-82-7	8260D	ND		5.6	2.2	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	9	3-12-8	8260D	ND		5.6	2.2	ug/kg	1
Dibromochloromethane	12	1-48-1	8260D	ND		5.6	2.2	ug/kg	1
1,2-Dibromoethane (EDB)	100	5-93-4	8260D	ND		5.6	2.2	ug/kg	1
1.2-Dichlorobenzene	9	5-50-1	8260D	ND		5.6	2.2	ug/kg	1
1,3-Dichlorobenzene	54	1-73-1	8260D	ND		5.6	2.2	ug/kg	1
1,4-Dichlorobenzene	100	6-46-7	8260D	ND		5.6	2.2	ug/kg	1
Dichlorodifluoromethane	7	5-71-8	8260D	ND		5.6	3.3	ug/kg	1
1.1-Dichloroethane	7	5-34-3	8260D	ND		5.6	2.2	ug/kg	1
1.2-Dichloroethane		7-06-2	8260D	ND		5.6	2.2	ug/kg	1
1,1-Dichloroethene	7:	5-35-4	8260D	ND		5.6	2.2	ug/kg	1
cis-1,2-Dichloroethene	150	3-59-2	8260D	ND		5.6	2.2	ug/kg	1
trans-1,2-Dichloroethene	150	3-60-5	8260D	ND		5.6	2.2	ug/kg	1
1,2-Dichloropropane	7	3-87-5	8260D	ND		5.6	2.2	ug/kg	1
cis-1,3-Dichloropropene	1006	1-01-5	8260D	ND		5.6	2.2	ug/kg	1
trans-1,3-Dichloropropene	1006	1-02-6	8260D	ND		5.6	2.2	ug/kg	1
Ethylbenzene	10	0-41-4	8260D	4.6	J	5.6	2.2	ug/kg	1
2-Hexanone	59 ⁻	1-78-6	8260D	ND		11	4.5	ug/kg	1
Isopropylbenzene	9	3-82-8	8260D	57		5.6	2.2	ug/kg	1
Methyl acetate	7	9-20-9	8260D	ND		5.6	2.2	ug/kg	1
Methyl tertiary butyl ether (MTBE)	163	4-04-4	8260D	ND		5.6	2.2	ug/kg	1
4-Methyl-2-pentanone	108	3-10-1	8260D	ND		11	4.5	ug/kg	1
Methylcyclohexane		3-87-2	8260D	4.8	J	5.6	2.2	ug/kg	1
Methylene chloride		5-09-2	8260D	ND		5.6	2.2	ug/kg	1
Styrene)-42-5	8260D	ND		5.6	2.2	ug/kg	1
1,1,2,2-Tetrachloroethane		9-34-5	8260D	ND		5.6	2.2	ug/kg	1
Tetrachloroethene		7-18-4	8260D	ND		5.6	2.2	ug/kg	1
Toluene		3-88-3	8260D	ND		5.6	2.2	ug/kg	1

LOQ = Limit of Quantitation
ND = Not detected at or above the DL

B = Detected in the method blank

DL = Detection Limit

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-07 (1-3)-SS

Date Sampled:06/25/2021 1500

Date Received: 06/25/2021

Laboratory ID: WF26011-008

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	Date Analyst 21 0240 CJL2	Prep	Date	Batch 97675	Sample Wt.(g) 5.49		
Parameter		Nu	CAS mber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76	-13-1	8260D	ND		5.6	2.2	ug/kg	1
1,2,4-Trichlorobenzene		120-	-82-1	8260D	ND		5.6	2.2	ug/kg	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND		5.6	2.2	ug/kg	1
1,1,2-Trichloroethane		79-	-00-5	8260D	ND		5.6	2.2	ug/kg	1
Trichloroethene		79-	-01-6	8260D	ND		5.6	2.2	ug/kg	1
Trichlorofluoromethane		75-	-69-4	8260D	ND		5.6	2.2	ug/kg	1
Vinyl chloride		75-	-01-4	8260D	ND		5.6	3.3	ug/kg	1
Xylenes (total)		1330-	-20-7	8260D	7.7	J	11	4.5	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptano Limits	ce						
Bromofluorobenzene		94	47-138							
1,2-Dichloroethane-d4		100	53-142							
Toluene-d8		108	68-124							

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and > DL

S = MS/MSD failure

Description: DP-07 (10-11)-SS Date Sampled:06/25/2021 1510

Date Received: 06/25/2021

Laboratory ID: WF26011-009

Matrix: **Solid**% Solids: **82.9 06/26/2021 1851**

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260D	1	07/02/2021 0303 CJL2		97675	6.00

1 5035	8260D 1 07/02 <i>i</i>	/2021 0303 CJL2		9/6/5	6.00		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acetone	67-64-1	8260D	ND	20	8.0	ug/kg	1
Benzene	71-43-2	8260D	ND	5.0	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.0	2.0	ug/kg	1
3romoform Stromoform S	75-25-2	8260D	ND	5.0	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.0	3.0	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	4.0	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.0	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.0	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.0	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.0	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.0	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.0	3.0	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromo-3-chloropropané (DBCP)	96-12-8	8260D	ND	5.0	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.0	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.0	2.0	ug/kg	1
1.4-Dichlorobenzene	106-46-7	8260D	ND	5.0	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.0	3.0	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.0	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.0	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.0	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.0	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.0	2.0	ug/kg	1
rans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.0	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.0	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	10	4.0	ug/kg	1
sopropylbenzene	98-82-8	8260D	ND	5.0	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.0	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.0	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	4.0	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.0	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	5.0	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.0	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.0	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	5.0	2.0	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and > DL

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-07 (10-11)-SS Date Sampled:06/25/2021 1510

Laboratory ID: WF26011-009 Matrix: Solid

% Solids: 82.9 06/26/2021 1851

Date Received: 06/25/2021

Volatile Organ	ic Compounds	bv	GC/MS
----------------	--------------	----	-------

Run Prep Method 1 5035	Analytical Metho 82601		•	s Date Analyst 21 0303 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.00		
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	-13-1	8260D	ND	5.0	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	-82-1	8260D	ND	5.0	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	5.0	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	-00-5	8260D	ND	5.0	2.0	ug/kg	1
Trichloroethene		79-	-01-6	8260D	ND	5.0	2.0	ug/kg	1
Trichlorofluoromethane		75-	-69-4	8260D	ND	5.0	2.0	ug/kg	1
Vinyl chloride		75-	-01-4	8260D	ND	5.0	3.0	ug/kg	1
Xylenes (total)		1330-	-20-7	8260D	ND	10	4.0	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		101	53-142						
Toluene-d8		107	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

S = MS/MSD failure

Description: DP-05-20-GW

Date Sampled:06/25/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26011-010

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/09/2021 1724 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	100	25	ug/L	1
Benzene	71-43-2	8260D	ND	5.0	2.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	5.0	2.0	ug/L	1
Bromoform	75-25-2	8260D	ND	5.0	2.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	10	2.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	50	10	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	5.0	2.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	5.0	2.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	5.0	2.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	10	2.0	ug/L	1
Chloroform	67-66-3	8260D	ND	5.0	2.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.0	2.5	ug/L	1
Cyclohexane	110-82-7	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.0	2.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.0	2.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.0	2.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.0	2.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	10	3.0	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.0	2.0	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.0	2.0	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	2.4 J	5.0	2.0	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.0	2.0	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.0	2.0	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.0	2.0	ug/L	1
Ethylbenzene	100-41-4	8260D	16	5.0	2.0	ug/L	1
2-Hexanone	591-78-6	8260D	ND	50	10	ug/L	1
Isopropylbenzene	98-82-8	8260D	690	5.0	2.0	ug/L	1
Methyl acetate	79-20-9	8260D	ND	5.0	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.0	2.0	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	50	10	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	25	2.0	ug/L	1
Methylene chloride	75-09-2	8260D	ND	5.0	2.0	ug/L	1
Styrene	100-42-5	8260D	ND	5.0	2.1	. ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.0	2.0	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	5.0	2.0	ug/L	1
Toluene	108-88-3	8260D	ND	5.0	2.0	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: DP-05-20-GW

Date Sampled:06/25/2021 1410 Date Received: 06/25/2021

1,2-Dichloroethane-d4

Toluene-d8

Laboratory ID: WF26011-010

Matrix: Aqueous

Volatile	Organic	Compounds	by	GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	•	sis Date Analyst 2021 1724 TML	Prep Date	Batch 98390			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-13-1	8260D	ND	5.0	2.1	ug/L	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	5.0	2.0	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	5.0	2.0	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	5.0	2.0	ug/L	1
Trichloroethene		79-01-6	8260D	ND	5.0	2.0	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	5.0	2.0	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	5.0	2.0	ug/L	1
Xylenes (total)		1330-20-7	8260D	410	5.0	2.0	ug/L	1
Surrogate		Run 1 Accepta Recovery Limi						
Bromofluorobenzene		104 70-1	30					-

Volatile Organic Compounds by GC/MS (SIM)

70-130

70-130

112

107

	Volatile	Jigaili	c Compounds b	y GONNO (71141)			
Run Prep Method	Analytical Method	Dilution	Analysis Date Analys	t Prep Date	Batch			
1 5030B	8260D (SIM)	1	07/02/2021 0424 CJL2		97674			
			CAS Analytical					
Parameter		Nun	nber Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1 8260D (SIM)	5.0	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits					
1,2-Dichloroethane-d4		114	40-170					

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution Analysis Date Anal 1 07/07/2021 1046 TM		•	Prep Date	Batch 98028			
Parameter		C Numl	AS ber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84	4-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	5-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82	2-8	RSK - 175	420	10	2.5	ug/L	2
Propane		74-98	8-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

Q = Surrogate failure

H = Out of holding time W = Reported on wet weight basis

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Date Sampled: 06/25/2021 1540

Description: DP-09 (1-3)-SS

Laboratory ID: WF26011-011 Matrix: Solid

% Solids: 91.5 06/26/2021 1851

Date Received: 06/25/2021

Volatile Organic Compounds by GC/MS

•	Analytical Method			ysis Date Analyst	Prep	Date	Batch	Sample Wt.(g)		
1 5035	8260D	1	07/02	/2021 0325 CJL2			97675	5.20		
Parameter			CAS nber	Analytical Method	Result	0	LOQ	DL	Units	Run
Acetone			64-1	8260D	56		21	8.4	ug/kg	1
Benzene			43-2	8260D	ND		5.3	2.1	ug/kg	1
Bromodichloromethane			27-4	8260D	ND		5.3	2.1	ug/kg	1
Bromoform			25-2	8260D	ND		5.3	2.1	ug/kg	1
Bromomethane (Methyl bromide)			83-9	8260D	ND		5.3	3.2	ug/kg	1
2-Butanone (MEK)			93-3	8260D		J	21	4.2	ug/kg	1
Carbon disulfide			15-0	8260D	ND	•	5.3	2.1	ug/kg	1
Carbon tetrachloride			23-5	8260D	ND		5.3	2.1	ug/kg	1
Chlorobenzene		108-		8260D	ND		5.3	2.1	ug/kg	1
Chloroethane			00-3	8260D	ND		5.3	2.1	ug/kg	1
Chloroform			66-3	8260D	ND		5.3	2.1	ug/kg	1
Chloromethane (Methyl chloride)			87-3	8260D	ND		5.3	3.2	ug/kg	1
Cyclohexane		110-		8260D	ND		5.3	2.1	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCF	P)		12-8	8260D	ND		5.3	2.1	ug/kg	1
Dibromochloromethane	,	124-4		8260D	ND		5.3	2.1	ug/kg	1
1,2-Dibromoethane (EDB)		106-9		8260D	ND		5.3	2.1	ug/kg	1
1,2-Dichlorobenzene			50-1	8260D	ND		5.3	2.1	ug/kg	1
1,3-Dichlorobenzene		541-		8260D	ND		5.3	2.1	ug/kg	1
1,4-Dichlorobenzene		106-4		8260D	ND		5.3	2.1	ug/kg	1
Dichlorodifluoromethane			71-8	8260D	ND		5.3	3.2	ug/kg	1
1,1-Dichloroethane			34-3	8260D	ND		5.3	2.1	ug/kg	1
1,2-Dichloroethane		107-0		8260D	ND		5.3	2.1	ug/kg	1
1,1-Dichloroethene			35-4	8260D	ND		5.3	2.1	ug/kg	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND		5.3	2.1	ug/kg	1
trans-1,2-Dichloroethene		156-6	30-5	8260D	ND		5.3	2.1	ug/kg	1
1,2-Dichloropropane		78-8	B7-5	8260D	ND		5.3	2.1	ug/kg	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND		5.3	2.1	ug/kg	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND		5.3	2.1	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND		5.3	2.1	ug/kg	1
2-Hexanone		591-7	78-6	8260D	ND		11	4.2	ug/kg	1
Isopropylbenzene		98-8	32-8	8260D	ND		5.3	2.1	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND		5.3	2.1	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND		5.3	2.1	ug/kg	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND		11	4.2	ug/kg	1
Methylcyclohexane		108-8	37-2	8260D	ND		5.3	2.1	ug/kg	1
Methylene chloride		75-0	09-2	8260D	ND		5.3	2.1	ug/kg	1
Styrene		100-4	12-5	8260D	ND		5.3	2.1	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND		5.3	2.1	ug/kg	1
Tetrachloroethene		127-	18-4	8260D	ND		5.3	2.1	ug/kg	1
Toluene		108-8	38-3	8260D	ND		5.3	2.1	ug/kg	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: DP-09 (1-3)-SS

Date Sampled:06/25/2021 1540

Date Received: 06/25/2021

Laboratory ID: WF26011-011

Matrix: Solid

% Solids: 91.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution Analysis Date 1 07/02/2021 03:		Date Analyst 21 0325 CJL2			Sample Wt.(g) 5.20		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	9	76-	13-1	8260D	ND	5.3	2.1	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.3	2.1	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.3	2.1	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.3	2.1	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.3	2.1	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.3	2.1	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.3	3.2	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	11	4.2	ug/kg	1
Surrogate		Run 1 Recovery	Acceptano Limits	e					
Bromofluorobenzene		97	47-138					•	
1,2-Dichloroethane-d4		107	53-142						
Toluene-d8		103	68-124						

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit
 Q = Surrogate failure

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>
 L = LCS/LCSD failure

 H = Out of holding time
 W = Reported on wet weight basis
 S = MS/MSD failure

Description: DUP-02-SO

Date Sampled:06/25/2021 Date Received: 06/25/2021 Laboratory ID: WF26011-012

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method A 1 5035	Analytical Method 8260D			ysis Date Analyst /2021 0348 CJL2	Prep	Prep Date		Sample Wt.(g) 5.91		
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-	64-1	8260D	56		19	7.8	ug/kg	1
Benzene		71-4	43-2	8260D	ND		4.8	1.9	ug/kg	1
Bromodichloromethane		75-7	27-4	8260D	ND		4 .6	1.9	ug/kg	1
Bromoform		75-2	25-2	8260D	ND		4.8	1.9	ug/kg	1
Bromomethane (Methyl bromide)		74-8	83-9	8260D	ND		4.8	2.9	ug/kg	1
2-Butanone (MEK)		78-	93-3	8260D	5.1	J	19	3.9	ug/kg	1
Carbon disulfide		75-	15-0	8260D	ND		4.8	1.9	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND		4.8	1.9	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND		4.8	1.9	ug/kg	1
Chloroethane		75-0	00-3	8260D	ND		4.8	1.9	ug/kg	1
Chloroform		67-6	86-3	8260D	ND		4.8	1.9	ug/kg	1
Chloromethane (Methyl chloride)		74-8	87-3	8260D	ND		4.8	2.9	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND		4.8	1.9	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP	")	96-	12-8	8260D	ND		4.8	1.9	ug/kg	1
Dibromochloromethane		124-4	48-1	8260D	ND		4.8	1.9	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260D	ND		4.8	1.9	ug/kg	1
1,2-Dichlorobenzene		95-	50-1	8260D	ND		4.8	1.9	ug/kg	1
1,3-Dichlorobenzene		541-7	73-1	8260D	ND		4.8	1.9	ug/kg	1
1,4-Dichlorobenzene		106-4	46- 7	8260D	ND		4.8	1.9	ug/kg	1
Dichlorodifluoromethane		75-7	71-8	8260D	ND		4.8	2.9	ug/kg	1
1,1-Dichloroethane		75-3	34-3	8260D	ND		4.8	1.9	ug/kg	1
1,2-Dichloroethane		107-0	06-2	8260D	ND		4.8	1.9	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND		4.8	1.9	ug/kg	1
cis-1,2-Dichloroethene		156-5	59-2	8260D	ND		4.8	1.9	ug/kg	1
rans-1,2-Dichloroethene		156-€	30-5	8260D	ND		4.8	1.9	ug/kg	1
1,2-Dichloropropane		78-8	37-5	8260D	ND		4.8	1.9	ug/kg	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND		4.8	1.9	ug/kg	1
rans-1,3-Dichloropropene		10061-0)2-6	8260D	ND		4.8	1.9	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND		4.8	1.9	ug/kg	1
2-Hexanone		591-7	78-6	8260D	ND		9.7	3.9	ug/kg	1
sopropylbenzene		98-8	32-8	8260D	ND		4.8	1.9	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND		4.8	1.9	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND		4.8	1.9	ug/kg	1
4-Methyl-2-pentanone		108-1	10-1	8260D	ND		9.7	3.9	ug/kg	1
Methylcyclohexane		108-8	37-2	8260D	ND		4.8	1,9	ug/kg	1
Methylene chloride		75-0	09-2	8260D		J	4.8	1.9	ug/kg	1
Styrene		100-4	12-5	8260D	ND		4.8	1.9	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND		4.8	1.9	ug/kg	1
Tetrachloroethene		127-1		8260D	ND		4.8	1.9	ug/kg	1
Tabaaaa									-99	•

LOQ = Limit of Quantitation

Toluene

8260D

ND

4.8

Q = Surrogate failure

1

ug/kg

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and \geq DL

1.9

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

108-88-3

Description: DUP-02-SO

Date Sampled:06/25/2021

Laboratory ID: WF26011-012

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Date Received: 06/25/2021

Volatile Organic Compounds by G	-C/MS	MS	
---------------------------------	-------	----	--

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1		Date Analyst 1 0348 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.91		
Parameter			CAS /	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.8	1.9	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.8	1.9	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.8	1.9	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.8	1.9	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.8	1.9	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.8	1.9	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.8	2.9	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.7	3.9	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptanc Limits	: e					
Bromofluorobenzene		96	47-138		**-				
1,2-Dichloroethane-d4		111	53-142				•		
Toluene-d8		105	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: **DP-09 (10-11)-SS**

Date Sampled:06/25/2021 1545

Date Received: 06/25/2021

Laboratory ID: WF26011-013

Matrix: Solid

% Solids: 87.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

RunPrep MethodAnalytical Metho1503582600			ysis Date Analyst /2021 0410 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.58		
Parameter	(Num	CAS	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-6	64-1	8260D	ND	20	8.2	ug/kg	1
Benzene	71-4	3-2	8260D	ND	5.1	2.0	ug/kg	1
Bromodichloromethane	75-2	27-4	8260D	ND	5.1	2.0	ug/kg	1
Bromoform	75-2	25-2	8260D	ND	5.1	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-8	3-9	8260D	ND	5.1	3.1	ug/kg	1
2-Butanone (MEK)	78-9	3-3	8260D	ND	20	4.1	ug/kg	1
Carbon disulfide	75-1	5-0	8260D	ND	5.1	2.0	ug/kg	1
Carbon tetrachloride	56-2	3-5	8260D	ND	5.1	2.0	ug/kg	1
Chlorobenzene	108-9	0-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethane	75-0	0-3	8260D	ND	5.1	2.0	ug/kg	1
Chloroform	67-6	6-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-8	7-3	8260D	ND	5.1	3.1	ug/kg	1
Cyclohexane	110-8	2-7	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-1	2-8	8260D	ND	5.1	2.0	ug/kg	1
Dibromochloromethane	124-4	8-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-9	3-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene	95-5	0-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene	541-7	3-1	8260D	ND	5.1	2.0	ug/kg	1
1,4-Dichlorobenzene	106-4	6-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodifluoromethane	75-7	1-8	8260D	ND	5.1	3.1	ug/kg	1
1,1-Dichloroethane	75-3	4-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloroethane	107-0	6-2	8260D	ND	5.1	2.0	ug/kg	1
1,1-Dichloroethene	75-3	5-4	8260D	ND	5.1	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-5	9-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60	0-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropane	78-8	7-5	8260D	ND	5.1	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-0	1-5	8260D	ND	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-0	2-6	8260D	ND	5.1	2.0	ug/kg	1
Ethylbenzene	100-4	1-4	8260D	ND	5.1	2.0	ug/kg	1
2-Hexanone	591-78	8-6	8260D	ND	10	4.1	ug/kg	1
Isopropylbenzene	98-8	2-8	8260D	ND	5.1	2.0	ug/kg	1
Methyl acetate	79-20	0-9	8260D	ND	5.1	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-0	4-4	8260D	ND	5.1	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10	0-1	8260D	ND	10	4.1	ug/kg	1
Methylcyclohexane	108-87	7-2	8260D	ND	5.1	2.0	ug/kg	1
Methylene chloride	75-09	9-2	8260D	ND	5.1	2.0	ug/kg	1
Styrene	100-42	2-5	8260D	ND	5.1	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34	4-5	8260D	ND	5.1	2.0	ug/kg	1
Tetrachloroethene	127-18	8-4	8260D	ND	5.1	2.0	ug/kg	1
Toluene	108-88	8-3	8260D	ND	5.1	2.0	ug/kg	1

LOQ = Limit of Quantitation E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure B = Detected in the method blank ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and <math>\geq DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-09 (10-11)-SS

Date Sampled:06/25/2021 1545

Date Received: 06/25/2021

Laboratory ID: WF26011-013

Matrix: Solid

% Solids: 87.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	s Date Analyst 21 0410 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.58		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	•	76-	13-1	8260D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.1	3.1	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.1	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptano Limits	e					
Bromofluorobenzene		97	47-138						
1,2-Dichloroethane-d4		105	53-142						
Toluene-d8		103	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-07-20-21-GW Date Sampled:06/25/2021 1520 Date Received: 06/25/2021

Laboratory ID: WF26011-014

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
2	5030B	8260D	1	07/14/2021 1353 TML		98830

Parameter	CAS Number	Analytical Method	Result		LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	HUJ	20	5.0	ug/L	2
Benzene	71-43-2	8260D	ND	H	1.0	0.40	ug/L	2
Bromodichloromethane	75-27-4	8260D	ND	#	1.0	0.40	ug/L	2
Bromoform	75-25-2	8260D	ND	H	1.0	0.40	ug/L	2
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	Ħ	2.0	0.40	ug/L	2
2-Butanone (MEK)	78-93-3	8260D	ND	#	10	2.0	ug/L	2
Carbon disulfide	75-15-0	8260D	ND	₩	1.0	0.40	ug/L	2
Carbon tetrachloride	56-23-5	8260D	ND	H	1.0	0.40	ug/L	2
Chlorobenzene	108-90-7	8260D	ND	A	1.0	0.40	ug/L	2
Chloroethane	75-00-3	8260D	ND	H V	2.0	0.40	ug/L	2
Chloroform	67-66-3	8260D	0.42	RJ J	1.0	0.40	ug/L	2
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	H UJ	1.0	0.50	ug/L	2
Cyclohexane	110-82-7	8260D		A)	1.0	0.40	ug/L	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	H	1.0	0.40	ug/L	2
Dibromochloromethane	124-48-1	8260D	ND	H \	1.0	0.40	ug/L	2
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	#	1.0	0.40	ug/L	2
1,2-Dichlorobenzene	95-50-1	8260D	ND	H \	1.0	0.40	ug/L	2
1,3-Dichlorobenzene	541-73-1	8260D	ND	H	1.0	0.40	ug/L	2
1,4-Dichlorobenzene	106-46-7	8260D	ND	H	1.0	0.40	ug/L	2
Dichlorodifluoromethane	75-71-8	8260D	ND	H W	2.0	0.60	ug/L	2
1,1-Dichloroethane	75-34-3	8260D	1.2	H J	1.0	0.40	ug/L	2
1,2-Dichloroethane	107-06-2	8260D	ND	H UJ	1.0	0.40	ug/L	2
1,1-Dichloroethene	75-35-4	8260D	0.79	的丁	1.0	0.40	ug/L	2
cis-1,2-Dichloroethene	156-59-2	8260D	14	WJ	1.0	0.40	ug/L	2
trans-1,2-Dichloroethene	156-60-5	8260D	ND	EN H	1.0	0.40	ug/L	2
1,2-Dichloropropane	78-87-5	8260D	ND	H	1.0	0.40	ug/L	2
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	H	1.0	0.40	ug/L	2
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	₩ 🗸	1.0	0.40	ug/L	2
Ethylbenzene	100-41-4	8260D	3.0	H 3	1.0	0.40	ug/L	2
2-Hexanone	591-78-6	8260D	ND	H UJ	10	2.0	ug/L	2
Isopropylbenzene	98-82-8	8260D	2.9	サブ	1.0	0.40	ug/L	2
Methyl acetate	79-20-9	8260D	ND	H UJ	1.0	0.40	ug/L	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	Η	1.0	0.40	ug/L	2
4-Methyl-2-pentanone	108-10-1	8260D	ND	H	10	2.0	ug/L	2
Methylcyclohexane	108-87-2	8260D	ND	H	5.0	0.40	ug/L	2
Methylene chloride	75-09-2	8260D	ND	н	1.0	0.40	ug/L	2
Styrene	100-42-5	8260D	ND	Á	1.0	0.41	ug/L	2
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	A A	1.0	0.40	ug/L	2
Tetrachloroethene	127-18-4	8260D	0.83	My 2	1.0	0.40	ug/L	2
Toluene	108-88-3	8260D	ND	H U	5 1.0	0.40	ug/L	2

LOQ = Limit of Quantitation E = Quantitation of compound exceeded the calibration range B = Detected in the method blank ND = Not detected at or above the DL

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Matrix: Aqueous

Description: DP-07-20-21-GW Date Sampled:06/25/2021 1520 Date Received: 06/25/2021

Volatile Organic Compounds by GC/MS

	voiatile Organic	Compounds	by G	C/IVIS				
Run Prep Method Analyti 2 5030B		ysis Date Analyst /2021 1353 TML	Prep	Date	Batch 98830			
Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	HUJ	1.0	0.42	ug/L	2
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	H/	1.0	0.40	ug/L	2
1,1,1-Trichloroethane	71-55-6	8260D	ND	H .	1.0	0.40	ug/L	2
1,1,2-Trichloroethane	79-00-5	8260D	ND	H W	1.0	0.40	ug/L	2
Trichloroethene	79-01-6	8260D	0.65	HO J	1.0	0.40	ug/L	2
Trichlorofluoromethane	75-69-4	8260D	ND	H UJ	1.0	0.40	ug/L	2
Vinyl chloride	75-01-4	8260D	6.4	AJ	1.0	0.40	ug/L	2
Xylenes (total)	1330-20-7	8260D	8.4	H J	1.0	0.40	ug/L	2
Surrogate	Run 2 Accept Q % Recovery Lim							

Bromofluorobenzene Н 70-130 104 1,2-Dichloroethane-d4 Н 110 70-130 Toluene-d8 Н 106 70-130

Volatile Organic Compounds by GC/MS (SIM)

							- ,			
Run Prep M	/lethod	Analytical Metho	d Dilution	Analysis Date	Analyst	Prep Date	Batch			
1	5030B	8260D (SIM	1) 1	07/02/2021 04	49 CJL2		97674			
	·			CAS Anal	/tical					
Parameter			Nur	nber Me	hod	Result Q	LOQ	DL	Units	Run
1,4-Dioxane			123-	91-1 8260	(SIM)	1.6 J	3.0	1.0	ug/L	- 1
Surrogate		Q %	Run 1 Recovery	Acceptance Limits						
1.2-Dichloroe	ethane-d4		96	40-170	****					

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175	Dilution 1	•	sis Date Analyst 2021 1102 TML	Prep Date	Batch 98028			
Parameter		Nun	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-8	82-8	RSK - 175	9.4 J	10	2.5	ug/L	2
Propane		74-9	98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-11 (10-11)-SS

Date Sampled: 06/25/2021 1650 Date Received: 06/25/2021

Laboratory ID: WF26011-015

Matrix: Solid

% Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run F	Prep Method 5035	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 0433 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 7.79		
Param	eter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetor	ne		67-	64-1	8260D	32	15	6.1	ug/kg	1
Benzer	ne		71-4	43-2	8260D	ND	3.8	1.5	ug/kg	1
Bromo	dichloromethane		75-2	27-4	8260D	ND	3.8	1.5	ug/kg	1
Bromot	form		75-2	25-2	8260D	ND	3.8	1.5	ug/kg	1
Bromo	methane (Methyl bromide)		74-8	33-9	8260D	ND	3.8	2.3	ug/kg	1
2-Butai	none (MEK)		78-9	93-3	8260D	ND	15	3.1	ug/kg	1
Carbon	n disulfide		75-	15-0	8260D	ND	3.8	1.5	ug/kg	1
Carbon	tetrachloride		56-2	23-5	8260D	ND	3.8	1.5	ug/kg	1
Chlorol	penzene		108-9	90-7	8260D	ND	3.8	1.5	ug/kg	1
Chloroe	ethane		75-0	00-3	8260D	ND	3.8	1.5	ug/kg	1
Chlorof	form		67-6	66-3	8260D	ND	3.8	1.5	ug/kg	1
Chloror	methane (Methyl chloride)		74-8	37-3	8260D	ND	3.8	2.3	ug/kg	1
Cycloh	exane		110-8	32-7	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dib	romo-3-chloropropane (DBC	P)	96-1	12-8	8260D	ND	3.8	1.5	ug/kg	1
Dibrom	ochloromethane	,	124-4	8-1	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dib	romoethane (EDB)		106-9	3-4	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dic	hlorobenzene		95-5	50-1	8260D	ND	3.8	1.5	ug/kg	1
1,3-Dic	hlorobenzene		541-7	'3-1	8260D	ND	3.8	1.5	ug/kg	1
1,4-Dic	hlorobenzene		106-4	6-7	8260D	ND	3.8	1.5	ug/kg	1
Dichlor	odifluoromethane		75-7	7 1-8	8260D	ND	3.8	2.3	ug/kg	1
1,1-Dicl	hloroethane		75-3	34-3	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dicl	hloroethane		107-0	6-2	8260D	ND	3.8	1.5	ug/kg	1
1,1-Dicl	hloroethene		75-3	35-4	8260D	ND	3.8	1.5	ug/kg	1
cis-1,2-	-Dichloroethene		156-5	9-2	8260D	26	3.8	1.5	ug/kg	1
trans-1,	2-Dichloroethene		156-6	0-5	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dich	hloropropane		78-8	7-5	8260D	ND	3.8	1.5	ug/kg	1
cis-1,3-	Dichloropropene		10061-0	1-5	8260D	ND	3.8	1.5	ug/kg	1
trans-1,	3-Dichloropropene		10061-0	2-6	8260D	ND	3.8	1.5	ug/kg	1
Ethylbe	nzene		100-4	1-4	8260D	ND	3.8	1.5	ug/kg	1
2-Hexai	none		591-7	8-6	8260D	ND	7.7	3.1	ug/kg	1
Isoprop	ylbenzene		98-8	2-8	8260D	ND	3.8	1.5	ug/kg	1
Methyl a	acetate		79-2	0-9	8260D	ND	3.8	1.5	ug/kg	1
Methyl t	tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND	3.8	1.5	ug/kg	1
4-Methy	/l-2-pentanone		108-1	0-1	8260D	ND	7.7	3.1	ug/kg	1
Methylc	yclohexane		108-8	7-2	8260D	ND	3.8	1.5	ug/kg	1
Methyle	ne chloride		75-0	9-2	8260D	ND	3.8	1.5	ug/kg	1
Styrene			100-4	2-5	8260D	ND	3.8	1.5	ug/kg	1
1,1,2,2-	Tetrachloroethane		79-3	4-5	8260D	ND	3.8	1.5	ug/kg	1
									•	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

8260D

8260D

ND

ND

DL = Detection Limit

3.8

3.8

Q = Surrogate failure

1

1

ug/kg

ug/kg

ND = Not detected at or above the DL H = Out of holding time

Tetrachloroethene

Toluene

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

1.5

1.5

127-18-4

108-88-3

Description: **DP-11 (10-11)-SS**

Date Sampled: 06/25/2021 1650

Date Received: 06/25/2021

Laboratory ID: WF26011-015

Matrix: Solid

% Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1		Date Analyst 21 0433 CJL2	Prep Dat	e Batch 97675	Sample Wt.(g) 7.79		
Parameter			CAS .	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	3	76-	13-1	8260D	ND	3.8	1.5	ug/kg	1
1,2,4-Trichlorobenzene		120-8	82-1	8260D	ND	3.8	1.5	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	3.8	1.5	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	3.8	1.5	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	3.8	1.5	ug/kg	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	3.8	1.5	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	5.0	3.8	2.3	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	7.7	3.1	ug/kg	1
Surrogate	Q % i	Run 1 / Recovery	Acceptanc Limits	е					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		109	53-142						
Toluene-d8		105	68-124						

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Description: **DP-11 (20-21)-SS**

Date Sampled:06/25/2021 1715

Date Received: 06/25/2021

Laboratory ID: WF26011-016

Matrix: Solid

% Solids: 81.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Al	nalytical Method 8260D		Anal	ysis Date Analyst /2021 0456 CJL2		Date	Batch 97675	Sample Wt.(g) 6.22		
Parameter		Num	CAS iber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-6	34-1	8260D	ND		20	7.9	ug/kg	1
Benzene		71-4	13-2	8260D	ND		4.9	2.0	ug/kg	1
Bromodichloromethane		75-2	27-4	8260D	ND		4.9	2.0	ug/kg	1
Bromoform		75-2	25-2	8260D	ND		4.9	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-8	33-9	8260D	ND		4.9	2.9	ug/kg	1
2-Butanone (MEK)		78-9	93-3	8260D	ND		20	3.9	ug/kg	1
Carbon disulfide		75-1	15-0	8260D	ND		4.9	2.0	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND		4.9	2.0	ug/kg	1
Chlorobenzene		108-9	0-7	8260D	ND		4.9	2.0	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND		4.9	2.0	ug/kg	1
Chloroform		67-6	6-3	8260D	ND		4.9	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-8	37-3	8260D	ND		4.9	2.9	ug/kg	1
Cyclohexane		110-8	2-7	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-1	2-8	8260D	ND		4.9	2.0	ug/kg	1
Dibromochloromethane		124-4	8-1	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dichlorobenzene		95-5	0-1	8260D	ND		4.9	2.0	ug/kg	1
1,3-Dichlorobenzene		541-7	3-1	8260D	ND		4.9	2.0	ug/kg	1
1,4-Dichlorobenzene		106-4	6-7	8260D	ND		4.9	2.0	ug/kg	1
Dichlorodifluoromethane		75-7	1-8	8260D	ND		4.9	2.9	ug/kg	1
1,1-Dichloroethane		75-3	4-3	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND		4.9	2.0	ug/kg	1
1,1-Dichloroethene		75-3	5-4	8260D	ND		4.9	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND		4.9	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dichloropropane		78-8	7-5	8260D	ND		4.9	2.0	ug/kg	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND		4.9	2.0	ug/kg	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND		4.9	2.0	ug/kg	1
Ethylbenzene		100-4	1-4	8260D	ND		4.9	2.0	ug/kg	1
2-Hexanone		591-7	8-6	8260D	ND		9.8	3.9	ug/kg	1
Isopropylbenzene		98-8	2-8	8260D	ND		4.9	2.0	ug/kg	1
Methyl acetate		79-2	0-9	8260D	ND		4.9	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0	4-4	8260D	ND		4.9	2.0	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		9.8	3.9	ug/kg	1
Methylcyclohexane		108-8	7-2	8260D	ND		4.9	2.0	ug/kg	1
Methylene chloride		75-0	9-2	8260D	ND		4.9	2.0	ug/kg	1
Styrene		100-4	2-5	8260D	ND		4.9	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND		4.9	2.0	ug/kg	1
Tetrachloroethene		127-1	8-4	8260D	ND		4.9	2.0	ug/kg	1
Toluene		108-8	8-3	8260D	ND		4.9	2.0	ug/kg	1

LOQ = Limit of Quantitation
ND = Not detected at or above the DL

B = Detected in the method blank

L = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-11 (20-21)-SS

Date Sampled:06/25/2021 1715

Date Received: 06/25/2021

Laboratory ID: WF26011-016

Matrix: Solid

% Solids: 81.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1		Date Analyst 21 0456 CJL2	Prep Dat	e Batch 97675	Sample Wt.(g) 6.22		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-1	13-1	8260D	ND	4.9	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.9	2.0	ug/kg	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	4.9	2.0	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	4.9	2.0	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.9	2.0	ug/kg	1
Trichlorofluoromethane		75-6	39-4	8260D	ND	4.9	2.0	ug/kg	1
Vinyl chloride		75-0)1-4	8260D	ND	4.9	2.9	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	9.8	3.9	ug/kg	1
Surrogate	Q %	Run 1 A	Acceptanc Limits	e					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		105	53-142						
Toluene-d8		108	68-124						

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and ≥ DL L = LCS/LCSD failure W = Reported on wet weight basis H = Out of holding time

Description: DP-09 (20-21)GW

Date Sampled:06/25/2021 1600 Date Received: 06/25/2021

Laboratory ID: WF26011-017

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1413 TML		98390

Parameter	CAS Number	Analytical Method	Result	Q LOQ	DL	Units	Run
Acetone	67-64-1	8260D	6.0	J 20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	0.91	J 1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-09 (20-21)GW

Date Sampled:06/25/2021 1600 Date Received: 06/25/2021 Laboratory ID: WF26011-017

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Volatile Organic Compounds by GC/NIS												
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		is Date Analyst 021 1413 TML	Prep Date	Batch 98390						
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run			
1,1,2-Trichloro-1,2,2-Trifluoroethane	·	76-	13-1	8260D	ND	1.0	0.42	ug/L	1			
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1			
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1			
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1			
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1			
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1			
Vinyl chloride		75-	01-4	8260D	2.3	1.0	0.40	ug/L	1			
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1			
Surrogate	Q % I	Run 1 Recovery	Acceptan Limits									
Bromofluorobenzene		101	70-130				*****					
1,2-Dichloroethane-d4		110	70-130	ı								
Toluene-d8		104	70-130									

Volatile Organic Compounds by GC/MS (SIM)

	Volutile	Jigaiii	COOI	iipoulius by	COMINIO	(Cilvi)			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		•	rsis Date Analyst 2021 0514 CJL2	Prep Da	te Batch 97674			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	21	3.0	1.0	ug/L	1
Surrogate		Run 1 Recovery	Accepta Limi						
1,2-Dichloroethane-d4		97	40-1	70					***************************************

Dissolved Gases

Run Prep Method 2	Analytical Method RSK - 175		Analysis Date Analy 07/07/2021 1150 TML	•	Batch 98028			
Parameter		C. Numb	AS Analytical er Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84	-0 RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85	-1 RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82	-8 RSK - 175	290	10	2.5	ug/L	2
Propane		74-98	-6 RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

DL = Detection Limit

Q = Surrogate failure

ND = Not detected at or above the DL H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-10 (10-11)-SS

Date Sampled: 06/25/2021 1230

Date Received: 06/29/2021

Laboratory ID: WF29028-001

Matrix: Solid

% Solids: 84.6 06/30/2021 2251

Volatile Organic Compounds by GC/MS

Run Prep Method An 1 5035	alytical Method 8260D	Dilution 1		ysis Date Analyst //2021 1259 JM1	Prep Date	Batch 97945	Sample Wt.(g) 5.61		
Parameter		C Num	AS ber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-6	4-1	8260D	ND	21	8.4	ug/kg	1
Benzene		71-4	3-2	8260D	ND	5.3	2.1	ug/kg	1
Bromodichloromethane		75-2	7-4	8260D	ND	5.3	2.1	ug/kg	1
Bromoform		75-2	5-2	8260D	ND	5.3	2.1	ug/kg	1
Bromomethane (Methyl bromide)		74-8	3-9	8260D	ND	5.3	3.2	ug/kg	1
2-Butanone (MEK)		78-9	3-3	8260D	ND	21	4.2	ug/kg	1
Carbon disulfide		75-1	5-0	8260D	ND	5.3	2.1	ug/kg	1
Carbon tetrachloride		56-2	3-5	8260D	ND	5.3	2.1	ug/kg	1
Chlorobenzene		108-9	0-7	8260D	ND	5.3	2.1	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND	5.3	2.1	ug/kg	1
Chloroform		67-6	6-3	8260D	ND	5.3	2.1	ug/kg	1
Chloromethane (Methyl chloride)		74-8	7-3	8260D	ND	5.3	3.2	ug/kg	1
Cyclohexane		110-8	2-7	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-1	2-8	8260D	ND	5.3	2.1	ug/kg	1
Dibromochloromethane		124-4	8-1	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	3-4	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichlorobenzene		95-5	0-1	8260D	ND	5.3	2.1	ug/kg	1
1,3-Dichlorobenzene		541-7	3-1	8260D	ND	5.3	2.1	ug/kg	1
1,4-Dichlorobenzene		106-46	6-7	8260D	ND	5.3	2.1	ug/kg	1
Dichlorodifluoromethane		75-7	1-8	8260D	ND	5.3	3.2	ug/kg	1
1,1-Dichloroethane		75-3	4-3	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichloroethane		107-0	6-2	8260D	ND	5.3	2.1	ug/kg	1
1,1-Dichloroethene		75-3	5-4	8260D	53	5.3	2.1	ug/kg	1
cis-1,2-Dichloroethene		156-59	9-2	8260D	ND	5.3	2.1	ug/kg	1
trans-1,2-Dichloroethene		156-60	0-5	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichloropropane		78-8	7-5	8260D	ND	5.3	2.1	ug/kg	1
cis-1,3-Dichloropropene		10061-0°	1-5	8260D	ND	5.3	2.1	ug/kg	1
trans-1,3-Dichloropropene		10061-02	2-6	8260D	ND	5.3	2.1	ug/kg	1
Ethylbenzene		100-4	1-4	8260D	ND	5.3	2.1	ug/kg	1
2-Hexanone		591-78		8260D	ND	11	4.2	ug/kg	1
Isopropylbenzene		98-82	2-8	8260D	ND	5.3	2.1	ug/kg	1
Methyl acetate		79-20	0-9	8260D	ND	5.3	2.1	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-04	4-4	8260D	ND	5.3	2.1	ug/kg	1
4-Methyl-2-pentanone		108-10)-1	8260D	ND	11	4.2	ug/kg	1
Methylcyclohexane		108-87	7-2	8260D	ND	5.3	2.1	ug/kg	1
Methylene chloride		75-09		8260D	ND	5.3	2.1	ug/kg	1
Styrene		100-42	2-5	8260D	ND	5.3	2.1	ug/kg	1
1,1,2,2-Tetrachloroethane		79-34		8260D	ND	5.3	2.1	ug/kg	1
Tetrachloroethene		127-18		8260D	ND	5.3	2.1	ug/kg	1
Toluene		108-88		8260D	ND	5.3	2.1	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

Q = Surrogate failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and ≥ DL

L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-10 (10-11)-SS

Date Sampled: 06/25/2021 1230

Date Received: 06/29/2021

Laboratory ID: WF29028-001

Matrix: Solid

% Solids: 84.6 06/30/2021 2251

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	•	is Date Analyst)21 1259 JM1	Prep Date	Batch 97945	Sample Wt.(g) 5.61		
Parameter		Nui	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	}	76-	-13-1	8260D	ND	5.3	2.1	ug/kg	1
1,2,4-Trichlorobenzene		120-	-82-1	8260D	ND	5.3	2.1	ug/kg	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	5.3	2.1	ug/kg	1
1,1,2-Trichloroethane		79-	-00-5	8260D	ND	5.3	2.1	ug/kg	1
Trichloroethene		79-	-01-6	8260D	ND	5.3	2.1	ug/kg	1
Trichlorofluoromethane		75-	-69-4	8260D	ND	5.3	2.1	ug/kg	1
Vinyl chloride		75-	-01-4	8260D	ND	5.3	3.2	ug/kg	1
Xylenes (total)		1330-	-20-7	8260D	ND	11	4.2	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptar Limits						-
Bromofluorobenzene		110	47-138	3					
1,2-Dichloroethane-d4		102	53-142	2					
Toluene-d8		110	68-124	1					

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Report of Analysis

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062 Attention: Tiffany Messier

Project Name: Lennox International

Project Number: 201600378

Lot Number: WF22061

Date Completed:07/02/2021

07/06/2021 1:50 PM Approved and released by:

Project Manager II: Lucas Odom

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

PACE ANALYTICAL SERVICES, LLC

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative EarthCon Consultants, Inc. Lot Number: WF22061

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

PACE ANALYTICAL SERVICES, LLC

Sample Summary EarthCon Consultants, Inc.

Lot Number: WF22061

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	MW-01D-16.2'	Aqueous	06/21/2021 1620	06/22/2021
002	MW-01D-36.2'	Aqueous	06/21/2021 1635	06/22/2021
003	MW-04D-16'	Aqueous	06/21/2021 1505	06/22/2021
004	MW-04D-36'	Aqueous	06/21/2021 1520	06/22/2021
005	MW-04D-56'	Aqueous	06/21/2021 1535	06/22/2021
006	MW-2	Aqueous	06/22/2021 1435	06/22/2021
007	MW-2D	Aqueous	06/22/2021 1345	06/22/2021
800	MW-15	Aqueous	06/22/2021 0950	06/22/2021
009	MW-16	Aqueous	06/22/2021 1050	06/22/2021
010	MW-17	Aqueous	06/22/2021 1200	06/22/2021
011	MW-8	Aqueous	06/22/2021 1100	06/22/2021
012	MW-7	Aqueous	06/22/2021 1235	06/22/2021
013	TRIP BLANK	Aqueous	06/22/2021	06/22/2021

(13 samples)

PACE ANALYTICAL SERVICES, LLC

Detection Summary EarthCon Consultants, Inc.

Lot Number: WF22061

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	MW-01D-16.2'		Tetrachloroethene	8260D	3.1		ug/L	6
001	MW-01D-16.2'	Aqueous	Trichloroethene	8260D	1.3		ug/L	7
001	MW-01D-16.2'	Aqueous	Methane	RSK - 175	6.1	J	ug/L	7
002	MW-01D-36.2'	•	Tetrachloroethene	8260D	3.5		ug/L	8
002	MW-01D-36.2'	Aqueous	Trichloroethene	8260D	1.4		ug/L	9
002	MW-01D-36.2'	Aqueous	Methane	RSK - 175	3.3	J	ug/L	9
003	MW-04D-16'	•	Tetrachloroethene	8260D	2.1		ug/L	10
003	MW-04D-16'	Aqueous	Methane	RSK - 175	3.0	J	ug/L	11
004	MW-04D-36'	Aqueous	Tetrachloroethene	8260D	4.7		ug/L	12
004	MW-04D-36'	Aqueous	Methane	RSK - 175	2.6	J	ug/L	13
005	MW-04D-56'	Aqueous	Tetrachloroethene	8260D	4.0		ug/L	14
005	MW-04D-56'	Aqueous	Methane	RSK - 175	2.9	J	ug/L	15
006	MW-2	Aqueous	Chloride	9056A	7.1		mg/L	16
006	MW-2	Aqueous	Nitrate - N	9056A	1.5		mg/L	16
006	MW-2	Aqueous	Sulfide	SM 4500-S2 F-	1.7		mg/L	16
006	MW-2	Aqueous	Methane	RSK - 175	2.7	J	ug/L	18
007	MW-2D	Aqueous	Chloride	9056A	2.9		mg/L	19
007	MW-2D	Aqueous	Nitrate - N	9056A	0.25		mg/L	19
007	MW-2D	Aqueous	Sulfate	9056A	1.3		mg/L	19
007	MW-2D	Aqueous	Sulfide	SM 4500-S2 F-	1.6		mg/L	19
007	MW-2D	Aqueous	Methane	RSK - 175	3.4	J	ug/L	21
800	MW-15	Aqueous	Chloride	9056A	4.3		mg/L	22
800	MW-15	Aqueous	Sulfate	9056A	12		mg/L	22
800	MW-15	Aqueous	Sulfide	SM 4500-S2 F-	4.5		mg/L	22
800	MW-15	Aqueous	Methane	RSK - 175	5.3	J	ug/L	24
009	MW-16	Aqueous	Chloride	9056A	13		mg/L	25
009	MW-16	Aqueous	Nitrate - N	9056A	5.6		mg/L	25
009	MW-16	Aqueous	Sulfide	SM 4500-S2 F-	1.1		mg/L	25
009	MW-16	Aqueous	Chloroform	8260D	1.6		ug/L	25
009	MW-16	Aqueous	Methane	RSK - 175	3.3	J	ug/L	27
010	MW-17	Aqueous	Chloride	9056A	8.3		mg/L	28
010	MW-17	Aqueous	Nitrate - N	9056A	1.8		mg/L	28
010	MW-17	Aqueous	Sulfate	9056A	0.29	J	mg/L	28
010	MW-17	Aqueous	Chloroform	8260D	0.81	J	ug/L	28
010	MW-17	Aqueous	Methane	RSK - 175	3.2	J	ug/L	30
011	MW-8	Aqueous	Chloride	9056A	1.1		mg/L	31
011	MW-8	Aqueous	Nitrate - N	9056A	0.51		mg/L	31
011	MW-8	Aqueous	Sulfate	9056A	4.3		mg/L	31
011	MW-8	Aqueous	TOC	9060A	6.7		mg/L	31
011	MW-8	Aqueous	Methane	RSK - 175	2.8	J	ug/L	33
012	MW-7	Aqueous	Alkalinity @ pH 4.5 su	SM 2320B-	22		mg CaCO3/L	34
012	MW-7	Aqueous	Chloride	9056A	4.7		mg/L	34
012	MW-7	Aqueous	Sulfate	9056A	2.4		mg/L	34
012	MW-7	Aqueous	TOC	9060A	9.1		mg/L	34
012	MW-7	Aqueous	cis-1,2-Dichloroethene	8260D	190		ug/L	35

Detection Summary (Continued)

Lot Number: WF22061

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
012	MW-7	Aqueous	trans-1,2-Dichloroethene	8260D	0.71	J	ug/L	35
012	MW-7	Aqueous	Ethylbenzene	8260D	7.4		ug/L	35
012	MW-7	Aqueous	Trichloroethene	8260D	0.69	J	ug/L	35
012	MW-7	Aqueous	Vinyl chloride	8260D	21		ug/L	35
012	MW-7	Aqueous	Xylenes (total)	8260D	24		ug/L	35
012	MW-7	Aqueous	Methane	RSK - 175	15		ug/L	36

(51 detections)

Description: MW-01D-16.2'

Date Sampled:06/21/2021 1620

Date Received: 06/22/2021

Laboratory ID: WF22061-001 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

RunPrep MethodAnalytical MethodDilutionAnalysis DateAnalystPrep DateBatch15030B8260D107/01/2021 1210BWS97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	3.1	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-01D-16.2' Date Sampled:06/21/2021 1620 Laboratory ID: WF22061-001 Matrix: Aqueous

Date Received: 06/22/2021

	Volatile Organic	: Compounds	by GC/MS	5			
Run Prep Method Ar 1 5030B	3	alysis Date Analyst 01/2021 1210 BWS	Prep Date	Batch 97592			
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	1.3	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		ptance mits					
Bromofluorobenzene	104 70)-130					
1,2-Dichloroethane-d4	104 70)-130					
Toluene-d8	99 70)-130					

	Volatile Org	ganic (Compounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	Analytical Method Dil 8260D (SIM)		nnalysis Date Analyst 6/29/2021 2351 CJL2	Prep Date	Batch 97322			
Parameter		CA Numbe	7 that y trout	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-	1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate	Rur Q % Reco		ceptance Limits					
1,2-Dichloroethane-d4	9	9	40-170					

		D	issolved Gases					
Run Prep Method 1	Analytical Method RSK - 175		Analysis Date Analys 06/25/2021 1022 TML	•	Batch 96775			
Paramotor			CAS Analytical	Posult O	1.00	DI	Unite	Dun

Parameter	Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	6.1 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure W = Reported on wet weight basis H = Out of holding time

Description: MW-01D-36.2' Date Sampled:06/21/2021 1635 Date Received: 06/22/2021

Laboratory ID: WF22061-002

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1234 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	3.5	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Date Sampled:06/21/2021 1635 Date Received: 06/22/2021

Laboratory ID: WF22061-002 Description: MW-01D-36.2' Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1234 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	1.4	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
Bromofluorobenzene		105	70-130
1,2-Dichloroethane-d4		100	70-130
Toluene-d8		98	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method 1 5030B	Analytical Method Dilution 8260D (SIM) 1	,	is Date Analyst 021 0016 CJL2	Prep Date	Batch 97322			
Parameter		CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate	Run 1 Q % Recovery	Acceptar Limits						

Surrogate	Q	76 Recovery	LIIIIII
1,2-Dichloroethane-d4		99	40-170

Dissolved Gases

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
			3	- 1	
1	RSK - 175	1	06/25/2021 1038 TML		96775

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.3 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-04D-16'

Date Sampled:06/21/2021 1505

Date Received: 06/22/2021

Laboratory ID: WF22061-003

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1259 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	2.1	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Date Sampled:06/21/2021 1505

Date Received: 06/22/2021

Run Prep Method

Description: MW-04D-16'

Laboratory ID: WF22061-003

Matrix: Aqueous

					Vo	ola	til	e (Or	gai	<u>าic</u>	C	0	m	pc	our	าd	S	by	<u> </u>	iC/l	MS)
 			_				-				-			_		-	-				_		

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	vsis Date Analyst 2021 1259 BWS	Prep Date	Batch 97592			
			CAS	Analytical	D !! 0	1.00	61		
Parameter			nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	!	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %I	Run 1 Recovery	Accept Limi						
Bromofluorobenzene		106	70-1	30					
1,2-Dichloroethane-d4		105	70-1	30					
Toluene-d8		101	70-1	30					

Volatila Organia Compounds by CC/MS (SIM)

	voiatile Or	ganic C	ompounas by	/ GC/IVIS (3	SIIVI)			
Run Prep Method	Analytical Method D	ilution An	alysis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1 06/3	30/2021 0041 CJL2		97322			
		CAS	Analytical					
Parameter		Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate			eptance imits					
1,2-Dichloroethane-d4	1	100 40	0-170					,

Dissolved Gases

Analysis Date Analyst

Prep Date

Batch

1	RSK - 175	1 06/25/	2021 1054 TML	·	96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	3.0 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure W = Reported on wet weight basis S = MS/MSD failure H = Out of holding time

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Analytical Method

Dilution

Description: MW-04D-36' Date Sampled:06/21/2021 1520 Date Received: 06/22/2021

Laboratory ID: WF22061-004

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1324 BWS		97592

Acctone	Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Bromodichloromethane 75-27-4 8260D ND 1.0 0.40 0.97L	Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Bromoform 75 25 2 8260D ND 1.0 0.40 ug/L Bromomethane (Methyl bromide) 74.83.9 8260D ND 2.0 0.40 ug/L Salbatanee (MEK) 78.93.3 8260D ND 1.0 0.40 ug/L Carbon disulfide 75-15.0 8260D ND 1.0 0.40 ug/L Carbon disulfide 56-23.5 8260D ND 1.0 0.40 ug/L Chloroethane 75-00-3 8260D ND 1.0 0.40 ug/L Chloroethane (Methyl chloride) 76-66-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L Cyclobexane 110-82-7 8260D ND 1.0 0.40 ug/L Cyclobexane 110-82-7 8260D ND 1.0 0.40 ug/L Ly-Dichloroethane (EDB) 96-12-8 8260D ND 1.0 0.40	Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide) 74.83.9 82.60D ND 2.0 0.40 ug/L 2-Butanone (MEK) 78.93.3 82.60D ND 1.0 2.0 ug/L Carbon disulfide 75.15-0 82.60D ND 1.0 0.40 ug/L Carbon tetrachioride 56.23.5 82.60D ND 1.0 0.40 ug/L Chioroebrane 178.90-7 82.60D ND 1.0 0.40 ug/L Chioroeform 67.66-3 82.60D ND 1.0 0.40 ug/L Chioroeform 67.66-3 82.60D ND 1.0 0.40 ug/L Chioroeform 11.82-7 82.60D ND 1.0 0.40 ug/L Cyclohexane 110.82-7 82.60D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82.60D ND 1.0 0.40 ug/L 1,2-Dibriomo-1-chromethane 108-93-4 82.60D ND 1.0 0.40 </td <td>Bromodichloromethane</td> <td>75-27-4</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
2-Butanone (MEK) 78-93-3 8260D ND 1.0 0.40 ug/L Carbon Idsulfide 75-15-0 8260D ND 1.0 0.40 ug/L Carbon Ietrachloride 56-23-5 8260D ND 1.0 0.40 ug/L Chlorobenzene 108-90-7 8260D ND 1.0 0.40 ug/L Chlorocethane 75-06-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L Chloromethane (EDR) 10-82-8 8260D ND 1.0 0.40 ug/L L2-Dibrhoroethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane (EDB) 106-94-7 8260D ND <	Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Carbon disulfide 75-15-0 8260D ND 1.0 0.40 ug/L Carbon telrachloride 56-23-5 8260D ND 1.0 0.40 ug/L Chloroethane 108-90-7 8260D ND 1.0 0.40 ug/L Chloroethane 75-00-3 8260D ND 1.0 0.40 ug/L Chloroethane (Methyl chloride) 47-87-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 14-87-3 8260D ND 1.0 0.40 ug/L Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0	Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
Carbon tetrachloride 56-23-5 8260D ND 1.0 0.40 ug/L Chlorobenzene 108-90-7 8260D ND 1.0 0.40 ug/L Chloroethane 75-06-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 75-66-3 8260D ND 1.0 0.40 ug/L Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-6-lhoropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1,2-Dibromochloromethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 75-71-8 8260D ND <td>2-Butanone (MEK)</td> <td>78-93-3</td> <td>8260D</td> <td>ND</td> <td>10</td> <td>2.0</td> <td>ug/L</td> <td>1</td>	2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Chlorobenzene 108-90-7 8260D ND 1.0 0.40 ug/L Chloroethane 75-00-3 8260D ND 2.0 0.40 ug/L Chloroform 67-66-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 95-17-8 8260D ND 1.0 0.40	Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Chloroethane 75-00-3 8260D ND 2.0 0.40 ug/L Chloroform 67-66-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L Cyclohexane 1110-82-7 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dibromochloromethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dibromochane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dibromochane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dibriorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 75-34-3 8260D ND 1.	Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chloroform 67-66-3 8260D ND 1.0 0.40 ug/L Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.50 ug/L Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-6-2 8260D ND 1.0 <td>Chlorobenzene</td> <td>108-90-7</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.50 ug/L Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-dhrane 124-48-1 8260D ND 1.0 0.40 ug/L 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 156-59-1 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 156-59-2 8260D ND 1.0<	Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichloromethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 156-59-2 8260D ND 1.0	Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromor-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethene 156-59-2 8260D ND 1.0 <td>Chloromethane (Methyl chloride)</td> <td>74-87-3</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.50</td> <td>ug/L</td> <td>1</td>	Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 156-59-2 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-69-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 <	Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1,4-Dichloroethane 75-71-8 8260D ND 1.0 0.60 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L tansa-1,2-Dichloropropane 78-87-5 8260D ND 1.0	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L Dichlorodifluoromethane 75-71-8 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 75-34-3 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L trans-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropane 10061-01-5 8260D ND 1.0	Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 155-59-2 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropene 78-87-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 10041-4 8260D ND 1.0	1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethane 156-59-2 8260D ND 1.0 0.40 ug/L trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 10061-02-6 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1sopropylbenzene 98-82-8 8260D ND <td>1,2-Dichlorobenzene</td> <td>95-50-1</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropane 10061-02-6 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0	1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L Ethylbenzene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0	1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl-2-pentanone 108-10-1 8260D ND	Dichlorodifluoromethane	75-71-8	8260D	ND	2.0		ug/L	1
1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L Ethylbenzene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tetliary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L Methylczlohexane 108-87-2 8260D ND <td>1,1-Dichloroethane</td> <td>75-34-3</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 </td <td>1,2-Dichloroethane</td> <td>107-06-2</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-87-2 8260D ND 1.0 0.40 ug/L Methylcyclohexane 100-42-5 8260D ND 1.0 0.40 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND <	cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41	trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40	1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L	Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
	Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
	1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
	Tetrachloroethene	127-18-4	8260D	4.7	1.0	0.40		1
Toluene 108-88-3 8260D ND 1.0 0.40 ug/L	Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-04D-36'

Date Sampled:06/21/2021 1520 Date Received: 06/22/2021

Laboratory ID: WF22061-004 Matrix: Aqueous

Volatile Organic Compounds by GC/MS Dilution Analysis Date Analyst Run Prep Method Analytical Method Batch 5030B 8260D 07/01/2021 1324 BWS 97592 CAS Analytical Number Result Q LOQ DL Units Run Parameter Method 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260D ND 1.0 0.42 ug/L 1 1,2,4-Trichlorobenzene 120-82-1 8260D ND 1.0 ug/L 1 0.40 1,1,1-Trichloroethane 71-55-6 8260D ND 1.0 ug/L 0.40 1 1,1,2-Trichloroethane 79-00-5 8260D ND 1.0 ug/L 0.40 1 Trichloroethene 79-01-6 8260D ND 1.0 0.40 ug/L Trichlorofluoromethane 75-69-4 8260D ND 1.0 0.40 ug/L 1 Vinyl chloride 75-01-4 8260D ND 1.0 0.40 ug/L 1 Xylenes (total) 1330-20-7 8260D ND 1.0 0.40 ug/L 1 Run 1 Acceptance % Recovery Surrogate Q Limits

107 70-130 Bromofluorobenzene 1,2-Dichloroethane-d4 107 70-130 Toluene-d8 102 70-130

Volatile Organic Compounds by GC/MS (SIM)

	volatile Oi	garric co	mpounds by	/ GC/IVIS (3	SIIVI)			
Run Prep Method	Analytical Method D	ilution Anal	ysis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1 06/30	0/2021 0105 CJL2		97322			
		CAS	Analytical					
Parameter		Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
		un 1 Accep						
Surrogate	Q % Re	covery Lim	nits					
1.2 Diablaraathana d4		100 40	170		•	•		

1,2-Dichloroethane-d4 40-170

Analytical Method

Dissolved Gases

Analysis Date Analyst

Prep Date

Dilution

1	RSK - 175	1 06/25/	2021 1110 TML	·	96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	2.6 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

Run Prep Method

B = Detected in the method blank N = Recovery is out of criteria

W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and ≥ DL

Batch

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-04D-56'

Date Sampled:06/21/2021 1535

Date Received: 06/22/2021

Laboratory ID: WF22061-005 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1348 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	4.0	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-04D-56'

Date Sampled:06/21/2021 1535 Date Received:06/22/2021

Run Prep Method

Laboratory ID: WF22061-005 Matrix: Aqueous

Batch

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 2021 1348 BWS	Prep Date	Batch 97592			
			CAS	Analytical	5 0		5.		_
Parameter		Nur	nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane)	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %I	Run 1 Recovery	Accepta Limit						
Bromofluorobenzene		103	70-13	80					
1,2-Dichloroethane-d4		99	70-13	80					
Toluene-d8		96	70-13	80					

Volatile Organic Compounds by GC/MS (SIM)

	volatile Organic	Compounds by	/ GC/IVIS (3	SIIVI)			
Run Prep Method 1 5030B	Analytical Method Dilution . 8260D (SIM) 1 C	Analysis Date Analyst 06/30/2021 0130 CJL2	Prep Date	Batch 97322			
Parameter	C/ Numb	AS Analytical per Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91	-1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Run 1 Acceptance Surrogate Q % Recovery Limits							
1,2-Dichloroethane-d4	100	40-170					

Dissolved Gases

Dilution Analysis Date Analyst

1	RSK - 175	1 06/25/	/2021 1126 TML	·	96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	2.9 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitQ = Surrogate failureND = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLL = LCS/LCSD failureH = Out of holding timeW = Reported on wet weight basisS = MS/MSD failure

Analytical Method

Description: MW-2

Date Sampled:06/22/2021 1435 Date Received: 06/22/2021 Laboratory ID: WF22061-006

Matrix: Aqueous

	1 1
Inaraania	non-metals
11 10 11 (141 110	
II IOI Gai II	, HOH HICKAIS

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0614 DAK		96695
1	(Chloride) 9056A	1	06/23/2021 1044 MSG		96562
1	(Nitrate - N) 9056A	1	06/23/2021 1044 MSG		96565
2	(Sulfate) 9056A	1	06/30/2021 0541 AMR		97448
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1	(TOC) 9060A	1	06/25/2021 0140 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	7.1	1.0	0.25	mg/L	1
Nitrate - N		9056A	1.5	0.020	0.0050	mg/L	1
Sulfate		9056A	ND	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.7	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1413 BWS		97592

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.027 - 0.076				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2

Styrene

Toluene

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Date Sampled:06/22/2021 1435 Date Received: 06/22/2021

Laboratory ID: WF22061-006

ug/L

ug/L

ug/L

ug/L

1

1

1

Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method Dilution 8260D 1		ysis Date Analyst /2021 1413 BWS	Prep Date	Batch 97592			
		CAS	Analytical	D 11 0	1.00	D.		
Parameter		lumber	Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	1!	56-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	1!	56-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	100	61-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	100	61-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	10	00-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	50	91-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	1	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	16	34-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	10	08-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	10	08-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-09-2	8260D	ND	1.0	0.40	ug/L	1

8260D

8260D

8260D

8260D

ND

ND

ND

ND

1.0

1.0

1.0

1.0

0.41

0.40

0.40

0.40

Volatile Organic Compounds by GC/MS

1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

100-42-5

127-18-4

108-88-3

79-34-5

Surrogate	Q	Run 1 A % Recovery	Acceptance Limits
Bromofluorobenzene		109	70-130
1,2-Dichloroethane-d4		107	70-130
Toluene-d8		104	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method 1 5030B	Analytical Method Dilu 8260D (SIM)		ysis Date Analyst //2021 0155 CJL2	Prep Date	Batch 97322			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2

Date Sampled:06/22/2021 1435 Date Received: 06/22/2021

Laboratory ID: WF22061-006 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 101

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175	Dilution 1	,	is Date Analyst 021 1142 TML	Prep Date	Batch 96775		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	2.7 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-2D

Date Sampled:06/22/2021 1345 Date Received: 06/22/2021

Laboratory ID: WF22061-007

Matrix: Aqueous

Inorgan	ic non	ı-met	als
---------	--------	-------	-----

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0618 DAK		96695
1	(Chloride) 9056A	1	06/23/2021 1105 MSG		96562
1	(Nitrate - N) 9056A	1	06/23/2021 1105 MSG		96565
2	(Sulfate) 9056A	1	06/30/2021 0643 AMR		97448
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1	(TOC) 9060A	1	06/25/2021 0252 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	2.9	1.0	0.25	mg/L	1
Nitrate - N		9056A	0.25	0.020	0.0050	mg/L	1
Sulfate		9056A	1.3	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.6	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1438 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0 - 0				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-2D

Date Sampled:06/22/2021 1345 Date Received: 06/22/2021

Laboratory ID: WF22061-007

Matrix: Aqueous

	volatile Organic Compounds by GC/MS
Dun Dran Mathed	Applytical Method Dilution Applysic Data Applyst Drap Data

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		Date Analyst 1438 BWS	Prep	Date	Batch 97592			
Parameter			CAS A	nalytical Method	Result	Q	LOQ	DL	Units	Run
1,1-Dichloroethene		75-	35-4	8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-	60-5	8260D	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-	41-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone		591-	78-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-	82-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-	20-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-	87-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-	09-2	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-	42-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-	18-4	8260D	ND		1.0	0.40	ug/L	1
Toluene		108-	88-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	e	76-	13-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND		1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND		1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND		1.0	0.40	ug/L	1
Surrogate		Run 1 ecovery	Acceptance Limits)						
Bromofluorobenzene		101	70-130		_	_	_			
1,2-Dichloroethane-d4		97	70-130							
Taluana de		06	70 120							

Toluene-d8 96 70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Pr 1	rep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	Analysis Date Analyst 06/30/2021 0219 CJL2	Prep Date	Batch 97322			
Parame	ter			CAS Analytical nber Method	Result Q	LOQ	DL	Units	Run
1,4-Diox	ane		123-	91-1 8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure H = Out of holding time S = MS/MSD failure W = Reported on wet weight basis

Description: MW-2D

Date Sampled:06/22/2021 1345 Date Received: 06/22/2021

Laboratory ID: WF22061-007 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 96

Dissolved Gases

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch RSK - 175 06/25/2021 1158 TML 96775

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.4 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-15

Date Sampled:06/22/2021 0950 Date Received: 06/22/2021

Laboratory ID: WF22061-008

Matrix: Aqueous

-	norgani	ic nor	n-metals	
---	---------	--------	----------	--

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0625 DAK		96695
1	(Chloride) 9056A	1	06/23/2021 0900 MSG		96562
1	(Nitrate - N) 9056A	1	06/23/2021 0900 MSG		96565
2	(Sulfate) 9056A	1	06/30/2021 0704 AMR		97448
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1	(TOC) 9060A	1	06/25/2021 0316 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	4.3	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	12	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	4.5	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1502 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.287 - 0.326				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

 ${\it Client: Earth Con\ Consultants,\ Inc.}$

Description: MW-15

Date Sampled:06/22/2021 0950 Date Received: 06/22/2021

Laboratory ID: WF22061-008

Matrix: Aqueous

Run Prep Method A 1 5030B	nalytical Method 8260D		Analysis		s by GC/MS t Prep Date	Batch 97592			
Parameter		(Num		Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75-3	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-5	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	50-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	37-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0)1-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-4	11-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-7	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-8	32-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	37-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-0)9-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-4	12-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-1	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	38-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-1	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	59-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q % F	Run 1 A Recovery	Acceptano Limits	ce					
Bromofluorobenzene		100	70-130						
1,2-Dichloroethane-d4		99	70-130						
Toluene-d8		95	70-130						

Volatile Organic Compour	nds by	y GC/MS ((SIM)	

Run Pro	ep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	Analysis Date Analys 06/30/2021 0244 CJL2		Batch 97322			
Paramet	ter			CAS Analytical nber Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxa	ane		123-	91-1 8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-15

Run Prep Method

Date Sampled:06/22/2021 0950 Date Received:06/22/2021 Laboratory ID: WF22061-008 Matrix: Aqueous

Surrogate Q Run 1 Acceptance
Q Recovery Limits

1,2-Dichloroethane-d4 100 40-170

0 10 170

Analytical Method Dilution Analysis Date Analyst

Dissolved Gases

Prep Date

Batch

1	RSK - 175	1	06/25/2021 1214	ΓML	96775		
Parameter		Nur	CAS Analytica mber Method		LOQ	DL	Units

	CAS	Analytical	5 " 6		5.		_
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	5.3 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-16

Date Sampled:06/22/2021 1050 Date Received:06/22/2021 Laboratory ID: WF22061-009

Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0628 DAK		96695
1	(Chloride) 9056A	1	06/23/2021 0921 MSG		96562
1	(Nitrate - N) 9056A	1	06/23/2021 0921 MSG		96565
2	(Sulfate) 9056A	1	06/30/2021 0725 AMR		97448
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1	(TOC) 9060A	1	06/25/2021 0340 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	13	1.0	0.25	mg/L	1
Nitrate - N		9056A	5.6	0.020	0.0050	mg/L	1
Sulfate		9056A	ND	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.1	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1527 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.6	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \geq DL	L = LCS/LCSD failure
W = Reported on wet weight basis			S = MS/MSD failure
	N = Recovery is out of criteria	·	N = Recovery is out of criteria $P = The RPD$ between two GC columns exceeds 40% $J = Estimated result < LOQ and \geq DL$

Description: MW-16

Date Sampled:06/22/2021 1050 Date Received:06/22/2021 Laboratory ID: WF22061-009

Matrix: Aqueous

Volatile Organic Compounds by G	SC/MS
---------------------------------	-------

Run Prep Method 1 5030B	Analytical Method [8260D	Dilution 1		Date Analyst 1527 BWS	t Prep Dat	e Batch 97592			
Parameter		(Num		nalytical Method	Result Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75-3	5-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-5	9-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	7-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	1-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	2-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-4	1-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-7	8-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-8	2-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-2	10-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	14-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	7-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-C	19-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-4	2-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-3	4-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-1	8-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	8-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethar	ne	76-1	3-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	2-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-5	5-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-C	0-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	11-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	9-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-C	1-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		un 1 A	Acceptance Limits						
Bromofluorobenzene		108	70-130						
1,2-Dichloroethane-d4		106	70-130						
Toluene-d8		102	70-130						

Run Prep Method 1 5030B	Analytical Method Dilut 8260D (SIM) 1		lysis Date Analyst 0/2021 0308 CJL2	Prep Date	Batch 97322			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	1	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitQ = Surrogate failureND = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLL = LCS/LCSD failureH = Out of holding timeW = Reported on wet weight basisS = MS/MSD failure

Description: MW-16

Date Sampled:06/22/2021 1050 Date Received: 06/22/2021

Laboratory ID: WF22061-009 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits 40-170

1,2-Dichloroethane-d4 100

Dissolved Gases

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch RSK - 175 06/25/2021 1230 TML 96775

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.3 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-17

Date Sampled:06/22/2021 1200 Date Received: 06/22/2021 Laboratory ID: WF22061-010

Matrix: Aqueous

Inorganic	: non-metals
-----------	--------------

Run Prep M	ethod	Analytical Method	Dilution	Analysis Date A	Analyst	Prep Date	Batch
1	(Alkalinity	@) SM 2320B-2011	1	06/24/2021 0639	DAK		96695
1		(Chloride) 9056A	1	06/23/2021 1003	MSG		96562
1		(Nitrate - N) 9056A	1	06/23/2021 1003	MSG		96565
2		(Sulfate) 9056A	1	06/30/2021 0828	AMR		97448
1	(Sulfide) S	SM 4500-S2 F-2011	1	06/26/2021 1339	GDC		96945
1		(TOC) 9060A	1	06/25/2021 0404	AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	8.3	1.0	0.25	mg/L	1
Nitrate - N		9056A	1.8	0.020	0.0050	mg/L	1
Sulfate		9056A	0.29 J	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1552 BWS		97592

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.81 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0 - 0				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-17

Date Sampled:06/22/2021 1200 Date Received: 06/22/2021

Laboratory ID: WF22061-010

Matrix: Aqueous

		Volati	le Orga	anic Compounds	by GC/MS	
Run 1	Prep Method 5030B	Analytical Method 8260D		Analysis Date Analyst 07/01/2021 1552 BWS	Prep Date	Batch 97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Q		Acceptance Limits
Bromofluorobenzene		101	70-130
1,2-Dichloroethane-d4		99	70-130
Toluene-d8		97	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Me 1 50	nod Ana 30B	alytical Method 8260D (SIM)		,	s Date Analyst 21 0333 CJL2	Prep I	Date Bate 9732			
Parameter			(Num	CAS nber	Analytical Method	Result	Q LOQ	DL	Units	Run
1,4-Dioxane			123-9	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure W = Reported on wet weight basis S = MS/MSD failure H = Out of holding time

Description: MW-17

Date Sampled:06/22/2021 1200 Date Received: 06/22/2021

Laboratory ID: WF22061-010 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

98 40-170 1,2-Dichloroethane-d4

Dissolved Gases

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch RSK - 175 06/25/2021 1246 TML 96775

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.2 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-8

Date Sampled:06/22/2021 1100 Date Received:06/22/2021 Laboratory ID: WF22061-011 Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/24/2021 0644 DAK		96695
1	(Chloride) 9056A	1	06/23/2021 0942 MSG		96562
1	(Nitrate - N) 9056A	1	06/23/2021 0942 MSG		96565
2	(Sulfate) 9056A	1	06/30/2021 0849 AMR		97448
1	(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1	(TOC) 9060A	1	06/25/2021 0429 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	1.1	1.0	0.25	mg/L	1
Nitrate - N		9056A	0.51	0.020	0.0050	mg/L	1
Sulfate		9056A	4.3	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	6.7	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1617 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 6.347 - 6.877				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-8

Date Sampled:06/22/2021 1100 Date Received: 06/22/2021

Laboratory ID: WF22061-011

Matrix: Aqueous

			Vola	atile	e Org	ganic	<u> </u>	<u>Cor</u>	nρ	ou	nd	ls k	ЭУ	GC/I	VIS
_	 		 									-	_		

Run Prep Method 1 5030B	Analytical Method Dilution 8260D 1		sis Date Analyst 2021 1617 BWS	t Prep Date	Batch 97592			
Parameter		CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-	50-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-	32-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-	37-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-	42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-	38-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	e 76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recovery	Accepta Limit	ince ts					
Bromofluorobenzene	98	70-13	30					
1,2-Dichloroethane-d4	97	70-13	30					
Toluene-d8	95	70-13	30					

Volatile Organic Compounds by GC/MS (SIM)

Run Prep 1	Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	-	ysis Date Analyst /2021 0358 CJL2	Prep Date	Batch 97322			
Parameter				CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane			123-		8260D (SIM)	ND ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure W = Reported on wet weight basis H = Out of holding time

Description: MW-8

Propane

Date Sampled:06/22/2021 1100 Date Received: 06/22/2021

Laboratory ID: WF22061-011 Matrix: Aqueous

15

5.0

ug/L

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 96

Dissolved Gases

ND

Run Prep Method 1	Analytical Method RSK - 175	-	ysis Date Analyst /2021 1302 TML	Prep Date	Batch 96775			
		CAS	Analytical	D !! 0	1.00	D.I.		
Parameter		Number	Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	28 I	10	2.5	ua/l	1

RSK - 175

74-98-6

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: MW-7

Date Sampled:06/22/2021 1235 Date Received:06/22/2021 Laboratory ID: WF22061-012

Matrix: Aqueous

Inorgan	ic non	ı-met	als
---------	--------	-------	-----

Run F	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/24/2021 0651 DAK		96695
1		(Chloride) 9056A	1	06/23/2021 1023 MSG		96562
1		(Nitrate - N) 9056A	1	06/23/2021 1023 MSG		96565
2		(Sulfate) 9056A	1	06/30/2021 0910 AMR		97448
1		(Sulfide) SM 4500-S2 F-2011	1	06/26/2021 1339 GDC		96945
1		(TOC) 9060A	1	06/25/2021 0541 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	22	20	20	mg CaCO3/L	1
Chloride		9056A	4.7	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	2.4	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	9.1	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1642 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 9.016 - 9.081				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-7

Date Sampled:06/22/2021 1235 Date Received: 06/22/2021

Laboratory ID: WF22061-012

Matrix: Aqueous

	volatile Organic Compounds by GC/MS
Dun Dran Mathad	Applytical Mathed Dilution Applysic Data Applyst Drap Data

Run Prep Method 1 5030B	Analytical Method Dilu 8260D		Analysis Da 07/01/2021 1		t Prep l	Date	Batch 97592			
Parameter		C. Numb		alytical lethod	Result	Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75-35	5-4	8260D	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59	-2	8260D	190		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-60)-5	8260D	0.71	J	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-87	' -5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10	0061-01	-5	8260D	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10	0061-02	!-6	8260D	ND		1.0	0.40	ug/L	1
Ethylbenzene		100-41	-4	8260D	7.4		1.0	0.40	ug/L	1
2-Hexanone		591-78	I-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene		98-82	2-8	8260D	ND		1.0	0.40	ug/L	1
Methyl acetate		79-20)-9	8260D	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-04	1-4	8260D	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-10)-1	8260D	ND		10	2.0	ug/L	1
Methylcyclohexane		108-87	'-2	8260D	ND		5.0	0.40	ug/L	1
Methylene chloride		75-09)- <u>2</u>	8260D	ND		1.0	0.40	ug/L	1
Styrene		100-42	!-5	8260D	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34	l-5	8260D	ND		1.0	0.40	ug/L	1
Tetrachloroethene		127-18	3-4	8260D	ND		1.0	0.40	ug/L	1
Toluene		108-88	1-3	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-13	3-1	8260D	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82	!-1	8260D	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55	5-6	8260D	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00)-5	8260D	ND		1.0	0.40	ug/L	1
Trichloroethene		79-01	-6	8260D	0.69	J	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69	0-4	8260D	ND		1.0	0.40	ug/L	1
Vinyl chloride		75-01	-4	8260D	21		1.0	0.40	ug/L	1
Xylenes (total)		1330-20)-7	8260D	24		1.0	0.40	ug/L	1
Surrogate	Run Q % Reco		cceptance Limits							
Bromofluorobenzene	10	8	70-130							
1,2-Dichloroethane-d4	10	3	70-130							
Toluene-d8	10	0	70-130							

Volatile Organic Compounds by GC/MS (S	SIM)

		. 9		10) 0011110	<u> </u>			
Run Prep Method 1 5030B	Analytical Method I 8260D (SIM)	Dilution 1	Analysis Date Anal 06/30/2021 0422 CJ	,	Batch 97322			
Parameter			CAS Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-9	91-1 8260D (SIM) ND	3.0	1.0	ug/L	 1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-7

Date Sampled:06/22/2021 1235 Date Received:06/22/2021 Laboratory ID: WF22061-012 Matrix: Aqueous

Surrogate Run 1 Acceptance
Q % Recovery Limits

1,2-Dichloroethane-d4 95 40-170

Dissolved Gases

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1		RSK - 175	1	06/25/2021 1318 TML		96775	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	15	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: TRIP BLANK
Date Sampled:06/22/2021
Date Received: 06/22/2021

Laboratory ID: WF22061-013

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/01/2021 1120 BWS		97592

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Description: TRIP BLANK Date Sampled:06/22/2021 Date Received: 06/22/2021

Laboratory ID: WF22061-013

Matrix: Aqueous

Volatile	Organic	Compounds	s by	GC/MS
----------	---------	-----------	------	-------

Run Prep Method 1 5030B	Analytical Method D 8260D		lysis Date Analyst 1/2021 1120 BWS	Prep Date	Batch 97592			
Darameter		CAS	Analytical	Decult O	1.00	DI	Linita	Dun
Parameter	_	Number	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethar	е	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		ın 1 Accep covery Lin	tance nits					
Bromofluorobenzene	1	07 70-	130					
1,2-Dichloroethane-d4	1	06 70-	130					
Toluene-d8	1	03 70-	130					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Inorganic non-metals - MB

Sample ID: WQ96562-001

Batch: 96562 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.25	mg/L	06/23/2021 0750

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Inorganic non-metals - LCS

Sample ID: WQ96562-002

Batch: 96562

Matrix: Aqueous

Analytical Method: 9056A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	20		1	102	80-120	06/23/2021 0832

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ96565-001

Batch: 96565 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrate - N	ND		1	0.020	0.0050	mg/L	06/23/2021 0750

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96565-002

Batch: 96565

Matrix: Aqueous

Analytical Method: 9056A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate - N	0.80	0.84		1	106	80-120	06/23/2021 0832

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96695-002

Batch: 96695

Analytical Method: SM 2320B-2011

Matrix: Aqueous

Parameter	Spike Amount (mg CaCO3/L)	Result (mg CaCO3/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Alkalinity @ pH 4.5 su	100	97	1	97	90-110	06/24/2021 0437

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ96702-001

Batch: 96702 Analytical Method: 9060A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
TOC	ND		1	1.0	0.42	mg/L	06/25/2021 0052

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

N = Recovery is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Inorganic non-metals - LCS

Sample ID: WQ96702-002

Batch: 96702

Matrix: Aqueous

Analytical Method: 9060A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
TOC	20	19	•	1	96	90-110	06/25/2021 0116

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF22061-006MS

Batch: 96702

Matrix: Aqueous

Analytical Method: 9060A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
TOC	ND	50	47		1	94	70-130	06/25/2021 0204

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF22061-006MD

Batch: 96702

Matrix: Aqueous

	Dateii.	70/02
Analytical	Method:	9060A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
TOC	ND	50	47		1	94	0.74	70-130	20	06/25/2021 0228

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ96945-001

Batch: 96945

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfide	ND		1	1.0	1.0	mg/L	06/26/2021 1339

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Inorganic non-metals - LCS

Sample ID: WQ96945-002

Batch: 96945

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfide	10	9.8	•	1	98	80-120	06/26/2021 1339

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCSD

Sample ID: WQ96945-003

Batch: 96945

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	9.8		1	98	0.00	80-120	20	06/26/2021 1339

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97448-001

Batch: 97448 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.25	mg/L	06/30/2021 0211

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Inorganic non-metals - LCS

Sample ID: WQ97448-002

Batch: 97448

Matrix: Aqueous

Analytical Method: 9056A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfate	20	20		1	102	80-120	06/30/2021 0459

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF22061-009MS

Batch: 97448 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfate	ND	10	10		1	103	80-120	06/30/2021 0746

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF22061-009MD

Batch: 97448 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
Sulfate	ND	10	10		1	103	0.65	80-120	20	06/30/2021 0807	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MB

Sample ID: WQ97322-001 Batch: 97322

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND	1	3.0	1.0	ug/L	06/29/2021 2123
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	98	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - LCS

Sample ID: WQ97322-002 Batch: 97322

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	43	1	86	70-130	06/29/2021 1939
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	110	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97592-001 Batch: 97592

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/01/2021 0951
Benzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Bromoform	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/01/2021 0951
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/01/2021 0951
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Chloroethane	ND		1	2.0	0.40	ug/L	07/01/2021 0951
Chloroform	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/01/2021 0951
Cyclohexane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/01/2021 0951
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
2-Hexanone	ND		1	10	2.0	ug/L	07/01/2021 0951
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Methyl acetate	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/01/2021 0951
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/01/2021 0951
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/01/2021 0951
Methylene chloride	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Styrene	ND		1	1.0	0.41	ug/L	07/01/2021 0951
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Toluene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/01/2021 0951
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
, ,			•			g. -	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97592-001 Batch: 97592

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Vinyl chloride	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Xylenes (total)	ND		1	1.0	0.40	ug/L	07/01/2021 0951
Surrogate	Q % Red	A	cceptance Limit				
Bromofluorobenzene	104		70-130				
1,2-Dichloroethane-d4	103		70-130				
Toluene-d8	98		70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97592-002 Batch: 97592 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Spike						
Darameter	Amount	Result	0	Dil	0/ Doo	%Rec	Analysis Data
Parameter	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	83		1	83	60-140	07/01/2021 0845
Benzene	50	52		1	103	70-130	07/01/2021 0845
Bromodichloromethane	50	53		1	106	70-130	07/01/2021 0845
Bromoform	50	50		1	100	70-130	07/01/2021 0845
Bromomethane (Methyl bromide)	50	48		1	96	70-130	07/01/2021 0845
2-Butanone (MEK)	100	100		1	104	70-130	07/01/2021 0845
Carbon disulfide	50	51		1	102	70-130	07/01/2021 0845
Carbon tetrachloride	50	50		1	100	70-130	07/01/2021 0845
Chlorobenzene	50	51		1	102	70-130	07/01/2021 0845
Chloroethane	50	45		1	89	70-130	07/01/2021 0845
Chloroform	50	54		1	108	70-130	07/01/2021 0845
Chloromethane (Methyl chloride)	50	49		1	98	60-140	07/01/2021 0845
Cyclohexane	50	51		1	103	70-130	07/01/2021 0845
1,2-Dibromo-3-chloropropane (DBCP)	50	58		1	115	70-130	07/01/2021 0845
Dibromochloromethane	50	54		1	108	70-130	07/01/2021 0845
1,2-Dibromoethane (EDB)	50	55		1	109	70-130	07/01/2021 0845
1,2-Dichlorobenzene	50	52		1	103	70-130	07/01/2021 0845
1,3-Dichlorobenzene	50	52		1	104	70-130	07/01/2021 0845
1,4-Dichlorobenzene	50	51		1	101	70-130	07/01/2021 0845
Dichlorodifluoromethane	50	40		1	81	60-140	07/01/2021 0845
1,1-Dichloroethane	50	55		1	110	70-130	07/01/2021 0845
1,2-Dichloroethane	50	54		1	109	70-130	07/01/2021 0845
1,1-Dichloroethene	50	51		1	101	70-130	07/01/2021 0845
cis-1,2-Dichloroethene	50	53		1	106	70-130	07/01/2021 0845
trans-1,2-Dichloroethene	50	53		1	105	70-130	07/01/2021 0845
1,2-Dichloropropane	50	54		1	109	70-130	07/01/2021 0845
cis-1,3-Dichloropropene	50	55		1	111	70-130	07/01/2021 0845
trans-1,3-Dichloropropene	50	56		1	113	70-130	07/01/2021 0845
Ethylbenzene	50	51		1	102	70-130	07/01/2021 0845
2-Hexanone	100	110		1	105	70-130	07/01/2021 0845
Isopropylbenzene	50	50		1	99	70-130	07/01/2021 0845
Methyl acetate	50	65		1	129	70-130	07/01/2021 0845
Methyl tertiary butyl ether (MTBE)	50	50		1	99	70-130	07/01/2021 0845
4-Methyl-2-pentanone	100	130		1	127	70-130	07/01/2021 0845
Methylcyclohexane	50	48		1	95	70-130	07/01/2021 0845
, ,	50	51		1	102	70-130	
Methylene chloride							07/01/2021 0845 07/01/2021 0845
Styrene	50	53		1	107	70-130	
1,1,2,2-Tetrachloroethane	50	59		1	118	70-130	07/01/2021 0845
Tetrachloroethene	50 50	47 52		1 1	93	70-130	07/01/2021 0845
Toluene	50	52		•	104	70-130	07/01/2021 0845
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	46		1	92	70-130	07/01/2021 0845
1,2,4-Trichlorobenzene	50	49		1	98	70-130	07/01/2021 0845
1,1,1-Trichloroethane	50	50		1	100	70-130	07/01/2021 0845
1,1,2-Trichloroethane	50	54		1	108	70-130	07/01/2021 0845

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97592-002

Batch: 97592 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	48	1	96	70-130	07/01/2021 0845
Trichlorofluoromethane	50	45	1	90	70-130	07/01/2021 0845
Vinyl chloride	50	47	1	93	70-130	07/01/2021 0845
Xylenes (total)	100	100	1	102	70-130	07/01/2021 0845
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	101	70-130				
1,2-Dichloroethane-d4	104	70-130				
Toluene-d8	101	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ96775-001

Batch: 96775 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	06/25/2021 0918
Ethene	ND		1	10	2.5	ug/L	06/25/2021 0918
Methane	ND		1	10	2.5	ug/L	06/25/2021 0918
Propane	ND		1	15	5.0	ug/L	06/25/2021 0918

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ96775-002

Batch: 96775 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	550		1	100	70-130	06/25/2021 0848
Ethene	520	520		1	100	70-130	06/25/2021 0848
Methane	300	290		1	97	70-130	06/25/2021 0848
Propane	810	800		1	99	70-130	06/25/2021 0848

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCSD

Sample ID: WQ96775-003

Batch: 96775 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Ethane	550	540		1	97	2.5	70-130	30	06/25/2021 0904
Ethene	520	500		1	98	2.5	70-130	30	06/25/2021 0904
Methane	300	280		1	95	2.1	70-130	30	06/25/2021 0904
Propane	810	780		1	96	2.8	70-130	30	06/25/2021 0904

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

PACE ANALYTICAL SERVICES, LLC 106 Vantage Point Drive - West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 805-791-9111 www.pacelabs.com

Number 123133

7. C. C. L. P. C. L. L. P. C. L. L. P. C. L. L. P. C. L.	EMETHON CENSULTANTS, INC.	Inc.	LUNG GUN	_	BIONKASPITE	ć,	py	mbackeshir	re(e) ea	mbookeshire@eachson.com		-01000
174	1990 MOST Call Paplanay	94.106	Sampler's Signa	itime / /	ι		Ansiyais (Attisch üst if	nore space !	(papeau		
1714=171440726	State (20 Coxe	Printed Name	70.00	£		194	536	77			
10 10 10 10 10 10 10 10	i Internationa		Ti fter		31 CK		(SLL	ind j	וביר <u>ן</u>			
1 1 2 2 2 2 2 2 2 2	200378	P.O. No.	dev descen	Menrex	No of Co by Proson	Wanters alfve Type	7:	BN10		2		WF 2200
2 - 160.2	Semble ID / Description Codshers or each sample may be combined on one fac.)		-	POHOS UNI	EOMH FOSEH	HOWN	ØΛ.	6410		01/_		- Goler LD.
10 26.0.2 2.21.22 16.35 G	10-010-10.2	10.21.22 16		×	- 27 20			×				
10 36° 6° 21° 22 5° 5° 20° 9 1 1 1 1 1 1 1 1 2 1 1	MW-010-36.2'		$\overline{}$	×	20		×	×	_			
10 56 6 21 22 5 20 6 X 1 1 6 1 X X X X X X X X X	1W-040-16"	(6.21.2) (12	×	- do	_	×	×				
10 56 6-222 14 35 9	- 04D		3	X	©	_	X	×			_	
	Tho -		8) X	2		×	×				
D D D D D D D D D D	ZE-7		a	×		,	XX	X	×	×		,
	LUN - 2-D				_			_	×			
Color Colo	MW-15	i	50 G	×	3				×			
Color of the standard for equalities for four weeks from receipt	HW-14		50 4	×	9	-	-		X			78
Properties (Prior to appared the paperties) Sample Disposal Possible Hezerot Kontification District Distr	MW-17	62221	2:00 G	×	1 8	_	×	×	×	7		
	rn Around Tithe Required (Pilot lab approval required Standard Rush (Specify)	f for expedition TAT.)	ample Disposal Retera to Olbrif 🖒	Disposel by Lat		and Adentification		fact.			quinsments (3	(ripant)
Date Time 3. Received by Date Time Time 3. Received by Date Time Time Coasts Time Time Time Time Time Time Time Time	41 1		17 12:00	7. 2. 2. 2. Z		~	1			1	Tone	
Date Time 3 Received by Time Time Time 1000 4. Laborstony received by Control	Refrações dy /		Date	_	2. Rocsived 5	*				Date	Three	
Date: All samples are relatined for four weeks from reseint	Refreshed by		Date	Тите	3. Recovered b	*				Date	Tune	
Van user own	Relinquished by		0.00	18:35	4. Laboratory	reconverting	3	3		Case	and:	log(o
Temp Blank Cl Y	Note: All samples are retaine	ed for four week	s from receipt		LAB USE DALLY	2	1	}		200	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OISTRIBUTION: WHITE & YELLOW-Rollin to laboratory with Sample(s), PINK-FrokitChient Copy

Document Number: ME003N2-01

105 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com

Number 123134

EMPTHON CONSCIENTIS, INC.		Report to Contract L. L. Carllet P. D.	2	Buckershire	Telephone No./ Small Color (A) & Bathering Const.	We (2) e's	VHICES)	Quote No.
- Oak Parton	.9	Semple: Signature		1150	Anshala (Attach list if more space is needed)	pace is needed)		Page 2 of Z.
Planeth ax 22		Printed Name	7	(%)	71Y 1888 W/*			spectrons.
Lernex Intrindicha /		Kuzy		1655101		10		
Project No. CO 3755	P.O. No.	de de	Matrix	No of Consolvers by Presorvative Type	2014 1915	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		WF22061
soription s combined on one line.)	Collection Cost	Coloculus Irms Coloculus C	FORE COOLDY	PROPERTY AND SECOND SEC	/1-08 56/C 20/1 20/1	1:50		Luto Remarks / Cooler I.D.
A11.15- 8 6	6.2.21	11-00 6	1 X		XXXX	×		
NW-7 6	562112729	35 67K	×	18	XXX	ر الا		
	-							
15		Sample Disposal ,		Possible Hazard Identification		ac	OC Requirements (Specify)	WiseoSh
(Standard Rush (Specify)	Ġ	C. Return to Others 1. (Disposal by Lab D. Von-Hazand	(Disposal oy Lab	Diken-Nazurd III Rammatte	Skin Initiant CT Poison	☐ Unitinown	-	(7,000
A. Hillis A. P. V.		(17 W	120	1. Received by		Dste	Тла	æ
2. Refinquished by		Date	Three	2. fieceived by	-	Date	Tons	94
3. Refraguished by		Date	Time	3. Regelved by		Cale	Twne	9
4. Retraguished by		10000 June 1	1000 Sec.	4. Leboselory received by	4. Lebosepay recraised by Melling	a#g	Cate 7.m	Toma 10:010
Note: All samples are retained for four weeks from receipt unless other arrangements are made.	or four weeks			LAB USE ONLY			age of	Tampo Blank IZY D.N
tradition and the state of the	THING SHE HIGH	Ġ.		Pecetives on see (Circle) To	-	Receipt Temps.	٥	

Document Number: ME003Y2-01

Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: Enritheon	Cooler Inspected by/date: JRG2 / 06/22/2021 Lot #: WF22061
Means of receipt: Par	
Yes ✓ No	Were custody seals present on the cooler?
Yes No ✓NA	2. If custody seals were present, were they intact and unbroken?
pH Strip ID; 20-2712	Chlorine Strip ID: NA Tested by: JKG2
Original temperature upon	receipt / Derived (Corrected) temperature upon receipt
2.6 /2.6 °C NA /NA	OC NA /NA OC NA /NA OC
Method: Temperature B	Hank Against Bottles IR Gun ID: 5 IR Gun Correction Factor; 0 °C
Method of coolant: 🗸 V	Vet Ice ice Packs Dry Ice None
	 If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?
	PM was Notified by: phone / email / face-to-face (circle one).
Yes No VNA	4. Is the commercial courier's packing slip attached to this form?
Yes No	Were proper custody procedures (relinquished/received) followed?
	6. Were sample IDs listed on the COC?
✓ Yes No	7. Were sample IDs listed on all sample containers?
	8. Was collection date & time listed on the COC?
✓ Yes No	Was collection date & time listed on all sample containers?
✓ Yes No	10. Did all container label information (ID, date, time) agree with the COC?
✓ Yes No 1	Were tests to be performed listed on the COC?
☑ Yes □ No	12. Did all samples arrive in the proper containers for each test and/or in good condition unbroken, lids on, etc.)?
Transfer of the second	Was adequate sample volume available?
The state of the s	4. Were all sample received within 1/ the helding size and
7-1-1	4. Were all samples received within ½ the holding time or 48 hours, whichever comes first? 5. Were any samples containers mission/success (sind)
	5. Were any samples containers missing/excess (circle one) samples Not listed on COC? 6. For VOA and RSK 175 camples are in this
☐ Yes ☑ No ☐ NA	6. For VOA and RSK-175 samples, were hubbles present >"pea-size" (%"or 6mm in diameter) in any of the VOA vials?
	 Were all DRO/metals/nutrient samples received at a pH of < 2?
	Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
	9. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of
Yes No No NA	esidual chlorine?
\square Yes \square No \square NA 2	Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
C	orrectly transcribed from the COC into the comment section in LIMS?
Yes V No 2	Was the quote number listed on the container label? If yes, Quote #
_	ust be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA	
in sample receiving with NA	were received incorrectly preserved and were adjusted accordingly mL of circle one: H2SO4, HNO3, HCI, NaOH using SR # NA
Time of preservation NA	. If more than one preservative is needed, please note in the comments below.
Sample(s) NA	were received with bubbles >6 mm in diameter.
Samples(s) NA	were received with TRC > 0.5 math /16/11.9 in any and years
adjusted accordingly in samp	ple receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: NA
SR barcode labels applied by	7. JSM Date: D6/22/2021
Comments:	

Report of Analysis

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062 Attention: Tiffany Messier

Project Name: Lennox International Project Number: 02.20160328.21

Lot Number:**WF23091**Date Completed:07/06/2021

07/06/2021 1:53 PM Approved and released by: Project Manager II: **Lucas Odom**

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative EarthCon Consultants, Inc. Lot Number: WF23091

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Sample Receipt

No sample collection dates listed on the COC. The collection dates were obtained from bottle labels.

Inorganic Non-Metals

Sample -005 has been qualified with an "H" for Nitrate analysis. However, this sample was likely analyzed within the hold time. No time of collection was listed on the COC. As such the hold time is being compared to a default time of midnight.

Sample Summary EarthCon Consultants, Inc.

Lot Number: WF23091

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	MW-3	Aqueous	06/23/2021 1100	06/23/2021
002	MW-3D	Aqueous	06/23/2021 0945	06/23/2021
003	MW-6R	Aqueous	06/23/2021 0945	06/23/2021
004	MW-01	Aqueous	06/23/2021 1205	06/23/2021
005	DUP-01	Aqueous	06/23/2021	06/23/2021
006	MW-10	Aqueous	06/23/2021 1415	06/23/2021
007	TRIP BLANK 1	Aqueous	06/23/2021	06/23/2021
800	TRIP BLANK 2	Aqueous	06/23/2021	06/23/2021

(8 samples)

Detection Summary EarthCon Consultants, Inc.

Lot Number: WF23091

	MW-3						Units	Page
	10100-3	Aqueous	Chloride	9056A	40		mg/L	6
001	MW-3	Aqueous	Sulfate	9056A	37		mg/L	6
001	MW-3	Aqueous	Sulfide	SM 4500-S2 F-	3.0		mg/L	6
001	MW-3	Aqueous	TOC	9060A	21		mg/L	6
001	MW-3	Aqueous	1,1-Dichloroethane	8260D	1500		ug/L	6
001	MW-3	Aqueous	1,2-Dichloroethane	8260D	100	J	ug/L	6
001	MW-3	Aqueous	1,1-Dichloroethene	8260D	760		ug/L	7
001	MW-3	Aqueous	cis-1,2-Dichloroethene	8260D	24000		ug/L	7
001	MW-3	Aqueous	trans-1,2-Dichloroethene	8260D	210		ug/L	7
001	MW-3	Aqueous	Ethylbenzene	8260D	520		ug/L	7
001	MW-3	Aqueous	Toluene	8260D	190	J	ug/L	7
001	MW-3	Aqueous	Vinyl chloride	8260D	1400		ug/L	7
001	MW-3	Aqueous	Xylenes (total)	8260D	2300		ug/L	7
001	MW-3	Aqueous	1,4-Dioxane	8260D (SIM)	260		ug/L	7
001	MW-3	Aqueous	Ethane	RSK - 175	36		ug/L	8
001	MW-3	Aqueous	Ethene	RSK - 175	160		ug/L	8
001	MW-3	Aqueous	Methane	RSK - 175	8500		ug/L	8
002	MW-3D	Aqueous	Chloride	9056A	13		mg/L	9
002	MW-3D	Aqueous	Nitrate - N	9056A	3.4		mg/L	9
002	MW-3D	Aqueous	Sulfate	9056A	0.57	J	mg/L	9
002	MW-3D	Aqueous	Sulfide	SM 4500-S2 F-	1.2		mg/L	9
002	MW-3D	Aqueous	Chloroform	8260D	1.1		ug/L	9
002	MW-3D	Aqueous	Methylene chloride	8260D	0.78	J	ug/L	10
002	MW-3D	Aqueous	Methane	RSK - 175	5.7	J	ug/L	11
003	MW-6R	Aqueous	Chloride	9056A	2.5		mg/L	12
003	MW-6R	Aqueous	Nitrate - N	9056A	0.15		mg/L	12
003	MW-6R	Aqueous	Sulfate	9056A	1.3		mg/L	12
003	MW-6R	Aqueous	TOC	9060A	7.4		mg/L	12
003	MW-6R	Aqueous	Methane	RSK - 175	4.6	J	ug/L	14
004	MW-01	Aqueous	Chloride	9056A	21		mg/L	15
004	MW-01	Aqueous	Sulfate	9056A	2.4		mg/L	15
004	MW-01	Aqueous	TOC	9060A	1.4		mg/L	15
004	MW-01	Aqueous	cis-1,2-Dichloroethene	8260D	1700		ug/L	16
004	MW-01	Aqueous	trans-1,2-Dichloroethene	8260D	8.1	J	ug/L	16
004	MW-01	Aqueous	Ethylbenzene	8260D	97		ug/L	16
004	MW-01	Aqueous	Vinyl chloride	8260D	64		ug/L	16
004	MW-01	Aqueous	Xylenes (total)	8260D	400		ug/L	16
004	MW-01	Aqueous	Ethene	RSK - 175	19		ug/L	17
004	MW-01	Aqueous	Methane	RSK - 175	740		ug/L	17
005	DUP-01	Aqueous	Chloride	9056A	21		mg/L	18
005	DUP-01	Aqueous	Sulfate	9056A	2.5		mg/L	18
005	DUP-01	Aqueous		SM 4500-S2 F-	1.2		mg/L	18
005	DUP-01	Aqueous		9060A	1.3		mg/L	18
005	DUP-01	Aqueous	cis-1,2-Dichloroethene	8260D	2100		ug/L	19
005	DUP-01	Aqueous	trans-1,2-Dichloroethene	8260D	8.3	J	ug/L	19

Detection Summary (Continued)

Lot Number: WF23091

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
005	DUP-01	Aqueous	Ethylbenzene	8260D	170		ug/L	19
005	DUP-01	Aqueous	Vinyl chloride	8260D	87		ug/L	19
005	DUP-01	Aqueous	Xylenes (total)	8260D	750		ug/L	19
005	DUP-01	Aqueous	Ethane	RSK - 175	2.6	J	ug/L	20
005	DUP-01	Aqueous	Ethene	RSK - 175	23		ug/L	20
005	DUP-01	Aqueous	Methane	RSK - 175	890		ug/L	20
006	MW-10	Aqueous	Chloride	9056A	7.1		mg/L	21
006	MW-10	Aqueous	Sulfate	9056A	2.7		mg/L	21
006	MW-10	Aqueous	TOC	9060A	1.9		mg/L	21
006	MW-10	Aqueous	Methane	RSK - 175	140		ug/L	23

(55 detections)

Description: MW-3

Date Sampled:06/23/2021 1100 Date Received:06/23/2021 Laboratory ID: WF23091-001

Matrix: Aqueous

Inorgan	ic non	ı-met	als
---------	--------	-------	-----

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1926 DAK		96947
1	(Chloride) 9056A	1	06/24/2021 2316 AMR		96871
1	(Nitrate - N) 9056A	1	06/24/2021 2316 AMR		96869
1	(Sulfate) 9056A	1	06/24/2021 2316 AMR		96866
1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1	(TOC) 9060A	1	06/25/2021 0605 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	40	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	37	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	3.0	1.0	1.0	mg/L	1
TOC		9060A	21	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	200	07/02/2021 1738 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	4000	1000	ug/L	1
Benzene	71-43-2	8260D	ND	200	80	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	200	80	ug/L	1
Bromoform	75-25-2	8260D	ND	200	80	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	400	80	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	2000	400	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	200	80	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	200	80	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	200	80	ug/L	1
Chloroethane	75-00-3	8260D	ND	400	80	ug/L	1
Chloroform	67-66-3	8260D	ND	200	80	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	200	100	ug/L	1
Cyclohexane	110-82-7	8260D	ND	200	80	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	200	80	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	200	80	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	200	80	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	200	80	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	200	80	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	200	80	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	400	120	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	1500	200	80	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	100 J	200	80	ug/L	1

TOC Range: 20.732 - 20.98	3			
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-3

Xylenes (total)

Date Sampled:06/23/2021 1100 Date Received: 06/23/2021

Laboratory ID: WF23091-001

Matrix: Aqueous

	Volatile Org	anic	Compounds	by G	C/MS			
Run Prep Method	Analytical Method Dilution		ysis Date Analyst	Prep				
1 5030B	8260D 200	07/02	/2021 1738 TML		9772	9		
		CAS	Analytical					
Parameter	Nu	mber	Method	Result	Q LOQ	DL	Units	Run
1,1-Dichloroethene	75	-35-4	8260D	760	200	80	ug/L	1
cis-1,2-Dichloroethene	156	-59-2	8260D	24000	200	80	ug/L	1
trans-1,2-Dichloroethene	156	-60-5	8260D	210	200	80	ug/L	1
1,2-Dichloropropane	78	-87-5	8260D	ND	200	80	ug/L	1
cis-1,3-Dichloropropene	10061	-01-5	8260D	ND	200	80	ug/L	1
trans-1,3-Dichloropropene	10061	-02-6	8260D	ND	200	80	ug/L	1
Ethylbenzene	100	-41-4	8260D	520	200	80	ug/L	1
2-Hexanone	591	-78-6	8260D	ND	2000	400	ug/L	1
Isopropylbenzene	98	-82-8	8260D	ND	200	80	ug/L	1
Methyl acetate	79	-20-9	8260D	ND	200	80	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634	-04-4	8260D	ND	200	80	ug/L	1
4-Methyl-2-pentanone	108	-10-1	8260D	ND	2000	400	ug/L	1
Methylcyclohexane	108	-87-2	8260D	ND	1000	80	ug/L	1
Methylene chloride	75	-09-2	8260D	ND	200	80	ug/L	1
Styrene	100	-42-5	8260D	ND	200	82	ug/L	1
1,1,2,2-Tetrachloroethane	79	-34-5	8260D	ND	200	80	ug/L	1
Tetrachloroethene	127	-18-4	8260D	ND	200	80	ug/L	1
Toluene	108	-88-3	8260D	190	J 200	80	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	ie 76	-13-1	8260D	ND	200	84	ug/L	1
1,2,4-Trichlorobenzene	120	-82-1	8260D	ND	200	80	ug/L	1
1,1,1-Trichloroethane	71	-55-6	8260D	ND	200	80	ug/L	1
1,1,2-Trichloroethane	79	-00-5	8260D	ND	200	80	ug/L	1
Trichloroethene	79	-01-6	8260D	ND	200	80	ug/L	1
Trichlorofluoromethane	75	-69-4	8260D	ND	200	80	ug/L	1
Vinyl chloride	75	-01-4	8260D	1400	200	80	ug/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits	
Bromofluorobenzene	100 70-130	
1,2-Dichloroethane-d4	106 70-130	
Toluene-d8	105 70-130	

1330-20-7

Volatile Organic Compounds by GC/MS (SIM)

8260D

2300

200

80

ug/L

Run Pr 2	rep Method 5030B	Analytical Method 8260D (SIM)	Dilution 5	,	is Date Analyst 021 0603 CJL2	Prep Date	Batch 97674			
Parame	eter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dio	xane		123-	91-1	8260D (SIM)	260	15	5.0	ug/L	2

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure W = Reported on wet weight basis H = Out of holding time

Description: MW-3

Date Sampled:06/23/2021 1100 Date Received:06/23/2021 Laboratory ID: WF23091-001 Matrix: Aqueous

Surrogate Run 2 Acceptance
Q % Recovery Limits

1,2-Dichloroethane-d4 98 40-170

Dissolved Gases

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	RSK - 175	1	06/25/2021 1334 TML		96775
2	RSK - 175	10	06/30/2021 0908 TML		97348

Danamatan	CAS	Analytical	Decreit O	1.00	DI	Llmika	Divis
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	36	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	160	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	8500	100	25	ug/L	2
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated result < LOQ and <math>\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-3D

Date Sampled:06/23/2021 0945 Date Received:06/23/2021 Laboratory ID: WF23091-002

Matrix: Aqueous

Inorganic non-metals	non-metals
----------------------	------------

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/25/2021 1929 DAK		96947
1		(Chloride) 9056A	1	06/24/2021 2337 AMR		96871
1		(Nitrate - N) 9056A	1	06/24/2021 2337 AMR		96869
1		(Sulfate) 9056A	1	06/24/2021 2337 AMR		96866
1		(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1		(TOC) 9060A	1	06/25/2021 0629 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	13	1.0	0.25	mg/L	1
Nitrate - N		9056A	3.4	0.020	0.0050	mg/L	1
Sulfate		9056A	0.57 J	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	1.2	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1243 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.1	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.073 - 0.148				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-3D

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes (total)

Date Sampled:06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-002

Matrix: Aqueous

0.40

0.40

0.40

0.40

0.40

1.0

1.0

1.0

1.0

1.0

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

Volatile Organic Compounds by GC/MS									
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	-	ysis Date Analyst /2021 1243 TML	Prep Date	Batch 97729			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1.1-Dichloroethene			35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-6	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-8	37-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-4	11-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-7	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-8	32-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-1	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	37-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-0	09-2	8260D	0.78 J	1.0	0.40	ug/L	1
Styrene		100-4	12-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	38-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethar	ne	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits	
Bromofluorobenzene	105 70-130	
1,2-Dichloroethane-d4	107 70-130	
Toluene-d8	106 70-130	

79-00-5

79-01-6

75-69-4

75-01-4

1330-20-7

Volatile Organic Compounds by GC/MS (SIM)

8260D

8260D

8260D

8260D

8260D

ND

ND

ND

ND

ND

Run P	rep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	n Analysis Date Analyst 07/01/2021 2352 CJL2		Prep Date	Batch 97674			
Parame	eter		Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dio	xane		123-9	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	2

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-3D

Run Prep Method

Methane

Propane

Date Sampled:06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-002 Matrix: Aqueous

Run 2 Acceptance Surrogate Q % Recovery Limits 40-170

1,2-Dichloroethane-d4 101

Dissolved Gases

Prep Date

5.7 J

ND

Batch

10

15

2.5

5.0

ug/L

ug/L

1

Analytical Method Dilution Analysis Date Analyst

74-82-8

74-98-6

1	RSK - 175	1 06/25/2021 1350 TML			96775			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1

RSK - 175

RSK - 175

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and \geq DL Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-6R

Date Sampled:06/23/2021 0945 Date Received:06/23/2021 Laboratory ID: WF23091-003

Matrix: Aqueous

Inorganic r	on-metals
-------------	-----------

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1933 DAK		96947
1	(Chloride) 9056A	1	06/24/2021 2358 AMR		96871
1	(Nitrate - N) 9056A	1	06/24/2021 2358 AMR		96869
1	(Sulfate) 9056A	1	06/24/2021 2358 AMR		96866
1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1	(TOC) 9060A	1	06/25/2021 0653 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	2.5	1.0	0.25	mg/L	1
Nitrate - N		9056A	0.15	0.020	0.0050	mg/L	1
Sulfate		9056A	1.3	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	7.4	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1305 TML		97729

Acetone	67-64-1	8260D			DL	Units	Run
		8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	08-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	10-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	24-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	06-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	06-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	07-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 7.281 - 7.539		
LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time W = Reported on wet weight basis		S = MS/MSD failure

Description: MW-6R

Date Sampled:06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-003 Matrix: Aqueous

	Volati	le Orga	anic (Compounds	by GC/MS	•			
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		sis Date Analyst 2021 1305 TML	Prep Date	Batch 97729			
Parameter		Nun	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Ru
1,1-Dichloroethene		75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene		156-	50-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-0	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene		100-	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-	32-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		79-:	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		108-8	37-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-0	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		100-	42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		127-	18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		108-8	38-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroetha	ane	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limi						
Bromofluorobenzene		100	70-1						
1,2-Dichloroethane-d4		109	70-1	30					
Toluene-d8		105	70-1	30					
	Volatile (Organio	c Cor	npounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		Analy	sis Date Analyst 2021 0029 CJL2	Prep Date	Batch 97508			

	volatile Organic Compounds by Genvis (Slivi)											
Run	Prep Method	Analytical Method	Dilution	Analy	ysis Date Analyst	Prep Date	Batch					
1	5030B	8260D (SIM)	1 07/01/2021 0029 CJL2			97508						
				CAS	Analytical							
Para	meter		Nun	nber	Method	Result Q	LOQ	DL	Units	Run		
1,4-D	ioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1		

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-6R

Date Sampled:06/23/2021 0945 Date Received: 06/23/2021

Laboratory ID: WF23091-003 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 96

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175	Dilution 1	,	Date Analyst 1406 TML	Prep Date	96775			
Parameter				nalytical Method	Result Q	LOQ	DL	Units	R

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	4.6 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-01

Date Sampled:06/23/2021 1205 Date Received: 06/23/2021

Laboratory ID: WF23091-004

Matrix: Aqueous

H	norgani	ic no	on-me	etals
---	---------	-------	-------	-------

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1938 DAK		96947
1	(Chloride) 9056A	1	06/25/2021 0019 AMR		96871
1	(Nitrate - N) 9056A	1	06/25/2021 0019 AMR		96869
1	(Sulfate) 9056A	1	06/25/2021 0019 AMR		96866
1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1	(TOC) 9060A	1	06/25/2021 0717 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	21	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	2.4	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	1.4	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	20	07/02/2021 1630 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	400	100	ug/L	1
Benzene	71-43-2	8260D	ND	20	8.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	20	8.0	ug/L	1
Bromoform	75-25-2	8260D	ND	20	8.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	40	8.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	200	40	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	20	8.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	20	8.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	20	8.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	40	8.0	ug/L	1
Chloroform	67-66-3	8260D	ND	20	8.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	20	10	ug/L	1
Cyclohexane	110-82-7	8260D	ND	20	8.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	20	8.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	20	8.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	20	8.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	20	8.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	20	8.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	20	8.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	40	12	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	20	8.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	20	8.0	ug/L	1

TOC Range: 1.357 - 1.436				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-01

Date Sampled:06/23/2021 1205 Date Received: 06/23/2021

Laboratory ID: WF23091-004 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 20		s Date Analyst 21 1630 TML	Prep D		Batch 97729			
Demonstra			CAS	Analytical	Decelle	0 1	00	DI	11-24-	D
Parameter 1.1 Diablare at hans			nber 35-4	Method	Result (Q L	0Q	DL	Units	Run
1,1-Dichloroethene				8260D			20	8.0	ug/L	1
cis-1,2-Dichloroethene		156-		8260D	1700		20	8.0	ug/L	1
trans-1,2-Dichloroethene		156-		8260D	8.1	J	20	8.0	ug/L	1
1,2-Dichloropropane			87-5	8260D	ND		20	8.0	ug/L	1
cis-1,3-Dichloropropene		10061-		8260D	ND		20	8.0	ug/L	1
trans-1,3-Dichloropropene		10061-		8260D	ND		20	8.0	ug/L	1
Ethylbenzene		100-		8260D	97		20	8.0	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	2	200	40	ug/L	1
Isopropylbenzene		98-	82-8	8260D	ND		20	8.0	ug/L	1
Methyl acetate		79-	20-9	8260D	ND		20	8.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND		20	8.0	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	2	200	40	ug/L	1
Methylcyclohexane		108-	87-2	8260D	ND	•	100	8.0	ug/L	1
Methylene chloride		75-	09-2	8260D	ND		20	8.0	ug/L	1
Styrene		100-	42-5	8260D	ND		20	8.2	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND		20	8.0	ug/L	1
Tetrachloroethene		127-	18-4	8260D	ND		20	8.0	ug/L	1
Toluene		108-	88-3	8260D	ND		20	8.0	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND		20	8.4	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND		20	8.0	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND		20	8.0	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND		20	8.0	ug/L	1
Trichloroethene		79-	01-6	8260D	ND		20	8.0	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND		20	8.0	ug/L	1
Vinyl chloride		75-	01-4	8260D	64		20	8.0	ug/L	1
Xylenes (total)		1330-	20-7	8260D	400		20	8.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce						
Bromofluorobenzene		100	70-130							
1,2-Dichloroethane-d4		102	70-130							
Toluene-d8		97	70-130							
	Volatile (Organi	c Com	pounds by	GC/M	IS (SIM)			
Run Prep Method	Analytical Method			S Date Analyst	Prep D		<i>)</i> Batch			
1 5030B	8260D (SIM)	1	,	21 0053 CJL2	псры		7508			

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Analytical

Method

8260D (SIM)

Result Q

ND

LOQ

3.0

DL

1.0

Units

ug/L

Run

Parameter

1,4-Dioxane

CAS

Number

123-91-1

Description: MW-01

Date Sampled:06/23/2021 1205 Date Received: 06/23/2021

Laboratory ID: WF23091-004 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits 40-170

99 1,2-Dichloroethane-d4

Dissolved Gases

Run Prep Method 1	Analytical Method Dilution RSK - 175 1	on Analysis Date Analyst 06/25/2021 1421 TML	Prep Date Batch 96775	
		CAS Analytical		

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	19	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	740	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DUP-01
Date Sampled:06/23/2021
Date Received: 06/23/2021

Laboratory ID: WF23091-005

Matrix: Aqueous

Inorganic non-metals

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/25/2021 1943 DAK		96947
1		(Chloride) 9056A	1	06/25/2021 0040 AMR		96871
1		(Nitrate - N) 9056A	1	06/25/2021 0040 AMR		96869
1		(Sulfate) 9056A	1	06/25/2021 0040 AMR		96866
1		(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1		(TOC) 9060A	1	06/25/2021 0741 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	21	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND H	0.020	0.0050	mg/L	1
Sulfate		9056A	2.5	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	1.2	1.0	1.0	mg/L	1
TOC		9060A	1.3	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	20	07/02/2021 1653 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	400	100	ug/L	1
Benzene	71-43-2	8260D	ND	20	8.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	20	8.0	ug/L	1
Bromoform	75-25-2	8260D	ND	20	8.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	40	8.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	200	40	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	20	8.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	20	8.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	20	8.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	40	8.0	ug/L	1
Chloroform	67-66-3	8260D	ND	20	8.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	20	10	ug/L	1
Cyclohexane	110-82-7	8260D	ND	20	8.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	20	8.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	20	8.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	20	8.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	20	8.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	20	8.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	20	8.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	40	12	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	20	8.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	20	8.0	ug/L	1

TOC Range: 1.264 - 1.304				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DUP-01 Date Sampled:06/23/2021 Laboratory ID: WF23091-005 Matrix: Aqueous

Date Received: 06/23/2021

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 20		s Date Analyst 21 1653 TML	Prep Date	Batch 97729			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Rur
1.1-Dichloroethene			35-4	8260D	ND ND	20	8.0	ug/L	1
cis-1,2-Dichloroethene		156-		8260D	2100	20	8.0	ug/L	1
trans-1,2-Dichloroethene		156-6		8260D	8.3 J	20	8.0	ug/L	1
1,2-Dichloropropane			87-5	8260D	ND	20	8.0	ug/L	1
cis-1,3-Dichloropropene		10061-0	01-5	8260D	ND	20	8.0	ug/L	1
trans-1,3-Dichloropropene		10061-0		8260D	ND	20	8.0	ug/L	1
Ethylbenzene		100-4	41-4	8260D	170	20	8.0	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	200	40	ug/L	1
Isopropylbenzene		98-8	82-8	8260D	ND	20	8.0	ug/L	1
Methyl acetate		79-2	20-9	8260D	ND	20	8.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-0	04-4	8260D	ND	20	8.0	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	200	40	ug/L	1
Methylcyclohexane		108-8	87-2	8260D	ND	100	8.0	ug/L	1
Methylene chloride		75-0	09-2	8260D	ND	20	8.0	ug/L	1
Styrene		100-4	42-5	8260D	ND	20	8.2	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	20	8.0	ug/L	1
Tetrachloroethene		127-1	18-4	8260D	ND	20	8.0	ug/L	1
Toluene		108-8	88-3	8260D	ND	20	8.0	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethar	ne	76-	13-1	8260D	ND	20	8.4	ug/L	1
1,2,4-Trichlorobenzene		120-8	82-1	8260D	ND	20	8.0	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	20	8.0	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	20	8.0	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	20	8.0	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	20	8.0	ug/L	1
Vinyl chloride		75-0	01-4	8260D	87	20	8.0	ug/L	1
Xylenes (total)		1330-	20-7	8260D	750	20	8.0	ug/L	1
Surrogate	Q %I	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		89	70-130						
1,2-Dichloroethane-d4		97	70-130	1					
Toluene-d8		105	70-130)					

Volatile Organic Compounds by GC/MS (SIM)

Run Pro	ep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	,	sis Date Analyst 2021 0118 CJL2	Prep Date	Batch 97508			
Paramet	ter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxa	ane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \geq DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DUP-01 Date Sampled:06/23/2021 Date Received: 06/23/2021 Laboratory ID: WF23091-005

Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 102

Dissolved Gases

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch RSK - 175 06/25/2021 1437 TML 96775

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	2.6 J	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	23	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	890	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-10

Date Sampled:06/23/2021 1415 Date Received: 06/23/2021 Laboratory ID: WF23091-006

Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1946 DAK		96947
1	(Chloride) 9056A	1	06/25/2021 0101 AMR		96871
1	(Nitrate - N) 9056A	1	06/25/2021 0101 AMR		96869
1	(Sulfate) 9056A	1	06/25/2021 0101 AMR		96866
1	(Sulfide) SM 4500-S2 F-2011	1	06/30/2021 1714 GDC		97493
1	(TOC) 9060A	1	06/25/2021 0805 AAB		96702

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	7.1	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	2.7	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND	1.0	1.0	mg/L	1
TOC		9060A	1.9	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1220 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND S	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 1.873 - 1.952				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-10

Date Sampled:06/23/2021 1415 Date Received:06/23/2021 Laboratory ID: WF23091-006

Matrix: Aqueous

		voiatile Organic Compounds by GC/MS	
Run	Prep Method	Analytical Method Dilution Analysis Date Analyst Prep Date	Batch
1	5030B	8260D 1 07/02/2021 1220 TML	97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lim	ance its					
Bromofluorobenzene	93 70-1	30					

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		93	70-130
1,2-Dichloroethane-d4		107	70-130
Toluene-d8		99	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)		,	is Date Analyst 021 0143 CJL2	Prep Date	Batch 97508			
Parar	meter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-D	oxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitQ = Surrogate failureND = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLL = LCS/LCSD failureH = Out of holding timeW = Reported on wet weight basisS = MS/MSD failure

Description: MW-10

Date Sampled:06/23/2021 1415 Date Received:06/23/2021 Laboratory ID: WF23091-006 Matrix: Aqueous

Surrogate Q % Recovery Limits

1,2-Dichloroethane-d4 97 40-170

2-Dictilor detrialie-u4 40-1

Dissolved Gases

Run Prep Method 2	Analytical Method Dil RSK - 175		ysis Date Analyst /2021 1029 TML	Prep Date	Batch 97348			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	140	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND S	15	5.0	ug/L	2

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\%$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TRIP BLANK 1
Date Sampled:06/23/2021
Date Received: 06/23/2021

Laboratory ID: WF23091-007

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1050 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TRIP BLANK 1
Date Sampled:06/23/2021
Date Received: 06/23/2021

Laboratory ID: WF23091-007

Matrix: Aqueous

Volatile Organic Compounds by GC/M	IS
------------------------------------	----

Run Prep Method Analytic 1 5030B	al Method Dilution 8260D 1	_	ysis Date Analyst /2021 1050 TML	Prep Date	Batch 97729			
Parameter		CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-	-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-	-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-	-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-	-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-	-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-	-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recovery	Accept Lim						
Bromofluorobenzene	100	70-1	30					
1,2-Dichloroethane-d4	100	70-1	30					
Toluene-d8	101	70-1	30					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TRIP BLANK 2
Date Sampled:06/23/2021
Date Received: 06/23/2021

Laboratory ID: WF23091-008

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/02/2021 1112 TML		97729

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: EarthCon Consultants, Inc.

Description: TRIP BLANK 2
Date Sampled:06/23/2021
Date Received: 06/23/2021

Laboratory ID: WF23091-008

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	ysis Date Analyst 2021 1112 TML	Prep Date	Batch 97729			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e		13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-		8260D	ND	1.0	0.42	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 Recovery	Accept Limi						
Bromofluorobenzene		97	70-1	30					
1,2-Dichloroethane-d4		106	70-1	30					
Toluene-d8		98	70-1	30					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

	QC Summary	

Inorganic non-metals - MB

Sample ID: WQ96702-001

Batch: 96702 Analytical Method: 9060A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
тос	ND		1	1.0	0.42	mg/L	06/25/2021 0052

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96702-002

Batch: 96702

Matrix: Aqueous

Analytical Method: 9060A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
TOC	20	19		1	96	90-110	06/25/2021 0116

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF23091-006MS

Batch: 96702 Analytical Method: 9060A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
TOC	1.9	50	48		1	92	70-130	06/25/2021 0829

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF23091-006MD

Batch: 96702 Analytical Method: 9060A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
TOC	1.9	50	48		1	92	0.029	70-130	20	06/25/2021 0853

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ96866-001

Batch: 96866 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.25	mg/L	06/24/2021 1844

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96866-002

Batch: 96866

Matrix: Aqueous

	Dateii.	70000
Analytical	Method:	9056A

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfate	20	20		1	101	80-120	06/24/2021 2213

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF23091-006MS

Batch: 96866

Matrix: Aqueous

	Dateii.	70000
Analytical	Method:	9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfate	2.7	10	13		1	101	80-120	06/25/2021 0122

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF23091-006MD

Batch: 96866

Matrix: Aqueous

	Dutcii.	70000
Analytical	Method:	9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Sulfate	2.7	10	13		1	102	0.35	80-120	20	06/25/2021 0143

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ96869-001

Batch: 96869

Matrix: Aqueous

Analytical Method: 9056A

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrate - N	ND		1	0.020	0.0050	mg/L	06/24/2021 1844

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96869-002

Batch: 96869

Matrix: Aqueous

Analytical Method: 9056A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate - N	0.80	0.82		1	103	80-120	06/24/2021 2213

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF23091-006MS

Batch: 96869

Matrix: Aqueous

Analytical Method: 9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Nitrate - N	ND	0.40	0.40		1	100	80-120	06/25/2021 0122

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF23091-006MD

Batch: 96869 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
Nitrate - N	ND	0.40	0.40		1	100	0.20	80-120	20	06/25/2021 0143	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ96871-001

Batch: 96871 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.25	mg/L	06/24/2021 1844

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

N = Recovery is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96871-002

Batch: 96871

Matrix: Aqueous

Daten. 70071
Analytical Method: 9056A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	20		1	102	80-120	06/24/2021 2213

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF23091-006MS

Batch: 96871

Matrix: Aqueous

Analytical	Method: 9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Chloride	7.1	10	17		1	100	80-120	06/25/2021 0122

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF23091-006MD

Batch: 96871 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Chloride	7.1	10	17		1	101	0.15	80-120	20	06/25/2021 0143

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96947-002

Batch: 96947

Analytical Method: SM 2320B-2011

Matrix: Aqueous

	Spike Amount	Result			%Rec	
Parameter	(mg CaCO3/L)	(mg CaCO3/L) Q	Dil	% Rec	Limit	Analysis Date
Alkalinity @ pH 4.5 su	100	100	1	100	90-110	06/25/2021 1923

LOQ = Limit of Quantitation

DL = Detection Limit

ND = Not detected at or above the DL

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

N = Recovery is out of criteria

Inorganic non-metals - Duplicate

Sample ID: WF23091-006DU

Batch: 96947

Analytical Method: SM 2320B-2011

Matrix: Aqueous

Parameter	Sample Amount (mg CaCO3/L)	Result (mg CaCO3/L) Q	Dil	% RPD	%RPD Limit	Analysis Date
Alkalinity @ pH 4.5 su	ND	ND	1	0.00	20	06/25/2021 1949

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97493-001

Batch: 97493

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfide	ND		1	1.0	1.0	mg/L	06/30/2021 1714

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97493-002

Batch: 97493

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfide	10	10		1	100	80-120	06/30/2021 1714

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCSD

Sample ID: WQ97493-003

Batch: 97493

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	10		1	100	0.00	80-120	20	06/30/2021 1714

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MB

Sample ID: WQ97508-001 Batch: 97508

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND		1	3.0	1.0	ug/L	06/30/2021 2225
Surrogate	Q % Re	Acc	eptance Limit				
1,2-Dichloroethane-d4	102	4	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Volatile Organic Compounds by GC/MS (SIM) - LCS

Sample ID: WQ97508-002 Batch: 97508

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	40	1	80	70-130	06/30/2021 2111
Surrogate	Q % Rec	Acceptance Limit)			
1,2-Dichloroethane-d4	107	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: WF23091-006MS

Batch: 97508

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	ND	50	44		1	89	70-130	07/01/2021 0638
Surrogate	Q % Re		ptance imit					
1,2-Dichloroethane-d4	113	40)-170					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: WF23091-006MD Batch: 97508

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
1,4-Dioxane	ND	50	46		1	93	4.2	70-130	20	07/01/2021 0703
Surrogate	Q % F		eptance .imit							
1,2-Dichloroethane-d4	11	2 4	0-170							

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MB

Sample ID: WQ97674-001 Batch: 97674

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND	1	3.0	1.0	ug/L	07/01/2021 2149
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	103	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - LCS

Sample ID: WQ97674-002 Batch: 97674 Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	45	1	90	70-130	07/01/2021 2033
Surrogate	Q % Rec	Acceptance Limit)			
1,2-Dichloroethane-d4	114	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: WF23091-001MS

Batch: 97674

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	260	250	520		5	103	70-130	07/02/2021 0628
Surrogate	Q % Re		ptance mit					
1,2-Dichloroethane-d4	113	40)-170					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: WF23091-001MD Batch: 97674

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
1,4-Dioxane	260	250	520		5	102	0.31	70-130	20	07/02/2021 0652
Surrogate	Q % Re		ptance imit							
1,2-Dichloroethane-d4	109	40)-170							

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97729-001 Batch: 97729 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

Acetone	Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Bromodichloromethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Bromodichmane (Methyl bromide) ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Bulanone (MEK) ND 1 1.0 2.0 ug/L 07/02/2021 0952 2-Bulanone (MEK) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Carbon Isdadilde ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloroderm ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chlorodermane (Methyl chloride) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Cyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Cyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ly-Dibromo-schane (EDEP) ND 1 1.0 0.40 <td>Acetone</td> <td>ND</td> <td></td> <td>1</td> <td>20</td> <td>5.0</td> <td>ug/L</td> <td>07/02/2021 0952</td>	Acetone	ND		1	20	5.0	ug/L	07/02/2021 0952
Bromoform ND	Benzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Bromoferm ND 1 1.0 0.40 ug/L 07/02/2021 0952 Bromomethane (Methyl bromide) ND 1 2.0 0.40 ug/L 07/02/2021 0952 2-Bulanone (MEK) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Carbon tetrachloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloroform ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloroform ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloromethane (Methyl chloride) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloromethane (Methyl chloride) ND 1 1.0 0.40 ug/L 07/02/2021 0952 1.2 Dibromo-Schloropropane (DBCP) ND 1 1.0 0.40 ug/L 07/02/2021 0952 1.2 Dibromo-Schlaropropane (DBCP) ND 1	Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Bromomethane (Methy) bromide)	Bromoform	ND		1	1.0	0.40		07/02/2021 0952
Carbon disulfide ND 1 1.0 0.40 ug/L 07/02/2021 0952 Carbon letrachloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloroform ND 1 1.0 0.40 ug/L 07/02/2021 0952 Chloromethane (Methyl chloride) ND 1 1.0 0.50 ug/L 07/02/2021 0952 Cyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Cyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Cyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ly-Dichlorobertane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,3-Dichlorobenzene ND 1 1.0 0.40 ug/L	Bromomethane (Methyl bromide)	ND		1	2.0	0.40		07/02/2021 0952
Carbon tetrachloride	2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/02/2021 0952
Carbon tetrachloride	Carbon disulfide	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Chloroethane	Carbon tetrachloride	ND		1	1.0	0.40		07/02/2021 0952
Chloroform	Chlorobenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Chloromethane (Methyl chloride) ND	Chloroethane	ND		1	2.0	0.40	ug/L	07/02/2021 0952
Cyclohexane	Chloroform	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,2-Dibromo-3-chloropropane (DBCP) ND	Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/02/2021 0952
Dibromochloromethane ND	Cyclohexane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,2-Dibromoethane (EDB) ND 1 1,0 0.40 ug/L 07/02/2021 0952 1,2-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,3-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,4-Dichlorodifluoromethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethene ND 1 1.0	1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,2-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,3-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,4-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Dichlorodifluoromethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,2-Dichloropthene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloroptopane ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloroptopene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0	Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,3-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,4-Dichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Dichlorodifluoromethane ND 1 2.0 0.60 ug/L 07/02/2021 0952 1,1-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,3-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloroptoethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 <	1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,4-Dichlorobenzene	1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Dichlorodifiluoromethane ND 1 2.0 0.60 ug/L 07/02/2021 0952 1,1-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cls-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cls-1,3-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cls-1,3-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cls-1,3-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cls-1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropane ND <	1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,1-Dichloroethane	1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,2-Dichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,3-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl secrate ND 1 1.0 0.	Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/02/2021 0952
1,1-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl dertiary butyl ether (MTBE) ND 1 1.0 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>1</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>07/02/2021 0952</td>	1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
cis-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methylecyclohexane ND 1 5.0 0	1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
trans-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethane N	1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,2-Dichloropropane ND 1 1.0 0.40 ug/L 07/02/2021 0952 cis-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyle-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyle-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyle-2-pentanone ND 1 1.0	cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
cis-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 10 2.0 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyler-2-pentanone ND 1 1.0 2.0 ug/L 07/02/2021 0952 Methyler-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyler-2-pentanone ND 1 1.0	trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 10 2.0 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methylecyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 Tetrachloroethane ND 1 1.0 0.40	1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Ethylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 2-Hexanone ND 1 10 2.0 ug/L 07/02/2021 0952 Isopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 10 2.0 ug/L 07/02/2021 0952 Methylocyclohexane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L </td <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td>1</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>07/02/2021 0952</td>	cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
2-Hexanone ND 1 10 2.0 ug/L 07/02/2021 0952 lsopropylbenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 10 2.0 ug/L 07/02/2021 0952 Methylcyclohexane ND 1 5.0 0.40 ug/L 07/02/2021 0952 Methylcyclohexane ND 1 5.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2,4-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2,4-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2,4-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Isopropylbenzene ND	Ethylbenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Methyl acetate ND 1 1.0 0.40 ug/L 07/02/2021 0952 Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 10 2.0 ug/L 07/02/2021 0952 Methylcyclohexane ND 1 5.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 <td>2-Hexanone</td> <td>ND</td> <td></td> <td>1</td> <td>10</td> <td>2.0</td> <td>ug/L</td> <td>07/02/2021 0952</td>	2-Hexanone	ND		1	10	2.0	ug/L	07/02/2021 0952
Methyl tertiary butyl ether (MTBE) ND 1 1.0 0.40 ug/L 07/02/2021 0952 4-Methyl-2-pentanone ND 1 10 2.0 ug/L 07/02/2021 0952 Methylcyclohexane ND 1 5.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0	Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
4-Methyl-2-pentanone ND 1 10 2.0 ug/L 07/02/2021 0952 Methylcyclohexane ND 1 5.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Methyl acetate	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Methylcyclohexane ND 1 5.0 0.40 ug/L 07/02/2021 0952 Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Methylene chloride ND 1 1.0 0.40 ug/L 07/02/2021 0952 Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/02/2021 0952
Styrene ND 1 1.0 0.41 ug/L 07/02/2021 0952 1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/02/2021 0952
1,1,2,2-Tetrachloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952 Tetrachloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Methylene chloride	ND		1	1.0	0.40	ug/L	07/02/2021 0952
Tetrachloroethene ND 1 1.0 0.40 ug/L 07/02/2021 0952 Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Styrene	ND		1	1.0	0.41	ug/L	07/02/2021 0952
Toluene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 07/02/2021 0952 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 07/02/2021 0952 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	Toluene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/02/2021 0952
·	1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/02/2021 0952
1,1,2-Trichloroethane ND 1 1.0 0.40 ug/L 07/02/2021 0952	1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952
	1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/02/2021 0952

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97729-001 Batch: 97729

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	ameter Result		LOQ	DL	Units	Analysis Date	
Trichloroethene	ND	1	1.0	0.40	ug/L	07/02/2021 0952	
Trichlorofluoromethane	ND	1	1.0	0.40	ug/L	07/02/2021 0952	
Vinyl chloride	ND	1	1.0	0.40	ug/L	07/02/2021 0952	
Xylenes (total)	ND	1	1.0	0.40	ug/L	07/02/2021 0952	
Surrogate	Q % Rec	Acceptanc Limit	9				
Bromofluorobenzene	99	70-130					
1,2-Dichloroethane-d4	106	70-130					
Toluene-d8	ene-d8 100						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97729-002 Batch: 97729 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Spike						
	Amount	Result	_		4	%Rec	
Parameter	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	140		1	138	60-140	07/02/2021 0853
Benzene	50	51		1	102	70-130	07/02/2021 0853
Bromodichloromethane	50	51		1	103	70-130	07/02/2021 0853
Bromoform	50	46		1	92	70-130	07/02/2021 0853
Bromomethane (Methyl bromide)	50	47		1	95	70-130	07/02/2021 0853
2-Butanone (MEK)	100	110		1	114	70-130	07/02/2021 0853
Carbon disulfide	50	55		1	111	70-130	07/02/2021 0853
Carbon tetrachloride	50	54		1	108	70-130	07/02/2021 0853
Chlorobenzene	50	47		1	93	70-130	07/02/2021 0853
Chloroethane	50	49		1	98	70-130	07/02/2021 0853
Chloroform	50	54		1	109	70-130	07/02/2021 0853
Chloromethane (Methyl chloride)	50	53		1	105	60-140	07/02/2021 0853
Cyclohexane	50	57		1	114	70-130	07/02/2021 0853
1,2-Dibromo-3-chloropropane (DBCP)	50	58		1	116	70-130	07/02/2021 0853
Dibromochloromethane	50	49		1	99	70-130	07/02/2021 0853
1,2-Dibromoethane (EDB)	50	47		1	94	70-130	07/02/2021 0853
1,2-Dichlorobenzene	50	51		1	102	70-130	07/02/2021 0853
1,3-Dichlorobenzene	50	49		1	98	70-130	07/02/2021 0853
1,4-Dichlorobenzene	50	47		1	94	70-130	07/02/2021 0853
Dichlorodifluoromethane	50	50		1	100	60-140	07/02/2021 0853
1,1-Dichloroethane	50	54		1	108	70-130	07/02/2021 0853
1,2-Dichloroethane	50	54		1	107	70-130	07/02/2021 0853
1,1-Dichloroethene	50	52		1	105	70-130	07/02/2021 0853
cis-1,2-Dichloroethene	50	52		1	105	70-130	07/02/2021 0853
trans-1,2-Dichloroethene	50	54		1	107	70-130	07/02/2021 0853
1,2-Dichloropropane	50	51		1	102	70-130	07/02/2021 0853
cis-1,3-Dichloropropene	50	54		1	108	70-130	07/02/2021 0853
trans-1,3-Dichloropropene	50	52		1	104	70-130	07/02/2021 0853
Ethylbenzene	50	47		1	95	70-130	07/02/2021 0853
2-Hexanone	100	110		1	109	70-130	07/02/2021 0853
Isopropylbenzene	50	50		1	100	70-130	07/02/2021 0853
Methyl acetate	50	59		1	119	70-130	07/02/2021 0853
Methyl tertiary butyl ether (MTBE)	50	54		1	109	70-130	07/02/2021 0853
4-Methyl-2-pentanone	100	110		1	111	70-130	07/02/2021 0853
Methylcyclohexane	50	54		1	107	70-130	07/02/2021 0853
Methylene chloride	50	50		1	101	70-130	07/02/2021 0853
Styrene	50	51		1	101	70-130	07/02/2021 0853
1,1,2,2-Tetrachloroethane	50	53		1	105	70-130	07/02/2021 0853
Tetrachloroethene	50	47		1	94	70-130	07/02/2021 0853
Toluene	50	49		1	98	70-130	07/02/2021 0853
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	53		1	105	70-130	07/02/2021 0853
1,2,4-Trichlorobenzene	50	53 51		1	102	70-130	07/02/2021 0853
1,1,1-Trichloroethane	50	53		1	106	70-130	07/02/2021 0853
1,1,2-Trichloroethane				1	92	70-130 70-130	07/02/2021 0853
1,1,2-THUHOLUEUIANE	50	46		1	72	10-130	0110212021 0003

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97729-002 Batch: 97729

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	46	1	93	70-130	07/02/2021 0853
Trichlorofluoromethane	50	53	1	105	70-130	07/02/2021 0853
Vinyl chloride	50	52	1	103	70-130	07/02/2021 0853
Xylenes (total)	100	96	1	96	70-130	07/02/2021 0853
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	91	70-130				
1,2-Dichloroethane-d4	98	70-130				
Toluene-d8	93	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MS

Sample ID: WF23091-006MS

Batch: 97729 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Sample Amount	Spike Amount	Result				%Rec	
Parameter	(ug/L)	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	ND	100	72		1	72	60-140	07/02/2021 1801
Benzene	ND	50	53		1	106	70-130	07/02/2021 1801
Bromodichloromethane	ND	50	58		1	116	70-130	07/02/2021 1801
Bromoform	ND	50	48		1	96	70-130	07/02/2021 1801
Bromomethane (Methyl bromide)	ND	50	46		1	93	70-130	07/02/2021 1801
2-Butanone (MEK)	ND	100	96		1	96	70-130	07/02/2021 1801
Carbon disulfide	ND	50	53		1	105	70-130	07/02/2021 1801
Carbon tetrachloride	ND	50	60		1	120	70-130	07/02/2021 1801
Chlorobenzene	ND	50	54		1	109	70-130	07/02/2021 1801
Chloroethane	ND	50	49		1	99	70-130	07/02/2021 1801
Chloroform	ND	50	62		1	124	70-130	07/02/2021 1801
Chloromethane (Methyl chloride)	ND	50	57		1	114	60-140	07/02/2021 1801
Cyclohexane	ND	50	70	N	1	140	70-130	07/02/2021 1801
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	57		1	113	70-130	07/02/2021 1801
Dibromochloromethane	ND	50	54		1	109	70-130	07/02/2021 1801
1,2-Dibromoethane (EDB)	ND	50	53		1	106	70-130	07/02/2021 1801
1,2-Dichlorobenzene	ND	50	52		1	104	70-130	07/02/2021 1801
1,3-Dichlorobenzene	ND	50	53		1	105	70-130	07/02/2021 1801
1,4-Dichlorobenzene	ND	50	49		1	97	70-130	07/02/2021 1801
Dichlorodifluoromethane	ND	50	56		1	112	60-140	07/02/2021 1801
1,1-Dichloroethane	ND	50	60		1	119	70-130	07/02/2021 1801
1,2-Dichloroethane	ND	50	53		1	107	70-130	07/02/2021 1801
1,1-Dichloroethene	ND	50	54		1	109	70-130	07/02/2021 1801
cis-1,2-Dichloroethene	ND	50	59		1	118	70-130	07/02/2021 1801
trans-1,2-Dichloroethene	ND	50	59		1	118	70-130	07/02/2021 1801
1,2-Dichloropropane	ND	50	59		1	118	70-130	07/02/2021 1801
cis-1,3-Dichloropropene	ND	50	52		1	104	70-130	07/02/2021 1801
trans-1,3-Dichloropropene	ND	50	52		1	105	70-130	07/02/2021 1801
Ethylbenzene	ND	50	55		1	110	70-130	07/02/2021 1801
2-Hexanone	ND	100	120		1	119	70-130	07/02/2021 1801
Isopropylbenzene	ND	50	55		1	111	70-130	07/02/2021 1801
Methyl acetate	ND	50	56		1	112	70-130	07/02/2021 1801
Methyl tertiary butyl ether (MTBE)	ND	50	53		1	106	70-130	07/02/2021 1801
4-Methyl-2-pentanone	ND	100	130		1	128	70-130	07/02/2021 1801
Methylcyclohexane	ND	50	61		1	123	70-130	07/02/2021 1801
Methylene chloride	ND	50	51		1	102	70-130	07/02/2021 1801
Styrene	ND	50	55		1	111	70-130	07/02/2021 1801
1,1,2,2-Tetrachloroethane	ND	50	55		1	109	70-130	07/02/2021 1801
Tetrachloroethene	ND	50	57		1	113	70-130	07/02/2021 1801
Toluene	ND	50	57		1	113	70-130	07/02/2021 1801
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	56		1	111	70-130	07/02/2021 1801
1,2,4-Trichlorobenzene	ND	50	50		1	101	70-130	07/02/2021 1801
1,1,1-Trichloroethane	ND	50	61		1	121	70-130	07/02/2021 1801
1,1,2-Trichloroethane	ND	50	54		1	108	70-130	07/02/2021 1801
1,1,2-THORIOTOCHICHE	שוויו	50	JT		'	100	70-130	0110212021 1001

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Volatile Organic Compounds by GC/MS - MS

Sample ID: WF23091-006MS

Batch: 97729 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	ND	50	53		1	105	70-130	07/02/2021 1801
Trichlorofluoromethane	ND	50	57		1	114	70-130	07/02/2021 1801
Vinyl chloride	ND	50	52		1	104	70-130	07/02/2021 1801
Xylenes (total)	ND	100	110		1	108	70-130	07/02/2021 1801
Surrogate	Q % Rec		ptance mit					
Bromofluorobenzene	99	70)-130					
1,2-Dichloroethane-d4	107	70)-130					
Toluene-d8	104	70)-130					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MSD

Sample ID: WF23091-006MD Batch: 97729

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

December	Sample Amount	Spike Amount	Result	0	5.11	0/ D	0/ DDD	%Rec	% RPD	Academia Data
Parameter	(ug/L)	(ug/L)	(ug/L)	Q	Dil	% Rec	% RPD	Limit	Limit	Analysis Date
Acetone	ND	100	74		1	74	3.5	60-140	20	07/02/2021 1824
Benzene	ND	50	55		1	110	3.4	70-130	20	07/02/2021 1824
Bromodichloromethane	ND	50	52		1	104	10	70-130	20	07/02/2021 1824
Bromoform	ND	50	43		1	87	11	70-130	20	07/02/2021 1824
Bromomethane (Methyl bromide)	ND	50	44		1	88	5.5	70-130	20	07/02/2021 1824
2-Butanone (MEK)	ND	100	89		1	89	7.8	70-130	20	07/02/2021 1824
Carbon disulfide	ND	50	54		1	108	2.6	70-130	20	07/02/2021 1824
Carbon tetrachloride	ND	50	58		1	116	2.8	70-130	20	07/02/2021 1824
Chlorobenzene	ND	50	49		1	98	11	70-130	20	07/02/2021 1824
Chloroethane	ND	50	50		1	100	1.0	70-130	20	07/02/2021 1824
Chloroform	ND	50	56		1	112	10	70-130	20	07/02/2021 1824
Chloromethane (Methyl chloride)	ND	50	55		1	109	4.5	60-140	20	07/02/2021 1824
Cyclohexane	ND	50	65	Ν	1	131	6.9	70-130	20	07/02/2021 1824
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	61		1	122	7.4	70-130	20	07/02/2021 1824
Dibromochloromethane	ND	50	51		1	102	7.0	70-130	20	07/02/2021 1824
1,2-Dibromoethane (EDB)	ND	50	53		1	106	0.38	70-130	20	07/02/2021 1824
1,2-Dichlorobenzene	ND	50	55		1	110	5.6	70-130	20	07/02/2021 1824
1,3-Dichlorobenzene	ND	50	54		1	107	1.9	70-130	20	07/02/2021 1824
1,4-Dichlorobenzene	ND	50	49		1	99	1.5	70-130	20	07/02/2021 1824
Dichlorodifluoromethane	ND	50	56		1	112	0.46	60-140	20	07/02/2021 1824
1,1-Dichloroethane	ND	50	55		1	110	8.2	70-130	20	07/02/2021 1824
1,2-Dichloroethane	ND	50	55		1	109	1.9	70-130	20	07/02/2021 1824
1,1-Dichloroethene	ND	50	57		1	114	4.7	70-130	20	07/02/2021 1824
cis-1,2-Dichloroethene	ND	50	55		1	110	6.4	70-130	20	07/02/2021 1824
trans-1,2-Dichloroethene	ND	50	59		1	119	0.37	70-130	20	07/02/2021 1824
1,2-Dichloropropane	ND	50	52		1	104	13	70-130	20	07/02/2021 1824
cis-1,3-Dichloropropene	ND	50	50		1	99	5.1	70-130	20	07/02/2021 1824
trans-1,3-Dichloropropene	ND	50	49		1	98	7.3	70-130	20	07/02/2021 1824
Ethylbenzene	ND	50	57		1	113	2.6	70-130	20	07/02/2021 1824
2-Hexanone	ND	100	110		1	110	8.4	70-130	20	07/02/2021 1824
Isopropylbenzene	ND	50	52		1	104	6.5	70-130	20	07/02/2021 1824
Methyl acetate	ND	50	57		1	113	1.2	70-130	20	07/02/2021 1824
Methyl tertiary butyl ether (MTBE)	ND	50	54		1	107	1.3	70-130	20	07/02/2021 1824
4-Methyl-2-pentanone	ND	100	120		1	116	9.3	70-130	20	07/02/2021 1824
Methylcyclohexane	ND	50	55		1	111	10	70-130	20	07/02/2021 1824
Methylene chloride	ND	50	53		1	105	3.0	70-130	20	07/02/2021 1824
Styrene	ND	50	55 55		1	110	0.67	70-130	20	07/02/2021 1824
1,1,2,2-Tetrachloroethane	ND	50			1	110		70-130	20	07/02/2021 1824
			55 55			110	1.3			
Tetrachloroethene Toluene	ND ND	50 50	55 54		1 1	107	2.5 5.4	70-130 70-130	20 20	07/02/2021 1824 07/02/2021 1824
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50 50	56		1	113 110	1.6	70-130	20	07/02/2021 1824
1,2,4-Trichlorobenzene	ND	50 50	55 55		1	110	8.4	70-130	20	07/02/2021 1824
1,1,1-Trichloroethane	ND	50 50	55 50		1	110	9.3	70-130	20	07/02/2021 1824
1,1,2-Trichloroethane	ND	50	50		1	101	6.7	70-130	20	07/02/2021 1824

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

^{* =} RSD is out of criteria

^{+ =} RPD is out of criteria

Volatile Organic Compounds by GC/MS - MSD

Sample ID: WF23091-006MD

Batch: 97729 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	ND	50	52		1	105	0.39	70-130	20	07/02/2021 1824
Trichlorofluoromethane	ND	50	52		1	104	9.0	70-130	20	07/02/2021 1824
Vinyl chloride	ND	50	51		1	102	1.4	70-130	20	07/02/2021 1824
Xylenes (total)	ND	100	110		1	105	2.2	70-130	20	07/02/2021 1824
Surrogate	Q % Rec	Accep Lin								
Bromofluorobenzene	91	70-	130							_
1,2-Dichloroethane-d4	96	70-	130							
Toluene-d8	102	70-	130							

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ96775-001 Batch: 96775

Analytical Method: RSK - 175

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	06/25/2021 0918
Ethene	ND		1	10	2.5	ug/L	06/25/2021 0918
Methane	ND		1	10	2.5	ug/L	06/25/2021 0918
Propane	ND		1	15	5.0	ug/L	06/25/2021 0918

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and \geq DL

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ96775-002

Batch: 96775 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	550		1	100	70-130	06/25/2021 0848
Ethene	520	520		1	100	70-130	06/25/2021 0848
Methane	300	290		1	97	70-130	06/25/2021 0848
Propane	810	800		1	99	70-130	06/25/2021 0848

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCSD

Sample ID: WQ96775-003

Batch: 96775 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Ethane	550	540		1	97	2.5	70-130	30	06/25/2021 0904
Ethene	520	500		1	98	2.5	70-130	30	06/25/2021 0904
Methane	300	280		1	95	2.1	70-130	30	06/25/2021 0904
Propane	810	780		1	96	2.8	70-130	30	06/25/2021 0904

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ97348-001 Batch: 97348

Analytical Method: RSK - 175

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	06/30/2021 0816
Ethene	ND		1	10	2.5	ug/L	06/30/2021 0816
Methane	ND		1	10	2.5	ug/L	06/30/2021 0816
Propane	ND		1	15	5.0	ug/L	06/30/2021 0816

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and \geq DL

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ97348-002 Batch: 97348

Analytical Method: RSK - 175

Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	550		1	99	70-130	06/30/2021 0802
Ethene	520	510		1	99	70-130	06/30/2021 0802
Methane	300	290		1	97	70-130	06/30/2021 0802
Propane	810	790		1	97	70-130	06/30/2021 0802

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MS

Sample ID: WF23091-006MS

Batch: 97348 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	ND	550	520		1	94	70-130	06/30/2021 1409
Ethene	ND	520	490		1	94	70-130	06/30/2021 1409
Methane	140	300	420		1	92	70-130	06/30/2021 1409
Propane	ND	420	740	Ν	1	178	70-130	06/30/2021 1409

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MSD

Sample ID: WF23091-006MD

Batch: 97348 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Ethane	ND	550	520		1	95	1.3	70-130	30	06/30/2021 1423
Ethene	ND	520	490		1	96	1.6	70-130	30	06/30/2021 1423
Methane	140	300	410		1	90	1.7	70-130	30	06/30/2021 1423
Propane	ND	420	750	Ν	1	181	1.2	70-130	30	06/30/2021 1423

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

PACE

PACE ANALYTICAL SERVICES, LLC 106 Vantage Point Drive • West Columbia, SC 28172 Telephone No. 803-791-9700 Fax No. 803-791-9111 vww.pscelabs.com

Number 123137

Charliffer Children Garte 100.		Report to Contect	101 B	Ann Brookeshire	Talepho N Di	Tatephone No. / Email	man G) I (F)	63 63	Tatesphore No. / Small	82.0	Grate No.
Address	1	Sampler's Signa	hve		Analysis	Analysis (Attach fist if more space is needed)	it if more	scese is /	eedad)		,
1890 Nist Cak Rivillay Of 106	i	14 11	1 11/4 1/2000	70			ļ			-	Page / of /
Carriette State 3		Printed Name	the section			or si	7V/		10.00	_	
Project Name Internationa	,	Tistany D	77. (SS2)	THANY LIESSING HAVNUALI BENTY		715	100/	2)			WF23091
一切、多大のついのでははる	P.O. No.	guspa Çili	Matrix	No of Containers by Preservetive Type	7	i d	WOW/	04J	\sim		Ol I
Conteness for each carepte may be concluded on one life.)	Calhadhn C	Colection Time 65	ercetty 47N ppag choonby	HOSH HOSH HOSH HOSH	700	41 60	Has	ng	7/		Hemaris / Cooler LO.
LUM-3		i. 02. 11		1 8 1	×	×	×	×			
M. 30		09.45 G		181	×	×	×	×			
43W-6R	2	8145 G	×	18 11	X	×	×	×			
MW - 01		12.05 6	×	181	×	XX	×	×			
Du(p-0)		জ 	×	13 11	×	×	X	×	,		
01-MM		15.00	` X.	1 % 1	×	×	×	×			
SM-01-W12		14.15 G	×	1 811	X	×	×	$\stackrel{\sim}{\times}$			
CAN-OI-MA		74.15 A	×	180 11	X	×	X	$\frac{2}{\times}$			
The Black		<u> </u>		W.	×						
Trib Blank 2		<u>.</u> 4		0	\times						
Turn Around Tane Required (Prior tab separan) required for expedited DRT) Sensyle Disposal Massached The Bright Sensyle Disposal	of for expedited DAT.)	Senyale Disposal Disposal by Lab	1) Visionse/ by ta	Fossible Hazard Damilication by Won-Hazard		finition Fried	C.I Polson C.) Unknowin	C) Unkno		OC Requirements (Specify)	(Spenally)
		5 13 24 C 135 24) June ()	1. Received by					Date	I.T.	Типе
2. Rukrquished by		aleo	Tiche	2. Received by					Sale	T.	Tune
3. Ruinquished by		Dafe	Тите	3. Acceived by					Dato	F	Tune
4. Reinquished by		Date	Time	4. Latercatory residence by	A.C.	NOW.	min	2	2/07	3/2	Time 17/3
Note: All samples are retained for four weeks from the analysis of the market are market.	ned for four wee	ks from receipt	1	LAB USE CINLY \$ C	Sey.	Ace Pack		Property Terror	اري ا	, įs	Temp Blank IV D N
ment raino ceanio	Agonoreo mo	- Carder		7			1				

TRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINK-PetaClient Copy

Document Northern ME003N2-01

Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: EARTHCON	Cooler Inspected by/date: JRG2 / 6/23/2021 Lot #: WF23091
Means of receipt: Pa	ace Client UPS FedEx Other:
Yes / No	Were custody seals present on the cooler?
Yes No ✓NA	2. If custody seals were present, were they intact and unbroken?
pH Strip ID; 20-2712	Chlorine Strip ID: NA Tested by: JRG2
Original temperature upor	receipt / Derived (Corrected) temperature upon receipt
2.7 /2.7 °C 2.4 /2.	4 °C NA /NA °C NA /NA °C
Method: Temperature	Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: 9 °C
Method of coolant: ✓	Wet Ice loe Packs Dry Ice None
☐ Yes ☐ No ☑NA	 If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?
	PM was Notified by: phone / email / face-to-face (circle one).
	4. Is the commercial courier's packing slip attached to this form?
✓ Yes No	Were proper custody procedures (relinquished/received) followed?
Yes No	6. Were sample IDs listed on the COC?
✓ Yes No	7. Were sample IDs listed on all sample containers?
✓ Yes No	8. Was collection date & time listed on the COC?
✓ YesNo	Was collection date & time listed on all sample containers?
✓ Yes ☐ No	10. Did all container label information (ID, date, time) agree with the COC?
✓ Yes No	11. Were tests to be performed listed on the COC?
✓Yes □No	12. Did all samples arrive in the proper containers for each test and/or in good condition
[7]v	(unbroken, lids on, etc.)?
✓ Yes No	13. Was adequate sample volume available?
✓ Yes □ No	14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
Yes ✓ No	15. Were any samples containers missing/excess (circle one) samples Not listed on COC?
☐ Yes ☑ No ☐NA	16. For VOA and RSK-175 samples, were bubbles present >"pea-size" (¼"or 6mm in diameter) in any of the VOA vials?
✓ Yes No NA	17. Were all DRO/metals/nutrient samples received at a pH of ≤ 2?
Yes No NA	18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
Yes No NA	 Were all applicable NH₃/TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of
	residual chlorine?
☐ Yes ☐ No ☑NA	 Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
	correctly transcribed from the COC into the comment section in LIMS?
Yes ✓ No	21. Was the quote number listed on the container label? If yes, Quote #
	fust be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA	
in sample receiving with N	were received incorrectly preserved and were adjusted accordingly mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # NA
Time of preservation NA	If more than one preservative is needed, please note in the comments below.
	. That of that one press valive is needed, presse note in the comments helpw,
Sample(s) NA	were received with bubbles >6 mm in diameter.
Samples(s) NA	were received with TRC > 0.5 mg/L (If #19 is no) and were
adjusted accordingly in san	aple receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: NA
SR barcode labels applied I	Date: 6/23/2021
Comments:	

Report of Analysis

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062 Attention: Tiffany Messier

Project Name: Lennox International Project Number: 02.20160378.21

Lot Number: **WF25024**Date Completed: 07/13/2021

07/19/2021 3:16 PM Approved and released by: Project Manager II: **Lucas Odom**

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

PACE ANALYTICAL SERVICES, LLC

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative EarthCon Consultants, Inc. Lot Number: WF25024

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample results (including LOQ and DL if requested) are corrected for dry weight unless flagged with a "W" qualifier.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Dissolved Gases

The following sample was received with solid in the sample vial: WF25024-020. The liquid was decanted from vial and analyzed on instrument.

Inorganic Non-Metals

Reanalysis of the following samples was performed outside of the analytical holding time: WF25024-001, WF25024-002, WF25024-003, WF25024-004, WF25024-021. The out-of-hold Run 2 results confirm the in-hold Run 1 results, therefore all in-hold results will be reported.

1.4-Dioxane SIM

The following sample was received with solid in the sample vial: WF25024-020. The liquid was decanted from vial and analyzed on instrument.

VOCs by GC/MS

The following sample was analyzed outside of analytical holding time due to overcapacity of samples in the lab: WF25024-004. Sample -019 required a dilution which was performed outside of the analytical holding time for Trichloroethene, 1,1,2-Trichloroethane and Tetrachloroethene.

Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for 10% of analytes to recover marginally outside criteria. The following analytes recovered marginally outside LCS/LCSD criteria: Dichlorodifluoromethane.

The following sample was received with solid in the sample vial and was diluted due to the nature of the sample matrix: WF25024-020. The liquid was decanted from vial and a dilution of 5x was prepped and analyzed on instrument. The LOQ has been elevated to reflect the dilution.

PACE ANALYTICAL SERVICES, LLC

Sample Summary EarthCon Consultants, Inc.

Lot Number: WF25024

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	MW-4	Aqueous	06/24/2021 0845	06/24/2021
002	MW-14	Aqueous	06/24/2021 0950	06/24/2021
003	MW-11	Aqueous	06/24/2021 1205	06/24/2021
004	MW-5	Aqueous	06/24/2021 1500	06/24/2021
005	TB-1	Aqueous	06/24/2021	06/24/2021
006	DP-2-SO (10-11)	Solid	06/24/2021 1000	06/24/2021
007	DP-2-SO (19-20)	Solid	06/24/2021 1010	06/24/2021
800	DP-13-SO (10-11)	Solid	06/23/2021 1500	06/24/2021
009	DP-13-SO (19-20)	Solid	06/23/2021 1600	06/24/2021
010	DP-2-SO (6-7)	Solid	06/24/2021 1020	06/24/2021
011	DP-12-SO (4-5)	Solid	06/23/2021 1500	06/24/2021
012	DP-6-SO (10-11)	Solid	06/24/2021 1130	06/24/2021
013	DP-12-SO (9-10)	Solid	06/23/2021 1700	06/24/2021
014	DP-3-SO (10-11)	Solid	06/24/2021 1130	06/24/2021
015	TB-2	Aqueous	06/24/2021	06/24/2021
016	DP-2-16/17-GW	Aqueous	06/24/2021 1010	06/24/2021
017	DP-DUP1-GW	Aqueous	06/24/2021	06/24/2021
018	DP-3-20-GW	Aqueous	06/24/2021 1200	06/24/2021
019	DP-12-20-GW	Aqueous	06/23/2021 1810	06/24/2021
020	DP-14-10-GW	Aqueous	06/24/2021 1130	06/24/2021
021	EB-01-062421	Aqueous	06/24/2021 1705	06/24/2021

(21 samples)

PACE ANALYTICAL SERVICES, LLC

Detection Summary EarthCon Consultants, Inc.

Lot Number: WF25024

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	MW-4	Aqueous	Chloride	9056A	6.7		mg/L	9
001	MW-4	Aqueous	Sulfate	9056A	1.2		mg/L	9
001	MW-4	Aqueous	Sulfide	SM 4500-S2 F-	4.0		mg/L	9
001	MW-4	Aqueous	TOC	9060A	0.74	J	mg/L	9
001	MW-4	Aqueous	cis-1,2-Dichloroethene	8260D	8.7		ug/L	10
001	MW-4	Aqueous	Tetrachloroethene	8260D	4.2		ug/L	10
001	MW-4	Aqueous	1,1,2-Trichloroethane	8260D	0.93	J	ug/L	10
001	MW-4	Aqueous	Trichloroethene	8260D	6.9		ug/L	10
001	MW-4	Aqueous	Methane	RSK - 175	140		ug/L	11
002	MW-14	Aqueous	Chloride	9056A	3.0		mg/L	12
002	MW-14	Aqueous	Sulfate	9056A	6.8		mg/L	12
002	MW-14	Aqueous	Sulfide	SM 4500-S2 F-	1.1		mg/L	12
002	MW-14	Aqueous	TOC	9060A	0.60	J	mg/L	12
002	MW-14	Aqueous	Toluene	8260D	8.2		ug/L	13
002	MW-14	Aqueous	Methane	RSK - 175	80		ug/L	14
003	MW-11	Aqueous	Alkalinity @ pH 4.5 su	SM 2320B-	120		mg CaCO3/L	15
003	MW-11	Aqueous	Chloride	9056A	4.8		mg/L	15
003	MW-11	Aqueous	Sulfate	9056A	3.3		mg/L	15
003	MW-11	Aqueous	Sulfide	SM 4500-S2 F-	1.0		mg/L	15
003	MW-11	Aqueous	TOC	9060A	2.6		mg/L	15
003	MW-11	Aqueous	Methane	RSK - 175	390		ug/L	17
004	MW-5	Aqueous	Chloride	9056A	19		mg/L	18
004	MW-5	Aqueous	Nitrate - N	9056A	0.27		mg/L	18
004	MW-5	Aqueous	Sulfate	9056A	0.47	J	mg/L	18
004	MW-5	Aqueous	Sulfide	SM 4500-S2 F-	1.1		mg/L	18
004	MW-5	Aqueous	1,1-Dichloroethane	8260D	4.7	HJ	ug/L	18
004	MW-5	Aqueous	1,1-Dichloroethene	8260D	2.4	HJ	ug/L	19
004	MW-5	Aqueous	cis-1,2-Dichloroethene	8260D	370	Н	ug/L	19
004	MW-5	Aqueous	trans-1,2-Dichloroethene	8260D	3.7	HJ	ug/L	19
004	MW-5	Aqueous	Ethylbenzene	8260D	2.7	HJ	ug/L	19
004	MW-5	Aqueous	Tetrachloroethene	8260D	120	Н	ug/L	19
004	MW-5	Aqueous	Trichloroethene	8260D	210	Н	ug/L	19
004	MW-5	Aqueous	Vinyl chloride	8260D	8.8	Н	ug/L	19
004	MW-5	Aqueous	1,4-Dioxane	8260D (SIM)	13		ug/L	19
004	MW-5	Aqueous	Ethene	RSK - 175	3.8	J	ug/L	20
004	MW-5	Aqueous	Methane	RSK - 175	1800		ug/L	20
800	DP-13-SO (10-11)	Solid	Acetone	8260D	11	J	ug/kg	27
009	DP-13-SO (19-20)	Solid	Acetone	8260D	19		ug/kg	29
009	DP-13-SO (19-20)	Solid	cis-1,2-Dichloroethene	8260D	5.7		ug/kg	29
009	DP-13-SO (19-20)	Solid	Tetrachloroethene	8260D	3.3	J	ug/kg	29
009	DP-13-SO (19-20)	Solid	1,1,2-Trichloroethane	8260D	4.4		ug/kg	30
009	DP-13-SO (19-20)	Solid	Trichloroethene	8260D	6.9		ug/kg	30
010	DP-2-SO (6-7)	Solid	Acetone	8260D	15	J	ug/kg	31
010	DP-2-SO (6-7)	Solid	cis-1,2-Dichloroethene	8260D	7.0		ug/kg	31
011	DP-12-SO (4-5)	Solid	cis-1,2-Dichloroethene	8260D	17		ug/kg	33

Detection Summary (Continued)

Lot Number: WF25024

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
011	DP-12-SO (4-5)	Solid	Tetrachloroethene	8260D	77		ug/kg	33
011	DP-12-SO (4-5)	Solid	1,1,2-Trichloroethane	8260D	11		ug/kg	34
011	DP-12-SO (4-5)	Solid	Trichloroethene	8260D	69		ug/kg	34
013	DP-12-SO (9-10)	Solid	cis-1,2-Dichloroethene	8260D	15		ug/kg	37
013	DP-12-SO (9-10)	Solid	Tetrachloroethene	8260D	21		ug/kg	37
013	DP-12-SO (9-10)	Solid	1,1,2-Trichloroethane	8260D	3.3		ug/kg	38
013	DP-12-SO (9-10)	Solid	Trichloroethene	8260D	27		ug/kg	38
014	DP-3-SO (10-11)	Solid	Acetone	8260D	10	J	ug/kg	39
016	DP-2-16/17-GW	Aqueous	Chloroform	8260D	1.7		ug/L	43
016	DP-2-16/17-GW	Aqueous	cis-1,2-Dichloroethene	8260D	52		ug/L	43
016	DP-2-16/17-GW	Aqueous	trans-1,2-Dichloroethene	8260D	0.83	J	ug/L	43
016	DP-2-16/17-GW	Aqueous	Toluene	8260D	0.46	J	ug/L	43
016	DP-2-16/17-GW	Aqueous	Trichloroethene	8260D	0.47	J	ug/L	44
016	DP-2-16/17-GW	Aqueous	Vinyl chloride	8260D	1.9		ug/L	44
016	DP-2-16/17-GW	Aqueous	Xylenes (total)	8260D	1.8		ug/L	44
016	DP-2-16/17-GW	Aqueous	Methane	RSK - 175	10		ug/L	44
017	DP-DUP1-GW	Aqueous	Chloroform	8260D	1.7		ug/L	45
017	DP-DUP1-GW	Aqueous	cis-1,2-Dichloroethene	8260D	53		ug/L	45
017	DP-DUP1-GW	Aqueous	trans-1,2-Dichloroethene	8260D	0.87	J	ug/L	45
017	DP-DUP1-GW	Aqueous	Toluene	8260D	0.43	J	ug/L	45
017	DP-DUP1-GW	Aqueous	Trichloroethene	8260D	0.45	J	ug/L	46
017	DP-DUP1-GW	Aqueous	Vinyl chloride	8260D	1.9		ug/L	46
017	DP-DUP1-GW	Aqueous	Xylenes (total)	8260D	1.7		ug/L	46
017	DP-DUP1-GW	Aqueous	Methane	RSK - 175	6.7	J	ug/L	46
018	DP-3-20-GW	Aqueous	Chloroform	8260D	1.6		ug/L	47
018	DP-3-20-GW	Aqueous	Methane	RSK - 175	17		ug/L	48
019	DP-12-20-GW	Aqueous	1,1-Dichloroethane	8260D	10		ug/L	49
019	DP-12-20-GW	Aqueous	1,2-Dichloroethane	8260D	0.41	J	ug/L	49
019	DP-12-20-GW	Aqueous	1,1-Dichloroethene	8260D	110		ug/L	49
019	DP-12-20-GW	Aqueous	cis-1,2-Dichloroethene	8260D	120		ug/L	49
019	DP-12-20-GW	Aqueous	trans-1,2-Dichloroethene	8260D	2.4		ug/L	49
019	DP-12-20-GW	Aqueous	Ethylbenzene	8260D	8.7		ug/L	49
019	DP-12-20-GW	Aqueous	Methylene chloride	8260D	2.4		ug/L	49
019	DP-12-20-GW	Aqueous	Tetrachloroethene	8260D	2100	Н	ug/L	49
019	DP-12-20-GW	Aqueous	1,1,1-Trichloroethane	8260D	1.6		ug/L	50
019	DP-12-20-GW	Aqueous	1,1,2-Trichloroethane	8260D	280	Н	ug/L	50
019	DP-12-20-GW	Aqueous	Trichloroethene	8260D	5800	Н	ug/L	50
019	DP-12-20-GW	Aqueous	Vinyl chloride	8260D	7.0		ug/L	50
019	DP-12-20-GW	Aqueous	Xylenes (total)	8260D	86		ug/L	50
019	DP-12-20-GW	Aqueous	Methane	RSK - 175	80		ug/L	50
020	DP-14-10-GW	Aqueous	Ethane	RSK - 175	2.9	J	ug/L	52
020	DP-14-10-GW	Aqueous	Ethene	RSK - 175	2.5	J	ug/L	52
020	DP-14-10-GW	Aqueous	Methane	RSK - 175	57		ug/L	52
021	EB-01-062421	Aqueous	Sulfide	SM 4500-S2 F-	1.5		mg/L	53
021	EB-01-062421	Aqueous	Methane	RSK - 175	3.5	J	ug/L	55

(90 detections)

Description: MW-4

Date Sampled:06/24/2021 0845 Date Received:06/24/2021 Laboratory ID: WF25024-001 Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 1952 DAK		96947
2	(Chloride) 9056A	1	07/01/2021 1606 MSG		97742
1	(Nitrate - N) 9056A	1	06/25/2021 1905 AMR		97474
2	(Sulfate) 9056A	1	07/01/2021 1606 MSG		97739
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1	(TOC) 9060A	1	06/27/2021 1033 AAB		96944
1	(TOC) 9060A	1	06/27/2021 1033 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	6.7	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	1.2	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	4.0	1.0	1.0	mg/L	1
TOC		9060A	0.74 J	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1159 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.607 - 0.864				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4

Date Sampled:06/24/2021 0845 Date Received: 06/24/2021

Laboratory ID: WF25024-001

Matrix: Aqueous

	Volatile Organic Compounds by GC/MS
Pun Pron Mothod	Analytical Mothod Dilution Analysis Data Analyst Prop Data

Run Prep Method A 1 5030B	nalytical Method Dilution 8260D 1		is Date Analyst 021 1159 BWS	Prep Date	e Batch 98224			
Parameter		CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-	59-2	8260D	8.7	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-	82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-	87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-	09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-	42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-	34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-	18-4	8260D	4.2	1.0	0.40	ug/L	1
Toluene	108-	88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-	00-5	8260D	0.93 J	1.0	0.40	ug/L	1
Trichloroethene	79-	01-6	8260D	6.9	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recovery	Acceptar Limits						
Bromofluorobenzene	92	70-13	0					
1,2-Dichloroethane-d4	100	70-13	0					
Toluene-d8	99	70-13	0					

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		92	70-130
1,2-Dichloroethane-d4		100	70-130
Toluene-d8		99	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	ilution Analysis Date Analyst Prep Date 1 07/01/2021 1552 JWO			Batch 97631			
Paran	neter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Di	oxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4

Methane

Propane

Date Sampled:06/24/2021 0845 Date Received: 06/24/2021

Laboratory ID: WF25024-001 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 102

Dissolved Gases

Run Prep Method 1	Analytical Method Diluti RSK - 175 1	_	ysis Date Analyst 2021 1343 TML	Prep Date	Batch 97011			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1

RSK - 175

RSK - 175

140

ND

10

15

2.5

5.0

ug/L

ug/L

1

74-82-8

74-98-6

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure W = Reported on wet weight basis S = MS/MSD failure H = Out of holding time

Description: MW-14

Date Sampled:06/24/2021 0950 Date Received:06/24/2021 Laboratory ID: WF25024-002 Matrix: Aqueous

Inorganic non-metals

Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
(Alkalinity @) SM 2320B-2011	1	06/25/2021 2005 DAK		96947
(Chloride) 9056A	1	07/01/2021 1627 MSG		97742
(Nitrate - N) 9056A	1	06/25/2021 1926 AMR		97474
(Sulfate) 9056A	5	07/02/2021 0706 MSG		97739
(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
(TOC) 9060A	1	06/27/2021 1145 AAB		96944
	(Alkalinity @) SM 2320B-2011 (Chloride) 9056A (Nitrate - N) 9056A (Sulfate) 9056A (Sulfide) SM 4500-S2 F-2011	(Alkalinity @) SM 2320B-2011 1 (Chloride) 9056A 1 (Nitrate - N) 9056A 1 (Sulfate) 9056A 5 (Sulfide) SM 4500-S2 F-2011 1	(Chloride) 9056A 1 07/01/2021 1627 MSG (Nitrate - N) 9056A 1 06/25/2021 1926 AMR (Sulfate) 9056A 5 07/02/2021 0706 MSG (Sulfide) SM 4500-S2 F-2011 1 07/01/2021 2100 GDC	(Alkalinity @) SM 2320B-2011 1 06/25/2021 2005 DAK (Chloride) 9056A 1 07/01/2021 1627 MSG (Nitrate - N) 9056A 1 06/25/2021 1926 AMR (Sulfate) 9056A 5 07/02/2021 0706 MSG (Sulfide) SM 4500-S2 F-2011 1 07/01/2021 2100 GDC

Parameter	CAS Number	Analytical Method	Result C	2 LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	3.0	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	6.8	5.0	1.3	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.1	1.0	1.0	mg/L	1
TOC		9060A	0.60 J	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1224 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0.551 - 0.628				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-14

Date Sampled:06/24/2021 0950 Date Received: 06/24/2021

Laboratory ID: WF25024-002

Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method Dilution 8260D 1		ysis Date Analyst /2021 1224 BWS	Prep Date	Batch 98224			
Demonstra		CAS	Analytical	Daniel O	1.00	DI	11-24-	D
Parameter 1,1-Dichloroethene		umber '5-35-4	Method 8260D	Result Q ND	1.0	DL	Units	Rur 1
cis-1,2-Dichloroethene		6-59-2	8260D	ND	1.0	0.40	ug/L ug/L	1
,		6-60-5	8260D 8260D	ND ND	1.0	0.40	J	1
trans-1,2-Dichloroethene		'8-87-5	8260D 8260D	ND ND	1.0	0.40	ug/L	1
1,2-Dichloropropane		6-87-5 1-01-5	8260D 8260D	ND ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene		1-01-5	8260D 8260D	ND ND		0.40	ug/L	1
trans-1,3-Dichloropropene		0-41-4	8260D 8260D		1.0 1.0	0.40	ug/L	-
Ethylbenzene 2-Hexanone		1-78-6	8260D 8260D	ND ND	1.0	0.40	ug/L	1
						2.0	ug/L	1
Isopropylbenzene		8-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate		9-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		84-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone		8-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane		8-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	•	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene		0-42-5 '9-34-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane			8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene		7-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene		8-88-3	8260D	8.2	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan		6-13-1 0-82-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene			8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		1-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		9-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene Trichlorofluoromethane		'9-01-6 '5-69-4	8260D 8260D	ND ND	1.0	0.40	ug/L	1
		'5-69-4 '5-01-4	8260D 8260D	ND ND	1.0 1.0	0.40	ug/L	1
Vinyl chloride Xylenes (total)		5-01-4 30-20-7	8260D 8260D	ND ND	1.0	0.40 0.40	ug/L ug/L	1 1

Surrogate	Q	% Recovery	Limits
Bromofluorobenzene		92	70-130
1,2-Dichloroethane-d4		98	70-130
Toluene-d8		98	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Metl 1 50	hod 30B	Analytical Method 8260D (SIM)	Dilution 1	-	ysis Date Analyst /2021 1617 JWO	Prep Date	Batch 97631			
Parameter				CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane			123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Description: MW-14

Methane

Propane

Date Sampled:06/24/2021 0950 Date Received: 06/24/2021

Laboratory ID: WF25024-002 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 104

Dissolved Gases

80

ND

10

15

2.5

5.0

ug/L

ug/L

1

Run Prep Method 1	Analytical Method Dilu RSK - 175	-	ysis Date Analyst 2021 1359 TML	Prep Date	Batch 97011			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1

RSK - 175

RSK - 175

74-82-8

74-98-6

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: MW-11

Date Sampled:06/24/2021 1205 Date Received: 06/24/2021

Laboratory ID: WF25024-003

Matrix: Aqueous

Inorganic non-metals	Inorgani	С	non-	meta	ıls
----------------------	----------	---	------	------	-----

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	06/25/2021 2011 DAK		96947
2		(Chloride) 9056A	1	07/01/2021 1648 MSG		97742
1		(Nitrate - N) 9056A	1	06/25/2021 1947 AMR		97474
2		(Sulfate) 9056A	1	07/01/2021 1648 MSG		97739
1		(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1		(TOC) 9060A	1	06/27/2021 1210 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	120	20	20	mg CaCO3/L	1
Chloride		9056A	4.8	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	3.3	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.0	1.0	1.0	mg/L	1
TOC		9060A	2.6	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1250 BWS		98224

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 2.558 - 2.642				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-11

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes (total)

Date Sampled:06/24/2021 1205 Date Received:06/24/2021 Laboratory ID: WF25024-003

Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method Dilution 8260D 1	,	sis Date Analyst 2021 1250 BWS	Prep Date	Batch 98224			
Parameter		CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-	35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-	59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-	60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-	87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-	01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-	02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-	41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-	78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-	82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-	20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-	04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-	10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-	87-2	8260D	ND	5.0	0.40	ug/L	1

Volatile Organic Compounds by GC/MS

1 Wearly 2 periamene	100 10 1	OZOOD			2.0	49, L	
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1

8260D

8260D

8260D

8260D

8260D

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

0.40

0.40

0.40

0.40

0.40

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

79-00-5

79-01-6

75-69-4

75-01-4

1330-20-7

Surrogate		Q	Run 1 % Recovery	Acceptance Limits
Bromofluorobenze	ene		93	70-130
1,2-Dichloroethan	ne-d4		101	70-130
Toluene-d8			98	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution Analysis Date Analyst Pr 1 07/01/2021 1641 JWO		Prep Date	Batch 97631				
Para	meter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-D	ioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-11

Date Sampled:06/24/2021 1205 Date Received: 06/24/2021 Laboratory ID: WF25024-003 Matrix: Aqueous

Surrogate Q Run 1 Acceptance
Q Recovery Limits

1,2-Dichloroethane-d4 104 40-170

Dissolved Gases

Run Prep Method 1	Analytical Method RSK - 175	Dilution 1	Analysis Date Analyst 06/30/2021 1045 TML	Prep Date	Batch 97348	
		(CAS Analytical			

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	390	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\%$

DL = Detection Limit $J = Estimated result < LOQ and <math>\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-5

Date Sampled:06/24/2021 1500 Date Received:06/24/2021 Laboratory ID: WF25024-004 Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 2015 DAK		96947	
2	(Chloride) 9056A	1	07/01/2021 1709 MSG		97742	
1	(Nitrate - N) 9056A	1	06/25/2021 2050 AMR		97474	
2	(Sulfate) 9056A	1	07/01/2021 1709 MSG		97739	
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672	
1	(TOC) 9060A	1	06/27/2021 1234 AAB		96944	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	19	1.0	0.25	mg/L	2
Nitrate - N		9056A	0.27	0.020	0.0050	mg/L	1
Sulfate		9056A	0.47 J	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.1	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/09/2021 0429 JDF		98339

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	Н	100	25	ug/L	1
Benzene	71-43-2	8260D	ND	Н	5.0	2.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	Н	5.0	2.0	ug/L	1
Bromoform	75-25-2	8260D	ND	Н	5.0	2.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	Н	10	2.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	Н	50	10	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	Н	5.0	2.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	Н	5.0	2.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	Н	5.0	2.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	Н	10	2.0	ug/L	1
Chloroform	67-66-3	8260D	ND	Н	5.0	2.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	Н	5.0	2.5	ug/L	1
Cyclohexane	110-82-7	8260D	ND	Н	5.0	2.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	Н	5.0	2.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	Н	5.0	2.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	Н	5.0	2.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	Н	5.0	2.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	Н	5.0	2.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	Н	5.0	2.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	Н	10	3.0	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	4.7	HJ	5.0	2.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	Н	5.0	2.0	ug/L	1

TOC Range: 0.211 - 0.237				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-5

Date Sampled:06/24/2021 1500 Date Received: 06/24/2021

Laboratory ID: WF25024-004 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 82600			sis Date Analyst 2021 0429 JDF	Prep	Date	Batch 98339			
Parameter		Nui	CAS mber	Analytical Method	Result	Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75	35-4	8260D	2.4	HJ	5.0	2.0	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260D	370	Н	5.0	2.0	ug/L	1
trans-1,2-Dichloroethene		156-	60-5	8260D	3.7	HJ	5.0	2.0	ug/L	1
1,2-Dichloropropane		78-	-87-5	8260D	ND	Н	5.0	2.0	ug/L	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND	Н	5.0	2.0	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND	Н	5.0	2.0	ug/L	1
Ethylbenzene		100-	41-4	8260D	2.7	HJ	5.0	2.0	ug/L	1
2-Hexanone		591-	78-6	8260D	ND	Н	50	10	ug/L	1
Isopropylbenzene		98-	-82-8	8260D	ND	Н	5.0	2.0	ug/L	1
Methyl acetate		79	20-9	8260D	ND	Н	5.0	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634	-04-4	8260D	ND	Н	5.0	2.0	ug/L	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	Н	50	10	ug/L	1
Methylcyclohexane		108-	87-2	8260D	ND	Н	25	2.0	ug/L	1
Methylene chloride		75-	-09-2	8260D	ND	Н	5.0	2.0	ug/L	1
Styrene		100-	42-5	8260D	ND	Н	5.0	2.1	ug/L	1
1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND	Н	5.0	2.0	ug/L	1
Tetrachloroethene		127-	18-4	8260D	120	Н	5.0	2.0	ug/L	1
Toluene		108-	88-3	8260D	ND	Н	5.0	2.0	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	Н	5.0	2.1	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	Н	5.0	2.0	ug/L	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	Н	5.0	2.0	ug/L	1
1,1,2-Trichloroethane		79.	-00-5	8260D	ND	Н	5.0	2.0	ug/L	1
Trichloroethene		79-	-01-6	8260D	210	Н	5.0	2.0	ug/L	1
Trichlorofluoromethane		75-	-69-4	8260D	ND	Н	5.0	2.0	ug/L	1
Vinyl chloride		75-	-01-4	8260D	8.8	Н	5.0	2.0	ug/L	1
Xylenes (total)		1330	-20-7	8260D	ND	Н	5.0	2.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accept Limi						, and the second	
Bromofluorobenzene	Н	95	70-1	30						
1,2-Dichloroethane-d4	Н	104	70-1	30						
Toluene-d8	Н	101	70-1	30						
Run Prep Method 1 5030B	Volatile Analytical Methor 8260D (SIM	d Dilution	Analy	mpounds by usis Date Analyst 2021 0107 CJL2	GC/N Prep		Batch 97674			
Parameter		Nui	CAS mber	Analytical Method	Result	Q	LOQ	DL	Units	Run

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

8260D (SIM)

3.0

1.0

ug/L

13

1,4-Dioxane

123-91-1

Description: MW-5

Date Sampled:06/24/2021 1500 Date Received: 06/24/2021

Laboratory ID: WF25024-004 Matrix: Aqueous

Acceptance Run 1 Surrogate Q % Recovery Limits

1,2-Dichloroethane-d4 101 40-170

Dissolved Gases

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	RSK - 175	1	06/30/2021 1101 TML		97348

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	3.8 J	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	1800	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: TB-1

Date Sampled:06/24/2021

Date Received: 06/24/2021

Laboratory ID: WF25024-005 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1043 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TB-1

Date Sampled:06/24/2021 Date Received:06/24/2021 Laboratory ID: WF25024-005 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 021 1043 BWS	Prep Date	Batch 98224			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	<u>, </u>		13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	•	120-		8260D	ND	1.0	0.42	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %I	Run 1 Recovery	Accepta Limit						
Bromofluorobenzene		89	70-13	60					
1,2-Dichloroethane-d4		96	70-13	80					
Toluene-d8		95	70-13	80					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and \geq DL Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (10-11)

Date Sampled:06/24/2021 1000

Date Received: 06/24/2021

Laboratory ID: WF25024-006

Matrix: Solid

% Solids: 84.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Analytical 1 5035	Method Dilution Ana 8260D 1 06/30	lysis Date Analyst 0/2021 0455 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.00		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	7.9	ug/kg	1
Benzene	71-43-2	8260D	ND	4.9	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.9	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.9	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.9	2.9	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	3.9	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.9	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.9	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.9	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.9	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.9	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.9	2.9	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.9	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.9	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.9	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.9	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.9	2.9	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.9	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.9	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.9	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.9	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.9	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.9	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.9	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	9.8	3.9	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.9	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.9	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.9	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	9.8	3.9	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.9	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.9	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	4.9	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.9	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.9	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	4.9	2.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (10-11) Date Sampled:06/24/2021 1000

Date Received: 06/24/2021

Laboratory ID: WF25024-006

Matrix: Solid

% Solids: 84.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0455 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.00		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.9	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.9	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.9	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.9	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.9	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.9	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.9	2.9	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.8	3.9	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		97	47-138	}					
1,2-Dichloroethane-d4		99	53-142						
Toluene-d8		104	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-2-SO (19-20)
Date Sampled:06/24/2021 1010

Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-007

Matrix: Solid

Batch

% Solids: 87.3 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035 Alaysteal Method 1 5035 8260D		2021 0518 CJL2	гтер вате	97321	6.05		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	19	7.6	ug/kg	1
Benzene	71-43-2	8260D	ND	4.7	1.9	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.7	1.9	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.7	1.9	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.7	2.8	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	19	3.8	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.7	1.9	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.7	1.9	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.7	1.9	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.7	1.9	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.7	1.9	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.7	2.8	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.7	1.9	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.7	1.9	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.7	1.9	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.7	1.9	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.7	2.8	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.7	1.9	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.7	1.9	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.7	1.9	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.7	1.9	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.7	1.9	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.7	1.9	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.7	1.9	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.7	1.9	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	9.5	3.8	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.7	1.9	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.7	1.9	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.7	1.9	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	9.5	3.8	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.7	1.9	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.7	1.9	ug/kg	1
Styrene	100-42-5	8260D	ND	4.7	1.9	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.7	1.9	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.7	1.9	ug/kg	1
Toluene	108-88-3	8260D	ND	4.7	1.9	ug/kg	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (19-20) Date Sampled:06/24/2021 1010

Date Received: 06/24/2021

Laboratory ID: WF25024-007 Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 21 0518 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.05		
				Analytical					
Parameter		Nun	nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.7	1.9	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.7	1.9	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.7	1.9	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	4.7	1.9	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.7	1.9	ug/kg	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	4.7	1.9	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	4.7	2.8	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.5	3.8	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		97	47-138						
1,2-Dichloroethane-d4		99	53-142						
Toluene-d8		102	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-13-SO (10-11)

Date Sampled:06/23/2021 1500 Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-008 Matrix: Solid

Batch

% Solids: 81.6 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035 8260	-	2021 0541 CJL2	т гтер вате	97321	6.06		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	11 J	20	8.1	ug/kg	1
Benzene	71-43-2	8260D	ND	5.1	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.1	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.1	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.1	3.0	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	4.0	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.1	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.1	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.1	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.1	3.0	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.1	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.1	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.1	3.0	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.1	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.1	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.1	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.1	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.1	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	10	4.0	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	5.1	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.1	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.1	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	4.0	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.1	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.1	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	5.1	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.1	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.1	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	5.1	2.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-13-SO (10-11)
Date Sampled:06/23/2021 1500

Date Received: 06/24/2021

Laboratory ID: WF25024-008

Matrix: Solid

% Solids: 81.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0541 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.06		
			CAS	Analytical					
Parameter		Nur	nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.1	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.0	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		96	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		103	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

 $\label{thm:pace-analytical-Services, LLC} \textbf{ (formerly Shealy Environmental Services, Inc.)}$

Analytical Method

Dilution

Description: DP-13-SO (19-20) Date Sampled:06/23/2021 1600

Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-009

Batch

Matrix: Solid

% Solids: 89.6 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analysis Date Analyst

1 5035 8	3260D 1 06/30	/2021 0604 CJL2		97321	6.33		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	19	18	7.1	ug/kg	1
Benzene	71-43-2	8260D	ND	4.4	1.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.4	1.8	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.4	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.4	2.6	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	18	3.5	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.4	1.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.4	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.4	1.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.4	1.8	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.4	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.4	2.6	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.4	1.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.4	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.4	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.4	1.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.4	2.6	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.4	1.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.4	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	5.7	4.4	1.8	ug/kg	1

156-60-5

10061-01-5

10061-02-6

100-41-4

591-78-6

98-82-8

79-20-9

1634-04-4

108-10-1

108-87-2

75-09-2

100-42-5

127-18-4

108-88-3

79-34-5

78-87-5

8260D

ND

3.3 J

ND

4.4

4.4

4.4

4.4

4.4

8.8

4.4

4.4

4.4

8.8

4.4

4.4

4.4

4.4

4.4

4.4

DL = Detection Limit

1.8

1.8

1.8

1.8

1.8

3.5

1.8

1.8

1.8

3.5

1.8

1.8

1.8

1.8

1.8

1.8

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Methyl tertiary butyl ether (MTBE)

1,2-Dichloropropane

Ethylbenzene

Isopropylbenzene

4-Methyl-2-pentanone

1,1,2,2-Tetrachloroethane

Methylcyclohexane

Methylene chloride

Tetrachloroethene

Styrene

Toluene

Methyl acetate

2-Hexanone

B = Detected in the method blank N = Recovery is out of criteria

W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

J = Estimated result < LOQ and \geq DL

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ug/kg

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-13-SO (19-20) Date Sampled:06/23/2021 1600

Laboratory ID: WF25024-009 Matrix: Solid

% Solids: 89.6 06/26/2021 1851 Date Received: 06/24/2021

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0604 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.33		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	Δ		13-1	8260D	ND	4.4	1.8	ug/kg	1
1,2,4-Trichlorobenzene	C	120-		8260D	ND	4.4	1.8	ug/kg ug/kg	1
1,1,1-Trichloroethane			55-6	8260D	ND	4.4	1.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	4.4	4.4	1.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	6.9	4.4	1.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.4	1.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.4	2.6	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.8	3.5	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		97	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		99	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (6-7)
Date Sampled:06/24/2021 1020

Date Sampled:06/24/2021 1020 Date Received:06/24/2021

Run Prep Method

Laboratory ID: WF25024-010

Batch

Matrix: Solid

% Solids: 89.9 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035	-	2021 0627 CJL2		97321	6.29		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	15 J	18	7.1	ug/kg	1
Benzene	71-43-2	8260D	ND	4.4	1.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.4	1.8	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.4	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.4	2.7	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	18	3.5	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.4	1.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.4	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.4	1.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.4	1.8	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.4	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.4	2.7	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.4	1.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.4	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.4	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.4	1.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.4	2.7	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.4	1.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.4	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	7.0	4.4	1.8	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.4	1.8	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.4	1.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.4	1.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.4	1.8	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.4	1.8	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	8.8	3.5	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.4	1.8	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.4	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.4	1.8	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.8	3.5	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.4	1.8	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.4	1.8	ug/kg	1
Styrene	100-42-5	8260D	ND	4.4	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.4	1.8	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.4	1.8	ug/kg	1
Toluene	108-88-3	8260D	ND	4.4	1.8	ug/kg	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-SO (6-7) Date Sampled:06/24/2021 1020

Date Received: 06/24/2021

Laboratory ID: WF25024-010

Matrix: Solid

% Solids: 89.9 06/26/2021 1851

Volatile Organic Compounds by GC/M	S
------------------------------------	---

Run Prep Method Analytic 1 5035	al Method 8260D	Dilution 1	,	sis Date Analyst 021 0627 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.29		
Parameter		(Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-1	13-1	8260D	ND	4.4	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.4	1.8	ug/kg	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	4.4	1.8	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	4.4	1.8	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.4	1.8	ug/kg	1
Trichlorofluoromethane		75- <i>6</i>	59-4	8260D	ND	4.4	1.8	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	4.4	2.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	8.8	3.5	ug/kg	1
Surrogate		Run 1 /	Accepta Limit						
Bromofluorobenzene		100	47-13	88					
1,2-Dichloroethane-d4		102	53-14	2					
Toluene-d8		100	68-12	24					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-12-SO (4-5)
Date Sampled:06/23/2021 1500

Date Sampled:06/23/2021 1500 Date Received: 06/24/2021 Matrix: Solid

Laboratory ID: WF25024-011

% Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)	
1	5035	8260D	1	06/30/2021 0650 CJL2		97321	6.35	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	18	7.2	ug/kg	1
Benzene	71-43-2	8260D	ND	4.5	1.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.5	1.8	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.5	2.7	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	18	3.6	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.5	1.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.5	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.5	1.8	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.5	2.7	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.5	1.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.5	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.5	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.5	1.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.5	2.7	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.5	1.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	17	4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.5	1.8	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.5	1.8	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	9.0	3.6	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.5	1.8	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.5	1.8	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	9.0	3.6	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.5	1.8	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.5	1.8	ug/kg	1
Styrene	100-42-5	8260D	ND	4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.5	1.8	ug/kg	1
Tetrachloroethene	127-18-4	8260D	77	4.5	1.8	ug/kg	1
Toluene	108-88-3	8260D	ND	4.5	1.8	ug/kg	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-12-SO (4-5) Date Sampled:06/23/2021 1500

Date Received: 06/24/2021

Laboratory ID: WF25024-011

Matrix: Solid

% Solids: 87.3 06/26/2021 1851

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 021 0650 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 6.35		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	11	4.5	1.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	69	4.5	1.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.0	3.6	ug/kg	1
Surrogate		Run 1 Recovery	Accepta Limit						
Bromofluorobenzene		96	47-13	18					
1,2-Dichloroethane-d4		100	53-14	2					
Toluene-d8		102	68-12	.4					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-6-SO (10-11) ate Sampled:06/24/2021 1130

Date Sampled:06/24/2021 1130 Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-012 Matrix: Solid

Batch

% Solids: 81.7 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035		/2021 0712 CJL2	i Trop Bate	97321	5.99		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acetone	67-64-1	8260D	ND	20	8.2	ug/kg	1
Benzene	71-43-2	8260D	ND	5.1	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.1	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.1	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.1	3.1	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	4.1	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.1	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.1	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.1	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.1	3.1	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.1	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.1	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.1	3.1	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.1	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.1	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.1	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.1	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.1	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	10	4.1	ug/kg	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

Isopropylbenzene

4-Methyl-2-pentanone

1,1,2,2-Tetrachloroethane

Methylcyclohexane

Methylene chloride

Tetrachloroethene

Styrene

Toluene

Methyl tertiary butyl ether (MTBE)

Methyl acetate

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

8260D

ND

DL = Detection Limit J = Estimated result < LOQ and \geq DL

5.1

5.1

5.1

10

5.1

5.1

5.1

5.1

5.1

5.1

2.0

2.0

2.0

4.1

2.0

2.0

2.0

2.0

2.0

2.0

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

ug/kg

1

1

1

1

1

1

1

1

1

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

98-82-8

79-20-9

1634-04-4

108-10-1

108-87-2

75-09-2

79-34-5

100-42-5

127-18-4

108-88-3

Description: DP-6-SO (10-11)
Date Sampled:06/24/2021 1130

Date Sampled:06/24/2021 1130 Date Received: 06/24/2021 Laboratory ID: WF25024-012

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 21 0712 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 5.99		
Parameter			CAS /	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.1	3.1	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.1	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptanc Limits	ce					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		104	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

 $\label{thm:pace-analytical-Services, LLC} \textbf{ (formerly Shealy Environmental Services, Inc.)}$

Description: DP-12-SO (9-10) Date Sampled:06/23/2021 1700

Date Received: 06/24/2021

Laboratory ID: WF25024-013

Matrix: Solid

% Solids: 85.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D		Analy	ysis Date Analyst /2021 0735 CJL2		Batch 97321	Sample Wt.(g) 11.29		
Parameter		Nun	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone		67-	64-1	8260D	ND	10	4.1	ug/kg	1
Benzene		71-	43-2	8260D	ND	2.6	1.0	ug/kg	1
Bromodichloromethane		75-	27-4	8260D	ND	2.6	1.0	ug/kg	1
Bromoform		75-	25-2	8260D	ND	2.6	1.0	ug/kg	1
Bromomethane (Methyl bromide)		74-	83-9	8260D	ND	2.6	1.6	ug/kg	1
2-Butanone (MEK)		78-	93-3	8260D	ND	10	2.1	ug/kg	1
Carbon disulfide		75-	15-0	8260D	ND	2.6	1.0	ug/kg	1
Carbon tetrachloride		56-	23-5	8260D	ND	2.6	1.0	ug/kg	1
Chlorobenzene		108-	90-7	8260D	ND	2.6	1.0	ug/kg	1
Chloroethane		75-	00-3	8260D	ND	2.6	1.0	ug/kg	1
Chloroform		67-	66-3	8260D	ND	2.6	1.0	ug/kg	1
Chloromethane (Methyl chloride)		74-	87-3	8260D	ND	2.6	1.6	ug/kg	1
Cyclohexane		110-	32-7	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-	12-8	8260D	ND	2.6	1.0	ug/kg	1
Dibromochloromethane	•	124-	48-1	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-	93-4	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dichlorobenzene		95-	50-1	8260D	ND	2.6	1.0	ug/kg	1
1,3-Dichlorobenzene		541-	73-1	8260D	ND	2.6	1.0	ug/kg	1
1,4-Dichlorobenzene		106-	46-7	8260D	ND	2.6	1.0	ug/kg	1
Dichlorodifluoromethane		75-	71-8	8260D	ND	2.6	1.6	ug/kg	1
1,1-Dichloroethane		75-	34-3	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dichloroethane		107-	06-2	8260D	ND	2.6	1.0	ug/kg	1
1,1-Dichloroethene		75-	35-4	8260D	ND	2.6	1.0	ug/kg	1
cis-1,2-Dichloroethene		156-	59-2	8260D	15	2.6	1.0	ug/kg	1
trans-1,2-Dichloroethene		156-	60-5	8260D	ND	2.6	1.0	ug/kg	1
1,2-Dichloropropane		78-	87-5	8260D	ND	2.6	1.0	ug/kg	1
cis-1,3-Dichloropropene		10061-	01-5	8260D	ND	2.6	1.0	ug/kg	1
trans-1,3-Dichloropropene		10061-	02-6	8260D	ND	2.6	1.0	ug/kg	1
Ethylbenzene		100-	41-4	8260D	ND	2.6	1.0	ug/kg	1
2-Hexanone		591-	78-6	8260D	ND	5.2	2.1	ug/kg	1
Isopropylbenzene		98-	82-8	8260D	ND	2.6	1.0	ug/kg	1
Methyl acetate		79-	20-9	8260D	ND	2.6	1.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260D	ND	2.6	1.0	ug/kg	1
4-Methyl-2-pentanone		108-	10-1	8260D	ND	5.2	2.1	ug/kg	1
Methylcyclohexane		108-		8260D	ND	2.6	1.0	ug/kg	1
Methylene chloride			09-2	8260D	ND	2.6	1.0	ug/kg	1
Styrene		100-		8260D	ND	2.6	1.0	ug/kg	1
1,1,2,2-Tetrachloroethane			34-5	8260D	ND	2.6	1.0	ug/kg	1
Tetrachloroethene		127-		8260D	21	2.6	1.0	ug/kg	1
Toluene		108-		8260D	ND	2.6	1.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Description: DP-12-SO (9-10)
Date Sampled:06/23/2021 1700

Laboratory ID: WF25024-013

Matrix: Solid

% Solids: 85.6 06/26/2021 1851

Date Received: 06/24/2021

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 1 0735 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 11.29		
Parameter			CAS /	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	2.6	1.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	2.6	1.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	2.6	1.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	3.3	2.6	1.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	27	2.6	1.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	2.6	1.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	2.6	1.6	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	5.2	2.1	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptanc Limits	e					
Bromofluorobenzene		100	47-138						
1,2-Dichloroethane-d4		110	53-142						
Toluene-d8		99	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-3-SO (10-11)

Date Sampled:06/24/2021 1130 Date Received: 06/24/2021

Laboratory ID: WF25024-014 Matrix: Solid

% Solids: 83.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 0758 CJL2	Prep	Date	Batch 97321	Sample Wt.(g) 5.45		
Parameter		(Num	CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-6	54-1	8260D	10	J	22	8.8	ug/kg	1
Benzene		71-4	13-2	8260D	ND		5.5	2.2	ug/kg	1
Bromodichloromethane		75-2	27-4	8260D	ND		5.5	2.2	ug/kg	1
Bromoform		75-2	25-2	8260D	ND		5.5	2.2	ug/kg	1
Bromomethane (Methyl bromide)		74-8	33-9	8260D	ND		5.5	3.3	ug/kg	1
2-Butanone (MEK)		78-9	93-3	8260D	ND		22	4.4	ug/kg	1
Carbon disulfide		75-1	15-0	8260D	ND		5.5	2.2	ug/kg	1
Carbon tetrachloride		56-2	23-5	8260D	ND		5.5	2.2	ug/kg	1
Chlorobenzene		108-9	90-7	8260D	ND		5.5	2.2	ug/kg	1
Chloroethane		75-0	0-3	8260D	ND		5.5	2.2	ug/kg	1
Chloroform		67-6	66-3	8260D	ND		5.5	2.2	ug/kg	1
Chloromethane (Methyl chloride)		74-8	37-3	8260D	ND		5.5	3.3	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND		5.5	2.2	ug/kg	1
1,2-Dibromo-3-chloropropane (DBC)	P)	96-1	12-8	8260D	ND		5.5	2.2	ug/kg	1
Dibromochloromethane	•	124-4	18-1	8260D	ND		5.5	2.2	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260D	ND		5.5	2.2	ug/kg	1
1,2-Dichlorobenzene		95-5	50-1	8260D	ND		5.5	2.2	ug/kg	1
1,3-Dichlorobenzene		541-7	73-1	8260D	ND		5.5	2.2	ug/kg	1
1,4-Dichlorobenzene		106-4	16-7	8260D	ND		5.5	2.2	ug/kg	1
Dichlorodifluoromethane		75-7	71-8	8260D	ND		5.5	3.3	ug/kg	1
1,1-Dichloroethane		75-3	34-3	8260D	ND		5.5	2.2	ug/kg	1
1,2-Dichloroethane		107-0	06-2	8260D	ND		5.5	2.2	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND		5.5	2.2	ug/kg	1
cis-1,2-Dichloroethene		156-5	59-2	8260D	ND		5.5	2.2	ug/kg	1
trans-1,2-Dichloroethene		156-6	0-5	8260D	ND		5.5	2.2	ug/kg	1
1,2-Dichloropropane		78-8	37-5	8260D	ND		5.5	2.2	ug/kg	1
cis-1,3-Dichloropropene		10061-0)1-5	8260D	ND		5.5	2.2	ug/kg	1
trans-1,3-Dichloropropene		10061-0)2-6	8260D	ND		5.5	2.2	ug/kg	1
Ethylbenzene		100-4	11-4	8260D	ND		5.5	2.2	ug/kg	1
2-Hexanone		591-7	18-6	8260D	ND		11	4.4	ug/kg	1
Isopropylbenzene		98-8	32-8	8260D	ND		5.5	2.2	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND		5.5	2.2	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-0)4-4	8260D	ND		5.5	2.2	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		11	4.4	ug/kg	1
Methylcyclohexane		108-8		8260D	ND		5.5	2.2	ug/kg	1
Methylene chloride		75-0		8260D	ND		5.5	2.2	ug/kg	1
Styrene		100-4		8260D	ND		5.5	2.2	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3		8260D	ND		5.5	2.2	ug/kg	1
Tetrachloroethene		127-1		8260D	ND		5.5	2.2	ug/kg	1
Toluene		108-8		8260D	ND		5.5	2.2	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-3-SO (10-11)

Date Sampled:06/24/2021 1130 Date Received: 06/24/2021

Laboratory ID: WF25024-014 Matrix: Solid

% Solids: 83.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 21 0758 CJL2	Prep Date	Batch 97321	Sample Wt.(g) 5.45		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	Α		13-1	8260D	ND	5.5	2.2	ug/kg	1
1,2,4-Trichlorobenzene	C	120-		8260D	ND	5.5	2.2	ug/kg	1
1,1,1-Trichloroethane			55-6	8260D	ND	5.5	2.2	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.5	2.2	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.5	2.2	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.5	2.2	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.5	3.3	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	11	4.4	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		99	47-138						
1,2-Dichloroethane-d4		98	53-142						
Toluene-d8		104	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: TB-2
Date Sampled:06/24/2021
Date Received: 06/24/2021

Laboratory ID: WF25024-015

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 5030B 8260D 1 07/08/2021 1108 BWS 98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TB-2

Date Received: 06/24/2021

Date Sampled:06/24/2021

Laboratory ID: WF25024-015 Matrix: Aqueous

Volatile Organic Compounds by GC/M	IS
------------------------------------	----

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 1108 BWS	Prep Date	Batch 98224			
Parameter			CAS mber	Analytical	Result Q	LOQ	DL	Units	Dun
	_			Method					Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е		13-1	8260D	ND	1.0	0.42	ug/L	I
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		96	70-130)					
1,2-Dichloroethane-d4		97	70-130)					
Toluene-d8		100	70-130)					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-16/17-GW

Date Sampled:06/24/2021 1010

Date Received: 06/24/2021

Laboratory ID: WF25024-016 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1315 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-27-4 75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-75-3 75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L ug/L	1
Chloroform	67-66-3	8260D	1.7	1.0	0.40	ug/L ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.40	ug/L ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D 8260D	ND	1.0	0.40	ug/L ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.40	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	52	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	0.83 J	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	0.46 J	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-2-16/17-GW Date Sampled:06/24/2021 1010 Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-016

Matrix: Aqueous

Volatile Organic Compounds by GC/MS	Volatile	Organic	Compounds	by GC/MS
-------------------------------------	----------	---------	-----------	----------

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	Date Analyst 1 1315 BWS	Prep	Date Bat 982			
			CAS /	Analytical					
Parameter		Nun	nber	Method	Result	Q LOC	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	0.47	J 1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	59-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	1.9	1.0	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260D	1.8	1.0	0.40	ug/L	1
Surrogate	Q %I	Run 1 Recovery	Acceptanc Limits	e					
Bromofluorobenzene		92	70-130						
1,2-Dichloroethane-d4		97	70-130						
Toluene-d8		95	70-130						

Volatila Organia Compounds by CC/MS (SIM)

	voiatile C	organic Co	ompounas by	/ GC/MS (3	SIIVI)			
Run Prep Method	Analytical Method	Dilution Ana	lysis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1 07/0	1/2021 1706 JWO		97631			
		CAS	Analytical					
Parameter		Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate			otance mits					
1,2-Dichloroethane-d4		107 40	-170					

Dissolved Gases

Analysis Date Analyst

Prep Date

Batch

1 '	RSK - 175	1 06/30/	2021 1117 TML	'	97348			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	10	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Analytical Method

Dilution

Description: DP-DUP1-GW
Date Sampled:06/24/2021
Date Received: 06/24/2021

Laboratory ID: WF25024-017

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1341 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.7	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	53	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	0.87 J	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	0.43 J	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

Description: DP-DUP1-GW Date Sampled:06/24/2021 Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-017

Matrix: Aqueous

			Vol	atil	le ()rg	ganic	: C	or	np	ou	nd	ls k	ЭУ	GC/	MS
_	 		 									-				

Run Prep Method Analytica 1 5030B	l Method Dilution 8260D 1	,	ysis Date Analyst 2021 1341 BWS	Prep Date	Batch 98224			
Parameter	Nu	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	76	-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-	-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71	-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79	-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79	-01-6	8260D	0.45 J	1.0	0.40	ug/L	1
Trichlorofluoromethane	75	-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75	-01-4	8260D	1.9	1.0	0.40	ug/L	1
Xylenes (total)	1330	-20-7	8260D	1.7	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recovery	Accept Limi						
Bromofluorobenzene	96	70-1	30					
1,2-Dichloroethane-d4	99	70-1	30					
Toluene-d8	99	70-1	30					

Volatile Organic Compounds by GC/MS (SIM)

	volatile Organic C	zompounas by	/ GC/IVIS (3	SIIVI)			
Run Prep Method 1 5030B	Analytical Method Dilution A 8260D (SIM) 1 07	nalysis Date Analyst //01/2021 1731 JWO	Prep Date	Batch 97631			
Parameter	CAS Numbe	7 ti lai y tioai	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		ceptance Limits					
1,2-Dichloroethane-d4	105	40-170					

Dissolved Gases

Analysis Date Analyst

Prep Date

Batch

1	RSK - 175	1 06/30/	2021 1133 TML	·	97348			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane		74-82-8	RSK - 175	6.7 J	10	2.5	ug/L	1
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure W = Reported on wet weight basis S = MS/MSD failure H = Out of holding time

Analytical Method

Dilution

Description: DP-3-20-GW Date Sampled:06/24/2021 1200 Date Received: 06/24/2021

Laboratory ID: WF25024-018

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run P	rep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1407 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	1.6	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Description: DP-3-20-GW

Run Prep Method

Date Sampled:06/24/2021 1200 Date Received: 06/24/2021

Laboratory ID: WF25024-018 Matrix: Aqueous

	Vola	tile Org	anic	Compounds	by GC/MS	S			
Run Prep Method 1 5030B	Analytical Metho 82600		-	ysis Date Analyst /2021 1407 BWS	Prep Date	Batch 98224			
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76	-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120	-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71	-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79	-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79	-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4		8260D	ND	1.0	0.40	ug/L	1	
Vinyl chloride		75	-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330	-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %	Run 1 6 Recovery	Accept Lim						
Bromofluorobenzene		90	70-1	30					
1,2-Dichloroethane-d4		97	70-1	30					
Toluene-d8		95	70-1	30					
	Volatile	Organ	ic Co	mpounds by	GC/MS (S	SIM)			
Run Prep Method	Analytical Metho	d Dilution	Analy	sis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM	1) 1	07/01/	2021 1755 JWO		97631			
			CAS	Analytical					

1 5030B	8260D (SIM) 1 07/0	01/2021 1755 JWO		97631			
Parameter	CAS Number	Analytical Method F	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		ptance mits					
1,2-Dichloroethane-d4	107 40)-170					

Dissolved Ga

Analytical Method Dilution Analysis Date Analyst

1

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	17	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

06/30/2021 1149 TML

Prep Date

Batch

97348

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure W = Reported on wet weight basis H = Out of holding time

RSK - 175

Description: DP-12-20-GW

Date Sampled:06/23/2021 1810

Date Received: 06/24/2021

Laboratory ID: WF25024-019

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/06/2021 1829 TML		97934
2	5030B	8260D	100	07/08/2021 1826 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	10	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	0.41 J	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	110	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	120	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	2.4	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	8.7	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	2.4	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	2100 H	100	40	ug/L	2

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Date Sampled:06/23/2021 1810

Date Received: 06/24/2021

Description: DP-12-20-GW

Laboratory ID: WF25024-019

Matrix: Aqueous

	Volatile Orga	anic Compounds	by GC/MS	S
Run Prep Method	Analytical Method Dilution	Analysis Date Analyst	Prep Date	Е

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/06/2021 1829 TML		97934
2	5030B	8260D	100	07/08/2021 1826 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	1.6	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	280 H	100	40	ug/L	2
Trichloroethene	79-01-6	8260D	5800 H	100	40	ug/L	2
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	7.0	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	86	1.0	0.40	ug/L	1
	Run 1 Accent	ance Ri	in 2 Accenta	ance			

			acceptance			cceptance
Surrogate	Q	% Recovery	Limits	Q	% Recovery	Limits
Bromofluorobenzene		104	70-130	Н	92	70-130
1,2-Dichloroethane-d4		110	70-130	Н	100	70-130
Toluene-d8		104	70-130	Н	98	70-130

Volatile Organic Compounds by GC/MS (SIM)

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D (SIM)	1	07/01/2021 1820 JWO		97631

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

		Run 1 Acceptance
Surrogate	Q	% Recovery Limits
1,2-Dichloroethane-d4		105 40-170

Dissolved Gases

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	RSK - 175	1	06/30/2021 1205 TML		97348	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	80	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Description: DP-14-10-GW Date Sampled:06/24/2021 1130 Date Received: 06/24/2021

Laboratory ID: WF25024-020

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/08/2021 1800 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	100	25	ug/L	1
Benzene	71-43-2	8260D	ND	5.0	2.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	5.0	2.0	ug/L	1
Bromoform	75-25-2	8260D	ND	5.0	2.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	10	2.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	50	10	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	5.0	2.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	5.0	2.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	5.0	2.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	10	2.0	ug/L	1
Chloroform	67-66-3	8260D	ND	5.0	2.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.0	2.5	ug/L	1
Cyclohexane	110-82-7	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.0	2.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.0	2.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.0	2.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.0	2.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	10	3.0	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.0	2.0	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.0	2.0	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.0	2.0	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.0	2.0	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.0	2.0	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.0	2.0	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	5.0	2.0	ug/L	1
2-Hexanone	591-78-6	8260D	ND	50	10	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	5.0	2.0	ug/L	1
Methyl acetate	79-20-9	8260D	ND	5.0	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.0	2.0	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	50	10	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	25	2.0	ug/L	1
Methylene chloride	75-09-2	8260D	ND	5.0	2.0	ug/L	1
Styrene	100-42-5	8260D	ND	5.0	2.1	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.0	2.0	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	5.0	2.0	ug/L	1
Toluene	108-88-3	8260D	ND	5.0	2.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-14-10-GW Date Sampled:06/24/2021 1130

Date Received: 06/24/2021

Run Prep Method

Laboratory ID: WF25024-020 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method A 1 5030B	nalytical Method Dil 8260D	-	ysis Date Analyst /2021 1800 BWS	Prep Date	Batch 98224			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-13-1	8260D	ND	5.0	2.1	ug/L	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	5.0	2.0	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	5.0	2.0	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	5.0	2.0	ug/L	1
Trichloroethene		79-01-6	8260D	ND	5.0	2.0	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	5.0	2.0	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	5.0	2.0	ug/L	1
Xylenes (total)		1330-20-7	8260D	ND	5.0	2.0	ug/L	1
Surrogate	Rui Q % Rec							
Bromofluorobenzene	9	3 70-1	130					
1,2-Dichloroethane-d4	10	00 70-1	130					
Toluene-d8	10	00 70-1	130					

Volatile Organic Compounds by GC/MS (SIM)

	volatile Organic Co	ompounds by	/ GC/IVIS (3	SIIVI)			
Run Prep Method 1 5030B	Analytical Method Dilution Ana 8260D (SIM) 1 07/0	ılysis Date Analyst 1/2021 2328 CJL2	Prep Date	Batch 97674			
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		otance mits					
1,2-Dichloroethane-d4	100 40	-170					

Dissolved Gases

Analysis Date Analyst

Batch

Dilution

1	RSK - 175 1 06/30/2021 1221 TML		9/348					
Parameter	N	CAS lumber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	7	4-84-0	RSK - 175	2.9 J	10	2.5	ug/L	1
Ethene	7	4-85-1	RSK - 175	2.5 J	10	2.5	ug/L	1
Methane	7	4-82-8	RSK - 175	57	10	2.5	ug/L	1
Propane	7	4-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Analytical Method

Description: EB-01-062421 Date Sampled:06/24/2021 1705 Date Received: 06/24/2021

Laboratory ID: WF25024-021

Matrix: Aqueous

Inorganic non-metals

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	06/25/2021 2018 DAK		96947
2	(Chloride) 9056A	1	07/01/2021 1730 MSG		97742
1	(Nitrate - N) 9056A	1	06/25/2021 2111 AMR		97474
2	(Sulfate) 9056A	1	07/01/2021 1730 MSG		97739
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1	(TOC) 9060A	1	06/27/2021 1346 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	ND	1.0	0.25	mg/L	2
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	ND	1.0	0.25	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-2	1.5	1.0	1.0	mg/L	1
TOC		9060A	ND	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/08/2021 1133 BWS		98224

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 0 - 0				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: EB-01-062421 Date Sampled:06/24/2021 1705 Date Received: 06/24/2021

Laboratory ID: WF25024-021

Matrix: Aqueous

		voiatii	e Orgai	nic Compo	ounas i	SY GC/NS	
Dun D	Pren Method	Analytical Method	Dilution	Analysis Data	Analyst	Dron Data	ı

Run Prep Method Ana 1 5030B	lytical Method Dilution 8260D 1		ysis Date Analyst /2021 1133 BWS	Prep Date	Batch 98224			
Parameter	Ν	CAS lumber	Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1-Dichloroethene		75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	15	6-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	15	6-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	-	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	1006	51-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	1006	51-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	10	00-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	59	91-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene		98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	•	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	163	34-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	10	08-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	10	08-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride		75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	10	0-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	12	27-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	10	08-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	•	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	12	20-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	•	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	•	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	13:	30-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recove	Accept ry Lim	ance its					
Bromofluorobenzene	95	70-1	130					
1,2-Dichloroethane-d4	99	70-1	130					
Toluene-d8	101	70-1	130					

Volatile Organic Compounds by GC/MS (SIM)

		9		<u> </u>	0 071110 (0	,			
Run Prep Method 1 5030B	Analytical Method E 8260D (SIM)		Analysis Da 07/01/2021 2	,	Prep Date	Batch 97674			
Parameter		Num		alytical lethod	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-9	91-1 826	OD (SIM)	ND	3.0	1.0	ug/L	<u> 1</u>

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: EB-01-062421 Date Sampled:06/24/2021 1705 Laboratory ID: WF25024-021 Matrix: Aqueous

Date Received: 06/24/2021

Run 1 Acceptance Surrogate Q % Recovery Limits 40-170 1,2-Dichloroethane-d4 100

DISSO	Ived	Gases
-------	------	-------

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	RSK - 175	1	06/30/2021 1237 TML		97348

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	1
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	1
Methane	74-82-8	RSK - 175	3.5 J	10	2.5	ug/L	1
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Inorganic non-metals - MB

Sample ID: WQ96944-001

Batch: 96944 Analytical Method: 9060A

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
TOC	ND		1	1.0	0.42	mg/L	06/27/2021 0857

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

N = Recovery is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96944-002

Batch: 96944

Matrix: Aqueous

	Dateii.	70744
Analytical	Method:	9060A

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
TOC	20	19		1	93	90-110	06/27/2021 0921

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF25024-001MS

Batch: 96944 Analytical Method: 9060A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
TOC	0.74	50	48		1	94	70-130	06/27/2021 1057

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF25024-001MD

Batch: 96944

Matrix: Aqueous

Date	511. 70744
Analytical Metho	od: 9060A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
TOC	0.74	50	50		1	98	4.3	70-130	20	06/27/2021 1121

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96947-002

Batch: 96947

Analytical Method: SM 2320B-2011

Matrix: Aqueous

	Spike Amount	Result			%Rec	
Parameter	(mg CaCO3/L)	(mg CaCO3/L) Q	Dil	% Rec	Limit	Analysis Date
Alkalinity @ pH 4.5 su	100	100	1	100	90-110	06/25/2021 1923

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97474-001

Batch: 97474 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrate - N	ND	•	1	0.020	0.0050	mg/L	06/25/2021 1803

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97474-002

Batch: 97474

Matrix: Aqueous

Datcii. 7/4/4	r
Analytical Method: 9056A	١

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Nitrate - N	0.80	0.83		1	104	80-120	06/25/2021 1845

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF25024-003MS

Batch: 97474

Matrix: Aqueous

Analytical Method: 9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Nitrate - N	ND	0.40	0.39		1	98	80-120	06/25/2021 2008

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF25024-003MD

Batch: 97474

Matrix: Aqueous

Analytical Method: 9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
Nitrate - N	ND	0.40	0.39		1	98	0.18	80-120	20	06/25/2021 2029	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97672-001

Batch: 97672

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfide	ND		1	1.0	1.0	mg/L	07/01/2021 2100

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97672-002

Batch: 97672

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

	Spike Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfide	10	10		1	100	80-120	07/01/2021 2100

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCSD

Sample ID: WQ97672-003

Batch: 97672

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	10		1	100	0.00	80-120	20	07/01/2021 2100

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97739-001

Batch: 97739 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.25	mg/L	07/01/2021 1501

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97739-002

Batch: 97739 Analytical Method: 9056A Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfate	20	21		1	103	80-120	07/01/2021 1546

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97742-001

Batch: 97742 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.25	mg/L	07/01/2021 1501

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97742-002

Batch: 97742 Analytical Method: 9056A Matrix: Aqueous

	Spike						
	Amount	Result				%Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	21		1	103	80-120	07/01/2021 1546

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97321-001 Batch: 97321

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	8.0	ug/kg	06/30/2021 0130
Benzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Bromodichloromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Bromoform	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	06/30/2021 0130
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	06/30/2021 0130
Carbon disulfide	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Chlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Chloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Chloroform	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Chloromethane (Methyl chloride)	ND		1	5.0	3.0	ug/kg	06/30/2021 0130
Cyclohexane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,2-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	06/30/2021 0130
1,1-Dichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
cis-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
trans-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
cis-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Ethylbenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
2-Hexanone	ND		1	10	4.0	ug/kg	06/30/2021 0130
Isopropylbenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Methyl acetate	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Methyl tertiary butyl ether (MTBE)	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
4-Methyl-2-pentanone	ND		1	10	4.0	ug/kg	06/30/2021 0130
Methylcyclohexane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Methylene chloride	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Styrene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Toluene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,2,4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
					-	. 5 5	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97321-001 Batch: 97321

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Trichlorofluoromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 0130
Vinyl chloride	ND		1	5.0	3.0	ug/kg	06/30/2021 0130
Xylenes (total)	ND		1	10	4.0	ug/kg	06/30/2021 0130
Surrogate	Q % Rec		ceptance Limit				
Bromofluorobenzene	101		47-138				
1,2-Dichloroethane-d4	98	!	53-142				
Toluene-d8	101		68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97321-002 Batch: 97321 Matrix: Solid Prep Method: 5035

	Dateri.	7/321
Analytical	Method:	8260D

	Spike	5				0/ Da a	
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	100	100		1	101	60-140	06/30/2021 0007
Benzene	50	53		1	107	70-130	06/30/2021 0007
Bromodichloromethane	50	54		1	108	70-130	06/30/2021 0007
Bromoform	50	49		1	97	70-130	06/30/2021 0007
Bromomethane (Methyl bromide)	50	50		1	101	70-130	06/30/2021 0007
2-Butanone (MEK)	100	95		1	95	60-140	06/30/2021 0007
Carbon disulfide	50	56		1	112	70-130	06/30/2021 0007
Carbon tetrachloride	50	57		1	114	70-130	06/30/2021 0007
Chlorobenzene	50	53		1	105	70-130	06/30/2021 0007
Chloroethane	50	52		1	104	70-130	06/30/2021 0007
Chloroform	50	53		1	106	70-130	06/30/2021 0007
Chloromethane (Methyl chloride)	50	52		1	104	60-140	06/30/2021 0007
Cyclohexane	50	59		1	117	70-130	06/30/2021 0007
1,2-Dibromo-3-chloropropane (DBCP)	50	45		1	90	70-130	06/30/2021 0007
Dibromochloromethane	50	50		1	101	70-130	06/30/2021 0007
1,2-Dibromoethane (EDB)	50	50		1	100	70-130	06/30/2021 0007
1,2-Dichlorobenzene	50	53		1	106	70-130	06/30/2021 0007
1,3-Dichlorobenzene	50	54		1	108	70-130	06/30/2021 0007
1,4-Dichlorobenzene	50	53		1	105	70-130	06/30/2021 0007
Dichlorodifluoromethane	50	63		1	126	60-140	06/30/2021 0007
1,1-Dichloroethane	50	54		1	108	70-130	06/30/2021 0007
1,2-Dichloroethane	50	55		1	109	70-130	06/30/2021 0007
1,1-Dichloroethene	50	57		1	115	70-130	06/30/2021 0007
cis-1,2-Dichloroethene	50	53		1	106	70-130	06/30/2021 0007
trans-1,2-Dichloroethene	50	57		1	115	70-130	06/30/2021 0007
1,2-Dichloropropane	50	52		1	105	70-130	06/30/2021 0007
cis-1,3-Dichloropropene	50	52		1	104	70-130	06/30/2021 0007
trans-1,3-Dichloropropene	50	52		1	103	70-130	06/30/2021 0007
Ethylbenzene	50	54		1	108	70-130	06/30/2021 0007
2-Hexanone	100	97		1	97	70-130	06/30/2021 0007
Isopropylbenzene	50	55		1	110	70-130	06/30/2021 0007
Methyl acetate	50	48		1	96	70-130	06/30/2021 0007
Methyl tertiary butyl ether (MTBE)	50	52		1	103	70-130	06/30/2021 0007
4-Methyl-2-pentanone	100	94		1	94	70-130	06/30/2021 0007
Methylcyclohexane	50	56		1	112	70-130	06/30/2021 0007
Methylene chloride	50	50		1	99	70-130	06/30/2021 0007
Styrene	50	52		1	103	70-130	06/30/2021 0007
1,1,2,2-Tetrachloroethane	50	51		1	101	70-130	06/30/2021 0007
Tetrachloroethene	50	56		1	111	70-130	06/30/2021 0007
Toluene	50	53		1	106	70-130	06/30/2021 0007
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	59		1	118	70-130	06/30/2021 0007
1,2,4-Trichlorobenzene	50	52		1	103	70-130	06/30/2021 0007
1,1,1-Trichloroethane	50	57		1	115	70-130	06/30/2021 0007
1,1,2-Trichloroethane	50	51		1	103	70-130	06/30/2021 0007
.,.,		.		•	. 50	.000	33, 33, 232 1 3337

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ97321-002 Batch: 97321

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	54	1	108	70-130	06/30/2021 0007
Trichlorofluoromethane	50	59	1	117	70-130	06/30/2021 0007
Vinyl chloride	50	54	1	109	70-130	06/30/2021 0007
Xylenes (total)	100	110	1	107	70-130	06/30/2021 0007
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	107	47-138				
1,2-Dichloroethane-d4	109	53-142				
Toluene-d8	108	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97321-003 Batch: 97321

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

	Spike						0.5		
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Acetone	100	95		1	95	6.7	60-140	20	06/30/2021 0030
Benzene	50	49		1	99	7.4	70-130	20	06/30/2021 0030
Bromodichloromethane	50	52		1	103	4.9	70-130	20	06/30/2021 0030
Bromoform	50	47		1	94	3.6	70-130	20	06/30/2021 0030
Bromomethane (Methyl bromide)	50	49		1	98	2.7	70-130	20	06/30/2021 0030
2-Butanone (MEK)	100	91		1	91	4.4	60-140	20	06/30/2021 0030
Carbon disulfide	50	50		1	101	10	70-130	20	06/30/2021 0030
Carbon tetrachloride	50	52		1	104	8.9	70-130	20	06/30/2021 0030
Chlorobenzene	50	50		1	99	5.6	70-130	20	06/30/2021 0030
Chloroethane	50	49		1	97	6.7	70-130	20	06/30/2021 0030
Chloroform	50	50		1	101	5.4	70-130	20	06/30/2021 0030
Chloromethane (Methyl chloride)	50	49		1	98	5.9	60-140	20	06/30/2021 0030
Cyclohexane	50	52		1	105	11	70-130	20	06/30/2021 0030
1,2-Dibromo-3-chloropropane (DBCP)	50	46		1	91	0.95	70-130	20	06/30/2021 0030
Dibromochloromethane	50	49		1	98	2.4	70-130	20	06/30/2021 0030
1,2-Dibromoethane (EDB)	50	49		1	98	2.6	70-130	20	06/30/2021 0030
1,2-Dichlorobenzene	50	51		1	102	4.1	70-130	20	06/30/2021 0030
1,3-Dichlorobenzene	50	52		1	103	4.5	70-130	20	06/30/2021 0030
1,4-Dichlorobenzene	50	50		1	101	4.4	70-130	20	06/30/2021 0030
Dichlorodifluoromethane	50	56		1	113	11	60-140	20	06/30/2021 0030
1,1-Dichloroethane	50	50		1	100	7.5	70-130	20	06/30/2021 0030
1,2-Dichloroethane	50	52		1	105	4.1	70-130	20	06/30/2021 0030
1,1-Dichloroethene	50	52		1	105	9.0	70-130	20	06/30/2021 0030
cis-1,2-Dichloroethene	50	50		1	100	6.1	70-130	20	06/30/2021 0030
trans-1,2-Dichloroethene	50	52		1	105	9.0	70-130	20	06/30/2021 0030
1,2-Dichloropropane	50	50		1	99	5.4	70-130	20	06/30/2021 0030
cis-1,3-Dichloropropene	50	50		1	100	4.1	70-130	20	06/30/2021 0030
trans-1,3-Dichloropropene	50	50		1	99	3.7	70-130	20	06/30/2021 0030
Ethylbenzene	50	50		1	100	7.6	70-130	20	06/30/2021 0030
2-Hexanone	100	94		1	94	2.9	70-130	20	06/30/2021 0030
Isopropylbenzene	50	51		1	101	8.0	70-130	20	06/30/2021 0030
Methyl acetate	50	47		1	94	1.7	70-130	20	06/30/2021 0030
Methyl tertiary butyl ether (MTBE)	50	51		1	101	1.9	70-130	20	06/30/2021 0030
4-Methyl-2-pentanone	100	93		1	93	1.7	70-130	20	06/30/2021 0030
Methylcyclohexane	50	51		1	103	8.5	70-130	20	06/30/2021 0030
Methylene chloride	50	47		1	95	4.3	70-130	20	06/30/2021 0030
Styrene	50	49		1	97	6.1	70-130	20	06/30/2021 0030
1,1,2,2-Tetrachloroethane	50	50		1	99	1.9	70-130	20	06/30/2021 0030
Tetrachloroethene	50	51		1	102	8.3	70-130	20	06/30/2021 0030
Toluene	50	49		1	98	7.7	70-130	20	06/30/2021 0030
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	55		1	111	6.1	70-130	20	06/30/2021 0030
1,2,4-Trichlorobenzene	50	51		1	102	1.2	70-130	20	06/30/2021 0030
1,1,1-Trichloroethane	50	53		1	106	7.8	70-130	20	06/30/2021 0030
1,1,2-Trichloroethane	50	50		1	100	3.0	70-130	20	06/30/2021 0030

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ97321-003

Batch: 97321 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

Parameter	Spik Amou (ug/	unt	Resi (ug/		Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	50		50		1	101	7.4	70-130	20	06/30/2021 0030
Trichlorofluoromethane	50		54		1	109	7.6	70-130	20	06/30/2021 0030
Vinyl chloride	50		49		1	99	9.4	70-130	20	06/30/2021 0030
Xylenes (total)	100		99		1	99	7.6	70-130	20	06/30/2021 0030
Surrogate	Q	% Rec		Acceptance Limit						
Bromofluorobenzene		100		47-138						
1,2-Dichloroethane-d4		105		53-142						
Toluene-d8		101		68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97631-001 Batch: 97631

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND	1	3.0	1.0	ug/L	07/01/2021 0929
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	105	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97631-002 Batch: 97631

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	52	1	104	70-130	07/01/2021 0826
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	120	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97674-001 Batch: 97674

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND	1	3.0	1.0	ug/L	07/01/2021 2149
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	103	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97674-002 Batch: 97674 Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	45	1	90	70-130	07/01/2021 2033
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	114	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97934-001 Batch: 97934

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/06/2021 1022
Benzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Bromoform	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/06/2021 1022
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/06/2021 1022
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Chloroethane	ND		1	2.0	0.40	ug/L	07/06/2021 1022
Chloroform	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/06/2021 1022
Cyclohexane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/06/2021 1022
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
2-Hexanone	ND		1	10	2.0	ug/L	07/06/2021 1022
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Methyl acetate	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/06/2021 1022
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/06/2021 1022
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/06/2021 1022
Methylene chloride	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Styrene	ND		1	1.0	0.41	ug/L	07/06/2021 1022
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Toluene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/06/2021 1022
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/06/2021 1022
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	07/06/2021 1022
Vinyl chloride	ND		1	1.0	0.40	ug/L	07/06/2021 1022
			•	1.0	5.10	~9′ –	5.755,2521 1022

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97934-001 Batch: 97934

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Xylenes (total)	ND	1	1.0	0.40	ug/L	07/06/2021 1022
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	102	70-130				
1,2-Dichloroethane-d4	108	70-130				
Toluene-d8	106	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97934-002 Batch: 97934 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
-	, , ,						
Acetone	100	84		1	84	60-140	07/06/2021 0913 07/06/2021 0913
Benzene	50	54		1	107	70-130	
Bromodichloromethane	50	55 51		1	110	70-130	07/06/2021 0913
Bromoform	50	51		1	101	70-130	07/06/2021 0913
Bromomethane (Methyl bromide)	50	52		1	104	70-130	07/06/2021 0913
2-Butanone (MEK)	100	100		1	101	70-130	07/06/2021 0913
Carbon disulfide	50	63		1	126	70-130	07/06/2021 0913
Carbon tetrachloride	50	55		1	110	70-130	07/06/2021 0913
Chlorobenzene	50	52		1	105	70-130	07/06/2021 0913
Chloroethane	50	54		1	108	70-130	07/06/2021 0913
Chloroform	50	54		1	109	70-130	07/06/2021 0913
Chloromethane (Methyl chloride)	50	56		1	111	60-140	07/06/2021 0913
Cyclohexane	50	57		1	115	70-130	07/06/2021 0913
1,2-Dibromo-3-chloropropane (DBCP)	50	47		1	94	70-130	07/06/2021 0913
Dibromochloromethane	50	56		1	112	70-130	07/06/2021 0913
1,2-Dibromoethane (EDB)	50	54		1	108	70-130	07/06/2021 0913
1,2-Dichlorobenzene	50	50		1	100	70-130	07/06/2021 0913
1,3-Dichlorobenzene	50	52		1	104	70-130	07/06/2021 0913
1,4-Dichlorobenzene	50	51		1	102	70-130	07/06/2021 0913
Dichlorodifluoromethane	50	51		1	103	60-140	07/06/2021 0913
1,1-Dichloroethane	50	55		1	111	70-130	07/06/2021 0913
1,2-Dichloroethane	50	53		1	105	70-130	07/06/2021 0913
1,1-Dichloroethene	50	55		1	109	70-130	07/06/2021 0913
cis-1,2-Dichloroethene	50	55		1	110	70-130	07/06/2021 0913
trans-1,2-Dichloroethene	50	57		1	114	70-130	07/06/2021 0913
1,2-Dichloropropane	50	54		1	109	70-130	07/06/2021 0913
cis-1,3-Dichloropropene	50	57		1	113	70-130	07/06/2021 0913
trans-1,3-Dichloropropene	50	58		1	117	70-130	07/06/2021 0913
Ethylbenzene	50	53		1	106	70-130	07/06/2021 0913
2-Hexanone	100	120		1	117	70-130	07/06/2021 0913
Isopropylbenzene	50	54		1	108	70-130	07/06/2021 0913
Methyl acetate	50	62		1	123	70-130	07/06/2021 0913
Methyl tertiary butyl ether (MTBE)	50	56		1	113	70-130	07/06/2021 0913
4-Methyl-2-pentanone	100	120		1	118	70-130	07/06/2021 0913
Methylcyclohexane	50	53		1	106	70-130	07/06/2021 0913
Methylene chloride	50	55		1	111	70-130	07/06/2021 0913
•							
Styrene	50	55		1	111	70-130	07/06/2021 0913
1,1,2,2-Tetrachloroethane	50	54		1	108	70-130	07/06/2021 0913
Toluene	50	53		1	107	70-130	07/06/2021 0913
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	54		1	108	70-130	07/06/2021 0913
1,2,4-Trichlorobenzene	50	46		1	91	70-130	07/06/2021 0913
1,1,1-Trichloroethane	50	56		1	112	70-130	07/06/2021 0913
Trichlorofluoromethane	50	53		1	107	70-130	07/06/2021 0913
Vinyl chloride	50	54		1	108	70-130	07/06/2021 0913

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97934-002 Batch: 97934

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Xylenes (total)	100	110	1	106	70-130	07/06/2021 0913
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	105	70-130				
1,2-Dichloroethane-d4	106	70-130				
Toluene-d8	105	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98224-001 Batch: 98224

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/08/2021 0943
Benzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Bromoform	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/08/2021 0943
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/08/2021 0943
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Chloroethane	ND		1	2.0	0.40	ug/L	07/08/2021 0943
Chloroform	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/08/2021 0943
Cyclohexane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/08/2021 0943
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
2-Hexanone	ND		1	10	2.0	ug/L	07/08/2021 0943
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Methyl acetate	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/08/2021 0943
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/08/2021 0943
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/08/2021 0943
Methylene chloride	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Styrene	ND		1	1.0	0.41	ug/L	07/08/2021 0943
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Toluene	ND		1	1.0	0.40	ug/L ug/L	07/08/2021 0943
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/08/2021 0943
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L ug/L	07/08/2021 0943
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L ug/L	07/08/2021 0943
1,1,2-THUHUIDEHIMIE	ND		ı	1.0	0.40	ug/L	07/00/2021 0943

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98224-001 Batch: 98224

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Vinyl chloride	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Xylenes (total)	ND		1	1.0	0.40	ug/L	07/08/2021 0943
Surrogate	Q % Rec		cceptance Limit				
Bromofluorobenzene	93		70-130				
1,2-Dichloroethane-d4	98		70-130				
Toluene-d8	98		70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98224-002 Batch: 98224

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Dato
			Q	Dil			Analysis Date
Acetone	100	130		1	128	60-140	07/08/2021 0839
Benzene	50	51		1	102	70-130	07/08/2021 0839
Bromodichloromethane	50	51		1	102	70-130	07/08/2021 0839
Bromoform	50	53		1	105	70-130	07/08/2021 0839
Bromomethane (Methyl bromide)	50	52		1	103	70-130	07/08/2021 0839
2-Butanone (MEK)	100	120		1	121	70-130	07/08/2021 0839
Carbon disulfide	50	46		1	91	70-130	07/08/2021 0839
Carbon tetrachloride	50	48		1	95	70-130	07/08/2021 0839
Chlorobenzene	50	49		1	99	70-130	07/08/2021 0839
Chloroethane	50	53		1	106	70-130	07/08/2021 0839
Chloroform	50	51		1	101	70-130	07/08/2021 0839
Chloromethane (Methyl chloride)	50	59		1	118	60-140	07/08/2021 0839
Cyclohexane	50	46		1	92	70-130	07/08/2021 0839
1,2-Dibromo-3-chloropropane (DBCP)	50	48		1	96	70-130	07/08/2021 0839
Dibromochloromethane	50	52		1	104	70-130	07/08/2021 0839
1,2-Dibromoethane (EDB)	50	52		1	104	70-130	07/08/2021 0839
1,2-Dichlorobenzene	50	48		1	96	70-130	07/08/2021 0839
1,3-Dichlorobenzene	50	49		1	98	70-130	07/08/2021 0839
1,4-Dichlorobenzene	50	48		1	96	70-130	07/08/2021 0839
Dichlorodifluoromethane	50	72	N	1	145	60-140	07/08/2021 0839
1.1-Dichloroethane	50	51		1	101	70-130	07/08/2021 0839
1,2-Dichloroethane	50	50		1	100	70-130	07/08/2021 0839
1,1-Dichloroethene	50	46		1	92	70-130	07/08/2021 0839
cis-1,2-Dichloroethene	50	49		1	98	70-130	07/08/2021 0839
trans-1,2-Dichloroethene	50	49		1	98	70-130	07/08/2021 0839
1,2-Dichloropropane	50	51		1	102	70-130	07/08/2021 0839
cis-1,3-Dichloropropene	50	56		1	111	70-130	07/08/2021 0839
trans-1,3-Dichloropropene	50	56		1	111	70-130	07/08/2021 0839
Ethylbenzene	50	49		1	99	70-130	07/08/2021 0839
2-Hexanone	100	110		1	105	70-130	07/08/2021 0839
Isopropylbenzene	50	49		1	99	70-130	07/08/2021 0839
Methyl acetate	50	57		1	114	70-130	07/08/2021 0839
Methyl tertiary butyl ether (MTBE)	50	51		1	101	70-130	07/08/2021 0839
, , ,	100	110		1	113	70-130	07/08/2021 0839
4-Methyl-2-pentanone				1			
Methylogo oblorida	50	48		•	95	70-130	07/08/2021 0839
Methylene chloride	50	45		1	91	70-130	07/08/2021 0839
Styrene	50	53		1	105	70-130	07/08/2021 0839
1,1,2,2-Tetrachloroethane	50	52		1	104	70-130	07/08/2021 0839
Tetrachloroethene	50	48		1	97	70-130	07/08/2021 0839
Toluene	50	50		1	99	70-130	07/08/2021 0839
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	47		1	93	70-130	07/08/2021 0839
1,2,4-Trichlorobenzene	50	46		1	93	70-130	07/08/2021 0839
1,1,1-Trichloroethane	50	49		1	97	70-130	07/08/2021 0839
1,1,2-Trichloroethane	50	50		1	100	70-130	07/08/2021 0839

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98224-002 Batch: 98224

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	49	1	97	70-130	07/08/2021 0839
Trichlorofluoromethane	50	48	1	97	70-130	07/08/2021 0839
Vinyl chloride	50	57	1	114	70-130	07/08/2021 0839
Xylenes (total)	100	100	1	101	70-130	07/08/2021 0839
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	98	70-130				
1,2-Dichloroethane-d4	93	70-130				
Toluene-d8	95	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98339-001 Batch: 98339

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/08/2021 2114
Benzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Bromoform	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/08/2021 2114
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/08/2021 2114
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Chloroethane	ND		1	2.0	0.40	ug/L	07/08/2021 2114
Chloroform	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/08/2021 2114
Cyclohexane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/08/2021 2114
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
2-Hexanone	ND		1	10	2.0	ug/L	07/08/2021 2114
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Methyl acetate	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/08/2021 2114
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/08/2021 2114
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/08/2021 2114
Methylene chloride	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Styrene	ND		1	1.0	0.41	ug/L	07/08/2021 2114
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
Toluene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/08/2021 2114
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2114
1,1,1-Trichloroethane	ND		1		0.40	ug/L	07/08/2021 2114
				1.0	0.40	uu/L	07/08/2021 2114

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Sample ID: WQ98339-001 Batch: 98339

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND	1	1.0	0.40	ug/L	07/08/2021 2114
Trichlorofluoromethane	ND	1	1.0	0.40	ug/L	07/08/2021 2114
Vinyl chloride	ND	1	1.0	0.40	ug/L	07/08/2021 2114
Xylenes (total)	ND	1	1.0	0.40	ug/L	07/08/2021 2114
Surrogate	Q % Red	Acceptance Limit				
Bromofluorobenzene	93	70-130				
1,2-Dichloroethane-d4	104	70-130				
Toluene-d8	95	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98339-002

Matrix: Aqueous Prep Method: 5030B

Batch: 98339	
Analytical Method: 8260D	

		Spike						
	Parameter	Amount (ug/L)	Result	Q	Dil	% Rec	%Rec Limit	Analysis Data
•			(ug/L)	<u>U</u>	Dil			Analysis Date
	Acetone	100	110		1	108	60-140	07/08/2021 1940
	Benzene	50	50		1	99	70-130	07/08/2021 1940
	Bromodichloromethane	50	50		1	100	70-130	07/08/2021 1940
	Bromoform	50	44		1	88	70-130	07/08/2021 1940
	Bromomethane (Methyl bromide)	50	38		1	77	70-130	07/08/2021 1940
	2-Butanone (MEK)	100	120		1	118	70-130	07/08/2021 1940
	Carbon disulfide	50	51		1	101	70-130	07/08/2021 1940
	Carbon tetrachloride	50	48		1	97	70-130	07/08/2021 1940
	Chlorobenzene	50	45		1	89	70-130	07/08/2021 1940
	Chloroethane	50	39		1	78	70-130	07/08/2021 1940
	Chloroform	50	49		1	97	70-130	07/08/2021 1940
	Chloromethane (Methyl chloride)	50	36		1	71	60-140	07/08/2021 1940
	Cyclohexane	50	40		1	80	70-130	07/08/2021 1940
	1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	98	70-130	07/08/2021 1940
	Dibromochloromethane	50	44		1	88	70-130	07/08/2021 1940
	1,2-Dibromoethane (EDB)	50	49		1	99	70-130	07/08/2021 1940
	1,2-Dichlorobenzene	50	48		1	95	70-130	07/08/2021 1940
	1,3-Dichlorobenzene	50	48		1	96	70-130	07/08/2021 1940
	1,4-Dichlorobenzene	50	48		1	95	70-130	07/08/2021 1940
	Dichlorodifluoromethane	50	37		1	74	60-140	07/08/2021 1940
	1,1-Dichloroethane	50	49		1	98	70-130	07/08/2021 1940
	1,2-Dichloroethane	50	49		1	99	70-130	07/08/2021 1940
	1,1-Dichloroethene	50	47		1	95	70-130	07/08/2021 1940
	cis-1,2-Dichloroethene	50	49		1	97	70-130	07/08/2021 1940
	trans-1,2-Dichloroethene	50	48		1	96	70-130	07/08/2021 1940
	1,2-Dichloropropane	50	46		1	92	70-130	07/08/2021 1940
	cis-1,3-Dichloropropene	50	50		1	100	70-130	07/08/2021 1940
	trans-1,3-Dichloropropene	50	49		1	99	70-130	07/08/2021 1940
	Ethylbenzene	50	47		1	94	70-130	07/08/2021 1940
	2-Hexanone	100	110		1	106	70-130	07/08/2021 1940
	Isopropylbenzene	50	47		1	94	70-130	07/08/2021 1940
	Methyl acetate	50	49		1	98	70-130	07/08/2021 1940
	Methyl tertiary butyl ether (MTBE)	50	50		1	100	70-130	07/08/2021 1940
	4-Methyl-2-pentanone	100	96		1	96	70-130	07/08/2021 1940
	Methylcyclohexane	50	45		1	91	70-130	07/08/2021 1940
	Methylene chloride	50	47		1	94	70-130	07/08/2021 1940
	Styrene	50	46		1	93	70-130	07/08/2021 1940
	1,1,2,2-Tetrachloroethane	50	52		1	103	70-130	07/08/2021 1940
	Tetrachloroethene	50	48		1	95	70-130	07/08/2021 1940
	Toluene	50	47		1	93	70-130	07/08/2021 1940
	1,1,2-Trichloro-1,2,2-Trifluoroethane	50	46		1	93	70-130	07/08/2021 1940
	1,2,4-Trichlorobenzene	50	53		1	106	70-130	07/08/2021 1940
	1,1,1-Trichloroethane	50	48		1	96	70-130	07/08/2021 1940
	1,1,2-Trichloroethane	50	47		1	95	70-130	07/08/2021 1940
	1,1,2 THORIOTOCHIANE	50	т,		1	75	70-130	07/00/2021 1740

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98339-002 Batch: 98339

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	46	1	92	70-130	07/08/2021 1940
Trichlorofluoromethane	50	41	1	83	70-130	07/08/2021 1940
Vinyl chloride	50	39	1	78	70-130	07/08/2021 1940
Xylenes (total)	100	91	1	91	70-130	07/08/2021 1940
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	88	70-130				
1,2-Dichloroethane-d4	96	70-130				
Toluene-d8	90	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ97011-001 Batch: 97011

Analytical Method: RSK - 175

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	06/28/2021 0839
Ethene	ND		1	10	2.5	ug/L	06/28/2021 0839
Methane	ND		1	10	2.5	ug/L	06/28/2021 0839
Propane	ND		1	15	5.0	ug/L	06/28/2021 0839

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ97011-002

Batch: 97011 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	570		1	103	70-130	06/28/2021 0825
Ethene	520	530		1	103	70-130	06/28/2021 0825
Methane	300	300		1	101	70-130	06/28/2021 0825
Propane	810	820		1	101	70-130	06/28/2021 0825

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ97348-001 Batch: 97348

Analytical Method: RSK - 175

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	06/30/2021 0816
Ethene	ND		1	10	2.5	ug/L	06/30/2021 0816
Methane	ND		1	10	2.5	ug/L	06/30/2021 0816
Propane	ND		1	15	5.0	ug/L	06/30/2021 0816

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ97348-002 Batch: 97348

Analytical Method: RSK - 175

Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	550		1	99	70-130	06/30/2021 0802
Ethene	520	510		1	99	70-130	06/30/2021 0802
Methane	300	290		1	97	70-130	06/30/2021 0802
Propane	810	790		1	97	70-130	06/30/2021 0802

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

Face Analytical

PACE ANALYTICAL SERVICES, LLC

106 Vantage Point Drive - West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.percelabs.com

Number 123138

EMPLIFICAL CONSICTANTS, INC.	VC.	Mary 1	ard the	Mary Han Chrokeshine.	13 DOGCO K	Shirele	eartha	mbrackshire Gearlhan com	
1880 West Dale Particulay Startice	Ste. 10c	Sampler's Signature	ature	,	Anslysis (All.	ach lèst if rao	Analysis (Allanti kit if more space is needed)	ded)	Page 1 of 2
地	Zo Codo DO USO E	Printed Name	4 465567	2)	711/16 52512			ALCOHOLD STATE
Lenney International		117/2017	Tittany Messier		713.5	ojr dya			MANER MERINA
POSSENO.	P.O. No.	(per	Matrix	No of Containers by Preservative Type		357 MP3	72 1941		47067 184
Sample 10 / Description (Considers for each semple may be conditined on one fine.)	Collection Data(s)	Colection Time By (Milling)	prostly sea puns snasnay	PANDLES PROME PROM)7') X2/\	ENT.			Remarks / Cooler LD.
4.64-4	624.21	P 54.80	×	1811	×	×	×		
MW-14	62431	03:50	×	 		×	×		
MW - 11	6.24.21	12:05 6	אַנ	- 50	×	×	×		
MW-5	12 47-9	5 00 :Si	×	- %	×	×	X		
1-87	6.24.21	9	ж	-	X		-		THE PARTY OF THE P
				-					
Constitution of the Consti									
Toyn Accural Tone: Required (Print the apparent required for expedited TAT.) Sample Disposal	of for expedition TAT.)	Sample Disposal		Popsible Hazard Identification	a			OC Requirements (Specify)	ents (Specify)
Standard - Rush (Speotly)		D. Rotum to Cleme	Proposed by L	L. Rowm to Clerk Art Osposal by Lab Art Non-Hazard L. Hammable	e 🕠 Skin Irritani	ni 🗆 Poison	i El Unknown		
1. Perhapsianed by S. U.		C/35/2	70me 7.55.5.7	1. Received by				Defie	Time
2. Painquished by		Dute	Time	2. Flecolvad by				Dete	Тпе
3. Retroquished by		Date	Trans	3. Received by				Date	Тив
4. Reinquished by		Oate	Упр	4. Laturatory remained by	2			121420	1853
Note: Ali samples are retained for four weeks from receipt	ed for four we	eks from receit	74	LAB USE ONLY			7000		Terro Glook NO C. D.

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINK-Field/Client Copy

Document Number: ME003N2-01

Œ	ć
SER	Contract to the second
ਨੁ	ŝ
LYTICAL	Š
ANAL	I design of
⋖	ŝ
PACE	į
Æ	Ant Man
_	5
	•

105 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 RVICES, LLC www.pacelabs.com

Number 123136

Chlan	7	Pepart to Cartest			Relephone No. / E-mail	!	Ovote No.
1830 W. CAR FORTHUGH	>1¢ 10¢	MASS		ARTH GROOKSKING	Mibracia eshire & earthcon lan	CHUCCH LOSS	
Address Asiani chitou		Sampler's Signature	neidre 0	0 00 0	Analysis (Attach list il more space is needad)	j)	Page 7. or 22
State GA	200000 300 CZ	Printed Nams	}				
Project Name Land nex Enternalities	9	7	Hannah Behar	Bohar			WEST
Project No. 20100378.21	P.O. No.	qe:	Matric	No of Containers by Preservation Type	20		470C7 144
Sample 10 / Description (Cantilizers for each sample thay be combined on one line)	Collection C Data(s)	Codection Tene d	construction of the constr	PONNE PO)V	-	Remerks / Cooler I.D.
DP-2-50 (10-11)	6/24/21	1000	,x		*		
08-2-50 (19-20)	6/24/21	to to	*		*		
06-13-50(10-11)	6(23/21)	1500 G	×	and the same	7		
DP - 13 - SC (19-20)	6/23/21 1	000	Х		· ·		
DP-2-50 (C-7)	6/24/21	2 0201	>		*		
07-12-50 (4-5)	6/23/21	1500 6	×		×		
DF. 6-50 (10-11)	12/20/2	1130 6	Х		×.		
DP-12-50 (4-10)	623/21	1700 G	Ж		×		
DP-3-SC(10-11)	6 24/21	1130 6	×		×		
T6-2	6/24/21	9	6 ×		Х		
Turn Around Time Required (Prior lab approval required for expedited 141.) Sample Disposal (Sandard C) Hush (Specify)	red for expedited IAT.)	Sample Disposa Settem to Citera	A trisposal by L	Sample Disposal Posable Hazerd Identification Ment of Disposal by Leb School Disposal by Leb School	n Skin Inttent Di Polson Di Unimown	OC Requirements (Specify)	s (Specify)
1. Retinglustred by C. C.		6/24/23	Thre 1553	1. Renaited by		Date 7	Тите
2. Rethoulehed by		Dete	enni	2. Received by		Date 7	Tome
 Relinguished by 		Data	Yane	3. Hecreived by		Date 7	Tote
4. Refinquished by		Cete	emer.	4. Letonalory neceived by		12/1/2/	
Note: All samples are retained for four weeks unless other arrangements are mad	ramples are retained for four weeks frountess other arrangements are made.	ks from receipt ade.	ž.	Remained on top (Carolina	The Same Company of the Same o		Temp Benk EY UN
						4	

Document Number: MEGGSNR-G1

Document Municipal MEGOSIV2-01

DISTRIBUTION: VALITE & VELLOW-Return to laboratory with Sample(st; PINK-Field/Client Copy

PACE ANALYTICAL SERVICES, LLC

106 Varriage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com

122814

Number

CHETHOUS CONSULTANTS, Inc.	. Inc.	Report to Contact Listed Pinn		Brakeshire	PRESIDENCE SHIPE OF CONTROL OF THE	h(B) (B)	Ovote No.
1880 West Out Butwood	St. 160	Semplér's Signanue	6 Ov	6	Analysis (Altach Het If more opace is needed)	(po	Page 3 of 3
12 Hac 5164	TOOOL	Printed Name	3	الح	sugo,		
Krnahma		Tame	Humah Behas	Shas	£321, 1115		WF25024
899 30100 378.21	P.O. Mo.	dw sileog	Metrix	No of Containers by Preservative Type	/-25 G G		ריזס
Sumple ID / Description (Containes for each sample may be combined on one line.)	Cathedion Date(s)	Collection Time 000 (bles work	PART PART PART PART PART PART PART PART	70/\		Remarks / Cooler I.D.
DP-2-14/17-GW	63424	10 10 6	×		×××	00400	
DD- DUP 1-GW	63421	9	×		× × ×		
DP-3-20-GIM	124421				XXX		
DP-17-20 GW	623.21		×		.X .X		
DD- 74-10 GW	623.21	11-70 6	×		×××		
		,	*********				
Turn Around Time Required (Pliar lab approval required for expedited TAT.) Semple Disposal SEBMENT OF Rush (Specify)	for expedited TAT.)	Semple Disposal Reside Hazar	Colspose" by Let	Possible Hazard Identification	on C C) Skin Imitant : I Polson L: Unknown	GC Requirements (Specify)	is (Specify)
1. Adhiguished by B. B.		Date 1/2/21/21	Time (853	1. Received by		Uste	Тто
2. Reinquished by		Det ^b	Time	2. Received by		. Sale	Тиле
3. Rainquished by		Dente	Time	3. Received by	The second secon	Саве	Тапе
4. Relinquished by		Date	Time	4. Laboratory received by	A	224121	1 58 m
Note: All samples are retained for four weeks from receipt unless other arrangements are made.	ed for four wee	aks from receipt nada.		1.48 USE ONLY S	Yes No toe Pack Heceptor Terro.	2.1.2	Temp Blank XY D N
18			and the second				

Samples Receipt Checklist (SRC) (ME0018C-15)

Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client; Earthcon	Cooler Inspected by/date: IRG2 / 06/25/2021 Lot #: WF25024
Means of receipt: Pa	ace VClient UPS FedEx Other:
Yes 7 No	Were custody seals present on the cooler?
Yes No VNA	2. If custody seals were present, were they infact and unbroken?
pH Strip ID: 20-2712	Chlorine Strip ID: NA Tested by: PRG2
Original temperature upor 1.4 / 1.4 °C NA / N	n receipt / Derived (Corrected) temperature upon receipt
	Blank Against Bottles IR Gun ID; S IR Gun Correction Factor: C C Wet Ice Ice Packs Dry Ice None
	7 If compositions of any cooler aready 16 0001 and 15 1001 and 15 1001
Yes No NA	PM was Notified by: phone / email / face-to-face (circle one).
	4. Is the commercial courier's packing slip attached to this form?
✓ Yes No	5. Were proper custody procedures (relinquished/received) followed?
✓ Yes No	Were sample IDs listed on the COC?
✓ Yes No	7. Were sample IDs listed on all sample containers?
Yes No	8. Was collection date & time listed on the COC?
Yes No	9. Was collection date & time listed on all sample containers?
Yes No	10. Did all container label information (ID, date, time) agree with the COC?
✓ Yes No	11. Were tests to be performed listed on the COC?
☑Yes ☐No	12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?
✓ Yes □ No	13. Was adequate sample volume available?
✓ Yes No	14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
✓ Yes ☐ No	15. Were any samples containers missing/excess/(circle one) samples Not listed on COC?
□ Yes □ No ☑NA	16. For VOA and RSK-175 samples, were bubbles present >"pca-size" ('A"or 6mm in diameter) in any of the VOA vizls?
	17. Were all DRO/metals/nutrient samples received at a pH of < 2?
✓ Yes ☐ No ☐ NA	18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
☐Yes ☐No ☑NA	19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine?
☐ Yes ☐ No ☑NA	20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
	correctly transcribed from the COC into the comment section in LIMS?
☐ Yes: ✓ No	21. Was the quote number listed on the container label? If yes, Quote #
	Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA in sample receiving with	, , , , , , , , , , , , , , , , , , , ,
Time of preservation NA	. If more than one preservative is needed, please note in the comments below.
Sample(s) NA	were received with bubbles >6 mm in diameter.
Samples(s) NA	were received with TRC > 0.5 mg/L (If #19 is na) and were
adjusted accordingly in sar	imple receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Sheaty ID: NA
SR barcode labels applied	by: JRG2 Date: 06/25/2021
Comments; Excess: EB-01-06	2421 6/24/21 @ 1705 8-40ml HCL vials, 1-500ml NP, 1-250ml H2SO4, 1 olient provided NaOH & Zn
	77.

Report of Analysis

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062 Attention: Tiffany Messier

Project Name: Lennox International Project Number: 02-20160378.21

Lot Number: **WF26008**Date Completed: 07/12/2021

07/19/2021 3:32 PM Approved and released by: Project Manager II: **Lucas Odom**

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative EarthCon Consultants, Inc. Lot Number: WF26008

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample results (including LOQ and DL if requested) are corrected for dry weight unless flagged with a "W" qualifier.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

VOCs by GC/MS

The laboratory control sample duplicate (LCSD) for analytical batch 97424 exceeded acceptance criteria for DCDFM and Methylcyclohexane. These analytes are biased high and were not detected in the samples affected. Associated samples are qualified with an "L".

Sample Summary EarthCon Consultants, Inc.

Lot	Number	WF26008
LOI	number:	VVFZ0UU8

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	SB-103-SO (1-3)	Solid	06/24/2021 1740	06/25/2021
002	SB-108-SO (1-3)	Solid	06/24/2021 1750	06/25/2021
003	SB-105-SO (1-2)	Solid	06/24/2021 1830	06/25/2021
004	SB-106-SO (1-3)	Solid	06/24/2021 1810	06/25/2021
005	SB-102-SS (1-1.5)	Solid	06/24/2021 1700	06/25/2021
006	DP-06-20-21-GW	Aqueous	06/24/2021 1410	06/25/2021
007	SB-101-SS (1-3)	Solid	06/25/2021 0915	06/25/2021
800	DP-01-10-11-SS	Solid	06/25/2021 0930	06/25/2021
009	DP-01-20-GW	Aqueous	06/25/2021 0945	06/25/2021
010	DP-08-10-SS	Solid	06/25/2021 1020	06/25/2021
011	EB-01-062521	Aqueous	06/25/2021 1100	06/25/2021
012	DP-04 (1-3) SS	Solid	06/25/2021 1100	06/25/2021
013	TRIP BLANK	Aqueous	06/25/2021 1145	06/25/2021
014	MW-4D	Aqueous	06/25/2021 0920	06/25/2021
015	MW-1D	Aqueous	06/25/2021 1045	06/25/2021
016	DP-04-10-11-SS	Solid	06/25/2021 1130	06/26/2021

(16 samples)

Detection Summary EarthCon Consultants, Inc.

Lot Number: WF26008

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	SB-103-SO (1-3)	Solid	Acetone	8260D	48		ug/kg	7
001	SB-103-SO (1-3)	Solid	2-Butanone (MEK)	8260D	4.7	J	ug/kg	7
001	SB-103-SO (1-3)	Solid	Ethylbenzene	8260D	3300	-	ug/kg	7
001	SB-103-SO (1-3)	Solid	Isopropylbenzene	8260D	8.2		ug/kg	7
001	SB-103-SO (1-3)	Solid	Xylenes (total)	8260D	11000		ug/kg	8
002	SB-108-SO (1-3)	Solid	Acetone	8260D	100		ug/kg	9
002	SB-108-SO (1-3)	Solid	2-Butanone (MEK)	8260D	16	J	ug/kg	9
002	SB-108-SO (1-3)	Solid	Ethylbenzene	8260D	2.8	J	ug/kg	9
002	SB-108-SO (1-3)	Solid	Xylenes (total)	8260D	8.7	J	ug/kg	10
003	SB-105-SO (1-2)	Solid	Acetone	8260D	68		ug/kg	11
003	SB-105-SO (1-2)	Solid	2-Butanone (MEK)	8260D	4.5	J	ug/kg	11
004	SB-106-SO (1-3)	Solid	Acetone	8260D	57	J	ug/kg	13
004	SB-106-SO (1-3)	Solid	2-Butanone (MEK)	8260D	5.1	J	ug/kg	13
005	SB-102-SS (1-1.5)	Solid	Acetone	8260D	36	-	ug/kg	15
005	SB-102-SS (1-1.5)	Solid	Tetrachloroethene	8260D	3.0	J	ug/kg	15
005	SB-102-SS (1-1.5)	Solid	1,1,2-Trichloroethane	8260D	3.2	J	ug/kg	16
005	SB-102-SS (1-1.5)	Solid	Vinyl chloride	8260D	3.6	J	ug/kg	16
006	DP-06-20-21-GW	Aqueous	•	8260D	6.8	J	ug/L	17
006	DP-06-20-21-GW	•	Chloroform	8260D	0.47	J	ug/L	17
006	DP-06-20-21-GW	•	1,4-Dioxane	8260D (SIM)	1.9	J	ug/L	18
006	DP-06-20-21-GW	Aqueous		RSK - 175	2.8	J	ug/L	18
006	DP-06-20-21-GW	Aqueous		RSK - 175	3.0	J	ug/L	18
006	DP-06-20-21-GW	•	Methane	RSK - 175	9.3	J	ug/L	18
009	DP-01-20-GW	Aqueous	cis-1,2-Dichloroethene	8260D	13		ug/L	23
009	DP-01-20-GW	Aqueous	Tetrachloroethene	8260D	1.5		ug/L	23
009	DP-01-20-GW	Agueous	Trichloroethene	8260D	4.2		ug/L	24
009	DP-01-20-GW	•	Methane	RSK - 175	3.7	J	ug/L	24
012	DP-04 (1-3) SS	Solid	Acetone	8260D	19	J	ug/kg	29
014	MW-4D	Aqueous	Chloride	9056A	1.8		mg/L	33
014	MW-4D	Aqueous	Nitrate - N	9056A	0.015	J	mg/L	33
014	MW-4D	Aqueous	Sulfate	9056A	0.93	J	mg/L	33
014	MW-4D	Aqueous	TOC	9060A	1.7		mg/L	33
014	MW-4D	·	1,1-Dichloroethene	8260D	0.47	J	ug/L	34
014	MW-4D	Aqueous	Tetrachloroethene	8260D	19		ug/L	34
014	MW-4D	Aqueous	Trichloroethene	8260D	0.73	J	ug/L	34
015	MW-1D	Aqueous	Chloride	9056A	2.2		mg/L	36
015	MW-1D	Aqueous	Sulfate	9056A	0.74	J	mg/L	36
015	MW-1D	Aqueous	Sulfide	SM 4500-S2 F-	1.3		mg/L	36
015	MW-1D	Aqueous	TOC	9060A	2.8		mg/L	36
015	MW-1D	Aqueous	cis-1,2-Dichloroethene	8260D	0.94	J	ug/L	37
015	MW-1D	·	Tetrachloroethene	8260D	62		ug/L	37
015	MW-1D	Aqueous	Trichloroethene	8260D	9.1		ug/L	37
015	MW-1D	Aqueous	Methane	RSK - 175	2.6	J	ug/L	38
016	DP-04-10-11-SS	Solid	Acetone	8260D	17	J	ug/kg	39

Detection Summary (Continued)

Lot Number: WF26008

Sample Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
							. 3

(44 detections)

Description: SB-103-SO (1-3)
Date Sampled:06/24/2021 1740

Date Sampled:06/24/2021 1740 Date Received:06/25/2021 Laboratory ID: WF26008-001

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260D	1	06/30/2021 1835 JM1		97424	6.46
2	5035 High	8260D	1	07/02/2021 1752 JM1		97802	6.44
3	5035 High	8260D	4	07/08/2021 1328 JM1		98260	6.44

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	48	18	7.2	ug/kg	1
Benzene	71-43-2	8260D	ND	4.5	1.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.5	1.8	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.5	2.7	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	4.7 J	18	3.6	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.5	1.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.5	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.5	1.8	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.5	2.7	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.5	1.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.5	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.5	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.5	1.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	4.5	2.7	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.5	1.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.5	1.8	ug/kg	1
Ethylbenzene	100-41-4	8260D	3300	260	110	ug/kg	2
2-Hexanone	591-78-6	8260D	ND	8.9	3.6	ug/kg	1
Isopropylbenzene	98-82-8	8260D	8.2	4.5	1.8	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.5	1.8	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.9	3.6	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND L	4.5	1.8	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.5	1.8	ug/kg	1
Styrene	100-42-5	8260D	ND	4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.5	1.8	ug/kg	1
						0 0	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-103-SO (1-3)
Date Sampled:06/24/2021 1740

Date Received: 06/25/2021

Laboratory ID: WF26008-001

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run 1	Prep Method 5035	Analytical Method 8260D	Dilution 1	Analysis Date Analyst 06/30/2021 1835 JM1	Prep Date	Batch 97424	Sample Wt.(g) 6.46	
2	5035 High	8260D	1	07/02/2021 1752 JM1		97802	6.44	
3	5035 High	8260D	4	07/08/2021 1328 JM1		98260	6.44	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Tetrachloroethene	127-18-4	8260D	ND	4.5	1.8	ug/kg	1
Toluene	108-88-3	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	4.5	1.8	ug/kg	1
Trichloroethene	79-01-6	8260D	ND	4.5	1.8	ug/kg	1
Trichlorofluoromethane	75-69-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride	75-01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)	1330-20-7	8260D	11000	2100	840	ug/kg	3
Surrogate	Run 1 Accept		un 2 Accepta		Run 3	Acceptance	

J ()									3. 3	
Surrogate	Q	Run 1 % Recovery	Acceptance Limits	Q	Run 2 A % Recovery	cceptance Limits	Q	Run 3 % Recovery	Acceptance Limits	
Bromofluorobenzene		112	47-138		113	47-138		108	47-138	
1,2-Dichloroethane-d4		99	53-142		105	53-142		112	53-142	
Toluene-d8		108	68-124		103	68-124		98	68-124	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: SB-108-SO (1-3)

Date Sampled:06/24/2021 1750 Date Received: 06/25/2021

Laboratory ID: WF26008-002 Matrix: Solid

% Solids: 83.1 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Analyt 2 5035	ical Method Dilution 7 8260D 1 C	Analysis Date Analys 7/06/2021 1211 JM1	t Prep Date	Batch 97945	Sample Wt.(g) 6.77		_
Parameter	C.A Numb	3	Result Q	LOQ	DL	Units	Run
Acetone	67-64	-1 8260D	100	18	7.1	ug/kg	2
Benzene	71-43	-2 8260D	ND	4.4	1.8	ug/kg	2
Bromodichloromethane	75-27	-4 8260D	ND	4.4	1.8	ug/kg	2
Bromoform	75-25	-2 8260D	ND	4.4	1.8	ug/kg	2
Bromomethane (Methyl bromide)	74-83	-9 8260D	ND	4.4	2.7	ug/kg	2
2-Butanone (MEK)	78-93	-3 8260D	16 J	18	3.6	ug/kg	2
Carbon disulfide	75-15	-0 8260D	ND	4.4	1.8	ug/kg	2
Carbon tetrachloride	56-23	-5 8260D	ND	4.4	1.8	ug/kg	2
Chlorobenzene	108-90	-7 8260D	ND	4.4	1.8	ug/kg	2
Chloroethane	75-00	-3 8260D	ND	4.4	1.8	ug/kg	2
Chloroform	67-66		ND	4.4	1.8	ug/kg	2
Chloromethane (Methyl chloride)	74-87	-3 8260D	ND	4.4	2.7	ug/kg	2
Cyclohexane	110-82		ND	4.4	1.8	ug/kg	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12		ND	4.4	1.8	ug/kg	2
Dibromochloromethane	124-48	-1 8260D	ND	4.4	1.8	ug/kg	2
1,2-Dibromoethane (EDB)	106-93	-4 8260D	ND	4.4	1.8	ug/kg	2
1,2-Dichlorobenzene	95-50	-1 8260D	ND	4.4	1.8	ug/kg	2
1,3-Dichlorobenzene	541-73	-1 8260D	ND	4.4	1.8	ug/kg	2
1,4-Dichlorobenzene	106-46	-7 8260D	ND	4.4	1.8	ug/kg	2
Dichlorodifluoromethane	75-71		ND	4.4	2.7	ug/kg	2
1,1-Dichloroethane	75-34		ND	4.4	1.8	ug/kg	2
1,2-Dichloroethane	107-06		ND	4.4	1.8	ug/kg	2
1,1-Dichloroethene	75-35	-4 8260D	ND	4.4	1.8	ug/kg	2
cis-1,2-Dichloroethene	156-59	-2 8260D	ND	4.4	1.8	ug/kg	2
trans-1,2-Dichloroethene	156-60	-5 8260D	ND	4.4	1.8	ug/kg	2
1,2-Dichloropropane	78-87	-5 8260D	ND	4.4	1.8	ug/kg	2
cis-1,3-Dichloropropene	10061-01		ND	4.4	1.8	ug/kg	2
trans-1,3-Dichloropropene	10061-02		ND	4.4	1.8	ug/kg	2
Ethylbenzene	100-41		2.8 J	4.4	1.8	ug/kg	2
2-Hexanone	591-78		ND	8.9	3.6	ug/kg	2
Isopropylbenzene	98-82		ND	4.4	1.8	ug/kg	2
Methyl acetate	79-20	-9 8260D	ND	4.4	1.8	ug/kg	2
Methyl tertiary butyl ether (MTBE)	1634-04		ND	4.4	1.8	ug/kg	2
4-Methyl-2-pentanone	108-10	-1 8260D	ND	8.9	3.6	ug/kg	2
Methylcyclohexane	108-87		ND	4.4	1.8	ug/kg	2
Methylene chloride	75-09		ND	4.4	1.8	ug/kg	2
Styrene	100-42		ND	4.4	1.8	ug/kg	2
1,1,2,2-Tetrachloroethane	79-34		ND	4.4	1.8	ug/kg	2
Tetrachloroethene	127-18		ND	4.4	1.8	ug/kg	2
Toluene	108-88		ND	4.4	1.8	ug/kg	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-108-SO (1-3) Date Sampled:06/24/2021 1750

Date Received: 06/25/2021

Laboratory ID: WF26008-002

Matrix: Solid % Solids: 83.1 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 2 5035	Analytical Method 8260D	Dilution 1	,	is Date Analyst 021 1211 JM1	Prep Date	Batch 97945	Sample Wt.(g) 6.77		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е		13-1	8260D	ND	4.4	1.8	ug/kg	2
1,2,4-Trichlorobenzene		120-	32-1	8260D	ND	4.4	1.8	ug/kg	2
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.4	1.8	ug/kg	2
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.4	1.8	ug/kg	2
Trichloroethene		79-	01-6	8260D	ND	4.4	1.8	ug/kg	2
Trichlorofluoromethane		75-	69-4	8260D	ND	4.4	1.8	ug/kg	2
Vinyl chloride		75-	01-4	8260D	ND	4.4	2.7	ug/kg	2
Xylenes (total)		1330-	20-7	8260D	8.7 J	8.9	3.6	ug/kg	2
Surrogate	Q % I	Run 2 Recovery	Acceptar Limits						
Bromofluorobenzene		96	47-138	3					
1,2-Dichloroethane-d4		100	53-142	2					
Toluene-d8		101	68-124	4					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Analytical Method

Dilution

Description: SB-105-SO (1-2)
Date Sampled:06/24/2021 1830

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26008-003

Matrix: Solid

Batch

% Solids: 91.3 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analysis Date Analyst

Prep Date

1 5035 Analytical Method 1 5035 826		ysis Date Analyst /2021 1923 JM1	Prep Date	97424	5.50 Sample Wt.(g)		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	68	20	8.0	ug/kg	1
Benzene	71-43-2	8260D	ND	5.0	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.0	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.0	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.0	3.0	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	4.5 J	20	4.0	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.0	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.0	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.0	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.0	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.0	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.0	3.0	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.0	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.0	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.0	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.0	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	5.0	3.0	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.0	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.0	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.0	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.0	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.0	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.0	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.0	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	10	4.0	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	5.0	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.0	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.0	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	4.0	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND L	5.0	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.0	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	5.0	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.0	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.0	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	5.0	2.0	ug/kg	1
						-	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

Description: SB-105-SO (1-2)
Date Sampled:06/24/2021 1830

Date Received: 06/25/2021

Laboratory ID: WF26008-003

Matrix: Solid

% Solids: 91.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 1923 JM1	Prep Date	Batch 97424	Sample Wt.(g) 5.50		
				Analytical					
Parameter		Nun	nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	5.0	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.0	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.0	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.0	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.0	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.0	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.0	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.0	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		114	47-138						
1,2-Dichloroethane-d4		97	53-142						
Toluene-d8		106	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

 $\label{thm:pace-analytical-Services, LLC} \textbf{ (formerly Shealy Environmental Services, Inc.)}$

Description: SB-106-SO (1-3) Date Sampled:06/24/2021 1810

Date Received: 06/25/2021

Laboratory ID: WF26008-004

Matrix: Solid

% Solids: 89.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

		Analysis Date Analyst 6/30/2021 1957 JM1	Prep Date	Batch 97424	Sample Wt.(g) 5.66		
Parameter	C <i>F</i> Numb	,	Result Q	LOQ	DL	Units	Run
Acetone	67-64	-1 8260D	57	20	7.9	ug/kg	1
Benzene	71-43	-2 8260D	ND	5.0	2.0	ug/kg	1
Bromodichloromethane	75-27	-4 8260D	ND	5.0	2.0	ug/kg	1
Bromoform	75-25	-2 8260D	ND	5.0	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83	-9 8260D	ND	5.0	3.0	ug/kg	1
2-Butanone (MEK)	78-93	-3 8260D	5.1 J	20	4.0	ug/kg	1
Carbon disulfide	75-15	-0 8260D	ND	5.0	2.0	ug/kg	1
Carbon tetrachloride	56-23	-5 8260D	ND	5.0	2.0	ug/kg	1
Chlorobenzene	108-90	-7 8260D	ND	5.0	2.0	ug/kg	1
Chloroethane	75-00	-3 8260D	ND	5.0	2.0	ug/kg	1
Chloroform	67-66	-3 8260D	ND	5.0	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87	-3 8260D	ND	5.0	3.0	ug/kg	1
Cyclohexane	110-82	-7 8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12	-8 8260D	ND	5.0	2.0	ug/kg	1
Dibromochloromethane	124-48	-1 8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93	-4 8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50	-1 8260D	ND	5.0	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73	-1 8260D	ND	5.0	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46		ND	5.0	2.0	ug/kg	1
Dichlorodifluoromethane	75-71		ND L	5.0	3.0	ug/kg	1
1,1-Dichloroethane	75-34		ND	5.0	2.0	ug/kg	1
1,2-Dichloroethane	107-06	-2 8260D	ND	5.0	2.0	ug/kg	1
1,1-Dichloroethene	75-35	-4 8260D	ND	5.0	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59		ND	5.0	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60		ND	5.0	2.0	ug/kg	1
1,2-Dichloropropane	78-87		ND	5.0	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01		ND	5.0	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02		ND	5.0	2.0	ug/kg	1
Ethylbenzene	100-41		ND	5.0	2.0	ug/kg	1
2-Hexanone	591-78		ND	9.9	4.0	ug/kg	1
Isopropylbenzene	98-82		ND	5.0	2.0	ug/kg	1
Methyl acetate	79-20	-9 8260D	ND	5.0	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04	-4 8260D	ND	5.0	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10		ND	9.9	4.0	ug/kg	1
Methylcyclohexane	108-87		ND L	5.0	2.0	ug/kg	1
Methylene chloride	75-09		ND	5.0	2.0	ug/kg	1
Styrene	100-42		ND	5.0	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34		ND	5.0	2.0	ug/kg	1
Tetrachloroethene	127-18		ND	5.0	2.0	ug/kg	1
Toluene	108-88		ND	5.0	2.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-106-SO (1-3) Date Sampled:06/24/2021 1810

Date Received: 06/25/2021

Laboratory ID: WF26008-004

Matrix: Solid

% Solids: 89.0 06/26/2021 1851

|--|

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 2021 1957 JM1	Prep Date	Batch 97424	Sample Wt.(g) 5.66		
Parameter		Nun	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethar	ne	76-1	13-1	8260D	ND	5.0	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	5.0	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.0	2.0	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	5.0	2.0	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	5.0	2.0	ug/kg	1
Trichlorofluoromethane		75-6	59-4	8260D	ND	5.0	2.0	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	5.0	3.0	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	9.9	4.0	ug/kg	1
Surrogate		Run 1 /	Accepta Limit						
Bromofluorobenzene		113	47-13	38					
1,2-Dichloroethane-d4		98	53-14	12					
Toluene-d8		106	68-12	24					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-102-SS (1-1.5)

Date Sampled:06/24/2021 1700

Date Received: 06/25/2021

Laboratory ID: WF26008-005

Matrix: Solid

% Solids: 87.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

	ethod Dilution Analy 260D 1 06/30	ysis Date Analyst /2021 2021 JM1	Prep Date	Batch 97424	Sample Wt.(g) 6.92		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	36	17	6.6	ug/kg	1
Benzene	71-43-2	8260D	ND	4.1	1.7	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.1	1.7	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.1	1.7	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.1	2.5	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	17	3.3	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.1	1.7	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.1	1.7	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.1	1.7	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.1	1.7	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.1	1.7	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.1	2.5	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.1	1.7	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.1	1.7	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.1	1.7	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.1	1.7	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.1	1.7	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.1	1.7	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.1	1.7	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	4.1	2.5	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.1	1.7	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.1	1.7	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.1	1.7	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.1	1.7	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.1	1.7	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.1	1.7	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.1	1.7	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.1	1.7	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.1	1.7	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	8.3	3.3	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.1	1.7	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.1	1.7	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.1	1.7	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.3	3.3	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND L	4.1	1.7	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.1	1.7	ug/kg	1
Styrene	100-42-5	8260D	ND	4.1	1.7	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.1	1.7	ug/kg	1
Tetrachloroethene	127-18-4	8260D	3.0 J	4.1	1.7	ug/kg	1
Toluene	108-88-3	8260D	ND	4.1	1.7	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: SB-102-SS (1-1.5)
Date Sampled:06/24/2021 1700

Date Received: 06/25/2021

Laboratory ID: WF26008-005

Matrix: Solid

% Solids: 87.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	Analysis 06/30/202	Date Analyst 1 2021 JM1	Prep Date	97424	Sample Wt.(g) 6.92		
Parameter		Nur	CAS A	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.1	1.7	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.1	1.7	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.1	1.7	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	3.2 J	4.1	1.7	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.1	1.7	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.1	1.7	ug/kg	1
Vinyl chloride		75-	01-4	8260D	3.6 J	4.1	2.5	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.3	3.3	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptanc Limits	е					
Bromofluorobenzene		115	47-138						
1,2-Dichloroethane-d4		100	53-142						
Toluene-d8		105	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-06-20-21-GW Date Sampled:06/24/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26008-006

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	5030B	8260D	1	07/08/2021 1617 TML		98213	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	6.8 J	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.47 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-06-20-21-GW Date Sampled:06/24/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26008-006

Matrix: Aqueous

	Volatile Or	ganic	Compounds	by GC/MS	S			
Run Prep Method A 1 5030B	nalytical Method Diluti 8260D 1	-	ysis Date Analyst /2021 1617 TML	Prep Date	Batch 98213			
Parameter	I	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	1	20-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	13	30-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recove	Accept ery Lim						
Bromofluorobenzene	96	70-1	130					
1,2-Dichloroethane-d4	97	70-1	130					
Toluene-d8	93	70-1	130					

	Volatile Organic Com	pounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	3	is Date Analyst 021 0131 CJL2	Prep Date	Batch 97674			
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane	123-91-1	8260D (SIM)	1.9 J	3.0	1.0	ug/L	1
Surrogate	Run 1 Acceptar Q % Recovery Limits						
1,2-Dichloroethane-d4	103 40-17	0					

Run Prep Method 2	Analytical Method RSK - 175	,	ysis Date Analyst 2021 1142 TML	Prep Date	Batch 97890			_
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	2.8 J	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	3.0 J	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	9.3 J	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	2

Dissolved Gases

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: SB-101-SS (1-3)

Date Sampled:06/25/2021 0915 Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26008-007 Matrix: Solid

Batch

% Solids: 88.3 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035	-	/2021 2044 JM1	м ттер вате	97424	4.48		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	25	10	ug/kg	1
Benzene	71-43-2	8260D	ND	6.3	2.5	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	6.3	2.5	ug/kg	1
Bromoform	75-25-2	8260D	ND	6.3	2.5	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	6.3	3.8	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	25	5.1	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	6.3	2.5	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	6.3	2.5	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	6.3	2.5	ug/kg	1
Chloroethane	75-00-3	8260D	ND	6.3	2.5	ug/kg	1
Chloroform	67-66-3	8260D	ND	6.3	2.5	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	6.3	3.8	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	6.3	2.5	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	6.3	2.5	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	6.3	2.5	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	6.3	2.5	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND L	6.3	3.8	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	6.3	2.5	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	6.3	2.5	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	6.3	2.5	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	6.3	2.5	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	6.3	2.5	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	6.3	2.5	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	6.3	2.5	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	6.3	2.5	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	13	5.1	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	6.3	2.5	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	6.3	2.5	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	6.3	2.5	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	13	5.1	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND L	6.3	2.5	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	6.3	2.5	ug/kg	1
Styrene	100-42-5	8260D	ND	6.3	2.5	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	6.3	2.5	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	6.3	2.5	ug/kg	1
						5 5	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

Toluene

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

8260D

ND

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

6.3

2.5

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

1

ug/kg

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

108-88-3

Description: SB-101-SS (1-3) Date Sampled:06/25/2021 0915

Date Received: 06/25/2021

Laboratory ID: WF26008-007

Matrix: Solid

% Solids: 88.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 2021 2044 JM1	Prep Date	Batch 97424	Sample Wt.(g) 4.48		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	6.3	2.5	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	6.3	2.5	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	6.3	2.5	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	6.3	2.5	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	6.3	2.5	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	6.3	2.5	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	6.3	3.8	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	13	5.1	ug/kg	1
Surrogate		Run 1 Recovery	Accepta Limit						
Bromofluorobenzene		106	47-13	38					
1,2-Dichloroethane-d4		100	53-14	12					
Toluene-d8		101	68-12	24					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-01-10-11-SS Date Sampled:06/25/2021 0930

Date Received: 06/25/2021

Laboratory ID: WF26008-008

Matrix: Solid

% Solids: 85.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

1 5035 8260D 1 06/30/2021 2339 JM1 97504	
1 3035 8200D 1 00/30/2021 2339 31911 97/304	4.24

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	28	11	ug/kg	1
Benzene	71-43-2	8260D	ND	6.9	2.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	6.9	2.8	ug/kg	1
Bromoform	75-25-2	8260D	ND	6.9	2.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	6.9	4.2	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	28	5.5	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	6.9	2.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	6.9	2.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	6.9	2.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND	6.9	2.8	ug/kg	1
Chloroform	67-66-3	8260D	ND	6.9	2.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	6.9	4.2	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	6.9	2.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	6.9	2.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	6.9	2.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	6.9	2.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	6.9	2.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	6.9	2.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	6.9	2.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	6.9	4.2	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	6.9	2.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	6.9	2.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	6.9	2.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	6.9	2.8	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	6.9	2.8	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	6.9	2.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	6.9	2.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	6.9	2.8	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	6.9	2.8	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	14	5.5	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	6.9	2.8	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	6.9	2.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	6.9	2.8	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	14	5.5	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	6.9	2.8	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	6.9	2.8	ug/kg	1
Styrene	100-42-5	8260D	ND	6.9	2.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	6.9	2.8	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	6.9	2.8	ug/kg	1
Toluene	108-88-3	8260D	ND	6.9	2.8	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-01-10-11-SS
Date Sampled:06/25/2021 0930

Date Received: 06/25/2021

Laboratory ID: WF26008-008

Matrix: Solid

% Solids: 85.0 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 2339 JM1	Prep Date	Batch 97504	Sample Wt.(g) 4.24		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-	13-1	8260D	ND	6.9	2.8	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	6.9	2.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	6.9	2.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	6.9	2.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	6.9	2.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	6.9	2.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	6.9	4.2	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	14	5.5	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		117	47-138						
1,2-Dichloroethane-d4		107	53-142						
Toluene-d8		107	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-01-20-GW

Date Sampled:06/25/2021 0945

Date Received: 06/25/2021

Laboratory ID: WF26008-009 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 0439 JDF		98336

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	13	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	1.5	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

DL = Detection Limit $J = Estimated result < LOQ and <math>\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

 $[\]label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

Date Sampled:06/25/2021 0945

Date Received: 06/25/2021

Surrogate

1,2-Dichloroethane-d4

Laboratory ID: WF26008-009 Description: DP-01-20-GW

Matrix: Aqueous

	Volati	le Orga	anic (Compounds	by GC/MS	5			
Run Prep Method 1 5030B	Analytical Method 8260D	3		ysis Date Analyst 2021 0439 JDF	Prep Date	Batch 98336			
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1,2-Trichloro-1,2,2-Trifluoroeth	ane	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	4.2	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 Recovery	Accept Lim						
Bromofluorobenzene		95	70-1	30					
1,2-Dichloroethane-d4		100	70-1	30					
Toluene-d8		97	70-1	30					
	Volatile (Organi	с Соі	mpounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	,	ysis Date Analyst 2021 0156 CJL2	Prep Date	Batch 97674			
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surragata		Run 1	Accept						

Run Prep Method 2	Analytical Method RSK - 175		alysis Date Analyst 07/2021 0927 TML	Prep Date	Batch 98028			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	3.7 J	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	2

Dissolved Gases

Limits 40-170

% Recovery

106

Q

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DP-08-10-SS

Date Sampled:06/25/2021 1020

Date Received: 06/25/2021

Laboratory ID: WF26008-010

Matrix: Solid % Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Bromoform 75-25-2 8260D ND 4.5 1.8 ug/kg 1 Bromomethane (Methyl bromide) 74-83-9 8260D ND 4.5 2.7 ug/kg 1 2-Butanone (MEK) 78-93-3 8260D ND 18 3.6 ug/kg 1 Carbon disulfide 75-15-0 8260D ND 4.5 1.8 ug/kg 1 Carbon tetrachloride 56-23-5 8260D ND 4.5 1.8 ug/kg 1 Chlorobenzene 108-90-7 8260D ND 4.5 1.8 ug/kg 1 Chloroethane 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chloroform 67-66-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 </th <th>Run Prep Method 7</th> <th>Analytical Method 8260D</th> <th>Dilution 1</th> <th></th> <th>sis Date Analyst 2021 0003 JM1</th> <th>Prep Date</th> <th>Batch 97504</th> <th>Sample Wt.(g) 6.71</th> <th></th> <th></th>	Run Prep Method 7	Analytical Method 8260D	Dilution 1		sis Date Analyst 2021 0003 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.71		
Acetone 67-64-1 8260D ND 18 7,1 ug/kg 1 Benzene 77-43-2 8260D ND 4.5 1.8 ug/kg 1 Bromodichloromethane 75-27-4 8260D ND 4.5 1.8 ug/kg 1 Bromodichloromethane 75-27-2 8260D ND 4.5 1.8 ug/kg 1 Bromoform 75-25-2 8260D ND 4.5 1.8 ug/kg 1 Bromoform 75-25-2 8260D ND 4.5 2.7 ug/kg 1 2-Butlanone (MEK) 78-93-3 8260D ND 4.5 2.7 ug/kg 1 2-Butlanone (MEK) 78-93-3 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (MEK) 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (MEK) 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (MEK) 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 86-23-5 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 86-23-5 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 86-23-5 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 86-23-5 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 87-66-3 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 87-66-3 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 87-8-3 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 87-8-3 8260D ND 4.5 1.8 ug/kg 1 2-Butlanone (Methyl bromide) 87-8-3 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoe-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoe-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoe-1-bromoethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane 87-57-1 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane 106-60-5 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane 106-60-5 8260D ND 4.5 1.8 ug/kg 1 1-2-Dibromoethane 106-10-1 8260D ND 4.5 1										
Benzene 71-43-2 82-60D ND 4.5 1.8 ug/kg 1 Bromodichloromethane 75-27-4 82-60D ND 4.5 1.8 ug/kg 1 Bromomethane (Methyl bromide) 74-83-9 82-60D ND 4.5 2.7 ug/kg 1 2-Butanone (MEK) 78-93-3 82-60D ND 4.5 1.8 ug/kg 1 2-Butanone (MEK) 78-93-3 82-60D ND 4.5 1.8 ug/kg 1 Carbon disulfide 75-15-0 82-60D ND 4.5 1.8 ug/kg 1 Carbon tetrachloride 56-23-5 82-60D ND 4.5 1.8 ug/kg 1 Chlorodethane 75-00-3 82-60D ND 4.5 1.8 ug/kg 1 Chlorodethane 75-00-3 82-60D ND 4.5 1.8 ug/kg 1 Chlorodethane 76-66-3 82-60D ND 4.5 1.8 ug/kg <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
Bromodichloromethane 75-27-4 8260D ND 4.5 1.8 ug/kg 1 Bromoform 75-25-2 8260D ND 4.5 1.8 ug/kg 1 Bromomethane (Methyl bromide) 74-83-9 8260D ND 4.5 1.8 ug/kg 1 2-Butanone (MEK) 78-93-3 8260D ND 4.5 1.8 ug/kg 1 Carbon Isulfide 75-15-0 8260D ND 4.5 1.8 ug/kg 1 Chlorobenzene 109-90-7 8260D ND 4.5 1.8 ug/kg 1 Chlorobenzene 75-90-3 8260D ND 4.5 1.8 ug/kg 1 Chlorobenzene 10-6-63 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg <td< td=""><td>Acetone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Acetone									
Bromoferm 75-25-2 8260D ND 4.5 1.8 ug/kg 1 Bromomethane (Methyl bromide) 74-83-9 8260D ND 4.5 2,7 ug/kg 1 2-Butlanone (MEK) 78-93-3 8260D ND 4.5 1.8 ug/kg 1 Carbon disulfide 75-15-0 8260D ND 4.5 1.8 ug/kg 1 Carbon disulfide 56-23-5 8260D ND 4.5 1.8 ug/kg 1 Carbon disulfide 75-03-0 8260D ND 4.5 1.8 ug/kg 1 Chlorobenzene 108-90-7 8260D ND 4.5 1.8 ug/kg 1 Chlorobethane 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chlorobethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chlorobethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chlorobethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 94-12-8 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 94-12-8 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (EDB) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) ND 4.5 1.8 ug/kg 1 1,3-Dibriomoethane (EDB) ND 4.5 1.8 ug/kg 1	Benzene									1
Bromomethane (Methyl bromide) 74-83-9 8260D ND 4.5 2.7 ug/kg 1 2-Butanone (MEK) 78-93-3 8260D ND 18 3.6 ug/kg 1 Carbon disulfide 75-15-0 8260D ND 4.5 1.8 ug/kg 1 Carbon tetrachloride 56-23-5 8260D ND 4.5 1.8 ug/kg 1 Chiorobenzene 108-90-7 8260D ND 4.5 1.8 ug/kg 1 Chiorotenzene 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chiorotenzene 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chiorotentane (Methyl choride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chiorotentane (Methyl choride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chiorotentane (Methyl choride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-6-thorotentane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-thane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-thane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-thane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-thane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-thane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-thane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorotenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorotenzene 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorotentane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichlorotentane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorotentane 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorotentane 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorotentane 156-	Bromodichloromethane		75-2	27-4	8260D	ND	4.5	1.8	ug/kg	1
2-Butanone (MEK)	Bromoform		75-2	25-2	8260D	ND	4.5	1.8	ug/kg	1
Carbon disulfide 75-15-0 8260D ND 4.5 1.8 ug/kg 1 Carbon tetrachloride 56-23-5 8260D ND 4.5 1.8 ug/kg 1 Chlorobetrace 108-90-7 8260D ND 4.5 1.8 ug/kg 1 Chlorocethane 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chlorocethane 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chlorocethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 L2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 L2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 L2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 L2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 L3-Dibrlorochenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 L3-Dibrlorochlorocene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 L4-Dichlorochenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 L4-Dichlorochenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 L4-Dichlorochenane 175-71-8 8260D ND 4.5 1.8 ug/kg 1 L3-Dichlorochlane 156-59-2 8260D ND 4.5 1.8 ug/kg 1 L3-Dichlorochlane 156-69-2 8260D ND 4.5 1.8 ug/kg 1 L3-Dichlorochlane 156-69-0 ND 4.5 1.8 ug/kg 1 L3-Dichlorochlane	Bromomethane (Methyl bromide)		74-8	3-9	8260D	ND	4.5	2.7	ug/kg	1
Carbon tetrachloride 56-23-5 8260D ND 4.5 1.8 ug/kg 1 Chlorobenzene 108-90-7 8260D ND 4.5 1.8 ug/kg 1 Chloroform 67-66-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 156-60-7 8260D ND 4.5 1.8 <t< td=""><td>2-Butanone (MEK)</td><td></td><td>78-9</td><td>93-3</td><td>8260D</td><td>ND</td><td>18</td><td>3.6</td><td>ug/kg</td><td>1</td></t<>	2-Butanone (MEK)		78-9	93-3	8260D	ND	18	3.6	ug/kg	1
Chlorobenzene 108-90-7 8260D ND 4.5 1.8 ug/kg 1 Chlorofenhane 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chloroform 67-66-3 8260D ND 4.5 1.8 ug/kg 1 Chloromelhane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 Dibromochloromethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 Dibriomochloromethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg <	Carbon disulfide		75-1	5-0	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane 75-00-3 8260D ND 4.5 1.8 ug/kg 1 Chloroform 67-66-3 8260D ND 4.5 1.8 ug/kg 1 Chloroform 67-66-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane (Methyl chloride) 74-87-3 8260D ND 4.5 1.8 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-1-chloropropane (DBCP) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-1-chloropropane (DBCP) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-1-chloropropane (DBCP) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 156-40-7 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichlorobenzene 156-50-1 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 156-50-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 156-50-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 156-50-2 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropenzene 106-101-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropenzene 106-101-6 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropenzene 106-101-6 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropenzene 106-101-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropene 106-101-8 8260D ND 4.	Carbon tetrachloride		56-2	23-5	8260D	ND	4.5	1.8	ug/kg	1
Chloroform 67-66-3 8260D ND 4.5 1.8 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 2.7 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoe-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 Dibromochloromethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibrhomochlane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 55-01 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 166-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichloroethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8	Chlorobenzene		108-9	0-7	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride) 74-87-3 8260D ND 4.5 2.7 ug/kg 1 Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-35-4 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 75-35-4 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 1cls-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 1cls-1,3-Dichloropropene 10061-01-6 8260D ND 4.5 1.8 ug/kg 1 1cls-1,3-Dichloropropene 10061-01-6 8260D ND 4.5 1.8 ug/kg 1 1cls-1,3-Dichloropropene 10061-01-6 8260D ND 4.5 1.8 ug/kg 1 1cls-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/	Chloroethane		75-C	0-3	8260D	ND	4.5	1.8	ug/kg	1
Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichloroethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-35-4 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-35-5 8260D ND 4.5 <t< td=""><td>Chloroform</td><td></td><td>67-6</td><td>6-3</td><td>8260D</td><td>ND</td><td>4.5</td><td>1.8</td><td>ug/kg</td><td>1</td></t<>	Chloroform		67-6	6-3	8260D	ND	4.5	1.8	ug/kg	1
Cyclohexane 110-82-7 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 Dibromochloromethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichloroethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 156-59-2 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 156-69-5 8260D ND 4.5 1.8	Chloromethane (Methyl chloride)		74-8	37-3	8260D	ND	4.5	2.7		1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 4.5 1.8 ug/kg 1 Dibromochloromethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibrhorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,b-Dichloroethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 156-59-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 156-69-5 8260D ND 4.5 1.8	<u> </u>		110-8	2-7						1
Dibromochloromethane 124-48-1 8260D ND 4.5 1.8 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichloroethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 156-59-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 156-69-2 8260D ND 4.5 1.8 <	-	P)	96-1	2-8	8260D					1
1,2-Dibromoethane (EDB) 106-93-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichloroethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 156-59-2 8260D ND 4.5 1.8 ug/kg 1 cis-1,2-Dichloroethane 156-60-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,2-Dichloroethane 156-60-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,2-Dichloroethane 156-60-5 8260D <	Dibromochloromethane	,								
1,2-Dichlorobenzene 95-50-1 8260D ND 4.5 1.8 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichlorodifluoromethane 75-71-8 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-35-4 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 156-59-2 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroptopane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 1061-01-5 8260D ND <td>1,2-Dibromoethane (EDB)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	1,2-Dibromoethane (EDB)									1
1,3-Dichlorobenzene 541-73-1 8260D ND 4.5 1.8 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 Dichlorodifluoromethane 75-71-8 8260D ND 4.5 2.7 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-35-4 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 156-59-2 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethene 156-69-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroptopane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropane 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,3-Dichloropropane 100-41-4 8260D <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>										1
1,4-Dichlorobenzene 106-46-7 8260D ND 4.5 1.8 ug/kg 1 Dichlorodifluoromethane 75-71-8 8260D ND 4.5 2.7 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 75-35-4 8260D ND 4.5 1.8 ug/kg 1 cis-1,2-Dichloroethene 156-69-2 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroptopene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 10041-02-6 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND			541-7	'3-1						1
Dichlorodiffuoromethane 75-71-8 8260D ND 4.5 2.7 ug/kg 1 1,1-Dichloroethane 75-34-3 8260D ND 4.5 1,8 ug/kg 1 1,2-Dichloroethane 107-06-2 8260D ND 4.5 1,8 ug/kg 1 1,1-Dichloroethene 75-35-4 8260D ND 4.5 1,8 ug/kg 1 1,1-Dichloroethene 156-59-2 8260D ND 4.5 1,8 ug/kg 1 1,2-Dichloropthene 156-60-5 8260D ND 4.5 1,8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1,8 ug/kg 1 cis-1,3-Dichloropropane 10061-01-5 8260D ND 4.5 1,8 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1,8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1,8										1
1,1-Dichloroethane 75-34-3 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethane 75-35-4 8260D ND 4.5 1.8 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260D ND 4.5 1.8 ug/kg 1 trans-1,2-Dichloropethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND										
1,2-Dichloroethane 107-06-2 8260D ND 4.5 1.8 ug/kg 1 1,1-Dichloroethene 75-35-4 8260D ND 4.5 1.8 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260D ND 4.5 1.8 ug/kg 1 trans-1,2-Dichloroethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropane 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 4.5 1.8 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl cettate 79-20-9 8260D ND <										
1,1-Dichloroethene 75-35-4 8260D ND 4.5 1.8 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260D ND 4.5 1.8 ug/kg 1 trans-1,2-Dichloroethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 4.5 1.8 ug/kg 1 8coprylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5										
cis-1,2-Dichloroethene 156-59-2 8260D ND 4.5 1.8 ug/kg 1 trans-1,2-Dichloroethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 98-82-8 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 98-82-8 8260D ND 4.5 1.8 ug/kg 1 4-Hylance 98-82-8 8260D ND 4.5 1.8 ug/kg 1	· ·									
trans-1,2-Dichloroethene 156-60-5 8260D ND 4.5 1.8 ug/kg 1 1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 4.5 1.8 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 4.5 1.8 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
1,2-Dichloropropane 78-87-5 8260D ND 4.5 1.8 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 8.9 3.6 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND <										
cis-1,3-Dichloropropene 10061-01-5 8260D ND 4.5 1.8 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 8.9 3.6 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/										
trans-1,3-Dichloropropene 10061-02-6 8260D ND 4.5 1.8 ug/kg 1 Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 8.9 3.6 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
Ethylbenzene 100-41-4 8260D ND 4.5 1.8 ug/kg 1 2-Hexanone 591-78-6 8260D ND 8.9 3.6 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5										
2-Hexanone 591-78-6 8260D ND 8.9 3.6 ug/kg 1 Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
Isopropylbenzene 98-82-8 8260D ND 4.5 1.8 ug/kg 1 Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1	,									
Methyl acetate 79-20-9 8260D ND 4.5 1.8 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 4.5 1.8 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1	· · · · ·									
4-Methyl-2-pentanone 108-10-1 8260D ND 8.9 3.6 ug/kg 1 Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
Methylcyclohexane 108-87-2 8260D ND 4.5 1.8 ug/kg 1 Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
Methylene chloride 75-09-2 8260D ND 4.5 1.8 ug/kg 1 Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
Styrene 100-42-5 8260D ND 4.5 1.8 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1.8 ug/kg 1 Tetrachloroethane 127-18-4 8260D ND 4.5 1.8 ug/kg 1										
1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 4.5 1,8 ug/kg 1 Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1	-									
Tetrachloroethene 127-18-4 8260D ND 4.5 1.8 ug/kg 1	-									
Toluene 108-88-3 8260D ND 4.5 1.8 ug/kg 1										
	Toluene		108-8	8-3	8260D	ND	4.5	1.8	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Description: DP-08-10-SS

Date Sampled:06/25/2021 1020

Date Received: 06/25/2021

Laboratory ID: WF26008-010 Matrix: Solid

% Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	Analysis 07/01/202	s Date Analyst 21 0003 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.71		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
									Ruii
1,1,2-Trichloro-1,2,2-Trifluoroethan	е		13-1	8260D	ND	4.5	1.8	ug/kg	I
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.5	1.8	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.5	1.8	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.9	3.6	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		121	47-138						
1,2-Dichloroethane-d4		112	53-142						
Toluene-d8		109	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: EB-01-062521 Date Sampled:06/25/2021 1100 Date Received: 06/25/2021

Laboratory ID: WF26008-011

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Run Prep Method Batch 5030B 8260D 07/09/2021 0414 JDF 98336

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria

DL = Detection Limit

Q = Surrogate failure L = LCS/LCSD failure

W = Reported on wet weight basis H = Out of holding time

P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

S = MS/MSD failure

E = Quantitation of compound exceeded the calibration range

Description: EB-01-062521

Date Sampled:06/25/2021 1100

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26008-011 Matrix: Aqueous

Batch

Volatile Organic Compounds by GC/MS

Run Prep Method An 1 5030B	alytical Method 8260D	Dilution 1		sis Date Analyst 021 0414 JDF	Prep Date	Batch 98336			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane			13-1	8260D	ND ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 Recovery	Accepta Limit:						
Bromofluorobenzene		93	70-13	80					
1,2-Dichloroethane-d4		101	70-13	80					
Toluene-d8		99	70-13	0					

Volatile Organic Compounds by GC/MS (SIM)

	voiatile Oi	gariic	Compounds by	GC/N/3 (DIIVI)			
Run Prep Method	Analytical Method D	Dilution .	Analysis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1 (07/01/2021 2238 CJL2		97674			
		C	AS Analytical					
Parameter		Numb	oer Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91	-1 8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		un 1 Ac	cceptance Limits					
1,2-Dichloroethane-d4		102	40-170					

Dissolved Gases

Analytical Method Dilution Analysis Date Analyst

2	RSK - 175	1 07/07/	/2021 0943 TML		98028				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run	
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2	
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2	
Methane		74-82-8	RSK - 175	ND	10	2.5	ug/L	2	
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	2	

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitQ = Surrogate failureND = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLL = LCS/LCSD failureH = Out of holding timeW = Reported on wet weight basisS = MS/MSD failure

Description: DP-04 (1-3) SS

Date Sampled:06/25/2021 1100 Date Received: 06/25/2021

Laboratory ID: WF26008-012

Matrix: Solid

% Solids: 78.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method A 1 5035	nalytical Method Dilu 8260D			is Date Analyst 021 0027 JM1	Prep [Date	Batch 97504	Sample Wt.(g) 6.48		
Parameter		C. Numb	AS per	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-64	1 -1	8260D	19	J	20	7.9	ug/kg	1
Benzene		71-43	3-2	8260D	ND		4.9	2.0	ug/kg	1
Bromodichloromethane		75-27	7-4	8260D	ND		4.9	2.0	ug/kg	1
Bromoform		75-25	5-2	8260D	ND		4.9	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-83	3-9	8260D	ND		4.9	3.0	ug/kg	1
2-Butanone (MEK)		78-93	3-3	8260D	ND		20	3.9	ug/kg	1
Carbon disulfide		75-15	5-0	8260D	ND		4.9	2.0	ug/kg	1
Carbon tetrachloride		56-23	3-5	8260D	ND		4.9	2.0	ug/kg	1
Chlorobenzene		108-90)-7	8260D	ND		4.9	2.0	ug/kg	1
Chloroethane		75-00	D-3	8260D	ND		4.9	2.0	ug/kg	1
Chloroform		67-66	5-3	8260D	ND		4.9	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-87	7-3	8260D	ND		4.9	3.0	ug/kg	1
Cyclohexane		110-82	2-7	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12	2-8	8260D	ND		4.9	2.0	ug/kg	1
Dibromochloromethane		124-48	3-1	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-93	3-4	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dichlorobenzene		95-50	D-1	8260D	ND		4.9	2.0	ug/kg	1
1,3-Dichlorobenzene		541-73	3-1	8260D	ND		4.9	2.0	ug/kg	1
1,4-Dichlorobenzene		106-46	5-7	8260D	ND		4.9	2.0	ug/kg	1
Dichlorodifluoromethane		75-7	1-8	8260D	ND		4.9	3.0	ug/kg	1
1,1-Dichloroethane		75-34	1-3	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dichloroethane		107-06	5-2	8260D	ND		4.9	2.0	ug/kg	1
1,1-Dichloroethene		75-35	5-4	8260D	ND		4.9	2.0	ug/kg	1
cis-1,2-Dichloroethene		156-59	9-2	8260D	ND		4.9	2.0	ug/kg	1
trans-1,2-Dichloroethene		156-60)-5	8260D	ND		4.9	2.0	ug/kg	1
1,2-Dichloropropane		78-87	7-5	8260D	ND		4.9	2.0	ug/kg	1
cis-1,3-Dichloropropene	1	0061-01	I-5	8260D	ND		4.9	2.0	ug/kg	1
trans-1,3-Dichloropropene	1	0061-02	2-6	8260D	ND		4.9	2.0	ug/kg	1
Ethylbenzene		100-41	I-4	8260D	ND		4.9	2.0	ug/kg	1
2-Hexanone		591-78	3-6	8260D	ND		9.9	3.9	ug/kg	1
Isopropylbenzene		98-82	2-8	8260D	ND		4.9	2.0	ug/kg	1
Methyl acetate		79-20)-9	8260D	ND		4.9	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)		1634-04	1-4	8260D	ND		4.9	2.0	ug/kg	1
4-Methyl-2-pentanone		108-10)-1	8260D	ND		9.9	3.9	ug/kg	1
Methylcyclohexane		108-87	7-2	8260D	ND		4.9	2.0	ug/kg	1
Methylene chloride		75-09	9-2	8260D	ND		4.9	2.0	ug/kg	1
Styrene		100-42	2-5	8260D	ND		4.9	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-34	4-5	8260D	ND		4.9	2.0	ug/kg	1
Tetrachloroethene		127-18	3-4	8260D	ND		4.9	2.0	ug/kg	1
Toluene		108-88	3-3	8260D	ND		4.9	2.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Description: DP-04 (1-3) SS ate Sampled: 06/25/2021 1100

Date Sampled:06/25/2021 1100

Date Received: 06/25/2021

Laboratory ID: WF26008-012

Matrix: Solid

% Solids: 78.2 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	Analysis 07/01/202	Date Analyst 1 0027 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.48		
Parameter			CAS A	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.9	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.9	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.9	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.9	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.9	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.9	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.9	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.9	3.9	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptanc Limits	е					
Bromofluorobenzene		121	47-138						
1,2-Dichloroethane-d4		125	53-142						
Toluene-d8		108	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TRIP BLANK

Date Sampled:06/25/2021 1145

Date Received: 06/25/2021

Laboratory ID: WF26008-013

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 5030B 8260D 1 07/09/2021 1039 TML 98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: TRIP BLANK Date Sampled:06/25/2021 1145 Date Received: 06/25/2021

Laboratory ID: WF26008-013

Matrix: Aqueous

Volatile Organic Compounds by GC/M	IS
------------------------------------	----

Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 1039 TML	Prep Date	Batch 98390			
		(CAS	Analytical					
Parameter		Number		Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55-6		8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		103	70-130						
1,2-Dichloroethane-d4		111	70-130)					
Toluene-d8		108	70-130	1					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-4D

Date Sampled:06/25/2021 0920 Date Received:06/25/2021 Laboratory ID: WF26008-014

Matrix: Aqueous

Inorganic	non motale
יוווטוטומווונ.	non-metals
mior gaine	i ioi i i i otaio

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	(Alkalinity @) SM 2320B-2011	1	07/01/2021 2155 DAK		97676
1	(Chloride) 9056A	1	06/26/2021 1854 AMR		97480
1	(Nitrate - N) 9056A	1	06/26/2021 1854 AMR		97479
1	(Sulfate) 9056A	1	06/26/2021 1854 AMR		97481
1	(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1	(TOC) 9060A	1	06/27/2021 1410 AAB		96944

Parameter	CAS Number	Analytical Method	Result	Q L	OQ DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND		20 20	mg CaCO3/L	. 1
Chloride		9056A	1.8		1.0 0.25	g mg/L	1
Nitrate - N		9056A	0.015	J 0.0	0.0050) mg/L	1
Sulfate		9056A	0.93	J	1.0 0.25	g mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	ND		1.0 1.0) mg/L	1
TOC		9060A	1.7		1.0 0.42	2 mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1238 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 1.642 - 1.676				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4D

Date Sampled:06/25/2021 0920 Date Received: 06/25/2021

Laboratory ID: WF26008-014

Matrix: Aqueous

	Volatil	le Orga	inic Compo	ounds b	y GC/MS
Run Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1-Dichloroethene	75-35-4	8260D	0.47 J	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	19	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	0.73 J	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Acceptan Q % Recovery Limits	ce					
Bromofluorobenzene	101 70-130						
1,2-Dichloroethane-d4	109 70-130						
Toluene-d8	110 70-130						

Volatile Organic Compounds by GC/MS (SIM)

Run Prep Method 1 5030B	Analytical Method Dil 8260D (SIM)		lysis Date Analyst 2/2021 0221 CJL2	Prep Date	Batch 97674			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-4D

Date Sampled:06/25/2021 0920 Date Received: 06/25/2021

Laboratory ID: WF26008-014 Matrix: Aqueous

Run 1 Acceptance Surrogate Q % Recovery Limits

40-170 1,2-Dichloroethane-d4 102

Dissolved Gases

Run Prep Method	Analytical Method D	,	sis Date Analyst 2021 0959 TML	Prep Date	Batch			
	RSK - 175	1 07/07/	2021 0959 TML		98028			
		CAS	Analytical					
Parameter		Number	Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	ND	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: MW-1D

Date Sampled:06/25/2021 1045 Date Received: 06/25/2021

Laboratory ID: WF26008-015

Matrix: Aqueous

	norgani	ic no	on-mo	etals
--	---------	-------	-------	-------

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1		(Alkalinity @) SM 2320B-2011	1	07/01/2021 2202 DAK		97676
1		(Chloride) 9056A	1	06/26/2021 1957 AMR		97480
1		(Nitrate - N) 9056A	1	06/26/2021 1957 AMR		97479
1		(Sulfate) 9056A	1	06/26/2021 1957 AMR		97481
1		(Sulfide) SM 4500-S2 F-2011	1	07/01/2021 2100 GDC		97672
1		(TOC) 9060A	1	06/27/2021 1434 AAB		96944

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Alkalinity @ pH 4.5 su		SM 2320B-2011	ND	20	20	mg CaCO3/L	1
Chloride		9056A	2.2	1.0	0.25	mg/L	1
Nitrate - N		9056A	ND	0.020	0.0050	mg/L	1
Sulfate		9056A	0.74 J	1.0	0.25	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-2	1.3	1.0	1.0	mg/L	1
TOC		9060A	2.8	1.0	0.42	mg/L	1

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1302 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1

TOC Range: 2.776 - 2.82				
LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-1D

Date Sampled:06/25/2021 1045 Date Received: 06/25/2021

Laboratory ID: WF26008-015

Matrix: Aqueous

		Volat	ile Orga	anic Compounds	by GC/MS)
Run 1	Prep Method 5030B	Analytical Method 8260D		Analysis Date Analyst 07/09/2021 1302 TML	Prep Date	Batch 98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	0.94 J	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	62	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8260D	9.1	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits	
Bromofluorobenzene	100 70-130	
1,2-Dichloroethane-d4	111 70-130	
Toluene-d8	107 70-130	

Volatile Organic Compounds by GC/MS (SIM)

Run 1	Prep Method 5030B	Analytical Method 8260D (SIM)	Dilution 1	,	sis Date Analyst 2021 0246 CJL2	Prep Date	Batch 97674			
Parar	meter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Di	oxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: MW-1D

Date Sampled:06/25/2021 1045 Date Received:06/25/2021 Laboratory ID: WF26008-015 Matrix: Aqueous

Surrogate Run 1 Acceptance
Q % Recovery Limits
1.3 Dicklerosthans d4

1,2-Dichloroethane-d4 102 40-170

Dissolved Gases

Run Prep Method 2	Analytical Method E RSK - 175	,	sis Date Analyst 2021 1015 TML	Prep Date	Batch 98028			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	2.6 J	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-04-10-11-SS
Date Sampled:06/25/2021 1130

Date Sampled:06/25/2021 1130 Date Received:06/26/2021

Run Prep Method

Laboratory ID: WF26008-016

Matrix: Solid

Batch

% Solids: 86.5 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035	8260D 1 07/01	/2021 0051 JM1		97504	6.37		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	17 J	18	7.3	ug/kg	1
Benzene	71-43-2	8260D	ND	4.5	1.8	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.5	1.8	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.5	1.8	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.5	2.7	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	18	3.6	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.5	1.8	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.5	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.5	1.8	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.5	1.8	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.5	1.8	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.5	2.7	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.5	1.8	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.5	1.8	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.5	1.8	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.5	1.8	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.5	2.7	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.5	1.8	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.5	1.8	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.5	1.8	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.5	1.8	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.5	1.8	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.5	1.8	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.5	1.8	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.5	1.8	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	9.1	3.6	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.5	1.8	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.5	1.8	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.5	1.8	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	9.1	3.6	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.5	1.8	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.5	1.8	ug/kg	1
Styrene	100-42-5	8260D	ND	4.5	1.8	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.5	1.8	ug/kg	1
					-	00	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

Tetrachloroethene

Toluene

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

8260D

8260D

ND

ND

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

4.5

4.5

1.8

1.8

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

1

1

ug/kg

ug/kg

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

127-18-4

108-88-3

Description: DP-04-10-11-SS Date Sampled:06/25/2021 1130

Date Received: 06/26/2021

Laboratory ID: WF26008-016

Matrix: Solid

% Solids: 86.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 2021 0051 JM1	Prep Date	Batch 97504	Sample Wt.(g) 6.37		
Parameter		(Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethar	е	76-1	13-1	8260D	ND	4.5	1.8	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.5	1.8	ug/kg	1
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	4.5	1.8	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	4.5	1.8	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.5	1.8	ug/kg	1
Trichlorofluoromethane		75- <i>6</i>	59-4	8260D	ND	4.5	1.8	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	4.5	2.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260D	ND	9.1	3.6	ug/kg	1
Surrogate		Run 1 / Recovery	Accepta Limi						
Bromofluorobenzene		117	47-1	38					
1,2-Dichloroethane-d4		108	53-1	42					
Toluene-d8		107	68-12	24					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Inorganic non-metals - MB

Sample ID: WQ96944-001

Batch: 96944 Analytical Method: 9060A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
TOC	ND		1	1.0	0.42	mg/L	06/27/2021 0857

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ96944-002

Batch: 96944

Matrix: Aqueous

Date	511. 70744
Analytical Metho	od: 9060A

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
TOC	20	19	•	1	93	90-110	06/27/2021 0921

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97479-001

Batch: 97479 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrate - N	ND		1	0.020	0.0050	mg/L	06/26/2021 1752

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97479-002

Batch: 97479 Analytical Method: 9056A Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Nitrate - N	0.80	0.84		1	105	80-120	06/26/2021 1833

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF26008-014MS

Batch: 97479 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Nitrate - N	0.015	0.40	0.42		1	100	80-120	06/26/2021 1915

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF26008-014MD

Batch: 97479 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Nitrate - N	0.015	0.40	0.41		1	99	1.8	80-120	20	06/26/2021 1936

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97480-001

Batch: 97480 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND	•	1	1.0	0.25	mg/L	06/26/2021 1752

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97480-002

Batch: 97480 Analytical Method: 9056A Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Chloride	20	21		1	103	80-120	06/26/2021 1833

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF26008-014MS

Batch: 97480

Matrix: Aqueous

Baton. 77 100	
Analytical Method: 9056A	

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Chloride	1.8	10	12		1	102	80-120	06/26/2021 1915

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF26008-014MD

Batch: 97480 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Chloride	1.8	10	12		1	100	1.6	80-120	20	06/26/2021 1936

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97481-001

Batch: 97481 Analytical Method: 9056A Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.25	mg/L	06/26/2021 1752

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97481-002

Batch: 97481 Analytical Method: 9056A Matrix: Aqueous

Parameter	Spike Amount	Result (mg/L)	0	Dil	% Rec	%Rec Limit	Analysis Date
Parameter	(mg/L)	(HIG/L)	Q	Dil	% Rec	LIIIIII	Ariarysis Date
Sulfate	20	21		1	103	80-120	06/26/2021 1833

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MS

Sample ID: WF26008-014MS

Batch: 97481 Analytical Method: 9056A Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfate	0.93	10	11		1	101	80-120	06/26/2021 1915

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MSD

Sample ID: WF26008-014MD

Batch: 97481

Matrix: Aqueous

	Dateii.	77401
Analytical	Method:	9056A

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Sulfate	0.93	10	11		1	99	1.5	80-120	20	06/26/2021 1936

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - MB

Sample ID: WQ97672-001

Batch: 97672

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfide	ND		1	1.0	1.0	mg/L	07/01/2021 2100

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97672-002

Batch: 97672

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Sulfide	10	10		1	100	80-120	07/01/2021 2100

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCSD

Sample ID: WQ97672-003

Batch: 97672

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	10		1	100	0.00	80-120	20	07/01/2021 2100

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - LCS

Sample ID: WQ97676-002

Batch: 97676

Analytical Method: SM 2320B-2011

Matrix: Aqueous

	Spike					
	Amount	Result			%Rec	
Parameter	(mg CaCO3/L)	(mg CaCO3/L) Q	Dil	% Rec	Limit	Analysis Date
Alkalinity @ pH 4.5 su	100	100	1	102	90-110	07/01/2021 2030

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Inorganic non-metals - Duplicate

Sample ID: WF26008-014DU

Batch: 97676

Analytical Method: SM 2320B-2011

Matrix: Aqueous

Parameter	Sample Amount (mg CaCO3/L)	Result (mg CaCO3/L) Q	Dil	% RPD	%RPD Limit	Analysis Date
Alkalinity @ pH 4.5 su	ND	ND	1	0.00	20	07/01/2021 2159

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97424-001 Batch: 97424

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	8.0	ug/kg	06/30/2021 1201
Benzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Bromodichloromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Bromoform	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	06/30/2021 1201
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	06/30/2021 1201
Carbon disulfide	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Chlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Chloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Chloroform	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Chloromethane (Methyl chloride)	ND		1	5.0	3.0	ug/kg	06/30/2021 1201
Cyclohexane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,2-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	06/30/2021 1201
1,1-Dichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
cis-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
trans-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
cis-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Ethylbenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
2-Hexanone	ND		1	10	4.0	ug/kg	06/30/2021 1201
Isopropylbenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Methyl acetate	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Methyl tertiary butyl ether (MTBE)	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
4-Methyl-2-pentanone	ND		1	10	4.0	ug/kg	06/30/2021 1201
Methylcyclohexane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Methylene chloride	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Styrene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
Toluene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,2,4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 1201

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97424-001 Batch: 97424

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	L	00	DL	Units	Analysis Date
Trichloroethene	ND		1	5	.0	2.0	ug/kg	06/30/2021 1201
Trichlorofluoromethane	ND		1	5	.0	2.0	ug/kg	06/30/2021 1201
Vinyl chloride	ND		1	5	.0	3.0	ug/kg	06/30/2021 1201
Xylenes (total)	ND		1	1	0	4.0	ug/kg	06/30/2021 1201
Surrogate	Q % Rec	Ac	ceptance Limit					
Bromofluorobenzene	112		47-138					<u> </u>
1,2-Dichloroethane-d4	86		53-142					
Toluene-d8	99		68-124					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97424-002 Batch: 97424

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

	Spike						
Donomotor	Amount	Result	0	D.11	0/ Dan	%Rec	Amalusia Data
Parameter	(ug/kg)	(ug/kg)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	110		1	114	60-140	06/30/2021 1137
Benzene	50	51		1	101	70-130	06/30/2021 1137
Bromodichloromethane	50	48		1	96	70-130	06/30/2021 1137
Bromoform	50	53		1	107	70-130	06/30/2021 1137
Bromomethane (Methyl bromide)	50	40		1	80	70-130	06/30/2021 1137
2-Butanone (MEK)	100	100		1	104	60-140	06/30/2021 1137
Carbon disulfide	50	49		1	99	70-130	06/30/2021 1137
Carbon tetrachloride	50	50		1	100	70-130	06/30/2021 1137
Chlorobenzene	50	53		1	106	70-130	06/30/2021 1137
Chloroethane	50	46		1	91	70-130	06/30/2021 1137
Chloroform	50	46		1	91	70-130	06/30/2021 1137
Chloromethane (Methyl chloride)	50	43		1	87	60-140	06/30/2021 1137
Cyclohexane	50	44		1	88	70-130	06/30/2021 1137
1,2-Dibromo-3-chloropropane (DBCP)	50	50		1	101	70-130	06/30/2021 1137
Dibromochloromethane	50	50		1	101	70-130	06/30/2021 1137
1,2-Dibromoethane (EDB)	50	50		1	101	70-130	06/30/2021 1137
1,2-Dichlorobenzene	50	51		1	103	70-130	06/30/2021 1137
1,3-Dichlorobenzene	50	54		1	108	70-130	06/30/2021 1137
1,4-Dichlorobenzene	50	53		1	107	70-130	06/30/2021 1137
Dichlorodifluoromethane	50	39		1	78	60-140	06/30/2021 1137
1,1-Dichloroethane	50	46		1	92	70-130	06/30/2021 1137
1,2-Dichloroethane	50	43		1	85	70-130	06/30/2021 1137
1,1-Dichloroethene	50	49		1	98	70-130	06/30/2021 1137
cis-1,2-Dichloroethene	50	46		1	92	70-130	06/30/2021 1137
trans-1,2-Dichloroethene	50	49		1	97	70-130	06/30/2021 1137
1,2-Dichloropropane	50	48		1	95	70-130	06/30/2021 1137
cis-1,3-Dichloropropene	50	47		1	94	70-130	06/30/2021 1137
trans-1,3-Dichloropropene	50	49		1	99	70-130	06/30/2021 1137
Ethylbenzene	50	56		1	111	70-130	06/30/2021 1137
2-Hexanone	100	110		1	110	70-130	06/30/2021 1137
Isopropylbenzene	50	55		1	110	70-130	06/30/2021 1137
Methyl acetate	50	42		1	85	70-130	06/30/2021 1137
Methyl tertiary butyl ether (MTBE)	50	41		1	83	70-130	06/30/2021 1137
4-Methyl-2-pentanone	100	91		1	91	70-130	06/30/2021 1137
Methylcyclohexane	50	46		1	92	70-130	06/30/2021 1137
Methylene chloride	50	43		1	86	70-130	06/30/2021 1137
Styrene	50	53		1	106	70-130	06/30/2021 1137
1,1,2,2-Tetrachloroethane	50	50		1	99	70-130	06/30/2021 1137
Tetrachloroethene	50	57		1	114	70-130	06/30/2021 1137
Toluene	50	50		1	100	70-130	06/30/2021 1137
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	45		1	91	70-130	06/30/2021 1137
1,2,4-Trichlorobenzene	50	51		1	102	70-130	06/30/2021 1137
1,1,1-Trichloroethane	50	49		1	98	70-130	06/30/2021 1137
1,1,2-Trichloroethane	50	49		1	98	70-130	06/30/2021 1137
.,.,		• •		•	.5		33,23,2321 1107

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

^{* =} RSD is out of criteria

^{+ =} RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97424-002 Batch: 97424

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	54	1	108	70-130	06/30/2021 1137
Trichlorofluoromethane	50	44	1	88	70-130	06/30/2021 1137
Vinyl chloride	50	49	1	99	70-130	06/30/2021 1137
Xylenes (total)	100	110	1	109	70-130	06/30/2021 1137
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	107	47-138				
1,2-Dichloroethane-d4	89	53-142				
Toluene-d8	98	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: WQ97424-003 Batch: 97424

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

	Spike								
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Acetone	100	130		1	130	13	60-140	20	06/30/2021 1810
Benzene	50	57		1	113	11	70-130	20	06/30/2021 1810
Bromodichloromethane	50	53		1	106	10	70-130	20	06/30/2021 1810
Bromoform	50	56		1	111	4.0	70-130	20	06/30/2021 1810
Bromomethane (Methyl bromide)	50	47		1	94	17	70-130	20	06/30/2021 1810
2-Butanone (MEK)	100	110		1	112	8.1	60-140	20	06/30/2021 1810
Carbon disulfide	50	56		1	112	13	70-130	20	06/30/2021 1810
Carbon tetrachloride	50	60		1	119	18	70-130	20	06/30/2021 1810
Chlorobenzene	50	59		1	117	9.7	70-130	20	06/30/2021 1810
Chloroethane	50	55		1	110	19	70-130	20	06/30/2021 1810
Chloroform	50	52		1	103	12	70-130	20	06/30/2021 1810
Chloromethane (Methyl chloride)	50	54	+	1	107	21	60-140	20	06/30/2021 1810
Cyclohexane	50	61	+	1	121	32	70-130	20	06/30/2021 1810
1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	98	2.6	70-130	20	06/30/2021 1810
Dibromochloromethane	50	54		1	109	7.4	70-130	20	06/30/2021 1810
1,2-Dibromoethane (EDB)	50	53		1	106	5.2	70-130	20	06/30/2021 1810
1,2-Dichlorobenzene	50	56		1	111	8.1	70-130	20	06/30/2021 1810
1,3-Dichlorobenzene	50	59		1	118	9.4	70-130	20	06/30/2021 1810
1,4-Dichlorobenzene	50	59		1	117	9.3	70-130	20	06/30/2021 1810
Dichlorodifluoromethane	50	72	Ν,+	1	144	59	60-140	20	06/30/2021 1810
1,1-Dichloroethane	50	52		1	104	13	70-130	20	06/30/2021 1810
1,2-Dichloroethane	50	49		1	97	13	70-130	20	06/30/2021 1810
1,1-Dichloroethene	50	58		1	115	16	70-130	20	06/30/2021 1810
cis-1,2-Dichloroethene	50	51		1	103	11	70-130	20	06/30/2021 1810
trans-1,2-Dichloroethene	50	55		1	111	13	70-130	20	06/30/2021 1810
1,2-Dichloropropane	50	54		1	108	12	70-130	20	06/30/2021 1810
cis-1,3-Dichloropropene	50	53		1	107	13	70-130	20	06/30/2021 1810
trans-1,3-Dichloropropene	50	54		1	108	8.4	70-130	20	06/30/2021 1810
Ethylbenzene	50	62		1	124	11	70-130	20	06/30/2021 1810
2-Hexanone	100	110		1	114	3.5	70-130	20	06/30/2021 1810
Isopropylbenzene	50	62		1	123	11	70-130	20	06/30/2021 1810
Methyl acetate	50	45		1	91	6.8	70-130	20	06/30/2021 1810
Methyl tertiary butyl ether (MTBE)	50	46		1	92	9.9	70-130	20	06/30/2021 1810
4-Methyl-2-pentanone	100	97		1	97	6.1	70-130	20	06/30/2021 1810
Methylcyclohexane	50	68	Ν,+	1	136	38	70-130	20	06/30/2021 1810
Methylene chloride	50	47		1	95	9.5	70-130	20	06/30/2021 1810
Styrene	50	59		1	118	9.9	70-130	20	06/30/2021 1810
1,1,2,2-Tetrachloroethane	50	51		1	102	2.6	70-130	20	06/30/2021 1810
Tetrachloroethene	50	64		1	129	12	70-130	20	06/30/2021 1810
Toluene	50	56		1	113	12	70-130	20	06/30/2021 1810
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	64	+	1	128	34	70-130	20	06/30/2021 1810
1,2,4-Trichlorobenzene	50	55		1	110	7.1	70-130	20	06/30/2021 1810
1,1,1-Trichloroethane	50	56		1	113	14	70-130	20	06/30/2021 1810
1,1,2-Trichloroethane	50	52		1	104	6.2	70-130	20	06/30/2021 1810

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: WQ97424-003 Batch: 97424

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	50	61		1	123	13	70-130	20	06/30/2021 1810
Trichlorofluoromethane	50	60	+	1	121	32	70-130	20	06/30/2021 1810
Vinyl chloride	50	63	+	1	126	24	70-130	20	06/30/2021 1810
Xylenes (total)	100	120		1	120	10	70-130	20	06/30/2021 1810
Surrogate	Q % Rec		ptance imit						
Bromofluorobenzene	107	47	7-138						
1,2-Dichloroethane-d4	90	53	3-142						
Toluene-d8	100	68	3-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97504-001 Batch: 97504

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	8.0	ug/kg	06/30/2021 2248
Benzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Bromodichloromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Bromoform	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	06/30/2021 2248
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	06/30/2021 2248
Carbon disulfide	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Chlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Chloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Chloroform	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Chloromethane (Methyl chloride)	ND		1	5.0	3.0	ug/kg	06/30/2021 2248
Cyclohexane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,2-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	06/30/2021 2248
1,1-Dichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
cis-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
trans-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
cis-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Ethylbenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
2-Hexanone	ND		1	10	4.0	ug/kg	06/30/2021 2248
Isopropylbenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Methyl acetate	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Methyl tertiary butyl ether (MTBE)	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
4-Methyl-2-pentanone	ND		1	10	4.0	ug/kg	06/30/2021 2248
Methylcyclohexane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Methylene chloride	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Styrene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
Toluene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,2,4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	06/30/2021 2248
				=:=	-	· 9· · · 9	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97504-001 Batch: 97504

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND	1	5.0	2.0	ug/kg	06/30/2021 2248
Trichlorofluoromethane	ND	1	5.0	2.0	ug/kg	06/30/2021 2248
Vinyl chloride	ND	1	5.0	3.0	ug/kg	06/30/2021 2248
Xylenes (total)	ND	1	10	4.0	ug/kg	06/30/2021 2248
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	117	47-138				
1,2-Dichloroethane-d4	99	53-142				
Toluene-d8	106	68-124				
Toluene-d8	106	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97504-002 Batch: 97504 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

	Spike						
5	Amount	Result	0		04.5	%Rec	
Parameter	(ug/kg)	(ug/kg)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	97		1	97	60-140	06/30/2021 2138
Benzene	50	48		1	96	70-130	06/30/2021 2138
Bromodichloromethane	50	47		1	95	70-130	06/30/2021 2138
Bromoform	50	52		1	104	70-130	06/30/2021 2138
Bromomethane (Methyl bromide)	50	39		1	77	70-130	06/30/2021 2138
2-Butanone (MEK)	100	99		1	99	60-140	06/30/2021 2138
Carbon disulfide	50	47		1	93	70-130	06/30/2021 2138
Carbon tetrachloride	50	49		1	98	70-130	06/30/2021 2138
Chlorobenzene	50	50		1	99	70-130	06/30/2021 2138
Chloroethane	50	43		1	86	70-130	06/30/2021 2138
Chloroform	50	46		1	92	70-130	06/30/2021 2138
Chloromethane (Methyl chloride)	50	40		1	79	60-140	06/30/2021 2138
Cyclohexane	50	48		1	97	70-130	06/30/2021 2138
1,2-Dibromo-3-chloropropane (DBCP)	50	51		1	102	70-130	06/30/2021 2138
Dibromochloromethane	50	50		1	101	70-130	06/30/2021 2138
1,2-Dibromoethane (EDB)	50	50		1	100	70-130	06/30/2021 2138
1,2-Dichlorobenzene	50	50		1	101	70-130	06/30/2021 2138
1,3-Dichlorobenzene	50	51		1	102	70-130	06/30/2021 2138
1,4-Dichlorobenzene	50	51		1	102	70-130	06/30/2021 2138
Dichlorodifluoromethane	50	43		1	86	60-140	06/30/2021 2138
1,1-Dichloroethane	50	46		1	92	70-130	06/30/2021 2138
1,2-Dichloroethane	50	46		1	92	70-130	06/30/2021 2138
1,1-Dichloroethene	50	48		1	95	70-130	06/30/2021 2138
cis-1,2-Dichloroethene	50	45		1	91	70-130	06/30/2021 2138
trans-1,2-Dichloroethene	50	46		1	92	70-130	06/30/2021 2138
1,2-Dichloropropane	50	46		1	92	70-130	06/30/2021 2138
cis-1,3-Dichloropropene	50	46		1	92	70-130	06/30/2021 2138
trans-1,3-Dichloropropene	50	48		1	97	70-130	06/30/2021 2138
Ethylbenzene	50	51		1	102	70-130	06/30/2021 2138
2-Hexanone	100	99		1	99	70-130	06/30/2021 2138
Isopropylbenzene	50	52		1	104	70-130	06/30/2021 2138
Methyl acetate	50	46		1	92	70-130	06/30/2021 2138
Methyl tertiary butyl ether (MTBE)	50	45		1	90	70-130	06/30/2021 2138
	100	94		1	94	70-130	06/30/2021 2138
4-Methylevelebovene	50			1			06/30/2021 2138
Methylogo ablarida		51		•	101	70-130	
Methylene chloride	50	44		1	87	70-130	06/30/2021 2138
Styrene	50	50		1	100	70-130	06/30/2021 2138
1,1,2,2-Tetrachloroethane	50	50		1	99	70-130	06/30/2021 2138
Tetrachloroethene	50	52		1	103	70-130	06/30/2021 2138
Toluene	50	47		1	94	70-130	06/30/2021 2138
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	51		1	102	70-130	06/30/2021 2138
1,2,4-Trichlorobenzene	50	48		1	97	70-130	06/30/2021 2138
1,1,1-Trichloroethane	50	48		1	96	70-130	06/30/2021 2138
1,1,2-Trichloroethane	50	50		1	99	70-130	06/30/2021 2138

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

^{* =} RSD is out of criteria

^{+ =} RPD is out of criteria

Sample ID: WQ97504-002 Batch: 97504

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

%Rec ec Limit Analysis Date
70-130 06/30/2021 2138
70-130 06/30/2021 2138
70-130 06/30/2021 2138
70-130 06/30/2021 2138

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97504-003 Batch: 97504 Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
			<u> </u>						-
Acetone	100	99		1	99	1.4	60-140	20	06/30/2021 2201
Benzene	50	46		1	92	4.1	70-130	20	06/30/2021 2201
Bromodichloromethane	50	47		1	94	1.1	70-130	20	06/30/2021 2201
Bromoform	50	52		1	104	0.27	70-130	20	06/30/2021 2201
Bromomethane (Methyl bromide)	50	37		1	74	4.0	70-130	20	06/30/2021 2201
2-Butanone (MEK)	100	99		1	99	0.60	60-140	20	06/30/2021 2201
Carbon disulfide	50	45		1	89	4.4	70-130	20	06/30/2021 2201
Carbon tetrachloride	50	48		1	96	2.2	70-130	20	06/30/2021 2201
Chlorobenzene	50	47		1	95	4.4	70-130	20	06/30/2021 2201
Chloroethane	50	41		1	83	3.4	70-130	20	06/30/2021 2201
Chloroform	50	46		1	91	0.57	70-130	20	06/30/2021 2201
Chloromethane (Methyl chloride)	50	38		1	75	5.4	60-140	20	06/30/2021 2201
Cyclohexane	50	47		1	94	3.0	70-130	20	06/30/2021 2201
1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	99	3.7	70-130	20	06/30/2021 2201
Dibromochloromethane	50	48		1	97	3.9	70-130	20	06/30/2021 2201
1,2-Dibromoethane (EDB)	50	48		1	97	3.2	70-130	20	06/30/2021 2201
1,2-Dichlorobenzene	50	48		1	96	4.9	70-130	20	06/30/2021 2201
1,3-Dichlorobenzene	50	48		1	96	6.6	70-130	20	06/30/2021 2201
1,4-Dichlorobenzene	50	48		1	96	5.5	70-130	20	06/30/2021 2201
Dichlorodifluoromethane	50	39		1	79	8.8	60-140	20	06/30/2021 2201
1,1-Dichloroethane	50	45		1	89	2.9	70-130	20	06/30/2021 2201
1,2-Dichloroethane	50	46		1	92	0.28	70-130	20	06/30/2021 2201
1,1-Dichloroethene	50	46		1	92	3.9	70-130	20	06/30/2021 2201
cis-1,2-Dichloroethene	50	45		1	90	0.45	70-130	20	06/30/2021 2201
trans-1,2-Dichloroethene	50	45		1	91	1.1	70-130	20	06/30/2021 2201
1,2-Dichloropropane	50	46		1	91	1.1	70-130	20	06/30/2021 2201
cis-1,3-Dichloropropene	50	46		1	91	1.2	70-130	20	06/30/2021 2201
trans-1,3-Dichloropropene	50	46		1	92	4.6	70-130	20	06/30/2021 2201
Ethylbenzene	50	48		1	96	6.6	70-130	20	06/30/2021 2201
2-Hexanone	100	97		1	97	2.5	70-130	20	06/30/2021 2201
Isopropylbenzene	50	47		1	94	10	70-130	20	06/30/2021 2201
Methyl acetate	50	47		1	95	3.5	70-130	20	06/30/2021 2201
Methyl tertiary butyl ether (MTBE)	50	47		1	93	3.8	70-130	20	06/30/2021 2201
4-Methyl-2-pentanone	100	94		1	94	0.084	70-130	20	06/30/2021 2201
Methylcyclohexane	50	48		1	96	5.1	70-130	20	06/30/2021 2201
Methylene chloride	50	44		1	88	0.60	70-130	20	06/30/2021 2201
Styrene	50	48		1	96	4.1	70-130	20	06/30/2021 2201
1,1,2,2-Tetrachloroethane	50	48		1	96	3.5	70-130	20	06/30/2021 2201
Tetrachloroethene	50	48		1	96	7.8	70-130	20	06/30/2021 2201
Toluene	50	45		1	89	5.5	70-130	20	06/30/2021 2201
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	48		1	97	5.3	70-130	20	06/30/2021 2201
1,2,4-Trichlorobenzene	50	45		1	91	6.4	70-130	20	06/30/2021 2201
1,1,1-Trichloroethane	50	47		1	94	1.6	70-130	20	06/30/2021 2201
1,1,2-Trichloroethane	50	48		1	95	4.0	70-130	20	06/30/2021 2201

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Matrix: Solid

Sample ID: WQ97504-003

Batch: 97504 Prep Method: 5035

85

Analytical Method: 8260D

Toluene-d8

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	50	49		1	98	4.3	70-130	20	06/30/2021 2201
Trichlorofluoromethane	50	44		1	89	4.6	70-130	20	06/30/2021 2201
Vinyl chloride	50	43		1	87	4.3	70-130	20	06/30/2021 2201
Xylenes (total)	100	96		1	96	5.5	70-130	20	06/30/2021 2201
Surrogate	Q % R		eptance _imit						
Bromofluorobenzene	94	4	7-138			•	•		
1,2-Dichloroethane-d4	89	5	3-142						

68-124

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97674-001 Batch: 97674

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND	1	3.0	1.0	ug/L	07/01/2021 2149
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	103	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97674-002 Batch: 97674 Analytical Method: 8260D (SIM) Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) (Ω Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	45	1	90	70-130	07/01/2021 2033
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	114	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97802-001 Batch: 97802 Analytical Method: 8260D Matrix: Solid Prep Method: 5035 High

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Ethylbenzene	ND	1	250	100	ug/kg	07/02/2021 1643
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	97	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	83	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97802-002 Batch: 97802

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035 High

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethylbenzene	2500	2600	1	104	70-130	07/02/2021 1619
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	89	47-138				
1,2-Dichloroethane-d4	83	53-142				
Toluene-d8	84	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97945-001 Batch: 97945

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	8.0	ug/kg	07/06/2021 1017
Benzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Bromodichloromethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Bromoform	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	07/06/2021 1017
Carbon disulfide	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chloroform	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chloromethane (Methyl chloride)	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
Cyclohexane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
1,1-Dichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
cis-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
trans-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
cis-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Ethylbenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
2-Hexanone	ND		1	10	4.0	ug/kg	07/06/2021 1017
Isopropylbenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Methyl acetate	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Methyl tertiary butyl ether (MTBE)	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
4-Methyl-2-pentanone	ND		1	10	4.0	ug/kg	07/06/2021 1017
Methylcyclohexane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Methylene chloride	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Styrene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Toluene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2,4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
					-	. 5 5	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97945-001 Batch: 97945

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Trichlorofluoromethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Vinyl chloride	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
Xylenes (total)	ND		1	10	4.0	ug/kg	07/06/2021 1017
Surrogate	Q % Red	Ac	ceptance Limit				
Bromofluorobenzene	112		47-138				
1,2-Dichloroethane-d4	94		53-142				
Toluene-d8	103		68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97945-002 Batch: 97945

Matrix: Solid Prep Method: 5035

	Daten.	7/743
Analytical	Method:	8260D

	Spike					0.5	
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	100	120		1	117	60-140	07/06/2021 0953
Benzene	50	46		1	93	70-130	07/06/2021 0953
Bromodichloromethane	50	48		1	95	70-130	07/06/2021 0953
Bromoform	50	51		1	103	70-130	07/06/2021 0953
Bromomethane (Methyl bromide)	50	42		1	85	70-130	07/06/2021 0953
2-Butanone (MEK)	100	100		1	100	60-140	07/06/2021 0953
Carbon disulfide	50	45		1	90	70-130	07/06/2021 0953
Carbon tetrachloride	50	47		1	94	70-130	07/06/2021 0953
Chlorobenzene	50	49		1	97	70-130	07/06/2021 0953
Chloroethane	50	48		1	96	70-130	07/06/2021 0953
Chloroform	50	44		1	88	70-130	07/06/2021 0953
Chloromethane (Methyl chloride)	50	45		1	91	60-140	07/06/2021 0953
Cyclohexane	50	44		1	88	70-130	07/06/2021 0953
1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	97	70-130	07/06/2021 0953
Dibromochloromethane	50	49		1	98	70-130	07/06/2021 0953
1,2-Dibromoethane (EDB)	50	49		1	98	70-130	07/06/2021 0953
1,2-Dichlorobenzene	50	48		1	96	70-130	07/06/2021 0953
1,3-Dichlorobenzene	50	49		1	98	70-130	07/06/2021 0953
1,4-Dichlorobenzene	50	48		1	97	70-130	07/06/2021 0953
Dichlorodifluoromethane	50	49		1	98	60-140	07/06/2021 0953
1,1-Dichloroethane	50	44		1	87	70-130	07/06/2021 0953
1,2-Dichloroethane	50	45		1	90	70-130	07/06/2021 0953
1,1-Dichloroethene	50	45		1	89	70-130	07/06/2021 0953
cis-1,2-Dichloroethene	50	44		1	87	70-130	07/06/2021 0953
trans-1,2-Dichloroethene	50	44		1	88	70-130	07/06/2021 0953
1,2-Dichloropropane	50	46		1	91	70-130	07/06/2021 0953
cis-1,3-Dichloropropene	50	45		1	91	70-130	07/06/2021 0953
trans-1,3-Dichloropropene	50	48		1	96	70-130	07/06/2021 0953
Ethylbenzene	50	49		1	98	70-130	07/06/2021 0953
2-Hexanone	100	100		1	102	70-130	07/06/2021 0953
Isopropylbenzene	50	49		1	99	70-130	07/06/2021 0953
Methyl acetate	50	44		1	88	70-130	07/06/2021 0953
Methyl tertiary butyl ether (MTBE)	50	42		1	84	70-130	07/06/2021 0953
4-Methyl-2-pentanone	100	90		1	90	70-130	07/06/2021 0953
Methylcyclohexane	50	45		1	90	70-130	07/06/2021 0953
Methylene chloride	50	42		1	84	70-130	07/06/2021 0953
Styrene	50	49		1	97	70-130	07/06/2021 0953
1,1,2,2-Tetrachloroethane	50	46		1	92	70-130	07/06/2021 0953
Tetrachloroethene	50	49		1	98	70-130	07/06/2021 0953
Toluene	50	46		1	92	70-130	07/06/2021 0953
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	44		1	87	70-130	07/06/2021 0953
1,2,4-Trichlorobenzene	50	47		1	93	70-130	07/06/2021 0953
1,1,1-Trichloroethane	50	47		1	94	70-130	07/06/2021 0953
1,1,2-Trichloroethane	50	48		1	95	70-130	07/06/2021 0953

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ97945-002 Batch: 97945

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	51	1	102	70-130	07/06/2021 0953
Trichlorofluoromethane	50	51	1	101	70-130	07/06/2021 0953
Vinyl chloride	50	51	1	103	70-130	07/06/2021 0953
Xylenes (total)	100	98	1	98	70-130	07/06/2021 0953
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	106	47-138				
1,2-Dichloroethane-d4	99	53-142				
Toluene-d8	98	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98213-001 Batch: 98213

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/08/2021 0930
Benzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Bromoform	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/08/2021 0930
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/08/2021 0930
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Chloroethane	ND		1	2.0	0.40	ug/L	07/08/2021 0930
Chloroform	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/08/2021 0930
Cyclohexane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/08/2021 0930
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
2-Hexanone	ND		1	10	2.0	ug/L	07/08/2021 0930
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Methyl acetate	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/08/2021 0930
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/08/2021 0930
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/08/2021 0930
Methylene chloride	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Styrene	ND		1	1.0	0.41	ug/L	07/08/2021 0930
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Toluene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/08/2021 0930
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98213-001 Batch: 98213

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Vinyl chloride	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Xylenes (total)	ND		1	1.0	0.40	ug/L	07/08/2021 0930
Surrogate	Q % Red	Ac	ceptance Limit				
Bromofluorobenzene	97		70-130				
1,2-Dichloroethane-d4	99		70-130				
Toluene-d8	96		70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98213-002 Batch: 98213 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Spike						
Donomotor	Amount	Result	0	D.11	0/ Dan	%Rec	Analysis Data
Parameter	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	110		1	105	60-140	07/08/2021 0810
Benzene	50	48		1	95	70-130	07/08/2021 0810
Bromodichloromethane	50	47		1	93	70-130	07/08/2021 0810
Bromoform	50	44		1	88	70-130	07/08/2021 0810
Bromomethane (Methyl bromide)	50	40		1	80	70-130	07/08/2021 0810
2-Butanone (MEK)	100	110		1	108	70-130	07/08/2021 0810
Carbon disulfide	50	48		1	95	70-130	07/08/2021 0810
Carbon tetrachloride	50	47		1	94	70-130	07/08/2021 0810
Chlorobenzene	50	46		1	91	70-130	07/08/2021 0810
Chloroethane	50	42		1	85	70-130	07/08/2021 0810
Chloroform	50	47		1	94	70-130	07/08/2021 0810
Chloromethane (Methyl chloride)	50	42		1	85	60-140	07/08/2021 0810
Cyclohexane	50	42		1	84	70-130	07/08/2021 0810
1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	99	70-130	07/08/2021 0810
Dibromochloromethane	50	46		1	92	70-130	07/08/2021 0810
1,2-Dibromoethane (EDB)	50	46		1	91	70-130	07/08/2021 0810
1,2-Dichlorobenzene	50	48		1	97	70-130	07/08/2021 0810
1,3-Dichlorobenzene	50	47		1	95	70-130	07/08/2021 0810
1,4-Dichlorobenzene	50	46		1	92	70-130	07/08/2021 0810
Dichlorodifluoromethane	50	42		1	85	60-140	07/08/2021 0810
1,1-Dichloroethane	50	46		1	92	70-130	07/08/2021 0810
1,2-Dichloroethane	50	46		1	92	70-130	07/08/2021 0810
1,1-Dichloroethene	50	44		1	88	70-130	07/08/2021 0810
cis-1,2-Dichloroethene	50	46		1	93	70-130	07/08/2021 0810
trans-1,2-Dichloroethene	50	46		1	91	70-130	07/08/2021 0810
1,2-Dichloropropane	50	45		1	89	70-130	07/08/2021 0810
cis-1,3-Dichloropropene	50	46		1	93	70-130	07/08/2021 0810
trans-1,3-Dichloropropene	50	49		1	98	70-130	07/08/2021 0810
Ethylbenzene	50	45		1	91	70-130	07/08/2021 0810
2-Hexanone	100	100		1	104	70-130	07/08/2021 0810
Isopropylbenzene	50	45		1	91	70-130	07/08/2021 0810
Methyl acetate	50	46		1	92	70-130	07/08/2021 0810
Methyl tertiary butyl ether (MTBE)	50	48		1	95	70-130	07/08/2021 0810
4-Methyl-2-pentanone	100	94		1	94	70-130	07/08/2021 0810
Methylcyclohexane	50	46		1	92	70-130	07/08/2021 0810
Methylene chloride	50	44		1	88	70-130	07/08/2021 0810
Styrene	50	46		1	92	70-130	07/08/2021 0810
1,1,2,2-Tetrachloroethane	50	50		1	100	70-130	07/08/2021 0810
Tetrachloroethene	50	45		1	90	70-130	07/08/2021 0810
Toluene	50	46		1	91	70-130	07/08/2021 0810
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	47		1	95	70-130	07/08/2021 0810
1,2,4-Trichlorobenzene	50	50		1	99	70-130	07/08/2021 0810
1,1,1-Trichloroethane	50	46		1	92	70-130	07/08/2021 0810
1,1,2-Trichloroethane	50	44		1	88	70-130	07/08/2021 0810
.,.,2 111011101001111110	00			•	55	, 5 150	0770072021 0010

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98213-002 Batch: 98213

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	44	1	89	70-130	07/08/2021 0810
Trichlorofluoromethane	50	46	1	92	70-130	07/08/2021 0810
Vinyl chloride	50	43	1	85	70-130	07/08/2021 0810
Xylenes (total)	100	88	1	88	70-130	07/08/2021 0810
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	89	70-130				
1,2-Dichloroethane-d4	94	70-130				
Toluene-d8	89	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98260-001 Batch: 98260 Analytical Method: 8260D Matrix: Solid Prep Method: 5035 High

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Xylenes (total)	ND	1	500	200	ug/kg	07/02/2021 1643
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	97	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	83	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98260-002 Batch: 98260

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035 High

Parameter	Spike Amount (ug/kg)	Result (ug/kg) (Q Dil	% Rec	%Rec Limit	Analysis Date
Xylenes (total)	5000	5100	1	101	70-130	07/02/2021 1619
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	89	47-138				
1,2-Dichloroethane-d4	83	53-142				
Toluene-d8	84	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98336-001 Batch: 98336

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/08/2021 2311
Benzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Bromoform	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/08/2021 2311
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/08/2021 2311
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Chloroethane	ND		1	2.0	0.40	ug/L	07/08/2021 2311
Chloroform	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/08/2021 2311
Cyclohexane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/08/2021 2311
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
2-Hexanone	ND		1	10	2.0	ug/L	07/08/2021 2311
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Methyl acetate	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/08/2021 2311
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/08/2021 2311
Methylene chloride	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Styrene	ND		1	1.0	0.41	ug/L	07/08/2021 2311
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Toluene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/08/2021 2311
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L ug/L	07/08/2021 2311
1,1,2-THORIOTOCHIANE	IND		1	1.0	0.40	ug/L	07/00/2021 2311

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Sample ID: WQ98336-001 Batch: 98336

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Vinyl chloride	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Xylenes (total)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Surrogate	Q % Red	A	cceptance Limit				
Bromofluorobenzene	94		70-130				
1,2-Dichloroethane-d4	102		70-130				
Toluene-d8	97		70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98336-002 Batch: 98336 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Spike					0/ D		
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date	
Acetone	100	69		1	69	60-140	07/08/2021 2014	
Benzene	50	48		1	96	70-130	07/08/2021 2014	
Bromodichloromethane	50	49		1	97	70-130	07/08/2021 2014	
Bromoform	50	51		1	102	70-130	07/08/2021 2014	
Bromomethane (Methyl bromide)	50	52		1	103	70-130	07/08/2021 2014	
2-Butanone (MEK)	100	91		1	91	70-130	07/08/2021 2014	
Carbon disulfide	50	43		1	87	70-130	07/08/2021 2014	
Carbon tetrachloride	50	45		1	90	70-130	07/08/2021 2014	
Chlorobenzene	50	47		1	93	70-130	07/08/2021 2014	
Chloroethane	50	53		1	107	70-130	07/08/2021 2014	
Chloroform	50	49		1	99	70-130	07/08/2021 2014	
Chloromethane (Methyl chloride)	50	60		1	120	60-140	07/08/2021 2014	
Cyclohexane	50	44		1	87	70-130	07/08/2021 2014	
1,2-Dibromo-3-chloropropane (DBCP)	50	54		1	109	70-130	07/08/2021 2014	
Dibromochloromethane	50	49		1	98	70-130	07/08/2021 2014	
1,2-Dibromoethane (EDB)	50	51		1	102	70-130	07/08/2021 2014	
1,2-Dichlorobenzene	50	50		1	99	70-130	07/08/2021 2014	
1,3-Dichlorobenzene	50	47		1	95	70-130	07/08/2021 2014	
1,4-Dichlorobenzene	50	47		1	93	70-130	07/08/2021 2014	
Dichlorodifluoromethane	50	64		1	128	60-140	07/08/2021 2014	
1,1-Dichloroethane	50	48		1	97	70-130	07/08/2021 2014	
1,2-Dichloroethane	50	50		1	101	70-130	07/08/2021 2014	
1,1-Dichloroethene	50	44		1	88	70-130	07/08/2021 2014	
cis-1,2-Dichloroethene	50	48		1	95	70-130	07/08/2021 2014	
trans-1,2-Dichloroethene	50	46		1	93	70-130	07/08/2021 2014	
1,2-Dichloropropane	50	49		1	99	70-130	07/08/2021 2014	
cis-1,3-Dichloropropene	50	51		1	102	70-130	07/08/2021 2014	
trans-1,3-Dichloropropene	50	50		1	100	70-130	07/08/2021 2014	
Ethylbenzene	50	46		1	92	70-130	07/08/2021 2014	
2-Hexanone	100	92		1	92	70-130	07/08/2021 2014	
Isopropylbenzene	50	48		1	97	70-130	07/08/2021 2014	
Methyl acetate	50	62		1	124	70-130	07/08/2021 2014	
Methyl tertiary butyl ether (MTBE)	50	47		1	94	70-130	07/08/2021 2014	
4-Methyl-2-pentanone	100	120		1	118	70-130	07/08/2021 2014	
Methylcyclohexane	50	43		1	86	70-130	07/08/2021 2014	
Methylene chloride	50	47		1	93	70-130	07/08/2021 2014	
Styrene	50	51		1	102	70-130	07/08/2021 2014	
1,1,2,2-Tetrachloroethane	50	53		1	107	70-130	07/08/2021 2014	
Tetrachloroethene	50	44		1	88	70-130	07/08/2021 2014	
Toluene	50	46		1	92	70-130	07/08/2021 2014	
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	43		1	87	70-130	07/08/2021 2014	
1,2,4-Trichlorobenzene	50	54		1	107	70-130	07/08/2021 2014	
1,1,1-Trichloroethane	50	46		1	93	70-130	07/08/2021 2014	
1,1,2-Trichloroethane	50	49		1	99	70-130	07/08/2021 2014	
.,.,2		• •		•	.,	. 5 . 5 5	3.,33,2021 2014	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98336-002 Batch: 98336

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

7 in any troat motifical ozooz						
Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	45	1	90	70-130	07/08/2021 2014
Trichlorofluoromethane	50	44	1	88	70-130	07/08/2021 2014
Vinyl chloride	50	56	1	111	70-130	07/08/2021 2014
Xylenes (total)	100	97	1	97	70-130	07/08/2021 2014
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	95	70-130				
1,2-Dichloroethane-d4	94	70-130				
Toluene-d8	88	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98390-001 Batch: 98390

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/09/2021 1004
Benzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Bromoform	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/09/2021 1004
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/09/2021 1004
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Chloroethane	ND		1	2.0	0.40	ug/L	07/09/2021 1004
Chloroform	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/09/2021 1004
Cyclohexane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/09/2021 1004
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
2-Hexanone	ND		1	10	2.0	ug/L	07/09/2021 1004
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Methyl acetate	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/09/2021 1004
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/09/2021 1004
Methylene chloride	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Styrene	ND		1	1.0	0.41	ug/L	07/09/2021 1004
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Toluene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/09/2021 1004
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98390-001 Batch: 98390

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Vinyl chloride	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Xylenes (total)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Surrogate	Q % Rec	Ac	cceptance Limit				
Bromofluorobenzene	104		70-130				
1,2-Dichloroethane-d4	110		70-130				
Toluene-d8	107		70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98390-002 Batch: 98390 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

Amount Result Parameter (ug/L) (ug/L) Q Dil % Rec	Limit Analysis Date	
Acetone 100 95 1 95	60-140 07/09/2021 0829	
Benzene 50 52 1 104	70-130 07/09/2021 0829	
Bromodichloromethane 50 54 1 108	70-130 07/09/2021 0829	
Bromoform 50 50 1 100	70-130 07/09/2021 0829	
Bromomethane (Methyl bromide) 50 56 1 112	70-130 07/09/2021 0829	
2-Butanone (MEK) 100 110 1 106	70-130 07/09/2021 0829	
Carbon disulfide 50 61 1 121	70-130 07/09/2021 0829	
Carbon tetrachloride 50 54 1 108	70-130 07/09/2021 0829	
Chlorobenzene 50 50 1 101	70-130 07/09/2021 0829	
Chloroethane 50 56 1 112	70-130 07/09/2021 0829	
Chloroform 50 53 1 106	70-130 07/09/2021 0829	
Chloromethane (Methyl chloride) 50 60 1 120	60-140 07/09/2021 0829	
Cyclohexane 50 57 1 113	70-130 07/09/2021 0829	
1,2-Dibromo-3-chloropropane (DBCP) 50 46 1 91	70-130 07/09/2021 0829	
Dibromochloromethane 50 55 1 111	70-130 07/09/2021 0829	
1,2-Dibromoethane (EDB) 50 53 1 106	70-130 07/09/2021 0829	
1,2-Dichlorobenzene 50 50 1 99	70-130 07/09/2021 0829	
1,3-Dichlorobenzene 50 51 1 102	70-130 07/09/2021 0829	
1,4-Dichlorobenzene 50 50 1 99	70-130 07/09/2021 0829	
Dichlorodifluoromethane 50 56 1 113	60-140 07/09/2021 0829	
1,1-Dichloroethane 50 54 1 108	70-130 07/09/2021 0829	
1,2-Dichloroethane 50 53 1 106	70-130 07/09/2021 0829	
1,1-Dichloroethene 50 52 1 104	70-130 07/09/2021 0829	
cis-1,2-Dichloroethene 50 53 1 106	70-130 07/09/2021 0829	
trans-1,2-Dichloroethene 50 55 1 109	70-130 07/09/2021 0829	
1,2-Dichloropropane 50 53 1 106	70-130 07/09/2021 0829	
cis-1,3-Dichloropropene 50 55 1 111	70-130 07/09/2021 0829	
trans-1,3-Dichloropropene 50 57 1 114	70-130 07/09/2021 0829	
Ethylbenzene 50 51 1 102	70-130 07/09/2021 0829	
2-Hexanone 100 120 1 123	70-130 07/09/2021 0829	
Isopropylbenzene 50 51 1 103	70-130 07/09/2021 0829	
Methyl acetate 50 62 1 123	70-130 07/09/2021 0829	
Methyl tertiary butyl ether (MTBE) 50 55 1 111	70-130 07/09/2021 0829	
4-Methyl-2-pentanone 100 120 1 120	70-130 07/09/2021 0829	
Methylcyclohexane 50 51 1 103	70-130 07/09/2021 0829	
Methylene chloride 50 53 1 106	70-130 07/09/2021 0829	
Styrene 50 54 1 108	70-130 07/09/2021 0829	
1,1,2,2-Tetrachloroethane 50 54 1 108	70-130 07/09/2021 0829	
Tetrachloroethene 50 49 1 99	70-130 07/09/2021 0829	

LOQ = Limit of Quantitation

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1,2-Trichloro-1,2,2-Trifluoroethane

ND = Not detected at or above the DL

52

52

45

54

52

N = Recovery is out of criteria

104

105

90

108

104

DL = Detection Limit

Toluene

 $J = Estimated result < LOQ and <math>\geq DL$

P = The RPD between two GC columns exceeds 40%

70-130

70-130

70-130

70-130

70-130

07/09/2021 0829

07/09/2021 0829

07/09/2021 0829

07/09/2021 0829

07/09/2021 0829

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

50

50

50

50

50

^{* =} RSD is out of criteria

Sample ID: WQ98390-002 Batch: 98390

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	49	1	98	70-130	07/09/2021 0829
Trichlorofluoromethane	50	55	1	110	70-130	07/09/2021 0829
Vinyl chloride	50	57	1	114	70-130	07/09/2021 0829
Xylenes (total)	100	100	1	104	70-130	07/09/2021 0829
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	102	70-130				
1,2-Dichloroethane-d4	104	70-130				
Toluene-d8	102	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ97890-001

Batch: 97890 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	07/06/2021 0903
Ethene	ND		1	10	2.5	ug/L	07/06/2021 0903
Methane	ND		1	10	2.5	ug/L	07/06/2021 0903
Propane	ND		1	15	5.0	ug/L	07/06/2021 0903

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ97890-002

Batch: 97890 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	620		1	112	70-130	07/06/2021 0835
Ethene	520	580		1	112	70-130	07/06/2021 0835
Methane	300	320		1	109	70-130	07/06/2021 0835
Propane	810	890		1	110	70-130	07/06/2021 0835

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCSD

Sample ID: WQ97890-003

Batch: 97890 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Ethane	550	630		1	113	1.3	70-130	30	07/06/2021 0849
Ethene	520	580		1	113	1.3	70-130	30	07/06/2021 0849
Methane	300	320		1	110	0.88	70-130	30	07/06/2021 0849
Propane	810	910		1	113	2.2	70-130	30	07/06/2021 0849

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ98028-001

Batch: 98028 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	07/07/2021 0855
Ethene	ND		1	10	2.5	ug/L	07/07/2021 0855
Methane	ND		1	10	2.5	ug/L	07/07/2021 0855
Propane	ND		1	15	5.0	ug/L	07/07/2021 0855

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and \geq DL

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ98028-002

Batch: 98028 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	610		1	110	70-130	07/07/2021 0841
Ethene	520	570		1	110	70-130	07/07/2021 0841
Methane	300	320		1	108	70-130	07/07/2021 0841
Propane	810	890		1	109	70-130	07/07/2021 0841

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

PACE ANALYTICAL SERVICES, LLC

106 Vantage Point Drive · West Columbia, SC 29172

W Lot # Bar Code WF26008 12281 SQ(mus Quote No. OC Requirements (Specify) 9 TATA (ATTO STATE OF Number a Carthrian com Sec. 28. Safe Date Saria Sale Analysis (Attach list if more space is needed) □ Unknow 4. Laturalogy received by Children Child Telephone No. 1 E-meil P.) DY DSI L.P.S. F. U.C. Y. □ Polson 50500 722N 055/1 Skin Infant 11'd'D 21 W Telephone No. 803-791-9700 Fax No. 803-791-9111 5,00A A(Non-Hazand III) Renemable Possible Hazard identification PARTY. gy sees \times No of Containers by Preservative Type Acres And And Breek Shire HOPW www.pacelabs.com S. Received by 2. Received by Received by 3 124 PONH юван saraby. Betom to Client of Disposal by Lab 1256 Darley S.C. (APPSCFL) 1, Stein Meyor 3 Make 70.00 pens Sampler's Synature TE SEAT quoduon-n quo-e B C:25.21 d) T 3 x Tiskud Sample Disposal Printed Nergi Colection Time (MMRery) 325 21 (79.45 6252109.30 1740 18:30 17.00 77 12.15 500 Date 18.0 0.17 Parlingut St. 146 Turn Around Time Required (Pitarità apprensi required for expedited IAT.) 45% 2000 as | 750 6-24.21 1211:0 12/12.0 12421 12120 0.25.2 1342 Cafection Date(3) GATHERY CONSUCTIVITY (AC. P.O. No. International (Containers for each sample may be concluded on one line.) 0-1-5 DP-DC-20-21-GIV

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINIX Floid/Glien Copy

Note: All samples are retained for four weeks from receipt

unless other arrangements are made.

Document Number: ME009N2-01

≷

Temp Blank

Floragal Temps.

too Pack

Yes

Received on ico (Chole)

LAS USE OWLY

2. Refindushed by

4. Refinguished by

Project NO. 160 378. 2 Service 10 / Description

1990 West Oak

Unsietta

Proport Name UCO FOCK

7-5

38-102-S

-106

3

300

102

88-108-50 CI-3

36-103-80

8-101-55-(1-3)

201-10-11-83

105

0

8

20-20

Rush (Specify)

n.Standard

Face Analytical "

COMPANY CONTRACT WF26008 Lot # Bar Cade Number 122758 Oucte No. OC Requirements (Specify) Time indicole shire Deathreon.com 왕 Anelysis (Attach list if more apare is needed) mwonship D Ti Polson Telephone No. / E-mail 675170 128 N 1096 R C Skin Instant a MIS 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 200V PACE ANALYTICAL SERVICES, LLC Posytble Hazard Identification 🗆 Flammable possity possity NH SOUS >< No of Containers by Preservative Type HOW www.pacelabs.com Brooksture J. Non-Hazard f. Received by $G_{\mathcal{O}}$ ron есин MSS2M undig: Garning Disposar A Nesposar by Lab Tolking Hersiell SON. FORE Assessing Matte Wary Ann Sympler's Signature G-25-24 Report to Conject x Toffred Windships Cachmin C تت Sample Disposel Printed Marrie Caleofor Time (MStary) 3 3 3 1.45 ury Around Time Required (Prior tab approval required for expedited INT.) Sulta 20006 PRETHEON CONSICTIONTS, INC. 17.57.5 1251.07 1990 West Oak Parkury Ste. 1000 1252.0 Colhatian Date(s) P.C. No. (Contakters for each sample may be combined on one fina.) Instructions

DISTRIBUTION: WHITE & YELLOW-Rolum to (aboratory with Samola(s); PINK-RelaidNeal Octor

Note: All samples are retained for four weeks from receipt

uniess other arrangements are made.

Document Number: ME003N2-01

Z L

Terrip Disnk

Receipt Temp.

See Pack

ş

E S

Received on Ice (Circle)

L'AB USE ONLY

Time .

Control of the contro

Sarans,

4. Laboratory renewed by

F16:58:31

Time

dalo

Roceived by

Standard ... Augh (Specify

1. Reinquished of

2. Refroughed

8. Received by

154 (all 35)

3. Relinquished by Relinquished by

Time

Oele

Project No.

Clarithe

Project Name

Sample ID / Description

EB-01-06252

N. S. (1-2)

1 P Plank

Document Number: ME003W2-01

DISTRIBUTION: WRITE & YELLOW-Tellum to laboratory with Sample(e); PINX-FlaukClient Copy

Face Analytical "
8
1

PACE ANALYTICAL SERVICES, LLC

106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com

Number 122759

			O. C. C.	- Constitution of the Cons					
West	τ.	Report to Contact	5	RoseKchice	Total Jumped States & Confluence Com	re & centr	Cen. Com	Culons /wo.	
the construction		Carriedon's Simpania	d.		Ansive's (Attach ist if more space is needed	more space is neede	6		T .
1880 W. Dak Parkway Ste.	3	A. A		****	,			Page	1
20 O. 2. 2. 20 O. 20		X AT PANS	4	-	(235)			Lot / Bar Code	
1 .	7 2	Hann	Hannak Behar	5	v-) ?				
LOMMOX INTERMEDIATIONAL	γ							WF26008	
Project No. 02.20160378.21	P.O. No.	synadi qws	Matrix	No of Containers by Procurative Type	4			9	
(sús)	Culturian Cofec		esudiji esudiji esugi pijog enderaty	POWER FORT HOWN 12H DOWN FOSTH	7'1 0/\				- 1
Jh-MW	6.25 21 8920	9		1 %	×××				1
9 01-MW	C-25-21 1645	Ü	- ×	1 8 1	× ×				- 1
	6.25.21 1145	15 G X	χ.			-			
									1
T. CORPORATION TO COR									1
100									
a sagrity						\			
Um Around Time Required (Prior lab approve) required for expedited (RL)		Semple Disposal	Semple Disposal	Possible Hezan	Stakentikearikan Di Panenade in Sala Inflant in Poison in Unknown	oison 🗆 Unknown	OC Requirements (Spootly)	nds (Specify)	
2 8		C.25.21	3521	1. Received by			Date	Tane	
Polinquistical by		Charite	73me	2. Received by			Data	Tiraq	
3. Polinquished by		B. 25. (6) 大大(発力に	3. Received by			Dste	Типе	
f. Reunipushad by		1000 Tours 1050	15 SS	4. Laboratory received by	Misanne		6.25.5	JS School	- 1
Note: All samples are retained for four weeks from receipt unless other arrangements are made.	for four weeks from	from receipt		LAB USE ONLY Received on ice (Circle) (Yes) No. The Psuk	fee Ne Are Paux	Georgic Temp / S	S 1	Temp Blank JY □ N	
a Division parties annuity	The second second second					-			í.

PACE ANALYTICAL SERVICES, LLC

Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: EARTHCON Cooler Inspected by/date: JRG2 / 06/26/2021 Lot #: WF26008
wears of receipt: Page / Client UPS FedEx Other
Yes V No 1. Were custody seals present on the cooler?
Yes No YNA 2. If custody scals were present, were they intact and unbroken?
pri Strip ID: NA Text in the strip ID: NA
Original temperature upon receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup ID; 21-238
Method: Temperature Blank Against Bottles, IR Cun ID: 5
Mcthod of coolant: Wet Ice
Yes No No NA 3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified? PM was Notified by: phone / email / face-to-face (circle one).
Yes No VNA4. Is the commercial courier's packing slip attached to this form?
3. Were proper custody procedures (relinguished/received) followed?
6. Were sample IDs listed on the COC?
Yes No 7. Were sample !Ds listed on all sample containers?
Yes No 8. Was collection date & time listed on the COC?
✓ Yes No 9. Was collection data & time listed on all sample containers?
10. Did all container label information (ID, date, time) agree with the COC2
Yes No II. Were tests to be performed listed on the COC?
Yes No 12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, fids on, etc.)?
✓ Yes No 13. Was adequate sample volume available?
Yes No 14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
Yes No 15. Were any samples containers missing excess (circle one) samples Not listed on COC?
Yes No NA 16. For VOA and RSK-175 samples, were bubbles present > "pea-size" (¼" or 6mm in diameter)
m my or all YOA Viais:
✓ Yes No NA 17. Were all DRO/metals/nutrient samples received at a pH of < 22
V res No NA 18. Were all cyanide samples received at a pH > 12 and cyled a second sec
Yes Not
residual Cito Ing
Yes No
position in LiMS?
the quote training instead on the container laber? If yes, Quote #
annyte(a) medifectly preserved of with headenace \
were received incorrectly preserved and were adjusted accordingly implication of preservation NA and the preservation of prese
ample(s) NA
were received with bubbles >6 mm in diameter.
were received with TRC > 0.5 mg/L (If #19 is $n\sigma$) and were ljusted accordingly in sample receiving with sodium thiosulfate (Na _z S _z O ₃) with Shealy ID: NA
R barcode labels applied by: JRG2 Date: 6/26/21
omments: EXCESS: DP-04-10-11-SS WAS NOT ON CHAIN, MW-4D & MW-1D HAD 1 500mL 1 250 H2SO4 AND A CLIENT PROVIDED
IIS WAS NOT LISTED ON COC

Report of Analysis

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062 Attention: Tiffany Messier

Project Name: Lennox International Project Number: 02.20160378.21

Lot Number:WF26011

Date Completed:10/19/2021 Revision Date: 10/19/2021

10/19/2021 10:21 AM Approved and released by: Project Manager II: **Lucas Odom**

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

PACE ANALYTICAL SERVICES, LLC

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative EarthCon Consultants, Inc. Lot Number: WF26011

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample results (including LOQ and DL if requested) are corrected for dry weight unless flagged with a "W" qualifier.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

This report supersedes all other versions of the same lot number.

Dissolved Gases

The following samples were received with solid in the sample vial: WF26011-001, WF26011-004, WF26011-007, WF26011-017. The liquid was decanted from vial and analyzed on instrument.

VOCs by GC/MS

Internal standard response for the following sample exceeded the lower control limit: WF26011-005. The sample was re-analyzed with concurring results. As such, the sample results may be biased high. The original set of data has been reported

Reanalysis of the following sample was performed outside of the analytical holding time: WF26011-014. The sample was initially analyzed within hold time at a 5x but needed to be re-analyzed at a lower dilution. Re-analysis was performed at a 1x.

Report Revision 10/19/21

Per client request, sample -012 ID has been changed to reflect correct ID.

PACE ANALYTICAL SERVICES, LLC

Sample Summary EarthCon Consultants, Inc.

Lot Number: WF26011

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	DP-08-20-GW	Aqueous	06/25/2021 1045	06/25/2021
002	DP-10 (1-3)-SS	Solid	06/25/2021 1220	06/25/2021
003	DP-10 (10-11)-SS	Solid	06/25/2021 1230	
004	DP-04-20-GW	Aqueous	06/25/2021 1150	06/25/2021
005	DP-05 (1-3')-SS	Solid	06/25/2021 1315	06/25/2021
006	DP-05 (10-11')-SS	Solid	06/25/2021 1330	06/25/2021
007	DP-10-20-GW	Aqueous	06/25/2021 1245	06/25/2021
800	DP-07 (1-3)-SS	Solid	06/25/2021 1500	06/25/2021
009	DP-07 (10-11)-SS	Solid	06/25/2021 1510	06/25/2021
010	DP-05-20-GW	Aqueous	06/25/2021 1410	06/25/2021
011	DP-09 (1-3)-SS	Solid	06/25/2021 1540	06/25/2021
012	DUP-02-SO	Solid	06/25/2021	06/25/2021
013	DP-09 (10-11)-SS	Solid	06/25/2021 1545	06/25/2021
014	DP-07-20-21-GW	Aqueous	06/25/2021 1520	06/25/2021
015	DP-11 (10-11)-SS	Solid	06/25/2021 1650	06/25/2021
016	DP-11 (20-21)-SS	Solid	06/25/2021 1715	06/25/2021
017	DP-09 (20-21)GW	Aqueous	06/25/2021 1600	06/25/2021

(17 samples)

PACE ANALYTICAL SERVICES, LLC

Detection Summary EarthCon Consultants, Inc.

Lot Number: WF26011

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	DP-08-20-GW	Aqueous	Chloroform	8260D	1.1		ug/L	7
001	DP-08-20-GW	Aqueous	Methane	RSK - 175	6.7	J	ug/L	8
002	DP-10 (1-3)-SS	Solid	Acetone	8260D	43		ug/kg	9
002	DP-10 (1-3)-SS	Solid	2-Butanone (MEK)	8260D	3.8	J	ug/kg	9
004	DP-04-20-GW	Aqueous	Chloroform	8260D	0.40	J	ug/L	11
004	DP-04-20-GW	Aqueous	1,1-Dichloroethene	8260D	0.70	J	ug/L	11
004	DP-04-20-GW	Aqueous	cis-1,2-Dichloroethene	8260D	12		ug/L	11
004	DP-04-20-GW	Aqueous	Tetrachloroethene	8260D	1.2		ug/L	11
004	DP-04-20-GW	Aqueous	Trichloroethene	8260D	2.6		ug/L	12
004	DP-04-20-GW	Aqueous	Ethane	RSK - 175	6.2	J	ug/L	12
004	DP-04-20-GW	Aqueous	Ethene	RSK - 175	5.2	J	ug/L	12
004	DP-04-20-GW	Aqueous	Methane	RSK - 175	16		ug/L	12
005	DP-05 (1-3')-SS	Solid	Ethylbenzene	8260D	210	J	ug/kg	13
005	DP-05 (1-3')-SS	Solid	Isopropylbenzene	8260D	8100		ug/kg	13
005	DP-05 (1-3')-SS	Solid	Methyl acetate	8260D	200	J	ug/kg	13
005	DP-05 (1-3')-SS	Solid	Xylenes (total)	8260D	3600		ug/kg	14
007	DP-10-20-GW	Aqueous	Chloroform	8260D	0.50	J	ug/L	17
007	DP-10-20-GW	Aqueous	1,1-Dichloroethene	8260D	7.2		ug/L	17
007	DP-10-20-GW	Aqueous	cis-1,2-Dichloroethene	8260D	0.66	J	ug/L	17
007	DP-10-20-GW	Aqueous	Vinyl chloride	8260D	5.5		ug/L	18
007	DP-10-20-GW	Aqueous	1,4-Dioxane	8260D (SIM)	1.6	J	ug/L	18
007	DP-10-20-GW	Aqueous	Methane	RSK - 175	64		ug/L	18
800	DP-07 (1-3)-SS	Solid	Acetone	8260D	48		ug/kg	19
800	DP-07 (1-3)-SS	Solid	Ethylbenzene	8260D	4.6	J	ug/kg	19
800	DP-07 (1-3)-SS	Solid	Isopropylbenzene	8260D	57		ug/kg	19
800	DP-07 (1-3)-SS	Solid	Methylcyclohexane	8260D	4.8	J	ug/kg	19
800	DP-07 (1-3)-SS	Solid	Xylenes (total)	8260D	7.7	J	ug/kg	20
010	DP-05-20-GW	Aqueous	cis-1,2-Dichloroethene	8260D	2.4	J	ug/L	23
010	DP-05-20-GW	Aqueous	Ethylbenzene	8260D	16		ug/L	23
010	DP-05-20-GW	Aqueous	Isopropylbenzene	8260D	690		ug/L	23
010	DP-05-20-GW	Aqueous	Xylenes (total)	8260D	410		ug/L	24
010	DP-05-20-GW	Aqueous	1,4-Dioxane	8260D (SIM)	5.0		ug/L	24
010	DP-05-20-GW	Aqueous	Methane	RSK - 175	420		ug/L	24
011	DP-09 (1-3)-SS	Solid	Acetone	8260D	56		ug/kg	25
011	DP-09 (1-3)-SS	Solid	2-Butanone (MEK)	8260D	5.3	J	ug/kg	25
012	DUP-02-SO	Solid	Acetone	8260D	56		ug/kg	27
012	DUP-02-SO	Solid	2-Butanone (MEK)	8260D	5.1	J	ug/kg	27
012	DUP-02-SO	Solid	Methylene chloride	8260D	1.9	J	ug/kg	27
014	DP-07-20-21-GW	Aqueous	Chloroform	8260D	0.42	HJ	ug/L	31
014	DP-07-20-21-GW	Aqueous	1,1-Dichloroethane	8260D	1.2	Н	ug/L	31
014	DP-07-20-21-GW	Aqueous	1,1-Dichloroethene	8260D	0.79	HJ	ug/L	31
014	DP-07-20-21-GW	Aqueous	cis-1,2-Dichloroethene	8260D	14	Н	ug/L	31
014	DP-07-20-21-GW	Aqueous	Ethylbenzene	8260D	3.0	Н	ug/L	31
014	DP-07-20-21-GW	Aqueous	Isopropylbenzene	8260D	2.9	Н	ug/L	31
014	DP-07-20-21-GW	Aqueous	Tetrachloroethene	8260D	0.83	HJ	ug/L	31

Detection Summary (Continued)

Lot Number: WF26011

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
014	DP-07-20-21-GW	Aqueous	Trichloroethene	8260D	0.65	HJ	ug/L	32
014	DP-07-20-21-GW	Aqueous	Vinyl chloride	8260D	6.4	Н	ug/L	32
014	DP-07-20-21-GW	Aqueous	Xylenes (total)	8260D	8.4	Н	ug/L	32
014	DP-07-20-21-GW	Aqueous	1,4-Dioxane	8260D (SIM)	1.6	J	ug/L	32
014	DP-07-20-21-GW	Aqueous	Methane	RSK - 175	9.4	J	ug/L	32
015	DP-11 (10-11)-SS	Solid	Acetone	8260D	32		ug/kg	33
015	DP-11 (10-11)-SS	Solid	cis-1,2-Dichloroethene	8260D	26		ug/kg	33
015	DP-11 (10-11)-SS	Solid	Vinyl chloride	8260D	5.0		ug/kg	34
017	DP-09 (20-21)GW	Aqueous	Acetone	8260D	6.0	J	ug/L	37
017	DP-09 (20-21)GW	Aqueous	cis-1,2-Dichloroethene	8260D	0.91	J	ug/L	37
017	DP-09 (20-21)GW	Aqueous	Vinyl chloride	8260D	2.3		ug/L	38
017	DP-09 (20-21)GW	Aqueous	1,4-Dioxane	8260D (SIM)	21		ug/L	38
017	DP-09 (20-21)GW	Aqueous	Methane	RSK - 175	290		ug/L	38

(58 detections)

Description: DP-08-20-GW Date Sampled:06/25/2021 1045 Date Received: 06/25/2021

Laboratory ID: WF26011-001

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 0349 JDF		98336

Benzene 71-43-2 8260D ND 1.0 0.40 ug/L 1 1 1 1 1 1 1 1 1	Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Bromofichloromethane 75-27-4 8260D ND 1.0 0.40 ug/l. 1	Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Bromoform 75-25-2 8260D ND 1.0 0.40 ug/L 1 1 1 1 1 1 1 1 1	Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Paramenthane (Methyl bromide) 74-83-9 82-600 ND 0.0 0.40 ug/L 1	Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
2-Butanone (MEK)	Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Carbon disulfide 75-15-0 8260D ND 1.0 0.40 ug/L 1 Carbon tetrachioride 56-23-5 8260D ND 1.0 0.40 ug/L 1 Chlorobersene 108-90-7 8260D ND 1.0 0.40 ug/L 1 Chlorobethane 75-90-3 8260D ND 2.0 0.40 ug/L 1 Chloroform 67-66-3 8260D ND 1.0 0.40 ug/L 1 Cyclobexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-3-chloropropane 95-50-1 8260D ND 1.0	Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
Carbon telrachloride 56-23-5 8260D ND 1.0 0.40 ug/L 1 Chlorobenzene 108-90-7 8260D ND 1.0 0.40 ug/L 1 Chloroeftane 75-00-3 8260D ND 1.0 0.40 ug/L 1 Chloroeftane 67-66-3 8260D ND 1.0 0.40 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.40 ug/L 1 Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromoethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1,2-Dibrlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,3-Dichloroebnzene 154-73-1 8260D ND 1.0 0.40 ug/L	2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Chlorobenzene 108-90-7 8260D ND 1.0 0.40 ug/L 1 Chloroethane 75-00-3 8260D ND 2.0 0.40 ug/L 1 Chloroefform 67-66-3 8260D ND 1.0 0.40 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.50 ug/L 1 Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 Dibromoch-Indrogropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroethane 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichloroebanzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,4-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug	Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Chloroethane 75.00-3 8260D ND 2.0 0.40 ug/L 1 Chloroform 67.66-3 8260D 1.1 1.0 0.40 ug/L 1 Chloroform 67.66-3 8260D ND 1.0 0.50 ug/L 1 Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-dhoromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromo-schane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dibroborberzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorobenzene 75-71-8 8260D ND 1.0 0.40 ug/L </td <td>Carbon tetrachloride</td> <td>56-23-5</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chloroform 67-66-3 8260D 1.1 1.0 0.40 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.50 ug/L 1 Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromos-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloromochrane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,4-Dichloroethane 75-71-8 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.4	Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.50 ug/L 1 Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.3-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1.3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1.4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1.4-Dichlorobenzene 75-71-8 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 75-31-3 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 156-59-2 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 156-60-5 8260D ND 1.0 0.40 ug/L 1 1.2-Dichloroptopane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1.2-Dichloroptopane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1.2-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopane 10061-03-8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopa	Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloromethane (Methyl chloride) 74-87-3 8260D ND 1.0 0.50 ug/L 1 Cyclohexane 110-82-7 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1.3-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1.3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1.4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1.4-Dichlorobenzene 75-71-8 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 75-31-3 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 156-59-2 8260D ND 1.0 0.40 ug/L 1 1.1-Dichloroethane 156-60-5 8260D ND 1.0 0.40 ug/L 1 1.2-Dichloroptopane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1.2-Dichloroptopane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1.2-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopane 10061-03-8260D ND 1.0 0.40 ug/L 1 1.3-Dichloroptopa	Chloroform	67-66-3	8260D	1.1	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260D ND 1.0 0.40 ug/L 1 Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromochloromethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorodenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorotenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorotenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorotenzene 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorotenzene 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorotenzene 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorotenzene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorotenzene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichlorotenzene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1-Dichloropropane	Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50		1
Dibromochloromethane 124-48-1 8260D ND 1.0 0.40 ug/L 1 1,2-Dibromochlane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,2-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1 1,1-Dichlorodifluoromethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloropropane 10061-02-6 8260D ND	Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB) 106-93-4 8260D ND 1.0 0.40 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 Dichlorodifluoromethane 75-71-8 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroethane 156-59-2 8260D ND 1.0 0.40 ug/L 1 tans-1,2-Dichloroethane 156-60-5 8260D ND 1.0 0.40 ug/L 1 tans-1,2-Dichloroethane 156-60-5 8260D ND 1.0 0.40 ug/L 1 tans-1,2-Dichloropropane 106-10-15 8260D	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene 95-50-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1 1,3-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 1,1-Dichlorodifluoromethane 75-71-8 8260D ND 1.0 0.60 ug/L 1 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 150-60-5 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropendene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1 trans-1,3-Dichloropropene 10061-01-6 8260D ND 1.0 0.40 ug/L 1 1 trans-1,3-Dichloropropene 10041-4 8260D ND 1.0 0.	Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene 541-73-1 8260D ND 1.0 0.40 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethane 75-35-4 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroptopane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroptopane 1061-01-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroptopane 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroptopane 10061-02-6 8260D ND </td <td>1,2-Dibromoethane (EDB)</td> <td>106-93-4</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene 106-46-7 8260D ND 1.0 0.40 ug/L 1 Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1 1,1-Dichloroethane 75-34-3 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L 1 cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1 trans-1,2-Dichloroptopene 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L 1 Ethylbenzene 10041-02-6 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND	1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane 75-71-8 8260D ND 2.0 0.60 ug/L 1	1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethane 75-34-3 8260D ND 1.0 0,40 ug/L 1 1,2-Dichloroethane 107-06-2 8260D ND 1.0 0,40 ug/L 1 1,1-Dichloroethane 75-35-4 8260D ND 1.0 0,40 ug/L 1 cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0,40 ug/L 1 trans-1,2-Dichloropethene 156-60-5 8260D ND 1.0 0,40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0,40 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0,40 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0,40 ug/L 1 Ethylbenzene 100-41-4 8260D ND 1.0 0,40 ug/L 1 2-Hexanone 591-78-6 8260D ND 1.0 0,40 ug/L 1 Isopropylbenzene 98-82-8 8260D ND	1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane 107-06-2 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L 1 1,1-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1,2-Hexanone 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1 8-Heydrage 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L 1 8-Heydrage 108-87-2 8260D ND 1.0 0.40 ug/L 1	Dichlorodifluoromethane	75-71-8	8260D	ND	2.0		ug/L	1
1,1-Dichloroethene 75-35-4 8260D ND 1.0 0.40 ug/L 1 cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L 1 Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1 8sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl ethatry butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-07-2 8260D	1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene 156-59-2 8260D ND 1.0 0.40 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L 1 Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1 Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 <	1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene 156-60-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 1,2-Dichloropropane 10061-01-5 8260D ND 1.0 0.40 ug/L 1 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L 1 1 trans-1,3-Dichloropropene 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1 1 sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 1 slopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 1.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.40 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane 78-87-5 8260D ND 1.0 0.40 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260D ND 1.0 0.40 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L 1 Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L 1 Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L 1 Methylgcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND <td>cis-1,2-Dichloroethene</td> <td>156-59-2</td> <td>8260D</td> <td>ND</td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td>1</td>	cis-1,2-Dichloroethene	156-59-2	8260D	ND	1.0	0.40	ug/L	1
10061-01-5 8260D ND 1.0 0.40 ug/L 1	trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene 10061-02-6 8260D ND 1.0 0.40 ug/L 1 Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 1.0 0.40 ug/L 1 8sopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 1.0 0.40 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 1.0 0.40 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethane 127-18-4 8260D ND 1.0 0.40 ug/L 1	1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene 100-41-4 8260D ND 1.0 0.40 ug/L 1 2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L 1 Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone 591-78-6 8260D ND 10 2.0 ug/L 1 Isopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1 Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Stopropylbenzene 98-82-8 8260D ND 1.0 0.40 ug/L 1	Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate 79-20-9 8260D ND 1.0 0.40 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260D ND 1.0 0.40 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L 1 Methylcyclohexane 1108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone 108-10-1 8260D ND 10 2.0 ug/L 1 Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methylcyclohexane 108-87-2 8260D ND 5.0 0.40 ug/L 1 Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
Methylene chloride 75-09-2 8260D ND 1.0 0.40 ug/L 1 Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Styrene 100-42-5 8260D ND 1.0 0.41 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 1.0 0.40 ug/L 1 Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
Tetrachloroethene 127-18-4 8260D ND 1.0 0.40 ug/L 1	1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
-	Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40		1
	Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Date Sampled:06/25/2021 1045

Date Received: 06/25/2021

Laboratory ID: WF26011-001

Description: DP-08-20-GW Matrix: Aqueous

Run Prep Method 1 5030B	Analytical Method Dil 8260D		,	Date Analyst 0349 JDF	t Prep [Date Bato 9833			
Parameter		C. Numb		nalytical Method	Result	Q LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	<u> </u>	76-13		8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82	2-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-55	5-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-00)-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-01	I-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-69	9-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-01	1-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-20)-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Rur Q % Reco		cceptance Limits						
Bromofluorobenzene	9.	7	70-130						
1,2-Dichloroethane-d4	10	0	70-130						
Toluene-d8	10	0	70-130						

	Volatile C	rganic Co	mpounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		ysis Date Analyst /2021 0310 CJL2	Prep Date	Batch 97674			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 Accep ecovery Lim						
1.2-Dichloroethane-d4		101 40-	170					

Surrogate	Q	% Recovery	Limits
1,2-Dichloroethane-d4		101	40-170

Run Prep Method 2	Analytical Method RSK - 175		Analysis Date Analysi 07/07/2021 1118 TML	t Prep Date	Batch 98028			
Parameter		C Numl	AS Analytical per Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	4-0 RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	5-1 RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82	2-8 RSK - 175	6.7 J	10	2.5	ug/L	2
Propane		74-98	8-6 RSK - 175	ND	15	5.0	ug/L	2

Dissolved Gases

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DP-10 (1-3)-SS

Date Sampled:06/25/2021 1220 Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-002 Matrix: Solid

Batch

Sample Wt.(g)

% Solids: 90.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035	-	2021 0155 CJL2	rrep Date	97675	6.60		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	43	17	6.7	ug/kg	1
Benzene	71-43-2	8260D	ND	4.2	1.7	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.2	1.7	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.2	1.7	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.2	2.5	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	3.8 J	17	3.4	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.2	1.7	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.2	1.7	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.2	1.7	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.2	1.7	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.2	1.7	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.2	2.5	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.2	1.7	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.2	1.7	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.2	1.7	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.2	1.7	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.2	1.7	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.2	1.7	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.2	1.7	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.2	2.5	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.2	1.7	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.2	1.7	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.2	1.7	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.2	1.7	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.2	1.7	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.2	1.7	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.2	1.7	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.2	1.7	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.2	1.7	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	8.4	3.4	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.2	1.7	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.2	1.7	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.2	1.7	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.4	3.4	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.2	1.7	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.2	1.7	ug/kg	1
Styrene	100-42-5	8260D	ND	4.2	1.7	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.2	1.7	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.2	1.7	ug/kg	1
Toluene	108-88-3	8260D	ND	4.2	1.7	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-10 (1-3)-SS ate Sampled: 06/25/2021 1220

Date Sampled:06/25/2021 1220 Date Received: 06/25/2021 0/ Calida: 00.4

Matrix: Solid

Laboratory ID: WF26011-002

% Solids: 90.4 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0155 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.60		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.2	1.7	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.2	1.7	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.2	1.7	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.2	1.7	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.2	1.7	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.2	1.7	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.2	2.5	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.4	3.4	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		107	53-142						
Toluene-d8		102	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

 $\label{thm:pace-analytical-Services, LLC} \textbf{ (formerly Shealy Environmental Services, Inc.)}$

Description: DP-04-20-GW
Date Sampled:06/25/2021 1150
Date Received: 06/25/2021

Laboratory ID: WF26011-004

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1326 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.40 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	0.70 J	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	12	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	1.2	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-04-20-GW

Date Sampled:06/25/2021 1150 Date Received: 06/25/2021

Laboratory ID: WF26011-004

Matrix: Aqueous

	Volatil	e Orga	anic (Compounds	by GC/MS	5			
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1326 TML	Prep Date	Batch 98390			
D			CAS	Analytical	Describe O	1.00	DI	11-24-	D
Parameter	Al		nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroe	rnane		13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-		8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane			55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane			00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene			01-6	8260D	2.6	1.0	0.40	ug/L	1
Trichlorofluoromethane			69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride			01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		Run 1 ecovery	Accept Lim						
Bromofluorobenzene		100	70-1	30					
1,2-Dichloroethane-d4		110	70-1	30					
Toluene-d8		105	70-1	30					
	Volatile C)rgani	c Coi	mpounds by	GC/MS (S	SIM)			
Run Prep Method	Analytical Method	Dilution	Analy	sis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1	07/02/	2021 0335 CJL2	·	97674			
Donomoton			CAS	Analytical	Decult O	1.00	DI	Llusita	Divis
Parameter			nber	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-	91-1	8260D (SIM)	ND	3.0	1.0	ug/L	1
Surrogate		Run 1 ecovery	Accept Lim						
1,2-Dichloroethane-d4		105	40-1	70					

Analytical Method RSK - 175		, ,		Batch 98028			
			Result Q	LOQ	DL	Units	Run
	74-8	4-0 RSK - 175	6.2 J	10	2.5	ug/L	2
	74-8	5-1 RSK - 175	5.2 J	10	2.5	ug/L	2
	74-8	2-8 RSK - 175	16	10	2.5	ug/L	2
	74-9	8-6 RSK - 175	ND	15	5.0	ug/L	2
	,	RSK - 175 1 O Num 74-8 74-8	RSK - 175 1 07/07/2021 1134 TML CAS Analytical Number Method 74-84-0 RSK - 175 74-85-1 RSK - 175 74-82-8 RSK - 175	RSK - 175 1 07/07/2021 1134 TML CAS Analytical Number Method Result Q 74-84-0 RSK - 175 6.2 J 74-85-1 RSK - 175 5.2 J 74-82-8 RSK - 175 16	RSK - 175 1 07/07/2021 1134 TML 98028 CAS Analytical Number Method Result Q LOQ 74-84-0 RSK - 175 6.2 J 10 74-85-1 RSK - 175 5.2 J 10 74-82-8 RSK - 175 16 10	RSK - 175 1 07/07/2021 1134 TML 98028 CAS Analytical Number Method Result Q LOQ DL 74-84-0 RSK - 175 6.2 J 10 2.5 74-85-1 RSK - 175 5.2 J 10 2.5 74-82-8 RSK - 175 16 10 2.5	RSK - 175 1 07/07/2021 1134 TML 98028 CAS Analytical Number Method Result Q LOQ DL Units 74-84-0 RSK - 175 6.2 J 10 2.5 ug/L 74-85-1 RSK - 175 5.2 J 10 2.5 ug/L 74-82-8 RSK - 175 16 10 2.5 ug/L

Dissolved Gases

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \ge DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DP-05 (1-3')-SS

Date Sampled:06/25/2021 1315

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-005 Matrix: Solid

Batch

% Solids: 89.8 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS Analytical Method Dilution Analysis Date Analyst Prep Date

3 5035 High		/2021 1350 JM1		98261	6.42		
Parameter	CAS Number	Analytical Method	Result	Q LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	980	390	ug/kg	3
Benzene	71-43-2	8260D	ND	250	98	ug/kg	3
Bromodichloromethane	75-27-4	8260D	ND	250	98	ug/kg ug/kg	3
Bromoform	75-25-2	8260D	ND	250	98	ug/kg ug/kg	3
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	250	150	ug/kg ug/kg	3
2-Butanone (MEK)	78-93-3	8260D	ND	980	200	ug/kg	3
Carbon disulfide	75-15-0	8260D	ND	250	98	ug/kg	3
Carbon tetrachloride	56-23-5	8260D	ND	250	98	ug/kg	3
Chlorobenzene	108-90-7	8260D	ND	250	98	ug/kg	3
Chloroethane	75-00-3	8260D	ND	250	98	ug/kg	3
Chloroform	67-66-3	8260D	ND	250	98	ug/kg	3
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	250	150	ug/kg	3
Cyclohexane	110-82-7	8260D	ND		98	ug/kg	3
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	250	98	ug/kg	3
Dibromochloromethane	124-48-1	8260D	ND	250	98	ug/kg	3
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	250	98	ug/kg	3
1,2-Dichlorobenzene	95-50-1	8260D	ND	250	98	ug/kg	3
1,3-Dichlorobenzene	541-73-1	8260D	ND	250	98	ug/kg	3
1,4-Dichlorobenzene	106-46-7	8260D	ND	250	98	ug/kg	3
Dichlorodifluoromethane	75-71-8	8260D	ND	250	150	ug/kg	3
1,1-Dichloroethane	75-34-3	8260D	ND	250	98	ug/kg	3
1,2-Dichloroethane	107-06-2	8260D	ND	250	98	ug/kg	3
1,1-Dichloroethene	75-35-4	8260D	ND	250	98	ug/kg	3
cis-1,2-Dichloroethene	156-59-2	8260D	ND	250	98	ug/kg	3
trans-1,2-Dichloroethene	156-60-5	8260D	ND	250	98	ug/kg	3
1,2-Dichloropropane	78-87-5	8260D	ND	250	98	ug/kg	3
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	250	98	ug/kg	3
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	250	98	ug/kg	3
Ethylbenzene	100-41-4	8260D	210	J 250	98	ug/kg	3
2-Hexanone	591-78-6	8260D	ND	490	200	ug/kg	3
Isopropylbenzene	98-82-8	8260D	8100	250	98	ug/kg	3
Methyl acetate	79-20-9	8260D	200	J 250	98	ug/kg	3
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	250	98	ug/kg	3
4-Methyl-2-pentanone	108-10-1	8260D	ND	490	200	ug/kg	3
Methylcyclohexane	108-87-2	8260D	ND	250	98	ug/kg	3
Methylene chloride	75-09-2	8260D	ND	250	98	ug/kg	3
Styrene	100-42-5	8260D	ND	250	98	ug/kg	3
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	250	98	ug/kg	3
Tetrachloroethene	127-18-4	8260D	ND	250	98	ug/kg	3
Toluene	108-88-3	8260D	ND	250	98	ug/kg	3

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-05 (1-3')-SS Date Sampled:06/25/2021 1315

Date Received: 06/25/2021

Laboratory ID: WF26011-005 Matrix: Solid

% Solids: 89.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 3 5035 High	Analytical Method 8260D	Dilution 1	Analysis 07/08/202	s Date Analyst 21 1350 JM1	Prep Date	Batch 98261	Sample Wt.(g) 6.42		
Danamatan				Analytical	December 0	1.00	DI	l laite	Divis
Parameter			nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260D	ND	250	98	ug/kg	3
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	250	98	ug/kg	3
1,1,1-Trichloroethane		71-	55-6	8260D	ND	250	98	ug/kg	3
1,1,2-Trichloroethane		79-	00-5	8260D	ND	250	98	ug/kg	3
Trichloroethene		79-	01-6	8260D	ND	250	98	ug/kg	3
Trichlorofluoromethane		75-	69-4	8260D	ND	250	98	ug/kg	3
Vinyl chloride		75-	01-4	8260D	ND	250	150	ug/kg	3
Xylenes (total)		1330-	20-7	8260D	3600	490	200	ug/kg	3
Surrogate	Q %I	Run 3 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		99	47-138						
1,2-Dichloroethane-d4		117	53-142						
Toluene-d8		118	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-05 (10-11')-SS Date Sampled:06/25/2021 1330

Date Received: 06/25/2021

Laboratory ID: WF26011-006 Matrix: Solid

% Solids: 82.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	Sample Wt.(g)	
1	5035	8260D	1	07/02/2021 0217 CJL2		97675	6.97	

1 3000	02000 1 077027	2021 0217 0312		77075	0.77		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	17	6.9	ug/kg	1
Benzene	71-43-2	8260D	ND	4.3	1.7	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.3	1.7	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.3	1.7	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.3	2.6	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	17	3.5	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.3	1.7	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.3	1.7	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.3	1.7	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.3	1.7	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.3	1.7	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.3	2.6	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.3	1.7	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.3	1.7	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.3	1.7	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.3	1.7	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.3	2.6	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.3	1.7	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.3	1.7	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.3	1.7	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.3	1.7	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.3	1.7	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.3	1.7	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.3	1.7	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.3	1.7	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	8.7	3.5	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.3	1.7	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.3	1.7	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.3	1.7	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	8.7	3.5	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.3	1.7	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.3	1.7	ug/kg	1
Styrene	100-42-5	8260D	ND	4.3	1.7	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.3	1.7	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.3	1.7	ug/kg	1
Toluene	108-88-3	8260D	ND	4.3	1.7	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-05 (10-11')-SS Date Sampled:06/25/2021 1330

Date Sampled: 06/25/2021 133

Date Received: 06/25/2021

Laboratory ID: WF26011-006 Matrix: Solid

% Solids: 82.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0217 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.97		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	Δ		13-1	8260D	ND	4.3	1.7	ug/kg	1
1,2,4-Trichlorobenzene	C	120-		8260D	ND	4.3	1.7	ug/kg	1
1,1,1-Trichloroethane			55-6	8260D	ND	4.3	1.7	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.3	1.7	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.3	1.7	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.3	1.7	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.3	2.6	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	8.7	3.5	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		103	53-142						
Toluene-d8		103	68-124						

$$\begin{split} LOQ &= Limit \ of \ Quantitation \\ ND &= Not \ detected \ at \ or \ above \ the \ DL \\ H &= Out \ of \ holding \ time \end{split}$$

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Description: DP-10-20-GW

Date Sampled:06/25/2021 1245

Date Received: 06/25/2021

Laboratory ID: WF26011-007 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 5030B 8260D 1 07/09/2021 1349 TML 98390

Parameter	CAS Number	Analytical Method	Result C	2 LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	0.50 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	7.2	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	0.66 J	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-10-20-GW

Date Sampled:06/25/2021 1245 Date Received: 06/25/2021

Laboratory ID: WF26011-007

Matrix: Aqueous

	Volat	ile Orga	anic (Compounds	by GC/MS	5			
Run Prep Method 1 5030B	Analytical Method 8260D		,	rsis Date Analyst 2021 1349 TML	Prep Date	Batch 98390			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-	01-4	8260D	5.5	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limi						
Bromofluorobenzene		99	70-1	30					
1,2-Dichloroethane-d4		111	70-1	30					
Toluene-d8		106	70-1	30					
	Volatile	Organi	c Cor	npounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)		,	rsis Date Analyst 2021 0400 CJL2	Prep Date	Batch 97674			

	Volatile C	Organic (compounds by	GC/MS (S	SIIVI)			
Run Prep Method	Analytical Method	Dilution A	nalysis Date Analyst	Prep Date	Batch			
1 5030B	8260D (SIM)	1 07	7/02/2021 0400 CJL2		97674			
		CAS	S Analytical					
Parameter		Numbe	er Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	1 8260D (SIM)	1.6 J	3.0	1.0	ug/L	1
Surrogate			ceptance Limits					
1,2-Dichloroethane-d4		105	40-170					

Run Prep Method 2	Analytical Method RSK - 175		Analysis Date Analysi 07/07/2021 1030 TML	t Prep Date	Batch 98028			
Parameter		C Num	CAS Analytical ber Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	4-0 RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	5-1 RSK - 175	ND	10	2.5	ug/L	2
Methane		74-8	2-8 RSK - 175	64	10	2.5	ug/L	2
Propane		74-9	8-6 RSK - 175	ND	15	5.0	ug/L	2

Dissolved Gases

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Description: DP-07 (1-3)-SS

Date Sampled:06/25/2021 1500

Date Received: 06/25/2021

Laboratory ID: WF26011-008

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Analytic 1 5035	cal Method Dilution 8260D 1		ysis Date Analyst /2021 0240 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.49		
Parameter	Nu	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67	-64-1	8260D	48	22	8.9	ug/kg	1
Benzene	71	-43-2	8260D	ND	5.6	2.2	ug/kg	1
Bromodichloromethane	75	-27-4	8260D	ND	5.6	2.2	ug/kg	1
Bromoform	75	-25-2	8260D	ND	5.6	2.2	ug/kg	1
Bromomethane (Methyl bromide)	74	-83-9	8260D	ND	5.6	3.3	ug/kg	1
2-Butanone (MEK)	78	-93-3	8260D	ND	22	4.5	ug/kg	1
Carbon disulfide	75	-15-0	8260D	ND	5.6	2.2	ug/kg	1
Carbon tetrachloride	56	-23-5	8260D	ND	5.6	2.2	ug/kg	1
Chlorobenzene	108	-90-7	8260D	ND	5.6	2.2	ug/kg	1
Chloroethane	75	-00-3	8260D	ND	5.6	2.2	ug/kg	1
Chloroform	67	-66-3	8260D	ND	5.6	2.2	ug/kg	1
Chloromethane (Methyl chloride)	74	-87-3	8260D	ND	5.6	3.3	ug/kg	1
Cyclohexane	110	-82-7	8260D	ND	5.6	2.2	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96	-12-8	8260D	ND	5.6	2.2	ug/kg	1
Dibromochloromethane	124	-48-1	8260D	ND	5.6	2.2	ug/kg	1
1,2-Dibromoethane (EDB)	106	-93-4	8260D	ND	5.6	2.2	ug/kg	1
1,2-Dichlorobenzene	95	-50-1	8260D	ND	5.6	2.2	ug/kg	1
1,3-Dichlorobenzene	541	-73-1	8260D	ND	5.6	2.2	ug/kg	1
1,4-Dichlorobenzene	106	-46-7	8260D	ND	5.6	2.2	ug/kg	1
Dichlorodifluoromethane	75	-71-8	8260D	ND	5.6	3.3	ug/kg	1
1,1-Dichloroethane	75	-34-3	8260D	ND	5.6	2.2	ug/kg	1
1,2-Dichloroethane	107	-06-2	8260D	ND	5.6	2.2	ug/kg	1
1,1-Dichloroethene	75	-35-4	8260D	ND	5.6	2.2	ug/kg	1
cis-1,2-Dichloroethene	156	-59-2	8260D	ND	5.6	2.2	ug/kg	1
trans-1,2-Dichloroethene	156	-60-5	8260D	ND	5.6	2.2	ug/kg	1
1,2-Dichloropropane	78	-87-5	8260D	ND	5.6	2.2	ug/kg	1
cis-1,3-Dichloropropene	10061	-01-5	8260D	ND	5.6	2.2	ug/kg	1
trans-1,3-Dichloropropene	10061	-02-6	8260D	ND	5.6	2.2	ug/kg	1
Ethylbenzene	100	-41-4	8260D	4.6 J	5.6	2.2	ug/kg	1
2-Hexanone	591	-78-6	8260D	ND	11	4.5	ug/kg	1
Isopropylbenzene	98	-82-8	8260D	57	5.6	2.2	ug/kg	1
Methyl acetate	79	-20-9	8260D	ND	5.6	2.2	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634	-04-4	8260D	ND	5.6	2.2	ug/kg	1
4-Methyl-2-pentanone		-10-1	8260D	ND	11	4.5	ug/kg	1
Methylcyclohexane	108	-87-2	8260D	4.8 J	5.6	2.2	ug/kg	1
Methylene chloride	75	-09-2	8260D	ND	5.6	2.2	ug/kg	1
Styrene		-42-5	8260D	ND	5.6	2.2	ug/kg	1
1,1,2,2-Tetrachloroethane		-34-5	8260D	ND	5.6	2.2	ug/kg	1
Tetrachloroethene		-18-4	8260D	ND	5.6	2.2	ug/kg	1
Toluene		-88-3	8260D	ND	5.6	2.2	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Description: DP-07 (1-3)-SS

Date Sampled:06/25/2021 1500

Date Received: 06/25/2021

Laboratory ID: WF26011-008

Matrix: Solid

% Solids: 81.7 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 7 1 5035	Analytical Method 8260D	Dilution 1	,	sis Date Analyst 2021 0240 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.49		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	13-1	8260D	ND	5.6	2.2	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.6	2.2	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.6	2.2	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.6	2.2	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.6	2.2	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.6	2.2	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.6	3.3	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	7.7 J	11	4.5	ug/kg	1
Surrogate	Q % F	Run 1 Recovery	Accepta Limit						
Bromofluorobenzene		94	47-13	38					
1,2-Dichloroethane-d4		100	53-14	12					
Toluene-d8		108	68-12	24					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-07 (10-11)-SS Date Sampled:06/25/2021 1510

Date Received: 06/25/2021

Laboratory ID: WF26011-009

Matrix: Solid

% Solids: 82.9 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method Analyt 1 5035	ical Method Dilution 8260D 1	on Ana	lysis Date Analyst 2/2021 0303 CJL2		Batch 97675	Sample Wt.(g) 6.00		
Parameter	١	CAS lumber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	1	57-64-1	8260D	ND	20	8.0	ug/kg	1
Benzene		71-43-2	8260D	ND	5.0	2.0	ug/kg	1
Bromodichloromethane		75-27-4	8260D	ND	5.0	2.0	ug/kg	1
Bromoform		75-25-2	8260D	ND	5.0	2.0	ug/kg	1
Bromomethane (Methyl bromide)		74-83-9	8260D	ND	5.0	3.0	ug/kg	1
2-Butanone (MEK)		78-93-3	8260D	ND	20	4.0	ug/kg	1
Carbon disulfide		75-15-0	8260D	ND	5.0	2.0	ug/kg	1
Carbon tetrachloride		56-23-5	8260D	ND	5.0	2.0	ug/kg	1
Chlorobenzene	10	08-90-7	8260D	ND	5.0	2.0	ug/kg	1
Chloroethane		75-00-3	8260D	ND	5.0	2.0	ug/kg	1
Chloroform	1	67-66-3	8260D	ND	5.0	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-87-3	8260D	ND	5.0	3.0	ug/kg	1
Cyclohexane	1	10-82-7	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)		96-12-8	8260D	ND	5.0	2.0	ug/kg	1
Dibromochloromethane	1:	24-48-1	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	10	06-93-4	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichlorobenzene	1	95-50-1	8260D	ND	5.0	2.0	ug/kg	1
1,3-Dichlorobenzene	54	11-73-1	8260D	ND	5.0	2.0	ug/kg	1
1,4-Dichlorobenzene	10	06-46-7	8260D	ND	5.0	2.0	ug/kg	1
Dichlorodifluoromethane		75-71-8	8260D	ND	5.0	3.0	ug/kg	1
1,1-Dichloroethane		75-34-3	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichloroethane	10	07-06-2	8260D	ND	5.0	2.0	ug/kg	1
1,1-Dichloroethene		75-35-4	8260D	ND	5.0	2.0	ug/kg	1
cis-1,2-Dichloroethene	1!	56-59-2	8260D	ND	5.0	2.0	ug/kg	1
trans-1,2-Dichloroethene	1!	56-60-5	8260D	ND	5.0	2.0	ug/kg	1
1,2-Dichloropropane		78-87-5	8260D	ND	5.0	2.0	ug/kg	1
cis-1,3-Dichloropropene	100	51-01-5	8260D	ND	5.0	2.0	ug/kg	1
trans-1,3-Dichloropropene		51-02-6	8260D	ND	5.0	2.0	ug/kg	1
Ethylbenzene	10	00-41-4	8260D	ND	5.0	2.0	ug/kg	1
2-Hexanone	59	91-78-6	8260D	ND	10	4.0	ug/kg	1
Isopropylbenzene	1	98-82-8	8260D	ND	5.0	2.0	ug/kg	1
Methyl acetate		79-20-9	8260D	ND	5.0	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	16	34-04-4	8260D	ND	5.0	2.0	ug/kg	1
4-Methyl-2-pentanone	10	08-10-1	8260D	ND	10	4.0	ug/kg	1
Methylcyclohexane	10	08-87-2	8260D	ND	5.0	2.0	ug/kg	1
Methylene chloride		75-09-2	8260D	ND	5.0	2.0	ug/kg	1
Styrene		00-42-5	8260D	ND	5.0	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-34-5	8260D	ND	5.0	2.0	ug/kg	1
Tetrachloroethene		27-18-4	8260D	ND	5.0	2.0	ug/kg	1
Toluene		08-88-3	8260D	ND	5.0	2.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-07 (10-11)-SS Date Sampled:06/25/2021 1510

Date Sampled:06/25/2021 1510

Date Received: 06/25/2021

Laboratory ID: WF26011-009 Matrix: Solid

% Solids: 82.9 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 21 0303 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.00		
Doromotor				Analytical	Dogult O	1.00	DL	Unito	Dun
Parameter			nber	Method	Result Q	LOQ		Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260D	ND	5.0	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.0	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.0	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.0	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.0	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.0	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.0	3.0	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.0	ug/kg	1
Surrogate	Q % I	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		101	53-142						
Toluene-d8		107	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-05-20-GW Date Sampled:06/25/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26011-010

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	5	07/09/2021 1724 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	100	25	ug/L	1
Benzene	71-43-2	8260D	ND	5.0	2.0	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	5.0	2.0	ug/L	1
Bromoform	75-25-2	8260D	ND	5.0	2.0	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	10	2.0	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	50	10	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	5.0	2.0	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	5.0	2.0	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	5.0	2.0	ug/L	1
Chloroethane	75-00-3	8260D	ND	10	2.0	ug/L	1
Chloroform	67-66-3	8260D	ND	5.0	2.0	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.0	2.5	ug/L	1
Cyclohexane	110-82-7	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.0	2.0	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	5.0	2.0	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.0	2.0	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.0	2.0	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.0	2.0	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	10	3.0	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.0	2.0	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.0	2.0	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	2.4 J	5.0	2.0	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.0	2.0	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.0	2.0	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.0	2.0	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.0	2.0	ug/L	1
Ethylbenzene	100-41-4	8260D	16	5.0	2.0	ug/L	1
2-Hexanone	591-78-6	8260D	ND	50	10	ug/L	1
Isopropylbenzene	98-82-8	8260D	690	5.0	2.0	ug/L	1
Methyl acetate	79-20-9	8260D	ND	5.0	2.0	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.0	2.0	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	50	10	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	25	2.0	ug/L	1
Methylene chloride	75-09-2	8260D	ND	5.0	2.0	ug/L	1
Styrene	100-42-5	8260D	ND	5.0	2.1	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.0	2.0	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	5.0	2.0	ug/L	1
Toluene	108-88-3	8260D	ND	5.0	2.0	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-05-20-GW

Date Sampled:06/25/2021 1410 Date Received: 06/25/2021

Laboratory ID: WF26011-010 Matrix: Aqueous

	Volati	le Orga	anic (Compounds	by GC/M	S			
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 5		rsis Date Analyst 2021 1724 TML	Prep Date	Batch 98390			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Rur
1,1,2-Trichloro-1,2,2-Trifluoro	ethane		13-1	8260D	ND	5.0	2.1	ug/L	1
1,2,4-Trichlorobenzene	othano	120-8		8260D	ND	5.0	2.0	ug/L	1
1,1,1-Trichloroethane			55-6	8260D	ND	5.0	2.0	ug/L	1
1,1,2-Trichloroethane			00-5	8260D	ND	5.0	2.0	ug/L	1
Trichloroethene			01-6	8260D	ND	5.0	2.0	ug/L	1
Trichlorofluoromethane			69-4	8260D	ND	5.0	2.0	ug/L	1
Vinyl chloride			01-4	8260D	ND	5.0	2.0	ug/L	1
Xylenes (total)		1330-	20-7	8260D	410	5.0	2.0	ug/L	1
Surrogate	Q % F	Run 1 Recovery	Accept Limi						
Bromofluorobenzene		104	70-1	30					
1,2-Dichloroethane-d4		112	70-1	30					
Toluene-d8		107	70-1	30					
	Malatila Z	S !	. 0		C C / N A C / A	~ I N A \			
				mpounds by					
Run Prep Method 1 5030B	Analytical Method 8260D (SIM)	Dilution 1	,	rsis Date Analyst 2021 0424 CJL2	Prep Date	Batch 97674			
			CAS	Analytical					
Parameter			nber	Method	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-9	91-1	8260D (SIM)	5.0	3.0	1.0	ug/L	1
Surrogate	Q % F	Run 1 Recovery	Accepta Limi						
1,2-Dichloroethane-d4		114	40-1						
		_		1.0					
		D	ISSOI	ved Gases					
Run Prep Method 2	Analytical Method RSK - 175	Dilution 1		rsis Date Analyst 2021 1046 TML	Prep Date	Batch 98028			
			CAC	A I I					

2	K3K - 175 1 07/07	72021 1040 11VIL		90020			
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane	74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene	74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane	74-82-8	RSK - 175	420	10	2.5	ug/L	2
Propane	74-98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure W = Reported on wet weight basis H = Out of holding time

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Date Sampled:06/25/2021 1540

Description: DP-09 (1-3)-SS

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-011 Matrix: Solid

Batch

% Solids: 91.5 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035	-	2021 0325 CJL2		97675	5.20		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	56	21	8.4	ug/kg	1
Benzene	71-43-2	8260D	ND	5.3	2.1	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.3	2.1	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.3	2.1	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.3	3.2	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	5.3 J	21	4.2	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.3	2.1	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.3	2.1	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.3	2.1	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.3	2.1	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.3	2.1	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.3	3.2	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.3	2.1	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.3	2.1	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.3	2.1	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.3	2.1	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.3	3.2	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.3	2.1	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.3	2.1	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.3	2.1	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.3	2.1	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.3	2.1	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.3	2.1	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.3	2.1	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	11	4.2	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	5.3	2.1	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.3	2.1	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.3	2.1	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	11	4.2	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.3	2.1	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.3	2.1	ug/kg	1
Styrene	100-42-5	8260D	ND	5.3	2.1	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.3	2.1	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.3	2.1	ug/kg	1
Toluene	108-88-3	8260D	ND	5.3	2.1	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-09 (1-3)-SS

Date Sampled:06/25/2021 1540

Date Received: 06/25/2021

Laboratory ID: WF26011-011

Matrix: Solid

% Solids: 91.5 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0325 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.20		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	5.3	2.1	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.3	2.1	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.3	2.1	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.3	2.1	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.3	2.1	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.3	2.1	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.3	3.2	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	11	4.2	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		97	47-138						
1,2-Dichloroethane-d4		107	53-142						
Toluene-d8		103	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

 $\label{thm:pace-analytical-Services, LLC} \textbf{ (formerly Shealy Environmental Services, Inc.)}$

Description: DUP-02-SO

Date Sampled:06/25/2021

Analytical Method Dilution Analysis Date Analyst

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-012 Matrix: Solid

Batch

% Solids: 87.3 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

1 5035	8260D 1 07/02	/2021 0348 CJL2	·	97675	5.91		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	56	19	7.8	ug/kg	1
Benzene	71-43-2	8260D	ND	4.8	1.9	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.8	1.9	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.8	1.9	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.8	2.9	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	5.1 J	19	3.9	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.8	1.9	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.8	1.9	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.8	1.9	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.8	1.9	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.8	1.9	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.8	2.9	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.8	1.9	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.8	1.9	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.8	1.9	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.8	1.9	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.8	1.9	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.8	1.9	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.8	1.9	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.8	2.9	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.8	1.9	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.8	1.9	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.8	1.9	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.8	1.9	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.8	1.9	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.8	1.9	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.8	1.9	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.8	1.9	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.8	1.9	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	9.7	3.9	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.8	1.9	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.8	1.9	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.8	1.9	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	9.7	3.9	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.8	1.9	ug/kg	1
Methylene chloride	75-09-2	8260D	1.9 J	4.8	1.9	ug/kg	1
Styrene	100-42-5	8260D	ND	4.8	1.9	ug/kg	1
·					•	J J	

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Toluene

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

8260D

8260D

8260D

ND

ND

ND

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

4.8

4.8

4.8

1.9

1.9

1.9

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

1

1

1

ug/kg

ug/kg

ug/kg

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

79-34-5

127-18-4

108-88-3

Description: DUP-02-SO

Date Sampled:06/25/2021

Date Received: 06/25/2021

Laboratory ID: WF26011-012

Matrix: Solid % Solids: 87.3 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 21 0348 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.91		
_				Analytical					
Parameter		Nun	nber	Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.8	1.9	ug/kg	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	4.8	1.9	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.8	1.9	ug/kg	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	4.8	1.9	ug/kg	1
Trichloroethene		79-0	01-6	8260D	ND	4.8	1.9	ug/kg	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	4.8	1.9	ug/kg	1
Vinyl chloride		75-0	01-4	8260D	ND	4.8	2.9	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.7	3.9	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptano Limits	ce					
Bromofluorobenzene		96	47-138						
1,2-Dichloroethane-d4		111	53-142						
Toluene-d8		105	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-09 (10-11)-SS Date Sampled:06/25/2021 1545

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-013 Matrix: Solid

Batch

% Solids: 87.6 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035		2021 0410 CJL2	i Prep Date	97675	5.58		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	8.2	ug/kg	1
Benzene	71-43-2	8260D	ND	5.1	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	5.1	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	5.1	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	5.1	3.1	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	4.1	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	5.1	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	5.1	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	5.1	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.1	3.1	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.1	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.1	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	5.1	3.1	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	5.1	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	5.1	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	5.1	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.1	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	5.1	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	10	4.1	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	5.1	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	5.1	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	5.1	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	4.1	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.1	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.1	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	5.1	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.1	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.1	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	5.1	2.0	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Description: DP-09 (10-11)-SS

Date Sampled:06/25/2021 1545

Date Received: 06/25/2021

Laboratory ID: WF26011-013

Matrix: Solid

% Solids: 87.6 06/26/2021 1851

Volatile Organic Compounds by GC/MS	S
-------------------------------------	---

Run Prep Method Ar 1 5035	nalytical Method 8260D	Dilution 1	,	sis Date Analyst 2021 0410 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 5.58		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-	13-1	8260D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.1	3.1	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.1	ug/kg	1
Surrogate	Q % F	Run 1 Recovery	Accepta Limi						
Bromofluorobenzene		97	47-1	38					
1,2-Dichloroethane-d4		105	53-1	42					
Toluene-d8		103	68-1	24					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

 $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-07-20-21-GW
Date Sampled:06/25/2021 1520
Date Received: 06/25/2021

Laboratory ID: WF26011-014

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
2	5030B	8260D	1	07/14/2021 1353 TML		98830

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	Н	20	5.0	ug/L	2
Benzene	71-43-2	8260D	ND	Н	1.0	0.40	ug/L	2
Bromodichloromethane	75-27-4	8260D	ND	Н	1.0	0.40	ug/L	2
Bromoform	75-25-2	8260D	ND	Н	1.0	0.40	ug/L	2
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	Н	2.0	0.40	ug/L	2
2-Butanone (MEK)	78-93-3	8260D	ND	Н	10	2.0	ug/L	2
Carbon disulfide	75-15-0	8260D	ND	Н	1.0	0.40	ug/L	2
Carbon tetrachloride	56-23-5	8260D	ND	Н	1.0	0.40	ug/L	2
Chlorobenzene	108-90-7	8260D	ND	Н	1.0	0.40	ug/L	2
Chloroethane	75-00-3	8260D	ND	Н	2.0	0.40	ug/L	2
Chloroform	67-66-3	8260D	0.42	HJ	1.0	0.40	ug/L	2
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	Н	1.0	0.50	ug/L	2
Cyclohexane	110-82-7	8260D	ND	Н	1.0	0.40	ug/L	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	Н	1.0	0.40	ug/L	2
Dibromochloromethane	124-48-1	8260D	ND	Н	1.0	0.40	ug/L	2
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	Н	1.0	0.40	ug/L	2
1,2-Dichlorobenzene	95-50-1	8260D	ND	Н	1.0	0.40	ug/L	2
1,3-Dichlorobenzene	541-73-1	8260D	ND	Н	1.0	0.40	ug/L	2
1,4-Dichlorobenzene	106-46-7	8260D	ND	Н	1.0	0.40	ug/L	2
Dichlorodifluoromethane	75-71-8	8260D	ND	Н	2.0	0.60	ug/L	2
1,1-Dichloroethane	75-34-3	8260D	1.2	Н	1.0	0.40	ug/L	2
1,2-Dichloroethane	107-06-2	8260D	ND	Н	1.0	0.40	ug/L	2
1,1-Dichloroethene	75-35-4	8260D	0.79	HJ	1.0	0.40	ug/L	2
cis-1,2-Dichloroethene	156-59-2	8260D	14	Н	1.0	0.40	ug/L	2
trans-1,2-Dichloroethene	156-60-5	8260D	ND	Н	1.0	0.40	ug/L	2
1,2-Dichloropropane	78-87-5	8260D	ND	Н	1.0	0.40	ug/L	2
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	Н	1.0	0.40	ug/L	2
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	Н	1.0	0.40	ug/L	2
Ethylbenzene	100-41-4	8260D	3.0	Н	1.0	0.40	ug/L	2
2-Hexanone	591-78-6	8260D	ND	Н	10	2.0	ug/L	2
Isopropylbenzene	98-82-8	8260D	2.9	Н	1.0	0.40	ug/L	2
Methyl acetate	79-20-9	8260D	ND	Н	1.0	0.40	ug/L	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	Н	1.0	0.40	ug/L	2
4-Methyl-2-pentanone	108-10-1	8260D	ND	Н	10	2.0	ug/L	2
Methylcyclohexane	108-87-2	8260D	ND	Н	5.0	0.40	ug/L	2
Methylene chloride	75-09-2	8260D	ND	Н	1.0	0.40	ug/L	2
Styrene	100-42-5	8260D	ND	Н	1.0	0.41	ug/L	2
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	Н	1.0	0.40	ug/L	2
Tetrachloroethene	127-18-4	8260D	0.83	HJ	1.0	0.40	ug/L	2
Toluene	108-88-3	8260D	ND	Н	1.0	0.40	ug/L	2

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-07-20-21-GW Date Sampled:06/25/2021 1520 Date Received: 06/25/2021

Surrogate

1,2-Dichloroethane-d4

Run Prep Method

Laboratory ID: WF26011-014

Matrix: Aqueous

	Volati	le Orga	nic Co	ompounds	by G	C/MS	<u> </u>			
Run Prep Method 2 5030B	Analytical Method 8260D	Dilution 1		s Date Analyst 21 1353 TML	Prep	Date	Batch 98830			
Parameter		(Num	CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethar	ne	76-1	13-1	8260D	ND	Н	1.0	0.42	ug/L	2
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	Н	1.0	0.40	ug/L	2
1,1,1-Trichloroethane		71-5	55-6	8260D	ND	Н	1.0	0.40	ug/L	2
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	Н	1.0	0.40	ug/L	2
Trichloroethene		79-0	01-6	8260D	0.65	HJ	1.0	0.40	ug/L	2
Trichlorofluoromethane		75-6	59-4	8260D	ND	Н	1.0	0.40	ug/L	2
Vinyl chloride		75-0	01-4	8260D	6.4	Н	1.0	0.40	ug/L	2
Xylenes (total)		1330-2	20-7	8260D	8.4	Н	1.0	0.40	ug/L	2
Surrogate		Run 2 /	Acceptan Limits	ice						
Bromofluorobenzene	Н	104	70-130)						
1,2-Dichloroethane-d4	Н	110	70-130)						
Toluene-d8	Н	106	70-130)						
	Volatile (Organio	c Com	pounds by	GC/N	ЛS (S	SIM)			
Run Prep Method	Analytical Method	Dilution	Analysi	s Date Analyst	Prep	Date	Batch			
1 5030B	8260D (SIM)	1	07/02/20	21 0449 CJL2	·		97674			
Parameter		(Num	CAS	Analytical Method	Result	0	LOQ	DL	Units	Run
1.4-Dioxane		123-9		8260D (SIM)	1.6	J	3.0	1.0	ug/L	1
.,. 5.6.4410		120		02000 (01111)	1.0	•	0.0	1.0	ug, L	

<u> </u>		\sim
Llicco	11100	1-3606
ロカラうい	uveu	Gases

Analysis Date Analyst

Prep Date

Batch

Acceptance

Limits

40-170

Run 1

% Recovery

Dilution

Q

Analytical Method

2	RSK - 1/5	1 0//0//	2021 1102 TML		98028			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-84-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-85-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-82-8	RSK - 175	9.4 J	10	2.5	ug/L	2
Propane		74-98-6	RSK - 175	ND	15	5.0	ug/L	2

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% $J = Estimated \ result < LOQ \ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-11 (10-11)-SS Date Sampled:06/25/2021 1650

Date Sampled: 06/25/2021 1650

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-015 Matrix: Solid

Batch

% Solids: 83.8 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS

Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035	8260D 1 07/02	, 2021 0433 CJL2		97675	7.79		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	32	15	6.1	ug/kg	1
Benzene	71-43-2	8260D	ND	3.8	1.5	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	3.8	1.5	ug/kg	1
Bromoform	75-25-2	8260D	ND	3.8	1.5	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	3.8	2.3	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	15	3.1	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	3.8	1.5	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	3.8	1.5	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	3.8	1.5	ug/kg	1
Chloroethane	75-00-3	8260D	ND	3.8	1.5	ug/kg	1
Chloroform	67-66-3	8260D	ND	3.8	1.5	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	3.8	2.3	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	3.8	1.5	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	3.8	1.5	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	3.8	1.5	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	3.8	1.5	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	3.8	2.3	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	3.8	1.5	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	3.8	1.5	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	26	3.8	1.5	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	3.8	1.5	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	3.8	1.5	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	3.8	1.5	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	3.8	1.5	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	3.8	1.5	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	7.7	3.1	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	3.8	1.5	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	3.8	1.5	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	3.8	1.5	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	7.7	3.1	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	3.8	1.5	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	3.8	1.5	ug/kg	1
Styrene	100-42-5	8260D	ND	3.8	1.5	ug/kg	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Toluene

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

8260D

8260D

8260D

ND

ND

ND

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

3.8

3.8

3.8

1.5

1.5

1.5

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

1

1

1

ug/kg

ug/kg

ug/kg

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

79-34-5

127-18-4

108-88-3

Description: DP-11 (10-11)-SS

Date Sampled:06/25/2021 1650 Date Received: 06/25/2021

Laboratory ID: WF26011-015 Matrix: Solid

% Solids: 83.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0433 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 7.79		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	3.8	1.5	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	3.8	1.5	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	3.8	1.5	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	3.8	1.5	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	3.8	1.5	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	3.8	1.5	ug/kg	1
Vinyl chloride		75-	01-4	8260D	5.0	3.8	2.3	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	7.7	3.1	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		98	47-138						
1,2-Dichloroethane-d4		109	53-142						
Toluene-d8		105	68-124						

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-11 (20-21)-SS Date Sampled:06/25/2021 1715

Date Received: 06/25/2021

Run Prep Method

Laboratory ID: WF26011-016

Matrix: Solid

Batch

% Solids: 81.8 06/26/2021 1851

Sample Wt.(g)

Volatile Organic Compounds by GC/MS Analytical Method Dilution Analysis Date Analyst Prep Date

1 5035 Alaytical Method 1 5035		2021 0456 CJL2	гтер вате	97675	6.22		
Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	ND	20	7.9	ug/kg	1
Benzene	71-43-2	8260D	ND	4.9	2.0	ug/kg	1
Bromodichloromethane	75-27-4	8260D	ND	4.9	2.0	ug/kg	1
Bromoform	75-25-2	8260D	ND	4.9	2.0	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	4.9	2.9	ug/kg	1
2-Butanone (MEK)	78-93-3	8260D	ND	20	3.9	ug/kg	1
Carbon disulfide	75-15-0	8260D	ND	4.9	2.0	ug/kg	1
Carbon tetrachloride	56-23-5	8260D	ND	4.9	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	4.9	2.0	ug/kg	1
Chloroethane	75-00-3	8260D	ND	4.9	2.0	ug/kg	1
Chloroform	67-66-3	8260D	ND	4.9	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	4.9	2.9	ug/kg	1
Cyclohexane	110-82-7	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	4.9	2.0	ug/kg	1
Dibromochloromethane	124-48-1	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	4.9	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	4.9	2.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	4.9	2.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260D	ND	4.9	2.9	ug/kg	1
1,1-Dichloroethane	75-34-3	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloroethane	107-06-2	8260D	ND	4.9	2.0	ug/kg	1
1,1-Dichloroethene	75-35-4	8260D	ND	4.9	2.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260D	ND	4.9	2.0	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	4.9	2.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260D	ND	4.9	2.0	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	4.9	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	4.9	2.0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	4.9	2.0	ug/kg	1
2-Hexanone	591-78-6	8260D	ND	9.8	3.9	ug/kg	1
Isopropylbenzene	98-82-8	8260D	ND	4.9	2.0	ug/kg	1
Methyl acetate	79-20-9	8260D	ND	4.9	2.0	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	4.9	2.0	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	9.8	3.9	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	4.9	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	4.9	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	4.9	2.0	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	4.9	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	4.9	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	4.9	2.0	ug/kg	1

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-11 (20-21)-SS

Date Sampled:06/25/2021 1715

Date Received: 06/25/2021

Laboratory ID: WF26011-016 Matrix: Solid

% Solids: 81.8 06/26/2021 1851

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	s Date Analyst 21 0456 CJL2	Prep Date	Batch 97675	Sample Wt.(g) 6.22		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	4.9	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	4.9	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	4.9	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	4.9	2.0	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	4.9	2.0	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	4.9	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	4.9	2.9	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	9.8	3.9	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptan Limits						
Bromofluorobenzene		98	47-138	3					
1,2-Dichloroethane-d4		105	53-142	2					
Toluene-d8		108	68-124	1					

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Description: DP-09 (20-21)GW Date Sampled:06/25/2021 1600 Date Received: 06/25/2021

Laboratory ID: WF26011-017

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	07/09/2021 1413 TML		98390

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260D	6.0 J	20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260D	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260D	0.91 J	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260D	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260D	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: EarthCon Consultants, Inc.

Description: DP-09 (20-21)GW Date Sampled:06/25/2021 1600 Date Received: 06/25/2021

Toluene-d8

Propane

Laboratory ID: WF26011-017

Matrix: Aqueous

	Volatile	Orga	anic C	ompounds	by GC/M	S			
Run Prep Method 1 5030B	Analytical Method D 8260D	ilution 1	,	is Date Analyst 021 1413 TML	Prep Date	Batch 98390			
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-	13-1	8260D	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-8	32-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane		71-!	55-6	8260D	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene		79-0	01-6	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane		75-6	69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride		75-0	01-4	8260D	2.3	1.0	0.40	ug/L	1
Xylenes (total)		1330-	20-7	8260D	ND	1.0	0.40	ug/L	1
Surrogate		un 1 covery	Acceptar Limits						
Bromofluorobenzene		101	70-130	O					
1,2-Dichloroethane-d4	•	110	70-130	0					

	Volatile Or	ganic C	ompounds by	GC/MS (S	SIM)			
Run Prep Method 1 5030B	Analytical Method D 8260D (SIM)		alysis Date Analyst 02/2021 0514 CJL2	Prep Date	Batch 97674			
Parameter		CAS Number	7 ti lai y ti cai	Result Q	LOQ	DL	Units	Run
1,4-Dioxane		123-91-1	8260D (SIM)	21	3.0	1.0	ug/L	1
Surrogate			eptance imits					
1,2-Dichloroethane-d4		97 40	D-170					

70-130

104

Run Prep Method 2	Analytical Method RSK - 175		,	sis Date Analyst 2021 1150 TML	Prep Date	Batch 98028			
Parameter		(Num	CAS lber	Analytical Method	Result Q	LOQ	DL	Units	Run
Ethane		74-8	34-0	RSK - 175	ND	10	2.5	ug/L	2
Ethene		74-8	35-1	RSK - 175	ND	10	2.5	ug/L	2
Methane		74-8	32-8	RSK - 175	290	10	2.5	ug/L	2

RSK - 175

ND

15

5.0

ug/L

2

74-98-6

Dissolved Gases

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis			S = MS/MSD failure

Sample ID: WQ97674-001 Batch: 97674

Analytical Method: 8260D (SIM)

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
1,4-Dioxane	ND	1	3.0	1.0	ug/L	07/01/2021 2149
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	103	40-170				<u> </u>

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97674-002 Batch: 97674 Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D (SIM)

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
1,4-Dioxane	50	45	1	90	70-130	07/01/2021 2033
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	114	40-170				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97675-001 Batch: 97675 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	8.0	ug/kg	07/02/2021 0028
Benzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Bromodichloromethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Bromoform	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	07/02/2021 0028
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	07/02/2021 0028
Carbon disulfide	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Chlorobenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Chloroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Chloroform	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Chloromethane (Methyl chloride)	ND		1	5.0	3.0	ug/kg	07/02/2021 0028
Cyclohexane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,2-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	07/02/2021 0028
1,1-Dichloroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
cis-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
trans-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
cis-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Ethylbenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
2-Hexanone	ND		1	10	4.0	ug/kg	07/02/2021 0028
Isopropylbenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Methyl acetate	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Methyl tertiary butyl ether (MTBE)	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
4-Methyl-2-pentanone	ND		1	10	4.0	ug/kg	07/02/2021 0028
Methylcyclohexane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Methylene chloride	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Styrene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Toluene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,2,4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97675-001 Batch: 97675

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Trichlorofluoromethane	ND		1	5.0	2.0	ug/kg	07/02/2021 0028
Vinyl chloride	ND		1	5.0	3.0	ug/kg	07/02/2021 0028
Xylenes (total)	ND		1	10	4.0	ug/kg	07/02/2021 0028
Surrogate	Q % Red		cceptance Limit				
Bromofluorobenzene	100		47-138				
1,2-Dichloroethane-d4	103		53-142				
Toluene-d8	103		68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97675-002 Batch: 97675 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

	Spike						
5	Amount	Result	0		04.5	%Rec	
Parameter	(ug/kg)	(ug/kg)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	83		1	83	60-140	07/01/2021 2320
Benzene	50	51		1	102	70-130	07/01/2021 2320
Bromodichloromethane	50	50		1	101	70-130	07/01/2021 2320
Bromoform	50	45		1	90	70-130	07/01/2021 2320
Bromomethane (Methyl bromide)	50	48		1	95	70-130	07/01/2021 2320
2-Butanone (MEK)	100	86		1	86	60-140	07/01/2021 2320
Carbon disulfide	50	55		1	110	70-130	07/01/2021 2320
Carbon tetrachloride	50	54		1	109	70-130	07/01/2021 2320
Chlorobenzene	50	48		1	97	70-130	07/01/2021 2320
Chloroethane	50	52		1	104	70-130	07/01/2021 2320
Chloroform	50	51		1	102	70-130	07/01/2021 2320
Chloromethane (Methyl chloride)	50	55		1	110	60-140	07/01/2021 2320
Cyclohexane	50	64		1	128	70-130	07/01/2021 2320
1,2-Dibromo-3-chloropropane (DBCP)	50	45		1	90	70-130	07/01/2021 2320
Dibromochloromethane	50	47		1	93	70-130	07/01/2021 2320
1,2-Dibromoethane (EDB)	50	47		1	94	70-130	07/01/2021 2320
1,2-Dichlorobenzene	50	49		1	98	70-130	07/01/2021 2320
1,3-Dichlorobenzene	50	49		1	98	70-130	07/01/2021 2320
1,4-Dichlorobenzene	50	48		1	97	70-130	07/01/2021 2320
Dichlorodifluoromethane	50	64		1	129	60-140	07/01/2021 2320
1,1-Dichloroethane	50	53		1	106	70-130	07/01/2021 2320
1,2-Dichloroethane	50	53		1	106	70-130	07/01/2021 2320
1,1-Dichloroethene	50	54		1	109	70-130	07/01/2021 2320
cis-1,2-Dichloroethene	50	51		1	101	70-130	07/01/2021 2320
trans-1,2-Dichloroethene	50	52		1	105	70-130	07/01/2021 2320
1,2-Dichloropropane	50	50		1	100	70-130	07/01/2021 2320
cis-1,3-Dichloropropene	50	49		1	97	70-130	07/01/2021 2320
trans-1,3-Dichloropropene	50	48		1	97	70-130	07/01/2021 2320
Ethylbenzene	50	50		1	99	70-130	07/01/2021 2320
2-Hexanone	100	93		1	93	70-130	07/01/2021 2320
Isopropylbenzene	50	51		1	102	70-130	07/01/2021 2320
Methyl acetate	50	50		1	100	70-130	07/01/2021 2320
Methyl tertiary butyl ether (MTBE)	50	49		1	98	70-130	07/01/2021 2320
4-Methyl-2-pentanone	100	98		1	98	70-130	07/01/2021 2320
· ·	50			1			
Methylogo oblogida		55		1	110	70-130	07/01/2021 2320
Methylene chloride	50	48		1	95	70-130	07/01/2021 2320
Styrene	50	47		1	95	70-130	07/01/2021 2320
1,1,2,2-Tetrachloroethane	50	49		1	98	70-130	07/01/2021 2320
Tetrachloroethene	50	50		1	101	70-130	07/01/2021 2320
Toluene	50	49		1	97	70-130	07/01/2021 2320
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	56		1	111	70-130	07/01/2021 2320
1,2,4-Trichlorobenzene	50	46		1	92	70-130	07/01/2021 2320
1,1,1-Trichloroethane	50	54		1	109	70-130	07/01/2021 2320
1,1,2-Trichloroethane	50	48		1	96	70-130	07/01/2021 2320

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ97675-002 Batch: 97675

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	50	1	100	70-130	07/01/2021 2320
Trichlorofluoromethane	50	59	1	119	70-130	07/01/2021 2320
Vinyl chloride	50	53	1	107	70-130	07/01/2021 2320
Xylenes (total)	100	98	1	98	70-130	07/01/2021 2320
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	96	47-138				
1,2-Dichloroethane-d4	105	53-142				
Toluene-d8	101	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ97675-003 Batch: 97675 Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

	Spike	- · ·					0/ Daa	0/ 555	
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Acetone	100	81		1	81	2.5	60-140	20	07/01/2021 2343
Benzene	50	48		1	97	5.1	70-130	20	07/01/2021 2343
Bromodichloromethane	50	49		1	98	3.0	70-130	20	07/01/2021 2343
Bromoform	50	45		1	90	0.048	70-130	20	07/01/2021 2343
Bromomethane (Methyl bromide)	50	48		1	95	0.16	70-130	20	07/01/2021 2343
2-Butanone (MEK)	100	87		1	87	1.5	60-140	20	07/01/2021 2343
Carbon disulfide	50	52		1	104	4.9	70-130	20	07/01/2021 2343
Carbon tetrachloride	50	53		1	105	3.5	70-130	20	07/01/2021 2343
Chlorobenzene	50	47		1	94	2.5	70-130	20	07/01/2021 2343
Chloroethane	50	50		1	101	3.3	70-130	20	07/01/2021 2343
Chloroform	50	49		1	98	3.6	70-130	20	07/01/2021 2343
Chloromethane (Methyl chloride)	50	52		1	105	4.6	60-140	20	07/01/2021 2343
Cyclohexane	50	63		1	127	0.95	70-130	20	07/01/2021 2343
1,2-Dibromo-3-chloropropane (DBCP)	50	47		1	95	4.7	70-130	20	07/01/2021 2343
Dibromochloromethane	50	45		1	91	2.5	70-130	20	07/01/2021 2343
1,2-Dibromoethane (EDB)	50	46		1	92	1.3	70-130	20	07/01/2021 2343
1,2-Dichlorobenzene	50	48		1	96	2.1	70-130	20	07/01/2021 2343
1,3-Dichlorobenzene	50	48		1	96	1.3	70-130	20	07/01/2021 2343
1,4-Dichlorobenzene	50	47		1	95	2.0	70-130	20	07/01/2021 2343
Dichlorodifluoromethane	50	62		1	124	3.7	60-140	20	07/01/2021 2343
1,1-Dichloroethane	50	51		1	101	4.4	70-130	20	07/01/2021 2343
1,2-Dichloroethane	50	50		1	101	5.3	70-130	20	07/01/2021 2343
1,1-Dichloroethene	50	52		1	105	4.0	70-130	20	07/01/2021 2343
cis-1,2-Dichloroethene	50	49		1	98	3.0	70-130	20	07/01/2021 2343
trans-1,2-Dichloroethene	50	51		1	101	3.5	70-130	20	07/01/2021 2343
1,2-Dichloropropane	50	48		1	97	3.5	70-130	20	07/01/2021 2343
cis-1,3-Dichloropropene	50	48		1	96	1.5	70-130	20	07/01/2021 2343
trans-1,3-Dichloropropene	50	47		1	95	2.1	70-130	20	07/01/2021 2343
Ethylbenzene	50	48		1	95	3.8	70-130	20	07/01/2021 2343
2-Hexanone	100	96		1	96	3.3	70-130	20	07/01/2021 2343
Isopropylbenzene	50	49		1	98	4.3	70-130	20	07/01/2021 2343
Methyl acetate	50	51		1	101	1.3	70-130	20	07/01/2021 2343
Methyl tertiary butyl ether (MTBE)	50	48		1	95	2.6	70-130	20	07/01/2021 2343
4-Methyl-2-pentanone	100	98		1	98	0.44	70-130	20	07/01/2021 2343
Methylcyclohexane	50	52		1	104	5.8	70-130	20	07/01/2021 2343
Methylene chloride	50	46		1	92	3.3	70-130	20	07/01/2021 2343
Styrene	50	46		1	91	3.8	70-130	20	07/01/2021 2343
1,1,2,2-Tetrachloroethane	50	48		1	97	0.90	70-130	20	07/01/2021 2343
Tetrachloroethene	50	48		1	96	5.0	70-130	20	07/01/2021 2343
Toluene	50	47		1	94	3.2	70-130	20	07/01/2021 2343
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	55		1	110	0.97	70-130	20	07/01/2021 2343
1,2,4-Trichlorobenzene	50	47		1	94	1.2	70-130	20	07/01/2021 2343
1,1,1-Trichloroethane	50	52		1	103	5.2	70-130	20	07/01/2021 2343
1,1,2-Trichloroethane	50	47		1	94	2.0	70-130	20	07/01/2021 2343
, , =				•					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ97675-003

Batch: 97675 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	50	48	1	96	4.1	70-130	20	07/01/2021 2343
Trichlorofluoromethane	50	57	1	114	4.0	70-130	20	07/01/2021 2343
Vinyl chloride	50	53	1	105	1.7	70-130	20	07/01/2021 2343
Xylenes (total)	100	95	1	95	2.8	70-130	20	07/01/2021 2343
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	93	47-138						
1,2-Dichloroethane-d4	103	53-142						
Toluene-d8	97	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98261-001 Batch: 98261 Analytical Method: 8260D Matrix: Solid Prep Method: 5035 High

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	1000	400	ug/kg	07/08/2021 1305
Benzene	ND		1	250	100	ug/kg	07/08/2021 1305
Bromodichloromethane	ND		1	250	100	ug/kg	07/08/2021 1305
Bromoform	ND		1	250	100	ug/kg	07/08/2021 1305
Bromomethane (Methyl bromide)	ND		1	250	150	ug/kg	07/08/2021 1305
2-Butanone (MEK)	ND		1	1000	200	ug/kg	07/08/2021 1305
Carbon disulfide	ND		1	250	100	ug/kg	07/08/2021 1305
Carbon tetrachloride	ND		1	250	100	ug/kg	07/08/2021 1305
Chlorobenzene	ND		1	250	100	ug/kg	07/08/2021 1305
Chloroethane	ND		1	250	100	ug/kg	07/08/2021 1305
Chloroform	ND		1	250	100	ug/kg	07/08/2021 1305
Chloromethane (Methyl chloride)	ND		1	250	150	ug/kg	07/08/2021 1305
Cyclohexane	ND		1	250	100	ug/kg	07/08/2021 1305
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	250	100	ug/kg	07/08/2021 1305
Dibromochloromethane	ND		1	250	100	ug/kg	07/08/2021 1305
1,2-Dibromoethane (EDB)	ND		1	250	100	ug/kg	07/08/2021 1305
1,2-Dichlorobenzene	ND		1	250	100	ug/kg	07/08/2021 1305
1,3-Dichlorobenzene	ND		1	250	100	ug/kg	07/08/2021 1305
1,4-Dichlorobenzene	ND		1	250	100	ug/kg	07/08/2021 1305
Dichlorodifluoromethane	ND		1	250	150	ug/kg	07/08/2021 1305
1,1-Dichloroethane	ND		1	250	100	ug/kg	07/08/2021 1305
1,2-Dichloroethane	ND		1	250	100	ug/kg	07/08/2021 1305
1,1-Dichloroethene	ND		1	250	100	ug/kg	07/08/2021 1305
cis-1,2-Dichloroethene	ND		1	250	100	ug/kg	07/08/2021 1305
trans-1,2-Dichloroethene	ND		1	250	100	ug/kg	07/08/2021 1305
1,2-Dichloropropane	ND		1	250	100	ug/kg	07/08/2021 1305
cis-1,3-Dichloropropene	ND		1	250	100	ug/kg	07/08/2021 1305
trans-1,3-Dichloropropene	ND		1	250	100	ug/kg	07/08/2021 1305
Ethylbenzene	ND		1	250	100	ug/kg	07/08/2021 1305
2-Hexanone	ND		1	500	200	ug/kg	07/08/2021 1305
Isopropylbenzene	ND		1	250	100	ug/kg	07/08/2021 1305
Methyl acetate	ND		1	250	100	ug/kg	07/08/2021 1305
Methyl tertiary butyl ether (MTBE)	ND		1	250	100	ug/kg	07/08/2021 1305
4-Methyl-2-pentanone	ND		1	500	200	ug/kg	07/08/2021 1305
Methylcyclohexane	ND		1	250	100	ug/kg	07/08/2021 1305
Methylene chloride	ND		1	250	100	ug/kg	07/08/2021 1305
Styrene	ND		1	250	100	ug/kg	07/08/2021 1305
1,1,2,2-Tetrachloroethane	ND		1	250	100	ug/kg	07/08/2021 1305
Tetrachloroethene	ND		1	250	100	ug/kg	07/08/2021 1305
Toluene	ND		1	250	100	ug/kg	07/08/2021 1305
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	250	100	ug/kg	07/08/2021 1305
1,2,4-Trichlorobenzene	ND		1	250	100	ug/kg	07/08/2021 1305
1,1,1-Trichloroethane	ND		1	250	100	ug/kg	07/08/2021 1305
1,1,2-Trichloroethane	ND		1	250	100	ug/kg	07/08/2021 1305
.,.,2			•	200	. 50	~=""\	3.,33,2321 1000

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98261-001 Batch: 98261

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035 High

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	250	100	ug/kg	07/08/2021 1305
Trichlorofluoromethane	ND		1	250	100	ug/kg	07/08/2021 1305
Vinyl chloride	ND		1	250	150	ug/kg	07/08/2021 1305
Xylenes (total)	ND		1	500	200	ug/kg	07/08/2021 1305
Surrogate	Q % Red		cceptance Limit				
Bromofluorobenzene	93		47-138				
1,2-Dichloroethane-d4	99		53-142				
Toluene-d8	94		68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98261-002 Batch: 98261

Matrix: Solid Prep Method: 5035 High

Analytical Method: 8260D

	Spike						
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	5000	3900		1	79	60-140	07/08/2021 1243
Benzene	2500	2500		1	101	70-130	07/08/2021 1243
Bromodichloromethane	2500	2600		1	104	70-130	07/08/2021 1243
Bromoform	2500	2100		1	82	70-130	07/08/2021 1243
Bromomethane (Methyl bromide)	2500	2300		1	91	70-130	07/08/2021 1243
2-Butanone (MEK)	5000	4000		1	80	60-140	07/08/2021 1243
Carbon disulfide	2500	2600		1	102	70-130	07/08/2021 1243
Carbon tetrachloride	2500	2800		1	114	70-130	07/08/2021 1243
Chlorobenzene	2500	2400		1	95	70-130	07/08/2021 1243
Chloroethane	2500	2500		1	101	70-130	07/08/2021 1243
Chloroform	2500	2600		1	106	70-130	07/08/2021 1243
Chloromethane (Methyl chloride)	2500	2500		1	100	60-140	07/08/2021 1243
Cyclohexane	2500	3600	N	1	144	70-130	07/08/2021 1243
1,2-Dibromo-3-chloropropane (DBCP)	2500	2100		1	82	70-130	07/08/2021 1243
Dibromochloromethane	2500	2200		1	88	70-130	07/08/2021 1243
1,2-Dibromoethane (EDB)	2500	2200		1	88	70-130	07/08/2021 1243
1,2-Dichlorobenzene	2500	2400		1	97	70-130	07/08/2021 1243
1,3-Dichlorobenzene	2500	2400		1	98	70-130	07/08/2021 1243
1,4-Dichlorobenzene	2500	2400		1	95	70-130	07/08/2021 1243
Dichlorodifluoromethane	2500	2600		1	105	60-140	07/08/2021 1243
1,1-Dichloroethane	2500	2700		1	108	70-130	07/08/2021 1243
1,2-Dichloroethane	2500	2600		1	105	70-130	07/08/2021 1243
1,1-Dichloroethene	2500	2700		1	107	70-130	07/08/2021 1243
cis-1,2-Dichloroethene	2500	2600		1	102	70-130	07/08/2021 1243
trans-1,2-Dichloroethene	2500	2700		1	107	70-130	07/08/2021 1243
1,2-Dichloropropane	2500	2500		1	101	70-130	07/08/2021 1243
cis-1,3-Dichloropropene	2500	2400		1	98	70-130	07/08/2021 1243
trans-1,3-Dichloropropene	2500	2300		1	94	70-130	07/08/2021 1243
Ethylbenzene	2500	2500		1	99	70-130	07/08/2021 1243
2-Hexanone	5000	4400		1	87	70-130	07/08/2021 1243
Isopropylbenzene	2500	2600		1	103	70-130	07/08/2021 1243
Methyl acetate	2500	2500		1	101	70-130	07/08/2021 1243
Methyl tertiary butyl ether (MTBE)	2500	2500		1	100	70-130	07/08/2021 1243
4-Methyl-2-pentanone	5000	4500		1	89	70-130	07/08/2021 1243
Methylcyclohexane	2500	3100		1	122	70-130	07/08/2021 1243
Methylene chloride	2500	2400		1	96	70-130	07/08/2021 1243
Styrene	2500	2300		1	93	70-130	07/08/2021 1243
1,1,2,2-Tetrachloroethane	2500	2200		1	90	70-130	07/08/2021 1243
Tetrachloroethene	2500	2500		1	101	70-130	07/08/2021 1243
Toluene	2500	2400		1	97	70-130	07/08/2021 1243
1,1,2-Trichloro-1,2,2-Trifluoroethane	2500	2900		1	117	70-130	07/08/2021 1243
1,2,4-Trichlorobenzene	2500	2500		1	99	70-130	07/08/2021 1243
1,1,1-Trichloroethane	2500	2800		1	112	70-130	07/08/2021 1243
1,1,2-Trichloroethane	2500	2300		1	92	70-130	07/08/2021 1243
, ,	====			-	· -		22222.3

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98261-002 Batch: 98261

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035 High

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	2500	2500	1	100	70-130	07/08/2021 1243
Trichlorofluoromethane	2500	3100	1	123	70-130	07/08/2021 1243
Vinyl chloride	2500	2700	1	108	70-130	07/08/2021 1243
Xylenes (total)	5000	4900	1	97	70-130	07/08/2021 1243
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	95	47-138				
1,2-Dichloroethane-d4	106	53-142				
Toluene-d8	99	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98336-001 Batch: 98336

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/08/2021 2311
Benzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Bromoform	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/08/2021 2311
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/08/2021 2311
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Chloroethane	ND		1	2.0	0.40	ug/L	07/08/2021 2311
Chloroform	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/08/2021 2311
Cyclohexane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/08/2021 2311
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
2-Hexanone	ND		1	10	2.0	ug/L	07/08/2021 2311
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Methyl acetate	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/08/2021 2311
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/08/2021 2311
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/08/2021 2311
Methylene chloride	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Styrene	ND		1	1.0	0.41	ug/L	07/08/2021 2311
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
Toluene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/08/2021 2311
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/08/2021 2311

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98336-001 Batch: 98336

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Result	Q	Dil	LOQ	DL	Units	Analysis Date
ND		1	1.0	0.40	ug/L	07/08/2021 2311
ND		1	1.0	0.40	ug/L	07/08/2021 2311
ND		1	1.0	0.40	ug/L	07/08/2021 2311
ND		1	1.0	0.40	ug/L	07/08/2021 2311
Q % Red	A	cceptance Limit				
94		70-130				
102		70-130				
97		70-130				
	ND ND ND ND Q % Rec	ND ND ND ND Q % Rec 94 102	ND 1 ND 1 ND 1 ND 1 ND 1 Acceptance Limit 94 70-130 102 70-130	ND 1 1.0 Acceptance Q % Rec Limit 94 70-130 102 70-130	ND 1 1.0 0.40 Q % Rec Limit 94 70-130 102 70-130	ND 1 1.0 0.40 ug/L ND 1 1.0 0.40 ug/L Acceptance Limit 94 70-130 102 70-130

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98336-002 Batch: 98336 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

	Spike						
	Amount	Result	_		0.5	%Rec	
Parameter	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	69		1	69	60-140	07/08/2021 2014
Benzene	50	48		1	96	70-130	07/08/2021 2014
Bromodichloromethane	50	49		1	97	70-130	07/08/2021 2014
Bromoform	50	51		1	102	70-130	07/08/2021 2014
Bromomethane (Methyl bromide)	50	52		1	103	70-130	07/08/2021 2014
2-Butanone (MEK)	100	91		1	91	70-130	07/08/2021 2014
Carbon disulfide	50	43		1	87	70-130	07/08/2021 2014
Carbon tetrachloride	50	45		1	90	70-130	07/08/2021 2014
Chlorobenzene	50	47		1	93	70-130	07/08/2021 2014
Chloroethane	50	53		1	107	70-130	07/08/2021 2014
Chloroform	50	49		1	99	70-130	07/08/2021 2014
Chloromethane (Methyl chloride)	50	60		1	120	60-140	07/08/2021 2014
Cyclohexane	50	44		1	87	70-130	07/08/2021 2014
1,2-Dibromo-3-chloropropane (DBCP)	50	54		1	109	70-130	07/08/2021 2014
Dibromochloromethane	50	49		1	98	70-130	07/08/2021 2014
1,2-Dibromoethane (EDB)	50	51		1	102	70-130	07/08/2021 2014
1,2-Dichlorobenzene	50	50		1	99	70-130	07/08/2021 2014
1,3-Dichlorobenzene	50	47		1	95	70-130	07/08/2021 2014
1,4-Dichlorobenzene	50	47		1	93	70-130	07/08/2021 2014
Dichlorodifluoromethane	50	64		1	128	60-140	07/08/2021 2014
1,1-Dichloroethane	50	48		1	97	70-130	07/08/2021 2014
1,2-Dichloroethane	50	50		1	101	70-130	07/08/2021 2014
1,1-Dichloroethene	50	44		1	88	70-130 70-130	07/08/2021 2014
cis-1,2-Dichloroethene	50	44		1	95	70-130 70-130	07/08/2021 2014
trans-1,2-Dichloroethene	50	46		1	93	70-130	07/08/2021 2014
		49			93 99	70-130 70-130	
1,2-Dichloropropane	50			1			07/08/2021 2014
cis-1,3-Dichloropropene	50	51		1	102	70-130	07/08/2021 2014
trans-1,3-Dichloropropene	50	50		1	100	70-130	07/08/2021 2014
Ethylbenzene	50	46		1	92	70-130	07/08/2021 2014
2-Hexanone	100	92		1	92	70-130	07/08/2021 2014
Isopropylbenzene	50	48		1	97	70-130	07/08/2021 2014
Methyl acetate	50	62		1	124	70-130	07/08/2021 2014
Methyl tertiary butyl ether (MTBE)	50	47		1	94	70-130	07/08/2021 2014
4-Methyl-2-pentanone	100	120		1	118	70-130	07/08/2021 2014
Methylcyclohexane	50	43		1	86	70-130	07/08/2021 2014
Methylene chloride	50	47		1	93	70-130	07/08/2021 2014
Styrene	50	51		1	102	70-130	07/08/2021 2014
1,1,2,2-Tetrachloroethane	50	53		1	107	70-130	07/08/2021 2014
Tetrachloroethene	50	44		1	88	70-130	07/08/2021 2014
Toluene	50	46		1	92	70-130	07/08/2021 2014
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	43		1	87	70-130	07/08/2021 2014
1,2,4-Trichlorobenzene	50	54		1	107	70-130	07/08/2021 2014
1,1,1-Trichloroethane	50	46		1	93	70-130	07/08/2021 2014
1,1,2-Trichloroethane	50	49		1	99	70-130	07/08/2021 2014

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98336-002 Batch: 98336

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	45	1	90	70-130	07/08/2021 2014
Trichlorofluoromethane	50	44	1	88	70-130	07/08/2021 2014
Vinyl chloride	50	56	1	111	70-130	07/08/2021 2014
Xylenes (total)	100	97	1	97	70-130	07/08/2021 2014
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	95	70-130				
1,2-Dichloroethane-d4	94	70-130				
Toluene-d8	88	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98390-001 Batch: 98390

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/09/2021 1004
Benzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Bromoform	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/09/2021 1004
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/09/2021 1004
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Chloroethane	ND		1	2.0	0.40	ug/L	07/09/2021 1004
Chloroform	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/09/2021 1004
Cyclohexane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/09/2021 1004
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
2-Hexanone	ND		1	10	2.0	ug/L	07/09/2021 1004
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Methyl acetate	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/09/2021 1004
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/09/2021 1004
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/09/2021 1004
Methylene chloride	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Styrene	ND		1	1.0	0.41	ug/L	07/09/2021 1004
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
Toluene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/09/2021 1004
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/09/2021 1004

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98390-001 Batch: 98390

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND	1	1.0	0.40	ug/L	07/09/2021 1004
Trichlorofluoromethane	ND	1	1.0	0.40	ug/L	07/09/2021 1004
Vinyl chloride	ND	1	1.0	0.40	ug/L	07/09/2021 1004
Xylenes (total)	ND	1	1.0	0.40	ug/L	07/09/2021 1004
Surrogate	Q % Red	Acceptano Limit	ce			
Bromofluorobenzene	104	70-130				
1,2-Dichloroethane-d4	110	70-130				
Toluene-d8	107	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98390-002 Batch: 98390 Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260D

	Spike	.				0/ Doo	
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	100	95		1	95	60-140	07/09/2021 0829
Benzene	50	52		1	104	70-130	07/09/2021 0829
Bromodichloromethane	50	54		1	108	70-130	07/09/2021 0829
Bromoform	50	50		1	100	70-130	07/09/2021 0829
Bromomethane (Methyl bromide)	50	56		1	112	70-130	07/09/2021 0829
2-Butanone (MEK)	100	110		1	106	70-130	07/09/2021 0829
Carbon disulfide	50	61		1	121	70-130	07/09/2021 0829
Carbon tetrachloride	50	54		1	108	70-130	07/09/2021 0829
Chlorobenzene	50	50		1	101	70-130	07/09/2021 0829
Chloroethane	50	56		1	112	70-130	07/09/2021 0829
Chloroform	50	53		1	106	70-130	07/09/2021 0829
Chloromethane (Methyl chloride)	50	60		1	120	60-140	07/09/2021 0829
Cyclohexane	50	57		1	113	70-130	07/09/2021 0829
1,2-Dibromo-3-chloropropane (DBCP)	50	46		1	91	70-130	07/09/2021 0829
Dibromochloromethane	50	55		1	111	70-130	07/09/2021 0829
1,2-Dibromoethane (EDB)	50	53		1	106	70-130	07/09/2021 0829
1,2-Dichlorobenzene	50	50		1	99	70-130	07/09/2021 0829
1,3-Dichlorobenzene	50	51		1	102	70-130	07/09/2021 0829
1,4-Dichlorobenzene	50	50		1	99	70-130	07/09/2021 0829
Dichlorodifluoromethane	50	56		1	113	60-140	07/09/2021 0829
1,1-Dichloroethane	50	54		1	108	70-130	07/09/2021 0829
1,2-Dichloroethane	50	53		1	106	70-130	07/09/2021 0829
1,1-Dichloroethene	50	52		1	104	70-130	07/09/2021 0829
cis-1,2-Dichloroethene	50	53		1	106	70-130	07/09/2021 0829
trans-1,2-Dichloroethene	50	55		1	109	70-130	07/09/2021 0829
1,2-Dichloropropane	50	53		1	106	70-130	07/09/2021 0829
cis-1,3-Dichloropropene	50	55		1	111	70-130	07/09/2021 0829
trans-1,3-Dichloropropene	50	57		1	114	70-130	07/09/2021 0829
Ethylbenzene	50	51		1	102	70-130	07/09/2021 0829
2-Hexanone	100	120		1	123	70-130	07/09/2021 0829
Isopropylbenzene	50	51		1	103	70-130	07/09/2021 0829
Methyl acetate	50	62		1	123	70-130	07/09/2021 0829
Methyl tertiary butyl ether (MTBE)	50	55		1	111	70-130	07/09/2021 0829
4-Methyl-2-pentanone	100	120		1	120	70-130	07/09/2021 0829
Methylcyclohexane	50	51		1	103	70-130	07/09/2021 0829
Methylene chloride	50	53		1	106	70-130	07/09/2021 0829
Styrene	50	54		1	108	70-130	07/09/2021 0829
1,1,2,2-Tetrachloroethane	50	54		1	108	70-130	07/09/2021 0829
Tetrachloroethene	50	49		1	99	70-130	07/09/2021 0829
Toluene	50	52		1	104	70-130	07/09/2021 0829
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	52		1	105	70-130	07/09/2021 0829
1,2,4-Trichlorobenzene	50	45		1	90	70-130	07/09/2021 0829
1,1,1-Trichloroethane	50	54		1	108	70-130	07/09/2021 0829
1,1,2-Trichloroethane	50	52		1	104	70-130	07/09/2021 0829
		-					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98390-002 Batch: 98390

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	49	1	98	70-130	07/09/2021 0829
Trichlorofluoromethane	50	55	1	110	70-130	07/09/2021 0829
Vinyl chloride	50	57	1	114	70-130	07/09/2021 0829
Xylenes (total)	100	100	1	104	70-130	07/09/2021 0829
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	102	70-130				
1,2-Dichloroethane-d4	104	70-130				
Toluene-d8	102	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98830-001 Batch: 98830

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	5.0	ug/L	07/14/2021 1054
Benzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Bromodichloromethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Bromoform	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	07/14/2021 1054
2-Butanone (MEK)	ND		1	10	2.0	ug/L	07/14/2021 1054
Carbon disulfide	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Chlorobenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Chloroethane	ND		1	2.0	0.40	ug/L	07/14/2021 1054
Chloroform	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	07/14/2021 1054
Cyclohexane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Dibromochloromethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	07/14/2021 1054
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Ethylbenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
2-Hexanone	ND		1	10	2.0	ug/L	07/14/2021 1054
Isopropylbenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Methyl acetate	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	07/14/2021 1054
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	07/14/2021 1054
Methylcyclohexane	ND		1	5.0	0.40	ug/L	07/14/2021 1054
Methylene chloride	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Styrene	ND		1	1.0	0.41	ug/L	07/14/2021 1054
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Tetrachloroethene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
Toluene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	07/14/2021 1054
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	07/14/2021 1054

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

+ = RPD is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

* = RSD is out of criteria

P = The RPD between two GC columns exceeds 40%

Sample ID: WQ98830-001 Batch: 98830

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1 1.0	0.40	ug/L	07/14/2021 1054
Trichlorofluoromethane	ND		1 1.0	0.40	ug/L	07/14/2021 1054
Vinyl chloride	ND		1 1.0	0.40	ug/L	07/14/2021 1054
Xylenes (total)	ND		1 1.0	0.40	ug/L	07/14/2021 1054
Surrogate	Q % Red	Accep Lir	otance mit			
Bromofluorobenzene	103	70-	130			
1,2-Dichloroethane-d4	109	70-	130			
Toluene-d8	106	70-	130			

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Sample ID: WQ98830-002 Batch: 98830

Matrix: Aqueous Prep Method: 5030B

	Datoii.	,0000
Analytical	Method:	8260D

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	100	72		1	72	60-140	07/14/2021 0919
Benzene	50	49		1	98	70-130	07/14/2021 0919
Bromodichloromethane	50	51		1	102	70-130	07/14/2021 0919
Bromoform	50	47		1	95	70-130	07/14/2021 0919
Bromomethane (Methyl bromide)	50	53		1	106	70-130	07/14/2021 0919
2-Butanone (MEK)	100	90		1	90	70-130	07/14/2021 0919
Carbon disulfide	50	57		1	113	70-130	07/14/2021 0919
Carbon tetrachloride	50	50		1	100	70-130	07/14/2021 0919
Chlorobenzene	50	47		1	94	70-130	07/14/2021 0919
Chloroethane	50	54		1	108	70-130	07/14/2021 0919
Chloroform	50	49		1	99	70-130	07/14/2021 0919
Chloromethane (Methyl chloride)	50	54		1	109	60-140	07/14/2021 0919
Cyclohexane	50	52		1	105	70-130	07/14/2021 0919
1,2-Dibromo-3-chloropropane (DBCP)	50	44		1	89	70-130	07/14/2021 0919
Dibromochloromethane	50	51		1	103	70-130	07/14/2021 0919
1,2-Dibromoethane (EDB)	50	49		1	98	70-130	07/14/2021 0919
1,2-Dichlorobenzene	50	47		1	94	70-130	07/14/2021 0919
1,3-Dichlorobenzene	50	48		1	96	70-130	07/14/2021 0919
1,4-Dichlorobenzene	50	47		1	93	70-130	07/14/2021 0919
Dichlorodifluoromethane	50	49		1	97	60-140	07/14/2021 0919
1,1-Dichloroethane	50	51		1	101	70-130	07/14/2021 0919
1,2-Dichloroethane	50	49		1	99	70-130	07/14/2021 0919
1,1-Dichloroethene	50	49		1	97	70-130	07/14/2021 0919
cis-1,2-Dichloroethene	50	50		1	99	70-130	07/14/2021 0919
trans-1,2-Dichloroethene	50	51		1	102	70-130	07/14/2021 0919
1,2-Dichloropropane	50	50		1	99	70-130	07/14/2021 0919
cis-1,3-Dichloropropene	50	52		1	104	70-130	07/14/2021 0919
trans-1,3-Dichloropropene	50	53		1	106	70-130	07/14/2021 0919
Ethylbenzene	50	48		1	96	70-130	07/14/2021 0919
2-Hexanone	100	110		1	113	70-130	07/14/2021 0919
Isopropylbenzene	50	48		1	97	70-130	07/14/2021 0919
Methyl acetate	50	59		1	117	70-130	07/14/2021 0919
Methyl tertiary butyl ether (MTBE)	50	51		1	102	70-130	07/14/2021 0919
4-Methyl-2-pentanone	100	120		1	117	70-130	07/14/2021 0919
Methylcyclohexane	50	47		1	95	70-130	07/14/2021 0919
Methylene chloride	50	50		1	99	70-130	07/14/2021 0919
Styrene	50	50		1	101	70-130	07/14/2021 0919
1,1,2,2-Tetrachloroethane	50	50		1	100	70-130	07/14/2021 0919
Tetrachloroethene	50	46		1	93	70-130	07/14/2021 0919
Toluene	50	48		1	96	70-130	07/14/2021 0919
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	48		1	96	70-130	07/14/2021 0919
1,2,4-Trichlorobenzene	50	42		1	85	70-130	07/14/2021 0919
1,1,1-Trichloroethane	50	51		1	102	70-130	07/14/2021 0919
1,1,2-Trichloroethane	50	49		1	98	70-130 70-130	07/14/2021 0919
1,1,4-11101110106tridHE	50	47		ı	70	70-130	07/14/2021 0717

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Sample ID: WQ98830-002 Batch: 98830

Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	46	1	92	70-130	07/14/2021 0919
Trichlorofluoromethane	50	53	1	106	70-130	07/14/2021 0919
Vinyl chloride	50	52	1	105	70-130	07/14/2021 0919
Xylenes (total)	100	97	1	97	70-130	07/14/2021 0919
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	102	70-130				
1,2-Dichloroethane-d4	103	70-130				
Toluene-d8	100	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - MB

Sample ID: WQ98028-001

Batch: 98028 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ethane	ND		1	10	2.5	ug/L	07/07/2021 0855
Ethene	ND		1	10	2.5	ug/L	07/07/2021 0855
Methane	ND		1	10	2.5	ug/L	07/07/2021 0855
Propane	ND		1	15	5.0	ug/L	07/07/2021 0855

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Dissolved Gases - LCS

Sample ID: WQ98028-002

Batch: 98028 Analytical Method: RSK - 175 Matrix: Aqueous

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Ethane	550	610		1	110	70-130	07/07/2021 0841
Ethene	520	570		1	110	70-130	07/07/2021 0841
Methane	300	320		1	108	70-130	07/07/2021 0841
Propane	810	890		1	109	70-130	07/07/2021 0841

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

Document Number: ME0081/2-01

DISTRIBUTION: WHITE & YELLOW-Return to tabonstory with Sumphile); PINK-Field/Client Copy

Pace Analytical"

PACE ANALYTICAL SERVICES, LLC

106 Variage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com

Number

Remarks / Cooler LD. 2 WF26011 90 h Jemp Blank Quete No. OC Requirements (Specify) 5000 The E S Time morwiasture (alanthom. лесајо! Талуа <u>. 14</u> [1-3-о 151V Dete Date Sele Analysis (Attach Est if more space is needed) O Unlanown C Mon-Histard C Flammable C Skin Inflant C Polson Telephone No. / E-mail Sisplyan 19951 the Pack X HISO \$ 201 Z. 200 Possible Mazard falentification PASPA PASPA 3X Received on the (Circle)(× ui seas No of Containers by Pieservaline Type 4. Laboratory receil Brokerine иом LAB USE ONLY 2. Received by Received by 3. Received by 8 CO D ЮИ соин 10524 .ഇആവ Disposal ny Lab 9051 Matrix -coli Litar () HTH TAME June. JAme. 2195 Sempler s'Signetine smoorby Note: All samples are retained for four weeks from receipt 5 දැක්තියල් දැක්තියල් Turn Around Time Required (Prior is): approval required for expedited DRT.); Sample Disposal Thefam to Chent Printed Marne Lard Collection Time (Mittery) 500 13:30 1770 5.5 37TB 04:21 3:520 0.1 3 왕 28 Safe Chile uniess other arrangements are made. 12.59.-9 12 57.0) 1.15.24 W.25 Zi 12.520 12620) 12.570) 15.13 W ENETHEUN CONSULTANTIS, INC. 1255 Sint 2000 67 Colfection Clate(s) P.O. No. Parliand Internation (Containers for each cample may be combined on one libe.) S Q S \$ M. 12000100018.10 55-(11-01) 33 OP-10.20-GW 10 (1-18) - 59 20-02 DP-08-20-GW (110-011) 1880 West Out Sample ID / Destarbition Standard Rush (Specify) (1-37) 10 ١ Pure Name of avietta 2. Refriquished by 1. Reinquished by 3. Reimquished by 4. Reinguished by , こ 02-16 天 40 DP. (

Drawment Neminer: ME003N2-01

DISTRIBUTION: WHITE 8 YELLOW-Return to laboratory with Sample(s); PINK-Fisid-Cuant Copy

Pace Analytical "

PACE ANALYTICAL SERVICES, LLC

106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 808-791-9700 Fax No. 803-791-9111 www.pacelabs.com

122797

Number

Bermarks / Coules LD. 2 WF26011 Quote No. 400 OC Requirements (Specify) Page 3 And A TATA Time Telephone No. / Email (Militable Sp. / Eligh (2014/1460), co.m.) 智名 Receipt Temp 110/113 Sale 훒 Sale Analysis (Attach list if more space is needed, O Urbnos C Poison foe Pack Sarulo par 175610 C Skin imjant MISOHI 201 ş JUA 3 ☐ Hammable Possible Hazard Identification postpy platy Latiturshay necesiven by Received on ice (Circle) > <AN SCOS No of Containing by Preservative Type Brokesture LAB USE ONLY K Non-Hezard A. Received by 2. Received by 3. Received by \mathcal{O} D OH ROMH Tistany MUSICK - Heering to Client - Datsposal by Lab 2001 Matrix 45) 2903 Report to Contract NACUCI AM E STATE 19.0E Time TOWNS Y Note: All samples are retained for four weeks from receipt യോട അറ-ഉ Ium Around Time Required (Prior lab agenoral required for expedited IAT.) Sample Disposal Printed Narie Collection Tune (Millary) -20-21 GAN 62521 15:20 575 0110 (6:50) 125 21 15 45 625'21 zSafe Dake Date unless other arrangements are made 12.57.0 12:52 1757.01 257.0 in 20175 Confection Date(s) 10.25. P.O. Wa. The west Only Parlamed 認 2001 (Containers for each sample may be combined on one file.) 20-217-55 2000 BEEST CENTERED STATUSE (ALUNATIONA) P. 69 (5-3)-83 DE-20-080 Sample 10 / Description 17-11 (7.3) #: 2010 0018.7 Jan da PD-00 Refrictedahed by 4. Relinquistred by (1) Selinquished by 2. Relinquished by

Samples Receipt Checklist (SRC) (ME0018C-15)

Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

TARTHOON	Sample Recei	•		l *
Client: EARTHCON	Cooler Inspected b		/ 06/26/21	Lot #: WF26011
			her:	
	e custody seals present or stody seals were present,		at and and a	liano 9
pH Strip ID: NA		were they made	and unor	
Original temperature upon receipt	_ Chlorine Strip ID: NA	marabas in on	in the state of	rested by: NA %Solid Spars-Con ID: NA
1.6 /1.6 °C 1.3 /1.3 °C	NA \NA &C NV \	niperature upon NA °C	receipt	%Solid Snap-Cup ID: NA
Method: Temperature Blank			IR Gon	Correction Factor; 0 °C
Method of coolant: Wet Ice				
12 If to	inperature of any cooler			d Manager Notified?
	was Notified by: phone /			
Yes No NA 4. Is the	ic commercial courier's p	acking slip atta	ched to this	form?
Yes No 5. Wes	c proper custody procedu	ures (relinquish	ed/received	followed?
272	re sample IDs listed on th			
	c sample IDs listed on al			
	s collection date & time I			
1901	s collection date & time I			200
	all container label infor			ee with the COC?
✓ Yes No 11. We	re tests to be performed 1	isted on the CO	C?	
Yes No 12. Dic	l all samples arrive in the cen, lids on, etc.)?	proper contains	ers for each	test and/or in good condition
✓ Yes ☐ No 13. Wa	s adequate sample volum	e available?		
☐ Ycs ✓ No 14. We	re all samples received w	rithin ½ the hold	ding time or	48 hours, whichever comes first?
Yes WNo Prient 15. We	re any samples container	s missing/excess	s (circle on	e) samples Not listed on COC?
		ples, were bubb	les present	>"pea-size" (1/2" or 6mm in diameter)
in any	of the VOA vials?			
Yes No NA 17. We	re all DRO/metals/nutrier	nt samples recei	ived at a pH	of < 2?
10 Wr	re all cyunide samples re-	ceived at a pH >	12 and sul	fide samples received at a pH > 9? 8.3 (< 0.5mg/L) samples free of
residua	chlorine?			
				iS/MSD designations, etc)
	y transcribed from the O			
Yes No 21, Wa	s the quote number listed	on the contains	r label? If	ves, Quote #
	completed for any sample			
Sample(s) NA in sample receiving with NA in	W. of circle and 112004	ere received inc	orrectly pre	served and were adjusted accordingly
Time of preservation NA	L of circle one: H2SO4,			e in the comments below.
	71 more man one preser	varive is needed	i, piease no	e in the comments below.
Sample(s) NA				with bubbles >6 mm in diameter.
Samples(s) NA	\	vere received w	ith TRC > (0.5 mg/L (If #19 is <i>no</i>) and were
adjusted accordingly in sample rec) with Shea	ly ID: NA
SR barcode labels applied by: JSII	JRG2	Date: 06/26/21		
Comments: Missing WF7	6011-802-			
- C				

Report of Analysis

EarthCon Consultants, Inc.

1880 West Oak Parkway Building 100, Suite 106 Marietta, GA 30062 Attention: Tiffany Messier

Project Name: Lennox International Project Number: 02.20160378.21

> Lot Number: WF29028 Date Completed:07/07/2021

07/09/2021 2:48 PM Approved and released by: Project Manager II: Lucas Odom

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative EarthCon Consultants, Inc. Lot Number: WF29028

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample results (including LOQ and DL if requested) are corrected for dry weight unless flagged with a "W" qualifier.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Sample Summary EarthCon Consultants, Inc.

Lot Number: WF29028

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	DP-10 (10-11)-SS	Solid	06/25/2021 1230	06/29/2021

(1 sample)

Detection Summary EarthCon Consultants, Inc.

Lot Number: WF29028

Sample Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001 DP-10 (10-11)-SS	Solid	1,1-Dichloroethene	8260D	53		ug/kg	6

(1 detection)

Client: EarthCon Consultants, Inc.

Description: DP-10 (10-11)-SS Date Sampled:06/25/2021 1230

Date Received: 06/29/2021

Laboratory ID: WF29028-001

Matrix: Solid

% Solids: 84.6 06/30/2021 2251

Volatile Organic Compounds by GC/MS

Run Prep Method Analytica 1 5035	al Method Dilution 8260D 1		ysis Date Analyst 2021 1259 JM1	Prep Date	Batch 97945	Sample Wt.(g) 5.61		
Parameter		CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-	64-1	8260D	ND	21	8.4	ug/kg	1
Benzene	71-	43-2	8260D	ND	5.3	2.1	ug/kg	1
Bromodichloromethane	75-	27-4	8260D	ND	5.3	2.1	ug/kg	1
Bromoform	75-	25-2	8260D	ND	5.3	2.1	ug/kg	1
Bromomethane (Methyl bromide)	74-	83-9	8260D	ND	5.3	3.2	ug/kg	1
2-Butanone (MEK)	78-	93-3	8260D	ND	21	4.2	ug/kg	1
Carbon disulfide	75-	15-0	8260D	ND	5.3	2.1	ug/kg	1
Carbon tetrachloride	56-	23-5	8260D	ND	5.3	2.1	ug/kg	1
Chlorobenzene	108-	90-7	8260D	ND	5.3	2.1	ug/kg	1
Chloroethane	75-	00-3	8260D	ND	5.3	2.1	ug/kg	1
Chloroform	67-	66-3	8260D	ND	5.3	2.1	ug/kg	1
Chloromethane (Methyl chloride)	74-	87-3	8260D	ND	5.3	3.2	ug/kg	1
Cyclohexane	110-	82-7	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-	12-8	8260D	ND	5.3	2.1	ug/kg	1
Dibromochloromethane	124-	48-1	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dibromoethane (EDB)	106-	93-4	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichlorobenzene	95-	50-1	8260D	ND	5.3	2.1	ug/kg	1
1,3-Dichlorobenzene	541-	73-1	8260D	ND	5.3	2.1	ug/kg	1
1,4-Dichlorobenzene	106-	46-7	8260D	ND	5.3	2.1	ug/kg	1
Dichlorodifluoromethane	75-	71-8	8260D	ND	5.3	3.2	ug/kg	1
1,1-Dichloroethane	75-	34-3	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichloroethane	107-	06-2	8260D	ND	5.3	2.1	ug/kg	1
1,1-Dichloroethene	75-	35-4	8260D	53	5.3	2.1	ug/kg	1
cis-1,2-Dichloroethene	156-	59-2	8260D	ND	5.3	2.1	ug/kg	1
trans-1,2-Dichloroethene	156-	60-5	8260D	ND	5.3	2.1	ug/kg	1
1,2-Dichloropropane	78-	87-5	8260D	ND	5.3	2.1	ug/kg	1
cis-1,3-Dichloropropene	10061-	01-5	8260D	ND	5.3	2.1	ug/kg	1
trans-1,3-Dichloropropene	10061-	02-6	8260D	ND	5.3	2.1	ug/kg	1
Ethylbenzene	100-	41-4	8260D	ND	5.3	2.1	ug/kg	1
2-Hexanone	591-	78-6	8260D	ND	11	4.2	ug/kg	1
Isopropylbenzene	98-	82-8	8260D	ND	5.3	2.1	ug/kg	1
Methyl acetate	79-	20-9	8260D	ND	5.3	2.1	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-	04-4	8260D	ND	5.3	2.1	ug/kg	1
4-Methyl-2-pentanone	108-		8260D	ND	11	4.2	ug/kg	1
Methylcyclohexane	108-	87-2	8260D	ND	5.3	2.1	ug/kg	1
Methylene chloride	75-	09-2	8260D	ND	5.3	2.1	ug/kg	1
Styrene	100-		8260D	ND	5.3	2.1	ug/kg	1
1,1,2,2-Tetrachloroethane		34-5	8260D	ND	5.3	2.1	ug/kg	1
Tetrachloroethene	127-		8260D	ND	5.3	2.1	ug/kg	1
Toluene	108-		8260D	ND	5.3	2.1	ug/kg	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Client: EarthCon Consultants, Inc.

Description: DP-10 (10-11)-SS Date Sampled:06/25/2021 1230

Date Received: 06/29/2021

Laboratory ID: WF29028-001

Matrix: Solid

% Solids: 84.6 06/30/2021 2251

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Method 8260D	Dilution 1	,	Date Analyst 1 1259 JM1	Prep Date	Batch 97945	Sample Wt.(g) 5.61		
Parameter			CAS A	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260D	ND	5.3	2.1	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.3	2.1	ug/kg	1
1,1,1-Trichloroethane		71-	55-6	8260D	ND	5.3	2.1	ug/kg	1
1,1,2-Trichloroethane		79-	00-5	8260D	ND	5.3	2.1	ug/kg	1
Trichloroethene		79-	01-6	8260D	ND	5.3	2.1	ug/kg	1
Trichlorofluoromethane		75-	69-4	8260D	ND	5.3	2.1	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.3	3.2	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	11	4.2	ug/kg	1
Surrogate	Q %I	Run 1 Recovery	Acceptanc Limits	е					
Bromofluorobenzene		110	47-138						
1,2-Dichloroethane-d4		102	53-142						
Toluene-d8		110	68-124						

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:energy} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97945-001 Batch: 97945

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	8.0	ug/kg	07/06/2021 1017
Benzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Bromodichloromethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Bromoform	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	07/06/2021 1017
Carbon disulfide	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chloroform	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Chloromethane (Methyl chloride)	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
Cyclohexane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	07/06/2021 1017
1,1-Dichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
cis-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
trans-1,2-Dichloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
cis-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Ethylbenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
2-Hexanone	ND		1	10	4.0	ug/kg	07/06/2021 1017
Isopropylbenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Methyl acetate	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Methyl tertiary butyl ether (MTBE)	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
4-Methyl-2-pentanone	ND		1	10	4.0	ug/kg	07/06/2021 1017
Methylcyclohexane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Methylene chloride	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Styrene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
Toluene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,2,4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	07/06/2021 1017
.,.,=			•	0.0		~5''\9	3.,33,2321 1017

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ97945-001 Batch: 97945

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Result	Q	Dil	LOQ	DL	Units	Analysis Date
ND		1	5.0	2.0	ug/kg	07/06/2021 1017
ND		1	5.0	2.0	ug/kg	07/06/2021 1017
ND		1	5.0	3.0	ug/kg	07/06/2021 1017
ND		1	10	4.0	ug/kg	07/06/2021 1017
Q % Rec	Ac	cceptance Limit				
112		47-138				
94		53-142				
103		68-124				
	ND ND ND ND Q % Rec 112 94	ND ND ND ND Q % Rec 112 94	ND 1 ND 1 ND 1 ND 1 ND 1 Acceptance Limit 112 47-138 94 53-142	ND 1 5.0 ND 1 5.0 ND 1 5.0 ND 1 10 ND 1 10 Acceptance Limit 112 47-138 94 53-142	ND 1 5.0 2.0 ND 1 5.0 2.0 ND 1 5.0 3.0 ND 1 10 4.0 Q % Rec Limit 112 47-138 94 53-142	ND 1 5.0 2.0 ug/kg ND 1 5.0 2.0 ug/kg ND 1 5.0 3.0 ug/kg ND 1 10 4.0 ug/kg ND 1 10 4.0 ug/kg Q % Rec Limit 112 47-138 94 53-142

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97945-002 Batch: 97945 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

	Spike						
Doromotor	Amount	Result	0	DII	% Doo	%Rec	Analysis Data
Parameter	(ug/kg)	(ug/kg)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	120		1	117	60-140	07/06/2021 0953
Benzene	50	46		1	93	70-130	07/06/2021 0953
Bromodichloromethane	50	48		1	95	70-130	07/06/2021 0953
Bromoform	50	51		1	103	70-130	07/06/2021 0953
Bromomethane (Methyl bromide)	50	42		1	85	70-130	07/06/2021 0953
2-Butanone (MEK)	100	100		1	100	60-140	07/06/2021 0953
Carbon disulfide	50	45		1	90	70-130	07/06/2021 0953
Carbon tetrachloride	50	47		1	94	70-130	07/06/2021 0953
Chlorobenzene	50	49		1	97	70-130	07/06/2021 0953
Chloroethane	50	48		1	96	70-130	07/06/2021 0953
Chloroform	50	44		1	88	70-130	07/06/2021 0953
Chloromethane (Methyl chloride)	50	45		1	91	60-140	07/06/2021 0953
Cyclohexane	50	44		1	88	70-130	07/06/2021 0953
1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	97	70-130	07/06/2021 0953
Dibromochloromethane	50	49		1	98	70-130	07/06/2021 0953
1,2-Dibromoethane (EDB)	50	49		1	98	70-130	07/06/2021 0953
1,2-Dichlorobenzene	50	48		1	96	70-130	07/06/2021 0953
1,3-Dichlorobenzene	50	49		1	98	70-130	07/06/2021 0953
1,4-Dichlorobenzene	50	48		1	97	70-130	07/06/2021 0953
Dichlorodifluoromethane	50	49		1	98	60-140	07/06/2021 0953
1,1-Dichloroethane	50	44		1	87	70-130	07/06/2021 0953
1,2-Dichloroethane	50	45		1	90	70-130	07/06/2021 0953
1,1-Dichloroethene	50	45		1	89	70-130	07/06/2021 0953
cis-1,2-Dichloroethene	50	44		1	87	70-130	07/06/2021 0953
trans-1,2-Dichloroethene	50	44		1	88	70-130	07/06/2021 0953
1,2-Dichloropropane	50	46		1	91	70-130	07/06/2021 0953
cis-1,3-Dichloropropene	50	45		1	91	70-130	07/06/2021 0953
trans-1,3-Dichloropropene	50	48		1	96	70-130	07/06/2021 0953
Ethylbenzene	50	49		1	98	70-130	07/06/2021 0953
2-Hexanone	100	100		1	102	70-130	07/06/2021 0953
Isopropylbenzene	50	49		1	99	70-130	07/06/2021 0953
				1	99 88	70-130	
Methyl testions but of the (MTDE)	50	44		=			07/06/2021 0953
Methyl tertiary butyl ether (MTBE)	50	42		1	84	70-130	07/06/2021 0953
4-Methyl-2-pentanone	100	90		1	90	70-130	07/06/2021 0953
Methylcyclohexane	50	45		1	90	70-130	07/06/2021 0953
Methylene chloride	50	42		1	84	70-130	07/06/2021 0953
Styrene	50	49		1	97	70-130	07/06/2021 0953
1,1,2,2-Tetrachloroethane	50	46		1	92	70-130	07/06/2021 0953
Tetrachloroethene	50	49		1	98	70-130	07/06/2021 0953
Toluene	50	46		1	92	70-130	07/06/2021 0953
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	44		1	87	70-130	07/06/2021 0953
1,2,4-Trichlorobenzene	50	47		1	93	70-130	07/06/2021 0953
1,1,1-Trichloroethane	50	47		1	94	70-130	07/06/2021 0953
1,1,2-Trichloroethane	50	48		1	95	70-130	07/06/2021 0953

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ97945-002 Batch: 97945

Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Analysis Date
07/06/2021 0953
07/06/2021 0953
07/06/2021 0953
07/06/2021 0953

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

		i.			in i
Pace Analytical	PACE ANALY 108 Vantage Point D Tetephone No. 808-7 ww	PACE ANALYTICAL SERVICES, LLC 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com	LC 20172 91-9111	Number	122757
JATHON GOVERNING INC.	Flori () FON	Brookestine	Telephone No. / E-mail	1. 160	Quote No.
7090 425 But Butweed Je 160	12 Sampler's Signature		Nº GRACE		1
P.	Phinted Name		Sol		Pape al
PATITION	1		Yan		
Proposto 20102018.21 ROND	35 35 35 35 35 44 44 44	No of Contuiname by Processive Type	<u>-</u> a		WF29028
Cottauton (Containeration cont. compts may be contained on one tine.) Cottauton	Collection time (Malkey)	PARTY PARTY PARTY PARCY PARCY PARCY	97) 141		Hemarks / Goowr 1.D.
DR-08-10-CIN 625-21	10.43 BX	00	×××		
170-10-61-8)-55 1025-21	12.30 G X	交	×		
DP-10 (10-11)-55 02571 12:10	X 10 06:21 1	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	1.2 GX	50	\$\times \times \		
(1-37.55	13:151 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
0.5 (10-11')- SS	1 13.30 (g X	No.		80	
12577 MB-02-01-40	12 215 00 X	Č.	×××		
pp. 07 (1-8)-55 6-15-21	1500 Q X				
12.510 50-111-02 1015.1	16:10 G K				
DP-05-20-GW 10-1841	HID GX	0	* * * * *		
Turn Around Time Requirers (Plan Rob symmet required for expedited INT) Standard	T.J Sample Dispose: O Petern to Clent O Disposal by Lab	Possible Mazerd Identification	Sign (rilant Person	GC Requirements (Specify	anis (Specify)
1. Reûnquished by	625.21 1906	1. Psceived by		Oate	Jims
2. Refinquished by	Date Time	2. Received by		Clets	Ита
3 Relinquished by FedEX	Date 7/2/2	a. Received by () Ab		Data 170h	Time
4. Asthquished by		4. Laboratory received by	3/6	Pare	Tupper
Note: All samples are retained for four weeks from re unless other arrangements are made.	reeks from receipt a made.	LAS USE ONLY!	No Ice Park Receipt Temp 2, 3	33.3	Temp Bear C'Y C N
DISTRIBUTIONS WHITE & VELLOW-Return to laboratory with Sample(s); Philic-Terlaticlient Copy	efst: Pilwic-FeldiClient Copy)			Document Number: ME005N2-01

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

PACE ANALYTICAL SERVICES, LLC

0.100		
2	Samples Receipt Checklist (SRC) (ME0018C-15)	Revised:9/2
ice Analytical	Issuing Authority: Pace ENV - WCOL	Page
	Sample Receipt Checklist (SRC)	1
Client: EARTHCON	Cooler inspected by/date: KDRW / 06/29/2021 Lot #: WF29028	1
Means of receipt:	Pace Client DPS / FedEx Other:	
Yes ✓ No	Were custody seals present on the cooler?	i
Yes No 7	NA 2. If custody seals were present, were they intact and unbroken?	1
pH Strip ID: NA	Chlorine Strip ID: NA [ested by: NA	
2.3 /2.3 °C NA	pon receipt / Derived (Corrected) temperature upon receipt /NA oC NA /NA oC NA /NA oC NA /NA oC	238
Method: Temperatu	re Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: 0 Wet Ice I Ice Packs Dry Ice None	·c
	2 16	1
Yes No VI	PM was Notified by: phone / email / face-to-face (circle one).	į
✓ Yes No I	NA 4. Is the commercial courier's packing slip attached to this form?	1
✓ Yes No	Were proper custody procedures (relinquished/received) followed?	1
✓ Yes No	6. Were sample IDs listed on the COC?	
✓ Yes No	7. Were sample IDs listed on all sample containers?	1
Yes No	Was collection date & time listed on the COC?	-
✓ Yes No	9. Was collection date & time listed on all sample containers?	1
✓ Yes No	10. Did all container label information (ID, date, time) agree with the COC?	; –
✓ Yes No	11. Were tests to be performed listed on the COC?	-
		!
✓ Yes □ No	12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?	on !
✓ Yes LINo	13. Was adequate sample volume available?	1
✓ Yes ✓ No	14. Were all samples received within 1/2 the holding time of 48 hours, whichever come	s first?
Yes ∠ No	15. Were any samples containers missing/excess (circle one) samples Not listed on CC	C?
☐ Yes ☐ No ☑N	16 For WOA and DEW 176 complete to 111	diameter)
Yes □ No ✓ N	IA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?	1
Yes No ✓N	VA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a v	H > 9?
□Yes □No ☑N	19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples fr residual chlorine?	ee of
☐Yes ☐No ☑N	20. Were effect remarks/requests (i.e. requested dilutions, MS/MSD designations, etc	.b
	correctly transcribed from the COC into the comment section in LIMS?	
Yes ✓ No	21. Was the quote number listed on the container label? If yes, Quote #	1
Sample Preservation	(Must be completed for any sample(s) incorrectly preserved or with headspace.)	
Sample(s) NA	were received incorrectly preserved and were adjusted at	ccordingly
n sample receiving with fime of preservation $\frac{N}{N}$		-
Sample(s) NA	were received with bubbles >6 mm in dia	meter.
Samples(s) NA adjusted accordingly in	were received with TRC > 0.5 mg/L (If #19 is $n\sigma$) and sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: NA	were
SR barcode labels appli		
Comments:		1
		-
		1

Appendix D

Natural Oxidant Demand Test Results

Klozur® Persulfate Demand Test and Base Buffering Capacity test

Client: Earthcon Consultants

1880 West Oak Parkway St. 106

Marietta, Georgia 30062

Contact Person: Mary Ann Brookshire

Phone: 770-973-2100

Email: mbrookeshire@earthcon.com

Performing Lab: PeroxyChem Environmental Solutions USA

Tonawanda, New York, 14150

Date July 9, 2021

I. Background

Klozur® activated persulfate is a strong oxidant capable of mineralizing a wide range of contaminants, including chlorinated solvents, petroleum hydrocarbons, polyaromatic hydrocarbons, gasoline additives, pesticides, and many others. Activation of the persulfate anion generates the sulfate radical, the primary species that drives the rapid destruction of the contaminants of concern. Activation can be accomplished by several methods¹: heat, transition metals, addition of hydrogen peroxide, or utilizing high pH. Choice of the activation method will depend on the contaminant of concern and site characteristics.

A chemical oxidant is not specific as to what it will oxidize. As a result, activated persulfate will not only mineralize the contaminant of concern, but a portion of the oxidant will be used in oxidizing soil organics, reduced metals, and organic species that are not of concern. In addition, activated persulfate will undergo auto-decomposition, which will be a function of temperature, concentration and activation method. The demand upon the activated persulfate from all of these components is captured in a coarse screening test termed. "Klozur Demand Test". It is dependent upon the site characteristics, such as the organic content of the soil, the mineral loading, and soil type and collectively must be considered for estimating the magnitude of oxidant dosing during field application.

¹ PeroxyChem is the owner of licensee under various patents relating to the use of activation chemistries

The Klozur[®] Persulfate KDT test measures the loss of persulfate in the presence of soil, groundwater and activator over a period of 48 and 168 hours. The resulting KDT values can then be used as a guide to develop appropriate persulfate dosing for subsequent treatability testing and field applications.

When high pH is chosen as a means of activation, a Base Buffering Capacity (BBC) test is recommended. The goal of a BBC test is to determine the amount of sodium hydroxide (NaOH) needed to raise the pH of a soil to pH 10.5, which is necessary for Klozur persulfate activation. This report contains the results and observations from both a KDT and BBC test.

II. Sample Handling

Client Sample Identification

Site Identification: Lennox International

Soil ID: MW-3 GW ID: MW-3

Site Identification: Lennox International

Soil ID: MW-15 GW ID: MW-15

Handling Procedures

- The samples were received on June 29, 2021. Each soil was transferred into a stainless steel bowl and mixed well. MW-3 soil was a moist tan sand with no odor. The ground water had a sulfur and GRO odor. The MW-15 soil was a moist tan clay / sand with no odor. The groundwater was clear with no odor.
- The remaining soil was put into its original container and stored at ambient lab temperature.
- On June 30, 2021 the tubes were prepared according to the PeroxyChem Tonawanda KDT protocol using the provided soil and groundwater. Additional tubes were prepared according to the PeroxyChem Tonawanda BBC protocol using the provided soil and groundwater.
- The experimental samples were stored at room temperature and each sample was inverted several times once per day.
- The unused soil will be disposed of responsibly after about one month.

PeroxyChem LLC

III. Results

Sample ID	Trial Activator	Soil Wt. (g)	Water Vol. (mL)	Klozur Dosage (g/Kg Soil)	Slurry pH	Klozur Consumption (g persulfate / kg dry soil)	
				t=0 hrs.		t=48hr	t=168 hr
Soil: MW-3	High pH						
	25%	10	30	15	12.26	5.57	5.11
GW: MW-3	NaOH						

Sample ID	рН	Initial Dosing	7 days	Total mass of 25% NaOH added over 7 days (g)	BBC (g 25% NaOH / kg dry soil)	
Soil: MW-3	Initial pH	4.77	10.51	0.048	1.90	
GW: MW-3	Final pH	11.13	10.51	0.040		

Sample ID	Trial Activator	Soil Wt. (g)	Water Vol. (mL)	Klozur Dosage (g/Kg Soil)	Slurry pH	Klozur Consumption (g persulfate / kg dry soil)	
				t=0 hrs.		t=48hr	t=168 hr
Soil:MW-15	High pH	40	20	45	40.50	0.05	0.00
GW: MW-15	25% NaOH	10	30	15	12.52	0.35	2.09

Sample ID	рН	Initial Dosing	7 days	Total mass of 25% NaOH added over 7 days (g)	BBC (g 25% NaOH / kg dry soil)	
Soil: MW-15	Initial pH	5.68	10.25	0.141	5.59	
GW: MW-15	Final pH	10.58	10.62	0.141	3.39	

IV. Conclusions

The Klozur® Persulfate demand with high pH activation for the MW-3 sample was 5.57g persulfate / kg dry soil after 48 hours and 5.11 g persulfate / kg dry soil after 168 hours.

The BBC for the provided soil and groundwater was 1.90 g 25% NaOH / kg dry soil.

The Klozur® Persulfate demand with high pH activation for the MW-15 sample was 0.35g persulfate / kg dry soil after 48 hours and 2.09 g persulfate / kg dry soil after 168 hours.

The BBC for the provided soil and groundwater was 5.59 g 25% NaOH / kg dry soil.

V. Photos from BBC test

Photo 1: MW-3 soil: Day 0, before initial dosing. From left to right: Tube #1, #2, #3 and #4.

Photo 2: MW-3 Soil Day 7. From left to right: Tube #1, #2, #3 and #4.

Photo 3: MW-15 soil: Day 0, before initial dosing. From left to right: Tube #1, #2, #3 and #4.

Photo 4: MW-15 soil: Day 7 left to right: Tube #1, #2, #3 and #4.

VI. **Authorizing Signatures**

This report contains the results as determined by PeroxyChem laboratory protocol and are accurately represented herein.

Note: 1. PeroxyChem recommends performing suitable treatability testing and field pilot demonstration to determine the effectiveness of Klozur® activated persulfate on the contaminants of concern. KDT testing provides only an indication of the minimum amount of oxidant required to overcome the demands of soil, groundwater and other secondary species that contribute to the usage of the oxidant. The KDT results do not imply a guarantee of efficacy of the activated persulfate in actual field situations. 2. ANY SUCH QUANTITY OR WARRANTY IS EXPRESSLY DISCLAIMED.

PeroxyChem and Klozur are registered trademarks of PeroxyChem LLC. © 2014.

PeroxyChem LLC 07/09/2021

Appendix E

Field Sampling Forms – June 2021

WELL No. MW-	.1	PROJECT# 02.20	160378.00	LOCATION: B	Blackville, SC		Groun	idwalei odi	DATE 6 23 2		
SAMPLE No.	1	PROJECT NAME: Lenn		kville, SC FIELD PERSONNEL/COMPANY: Hannah Behat /EarthCon							
SAMPLE TIME:	12:05	SITE:		FIELD CONDITIONS	DAIFATUED	Hannas			/EarthCo		
Well Condition	10		Equipment Cl	eaning Procedu		Of Sunny					
cover: locke				r and phosphate-							
number: legibl	Y		- potable water		-liee suap						
outer casing:	good		- water rinse:	distilled		deionized					
nner casing:	good		- solvent rinse:			hexane					
well photograph		(no)	- air dry	acetorie		TIEXATIE					
Casing Diamete		9	undry								
(circle one) 2" 4" 6" Other:		Casing Volume Cal Casing Volume (ga Casing Volume (lite	llons/ft) for: 2" =	= 0.163; 4" = 0.6							
Depth to Water (fe	eet): G	97		Measurin	g Point Elevation	on (feet):					
Depth of Well (fee	t): 21.9)		Groundw	ater Surface Ele	evation:					
Water Column (fe	et): 14	.93		LNAPL p	resent:			thickness:			
Casing Volume (g			43	DNAPL p	present:	_		thickness:			
Calculated Purge			.30	Remark	s:		3				
ctual Purge Volu	and the second second	ers):	25	-	1 7 11 5	001	111				
ump Intake Dept				Ferrous	Iron (mg/L):	_ U:90 ma	116				
Vell Evacuation Vater level reco		very slow slow	moderate fas	t		Bailed dry		yes (no		
A 50	JMULATIVE DLUME (gal)	TEMPERATURE (°C)	рН	DISSOLVED OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/ REMARKS		
11:40	0		1.3		1220				PURGE START		
11:45	1.0	23.6	5.00	2-62	106.0	94.7	25.5	7.15	cioudy		
1-50	0.15	22.8	4.95	1.37	94.6	96.4	15.8	7.15	u n		
1:55	0.20	22.8	4.95	1.32	93.2	92.2	9.62	7.15	u 4		
2:00 (2.25	22.7	4.95	1.23	88.9	92.1	4,45	7.15	Clear		
2:05	Sample										
	4										
									11.		
easurement ar Type	nd Sampling E	Equipment Manufacturer			Model #			0-27	-ti D-t-		
ater Quality		YSI		556	Model #			Calibr	ation Date		
urbidity		HF Scientific	Min	556 ro TPW 20000				21/20	21		
eristaltic Pump		Geotech	IVIIC	1.54.1.787.787				6/25	121		
			_	Geopump				6 60	121		
SAMPLE NUMBER		ANALYTICAL METHOD	BOTTLE	TYPE/	PRESERVATIV	'ES	QA	REMARKS			
3		VOCs		40 ml glass /	HCL						
3		1,4 - Dioxane		40 ml glass /	HCL						
2		Diss. Gasses		40 ml glass /	HCL						
1		TOC		250 ml HDPE /	H2SO4						
1	N	IO3/SO4/CI/Alk		500 ml HDPE	/ none						
3' 1		Sulfide	250 r	ml HDPE / ZnAce			1				
						Fer	roa In	m (male	-0.95 m		
								1 collected			

WELL No. MW-4D MW-			LOCATION:	Blackville, SC					DATE 125/21
SAMPLE No.	PROJECT NAME: Len	nox, Blackville, SC	FIELD PERS	ONNEL/COMF	PANY: T. I	Messier, E	. Cook		
SAMPLE TIME: 10:45	SITE:		FIELD CONDITION		15° F				/EarthCo
Well Condition Inspectio		Equipment Cle	aning Proced	luroe	DY	Sunn	4		
	t locked		and phosphate						
	t legible	- potable water		e-liee soap					
	od fair poor	- water rinse:	distilled	4	doioniza				
	od) fair poor	- solvent rinse:	aceton		deionized	1			
well photographed: yes		- air dry	accioni	C	hexane				
Casing Diameter:									
(circle one)	Casing Volume Ca	lculation: (πr ² h)(7	7.48 gal/ft ³)						
3" 4"	Casing Volume (ga	allons/ft) for: 2" =	0.163; 4" = 0.6	653; 6" = 1.47					
6" Other:	Casing Volume (lite	ers/ft) for: 2" = 0.4	618; 4" = 2.47	; 6" = 5.56					
Depth to Water (feet):	130		Measuri	ng Point Elevation	on (foot):				
	75 49.95			vater Surface Ele		-			
Water Column (feet):	68 75 39.6	5	LNAPL		evalion.			thickness	
Casing Volume (gallons/liters)		.46	DNAPL		_		_	thickness	
Calculated Purge Volume (gal		1.39	Remark	ks:				trickress	·
Actual Purge Volume (gallons/		.5					- 1		-
Pump Intake Depth (feet):	45		Ferrous	Iron (mg/L):		01.5	57 mall		
Well Evacuation									
Water level recovery is:	very slow slow	moderate fast				Bailed dry	:	yes (no
TIME CUMULATIVE	TEMPERATURE		DISSOLVED					755	
2400 hrs VOLUME (gal)		pН	OXYGEN	ORP	CONDU		TURBIDITY	Depth to	ODOR/COLOR/
	()		(mg/L)	(mV)	(μs/	cm)	(NTU)	Water (Feet)	REMARKS
10:20		The state of	G (4.5 h S)				116	100	PURGE START
10:25 0.1	22.5	5.55	2.48	230.2	19.1	5	1.67	11.02	Clear
10:30 0.25	22.5	5.55	2,40	230.1	19.5		1.83	11.13	u 11
10:35 0.35	22.6	5.56	2.34	229.2	19.		1.47	11.20	Cv av
10:40 0.50	22.6	5.56	2.31	228.3	19.	5	1.42	11.21	u 1
10:45 Samp	ile -								
									0
I Measurement and Sampling	Equipment								
Type	Manufacturer								7.0
Vater Quality	YSI		550	Model #					tion Date
urbidity	HF Scientific	Mioro	556 TDM/ 2000					6/25	21
		stalkic pump &	TPW 20000					6/25	121
SAMPLE		to pomp a	veii vvizaro Micro	o Purge George	tech			6/25	121
NUMBER	ANALYTICAL METHOD	BOTTLE TY	PE/ F	PRESERVATIVE	s		OA B	REMARKS	
				377	77		QAI	LIVIANNO	
3	VOCs		40 ml glass / l	HCL					
3	1,4 - Dioxane		40 ml glass / l	HCL	1				
2	Diss. Gasses		40 ml glass / l	HCL					
1	TOC	2!	50 ml HDPE / H	H2SO4					
1	NO3/SO4/CI/Alk		500 ml HDPE /						
1	Sulfide	Control of the Contro	HDPE / ZnAcet						

1

Sulfide

Groundwater Sampling Record PROJECT # 02.20160378.00 WELL No. MW-2 LOCATION: Blackville, SC 8 ZZ.Z PROJECT NAME: Lennox, Blackville, SC SAMPLE No. FIELD PERSONNEL/COMPANY: /EarthCon SITE: FIELD CONDITIONS/WEATHER SAMPLE TIME: Well Condition Inspection (circle one) **Equipment Cleaning Procedures** cover: locked not locked potable water and phosphate-free soap number: (legible not legible potable water rinse outer casing: good fair poor water rinse: distilled deionized inner casing: good fair poor solvent rinse: acetone hexane well photographed: yes no air dry Casing Diameter: (circle one) Casing Volume Calculation: (πr²h)(7.48 gal/ft³) Casing Volume (gallons/ft) for: 2'' = 0.163; 4'' = 0.653; 6'' = 1.476" Other: Casing Volume (liters/ft) for: 2" = 0.618; 4" = 2.47; 6" = 5.56 Depth to Water (feet): 3,70 Measuring Point Elevation (feet): Depth of Well (feet): 14.11 Groundwater Surface Elevation: Water Column (feet): LNAPL present: thickness: Casing Volume (gallons/liters): 100 DNAPL present: Calculated Purge Volume (gallons/liters): thickness: Remarks: Actual Purge Volume (gallons/liters): Pump Intake Depth (feet): Ferrous Iron (mg/L): Well Evacuation Water level recovery is: very slow slow moderate Bailed dry: yes no TIME CUMULATIVE TEMPERATURE DISSOLVED ORP CONDUCTIVITY 2400 hrs pH TURBIDITY VOLUME (gal) **OXYGEN** Depth to (°C) ODOR/COLOR/ (mV) (µs/cm) (NTU) (mg/L) Water (Feet) REMARKS 14:00 1405 10 25.L **PURGE START** 4.46 288.6 50.4 () 90 4:10 0000 15 LIG 61,6 48 69 10 14:15 40 53.8 Vn(.68 14:20 11 20 L 40 3099 4 14:29 LC 11 20 21 41 4 11 4-20 68 25 11 Measurement and Sampling Equipment Type Manufacturer Calibration Date Water Quality YSI Turbidity HF Scientifie HANNA Micro TPW 20000 Peristaltic Pump Geotech Geopump SAMPLE ANALYTICAL NUMBER BOTTLE TYPE/ **METHOD PRESERVATIVES** QA REMARKS 3 **VOCs** 40 ml glass / HCL 3 1,4 - Dioxane 40 ml glass / HCL 2 Diss. Gasses 40 ml glass / HCL 1 TOC 250 ml HDPE / H2SO4 1 NO3/SO4/CI/Alk 500 ml HDPE / none

250 ml HDPE / ZnAcetate + NaOH

WELL No. MW SAMPLE No.	4	PROJECT NAME	100378.00		ATION: Blackville,	SC		roundwater	Sampling Re
SAMPLE TIME:	12:115	SITE :	: Lennox, Blackville,	SC FIELI	D PERSONNEL/CO	MDANIX			PATE 22
Well Condition	1000	SITE:		FIELD (CONDITIONS/WEATHER	1 01-1	Messier		
Well Condition	inspection (circle one)	Equipmen		Procedures	light R	ain 78°	Claude	/Earl
Volte		cked	- potable w	estor and	Procedures			Charle	
number: legible	not le	gible	- notable w	ater and ph	osphate-free soap				
outer casing:	good	fair poor							
inner casing:	good	fair poor	- water rins		distilled	deionized			
well photographe	d: yes /	no	- solvent rir	ise:	acetone	hexane			
Casing Diameter:			- air dry			· · · · · · · · · · · · · · · · · · ·			
(circle one)		Casing Volume	Calculation	2					
2") 4"									
6" Other:_	_	Casing Volume	(liters/ft) for: 2"	2" = 0.163;	'ft3') 4" = 0.653; 6" = 1.4 = 2.47; 6" = 5.56	7			
Depth to Water (fee			(= 0.618; 4"	= 2.47; 6" = 5.56				
Depth of Well (feet):	40.97	79		N	Measuring Point Cl				
Vater Column (feet)		5.38		G	leasuring Point Elevat Froundwater Surface E	ion (feet):			
asing Volume (galle	ns/liters):	13.90		LI	NAPL present:	levation:			
alculated Purge Vo	ume (galles- #	a service	le	D	NAPL present:			thicknes	20:
ctual Purge Volume	(gallons/literal	iters):	17	R	emarks:			thicknes	
ump Intake Depth (f	(gallons/liters)		0.65	, , ,	citiaiks.			uncknes	SS:
ell Evacuation		~	28	Fe	errous Iron (mg/L):				
ater level *-		1	1		mg/L):		11 mal		
ater level recover	y is:	very slow sloy	v moderate fa	st					
TIME CUMU	LATIVE -		1	31		Bailed	dry:		
400 hrs VOLUM	ME (gal)	TEMPERATURE	-11	DISSOLV				yes	no 3
	(gai)	(°C)	рН	OXYGE	4 4 4	CONDUCTIVITY	Y TURBIDITY	Donth	
				(mg/L)) (mV)	(μs/cm)	(NTU)	Depth to Water (Feet)	ODOR/COLOR
6166	D	23.9		The same				(, 550)	REMARKS
3.15 0,	15	23.8	5.59	5,70	149.3	25.6	2		PURGE START
3. 20 0 1	6	23,7	5.62	501	348.6		2.15	6.76	deal
1:25 0.	10	/-	5.45	4.94	347.6	85.7	193	7.72.	11 11
17.1	1	33.le	5.67	494	2411	25,8	2.29	7.63	u +
.60		23,6	5.67	492	21/6	45.9	2.60	80	a y
.10		23.6	5.56	4.67	346.8	25.9	2.11	8.29	1.
40 00	05	235	5.55	11 -	348.7	25.6	1.20	8.80	11 4
				4.	1 346.7	25,7	1.30	9.0	10 2)
							100	9.0	te v
urement and Sam	pling Equinm	ent							
Type		anufacturer							
Quality		'SI			Model #				
ty		cientific HANNA		556	100 DG G/	4 18010		Calibratio	on Date
tic Pump			Micro T	PW 20000	H1918703 51	162/01/		6/22/21	
SAMPLE		tech	Ge	eopump <	1/2 2000 21	NAVII		6/22/2	^
NUMBER	ANALY			7	1000			NIA	
	METH	IOD	BOTTLE TYP	E/	PRESERVATIVES		0	1100	
3	VOC	Cs		10 1			QA RE	MARKS	
3	1,4 - Dic			10 ml glass /					
2	Diss. Ga		- 4	0 ml glass /	HCL				
1				0 ml glass /					
1	TOO			ml HDPE /					
1	NO3/SO4/			0 ml HDPE					
	Sulfid	e	250	MITIDPE /	rione				
-	Ounu		Zall mi Lic						
	Odilid		250 MI HE	PE / ZnAce	tate + NaOH	1			

WELL No. MW	-3	PROJECT #	02.20160378.00	LOCATIO	N: Blackville, S	20	Gr	oundwater	Sampling Re
SAMPLE No.		PROJECT NAME	: Lennox, Blackville, S		RSONNEL/CO	1 de la companya de l			DATE
SAMPLE TIME:		SITE:			TIONS/WEATHER	1 1 1	essier		
Well Condition	Inspection	(circle one)	Equipment			P/CLOCY			/Ear
number: legible outer casing:	d not lo	ocked egible	- potable wa - potable wa - water rinse		nate-free soap		7		
inner casing: well photographe Casing Diameter:	good d: yes	fair poor	- solvent rins	GIQ (II		deionized hexane			
(circle one) 2" 4" 6" Other:_		Casing volume	Calculation: (πr²l (gallons/ft) for: 2' (liters/ft) for: 2'' =	-0400	0.653; 6" = 1.4	7			
Depth to Water (fee	t):	.90							
Depth of Well (feet):	17.96			Measu	uring Point Elevat	ion (feet):			
Water Column (feet)	:	12. DG		Ground	dwater Surface E	levation:			
Casing Volume (gall Calculated Purge Vo	ons/liters):	/literal	2.16		present:			thicknes	s:
Actual Purge Volume	(gallons/liter	/iiters):	(0,4	Rema		LUNG ODA		thicknes	s:
ump Intake Depth (feet):	~16	0,10	1 1		1			
Vell Evacuation Vater level recover		very slow slo	W moderate 6		s Iron (mg/L):	330mg/L	dilute &	50% 3;	10 mg/L
	JLATIVE ME (gal)	TEMPERATURE	w moderate fas	DISSOLVED		Bailed dr	y:	yes C	no
0:20	0	(°C)	pH	OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR REMARKS
2:30 0.2	0	22.0	4.71	0.94	15.6	193.6	0.95	5.70	PURGE STAR
0.7	10	22,1	21-106	0.09	65.3 H4.4	193.3	0.54	6.11	clear
7:45 0,0	00	12.1	4.107	0.06	11.0	193.0	6.70	6.71	11 0
0:50 0.6	0	12.1	21.67	0.04	D	1051	1,29	7.06	le u
0:55 0.7	0	22 [4.107	0.02	0.9	196.	1.21	7.48	it is
			7-101	0.03	0.8	196.1	1.37	7/2	et u
								1. 40	
surement and San	nplina Fauin	ment							
Туре		Manufacturer							
r Quality		YSI			Model #	110.10		Colibert	nakan i
dity	HE	Scientifie HAN	VA Micro T	556 PRO	DSS SIL	18019		Calibratio	on Date
altic Pump	G	eotech			48708 X	M 21011		(0.78.	21
SAMPLE	ANAL	YTICAL		eopump S/A	1-2002	3		MILI	-
NUMBER		THOD	BOTTLE TYP	E/ PR	ESERVATIVES			TAPA	
3	V	OCs					QA REM	MARKS	
3		Dioxane		10 ml glass / HC					
2		Gasses		10 ml glass / HC					
1		OC C		0 ml glass / HC					
1		04/CI/AIk		ml HDPE / H2S					
1	Sul		50	0 ml HDPE / no	ne				
	Gui	nuc	250 ml Hr	DE / Z	and the second				
			200 1111 112	OPE / ZnAcetate	+ NaOH				

Groundwater Sampling Record WELL No. MW-3D PROJECT # 02.20160378.00 LOCATION: Blackville, SC PROJECT NAME: Lennox, Blackville, SC SAMPLE No. FIELD PERSONNEL/COMPANY: -MESSIER SAMPLE TIME: 19:45 SITE: /EarthCon FIELD CONDITIONS/WEATHER DICLOUPY Well Condition Inspection (circle one) **Equipment Cleaning Procedures** locked not locked potable water and phosphate-free soap number: legible not legible potable water rinse outer casing: good) fair poor water rinse: distilled deionized inner casing: good fair poor solvent rinse: acetone hexane well photographed: ves 110 air dry Casing Diameter: (circle one) Casing Volume Calculation: (πr²h)(7.48 gal/ft³) 2" Casing Volume (gallons/ft) for: 2" = 0.163; 4" = 0.653; 6" = 1.47 Other: Casing Volume (liters/ft) for: 2'' = 0.618; 4'' = 2.47; 6'' = 5.56Depth to Water (feet): 5.20 Measuring Point Elevation (feet): Depth of Well (feet): 28.12 Groundwater Surface Elevation: Water Column (feet): 27.97 LNAPL present: Casing Volume (gallons/liters): thickness: DNAPL present: thickness: Calculated Purge Volume (gallons/liters): Remarks: Actual Purge Volume (gallons/liters): Pump Intake Depth (feet): Ferrous Iron (mg/L): Well Evacuation Water level recovery is: very slow slow moderate fast Bailed dry: yes no DISSOLVED TIME CUMULATIVE **TEMPERATURE** ORP CONDUCTIVITY TURBIDITY pH 2400 hrs VOLUME (gal) **OXYGEN** Depth to ODOR/COLOR/ (°C) (mV) (mg/L) (µs/cm) (NTU) Water (Feet) REMARKS **PURGE START** 5.62 3.00 363.9 109, 5.43 1.04 2 4.59 3825 9 5.40 402.9 0,64 5.40 11 10 4.3-409.3 88. 59 540 10 36 417.6 88.0 95 541 ce 10 Measurement and Sampling Equipment Type Manufacturer Calibration Date Water Quality YSI Turbidity HF Scientific HANNA Micro TPW 20000 Peristaltic Pump Geotech Geopump SAMPLE ANALYTICAL BOTTLE TYPE/ NUMBER **PRESERVATIVES METHOD QA REMARKS** 3 **VOCs** 40 ml glass / HCL 3 1,4 - Dioxane 40 ml glass / HCL 2 Diss. Gasses 40 ml glass / HCL 1 TOC 250 ml HDPE / H2SO4 1 NO3/SO4/CI/Alk 500 ml HDPE / none 1 Sulfide 250 ml HDPE / ZnAcetate + NaOH

WELL No		PROJECT	# 02.20160378.00	0 1100	CATION			G	roundwater	
SAMPLE		PROJECT NA	ME: Lennox, Blackville		LOCATION: Blackville, SC FIELD PERSONNEL/COMPANY:				unuwater	Sampling R
SAMPLE	TIME: 09'00	SITE:		1117	CONDITIONS/	NNEL/CO	MPANY:	essile		DATE 24
Well Con	dition Inspection	(circle one)	Equipmen				Sunny r	160		/Ear
number: outer casir inner casin	legible not legible not good	locked legible d fair poor	- potable w - potable w - water rins	vater and p vater rinse se:	g Procedur phosphate-f	res ree soap	deionized			
well photog Casing Dia	graphed: ves	no poor	- solvent rir - air dry	nse:	acetone		hexane			
	t" Other:	outling voluit	ne Calculation: (πr) ne (gallons/ft) for: (πr) ne (liters/ft) for: (πr)	OII -		3; 6" = 1.4	7			
Depth to Wat	er (feet):	58								
Depth of Well Water Columi	(feet): 20.78				Measuring F	Point Elevat	tion (feet):			
Casing Volum	e (gallons/liters):	13.2			Groundwate LNAPL prese	r Surface E	levation:			
Calculated Pu	rge Volume (gallons	- 112	2.15	1	DNAPL pres	ent:			thicknes	ee.
Actual Purge \	/olume (gallons/liter	s/liters):	(0,5	F	Remarks:	CIII.			thicknes	
oump Intake D	epth (feet):	18	O. ID							
Vell Evacuat Vater level re	ion		2		errous Iror	(mg/L):	0,35	ng/L		
TIME	CUMULATIVE VOLUME (gal)	TEMPERATUR		DISSOL	LVED		Bailed dr	y:	yes	no
3:10	0	(°C)	pН	OXYG (mg/	GEN	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR REMARKS
9:20	0:10	19,1	7:03	0.9	C -	1-1	E MALANIA			
3.95	0.30	18.8	547	04		96.0	43.5	24.2	8.25	PURGE STAR
330 1	2,40	18.8	513	0.3	0	9.8	440	19.8	8.54	Julia
3:35	2,50	18,8	4.93	0.13		4,7	44.0	17.8	863	11 11
5:40 8		18.9	4.94	0.17	10	1.8	42.9	15, 3	_	11 "
3.45 8	2,70	18.9	4.93	0,6	7	0,6	42.8	16,3	8.90	CRap
		10,7	4.94	8.11		1.7	42.6	10,1	395	clear
				1			420	8.8	9.20	11 11
urement and	d Sampling Equip									
Туре										
Quality		Manufacturer YSI			Model #	¥				
ity	HE	Scientific HAN	4 / 4	-556	RPO DS	5 5/H	18019		Calibratio	on Date
altic Pump		eotech	Micro I	PW 20000	S/N ;	2/011	.00		6.24.	21
SAMPLE			G	eopump	S/M =	20023	3		6-24;2	21
NUMBER		YTICAL THOD	BOTTLE TYP	F/	DDF	Azza all			- AUA	
3		DCs C			PRESER	VATIVES		QA REM	MARKS	
3		Dioxane		40 ml glass	s / HCL					
2				10 ml glass			4 7			
1		Gasses		0 ml glass						
	NO3/SO			ml HDPE						
1	NO3/SO			0 ml HDPE						
1										
	Sulf	ride	250 ml H	DPE / ZnAc	cetate + NI-	OH				

Groundwater Sampling Record WELL No. MW-1D NW-4D PROJECT # 02.20160378.00 LOCATION: Blackville, SC PROJECT NAME: Lennox, Blackville, SC FIELD PERSONNEL/COMPANY: SAMPLE No. Behar Hannah /EarthCon FIELD CONDITIONS/WEATHER 9:20 SAMPLE TIME: 700 Sunny Well Condition Inspection (circle one) **Equipment Cleaning Procedures** cover: Clocked not locked potable water and phosphate-free soap number: (legible) not legible potable water rinse outer casing: good fair poor water rinse: distilled deionized inner casing: good fair poor solvent rinse: acetone hexane well photographed: no yes air dry Casing Diameter: (circle one) Casing Volume Calculation: $(\pi r^2 h)(7.48 \text{ gal/ft}^3)$ Casing Volume (gallons/ft) for: 2" = 0.163; 4" = 0.653; 6" = 1.47 Other: Casing Volume (liters/ft) for: 2" = 0.618; 4" = 2.47; 6" = 5.56 Depth to Water (feet): 12.65 Measuring Point Elevation (feet): 78.75 Depth of Well (feet): 49.95 Groundwater Surface Elevation: Water Column (feet): LNAPL present: thickness: Casing Volume (gallons/liters): DNAPL present: thickness: Calculated Purge Volume (gallons/liters): Remarks: Actual Purge Volume (gallons/liters): Pump Intake Depth (feet): Ferrous Iron (mg/L): Well Evacuation Water level recovery is: very slow slow moderate fast Bailed dry: yes no DISSOLVED TIME CUMULATIVE **TEMPERATURE** ORP CONDUCTIVITY TURBIDITY Depth to ODOR/COLOR/ pH **OXYGEN** 2400 hrs VOLUME (gal) (°C) (mV) (µs/cm) (NTU) Water (Feet) REMARKS (mg/L) 8:50 **PURGE START** 8:55 0. 18.4 4.76 1.20 268.7 20.0 72 13.9 clear 9:00 0.4 18.5 4.75 279.9 19.7 1.58 .16 14. 9:05 0.6 8 75 290.1 1.12 19.3 1.27 14.7 .. 40 9:10 0.8 4.75 18.7 1.09 296.9 19.2 0.97 14.7 k 9:15 1.09 1.0 18.7 3025 19.2 6.83 4.9 9:20 Measurement and Sampling Equipment Type Manufacturer Model # Calibration Date Water Quality YSI Turbidity HF Scientific Micro TPW 20000 Peristaltic Pump Geotech Geopump SAMPLE ANALYTICAL BOTTLE TYPE/ **PRESERVATIVES** NUMBER **QA REMARKS METHOD** 3 **VOCs** 40 ml glass / HCL 3 1,4 - Dioxane 40 ml glass / HCL 2 Diss. Gasses 40 ml glass / HCL 1 TOC 250 ml HDPE / H2SO4 1 NO3/SO4/CI/Alk 500 ml HDPE / none ø Sulfide 250 ml HDPE / ZnAcetate + NaOH

							Groun	idwater San	npling Recor	ď
WELL No.	MW-5	PROJECT # 02.20	160378.00	LOCATION: B	lackville, SC				DATE	
SAMPLE	No.	PROJECT NAME: Lenn	ox, Blackville, SC	FIELD PERSO	NNEL/COMPA	NY: T. Messier, E.	Cook		/EarthCo	n
	TIME: 15: 00	SITE:		FIELD CONDITIONS	WEATHER	Summy			72411100	÷
	lition Inspection	(circle one)	Equipment Cl	eaning Procedu		30				
100000000000000000000000000000000000000		locked		and phosphate-						
,		legible	- potable water		пос обар					
outer casir		od) fair poor	- water rinse:	distilled		deionized				
inner casir		od fair poor	- solvent rinse:	acetone		hexane				
well photog			- air dry			TIONAL TO				
Casing Dia										_
(circle one)		Casing Volume Ca	lculation: (πr ² h)(7.48 gal/ft ³)						
2"	4"	Casing Volume (ga								
6"	Other: 1"	Casing Volume (lite	ers/ft) for: $2" = 0$.618; 4" = 2.47;	6" = 5.56					
Depth to Wa	ater (feet):	6.40		Measurin	g Point Elevation	n (feet):				
Depth of We	and the second second	9.7		Groundw	ater Surface Ele	vation:				
Water Colu	mn (feet):	13.30		LNAPL p	resent:			thickness		
Casing Volu	ime (gallons/liters)	0.5		DNAPL p	resent:			thickness		
The state of the s	Purge Volume (gall		-	Remark	s:					
	e Volume (gallons/		. 6			1 -0	1.			
	e Depth (feet):	18		Ferrous	Iron (mg/L):	1,59 ma	11-			
Well Evaci										
Water leve	el recovery is:	very slow slow	moderate fas	t ,		Bailed dry		yes	no	
TIME	CUMULATIVE	TEMPERATURE		DISSOLVED	ORP	CONDUCTIVITY	TURBIDITY	Depth to	ODOR/COLOR	2/
2400 hrs	VOLUME (gal)		pН	OXYGEN (mg/L)	(mV)	(μs/cm)	(NTU)	Water (Feet)	REMARKS	
mi.ar	_			(mg/L)	N=					_
14:25	0	10.0	11 50	1 77	102 0	000	1.01	F 150	PURGE STAR	
14:30	0.1	19.2	4.59	1.73	192.8	88.9	1.81	6.46	Ctear, ode	_
14:35	0.2	19.0	4,56	0.71	205.4	86.5	1.87	6.43	14 W	
14:45	0.4		4.58	0.41	209.7	86.1	1.27	6.44	4 4	
	0.5	19.0	4.60	0.30	210.2	86.1	1.13	6.44		-
14:50	6.6	19.0	4.60	0.27	210.6	85.9	1.00	6,44	u 7	_
15:00			4.61	0.27	21017	50.1	1.07	6,41		
19.00	Sam	Pu								-
					-					-
			7							
										Ħ
										_
	1									
										1
Measurem	ent and Samplin	g Equipment								
Т	ype	Manufacturer	4		Model #			Calib	ration Date	
Water Quali	ty	YSI	4	556				6/24	121	
Turbidity		HF Scientific	Mic	ro TPW 20000			200	6/2	4/21	
Bladder Pur	np	QED		Well Wizard Mic	ro Purge			6/2	4/2	
	MPLE MBER	ANALYTICAL METHOD	BOTTLE	TYPE/	PRESERVATIV	ES	QA	REMARKS		1
	3	VOCs		40 ml glass /	HCI					
	3	1,4 - Dioxane		40 ml glass /						
	2	Diss. Gasses								
	7			40 ml glass /	and decrease					-
	1	TOC		250 ml HDPE /						
	1	NO3/SO4/CI/Alk	15.67	500 ml HDPE						-
	1	Sulfide	250 i	nl HDPE / ZnAce	etate + NaOH					4
							Contract Contract	20.000.000.000		_
							DUP	-2 collected		

		PROJECT # 02.20°	160378.00	LOCATION: BI	ackville, SC				DATE 23 21		
The Part of the Control of the Contr	MW-GR	PROJECT NAME: Lenno		FIELD PERSON	NNEL/COMPA	NY: T. Messier, E.	Cook		/EarthCon		
SAMPLE N		SITE:	The street of	FIELD CONDITIONS/	WEATHER 76	F Sunny					
	IME: 9:45					÷ 30.1.1.9					
	ition Inspection (c			eaning Procedur							
cover: co	g: good g: good	jible	- potable water - potable water - water rinse: - solvent rinse: - ail dry	distilled		deionized hexane					
	meter: 4" Other:	Casing Volume Cal Casing Volume (gal Casing Volume (lite	lons/ft) for: 2" =	= 0.163; 4" = 0.65	53; 6" = 1.47 6" = 5.56						
Depth to Wa	ater (feet):	2.02		Measuring	g Point Elevation	n (feet):					
Depth of We Water Colur Casing Volu	ell (feet): mn (feet): me (gallons/liters):	12.28		Groundwater Surface Elevation: LNAPL present: DNAPL present: thickness: thickness:							
	Purge Volume (gallon		n 0 B	Remarks	3:						
	e Volume (gallons/lite		0.60	Ferrous	Iron (mg/L):	A.Mma	11_		-		
1 11/2 2	e Depth (feet):	0i		Terrous	iron (mg/L).	- Williams	16				
Well Evacu Water leve	uation el recovery is:	very slow slow	moderate fas	st		Bailed dry	:	yes (no		
TIME 2400 hrs	CUMULATIVE VOLUME (gal)	TEMPERATURE (°C)	рН	DISSOLVED OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/ REMARKS		
9:05	0								PURGE START		
9:10	0.05	19.6	5.78	2.22	190.2	38.0	~15	2.05	clear		
9:15	0.10	19.4	5.59	1.29	205.8	36.2	~15	2.15			
9:20	6.20	19.4	5.57	1.03	201.2	35.9	~10	2.15	u n		
9:25	0.30	19.5	5.51	0.62	181.2	35.2	~10	2.15	u "		
9:30	0.40	19.5	5.48	0.43	173.6	35.2	~10	2.15	4 9		
9:35	-0-11 0.5		5.47	0,40	171.2	35.1	~10	2.15	. ,		
9:40	0.60	19.4	5.47	0.39	168.3	35.2	~10	2.15	ec 37		
9:45	Sampl										
Artist Control of the Control	nent and Sampling Type ality	Equipment Manufacturer YSI HF Scientific	M	556 icro TPW 20000	Model #			0 1	7 / 2 / 3 / 2 / 3 / 2 / 3 / 2 / 3 / 2 / 3 / 2 / 3 / 2 / 3 / 3		
Peristaltic I	Pump	Geotech		Geopump			-	6/2	40		
17.0	AMPLE JMBER	ANALYTICAL METHOD	BOTTLE	E TYPE/	PRESERVATI	VES	QA	REMARKS			
	3	VOCs		40 ml glass	/ HCL						
	3	1,4 - Dioxane		40 ml glass	/ HCL						
	2	Diss. Gasses		40 ml glass	/ HCL						
	1	TOC		250 ml HDPE	/ H2SO4						
		NO3/SO4/CI/Alk		500 ml HDPE	/ none						
	1	Sulfide	250	0 ml HDPE / ZnAd	cetate + NaOH	1					

WELL No. MW-6R	PROJECT# 02.20	160378.00	LOCATION: B	lackville, SC				DATE/22/21
SAMPLE No.	PROJECT NAME: Lenne	ox, Blackville, SC	FIELD PERSO	NNEL/COMPA	ANY:			/EarthCon
SAMPLE TIME: 12:35	SITE:		FIELD CONDITIONS	/WEATHER				/Eurinoon
Well Condition Inspection (Equipment Cle	eaning Procedu	ires				
cover: locked not lo			and phosphate-					
number: legible not le		- potable water						
outer casing: good		- water rinse:	distilled		deionized			
inner casing: good		- solvent rinse:	acetone		hexane			
	no	- air dry						
Casing Diameter:		undi		0.04				
(circle one) 2" 4" 6" Other: <u>1</u> 1 1 1	Casing Volume Ca Casing Volume (ga Casing Volume (lite	illons/ft) for: 2" =	0.163; 4" = 0.6	53; 6" = 1.47				
Depth to Water (feet):			Measurin	g Point Elevatio	n (feet):			
Depth of Well (feet):			Groundw	ater Surface Ele	evation:			
Water Column (feet):	19 6.87		LNAPL p				thickness:	
Casing Volume (gallons/liters):	4-3	0.0	DNAPL p				thickness:	
Calculated Purge Volume (gallor		0.83	Remark	S:				
Actual Purge Volume (gallons/lite		.23	Earrous	Iron (mg/L):	1 60	mali		
Pump Intake Depth (feet):		-	remous	non (mg/L):	UIM,	19/1		
Well Evacuation Water level recovery is:	very slow slow	moderate fas	t		Bailed dry		yes	no
TIME CUMULATIVE 2400 hrs VOLUME (gal)	TEMPERATURE (°C)	рН	DISSOLVED OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/ REMARKS
12:00 0		La maria						PURGE START
12:05 0:05	23.3	5.76	3.42	116.4	78.4	17-1	6.71	clear
12:10 0.10	23.2	5.76	3.71	100.7	79.8	41.3	6.55	4
12:15 0.15	23.3	5.78	4.7	99.0	76.2	48.4	6.51	40 20
12:20 0.18	23.2	5.83	5.44	99.7	75.9	45.8	6.5	44 61
12:25 0.20	23.2	5.86	5.88	104-1	75.5	48.6	6.52	21
12:30 0.23	23.2	5.89	5.90	104.4	74.6	41.2	6.53	14 W
12:35 Samp	le -				<u> </u>			
0								
					1			
			15				(0	
1 12 1								1
								1
Measurement and Sampling Type Water Quality	Equipment Manufacturer YSI		556	Model #				ration Date
Turbidity	HF Scientific	Mic	ro TPW 20000				6122	1/21
Peristaltic Pump	Geotech	-	Geopump				6/22	2/21
SAMPLE NUMBER	ANALYTICAL METHOD	BOTTLE	TYPE/	PRESERVATIV	/ES	QA	REMARKS	
3	VOCs		40 ml glass	/ HCL				
3	1,4 - Dioxane		40 ml glass					
2	Diss. Gasses		40 ml glass					The state of the s
1	TOC		250 ml HDPE					
1	NO3/SO4/CI/Alk	425	500 ml HDPE	THE SECOND STATE OF THE SE				
1	Sulfide	250	ml HDPE / ZnAc	cetate + NaOH				

	IW-8 PROJECT # 02.20160378.00 LOCATION: Blackville, SC						DATE/22/21		
SAMPLE N	No.	PROJECT NAME: Lenn	ox, Blackville, SC	FIELD PERSO	NNEL/COMPA	NY: Hannah	Behar		/EarthCon
SAMPLE T		SITE:		FIELD CONDITIONS	WEATHER 70	F andy			7-20-11-0011
		on (circle one)	Equipment Cle	aning Procedu					
		ot locked	Property of the Control of the Contr	and phosphate					
		ot legible	- potable water						
outer casin		ood) fair poor	- water rinse:	distilled		deionized			
inner casin		ood fair poor	- solvent rinse:	acetone		hexane			
well photog	-		- air dry						
Casing Dia						7 (.04		
(circle one)	22.	Casing Volume Ca	lculation: (πr ² h)(7	7.48 gal/ft ³)	0.005 H2x	H × 7.48			
2"	4"	Casing Volume (ga							0.00
6"	Other:	Casing Volume (lite	ers/ft) for: 2" = 0.	618; 4" = 2.47;	6" = 5.56				- ° p
Depth to Wa	ater (feet):	0.7		Measurir	ng Point Elevation	(feet):			
Depth of We		12			ater Surface Elev	7.00			
Water Colur	_	11.3		LNAPL p	resent:	_		thickness:	•
Casing Volu	ime (gallons/liters	6 - 1	4	DNAPL	-	_		thickness:	- AP
Calculated F	Purge Volume (ga		39	Remark	s:				
Actual Purge	e Volume (gallon		46			001	4		
Pump Intake	e Depth (feet):	10		Ferrous	Iron (mg/L):	Ucoln	1912		
Well Evacu	uation								
Water leve	el recovery is:	very slow slow	moderate fast			Bailed dry:		yes (no
11222		TELEPES : TELEPE		DISSOLVED		4-11-14-28-20-1			and the same of
TIME 2400 hrs	CUMULATIV VOLUME (ga		рН	OXYGEN	ORP (m)()	CONDUCTIVITY	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/
2400 1113	VOLUME (ge	(0)		(mg/L)	(mV)	(μs/cm)	(1410)	vvater (Feet)	REMARKS
10:00	0	Marian San San San San San San San San San S				N			PURGE START
10:05	0.05	21.4	5.38	1.43	112.0	148.5	6.05	3.62	Clear
10:10	0.10	21.7	5.65	1,36	73,4	163.3	11.8	4.95	11 11
10:15	0.15	21.8	5.32	0.30	95.3	135.1	52.5	5.23	Cloudy
10:20	0.20	20,4	5.29	1.32	100.3	121.5	32.7	5,82	17 4
10:25	0.25	20.6	5.21	1.08	112.0	117.5	41.0	6.35	40 40
10:30	0.30	21.3	5.32	3,02	131.8	110.0	53.8	Co-142	10 11
10:35	0.35	21,4	5.42	5.66	128.3	112.1	30.4	6.51	42
10:40	0.40	21.4	5.41	6.01	120.1	104.3	25,9	6.53	CA 33
10:45	6.43	21.5	5.43	6.30	113.3	102.4	29.0	6,53	H 25
10:50	0.45	21.5	5,45	6.35	118.4	101.2	27.9	6.53	će j.e.
10:55	0.46	21.6	5.45	6.35	110.4	101.3	26.5	-	14 81
11:00	Sam	sole							
		0					*		
	ent and Sampli	0 1 1							
	ype	Manufacturer			Model #		- V		ation Date
Water Quali	ty	YSI		556				6 22	2
Turbidity		HF Scientific	Micr	o TPW 20000				6/22	2
Peristaltic P	ump	Geotech		Geopump				6/22	2
	MPLE MBER	ANALYTICAL METHOD	BOTTLE 1	TYPE/	PRESERVATIV	ES	QA	REMARKS	
	3	VOCs		40 ml glass	/ HCL				
	3	1,4 - Dioxane		40 ml glass					
	2	Diss. Gasses		40 ml glass	37.4				
	1	TOC		ATT TO THE REAL PROPERTY.					
	1			250 ml HDPE	16.				
		NO3/SO4/CI/Alk	1222	500 ml HDPE					
	1	Sulfide	250 n	nl HDPE / ZnAc	etate + NaOH				- 6
	-11								Veri

VVELLING	o. MW-10	PROJECT# 02	20160378.00	LOCATION	N: Blackville, S	10	Gro	oundwater S	Sampling R
SAMPLE	No.	PROJECT NAME: Le	ennox, Blackville, SC						DATE 6/2
SAMPLE	TIME: 14:15	SITE:		FIELD CONDIT	RSONNEL/CONTIONS/WEATHER	1 (001)	nah Beh	65	1 2/2
	dition Inspection	(circle one)	Ir				unny		/Ear
cover: (number: (outer casir inner casir well photo Casing Dia (circle one) 2"	locked not legible	ocked egible fair poor fair poor no Casing Volume C Casing Volume (g	- potable wate - water rinse: - solvent rinse: - air dry alculation: (πr²h)(allons/ft) for: 2" =	r and phosph. r rinse distill aceto	ate-free soap	deionized hexane			
	Other:_\\	Casing Volume (lit	ers/ft) for: 2" = 0.	618; 4" = 2.4	7; 6" = 5.56	1			
Depth to Wa Depth of We		0			ring Point Elevat	in = 15			
Vater Colum				Ground	dwater Surface E	levation:			
Casing Volum	ne (gallons/liters):	1.73	-	LNAPL	present:	ievation.			
Calculated Pu	urge Volume (gallons		30		present:	_		thicknes	
ctual Purge	Volume (gallons/liter		55	Remar	rks:			thicknes	s:
ump Intake	Depth (feet):	11 -0.	37	-					
Vell Evacua				Ferrou	s Iron (mg/L):	0,5	7 mall	3	
later level r	recovery is:	very slow slow	moderate fast			D-II-14			
TIME	CUMULATIVE	TEMPERATURE		DISSOLVED		Bailed dry	/:	yes	no
2400 hrs 3:40	VOLUME (gal)	(°C)	pH	OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLO
3:45	0.1	21,4	4.76	1.66		1			DUDOF
3:50	0.2	20.2	4.80	1.00	205.5	47.5	18,	5.03	PURGE STAI
3:55	0.25	20.2	4.80	0.46	205.4	48.0	7.53	5.00	Clear
4:00	0.35	20.3	4.82	0.41	207.6	48.0	5,36	5.00	1.00
1:05	0.45	20.2	4.80	0.28	210.4	47.9	3.22	4.97	u H
1:10	0.55	20.2	4.80	0.27	216.4	47.8	3.35	4.97	u H
1:15	Sample		1.80	0127	223.5	47.6	2.13	5.00	u
	,								
Surement o	and Sampling Equi								
Туре	and Sampling Equi	pment Manufacturer							
r Quality		YSI			Model #			0-11	
dity	HF	Scientific	A	556				Calibrati G/23	The state of the s
altic Pump		Geotech	Micro TP					6/20	2/2/
SAMPLE		LYTICAL	Geo	pump				6/2	121
NUMBER		ETHOD	BOTTLE TYPE	PR	RESERVATIVES		04.55	- 6/20	14
3		/OCs	40) ml glass / H(MARKS	
3	1,4 -	Dioxane		ml glass / Ho			MS/M	SD	
2	Diss.	Gasses		ml glass / HC			1		
		ГОС		nl HDPE / H2					
1	Mosis	O4/CI/Alk		ml HDPE / no					
1	NO3/S	OTICITAIN	211 11 1						
		ulfide		PE / ZnAcetat					

Groundwater Sampling Record WELL No. MW-11 PROJECT# 02.20160378.00 LOCATION: Blackville, SC PROJECT NAME: Lennox, Blackville, SC SAMPLE No. FIELD PERSONNEL/COMPANY: /EarthCon SITE: FIELD CONDITIONS/WEATHER SAMPLE TIME: :05 Sunny Well Condition Inspection (circle one) **Equipment Cleaning Procedures** cover: locked not locked potable water and phosphate-free soap number: legible not legible potable water rinse outer casing: good fair poor water rinse: distilled deionized inner casing: good fair poor solvent rinse: acetone hexane well photographed: yes no air dry Casing Diameter: 0.041 (circle one) Casing Volume Calculation: (πr²h)(7.48 gal/ft³) 2" Casing Volume (gallons/ft) for: 2'' = 0.163; 4'' = 0.653; 6'' = 1.47Other: Casing Volume (liters/ft) for: 2" = 0.618; 4" = 2.47; 6" = 5.566" Depth to Water (feet): 7.12 Measuring Point Elevation (feet): Depth of Well (feet): 9.59 Groundwater Surface Elevation: Water Column (feet): 2.47 LNAPL present: thickness: Casing Volume (gallons/liters): DNAPL present: thickness: Calculated Purge Volume (gallons/liters): Remarks: Actual Purge Volume (gallons/liters): Pump Intake Depth (feet): Ferrous Iron (mg/L): Well Evacuation Water level recovery is: very slow (slow)moderate fast Bailed dry: yes no DISSOLVED TIME CUMULATIVE **TEMPERATURE** ORP CONDUCTIVITY рН TURBIDITY 2400 hrs **OXYGEN** Depth to ODOR/COLOR/ VOLUME (gal) (°C) (mV) (µs/cm) (NTU) (mg/L) Water (Feet) REMARKS 0 **PURGE START** 11:15 0.05 23.7 5,54 1.95 108.7 10.5 7.44 0.10 5.77 77 61.6 97.4 3.0 7.50 11:25 21 .95 0.86 73.3 240. 4.0 .50 64 11:30 21. 6.05 4. 3.5 7.53 20.9 6-12 -9. 2 7.52 15 0.35 21.0 18 -19.9 0. 780.3 7.52 .0 0.45 21.0 6.21 26.0 282.5 7.54 3.0 21.1 6.23 0.11 287.0 3.0 7.51 4 0.60 25 34.7 O. 288,6 2.5 .52 Bre 12:00 0.65 0.10 34.8 289. 7,52 pe 12:05 BAMPIL Measurement and Sampling Equipment Manufacturer Model # Calibration Date Water Quality YSI 556 6/24/21 Turbidity HF Scientific Micro TPW 20000 Peristaltic Pump Geotech Geopump SAMPLE ANALYTICAL BOTTLE TYPE/ NUMBER METHOD **PRESERVATIVES QA REMARKS** 3 **VOCs** 40 ml glass / HCL 3 1,4 - Dioxane 40 ml glass / HCL 2 Diss. Gasses 40 ml glass / HCL 1 TOC 250 ml HDPE / H2SO4 1 NO3/SO4/CI/Alk 500 ml HDPE / none 1 Sulfide 250 ml HDPE / ZnAcetate + NaOH

Groundwater Sampling Record PROJECT # 02.20160378.00 WELL No. MW-14 LOCATION: Blackville, SC PROJECT NAME: Lennox, Blackville, SC SAMPLE No. FIELD PERSONNEL/COMPANY: Behar Hannal SAMPLE TIME: 4:50 SITE: FIELD CONDITIONS/WEATHER /EarthCon 750 Sunni Well Condition Inspection (circle one) **Equipment Cleaning Procedures** cover: locked not locked potable water and phosphate-free soap number: (legible not legible potable water rinse outer casing: good fair poor water rinse: distilled deionized inner casing: good fair poor solvent rinse: acetone hexane well photographed: yes (no air dry Casing Diameter: (circle one) Casing Volume Calculation: $(\pi r^2 h)(7.48 \text{ gal/ft}^3)$ Casing Volume (gallons/ft) for: 2" = 0.163; 4" = 0.653; 6" = 1.47 2" 6" Other: Casing Volume (liters/ft) for: 2'' = 0.618; 4'' = 2.47; 6'' = 5.56Depth to Water (feet): 7,20 Measuring Point Elevation (feet): Depth of Well (feet): 13.41 Groundwater Surface Elevation: Water Column (feet): LNAPL present: Casing Volume (gallons/liters): thickness: DNAPL present: Calculated Purge Volume (gallons/liters): thickness: Remarks: Actual Purge Volume (gallons/liters): Pump Intake Depth (feet): Ferrous Iron (mg/L): Well Evacuation Water level recovery is: very slow slow moderate fast Bailed dry: ves no TIME CUMULATIVE **TEMPERATURE** DISSOLVED 2400 hrs VOLUME (gal) ORP CONDUCTIVITY **OXYGEN** TURBIDITY (°C) Depth to ODOR/COLOR/ (mV) (mg/L) (µs/cm) (NTU) Water (Feet) REMARKS 4:20 4:25 0. 19.2 PURGE START 5,17 1.77 76. 56.0 :30 10.0 0.2 7-23 18. Clear 5.08 0.23 103.7 48.5 9:35 5.5 7.23 0.3 18.9 .09 0.2 105.5 48.6 9:40 0.4 7.25 K 19.0 5.09 0.19 106.6 48.7 .5 7.25 9:45 3 0.5 19.0 5.09 107.7 9:50 48.6 4.0 25 60 Measurement and Sampling Equipment Type Manufacturer Model # Water Quality Calibration Date YSI 556 Turbidity 24/21 HF Scientific Micro TPW 20000 Peristaltic Pump Geotech Geopump 24 SAMPLE ANALYTICAL NUMBER BOTTLE TYPE/ **METHOD PRESERVATIVES QA REMARKS** 3 **VOCs** 40 ml glass / HCL 3 1,4 - Dioxane 40 ml glass / HCL 2 Diss. Gasses 40 ml glass / HCL 1 TOC 250 ml HDPE / H2SO4 1 NO3/SO4/CI/Alk 500 ml HDPE / none 1 Sulfide 250 ml HDPE / ZnAcetate + NaOH

						Groun	dwater San	npling Record
WELL No. MW-15	0160378.00	LOCATION: E	Blackville, SC				CE-22.21	
SAMPLE No.	PROJECT NAME: Lenr	nox, Blackville, SC	FIELD PERSO	NNEL/COMP	ANY: T.U.	essier		/EarthCon
SAMPLE TIME: (79:5	SITE:		FIELD CONDITIONS	/WEATHER				
Well Condition Inspect		Equipment Cle	aning Procedu	ires				
	not locked		and phosphate-					
	not legible	- potable water						
	good fair poor	- water rinse:	distilled		deionized			
· · · · · · · · · · · · · · · · · · ·	good fair poor	- solvent rinse:	acetone		hexane			- 19
	yes no	- air dry	775		V-50-10-10-10-10-10-10-10-10-10-10-10-10-10			
Casing Diameter:								
(circle one)	Casing Volume Ca	lculation: (πr ² h)(7	7.48 gal/ft ³)					
2" 4"	Casing Volume (ga							
6" Other:	Casing Volume (lit	ers/ft) for: $2'' = 0$.	618; 4" = 2.47;	6" = 5.56				
Depth to Water (feet):	6.85		Measurin	g Point Elevation	on (feet):			
	21.81			ater Surface Ele				
Water Column (feet):	14.96		LNAPL p	resent:			thickness:	
Casing Volume (gallons/lite	ers): 2.	4	DNAPL p	present:			thickness:	
Calculated Purge Volume ((gallons/liters):	1.0	Remark	s:				
Actual Purge Volume (gallo		140	_			1.		
Pump Intake Depth (feet):	213		Ferrous	Iron (mg/L):	0,39	mall		
Well Evacuation						0	7	3
Water level recovery is:	very slow slow	moderate fast			Bailed dry	y :	yes (nd
11 To 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			DISSOLVED	The second	7.7.1.1.2.3.2.4			
TIME CUMULATI 2400 hrs VOLUME (9		рН	OXYGEN	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/ REMARKS
2400 1113	gai) (C)		(mg/L)	(1110)	(дэ/стт)	(1410)	vvater (reet)	KLWAKKS
07.10								PURGE START
0,10	20,5	510	0.79	158.8	97.7	41.5	7.0	clear
09:20 0.20		4.83	0111	164.)	99.9	20.8	7.0	Ti Ci
09:25 0,30		4.85	0.05	166.3	99.6	7.27	7.00	te ti
09:30 0:40	4 4	4.85	0.04	167.1	99.5	7.58	7,0	11
09:35 0.50		4.86	0,0	1701	98.5	4.89	7.0	U 11
09:40 0,60	20.7	4,87	0.02	171.9	96.9	41	7.0	11 11
						•		
			1					
Measurement and Samp				14-2-14			0-11-	ti D-1-
Type	Manufacturer		550	Model #	6		Calibr	ration Date
Water Quality	YSI	(A.A.	-550 TRIM 00000	111/1270	2	-	1 -2	2 21
Turbidity	HF Scientific	Micr	o TPW 20000	2/1/201	222	-	6.20	1
Peristaltic Pump	Geotech		Geopump	MA MUL	161)	-	_ /4/	A
SAMPLE	ANALYTICAL	BOTTLE 7	TYPE/	PRESERVATIV	/ES	QA	REMARKS	
NUMBER	METHOD	11-11-11-11						
3	VOCs		40 ml glass /					
3	1,4 - Dioxane		40 ml glass /	HCL				
2	Diss. Gasses		40 ml glass /	HCL				
1	TOC		250 ml HDPE /	H2SO4				
1	NO3/SO4/CI/Alk		500 ml HDPE	/ none				
1	Sulfide	250 n	nl HDPE / ZnAc	etate + NaOH				

						Groun	uwater San	ipiling Record
WELL No. MW-16	PROJECT # 02.20	160378.00	LOCATION: E	Blackville, SC				PATE 22 21
SAMPLE No. 2	PROJECT NAME: Lenne	ox, Blackville, SC	FIELD PERSO	NNEL/COMPA	ANY: Mes	sier		/EarthCon
SAMPLE TIME://0'50	SITE:		FIELD CONDITIONS	WEATHER	ain			
Well Condition Inspection (circle one)	Equipment Cle	aning Procedu	res	6-11			
cover: ocked not lo not	ocked egible fair poor fair poor	The control of the co	and phosphate	free soap	deionized hexane			
Casing Diameter: (circle one) 2" 4" 6" Other:	Casing Volume Cal Casing Volume (ga Casing Volume (lite	allons/ft) for: 2" =	0.163; 4" = 0.6					
Depth to Water (feet): Depth of Well (feet): Water Column (feet): Casing Volume (gallons/liters): Calculated Purge Volume (gallons/liters) Actual Purge Volume (gallons/liters)	ns/liters):	000000000000000000000000000000000000000	Groundw LNAPL p DNAPL p Remark	oresent:			thickness:	
			1 ellous	non (mg/L).	0110 1110	#-		_
Well Evacuation Water level recovery is:	very slow slow	moderate fast			Bailed dry	:	yes	no
TIME CUMULATIVE VOLUME (gal)	TEMPERATURE (°C)	рН	DISSOLVED OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (μs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/ REMARKS
Measurement and Sampling Type	Equipment Manufacturer YSI	4.27 4.07 4.42 4.42 4.02	4.03 4.43 4.43 4.41 4.41	7225 3565 3263 393 1 408 1 408 1	109.5 109.3 109.1 109.0 109.6	8.92 5.25 3.47 7.19 3.29	Calibra 6 23	PURGE START CLEAR
Turbidity	HF Scientific	Mici	ro TPW 20000	4198703	S/N21011		Ce-2	2/21
Peristaltic Pump	Geotech		Geopump 5/	N 200 23	7			474
SAMPLE NUMBER	ANALYTICAL METHOD	BOTTLE	TYPE/	PRESERVATIV	'ES	QA	REMARKS	
3	VOCs		40 ml glass	/ HCL				
3	1,4 - Dioxane		40 ml glass	/ HCL				
2	Diss. Gasses		40 ml glass	/ HCL				
1	TOC		250 ml HDPE /	H2SO4				
1	NO3/SO4/CI/Alk		500 ml HDPE	/ none				
1	Sulfide	250 r	ml HDPE / ZnAc	etate + NaOH				

						Cioun	awater ban	ipining Record
WELL No. MW-17	7 PROJECT # 02.20160378.00		LOCATION: Blackville, SC					
SAMPLE No. PROJECT NAME: Lennox, Blackvi		ox, Blackville, SC	/EarthCo					/EarthCon
SAMPLE TIME: 20 SITE:			FIELD CONDITIONS	Rain &	520			
number: legible no outer casing: go inner casing: go well photographed: ye Casing Diameter: (circle one) 2" 4"	t locked t legible od fair poor od fair poor s no Casing Volume Cal	- potable water - potable water - water rinse: - solvent rinse: - air dry culation: (πr²h)(' llons/ft) for: 2" =	distilled acetone 7.48 gal/ft ³) 0.163; 4" = 0.6	free soap 53; 6" = 1.47	deionized hexane			16.
6" Other: Depth to Water (feet): Depth of Well (feet): Water Column (feet): Casing Volume (gallons/liters Calculated Purge Volume (gallons Pump Intake Depth (feet): Well Evacuation	illons/liters):	24 19	Measuring Groundwo LNAPL po DNAPL p Remarks	g Point Elevatio ater Surface Ele resent: present:		mall	thickness:	
Water level recovery is:	very slow slow	moderate fast			Bailed dr	y:	yes	no
TIME CUMULATIVE 2400 hrs VOLUME (gal		рН	DISSOLVED OXYGEN (mg/L)	ORP (mV)	CONDUCTIVITY (µs/cm)	TURBIDITY (NTU)	Depth to Water (Feet)	ODOR/COLOR/ REMARKS
11.25 0.45 11.25 0.45 11.25 0.45 11.40 0.45 11.40 0.45 11.50 0.69	19.4	4.74	7.41	411,4 413,4 416,1 416,1 42560 428,7	57.4 51.3 51.2 51.0 56.9	2.09 1.68 1.54 1.39 4.71 3.36 3.33	10.0 10.0 10.0 10.0 10.0	PURGE START OLD II II II II EC L/ IC L/ IC L/
Measurement and Samplir Type Water Quality Turbidity Peristaltic Pump SAMPLE	ng Equipment Manufacturer YSI HF-Scientific Geotech ANALYTICAL		.556 Fo TPW 20000 Geopump	Model # 220 DS 4/14 210	S/N 18010	-	6.22. 6.23	ration Date
NUMBER METHOD		BOTTLE TYPE/ PRESERVATIVES			'ES	QA	REMARKS	
3 VOCs			40 ml glass /					
2 1,4 - Dioxane		40 ml glass / HCL						
2 Diss. Gasses		40 ml glass / HCL						
1 TOC			250 ml HDPE /					
1	NO3/SO4/CI/Alk	500 ml HDPE / none 250 ml HDPE / ZnAcetate + NaOH						
1	Sulfide	250 n	ni HDPE / ZnAce	etate + NaOH				

Appendix F

Groundwater Elevations Summary

APPENDIX F: GROUNDWATER ELEVATIONS SUMMARY

Well Location	May-00	Apr-01	Jun-01	Jul-01	Mar-02	Jun-02	Dec-02	Jan-03	Mar-03	Jun-03	Aug-03	Feb-04
MW-1	273.81	275.70	na	na	274.80	273.04	274.85	274.97	276.00	276.34	275.87	276.20
MW-2	272.05	na	na	273.05	273.43	270.68	273.56	273.24	274.02	274.02	274.03	274.03
MW-3	273.66	na	na	274.27	273.85	272.30	273.86	273.98	274.96	275.87	275.45	275.47
MW-4	269.20	na	na	272.81	273.32	269.13	273.71	273.40	274.68	275.59	273.69	275.96
MW-5	na											
MW-6/MW-6R	na	275.80	na	275.33	274.69	273.38	277.03	na	na	na	na	na
MW-7	na	275.98	275.03	na	275.05	273.09	274.77	275.25	276.02	276.43	276.07	276.33
MW-8	na	276.20	275.78	na	274.64	273.17	275.27	275.64	276.18	276.53	276.03	276.78
MW-9	na	na	273.95	na	273.72	271.64	274.56	273.98	275.08	275.25	274.78	275.22
MW-10	na	na	na	272.06	272.54	272.03	272.66	272.58	272.89	273.17	272.93	273.25
MW-11	na	na	na	274.41	275.86	275.66	275.84	275.12	276.03	276.09	275.87	276.18
MW-12	na	na	na	267.80	269.87	269.89	269.98	269.93	270.03	270.29	270.37	270.43
MW-13	na	na	na	na	na	na	272.50	272.47	272.59	272.80	272.83	272.92
MW-14	na	na	na	na	na	na	272.68	272.61	272.97	273.32	272.97	273.50
MW-15	na											
MW-16	na											
MW-17	na											

Notes:

na - not available nm - not measured

APPENDIX F: GROUNDWATER ELEVATIONS SUMMARY

Well Location	Jun-04	Oct-04	Feb-05	Sep-06	Mar-07	Sep-07	Dec-07	Jan-08	Mar-08	Sep-08	Apr-09	Sep-09
MW-1	274.13	273.84	275.59	274.28	275.22	274.27	275.24	275.65	275.98	273.55	273.68	272.76
MW-2	273.11	273.86	274.03	271.64	na	na	274.12	274.38	na	273.27	274.49	273.63
MW-3	274.04	274.55	274.58	274.10	274.66	273.89	273.94	274.46	275.05	272.05	275.32	273.27
MW-4	270.31	272.75	270.90	271.97	274.72	272.62	274.22	274.35	274.70	271.14	274.27	270.64
MW-5	na											
MW-6/MW-6R	na											
MW-7	274.55	274.98	274.91	274.28	274.13	275.67	na	na	276.26	274.70	276.14	272.72
MW-8	274.51	275.33	276.46	274.48	276.05	274.82	na	na	276.40	273.79	276.70	272.68
MW-9	272.86	273.77	274.64	272.96	274.18	272.87	na	na	275.08	272.06	274.81	271.74
MW-10	272.40	272.95	273.20	272.98	273.53	273.50	na	na	273.70	272.69	273.59	273.38
MW-11	275.87	275.83	275.97	275.48	275.83	275.38	na	na	274.32	na	275.44	274.75
MW-12	270.17	270.42	270.61	270.67	na							
MW-13	272.68	272.98	273.08	na								
MW-14	272.46	273.02	273.33	272.97	273.57	272.99	na	na	273.86	272.83	273.64	272.31
MW-15	na											
MW-16	na											
MW-17	na											

Notes:

na - not available nm - not measured

APPENDIX F: GROUNDWATER ELEVATIONS SUMMARY

Well Location	Mar-10	Oct-10	Sep-12	Jan-17	Oct-17	Mar-18	Oct-18	Mar-19	Oct-19	Apr-20	Jun-21
MW-1	276.00	274.94	273.29	276.29	274.60	276.12	276.38	275.89	272.93	276.34	275.11
MW-2	274.63	274.02	272.85	nm	272.98	274.90	274.89	274.59	271.02	275.18	274.00
MW-3	275.44	274.34	272.95	275.76	274.00	275.23	275.53	275.56	273.71	276.11	274.49
MW-4	274.30	273.19	270.80	274.83	270.51	273.56	275.24	273.11	267.87	273.54	272.09
MW-5	na	na	na	nm	272.81	274.46	274.53	273.24	271.33	274.43	273.58
MW-6/MW-6R	na	na	273.52	276.37	274.95	276.30	276.89	276.36	273.93	276.81	275.68
MW-7	275.60	275.06	272.63	276.71	274.92	276.14	276.57	275.74	272.72	276.51	275.41
MW-8	277.02	275.44	273.75	nm	274.58	276.51	276.37	276.45	275.90	276.63	276.13
MW-9	274.97	273.62	na	nm							
MW-10	273.59	273.45	271.50	273.06	271.88	274.24	274.29	274.13	269.95	274.33	273.51
MW-11	275.30	275.14	271.54	273.40	272.30	274.14	274.15	273.99	271.15	274.32	273.54
MW-12	na	na	na	nm							
MW-13	na	na	na	nm							
MW-14	273.68	273.43	271.62	273.57	272.27	274.29	274.35	274.22	269.73	274.59	273.61
MW-15	na	na	na	276.41	275.49	275.82	276.73	276.70	274.35	277.28	275.97
MW-16	na	na	na	nm	273.67	274.08	274.55	274.47	272.80	274.90	273.48
MW-17	na	274.04	276.79	275.52							

Notes:

na - not available

nm - not measured

Prepared By: MAB 8/30/21 Checked By: CDN 10/20/21

Appendix G

Groundwater Historical Data Summary

| Sample Well Date MONITORING WE | | | Benzene | Bromodichloromethane | Вготобот | 2-Butanone (MEK) | Carbon disulfide | Carbon Tetra chloride | Chlorobenzene
 | Chloroethane | Chloroform | Chloromethane | Dibromoc hlorometha ne

 | 1,1-Dichloroethane | 1,2-Dichloroethane | 1,1-Dichloroethene | cis-1,2-Dichloroethene | trans-1,2-Dichloroethene | Ethylbenzene | Isopropylbenzene | мтве | 4-Methy I-2-pentanone
 | Methy lene Cholride | Styrene | Tetrachloroethene
 | Toluene | 1,2,4-Trichlorobenzene | 1,1,1-Trichloroethane | 1,1,2-Tric hloroethane | Trichloroethene | Vinyl Chloride | Xylenes | 1,1,1,4-160 acino outland | n-Butylbenzene
sec-Butylbenzene | | p-is opropyito luene | n-Propy lbenzene | 1,2,4-Trime thylbenzene | - | Naphthalene |
|---|---|--|--|--|---|--|---|---
---|---|--|--
--
--|---|---
---|--|---|---|--|--
--|---|--
---|---|---|--|--|--|---|---|--|--|--|--|--|---|---|-------------|
| MONTONING WE SEE THE S | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | ND N | 2 2.2 2.1 1.28 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.1 | 22 VID ND | NO. NO. | NDD | 9.2.2 | No. No. | ND ND ND ND ND ND ND ND | NO NO NO NO NO NO NO NO | ND ND ND ND ND ND ND ND | NED NED | 42 42 NDD <p< th=""><th> ND ND ND ND ND ND ND ND</th><th>3.11 4.22 3.31 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.1</th><th>25.7 68.4 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10</th><th>2,010 3,630 8,820 6,810 6,130 10,200 12,200 5,200 2,580 8,200 12,400 11,900 5,280 700 2,200 6,500 5,300 1,20</th><th>38f1 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46.</th><th>1,050 412 854 422 858 ND 813 1,990 1,380 813 1,990 1,380 813 1,990 1,380 441 1040 1,910 6910 764 820 1,380 1,390 520 931 460 941 270 200 1388 611 100 328 81 101 455 333 32 J</th><th>ND
13.3
3.6
10.8
5.4
6.0
8.6
13.8
7.6
13.8
8.3
ND
13.0
15.0
ND
ND
ND</th><th>27.1 NO. 27.1 NO. 27.</th><th> ND ND ND ND ND ND ND ND</th><th> 10 ND ND ND ND ND ND ND N</th><th>87 JJ 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>78.5 15.8 15</th><th>979 979 979 979 979 979 979 979 979 979</th><th> C C C C C C C C</th><th>22 ND ND</th><th>ND ND N</th><th>60.2 24.6 5 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1</th><th>99
110
5.77
92.8
120
76.8
85.6
75
112
97.5
75
104
58.9
19
86
32
98
84
150
170
22
67
58.8
84.4
150
32
33
33
33
33
33</th><th>3,360
2,720
2,680
3,349
9,870
2,450
4,240
4,240
4,240
4,240
4,240
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
4,040
4,040
5,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200</th><th>ND ND ND ND ND ND ST ST</th><th> ND ND ND ND ND ND ND ND</th><th>ND ND ND ND ND ND ND ND ND ND 1.90 <10 <20 ND <10 <20 ND ND</th><th> ND</th><th>12.6 ND 10.7 10.1 14.8 2.8 ND 5.3 ND 13.8 ND 13.8 ND 13.8 ND 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9</th><th>215 ND S4.3 41.8 118.0 772.7 71.5 87.8 6.4 4.5 90.5 91.8 ND ND</th><th>ND 34.3 14.2 25.4 74.3 13.4 18.9 2.7 2.5 8.0 19.4 18.4 ND 29.6 ND ND</th><th>11:0</th></p<> | ND ND ND ND ND ND ND ND | 3.11 4.22 3.31 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.1 | 25.7 68.4 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10 | 2,010 3,630 8,820 6,810 6,130 10,200 12,200 5,200 2,580 8,200 12,400 11,900 5,280 700 2,200 6,500 5,300 1,20 | 38f1 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46. | 1,050 412 854 422 858 ND 813 1,990 1,380 813 1,990 1,380 813 1,990 1,380 441 1040 1,910 6910 764 820 1,380 1,390 520 931 460 941 270 200 1388 611 100 328 81 101 455 333 32 J | ND
13.3
3.6
10.8
5.4
6.0
8.6
13.8
7.6
13.8
8.3
ND
13.0
15.0
ND
ND
ND | 27.1 NO. 27. | ND ND ND ND ND ND ND ND | 10 ND ND ND ND ND ND ND N | 87 JJ 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 78.5 15.8 15 | 979 979 979 979 979 979 979 979 979 979 | C C C C C C C C | 22 ND | ND N | 60.2 24.6 5 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 99
110
5.77
92.8
120
76.8
85.6
75
112
97.5
75
104
58.9
19
86
32
98
84
150
170
22
67
58.8
84.4
150
32
33
33
33
33
33 | 3,360
2,720
2,680
3,349
9,870
2,450
4,240
4,240
4,240
4,240
4,240
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
3,220
4,040
4,040
5,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200
6,200 | ND ND ND ND ND ND ST | ND ND ND ND ND ND ND ND | ND 1.90 <10 <20 ND <10 <20 ND | ND | 12.6 ND 10.7 10.1 14.8 2.8 ND 5.3 ND 13.8 ND 13.8 ND 13.8 ND 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 | 215 ND S4.3 41.8 118.0 772.7 71.5 87.8 6.4 4.5 90.5 91.8 ND | ND 34.3 14.2 25.4 74.3 13.4 18.9 2.7 2.5 8.0 19.4 18.4 ND 29.6 ND | 11:0 |
| 0427242
0627322
064 198
051 1000
041 1001
0627 1000
041 1001
053 1600
041 1001
053 1600
054 1600
054 1600
054 1600
064 1600
064 1600
065 1600 | 1 | 2000 | 10 10 10 10 10 10 10 10 | 10 10 10 10 10 10 10 10 | \$200 \$400 \$400 \$400 \$400 \$400 \$400 \$400 | <2000 <100 ND < | <20 <22 ND N | | <2 ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< | 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 440 | <20 | \(\frac{1}{2} \) \(\ | <10.0 <2.0 <l< td=""><td> \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 </td><td> e10 e10</td><td>\$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20</td><td> 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 1700</td><td>8.1 J J P P P P P P P P P P P P P P P P P</td><td>97 J</td><td>200 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24</td><td></td><td> <100 <100 <200 <li< td=""><td> 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110</td><td> color</td><td> <10. <10. <20. <li< td=""><td> 420 </td><td> 10 10 10 10 10 10 10 10</td><td>400 400 MD MD</td><td><20 ND ND</td><td><10 <10 <20 <2 <2 ND ND</td><td>244 64 64 64 64 64 66 66 66 66 66 66 66 6</td><td>400 J 27 ND ND ND ND ND ND ND ND ND N</td><td></td><td> ND ND ND ND ND ND ND ND</td><td></td><td></td><td></td><td></td><td></td><td></td></li<></td></li<></td></l<> | \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 | e10 e10 | \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 | 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 17000 1700 | 8.1 J J P P P P P P P P P P P P P P P P P | 97 J | 200 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24 | | <100 <100 <200 <li< td=""><td> 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110</td><td> color</td><td> <10. <10. <20. <li< td=""><td> 420 </td><td> 10 10 10 10 10 10 10 10</td><td>400 400 MD MD</td><td><20 ND ND</td><td><10 <10 <20 <2 <2 ND ND</td><td>244 64 64 64 64 64 66 66 66 66 66 66 66 6</td><td>400 J 27 ND ND ND ND ND ND ND ND ND N</td><td></td><td> ND ND ND ND ND ND ND ND</td><td></td><td></td><td></td><td></td><td></td><td></td></li<></td></li<> | 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 | color | <10. <10. <20. <li< td=""><td> 420 </td><td> 10 10 10 10 10 10 10 10</td><td>400 400 MD MD</td><td><20 ND ND</td><td><10 <10 <20 <2 <2 ND ND</td><td>244 64 64 64 64 64 66 66 66 66 66 66 66 6</td><td>400 J 27 ND ND ND ND ND ND ND ND ND N</td><td></td><td> ND ND ND ND ND ND ND ND</td><td></td><td></td><td></td><td></td><td></td><td></td></li<> | 420 | 10 10 10 10 10 10 10 10 | 400 400 MD | <20 ND | <10 <10 <20 <2 <2 ND | 244 64 64 64 64 64 66 66 66 66 66 66 66 6 | 400 J 27 ND ND ND ND ND ND ND ND ND N | | ND ND ND ND ND ND ND ND | | | | | | |
| 09/01/99
09/24/99
09/24/99
09/16/00
09/16/00
09/26/09
12/16/00
06/27/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/17/00
06/10
06/10
06/10
06/10
06/10 | 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 | <10 ND | <2
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | <2
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND
ND
ND
ND |) ND | ND
ND
ND
ND
ND
ND
ND
ND
ND
 | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | <2 ND

 | ND
ND
ND
ND
ND
ND
ND | <2 ND | ND
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND
ND
ND
ND | ND N | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | <2 ND | | <10 ND
 | <10
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | 6.9
4.1
7.97
7.06
7.2
5.07
8.76
3.79
4.01
3.59
4.01
3.60
4.40
4.20
2.50
2.72
 | <2 ND | <2 ND | <2 ND | <2 ND | <2 ND 1.98 ND | <2 ND | ND
ND
ND
ND
ND
ND
ND
ND | <2 ND | ND N | <2 ND | <2
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | <2 ND | <2 ND ND 4.28 ND N | <2 ND | -2 |

Well		Acetone	Benzene	Bromodichloromethane	Вготобот	2-Butanone (MEK)	Carbon disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Di bromoc hi orometha ne	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Isopropylbenzene	МТВЕ	4-Methy I-2-pe ntanone	Methy lene Choiride	Styrene	Tetrachloroethene	Toluene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylenes	1,1,1,2-Tetrachloroethane	n-Butylberzene	p-is opropylibluene		-	1,2,4-Trime thylbenzene	1,3,5-Trimethylbenzene Naphthalene	1,4-Dioxane
	12/20/05 06/26/06 03/02/10 10/07/10	ND ND ND	ND ND	ND ND ND	ND ND	ND	ND ND ND	ND ND ND	NE NE	O NE	ND ND	ND ND	ND ND ND	ND	ND ND	ND ND	ND	NE NE	NE NE	D ND	ND ND	ND ND	ND ND ND	-	1.30 1.30 ND	ND ND ND	ND ND	ND	ND ND	ND ND ND	ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND N	ND ND ND	ND ND ND	ND ND ND		
	09/27/12 10/01/14 02/01/17	<25 <20	<1	۵ د د	<1 <1	<50 <10	<5 <1 <1	<5 <1 <1	<1	5 <5 1 <1 1 <2	<1	<5 <1 <1	<5 <1 <1	<5 <1 <1	<1	<1	<1	<1	<	1 <1	<5 <1 <1	<10 <10	<5 <5 <1	- <1	<5 <1 4.8	<5 <1 <1	<1	<5 <1 <1	ক ব	<5 <1 <1	<1 <1	<15 <2 <1	<5 <1 	<5 <1 -	<5 <1 	<5 <1 -	<5 <1 -	<5 <1 -	<5 <1 	<5 - <5 - <1
	10/18/17 03/27/18 10/02/18	<20	ব ব	۲ ۲		4.2 J <10 <10	ব ব	ব ব	<1 <1	1 2 1 2 1 2	? - ব ? - ব	<2 <2 <2	<1 <1	ব ব	ব ব	<1 <1 <1	্ব ব	<1	<		্ব ব	<10	ব ব	ব ব	ব ব	্ব ব	্ব ব	ব ব	ব ব	<1 <1		1.4 <1 <1	-	-	-	-	-	-	-	- <1 - <1
	03/26/19 10/14/19 04/22/20	<20	<1	ব ব ব	<1	<10 <10 <10 <10	<1 <1 <1	41 41	<1 <1	1	<1	<2 <2 <2	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1 <1	<1	<br </td <td><</td> <td>1 <1</td> <td><1 <1 <1 <1</td> <td><10</td> <td><1 <1 <1</td> <td>্ব ব</td> <td><1 <1 <1</td> <td><1 <1 <1</td> <td><1</td> <td><1 <1 <1</td> <td>41 41</td> <td><1 <1 <1</td> <td><1 <1 <1</td> <td>ব ব</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>- <1 - <1</td>	<	1 <1	<1 <1 <1 <1	<10	<1 <1 <1	্ব ব	<1 <1 <1	<1 <1 <1	<1	<1 <1 <1	41 41	<1 <1 <1	<1 <1 <1	ব ব	-	-	-	-	-	-	-	- <1 - <1
	06/22/21 09/03/99 05/16/00	<10	<1 <2	<1 <2 ND	<2	<10 <10 ND	<1 <2 ND	<1 <2 ND	<	1 <2 2 <2 0 ND	2 <2	<2	<1 <2 ND	<1 <2 ND	<2	<2	<2	<	. <	2 <2	<1 2.5	<10	<10 ND	্ব -	<1 <2 2.57	<1 <2 ND	<2	<1 <2	<1 <2 ND	<1 <2 ND	<2	<2	<2 ND	<2 ND	<2 ND N	<2	<2 ND	<2 ND	<2 ND	<2 -
	03/11/03 06/17/03 08/14/03	ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	NE NE	D NE	ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND	NE NE	NE	NE NE	ND ND	ND ND ND	ND ND	ND ND	-	ND ND ND	ND ND ND	ND ND	ND ND	ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND N	ND	ND ND ND	ND ND ND	ND ND ND	ND -
	02/13/04 06/02/04 10/07/04	ND ND ND	ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	NE NE	D ND D ND	ND ND	ND	ND ND ND	ND ND ND	ND ND	ND	ND ND	NE NE	NE NE	ND ND	ND	ND ND ND	ND ND ND	-	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND N ND N ND N	ND	ND ND ND	ND ND ND	ND ND ND	ND -
	02/18/05 06/02/05 09/28/05	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	NE NE	0 NE 0 NE 0 NE	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	NE NE	NE NE	ND ND ND	ND	ND ND ND	ND	-	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND N	ND ND ND	ND ND ND	ND ND	ND ND ND	ND -
	12/20/05 06/26/06 03/29/07	ND ND <2	ND ND <1	ND ND <1	ND	ND ND <2	ND ND <1	ND ND <1	<1	0 ND 0 ND 1 <2	ND 2 <1	ND	ND ND <1	ND ND <1	ND <1	ND <1	ND 37.6	NE NE <1	NI 3.9:) ND	ND ND <1	ND <1	ND ND <1	-	ND ND 8.2	ND ND <1	ND <1	ND ND <1	ND ND <1	ND ND 32.7	ND ND	ND ND 15.2	ND ND <1	ND ND <1	ND N ND N	ND ND <1	ND ND <1	ND ND <1	ND ND <1	ND ND <1
MW-2E	09/22/08	ND	<1 <1 ND	<1 <1 ND		<10 <10 ND	<1 <1 ND	<1 <1 ND		1 <2 1 <2 0 ND	2 <1 ND	<1 <1 ND	<1 <1 ND	<1 <1 ND	<1 ND	<1 ND	<1 NE	NE	NI NI) ND	<1 <1 ND	<10 ND	<1 <1 ND	-	<1 <1 ND	<1 <1 ND	<1 ND	<1 <1 ND	<1 <1 ND	<1 <1 ND	<1 ND	<1 <1 ND	<1 <1 ND	<1 <1 ND	<1 <1 ND N	<1 <1 ND	<1 <1 ND	<1 <1 ND	<1 <1 ND	<1 - <1 - ND -
	04/20/09 09/09/09 03/02/10 10/07/10	<20 ND	<1 <1 ND	<1 <1 ND ND	<1 <1 ND ND	<10 <10 ND ND	<1 <1 ND ND	<1 <1 ND ND		1 <2 1 <2 0 ND	2 <1 ND	<1 <1 ND ND	<1 <1 ND ND	<1 <1 ND	<1 ND	<1 <1 ND	<1 NE		< NI	1 <1 0 ND	<1 <1 ND ND	<10 ND	<1 <1 ND	-	<1 <1 ND ND	<1 <1 ND	ND	<1 <1 ND	<1 <1 ND	<1 VD	<1 ND	<1 <1 ND ND	<1 <1 ND ND	<1 <1 ND	<1 <1 ND N	<1 <1 ND ND	<1 <1 ND ND	<1 <1 ND ND	<1 <1 ND ND	<1 - <1 -
	09/27/12 10/01/14 02/01/17		ND <5 <1	ND <5 <1	<5 <1	<5 <50 <10	<5 <1	<5 <1		5 <5 1 <1		<5 <1	<5 <1	ND <5 <1			<5 <1	NE <5	<	5 <5 1 <1	ND <5 <1	<5 <10	ND <5 <5	- - -	<5 <1 1.4	<5 <1		ND <5 <1	ND <5 <1	ND <5 <1		<15 <2 0.50 J	<5 <1	ND <5 <1	ND F	<5 <1	<5 <1	<5 <1	ND <5 <1	<5 - <5 -
	10/19/17 03/27/18 10/02/18	3.4 J <20	<1	ব ব	<1 <1	12 <10 <10	41 41	41 41	<1	1 0.50 J	<1	<1 <1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<	1 <1	<1 <1 <1	<10 <10	<1 <1	41 41	ব ব	<1 <1 <1	<1 <1	<1 <1	্ব ব	<1 <1	<1	ব ব	-	-	-	-	-	-	-	- <1 - <1
	03/26/19 10/14/19 04/22/20	<20	री रा	ব ব	<1	<10 <10 <10	ব ব	र्ग रा		1 2 1 2	2 <1	<1 <1 <1	<1 <1 <1	ব ব	<1 <1		<1		<	1 <1	<1 <1 <1	<10 <10	<1 <1	ব ব	<1 <1	41 41	री रा	र्ग रा	ব ব	<1 <1	री रा	ব ব	-	-	-	-	-	-	-	- <1 - <1
	06/22/21		<1	<1	<2	<10	<1	<1	<1	1 <2 2 <2		<1	<1	<1	<2	<2			250	0 <2	<1	<10	<10	<1	4,700	<1	<2	<1	<1	<1 34.2		1,480	<2	-<2	<2	<2	<2	<2	<2	- <1
	09/24/99 05/16/00 07/10/01	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND	NE NE	O NE	ND ND	ND ND	ND ND ND	460 133	ND 11.2	247 167	2,540 1,570	40 NE	21. 9.9	4 ND 5 ND	ND	ND ND	ND ND ND	-	2,040 ND 297	7.87 3.34	ND ND	383 ND	ND 78	ND 86.6	325 ND	42.8 68.8 61.9	ND ND ND	ND ND ND	140	ND	ND ND ND	ND ND ND	ND 1.	ND -
	03/18/02 06/27/02 12/12/02 03/11/03	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	NE NE	50.7 0 ND 0 ND 0 S1.7	ND ND	ND ND	ND ND ND	729 3,040	26.2	1,220 306 2,560	20,600	240	90	ND ND	ND ND	ND ND	ND	-	125 37.8 147	228	ND ND		231 231	1.610	1,420 242 1,260		ND ND ND	ND ND ND	ND N		ND ND ND	ND ND	2.4 2 ND ND	ND -
	06/17/03		ND ND	ND ND ND	ND ND	ND ND ND ND	ND ND	ND ND ND	NE	51.7 5.38 0 ND 0 3.29	ND ND	ND ND	ND ND ND	214	ND 17.3	176	17,700 4,120 2,760 1,600	42.5 88.4	12.0	B ND	ND ND ND	ND ND	ND ND	-	709 107 40.9	12 4,46	ND ND	588	12.9 105	84	136	2,912 213 60 8.38	ND ND ND 316	ND ND ND	ND N	ND ND ND	ND ND ND	ND ND ND	1.1 3 ND 5 ND ND 3	.98 ND
	02/13/04 06/02/04 10/07/04	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	NE NE	0 1.70 0 NE	ND ND	ND ND	ND ND	ND	5.7 ND	175 270	1,600 1,920	21.7 35.3	NE NE	ND ND	- ND	ND ND	3.40 ND	-	273 144 251	ND ND	ND ND	78.2 ND	ND ND	86.8 197	96.1	ND 2.0	ND ND	ND ND ND	ND N	ND ND	ND ND	ND ND ND	ND ND	ND -
	02/18/05 06/02/05 09/28/05	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND ND	ND ND ND	ND	NE NE	3.60 0 ND 0 ND 0 ND	ND ND	ND ND	ND ND ND ND	ND ND ND	ND ND	122 132	2,060 1,440 1,280 3,500	18.2 14.6	! N	MD ND	ND ND ND	ND	5.1 ND ND	-	277 455 228 763	ND ND	ND ND	ND ND	ND	139 122	52.0 45.5 62.7	12.8 43.2 ND 43.2	ND ND ND	ND ND ND	ND N		ND ND ND	ND ND ND	ND ND ND	<5 -
MW-3	06/28/06	ND <2	ND <1	ND <1 <10	ND <1	ND <2 <20	ND <1 <10	ND <1	NE <1	5.65 1 11.1 J	ND <1	ND 1.95	ND <1 <10	339 235	11.9	195	2,840 2,450	34.6	NI 1	ND 3 <1	ND <1	ND	ND <1 28.7	-	108 187 35	ND	ND <1	50.0	73.0 21.7 407	185	154 259	15.8 71.9 1,400	ND <1 <10	ND <1	ND N	ND <1	ND <1	ND <1 <10	ND <1 <10 1	<1 -
	03/29/07 09/07/07 02/08/08 03/10/08	<2,000 ND	<100 ND	<100 ND <100	<100 ND	<1,000 ND	<100 ND <100	<100 ND <100	<100 NE	0 <200	<100 ND	<100 ND	<100 ND	2,400 1,500 1,800	<100 34	2,300 1,100 1,700	29,000 15,000	120 120	821 411 581	0 <100 0 ND 0 <100	ND	<1,000	<100 27 <100	-	<100 290	220 110	<100 ND <100	2,600 1,300 1,700	1,200 690 650	2,400 650 1,000	1,400 780 1,100	3,300 1,600 2,300	<100 ND <100	ND	<100 <1 ND N <100 <1	ND	ND	<100 ND <100	<100 <1 ND <100 <1	00 ND
	09/23/08 04/20/09 09/09/09			ND <200 <200		ND <2,000 <2,000	ND <200 <200	ND <200 <200		0 <400 0 <400	ND <200	ND <200		3,900 4,100 4,000	ND <200	3,000 3,800 2,500	46,000 42,000	300 370	1,20 1,30 92	0 ND 0 <200 0 <200		ND <2,000 <2,000	ND <200 <200	-	<100 760 1,500 320	520	ND <200	2,900 4,400	3,200 4,200 3,800	2,900 5,600	1,600	4,500 4,800	ND <200 <200		ND 1 <200 <2 <200 <2			ND <200 <200	ND <200 <2 <200 <2	100
	03/03/10 10/08/10 09/27/12	ND	ND ND	ND ND <2,500	ND ND		ND ND <2,500	ND	NE NE	0 ND 0 ND 0 <2,500	ND ND	ND ND	ND ND	3,800 3,900 4,140	ND ND <2.500	2,400 2,100 <2.500	45,000 41,000 46,100	270 320 <2.500	1,10) ND	ND ND	ND	ND	-	290 380 <2.500	390 350 <2.500	ND ND	2,400 1,400	3,100 2,700	1,000	1,700 2,200 <2.500	4,600 3,600 <7.500	ND ND	ND ND	ND ND ND 500 <2,5	ND ND	ND ND	ND ND 2,500	ND ND	ND
	01/31/17	<4,000 <2,000	<200 <100	<1 <200 <100	<200 <100	<50 <2,000 <1,000	2.48 <200 <100	<1 <200 <100	<100	0 <200	<100	<1 <200 <100	<1 <200 <100	908 890 680	27.8 <200 43 J	616 420	9,460 11,000 7,300 16,000	179 85.	130	J <200 J <100	<200 <100	21.2 <2,000 <1,000	11.8 <200 <100	<200 <100	2.43 <200 <100	<200 <100	<200 <100	20.3 <200 <100	87.8 <200 <100	17.8 <200 <100	709 700 520 J	817 530 320	<1 	<1 - -	<1 5. 	.72 	<1	2.27	<1 10 	190 130
	10/02/18 03/27/19	<4,000 <10,000 <4,000	<500 <200	<200 <500 <200	<500 <200	<2,000 1,600 J <2,000	<200 <500 <200	<200 <500 <200	<500 <200	0 <1,000	<500 <200	<500 <200		1,800	<500 <200	950 540	24,000 15,000	270 . 120 .	531	500 <500 <200	<500 <200	<2,000 <5,000 <2,000	<200 <500 <200	<200 <500 <200	<200 <500 <200	<500 97 J	<500	<200 <500 <200	<500	<500	1,200 2,000 900 1,800	1,300 2,100 1,200		-	-	-	-	-	-	- 290 - 350 - 310 - 460
	04/21/20	<4,000 <10,000 <4,000	<500	<200 <500	<200	970 J <5,000 <2000	<200 <500 <200	<200 <500 <200	<500	0 <400 0 <1,000 0 <400	<200 <500	<200 <500	<200 <500	1.500	99 J <500	840 990	24,000 30,000 24,000	260 、	82		<200 <500	<2,000 <5,000 <2,000	<200 <500 <200	<200 <500 <200	<200 <500	220 J	<500	<500	<200 <500 <200	<500	1,800 1,700 1,400	3,300	-	-	-	-	-		-	- 460 - 410 - 260
	09/03/99 07/10/01 03/18/02	ND	<2 ND ND	<2 ND ND		<10 ND	<2 ND ND	<2 ND	<2 NE	2 <2 0 ND 0 ND			<2 ND ND	<2 ND ND		<2 ND		<2 NE NE			ND ND		<10 ND ND	-	<2 1.41 1.5			<2 ND 1.8	<2 ND 1.6	<2 ND 2.7		<2 ND ND	<2 ND ND	<2 ND ND	<2 ND 1	<2 ND ND	<2 ND ND	<2 ND ND	<2 ND ND	<2 - ND - ND -
	03/11/03 06/17/03 08/14/03	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND ND	ND ND ND	ND ND ND	NE NE NE	D ND D ND	ND ND	ND ND	ND ND ND	ND	ND ND	ND ND	1.39	NE NE	NE NE	D ND	ND	ND ND	ND ND ND	-	ND ND ND	ND ND ND	ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND	ND ND ND ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND -
	02/13/04 06/02/04 10/07/04	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	NE NE NE	O NE O NE O NE	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	NE NE NE	NE NE	0 ND 0 ND 0 ND	ND	ND ND	ND ND ND	-	ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND DN DN	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND ND
	02/18/05 06/02/05 09/28/05	ND ND	ND ND	ND ND ND ND	ND ND	ND ND	ND ND ND	ND ND	NE NE	O NE	ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	3.80 ND	NE NE	NI NI	ND ND		ND ND	ND ND ND	-	1.00 ND ND	ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND -
	12/20/05 06/28/06 09/27/06	ND	ND	ND ND <1			ND ND <1					ND	ND ND <1	ND	ND	ND							ND ND <1	-	ND 0.39 ND <1			ND ND <1	ND	ND ND <1		ND ND <1	ND ND ND <1	ND	ND N ND N	ND	ND	ND ND <1	ND ND <1	ND - ND - <1 -

Well	Sample Date	Acetone	Benzene	Bromodichloromethane	Вготогот	2-Butanone (MEK)	Carbon disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chioromethane	Di bromoc hiorometha ne	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroe thene	trans-1,2-Dichloroethene	Ethylbenzene	Isopropylberzene	мтве	4-Methy I-2-pe ntano ne	Methylene Cholride	Styrene	Tetrachloroethene	Toluene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylenes	1,1,1,2-Tetrachloroethane	n-Butylbenzene	sec-Butylberzene	p-is opropyltoluene	n-Propy lbenzene	1,2,4-Trime thylbenzene	1,3,5-Trime thylbenzene	Naphthalene	1,4-Dioxane
MW-3D	03/29/07 09/06/07 03/10/08	<20 <20 <20		۲ ۲	<1	<2 <10	4	<1 <1	<1 <1	<2	2 4	<.	1 <1	<1	<1	<1	<1 1.5 1.7	<1 <1	<1 <1	<1	<1 <1	<10 <10	<1 <1	-	<1 <1	<1	<1	<1	<1	<1 <1	<1	<1 <1	<1	<1 <1	<1	<1	<1 <1	<1	<1	<1	
	09/23/08	ND	<1 ND	<1 ND	<1 ND	<10 ND <10	<1 ND	<1 ND	<1 ND	<2 ND	2 <1 0 ND) NE	1 <1) NE	<1 ND	<1 ND	<1 ND	3.6	<1 ND <1	<1 ND <1	<1 ND	<1 ND	<10 ND <10	<1 ND	-	<1 ND	<1 ND	<1 ND <1	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND	<1 ND	
	04/20/09 09/09/09	<20 <20 ND	<1	<1 <1 ND	->1	<10 ND	<1 ND	<1 ND	<1 ND	<2 ND	2 <1		1 <1	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 <1 ND	<10 ND	<1 <1 ND	-	2.8	<1 ND	<1 ND	<1 ND	<1 <1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1	<1 ND	<1 ND	<1 ND	<1 ND	=
	10/08/10	ND <5		ND <5	ND	ND <5	ND <5	ND <5	ND <5) ND	NE) NE		ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	-	3.4 5.5 <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <15	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	=
	10/02/14 02/01/17	<25 <20	<1 <1	<1	<1 <1	<50 <10	<1 <1	<1 <1	<1 <1	<1 <2	1 <1 2 0.63 J	<.	1 <1	<1 <1	<1 <1	<1 <1	<1 0.55 J	<1 <1	<1 <1	<1 <1	<1	<10 <10	<5 <1	<1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<2 <1	<1 	<1 	<1 	<1	<1 -	<1	<1	<5 	<1
	10/18/17 03/27/18	<20 <20	্ব ব	<1 <1	<1	7.0 J <1	<1 <1	<1 <1	<1 <1	<2	2 0.49 J	· <	1 <1	<1 <1	্ব ব	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<10 <10	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	-	-	-	-	-	-	-	-	<1
	10/02/18 03/27/19	<20 <20	<1	<1	<1	<1	<1 <1	<1 <1	<1 <1	<2	2 0.46 J		1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1	-	-		-	-	-		-	<1
	04/21/20	<20 <20 <20	<1 <1	<1 <1	<1	<1 <1 <1	ব ব	<1	<1 <1		0.69 J		1 <1	<1 <1	<1 <1 <1	<1 <1	<1 <1	<1 <1	<1 <1 <1	<1	<1 <1	<10 <10 <10	<1 <1 0.78 J	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1	ব		-		-	-	-		-	<1
	06/23/21	<10	<1	<1		<10	<2	<1	<1	<2	2 1.1		1 <1	<1	<2	<1	2.9	<1	<2	<1	<1	<10	<10	<1	2.4	<1	<2	<1	<2	7.4	<1	<1	-			-		-		-	<1
	09/24/99	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND) ND	NE.	NE NE	ND ND	ND ND	ND ND	4.5 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	2.2 ND	ND ND	ND ND	ND ND	ND ND	2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	=
	03/18/02 06/27/02	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE	NE NE	ND.	ND ND	ND ND	1.6 4.31	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	-	1.0 3.13 1.16	ND ND	ND ND	ND ND	ND ND	ND 2.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	-
	12/12/02 03/11/03	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND) ND) ND) ND	NE NE	NE NE NE	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND	-	1.16 ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND ND	=
	06/17/03	ND	ND	ND	ND ND	ND ND ND	ND	ND ND	ND ND	ND) ND	NE.) NE	ND.	ND	ND	1.18	ND	ND	ND ND	ND	ND ND	ND	-	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	
	02/13/04 06/02/04	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND		ND ND	NE NE	ND ND	ND ND ND	ND ND ND	ND ND ND	2.30 ND	ND ND ND	ND ND ND	ND ND	ND 	ND ND ND	ND ND ND	=	ND 1.70 1.8	ND ND	ND ND ND	ND ND	ND ND ND	1.60 ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	==
	02/18/05	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND) ND	NE.	NE NE	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	=
	09/28/05 12/20/05	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE	NE NE	ND ND	ND ND	ND ND	2.47 1.82	ND ND	ND 0.66	ND ND	ND ND	ND ND	ND ND	-	1.24 5.27	ND ND	ND ND	ND ND	ND ND	2.95	ND ND	ND 2.45	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	06/26/06 09/27/06	ND <2	<1	ND <1	ND <1	ND <2	ND <1	ND <1	ND <1	ND	2 <1	<	NE 1 <1	ND <1	ND <1	ND <1	ND 1,18	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	-	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	-
MW-4	03/30/07	<2 <20		<1	^1	<2 <10	<1	<1 <1	<1 <1	<2 <2	1	<	1 <1	<1 <1	<1	<1 <1	10.2 2.7	<1 <1	<1 <1	<1 <1	<1 <1	<1 <10	<1 <1	-	2.11 2.4	<1	<1 <1	<1	<1 <1	4.36 2.2	<1	3.3 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1	<1	
	03/10/08 09/22/08 04/20/09	<20 ND <20	<1 ND <1	<1 ND <1		<10 ND <10	<1 ND <1	<1 ND <1	<1 ND <1			NE.	NE		<1 ND <1	<1 ND <1	<1 11 <1	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND <1	<10 ND <10	<1 ND <1	=	<1 11	<1 ND <1	<1 ND <1	<1 ND	<1 ND <1	<1 19 <1	<1 ND	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND <1	<1 ND <1	ND	<1 ND <1	==
	09/09/09 03/02/10	<20 ND	<1	<1	<1	<10 ND	<1	<1 ND	<1 ND	<2	2 <1	<	1 <1) ND	<1	<1 ND	<1	5.8 ND	<1 ND	<1	<1 ND	<1 ND	<10 ND	<1 ND	-	4 ND	<1 ND	<1 ND	<1 ND	<1	5 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1	<1	<1 ND	<1 ND	<1 ND	<1 ND	=
	10/07/10 09/27/12	ND <5	ND <5	ND <5	ND <5	ND <5	ND ND <5	ND <5	ND <5		ND 5 <5) NE	ND ND	ND <5	ND <5	ND <5	2.6	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	-	3.1 <5	ND <5	ND <5	ND <5	ND ND <5	3.3 <5	ND <5	ND <15	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	
	10/01/14	<25 <20	<1 <1	<1 <1	<1	<50 <10	<1 <1	<1 <1	<1 <1	<1 <2	2 <1	<	1 <1	<1 <1	<1 <1	<1 <1	4.78 1.1	<1 <1	<1 <1	<1 <1	<1	<10 <10	<5 <1	<1	3.99 0.67 J	<1 <1	<1 <1	<1	<1 <1	4.89 1.3	<1 <1	<2 <1	<1 	<1 	<1 	<1	<1	<1	<1	<5 	<1
	10/19/17 03/27/18	2.0 J <20	<1	<1 <1	<1	2.1 J <10	<1 <1	<1 <1	<1 <1	<2	2 <1	<	1 <1		<1 <1	<1 <1	6.8 6.8	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1	2.4 4.6	<1	<1 <1	<1	0.84 J 0.99 J	5.3 5.9	<1	<1		-		-	-	-		-	2.1 J <1
	10/03/18 03/27/19 10/15/19	<20 <20 <20	্ ্ ্ ্	<1 <1 <1	<1	<10 <10 <10	ব ব	<1	<1 <1	<2		<	1 <1	<1 <1	<1 <1 <1	<1	5.9 4.1 7.2	<1 <1 <1	<1 <1 <1	<1	্ব ব	<10 <10 <10	্ব ব	<1	2.0 2.4 3.3 3.2	<1 <1	<1 <1	<1	0.67 J 0.67 J 0.81 J	4.7 4.6 5.3	<1	4	-	-	-	_	-	-	-	-	<1 <1 1.9 J
	04/22/20	<20 <20	<1	<1	<1	<10 <10	<1	<1	<1	<2	2 4	<	1 <1	<1	<1 <1	41	6.6	<1	<1	41	<1	<10 <10	<1	<1	3.2 4.2	<1	<1	<1	0.61 J 0.93 J	4.5	<1	ব	-	-	-	=	=	-	-	=	<1
-	07/10/01	ND	ND	ND	ND	ND		ND	ND	ND) ND	NE NE) NE	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	_		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_
	03/18/02 06/27/02	ND ND	ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND) ND) NE) NE	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-
	12/12/02 03/11/03	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND) ND	NE.		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	06/17/03 08/14/03 02/13/04	ND ND ND	ND ND ND	ND.	ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND	OI ND	NE.	NE NE	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	-	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	=
	06/02/04 10/07/04	ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND		O NE	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	-	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	02/18/05 06/02/05	ND ND	ND	ND	ND ND	ND	ND ND ND	ND	ND ND	ND ND	ND ND	NE NE	NE NE	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	 ND	ND ND	ND ND	-	ND	ND ND	ND ND ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	
	09/28/05 12/20/05 06/26/06	ND ND ND	ND ND ND	ND ND ND	ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND) ND	NE.	NE NE	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	0.24	ND ND	ND ND ND	ND ND ND	ND ND ND	-	ND 2.01 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 1.24 ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	0.6	
	09/27/06	<2 <2	<1 <1	<1 <1	<1	<2 <2	<1 <1	<1 <1	<1 <1	<2 <2		<	1 <1	<1 <1	<1 <1	<1 <1	<1 21.6	<1 <1	ND 1.78 1.03	<1 <1	<1 <1	<1 <1	<1 <1	-	<1 2.76	<1 <1	<1 <1	<1 <1	<1 <1	<1 6.91	<1 <1	8.35 3.75	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	ND <1	=
MW-4D	09/06/07	<20 <20	<1	<1	<1 <1	<10 <10	<1 <1	<1 <1	<1 <1	<2	2 <1	<.	1 <1	<1	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<10 <10	<1 <1	-	<1	<1	<1 <1	<1	<1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1	<1	-
	09/22/08	ND <20	ND <1	ND <1	<1	ND <10	ND <1	ND <1	ND <1		2 <1	<	NE 1 <1		ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <10	ND <1	-	1.6 1.3	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	ND <1	==
	09/09/09	<20 ND			ND	<10 ND	<1 ND	<1 ND	<1 ND ND	<2 ND) ND	NE.		ND.	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<10 ND	<1 ND	-	1.2 1.3 1.9	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND		<1 ND	<1 ND	<1 ND	<1 ND	
	10/07/10	ND <5	ND <5	ND <5	<5	ND <5	ND <5	ND <5	ND <5	ND <5		NE S	ND 5 <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	-	1.9 <5 7.29	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <15	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	ND <5	==
	02/02/17	3.5 J <20		۲ ۲	<1	<10 <10	ব	<1	<1	<2	2 <1	<	1 <1	<1	<1	<1	<1	<1	<1	<1	ব	<10 <10	<1	<1	5.3 7.8	<1	<1	<1	ব	0.42 J	<1	۲۱	-	-		-	-	-		-	<1
	03/27/18	<20 <20	<1	<1	<1	<10	<1	<1	<1 <1	<2	2 <1		1 <1	<1	<1	<1 <1	<1	<1 <1	<1	<1 <1	<1	<10 <10	<1 <1	<1	16 19	<1	<1 <1	<1	<1	<1 0.41 J	<1	<1	-	-		-	-	-		-	<1
	03/27/19 10/17/19	<20 <20	<1 <1	<1 <1	<1	<10 <10 <10	<1 <1	<1 <1	<1 <1	<2 <2		<	1 <1	<1 <1	্ব ব	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<10 <10	<1 <1	<1 <1	19 16	<1 <1	<1 <1	<1 <1	<1 <1	0.53 J <1	<1 <1	<1	-	-		-	-	-		-	<1
	04/21/20 06/25/21	<20 <20	۲۱ ۲۱	<1 <1	<1 <1	<10 <10	<1 <1	<1 <1	<1 <1	<2 <2			1 <1	<1 <1	<1 <1	<1 0.47 J	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1 <1	16 19	<1 <1	<1 <1	<1 <1	<1 <1	<1 0.73 J	<1 <1	<1 <1		-	-	-	-	-		-	<1 <1
	05/16/00	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND) NE) NE	6.87	ND ND	2.87	ND 636	6.03 7.63	ND ND	ND ND	ND ND	ND	ND	-	2,230	ND ND	ND ND	ND ND	ND 2.53	1,970	ND 9.09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	07/10/01 02/21/02 03/18/02	ND ND ND	ND	ND	ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND) ND) NE) NE	1.9	ND	3.5 4.4 4.4	1140	7.63 10.7 13.2	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND 1.2		872 1,920 2470	ND ND	ND ND	ND ND	2.53 ND 1.2	2,710	7	ND ND ND	ND ND	ND ND ND	ND	ND ND	ND ND ND	ND ND ND	ND ND	9.5	=
	04/19/02	ND ND	15.4 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE	NE NE	ND ND	1.2 ND	3 88	953 1,280	11.1 21.9	ND 25.1	ND ND	12.3 ND	ND ND	ND ND	-	1240	ND 1.56	ND ND	ND ND	ND ND	2280	4.9 4.41	ND 144.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.4	=
	07/15/02	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND) ND) NE	O NE	ND.	ND ND	3,46	1,290 1,080	21.4	1.63 ND	ND ND	ND ND	ND ND	ND ND	-	1,350 1,850	ND ND	ND ND	ND ND	ND ND	2,360 1,780	4.37 7.48	3.33 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.11 ND	=
	03/11/03 06/17/03	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	NE NE	NE NE		ND ND		ND 978	ND 23.7	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND 1,120	ND ND	ND ND	ND ND	ND ND	ND 1,560	ND 1.22	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	=

Well	Sai D	Acet ald m	Benzene	Bromodichloromethane	Вготогот	2-Butanone (MEK)	Carbon disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Dibromoc hioro metha ne	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	kopropylbenzene	мтве	4-Methy I-2-pentanone	Methy lene Cholride	Styrene	Toluene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylenes	1,1,1,2-Tetrachloroethane	n-Butylbenzene	sec-Butylbenzene	p-is opropyito luene	n-Propy lbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Naphthalene	1,4-Dioxane
	06/0 08/1 10/0 02/1 06/0 09/2	13/04 N 02/04 12 18/04 35 07/04 N 18/05 26 02/05 N 28/05 N	D :33 :44 :D :11 :D	ND	D ND	ND ND ND 119 ND ND ND ND ND ND ND N	ND ND 36.8 ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 2.60 ND ND ND ND ND ND	2.25 ND 4.40 ND ND ND ND ND	ND ND ND ND ND	6.00 6.79 7.91	2,000 1,040 1,860 3,010 2,860	1.70 14.0 21.4 18.6 26.3 20.9 26.2	ND ND ND ND 1.5 2.53	ND ND ND ND ND ND	ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	- 1 - 1 - 2 - 1	570 NE 330 NE 160 NE 710 NE 820 NE 630 NE 800 NE 253 NE	D NE D NE D NE D NE D NE D NE D NE D NE	D NC	ND ND ND ND ND ND	1,640 2,210 2,540 855 1,870 1,530 764	2.55 ND 7.90 7.20 7.3 5.60 7.00 6.99 5.08	12.7	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND 18.2 20.5 9.3 18.8 24.2 28.6	
MW-5	09/2 03/3 09/0	28/06 60 27/06 24 30/07 50 11/08 <20 23/08 36 20/09 <20 09/09 <20	11 19 10 10 10 10 10 10 10	ND NI <1 < 1 < 10 < 11 < 10 < 11 < 110 < 11 < 11	1 <1 0 <10 0 <20 0 <20 0 <10 D ND 0 <10 0 <10 D ND	ND 5.20 <20 <200 <100 ND <100 <100 ND	<20 <10 ND <10 <10 ND	<10 <20 <10 ND <10 <10	ND <10 <20 <10 ND <10 <10 ND <10 ND <10 ND ND	<20 <40 <20 ND <20 <20 ND	<20 <10 ND <10 <10 ND	2.34 <10 <20 <10 ND <10 ND	ND <1 <10 <20 <10 ND <10 <10 ND	4.16 4.40 <20 <10 ND <10 <10 6.3	ND <1 <10 <20 <10 ND <10 ND <10 ND <10 ND <10 ND	8.24 <10 <20 <10 ND <10 <10	2,850 2,620 3,060 3,500 2,200 2,800 2,400 2,000 2,100	20.0 19.9 24 16 18.0 15 14	<10 <20 <10 ND <10 <10 ND	ND <10 <20 <10 ND <10 ND ND	<10 <20 <10 ND <10 <10 ND	ND <1 <10 <200 <100 ND <100 <100 ND	ND <10 <20 <10 ND <10 ND <10 ND <10 ND <10 ND ND	-	336 ND 275 <1 326 <10 <20 <20 <20 290 <10 ND ND <10 <10 <10 ND	1	1	<10 <20 <10 ND <10 <10 ND	722 690 <20 560 ND <10 <10 ND	7.25 9.34 11.6 79 43 160 <10 480 9.2	<20 <10 ND <10 <10 ND	ND <10 <20 <10 ND <10 ND <10 ND <10 ND <10 ND	ND <10 <20 <10 ND <10 ND <10 ND <10 ND <10 ND	ND 1.11 <10 <20 <10 ND <10 <10 ND	ND <1 <10 <20 <10 ND <10 ND <10 ND <10 ND ND	ND <1 <10 <20 <10 ND <10 <10 ND <10 ND <10 ND	ND <10 <20 <10 ND <10 <10 ND <10 ND <10 ND	ND <1 <10 <20 <10 ND <10 ND ND ND ND ND ND ND ND ND ND	ND 31.7 19.0 <20 <10 ND <10 <10 29	
	02/0 10/1 03/2 10/0 03/2 10/1	07/10 N 27/12 <2 02/17 <10 19/17 <20 28/18 <10 03/18 <2 27/19 <10 16/19 <10 22/20 <10 24/21 <100	10 10 10 10 10 10	ND NI 25 <2 5 <2 65 <4 10 <1 45 <4 45 <4 5 <4 5 <4 5 <4 5 <4 5 <4 5	5 <25 5 <5 0 <10 5 <5 1 <1 5 <5 5 <5	ND <25 <50 30 J <50 <10 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	\$ \$ \$ \$	<25 <5 <10 <5 <1 <5 <5 <5	ND <25 <5 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<25 <10 <20 <10 <2 <10 <10 <10 <10	<25 <5 <10 <5 <1 <5 <5 <5 <5	<25 <5	ND <25 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<25 3.7 J <10 6.6 5.3 4.6 J 7.6 2.5 J	ND <25 <5 <10 <5 0.75 J <5 2.6 J <5	ND <25 <5 <10 <5 1.7 <5 <5 <5 <24 J	1,600 750 800 490 280 300 320 450 320 370 J	2.6 J 2.6 J 3.4 2.9 J 3.9 J 2.7 J	<25 <5 <10 <5 <1 <5 <1 <5 17	ND <25 <5 <10 <5 <1 <5 3.4 J <5 <5 J	<25 <5 <10 <5 <1 <5 <5 <5	ND <25 <50 <100 <50 <10 <50 <50 <50 <50 <50	ND <25 <5 <10 <5 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	- 5 <10 5 <1 5 <1 5 5 5	ND ND ND 70.0 <25 120 <5 110 <10 85 <5 130 <1 130 <5 1130 <5 1130 <5 1130 <5 1130 <5 1130 <5 1130 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5 115 <5	5 <25 5 <10 6 <11 5 <11 6 <10 6 <10 7 <10 8 <10	5 <25 5 <5 0 <10 5 <5 1 <1 5 <5 J <5	<25 <5 <10 2.1 J 1.0 <5 <5	244 170 190 230 220 250 160	81 <25 6.6 6.7 J 3.4 J 5.7 3.5 J 9.1 J 5.1 8.8 J	ND <75 <5 <10 <5 <1 <5 <2.9 J <5 <5 J	ND <25	ND <25	ND <25 	ND <25	ND <25	ND <25	ND <25 	ND <25 	14 7 10 7.6 9.7 58 9.1
MW-6R	09/2 10/0 01/3 10/1 03/2 10/0 03/2	27/12	5 5 0 0	रह	5 <5 1 <1 1 <1 1 <1 1 <1	<50 <50 <10 15 <10 <10 <10 <10 <10 <10 <10 <10	55 41 41 41 41 41 41	4 4 4 4 4 4 4	4 4 4 4 4 4 4 4	<5 <1 <2 <2 <2 <2	<5 <1 0.62 J <1 <1		55 41 41 41 41 41 41 41	ক ব ব ব ব ব	र य य य य य य	5 q q q q q q	\$ 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4	4 4 4 4 4 4 4	45 41 41 41 41 41 41 41	ক বা বা বা	<5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	45 45 41 41 41 41 41		5	5 <: 1 <: 1 <: 1 <:	5	4 4 4 4 4 4 4	45 41 41 41 41 41 41	5 0 0 0 0 0 0 0 0 0	45 42 4 4 4 4 4 4	45 41 	<5 <1 - - - -	<5	<5 <1 	<5 <1	<5 <1	<5 <1	\$5 \$5 	- - - - - - - - - - - - - - - - - - -
	04/1 06/2 08/0 02/2	19/02 N 27/02 N	D D D D	<1 <	D ND	ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND 2.01 ND ND ND ND ND ND	9.1 12 3.6 8.06	982 5,880 10,900 3,460 7,250 2,240 4,140	68.7 53.5 25.1 46.3 17 39.1	69.2 1,020 1,010 618 1,580 263 332	ND 2.86 11.6 ND 7.7 1.1 2.65	ND ND ND ND ND	ND ND ND ND ND ND ND ND	<1 <1 ND ND ND S.2 5.9 ND	- 7 - 6 - 16 - 4	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	3 NE 5 NE 3 NE 0 NE 4 NE	0 NC 0 NC 0 NC 0 NC	ND ND ND 7.7 ND	677 4,150 9.62 3,690 >6,920 2,560 2,950	190 69.1 136 240 50.6 149	3,219 8,000 1,719 2,230	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 1.48 120 ND 4.9 ND	ND ND 26.3 ND 12.5 2	ND ND ND ND ND ND ND	্ব ব - - - - - -
	11/0 12/1 06/1 02/1	01/02 N 12/02 N 17/03 N 13/04 N 18/04 N 18/05 N	D 1 D 1 D 1 D D	ND NI ND NI 335 NI 114 NI ND NI ND NI ND NI ND NI	D ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	8.89 15.9 21.7 20.9 5.1 7.89 11.5 7.50 6.1	4,150 8,480 4,880 6,440 2,480 6,660 6,500 780 2,690	52.6 103 74 78.8 61.8 97.3 150 35.0 33.7	809 1900 1,380 1,450 356 2,190 2,140 1,110 620	7.59 11.7 ND 12.9 7.3 6.50	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND 9.44 17.7 7.10 ND	- 7 - 11 - 1 - 9 - 1 - 13 - 12 - 2 - 6	760 39.3 700 89.4 860 106 980 116 280 15 200 114 300 57.2 480 35.3 440 26.8	3 NE 4 NE 5 NE 6 NE 9 NE 4 NE 2 NE 3 NE 8 NE	0 10.2 0 NC	6.4 11.8 ND 10 ND ND ND ND ND	4,270 7,700 6,280 4,690 1,030 5,250 5,900 1,280 3,090	55.2 294 ND 239 103 641 137 104 81.9	4,270 9,870 7,230 10,950 1,606 9,770 9,000 4,170 2,810	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND N	ND 2.63 ND 1.96 1.80 ND	4.41 ND 8.11 3.80 3.5 ND	1.25 2.73 2.51 2.24 ND 2.26 1.60 1.40	1.05 1.8 ND ND ND 1.16 ND ND	
MW-7	09/2 06/2 09/2 03/2 09/0 03/1 09/2	28/05 N 20/05 N 26/06 N 28/06 2.4 29/07 21. 77/07 <2,00 10/08 <40 22/09 <20 39/09 <20	D 0 D 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		D ND D ND 1 <1 <1 <1 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	ND ND ND <2 20.7 <1,000 <20 ND <200 ND <200 ND <200 ND <100 ND <100 <100 ND <1	ND ND ND <1 1.53 <100 <20 ND <10 <10	ND ND <1 <1 <100 <20 ND <10	ND ND ND <1 <1 <100 <20 ND <100	ND ND <2 <2 <200 <40 ND	ND ND <1 <1 <100 <20 ND	ND ND <1 <1 <100 <20 ND	ND ND ND <1 <1 <100 <20 ND <10	ND ND <1 <1 <100 <20	ND ND ND 11 ND 12	13.3 ND 8.60 15.2 <100	4,010 5,290 2,930 2,480 5,810 21,000 3,900 7,300 550 340	43.5 ND 15.5 23.9 <100 <20 ND	1,350 1,020 625 1,240 1,900 340 810	ND ND ND 5.63 7.20 <100 <20 ND <10	ND ND <1 <1 <100 <20 ND	ND ND ND <1 <1 <1,000 <200 ND <100 <100	ND ND 1.54 5.60 <100 <20 ND <10	- 6 - 6 - 2 - 3 - 3	980 22.8 560 59.0 060 NE 900 23.0 530 39.4 100 <100 41 <20 ×10 ×10 ×10 ×10	0 NE 0 NE 0 < 1 < 0 <100 0 <20 0 NE 0 <100 0 <20 0 <100 0 <100	D NE D NE 1 <1 1 1.23 0 <100 0 <20 D NE 0 <100 0 <100	ND 3.19 4.88 <100 <20	38 <10	156 120 81.2 132 350 170 400	2,660 5,440 4,040 2,350 4,650 7,300 1,500 3,400 790 3,300	ND ND ND 1.98 <1 <100 <20 ND <10	ND ND ND <1 <1 <100 <20 ND <10	ND ND ND <1 <1 <100 <20 ND <10	ND ND ND <1 <1 <100 <20 ND <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	ND ND ND 1.24 2.02 <100 <20 ND <10	ND ND ND 3.25 7.08 <100 <20 ND <10	ND ND 1.17 2.39 <100 <20 ND <10	ND 0.18 ND <1 <100 <20 ND <10 <10	
	10/1	79/09	D D C C C C C C C C C C C C C C C C C C	ND NI	D ND D ND 0 <100 1 <1 5 <5 0 <20 0 <50 0 <50	ND ND <100 <50 <50 <200 <200	ND ND <100 <1 <5 <20 <20	ND ND <100 <1 <5 <20 <20 <50	ND ND <100 <100 <100 <20 <20 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	ND ND <100 <1 <10 <40 <40	ND ND	ND ND <100 <1 <5 <20 <20 <50	ND ND <100 <100 <1 <5 <20 <50 <50 <5	ND	ND ND <100 <1 <5 <20 <20 <50 <5	ND ND <100 <1 <5 <20	340 870 850 1,890 200 640 1,100 1,700 J 3,100 440	ND ND <100 1.57 <5 <20 <20	1,300 210 431 104 84 130 100 220	ND ND <100 <100 <100 <100 <100 <100 <100 <10	ND ND <100 <1 <5 <20 <20 <50	ND ND <100 <100 <100 <200 <200 <200 <50 <50 <50	ND ND <100 <5 <5 <20 <20 <50 <5	- - - - <5 <20 <20	ND 33 ND 7.2 1100 <100 <1 2.82 <5 <2 <20 <20 <50 <50 <5 <4	3 NE 2 NE 0 <100 2 < 5 <br 0 <20 0 <20 0 <5	D NE D NE D NE D NE D 100 11 <1 5 <5 0 <20 0 <20 0 <50	ND ND <100 <1 <5 <20 <20 <50	ND ND <100 <1 <5 <20 <20	730 140	5,700	ND ND <100 <1	ND ND <100 <100 -1	ND ND	ND ND <100 <1	ND ND <100 <1	ND ND <100 <1	ND ND <100 <1	ND ND <100 <5	- - - - - - - - - - - - - - - - - - -
-	10/1	15/19 <10 21/20 <20 22/21 <2 13/04 N 02/04 N 07/04 N 18/05 N 02/05 N	D D D D D D	<5 < 110 <1 <1 < ND NI ND ND NI ND	5 <5 0 <10 1 <1 D ND D ND D ND D ND D ND	<50 <100 <10 ND ND ND ND ND	<5 <10 <10 <1 ND	<5 <10 <10 <1 ND	ND	<10 <20 <2 ND	<5 <10 <1 ND	<5 <10 <1 ND	<5 <10 <1 ND		<5 <10 <1 ND ND ND ND ND ND	<5 <10 <1 ND	810 560 190 ND ND ND ND 20.5	6.3 4.2 J 0.71 J ND ND ND ND ND	37 47 7.4 ND ND ND ND ND	<5 <10 <1 ND ND ND ND ND ND ND	<5 <10 <1 ND	<50 <100 <10 ND ND ND ND ND	<5 <10 <1 ND ND ND ND ND ND ND ND ND	<10 <1	ND NE ND ND ND ND NE ND NE ND ND	5 <: 0 <10 1 <: 0 N0 0 N	1 <1 D NC D NC D NC D NC D NC D NC	<5 <10 <1 ND ND ND ND	6.4 <10 0.69 J ND ND ND ND 39.5	120 110 21 ND ND ND ND ND	140 140 24 ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND N	ND ND ND ND ND ND	ব ব ব - - -
MW-8	03/2 09/0 03/1 09/2	28/05 N 20/05 N 26/06 N 26/06 < 28/06 < 29/07 < 20/07 < 20/07 < 20/07 < 21/09 < 21/09 < 20/09 < 20/09 < 21/09 <	D D ::2 ::2 ::0 ::0 D D D D D D D D D D D D D D D D	ND NI ND NI ND NI ND NI <1 < 1 < <1 < <1 < <1 < <1 < <1 < <1 <	D ND D ND 1 <1 1 <1 1 <1 1 <1 1 <1 ND ND ND ND ND ND ND	ND ND ND <2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	ND ND ND 41 41 41 41 41 ND	ND ND <1 <1 <1 <1 ND	ND ND ND 41 41 41 41 41 41 41 41 41 41 41 41 41	ND ND ND 22 22 22 ND	ND ND ND c1 c1 c1 c1 ND	ND	ND ND ND <1 <1 <1 <1 ND <1	ND ND <1	ND ND VI	ND ND ND <1 <1 <1 <1 ND <1 ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ND ND V1 11.6 V1 V1 ND V1	ND ND ND 01 01 01 01 01 01 01 01 01 01 01 01 01	ND ND <1 <1 <1 <1 <1 ND	ND ND ND <1 <1 <1 <1 <1 ND <1	ND ND <1 <1 <1 <1	ND ND ND <1 <1 <10 <10 ND	ND ND ND 11 12 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	-	ND NE ND NE 1.93 NE <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	D NE	D NE D NE 1 <1 1 <1 1 <1 1 <1 1 <1 1 NE	ND ND ND <1 <1 <1 <1 ND <1 <1	ND ND <1 <1 <1 <1 ND <1	ND ND ND T T T T ND	ND ND ND T T T T 1.9	ND ND ND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND <1 <1 <1 <1 ND 0	ND ND ND <1 <1 <1 <1 ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ND ND ND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND <1 <1 <1 <1 ND <1 ND <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ND ND ND 11 11 11 11 11 11 11 11 11 11 11 11 11	ND ND ND <1 <1 <1 <1 ND <1	ND 0.28 ND <1 <1 <1 <1 ND <1	
	10/0 09/2 10/0 10/1	03/10 N 08/10 N 07/12 < 02/14 <2 19/17 2.8 27/18 4.2	D :5	<1 < ND NI ND NI ND NI <5 < <1 < <1 < <1 < <1 < <1 < <1 < <1		<10 ND ND S <50 <10	41 41	ND <5	<1 ND ND <5 <1 <1	ND <5 <1	<1	ND ND <5 <1 <2	<1 ND ND <5 <1 <1	<1	ND ND S5 <1 <1	ND ND <5 <1 <1	ND ND <5 <1 <1	ND ND <5	ND ND <5	ND ND <5 <1 <1	<1	*10 ND ND <5 <10 <10	<1 ND ND <5 <5 <1	- - - - - - - -	ND NE ND ND NE ND NE NE		1	ND ND <5	ND ND <5 <1	ND ND <5 <1 <1	ND ND <15 <2 <1	ND ND <5 <1	<1 ND ND <5 <1 -	ND ND <5 <1	<1 ND ND <5 <1	<1 ND ND <5 <1	ND ND <5 <1	ND ND <5 <1	ND ND <5 <5	3.4 1.7 J

Sample Well Date	Acetone	Benzene	Bromodichloromethane	Bromoform	2-Butanone (MEK)	Carbon disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chlorome thane	Dibromoc hloro metha ne	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethylbenzene	Isopropylbenzene	мтве	4-Methy I-2-pe ntanone	Methy lene Cholride	Styrene	Tetrachloroethene	Toluene	1,2,4-Trichlorobenzene	1,1,1-Tric hloroethane	1,1,2-Tric hloroethane	Trichloroethene	Vinyl Chloride		1,1,1,2-Tetrachloroethane	n-Butylberzene	sec-Butylbenzene	p-is opropyito luene	n-Propy lbenzene	1,2,4-Trime thyl benzene	1,3,5-Trimethylbenzene	Naphthalene	1,4-Dioxane
10/03/18 03/26/19 10/15/19 04/21/20 06/22/21	11	J O	d 4	1		্ব ব	<1	<1 <1 <1 <1 <1	रा रा रा रा	<1 <1	<2 <2 <2	41 41 41 41		त त त त त	<1 <1 <1	<1 2.5 <1 <1	্ব ব ব	<1 <1	41 41 41 41 41	त त त त	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	ব ব ব ব	ব ব ব ব	1 1 1 1 1	41 41 41 41	ব ব ব ব	41 41 41 41	<1 <1 <1 <1 <1	ব ব ব ব	<1.1 <1.1 <1.1 <1.1 <1.1	-	-	-	-	-	- - - -	-	-	2.3 J 3.2 1.5 J 3.2 <1
05/18/07 106/18/02 106/18/02 106/18/04 106/02/04 100/02/05 106/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/02/05 106/	NI	D	D	D NCDD NCDD NCDD NCDD NCDD NCDD NCDD NC	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND 41 41 41 41 41 41	ND N	ND N	ND N	ND N	ND ND ND ND 41 41 41 ND	4 4 4 ND 4 ND ND ND	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N		ND 3.31 ND N	ND N	ND ND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND ND ND ND ND ND ND ND	
07/10/01 03/18/02 06627/02 0667/02 0667/03 067/13/04 067/13/04 1007/	NI N	D	D	D NDD	ND ND ND ND ND ND ND ND	NID	ND ND ND ND ND ND ND ND	ND N	ND N	ND ND ND ND ND ND ND ND	ND	ND ND ND ND ND ND ND ND	ND N	ND N	ND ND ND ND ND ND ND ND	5.5.5 4.27 1.74 1.13 3.355 ND 2.0 1.50 ND 1.9 ND 1.9 1.9 1.9 1.29 1.29 1.29 1.29 1.29 1.	ND N	ND N	ND N	ND	ND ND ND ND ND ND ND ND	ND 1.2		8.63 8.7 7.9 8.7 16.6 7.55 8.7 16.6 7.55 8.7 16.6 7.55 8.7 16.7 16.0 1	ND	ND ND 11 ND ND ND ND ND ND ND 11 ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND		ND N	ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND	ND ND ND ND ND ND ND ND	ND N	NO N	ND N	
03/18/02 08/14/03 027/13/04 007/13/04 027/18/05 06/20/05 06/	NI	D	D	D NDD NDD NDD NDD NDD NDD NDD NDD NDD N	ND N	ND N	ND ND ND ND ND ND ND ND	ND N	ND N	ND ND ND ND ND ND ND ND VI VI VI VI VI VI VI ND ND VI VI VI VI VI VI VI VI VI VI VI VI VI	ND N	ND N	ND N	ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND 100 110 110 110 110 110 110 110 110 11	1.2 ND		ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ND N	ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	
MW-12 860/2/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04 10/07/04/04 10/07/04/04/04/04/04/04/04/04/04/04/04/04/04/	NI	D 1 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D	D	D NC	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND <1	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND <1	ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND	ND ND ND ND ND ND	ND ND ND ND ND ND 41	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND	ND	ND N	ND N		ND N	ND N	ND ND ND ND ND ND	ND N	ND N	ND	ND N	ND N	ND N	ND N	ND ND ND ND ND ND ND VD VD VD ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N					

Updated Assessment Report Former Ducane Company Site Blackville, Barnwell County, South Carolina BLWM File #401356

APPENDIX G: GROUNDWATER HISTORICAL DATA SUMMARY

																																		92								r
					ane				e p					hane				919	then				911					ane	2	2				ethar					zene	zene		
					meth		ĒK	e pi	ilori				9	ome	hane	hane	hene	e e	loroe		ene		ntano	olride		ener)euze	oetha	oetha	96			Horo	9	ene	nene	90	lpen.	lben		ı
					ool	=	ne (N	Isulf	etrac	uszu	ane	E	than 0	ro H	oroel	oroel	oroel	cho	-Dich	zene	Denz		2-pe	e Ch		roetl		50	Ho.	Hora	ethe	Chloride		otrac	anzer.	lbenz	yto	Denze	ne th)	ne th)	eue	i
			90.0	euez	odict	офо	tano	p uo	T no	robe	roet	ofo	rome	ошо	Dichk	Olchk	Dichk	i-2-Di	s-1,2.	lben	ropy	ш	thyl	ny len	9 2	achic	91.0	15 H	1,1,1-Tric	1,1,2-Trichi	Joro	Ę	seu	1,1,1,2-Tet	tylbe	Buty	obrop	opy it	Ę	두	hthal	
v	Well	Sample Date	Acet	Ben	£ 0	Ē Q	2-Bu	Cart	Cart	양	Chlo	양	Chlo	D P	1,1	1,2-D	1,1-0	cis-1	trans	Ethy	Isop	MTB	4-Me	Meth	Styn	Tetra	Tolo	4,7	1,1,1	1,1,2	Trick	Vinyl	Xyle	11,1	n-Bu	-Sec-	p-ls	- P	1,2,4	1,3,5-1	Nap	
M		06/02/05				ND				ND		ND		ND		ND	ND	3 2.7		ND	ND	NE		NE		NE		ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	Ξ
	1	09/28/05 12/20/05		ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	2.59	ND	ND	ND	NE	ND.	NE	- 0	NE NE) NE	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	
		06/26/06	ND	•																						NE		•		•			ND	•		ND	ND	•		ND		_
1	(08/14/03 02/13/04	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND.	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	NE	ND.	NE) -	NE NE) ND	ND	ND	ND	ND 1.23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND		ND ND	ND ND	
		06/02/04 02/18/05	ND ND	ND ND	ND ND					ND ND			ND ND	ND ND			ND ND	ND ND	ND	ND	ND	-	ND ND			NE NE		ND	ND	ND		ND ND	ND ND	ND		ND ND	ND ND	ND	ND	ND ND	ND ND	
		06/02/05 09/28/05	ND ND	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NE NE		NE NE		NE NE			ND ND	ND ND	2.10 2.24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Ē
	1	12/20/05	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND.	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.54 ND	ND	ND	ND	NE	ND	NE	- (NE NE) NE	ND	ND	ND	2.10 1.66	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	F
	0	09/10/09 09/27/12	<20 <5	<1 <5	<1 <5	<1	<10	~ 1	<1	<1	<2 <5	<1	<1 <5	<1 <5	<1	<1	<1 <5	<1 <5	<1	<1	<1	<1	<10	<	1	<	1 <1	<1	<1	<1	<1 <5	<1 <5	<1 <15	<1	<1 <5	<1 <5	<1 <5	<1 <5	<1	<1	<1	Ē
M	144-14	10/01/14	<25 <20	<1 <1	্ ব	<1	<50 <10	<1	্ব ব	<1	<1 <2	<1	<1 <1	<1	<1	<1	<1	ব	<1	<1	<1		<10		5	<	1 <1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1		<1	<5	Ξ
	1	02/01/17 10/18/17 03/28/18	<20 <20 <20	<1	<1 <1	<1		<1			<2 <2	<1	<1 <1	<1		<1	<1	<1 <1	<1	<1									<1	<1	<1	<1 <1		-	-	-	-	-	-	-		Ē
	1	10/03/18	<20	<1	<1	<1	<10	16 <1	<1	<1	<2	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<10		1 <1	<		<1	<1	<1	<1	<1	<1	-	-	-	-	-	-	-	-	Е
	1	03/27/19 10/16/19	<20 <20	<1 <1	<1 <1	<1 <1	<10	<1	<1	<1 <1	<2 <2	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<10	<*	1 <1	<	1 0.53 J	<1	7	<1	<1 <1	<1 <1	<1 <1		-		-	-	-			
		04/22/20 06/24/21	8.4 J <20	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1	<1 <1	<2 <2	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1 <1				<1 <1				<.					<1 <1	<1 <1	<1 <1		-		-	-	-		-	
-		09/27/12	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5			<5	<			5 -	<	5 <5				<5	<5	<15	<5	<5	<5	<5	<5	<5	<5	<5	Ē
	1	10/01/14 02/01/17	<25 <20	<1	<1 <1	<1 <1	<50 <10	<1		<1 <1	<1 <2	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1			<1	<10	<1	1 <1		1 <1	<1 <1	<1	<1		<1 <1	<2 <1	<1	<1	<1	<1	<1	<1	<1	<5	Ē
	1	10/18/17	<20 <20	<1	<1	<1 <1	<10 <10	<1	<1	<1 <1	<2 <2	<1 <1	<1 <1	<1	<1	<1	<1	<1	<1	<1		<1	<10			<.		<1	<1	<1	<1	<1 <1	<1	-	-		-	-	-	-	-	Ξ
M		10/03/18 03/26/19	<20 2.7 J	<1	<1		<10 <10	<1			<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10		1 <1		1 <1	<1	<1	<1	<1	<1 <1	<1	-	-	-	-	=	-	-	-	F
	1	10/15/19	<20 <20	<1	<1	<1	<10 <10	<1	<1	<1	<2	<1 <1	<1 <1	<1	<1	<1 <1	<1	ব	<1	<1	<1	<1	<10	<	1 <1	<	1 <1	<1	<1	<1	<1	<1	<1 <1	=	= 3	= 3	- 2	=	-	-	-	F
		06/22/21	<20	<1		<1					<2		<1	<1		<1	<1	<1														<1		-	=	=	=	=	-	-	-	F
		10/19/17	2.2 J <20	<1	<1	<1	<10 <10	<1	<1	<1	<2 <2	1.9	<1	<1 <1	<1	<1	<1	<1	<1 <1	<1 <1	<1	<1	<10 <10	<1	1 <1	<	1 <1			<1	<1 <1	<1	<1	-	-	-	-	-	-	-	-	Ξ
	1	10/03/18	<20	<1	<1 <1		<10	<1	<1	<1	<2	1.9	<1	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<10	<*	1 <1	<	1 <1	<1	<1	<1	<1	<1 <1	<1 <1	-	-	-	-	-	-	-		F
M	100-10	03/26/19 10/15/19	<20 <20	<1 <1	<1	<1 <1	<10	<1	<1	<1	<2 <2	1.5	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<10	<*	1 <1	<	1 <1	<1	<1	<1	<1	<1	<1		-		-	-	-			
		04/21/20 06/22/21	<20 <20	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1	<1 <1	<2 <2		<1 <1	<1 <1		<1 <1	<1 <1	<1 <1				<1		<*		<.			<1 <1		<1 <1	<1 <1	<1 <1		-		-	-	-		-	
-		10/18/19	5.4 J	<1		0.43 J		<1			<2	1.4	<1	1.1		<1	<1	<1				<1		<		<					<1	<1	<1						_			
M		04/21/20 06/22/21	<20 <20	<1 <1	<1 <1	<1 <1		<1			<2 <2	0.71 J 0.81 J	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1 <1	<1	<1 <1		<10 <10	<*	1 <1				<1			<1 <1	<1 <1	-	-	-	-	-	-			Ē
WA	Г	UPPLY WE	LLS			_			1					-				-			1	1	1		1																-	_
	1	12/12/02	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	1.26 ND	ND ND			NE NE				NE NE					2.17 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Ξ
		06/17/03 08/14/03	ND ND	ND ND	ND ND	ND	ND	ND	ND.	ND ND	ND	ND	ND ND ND		ND	ND	ND ND ND	ND	ND		ND		ND			NE NE	O NE		ND		ND	ND ND	ND ND ND	ND ND ND	ND	ND ND	ND ND ND	ND ND ND		ND ND	ND ND ND	
	C	02/13/04	ND ND	ND ND	ND ND				ND.				ND ND				ND ND	ND ND								NE NE						ND ND	ND ND			ND ND	ND ND	ND ND		ND ND		
	1	10/07/04	ND ND	ND	ND		ND	ND ND	ND.	ND	ND	ND	ND	ND	ND	ND	1.23	ND	ND	ND	ND		- ND	NE	- (NE NE) NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ξ
	C	06/02/05	ND	ND ND	ND ND	ND	ND	ND	ND.	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	1.23 ND	ND ND	ND	ND	ND	NE		NE	- 0	NE) ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND	ND ND	ND ND	
v	NS-1	09/28/05 12/20/05	ND ND	ND ND	ND	ND	ND	ND	ND.		ND	ND ND	ND ND ND		ND	ND ND	ND ND	ND 0.92	ND	0.38	ND		ND.	NE	-	NE 2.98	B ND	ND	ND		ND 1.62	ND ND	ND 0.97	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND	ND ND	ND ND	
	0	06/26/06 09/28/06	ND <2	ND <1	ND <1	ND	ND <2	ND <1	<1	<1	ND <2	ND <1	1.55	ND <1	ND <1	<1	ND <1	ND <1	<1	<1	<1	<1	ND <1	NE	1 -	NE <	1 <1	ND <1	ND <1	<1	<1	ND <1	ND <1	<1	<1	ND <1	ND <1		ND	ND <1	<1	
	C	03/30/07 09/06/07	<2 <20	<1 <1	<1 <1				<1		<2 <2	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1		<1	<1		<10		1 -	<	1 <1		<1	<1		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	
	(03/10/08 09/22/08	<20 ND	<1 ND	<1 ND	<1 ND	ND	<1 ND			<2 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND		<1 ND	NE	ND.	<1 NE		<") NE	ND		<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	<1 ND	Ē
		04/21/09 09/09/09	<20 <20	<1 <1	<1	<1 <1	<10 <10	<1	<1	<1 <1	<2 <2	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1	<1	<1	<1	<1 <1	<1	<10 <10	<*	1 -	<.	1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1	
	i	03/02/10	ND ND	ND ND	ND	ND ND	ND				ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND		NE	ND	NE	- 0	NE NE) NE	ND	ND	ND	ND ND	ND ND	ND		ND	ND ND	ND ND	ND ND		ND ND	ND ND	
		12/12/02	ND ND	ND ND	ND	ND	ND	ND	ND.		ND		ND ND	ND ND	ND ND		ND ND		ND	ND			ND.	NE	-	2.1	7 ND	ND		ND ND	3.55	ND ND	ND ND			ND ND	ND ND	ND ND		ND ND	ND ND	
14		06/17/03	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE.	ND	NE	- (NE) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
"	i	08/14/03 02/13/04	ND ND	ND ND	ND	ND	ND ND	ND 	- ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	37.4 11.9	ND	ND ND	ND ND	NE NE	ND.	NE NE	, -	NE NE	2.5 0 NE	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	
	1	06/02/04 10/07/04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	NE NE) -) -	NE NE	O NE	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	
Not	tes:																																							-	Prepared by:	MAR 8/3

Notes: No

Prepared by: MAB 8/30/21 Checked by: CDN 10/20/21

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	79	<2.0	16	5.6	4.6
MW-2	6.9	8	NS (7.4)	7.1	7.2
MW-3	4,700	<2.0	NS (198)	297	125
MW-4	2.4	<2.0	NS (2.6)	NS (2.8)	3.1
MW-5	NA	2,230	NS (1,327)	872	2,470
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	7,860	5.1	16,400
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	8.6	8.7
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	18	4.4	<2.0	6	<2.0
MW-2	8.8	4	3.6	4	4.4
MW-3	147	709	41	273	251
MW-4	1.2	<2.0	<2.0	1.7	1.8
MW-5	1,850	1,120	1,570	1,330	2,710
MW-6R	NA	NA	NA	NA	NA
MW-7	11,700	1,280	NS (7,273)	13,200	12,300
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	3.3	NS (2.7)	<2.0	<2.0	<2.0
MW-10	NS (13)	17	4.4	11	6
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	18	0.94	<1.0	<1.0	8.6
MW-2	4.2	2.7	1.3	NS (1.3)	NS (1.3)
MW-3	455	763	108	187	35
MW-4	<5.0 (3.5)	5.3	<1.0	<1.0	2.1
MW-5	800	253	336	275	326
MW-6R	NA	NA	NA	NA	NA
MW-7	6,440	6,560	6,060	2,900	3,530
MW-8	51	<5.0	1.9	<1.0	<1.0
MW-9	<5.0 (1.7)	1.5	<1.0	<1.0	4.3
MW-10	2.6	1.5	2.7	4.1	7.5
MW-11	<5.0 (1.5)	1.1	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0	<20 (3.0)	<1.0	<2.0	<20 (1.5)
MW-2	NS (1.3)				
MW-3	<100	290	760	1,500	320
MW-4	2.4	<1.0	11	<1.0	4
MW-5	<20	290	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<100	41	<1.0	<10 (1.0)	<10 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	<1.0	<1.0	<100 (1.0)	<1.0	<20 (3.1)
MW-2	1.3	<1.0	<5.0 (1.0)	<1.0	4.8
MW-3	290	380	<2,500 (191)	2.4	<200 (2.4)
MW-4	<1.0	3.1	<5.0 (3.5)	4	0.67
MW-5	<1.0	<1.0	70	NS (93)	120
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	<1.0	<1.0	<100 (1.0)	<1.0	<5.0 (2.0)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<10 (3.7)	<5.0 (4.0)	<20 (4.5)	4.9	<20 (4.9)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	<100 (2.4)	<200 (2.4)	<500 (2.4)	<200 (2.4)	<200 (2.4)
MW-4	2.4	4.6	2	2.4	3.3
MW-5	110	85	130	130	19
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (2.3)	<20 (2.4)	<50 (2.7)	<5.0 (2.9)	3.1
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)				
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (4.9)	<20 (4.9)
MW-2	<1.0	<1.0
MW-3	<500 (2.4)	<200 (2.4)
MW-4	3.2	4.2
MW-5	110	120
MW-6R	<1.0	<1.0
MW-7	<10 (3.1)	<10 (3.1)
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	60	29	24	8.9	8
MW-2	<2.0	2	NS (2.0)	<2.0	<2.0
MW-3	60	<2.0	NS (58)	87	2,180
MW-4	7.4	<2.0	NS (2.1)	NS (2.2)	2.2
MW-5	NA	1,970	NS (1,451)	1,190	3,380
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	4,150	9.6	3,690
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	3.6	3.5
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	14	5	<2.0	4.2	1.5
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	1,610	3,870	51	185	197
MW-4	<2.0	<2.0	<2.0	1.6	<2.0
MW-5	2,360	1,560	1,630	1,640	2,540
MW-6R	NA	NA	NA	NA	NA
MW-7	7,700	1,030	NS (3,152)	5,250	5,900
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	2.8	NS (2.4)	<2.0	<2.0	<2.0
MW-10	1.2	3.3	<2.0	2.4	1.4
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	2.6	NS (2.3)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	9.1	2.4	<1.0	1.5	14
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	181	521	185	77	484
MW-4	<5.0 (2.5)	3	<1.0	<1.0	4.4
MW-5	1,870	1,530	878	722	690
MW-6R	NA	NA	NA	NA	NA
MW-7	3,090	5,390	4,640	3,220	5,850
MW-8	40	<5.0	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	12
MW-10	1	1.4	<1.0	1.1	24
MW-11	<5.0 (1.2)	0.44	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	2.1	2.2	1.7	NS (1.6)	NS (1.5)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0	<20 (3.0)	<1.0	<2.0	<20 (1.5)
MW-2	NS (1.0)				
MW-3	2,400	1,000	2,900	5,600	1,400
MW-4	2.2	<1.0	19	<1.0	5
MW-5	<20	560	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	1,300	250	38	<10	<10 (5.5)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	NS (1.4)	NS (1.3)	NS (1.2)	NS (1.1)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	<1.0	<1.0	<100 (1.0)	<1.0	<20 (3.9)
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	1,000	1,600	<2,500 (808)	18	<200 (18)
MW-4	<1.0	3.3	<5.0 (4.1)	4.9	1.3
MW-5	<1.0	<1.0	244	NS (211)	170
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	<1.0	<1.0	<100 (1.0)	<1.0	<5.0 (3.6)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<10 (4.6)	<5.0	<20 (5.8)	6.3	<20 (6.3)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	<100 (18)	<200 (18)	<500 (18)	<200 (18)	<200 (18)
MW-4	5.3	5.9	4.7	4.6	5.3
MW-5	190	230	220	250	160
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (4.3)	<20 (4.7)	<50 (5.3)	<5.0	6.4
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)				
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (6.3)	<20 (6.3)
MW-2	<1.0	<1.0
MW-3	<500 (18)	<200 (18)
MW-4	4.5	6.9
MW-5	170	210
MW-6R	<1.0	<1.0
MW-7	<10 (4.7)	0.69
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	18,000	17,600	10,600	8,580	5,090
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	660	2,540	NS (1,895)	1,570	6,800
MW-4	4.5	<2.0	NS (3.2)	NS (3.7)	4.3
MW-5	NA	<2.0	NS (424)	636	1,280
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	5,880	10,900	4,140
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	2.3	5.5
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	6,550	8,820	6,130	12,300	5,200
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	20,600	17,700	2,760	1,600	1,920
MW-4	<2.0	<2.0	1.2	2.3	<2.0
MW-5	1,290	978	1,110	1,120	2,000
MW-6R	NA	NA	NA	NA	NA
MW-7	8,480	2,480	NS (4,581)	6,660	6,500
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	4.3	1.7	3.4	1.5	2
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	37	12	NS (7.4)
MW-14	NA	NA	<2.0	<2.0	NS (1.5)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	8,200	12,400	5,280	7,530	3,120
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	2,060	3,500	2,840	2,450	13,100
MW-4	<5.0 (2.2)	2.5	<1.0	1.2	10
MW-5	1,860	3,010	2,850	2,620	3,060
MW-6R	NA	NA	NA	NA	NA
MW-7	2,690	5,290	2,930	2,480	5,810
MW-8	21	<5.0	<1.0	<1.0	12
MW-9	<5.0 (1.1)	0.28	<1.0	<1.0	7.7
MW-10	1	1.9	<1.0	1.3	20
MW-11	<5.0 (1.2)	0.32	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	3	2.7	1.7	NS	NS
MW-14	<5.0 (1.0)	0.54	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	700	4,800	2,200	2,800	6,500
MW-2	NS (1.0)				
MW-3	29,000	21,000	46,000	42,000	45,000
MW-4	2.7	<1.0	11	<1.0	5.8
MW-5	3,500	2,200	2,800	2,400	2,000
MW-6R	NA	NA	NA	NA	NA
MW-7	21,000	3,900	7,300	550	340
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)				
MW-13	NS	NS	NS	NS	NS
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	5,300	1,200	1,650	734	1,800
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	45,000	41,000	46,100	9,460	11,000
MW-4	<1.0	2.6	<5.0 (3.7)	4.8	1.1
MW-5	2,100	1,600	750	NS (773)	800
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	870	850	1,890	200	640
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS	NS	NS	NS	NS
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	1,100	420	890	1,400	1,000
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	7,300	16,000	24,000	15,000	24,000
MW-4	6.8	6.8	5.9	4.1	7.2
MW-5	490	280	300	320	450
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	1,100	1,700	3,100	440	810
MW-8	<1.0	<1.0	<1.0	<1.0	2.5
MW-9	NS (1.0)				
MW-10	<1.0	<1.0	<1.0	<1.0	0.97
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)				
MW-13	NS	NS	NS	NS	NS
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	670	1,700
MW-2	<1.0	<1.0
MW-3	30,000	24,000
MW-4	6.6	8.7
MW-5	320	370
MW-6R	<1.0	<1.0
MW-7	560	190
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS	NS
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	60	361	78	54	24
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	14	40	NS (15)	<2.0	123
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	6	NS (7.1)	7.6	22
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	69	54	46
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	80	48	15	153	49
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	240	190	88	53	35
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	21	24	16	14	21
MW-6R	NA	NA	NA	NA	NA
MW-7	103	62	NS (80)	97	150
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	58	133	<1.0	32	14
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	31	19	35	36	140
MW-4	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-5	26	26	17	20	20
MW-6R	NA	NA	NA	NA	NA
MW-7	35	44	<1.0	16	24
MW-8	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0	22	<1.0	15	28
MW-2	NS (1.0)	NS (1.0)	NS (1.0) NS (1.0) NS (NS (1.0)
MW-3	220	170	300	370	320
MW-4	<1.0	<1.0	<1.0 <1.0		<1.0
MW-5	24	16	18 15		14
MW-6R	NA	NA	NA	NA	NA
MW-7	<100 (16)	<20 (8.7)	<1.0	<10 (1.0)	<10 (1.0)
MW-8	<1.0	<1.0	<1.0 <1.0		<1.0
MW-9	<1.0	<1.0	<1.0 <1.0		<1.0
MW-10	<1.0	<1.0	<1.0 <1.0 <1.0 <1.0		<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	21	5.6	<100 (5.0)	4.3	<20 (9.6)
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	270	320	<2,500 (249)	179	85
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	10	9.2	<25 (9.2)	NS (9.2)	9.2
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	<1.0	<1.0	<100 (1.3)	1.6	<5.0 (3.8)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	11	2	<20 (3.6)	4.8	<20 (5.7)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	53	170	270	120	250
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	6.6	2.6	3.4	2.9	3.9
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (4.4)	<20 (4.8)	<50 (5.4)	<5.0	6.3
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)				
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (6.4)	8.1
MW-2	<1.0	<1.0
MW-3	260	210
MW-4	<1.0	<1.0
MW-5	2.7	3.7
MW-6R	<1.0	<1.0
MW-7	4.2	0.71
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002	Sep. 2002
MW-1	26	68	27	<2.0	12	19
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-3	40	247	NS (194)	167	1,220	2,560
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0	<2.0
MW-5	NA	2.9	NS (3.3)	3.5	5	5.5
MW-6R	NA	NA	NA	NA	NA	NA
MW-7	NA	NA	2.9	24	12	22
MW-8	NA	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0	<2.0
MW-10	NA	NA	NA	<2.0	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0	NS (2.0)
MW-12	NA	NA	NA	NA	<2.0	<2.0
MW-13	NA	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004	Mar. 2005	Sep. 2005
MW-1	20	1.3	25	18	16	18
MW-2	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0
MW-3	2,740	176	480	270	189	186
MW-4	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0
MW-5	<2.0	2.6	4.4	5.1	6	7.9
MW-6R	NA	NA	NA	NA	NA	NA
MW-7	5.1	NS (6.5)	7.9	12	7.5	13
MW-8	NA	NA	<2.0	<2.0	<5.0	<5.0
MW-9	NS (2.0)	<2.0	<2.0	<2.0	<5.0	<5.0
MW-10	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0
MW-11	NS (2.0)	<2.0	<2.0	<2.0	<5.0	<5.0
MW-12	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0
MW-13	NA	<2.0	<2.0	NS (3.5)	<5.0	<5.0
MW-14	NA	<2.0	<2.0	NS (3.5)	<5.0	<5.0
MW-15	NA	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2006	Sep. 2006	Mar. 2007	Sep. 2007	Mar. 2008	Sep. 2008
MW-1	<1.0	18	14	<5.0	<20 (3.0)	<1.0
MW-2	<1.0	NS (1.0)				
MW-3	195	164	954	2,300	1,700	3,000
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<1.0	8.2	<10 (6.4)	<20 (4.6)	<10 (2.8)	<1.0
MW-6R	NA	NA	NA	NA	NA	NA
MW-7	<1.0	8.6	15	<100 (10)	<20 (5.8)	<1.0
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	NS (1.0)				
MW-12	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	<1.0	NS (1.0)				
MW-14	<1.0	NS (1.0)				
MW-15	NA	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2009	Sep. 2009	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014
MW-1	5.3	<20 (3.1)	<1.0	2	<100 (1.9)	1.8
MW-2	NS (1.0)	NS (1.0)	<1.0	<1.0	<5.0	<1.0
MW-3	3,800	2,500	2,400	2,100	<2,500 (1,357)	616
MW-4	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0
MW-5	<10 (2.6)	<10 (4.3)	5.9	<1.0	<25 (2.2)	NS (3.5)
MW-6R	NA	NA	NA	NA	<5.0	<1.0
MW-7	<10 (1.0)	<10 (1.0)	<1.0	<1.0	<100 (1.0)	<1.0
MW-8	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0
MW-11	NS (1.0)	<1.0	NS (1.7)	NS (2.3)	<5.0	<1.0
MW-12	NS (1.0)	NS (1.0)				
MW-13	NS (1.0)	NS (1.0)				
MW-14	NS (1.0)	<1.0	NS (1.7)	NS (2.3)	<5.0	<1.0
MW-15	NA	NA	NA	NA	<5.0	<1.0
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Feb. 2017	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<20 (4.0)	<10 (4.6)	<5.0	<20 (5.0)	<10 (5.0)	<20 (5.0)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	420	330	690	950	540	840
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<5.0	<10 (6.0)	6.6	1.7	<5.0	<5.0
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<5.0	<20 (5.0)	<20 (5.0)	<50 (5.0)	<5.0	<5.0
MW-8	NS (1.0)	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)					
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)					
MW-13	NS (1.0)					
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	NA	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	NA	<1.0

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (5.0)	<20 (5.0)
MW-2	<1.0	<1.0
MW-3	990	760
MW-4	<1.0	<1.0
MW-5	<5.0	2.4
MW-6R	<1.0	<1.0
MW-7	<10 (3.8)	<1.0
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002	Sep. 2002
MW-1	49	<2.0	105	76	29	65
MW-2	<2.0 (1.0)	<2.0 (1.0)	NS (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)
MW-3	63	325	NS (110)	<2.0	1,420	1,260
MW-4	<2.0 (1.0)	<2.0 (1.0)	NS (1.0)	NS (1.0)	<2.0 (1.0)	<2.0 (1.0)
MW-5	NA	<2.0	NS (6.7)	9.1	8	7.5
MW-6R	NA	NA	NA	NA	NA	NA
MW-7	NA	NA	190	69	240	294
MW-8	NA	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0 (1.0)	<2.0 (1.0)
MW-10	NA	NA	NA	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)
MW-11	NA	NA	NA	NA	<2.0 (1.0)	NS (1.0)
MW-12	NA	NA	NA	NA	<2.0 (1.0)	<2.0 (1.0)
MW-13	NA	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004	Mar. 2005	Sep. 2005
MW-1	110	5.8	120	77	86	112
MW-2	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-3	1,810	136	195	154	99	63
MW-4	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-5	1.2	2.6	7.9	7.3	7	7
MW-6R	NA	NA	NA	NA	NA	NA
MW-7	103	NS (373)	641	137	104	156
MW-8	NA	NA	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-9	NS (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-10	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-11	NS (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-12	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<2.0 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-13	NA	<2.0 (1.0)	<2.0 (1.0)	NS (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-14	NA	<2.0 (1.0)	<2.0 (1.0)	NS (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-15	NA	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2006	Sep. 2006	Mar. 2007	Sep. 2007	Mar. 2008	Sep. 2008
MW-1	75	104	59	19	86	32
MW-2	<1.0	NS (1.0)				
MW-3	154	259	817	1,400	1,100	1,600
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	7.3	9.3	12	79	43	160
MW-6R	NA	NA	NA	NA	NA	NA
MW-7	120	81	132	350	170	400
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	NS (1.0)				
MW-12	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	<1.0	NS (1.0)				
MW-14	<1.0	NS (1.0)				
MW-15	NA	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2009	Sep. 2009	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014
MW-1	98	150	170	28	<100 (25)	22
MW-2	NS (1.0)	NS (1.0)	<1.0	<1.0	<5.0 (1.0)	<1.0
MW-3	1,700	710	1,700	2,200	<2,500 (1,454)	709
MW-4	<1.0	<1.0	<1.0	<1.0	<5.0 (1.0)	<1.0
MW-5	<10	480	9.2	81	<25	NS (17)
MW-6R	NA	NA	NA	NA	<5.0 (1.0)	<1.0
MW-7	340	450	730	140	472	319
MW-8	<1.0	<1.0	<1.0	<1.0	<5.0 (1.0)	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<5.0 (1.0)	<1.0
MW-11	NS (1.0)	<1.0	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0
MW-12	NS (1.0)	NS (1.0)				
MW-13	NS (1.0)	NS (1.0)				
MW-14	NS (1.0)	<1.0	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0
MW-15	NA	NA	NA	NA	<5.0 (1.0)	<1.0
MW-16	NA	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Feb. 2017	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	67	58	8.4	56	33	38
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	700	520	1,200	2,000	900	1,800
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	6.6	6.7	3.4	5.7	3.5	9.1
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	200	710	460	510	200	120
MW-8	NS (1.0)	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)					
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)					
MW-13	NS (1.0)					
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	NA	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	NA	<1.0

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	24	64
MW-2	<1.0	<1.0
MW-3	1,700	1,400
MW-4	<1.0	<1.0
MW-5	5.1	8.8
MW-6R	<1.0	<1.0
MW-7	110	21
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	<2.0	<2.0	<2.0	<2.0	<2.0
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	20	<2.0	NS (53)	78	727
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	<2.0	NS (2.4)	2.5	1.2
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	<2.0	<2.0	7.7
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	12	<2.0	<2.0	<2.0	<2.0
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	231	1,670	105	144	<2.0
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	<2.0	<2.0	1.6	<2.0	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	12	<2.0	NS (2.0)	<2.0	<2.0
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<10 (1.0)
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	90	<5.0	73	22	407
MW-4	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-5	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	3.9	<5.0 (2.4)	<1.0	3.2	4.9
MW-8	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0 (1.0)	<20 (1.0)	<1.0	<2.0	<20 (1.5)
MW-2	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-3	1,200	690	3,200	4,200	3,800
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (1.0)	<10 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<100 (3.6)	<20 (2.3)	<1.0	<10 (1.0)	<10 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	<1.0	<1.0	<100 (1.0)	<1.0	<20 (1.0)
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	3,100	2,700	2,860	88	<200 (88)
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	<1.0	<1.0	<25 (1.3)	NS (1.6)	<5.0 (1.9)
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	<1.0	<1.0	<100 (1.0)	<1.0	<5.0 (1.0)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<10 (1.0)	<5.0 (1.0)	<20 (1.0)	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	<100 (88)	<200 (88)	<500 (88)	<200 (88)	<200 (88)
MW-4	0.84	0.99	0.67	0.67	0.81
MW-5	<10 (2.0)	2.1	1	<5.0 (1.0)	<5.0 (1.0)
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (1.0)	<20 (1.0)	<50 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0
MW-3	<500 (88)	<200 (88)
MW-4	0.61	<1.0
MW-5	<5.0 (1.0)	<5.0 (1.0)
MW-6R	<1.0	<1.0
MW-7	<10 (1.0)	<1.0 (1.0)
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	<2.0	<2.0	<2.0	<2.0	<2.0
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	20	383	NS (130)	<2.0	1,740
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	<2.0	NS (2.0)	<2.0	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	<2.0	<2.0	<2.0
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	<2.0	<2.0	<2.0	<2.0	<2.0
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	451	4,600	145	316	<2.0
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	<2.0	<2.0	<2.0	<2.0	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	10	<2.0	NS (2.0)	<2.0	<2.0
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<10 (1.0)
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	102	<5.0	50	28	734
MW-4	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-5	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	1.2
MW-8	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0 (1.0)	<20 (1.0)	<1.0	<2.0	<20 (1.5)
MW-2	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-3	2,600	1,700	2,900	4,400	2,400
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (1.0)	<10 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<100 (1.2)	<20 (1.1)	<1.0	<10 (1.0)	<10 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	<1.0	<1.0	<100 (1.0)	<1.0	<20 (1.0)
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	2,400	1,400	<2,500 (710)	20	<200 (20)
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	<1.0	<1.0	<25 (1.0)	NS (1.0)	<5.0 (1.0)
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	<1.0	<1.0	<100 (1.0)	<1.0	<5.0 (1.0)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<10 (1.0)	<5.0 (1.0)	<20 (1.0)	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	<100 (20)	<200 (20)	<500 (20)	<200 (20)	<20
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<10 (1.0)	<5.0 (1.0)	<1.0	<5.0 (1.0)	<5.0 (1.0)
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (1.0)	<20 (1.0)	<50 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021	
MW-1 <10 (1.0)		<20 (1.0)	
MW-2	<1.0	<1.0	
MW-3	<500 (20)	<200 (20)	
MW-4	<1.0	<1.0	
MW-5	<5.0 (1.0)	<5.0 (1.0)	
MW-6R	<1.0	<1.0	
MW-7	<10 (1.0)	<1.0 (1.0)	
MW-8	<1.0	<1.0	
MW-9	NS (1.0)	NS (1.0)	
MW-10	<1.0	<1.0	
MW-11	<1.0	<1.0	
MW-12	NS (1.0)	NS (1.0)	
MW-13	NS (1.0)	NS (1.0)	
MW-14	<1.0	<1.0	
MW-15	<1.0	<1.0	
MW-16	<1.0	<1.0	
MW-17	<1.0	<1.0	

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	4.2	<2.0	2.3	1.9	4.5
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	7.8	<2.0	NS (8.1)	11	57
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	<2.0	NS (2.0)	<2.0	1.2
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	<2.0	2	<2.0
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	1.9	1	<2.0	2.2	<2.0
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	26	69	17	5.7	<2.0
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	<2.0	<2.0	<2.0	<2.0	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<10 (1.0)
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	7.3	<5.0	12	12	32
MW-4	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-5	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-8	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0 (1.0)	<20 (1.0)	<1.0	<2.0	<20 (1.5)
MW-2	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-3	<100 (33)	34	<1.0	<200 (1.0)	<200 (1.0)
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (1.0)	<10 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<100 (1.0)	<20 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	<1.0	<1.0	<100 (1.0)	<1.0	<20 (1.0)
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	<1.0	<1.0	<2,500 (14)	28	<200 (40)
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	<1.0	<1.0	<25 (0.94)	NS (0.88)	<5.0 (0.80)
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<2.0
MW-7	<1.0	<1.0	<100 (1.0)	<1.0	<5.0 (1.0)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<2.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<10 (1.0)	<5.0 (1.0)	<20 (1.0)	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	43	<200 (55)	<500 (71)	<200 (83)	99
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<10 (0.78)	<5.0 (0.77)	0.75	<5.0 (1.5)	2.6
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (1.0)	<20 (1.0)	<50 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0
MW-3	<500 (99)	100
MW-4	<1.0	<1.0
MW-5	<5.0 (2.6)	<5.0 (2.6)
MW-6R	<1.0	<1.0
MW-7	<10 (1.0)	<1.0
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	N-16 <1.0 <1.0	
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	<2.0	<2.0	2.2	<2.0	<2.0
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	127	460	NS (243)	133	1,900
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	6.9	NS (5.5)	4.8	1.9
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	<2.0	<2.0	<2.0
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	<2.0	1.5	1.3	153	<2.0
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	3,040	3,060	214	486	<2.0
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	1.6	<2.0	<2.0	2.3	4.4
MW-6R	NA	NA	NA	NA	NA
MW-7	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	7.4
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	208	<5.0	339	235	1,200
MW-4	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-5	<5.0 (3.3)	<5.0 (2.1)	<1.0	4.2	4.4
MW-6R	NA	NA	NA	NA	NA
MW-7	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-8	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0	<20 (3.0)	<1.0	<2.0	<20 (1.5)
MW-2	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-3	2,400	1,800	3,900	4,100	4,000
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (3.3)	<10 (2.1)	<1.0	<10 (2.8)	<10 (4.5)
MW-6R	NA	NA	NA	NA	NA
MW-7	<100 (1.0)	<20 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	<1.0	<1.0	<100 (1.0)	<1.0	<20 (1.0)
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	3,800	3,900	4,140	908	890
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	6.3	<1.0	<25 (1.8)	NS (2.7)	3.7
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	<1.0	<1.0	<100 (1.0)	<1.0	<5.0 (1.0)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	<10 (1.0)	<5.0 (1.0)	<20 (1.0)	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	680	1,200	1,800	1,100	1,500
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<10 (5.5)	6.6	5.3	4.6	7.6
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (1.0)	<20 (1.0)	<50 (1.0)	<5.0 (1.0)	<5.0 (1.0)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (1.0)	<20 (1.0)
MW-2	<1.0	<1.0
MW-3	1,800	1,500
MW-4	<1.0	<1.0
MW-5	2.5	4.7
MW-6R	<1.0	<1.0
MW-7	<10 (1.0)	<1.0
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0 <1.0	
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	1,050	979	436	396	317
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	<2.0	7.9	NS (4.9)	3.3	121
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	<2.0	NS (2.0)	<2.0	1.6
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	69	446	70
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	344	265	19	766	422
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	228	253	4.5	<2.0	<2.0
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	<2.0	<2.0	<2.0	<2.0	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	116	19	NS (67)	114	57
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	2.5	<2.0	<2.0
MW-13	NA	NA	2.5	<2.0	NS (2.0)
MW-14	NA	NA	<2.0	11	NS (8.2)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	264	524	110	209	26
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	<5.0 (1.9)	1.8	<1.0	3.9	68
MW-4	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-5	<5.0 (1.1)	0.25	<1.0	<1.0	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	35	59	<1.0	23	39
MW-8	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	<1.0
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	2	<5.0 (1.5)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0	<5.0 (3.0)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	<5.0	64	28	18	69
MW-2	NS (1.0)				
MW-3	220	170	400	520	380
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (1.0)	<10 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	<100 (35)	<20	27	<10	25
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	20	2.5	<100 (5.1)	7.8	15
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	390	350	<2,500 (213)	77	<200 (100)
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	<1.0	<1.0	<25 (1.0)	NS (1.0)	<5.0 (1.0)
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	33	7.2	<100 (5.0)	2.8	<5.0 (2.8)
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	5	<5.0	<20 (5.0)	<10 (5.0)	<20 (5.0)
MW-2	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	<100	110	<500 (102)	97	150
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<10 (1.0)	<5.0 (1.0)	<1.0	<5.0 (1.0)	<5.0 (1.0)
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	<20 (2.8)	<20 (2.8)	<50 (2.8)	<5.0 (2.8)	<5.0 (2.8)
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	0.53
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	<10 (5.0)	<20 (5.0)
MW-2	<1.0	<1.0
MW-3	220	190
MW-4	<1.0	<1.0
MW-5	<5.0 (1.0)	<5.0 (1.0)
MW-6R	<1.0	<1.0
MW-7	<10 (2.8)	<10 (2.8)
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	3.3	8.2
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	1,950	1,890	1,050	854	635
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	250	21	NS (14)	10	386
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	<2.0	NS (2.0)	<2.0	25
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	1,020	1,010	1,580
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	1,900	938	441	1,910	680
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	900	669	13	1.3	<2.0
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	1.6	<2.0	<2.0	<2.0	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	1,900	356	NS (1,278)	2,190	2,140
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	2	1.5	<2.0	<2.0	<2.0
MW-13	NA	NA	<2.0	2.2	NS (1.9)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	820	1,380	520	922	159
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	4	4.9	<1.0	13	339
MW-4	<5.0 (1.3)	0.66	<1.0	<1.0	<1.0
MW-5	1.5	3	<1.0	<1.0	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	1,110	1,350	1,020	625	1,240
MW-8	9.1	<5.0	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	1.9
MW-10	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	3.2
MW-11	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.6)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	13	460	94	270	550
MW-2	NS (1.0)				
MW-3	820	580	1,200	1,300	920
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (1.0)	<10 (1.0)	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	1,900	340	810	200	750
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	450	45	<100 (39)	33	81
MW-2	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-3	1,100	920	<2,500 (558)	196	130
MW-4	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-5	<1.0	<1.0	<25 (1.0)	NS (1.0)	<5.0 (1.0)
MW-6R	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-7	1,300	210	431	104	84
MW-8	<1.0	<1.0	<5.0 (1.0)	<1.0	NS (1.0)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<5.0 (1.0)	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.0)	NS (1.0)	<5.0 (1.0)	<1.0	<1.0
MW-15	NA	NA	<5.0 (1.0)	<1.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	10	<5.0	33	32	39
MW-2	0.46	<1.0	<1.0	<1.0	<1.0
MW-3	90	330	530	310	490
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<10 (1.0)	<5.0 (1.0)	<1.0	<5.0	17
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	130	100	200	79	37
MW-8	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	24	97
MW-2	<1.0	<1.0
MW-3	820	520
MW-4	<1.0	<1.0
MW-5	<5.0	2.7
MW-6R	<1.0	<1.0
MW-7	47	7.4
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 1999	Mar. 2000	Mar. 2001	Sep. 2001	Mar. 2002
MW-1	8,260	7,820	4,260	2,720	2,680
MW-2	<2.0	<2.0	NS (2.0)	<2.0	<2.0
MW-3	1,480	69	NS (64)	62	1,530
MW-4	<2.0	<2.0	NS (2.0)	NS (2.0)	<2.0
MW-5	NA	<2.0	NS (2.0)	<2.0	145
MW-6R	NA	NA	NA	NA	NA
MW-7	NA	NA	3,430	3,016	8,000
MW-8	NA	NA	NA	NA	NA
MW-9	NA	NA	NA	NA	<2.0
MW-10	NA	NA	NA	<2.0	<2.0
MW-11	NA	NA	NA	NA	<2.0
MW-12	NA	NA	NA	NA	<2.0
MW-13	NA	NA	NA	NA	NA
MW-14	NA	NA	NA	NA	NA
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2002	Mar. 2003	Sep. 2003	Mar. 2004	Sep. 2004
MW-1	9,870	4,040	2,193	9,220	3,220
MW-2	<2.0	<2.0	<2.0	<2.0	<2.0
MW-3	3,828	2,912	60	8.4	2
MW-4	<2.0	<2.0	<2.0	<2.0	<2.0
MW-5	3.3	<2.0	<2.0	3.5	<2.0
MW-6R	NA	NA	NA	NA	NA
MW-7	10,950	1,606	NS (5,710)	9,770	9,000
MW-8	NA	NA	NA	<2.0	<2.0
MW-9	<2.0	NS (2.0)	<2.0	<2.0	<2.0
MW-10	<2.0	<2.0	<2.0	<2.0	<2.0
MW-11	NS (2.0)	NS (2.0)	<2.0	<2.0	<2.0
MW-12	<2.0	<2.0	1.9	<2.0	<2.0
MW-13	NA	NA	<2.0	<2.0	NS (1.7)
MW-14	NA	NA	<2.0	<2.0	NS (1.7)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2005	Sep. 2005	Mar. 2006	Sep. 2006	Mar. 2007
MW-1	3,940	6,580	2,430	3,910	736
MW-2	<5.0 (1.7)	<5.0 (1.3)	<1.0	NS (1.0)	NS (1.0)
MW-3	43	43	16	72	1,400
MW-4	<5.0 (2.2)	2.5	<1.0	<1.0	3.3
MW-5	6.4	13	<1.0	1.5	<10 (1.3)
MW-6R	NA	NA	NA	NA	NA
MW-7	4,170	5,440	4,040	2,350	4,650
MW-8	33	<5.0	<1.0	<1.0	<1.0
MW-9	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	7.6
MW-10	<5.0 (1.2)	0.39	<1.0	<1.0	12
MW-11	<5.0 (1.2)	0.36	<1.0	NS (1.0)	NS (1.0)
MW-12	<5.0 (1.7)	<5.0 (1.3)	<1.0	<1.0	NS (1.0)
MW-13	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-14	<5.0 (1.5)	<5.0 (1.2)	<1.0	NS (1.0)	NS (1.0)
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Sep. 2007	Mar. 2008	Sep. 2008	Mar. 2009	Sep. 2009
MW-1	5.2	1,900	460	1,000	2,300
MW-2	NS (1.0)				
MW-3	3,300	2,300	4,500	4,800	3,600
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<20 (1.2)	<10 (1.1)	<1.0	<10 (1.0)	<10 (1.0)
MW-6R	NA	NA	NA	NA	NA
MW-7	7,300	1,500	3,400	790	3,300
MW-8	<1.0	<1.0	1.9	<1.0	<1.0
MW-9	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-12	NS (1.0)				
MW-13	NS (1.0)				
MW-14	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	<1.0
MW-15	NA	NA	NA	NA	NA
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Mar. 2010	Sep. 2010	Sep. 2012	Sep. 2014	Feb. 2017
MW-1	1,900	160	403	99	380
MW-2	<1.0	<1.0	<15 (1.5)	<2.0	<1.0
MW-3	4,600	3,600	<7,500 (2,208)	817	530
MW-4	<1.0	<1.0	<15 (1.5)	<2.0	<1.0
MW-5	<1.0	<1.0	<75 (1.0)	NS (1.0)	<5.0 (1.0)
MW-6R	NA	NA	<15 (2.0)	<2.0	<1.0
MW-7	5,700	870	1,720	373	320
MW-8	<1.0	<1.0	<15 (1.5)	<2.0	NS (1.2)
MW-9	<1.0	<1.0	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<15 (1.5)	<2.0	<1.0
MW-11	NS (1.1)	NS (1.2)	<15 (1.6)	<2.0	<1.0
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	NS (1.1)	NS (1.2)	<15 (1.6)	<2.0	<1.0
MW-15	NA	NA	<15 (2.0)	<2.0	<1.0
MW-16	NA	NA	NA	NA	NA
MW-17	NA	NA	NA	NA	NA

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Oct. 2017	Mar. 2018	Oct. 2018	Mar. 2019	Oct. 2019
MW-1	53	12	140	200	97
MW-2	1.4	<1.0	<1.0	<1.0	<1.0
MW-3	320	1,300	2,100	1,200	2,000
MW-4	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	<10 (1.0)	<5.0 (1.0)	<1.0	<5.0 (1.8)	2.9
MW-6R	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	420	310	960	210	140
MW-8	<1.0	<1.1	<1.1	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	<1.0	<1.0	<1.0	<1.0	NS (1.0)
MW-12	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0	<1.0	<1.0	<1.0
MW-15	<1.0	<1.0	<1.0	<1.0	<1.0
MW-16	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	NA	NA	NA	NA	<1.0

Notes:

All concentrations in μg/l

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Well ID	Apr. 2020	Jun. 2021
MW-1	110	400
MW-2	<1.0	<1.0
MW-3	3,300	2,300
MW-4	<1.0	<1.0
MW-5	<5.0 (2.9)	<5.0 (2.9)
MW-6R	<1.0	<1.0
MW-7	140	24
MW-8	<1.0	<1.0
MW-9	NS (1.0)	NS (1.0)
MW-10	<1.0	<1.0
MW-11	<1.0	<1.0
MW-12	NS (1.0)	NS (1.0)
MW-13	NS (1.0)	NS (1.0)
MW-14	<1.0	<1.0
MW-15	<1.0	<1.0
MW-16	<1.0	<1.0
MW-17	<1.0	<1.0

Notes:

All concentrations in $\mu g/I$

NA: Well not installed or abandoned.

<5.00: Analyte not detected. Detection limit used.

<100 (21.0): Analyte not detected. Elevated detection limit,

interpolated or extrapolated value shown.

NS (21.0): Well not sampled, interpolated or extrapolated value

shown - refer to shading for more specific explanation.

Interpolated between two sampling events.

Well not sampled. Extrapolated from a sampling event.

Ricke	Ricker Method® Plume Stability Characteristics				
	PCE U	pper Shallow			
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (lbs)		
Sep-1999	17.1	264	36.8		
Mar-2000	11.6	78	7.4		
Mar-2001	18.9	215	33.2		
Sep-2001	19.7	68	10.9		
Mar-2002	19.5	134	21.4		
Sep-2002	19.2	142	22.3		
Mar-2003	19.4	117	18.4		
Sep-2003	17.7	75	10.8		
Mar-2004	17.9	135	19.7		
Sep-2004	17.4	142	20.1		
Mar-2005	17.9	151	22.1		
Sep-2005	15.9	114	14.7		
Mar-2006	14.4	56	6.6		
Sep-2006	14.1	56	6.5		
Mar-2007	15.4	56	7.0		
Sep-2007	13.2	25	2.7		
Mar-2008	14.5	54	6.4		
Sep-2008	8.7	80	5.7		
Mar-2009	8.2	126	8.5		
Sep-2009	7.9	44	2.9		
Mar-2010	6.8	42	2.3		
Sep-2010	7.6	50	3.1		
Sep-2012	11.3	29	2.6		
Sep-2014	6.2	15	0.7		
Feb-2017	6.9	17	0.9		
Oct-2017	6.8	16	0.9		
Mar-2018	7.3	14	0.8		
Oct-2018	7.2	17	1.0		
Mar-2019	7.5	17	1.0		
Oct-2019	4.6	8	0.3		
Apr-2020	7.5	16	1.0		
Jun-2021	7.9	16	1.1		

Ricker Method® Plume Stability Characteristics				
	TCE U	pper Shallow		
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)	
Sep-1999	15.8	27	3.4	
Mar-2000	14.1	73	8.4	
Mar-2001	17.6	153	22.0	
Sep-2001	17.9	60	8.7	
Mar-2002	17.7	317	45.8	
Sep-2002	17.5	298	42.5	
Mar-2003	17.5	315	44.8	
Sep-2003	17.2	69	9.7	
Mar-2004	16.5	109	14.7	
Sep-2004	16.3	118	15.8	
Mar-2005	17.3	121	17.0	
Sep-2005	16.5	141	19.0	
Mar-2006	14.6	77	9.2	
Sep-2006	14.6	57	6.8	
Mar-2007	16.4	169	22.7	
Sep-2007	13.3	199	21.6	
Mar-2008	14.9	124	15.0	
Sep-2008	10.6	205	17.7	
Mar-2009	9.5	325	25.2	
Sep-2009	9.3	120	9.1	
Mar-2010	7.6	96	6.0	
Sep-2010	8.3	134	9.2	
Sep-2012	12.8	70	7.3	
Sep-2014	10.7	22	1.9	
Feb-2017	10.7	19	1.7	
Oct-2017	11.2	21	1.9	
Mar-2018	11.5	23	2.2	
Oct-2018	11.6	23	2.1	
Mar-2019	11.7	24	2.3	
Oct-2019	11.7	20	1.9	
Apr-2020	11.5	20	1.9	
Jun-2021	11.5	24	2.2	

Ricker Method® Plume Stability Characteristics					
cis-1,2-DCE Upper Shallow					
Event	Area (acres)	Average Concentration	Mass Indicator		
		(μg/L)	(lbs)		
Sep-1999	16.4	1,144	153		
Mar-2000	14.5	1,416	167		
Mar-2001	17.3	1,448	204		
Sep-2001	17.7	1,518	219		
Mar-2002	17.9	1,616	235		
Sep-2002	17.6	2,881	413		
Mar-2003	17.4	2,566	364		
Sep-2003	17.4	1,206	171		
Mar-2004	17.3	1,441	203		
Sep-2004	17.3	1,212	171		
Mar-2005	17.2	1,293	181		
Sep-2005	16.8	2,166	297		
Mar-2006	16.4	1,390	186		
Sep-2006	16.5	1,441	194		
Mar-2007	17.7	2,447	354		
Sep-2007	16.6	3,104	421		
Mar-2008	16.4	3,087	412		
Sep-2008	16.8	4,709	646		
Mar-2009	16.4	3,488	467		
Sep-2009	16.8	4,330	594		
Mar-2010	16.4	4,161	556		
Sep-2010	16.5	3,022	407		
Sep-2012	16.3	1,526	203		
Sep-2014	16.2	574	76		
Feb-2017	15.9	662	86		
Oct-2017	16.0	371	48		
Mar-2018	15.8	408	53		
Oct-2018	15.9	580	75		
Mar-2019	15.8	475	61		
Oct-2019	16.2	620	82		
Apr-2020	15.8	626	81		
Jun-2021	15.9	661	85.6		

Ricke	Ricker Method® Plume Stability Characteristics					
trans-1,2-DCE Upper Shallow						
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)			
Sep-1999	12.8	17	1.8			
Mar-2000	14.4	54	6.3			
Mar-2001	13.6	21	2.4			
Sep-2001	9.4	17	1.3			
Mar-2002	15.5	30	3.8			
Sep-2002	15.7	55	7.0			
Mar-2003	15.7	43	5.5			
Sep-2003	15.1	24	2.9			
Mar-2004	14.5	36	4.2			
Sep-2004	14.6	26	3.1			
Mar-2005	14.4	22	2.6			
Sep-2005	13.8	26	2.9			
Mar-2006	8.9	11	0.8			
Sep-2006	13.0	19	2.0			
Mar-2007	13.0	30	3.2			
Sep-2007	12.7	34	3.5			
Mar-2008	12.9	33	3.5			
Sep-2008	10.3	36	3.1			
Mar-2009	12.3	46	4.6			
Sep-2009	12.5	45	4.6			
Mar-2010	12.0	39	3.8			
Sep-2010	11.1	39	3.5			
Sep-2012	10.1	24	2.0			
Sep-2014	9.7	20	1.6			
Feb-2017	10.2	15	1.2			
Oct-2017	8.3	11	0.7			
Mar-2018	5.4	18	0.8			
Oct-2018	7.0	21	1.2			
Mar-2019	6.5	14	0.8			
Oct-2019	8.0	20	1.3			
Apr-2020	7.5	21	1.3			
Jun-2021	7.8	19	1.2			

Ricke	Ricker Method® Plume Stability Characteristics					
	1,1-DCE Upper Shallow					
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)			
Sep-1999	11.9	17	1.7			
Mar-2000	12.6	51	5.2			
Mar-2001	11.2	34	3.1			
Sep-2001	9.0	31	2.2			
Mar-2002	11.9	104	10.1			
Sep-2002	12.7	175	18.2			
Mar-2003	11.2	188	17.1			
Sep-2003	7.1	33	1.9			
Mar-2004	11.3	62	5.7			
Sep-2004	11.2	43	3.9			
Mar-2005	12.9	32	3.3			
Sep-2005	14.0	32	3.7			
Mar-2006	5.7	36	1.7			
Sep-2006	10.9	33	2.9			
Mar-2007	11.1	97	8.8			
Sep-2007	10.2	174	14.4			
Mar-2008	9.0	145	10.6			
Sep-2008	7.4	231	14.0			
Mar-2009	9.2	255	19.2			
Sep-2009	9.1	186	13.8			
Mar-2010	8.6	180	12.6			
Sep-2010	7.6	175	10.9			
Sep-2012	8.9	85	6.2			
Sep-2014	6.7	49	2.7			
Feb-2017	7.6	38	2.3			
Oct-2017	6.5	28	1.5			
Mar-2018	7.4	39	2.4			
Oct-2018	6.2	50	2.5			
Mar-2019	6.8	35	2.0			
Oct-2019	7.1	45	2.6			
Apr-2020	7.2	49	2.9			
Jun-2021	6.1	45	2.2			

Ricke	Ricker Method® Plume Stability Characteristics				
	Vinyl Chlor	ide Upper Shallow			
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)		
Sep-1999	15.1	20	2.5		
Mar-2000	12.1	30	3.0		
Mar-2001	15.9	44	5.7		
Sep-2001	13.7	15	1.7		
Mar-2002	16.0	110	14.5		
Sep-2002	16.1	115	15.1		
Mar-2003	14.3	142	16.6		
Sep-2003	14.3	24	2.8		
Mar-2004	15.4	62	7.8		
Sep-2004	15.3	40	5.0		
Mar-2005	15.3	32	4.1		
Sep-2005	15.3	31	3.9		
Mar-2006	15.3	39	4.9		
Sep-2006	15.6	52	6.6		
Mar-2007	15.7	92	11.8		
Sep-2007	16.8	130	17.9		
Mar-2008	16.6	128	17.4		
Sep-2008	17.1	163	22.9		
Mar-2009	15.6	166	21.1		
Sep-2009	17.6	170	24.4		
Mar-2010	15.6	195	24.8		
Sep-2010	16.9	171	23.5		
Sep-2012	16.2	65	8.6		
Sep-2014	15.9	41	5.4		
Feb-2017	15.2	44	5.5		
Oct-2017	15.0	33	4.0		
Mar-2018	13.7	35	4.0		
Oct-2018	14.9	58	7.1		
Mar-2019	14.1	34	3.9		
Oct-2019	15.3	51	6.4		
Apr-2020	14.6	46	5.4		
Jun-2021	15.4	46	5.8		

Ricke	Ricker Method® Plume Stability Characteristics				
	Total Chloroet	thenes Upper Shallov	W		
Event	Area (acres)	Average Concentration (nmol/L)	Mass Indicator (moles)		
Sep-1999	17.4	13,471	869		
Mar-2000	19.1	12,911	913		
Mar-2001	18.9	17,124	1,197		
Sep-2001	20.2	14,951	1,120		
Mar-2002	19.5	20,777	1,497		
Sep-2002	19.5	33,074	2,381		
Mar-2003	19.4	30,004	2,149		
Sep-2003	18.1	13,642	914		
Mar-2004	18.4	17,065	1,164		
Sep-2004	18.2	14,624	986		
Mar-2005	17.8	15,610	1,030		
Sep-2005	17.1	24,674	1,563		
Mar-2006	16.4	16,049	974		
Sep-2006	16.5	16,820	1,025		
Mar-2007	17.7	29,037	1,906		
Sep-2007	16.8	36,588	2,279		
Mar-2008	16.6	35,875	2,202		
Sep-2008	17.2	52,746	3,366		
Mar-2009	16.4	42,373	2,571		
Sep-2009	17.6	47,496	3,099		
Mar-2010	16.4	47,843	2,902		
Sep-2010	16.9	35,108	2,192		
Sep-2012	16.4	17,862	1,086		
Sep-2014	16.4	6,995	425		
Feb-2017	16.4	7,696	468		
Oct-2017	16.3	4,573	276		
Mar-2018	16.0	5,056	300		
Oct-2018	16.1	7,237	432		
Mar-2019	16.2	5,672	339		
Oct-2019	16.5	7,482	456		
Apr-2020	16.1	7,511	446		
Jun-2021	16.2	7,852	470.1		

Ricker Method® Plume Stability Characteristics 1,1,2-TCA Upper Shallow			
Event	Area (acres)	Average Concentration (µg/L)	Mass Indicator (lbs)
Sep-1999	5.6	8.3	0.4
Mar-2000	0.0	<5.0	0.0
Mar-2001	7.1	14.1	0.8
Sep-2001	7.6	17.6	1.1
Mar-2002	9.2	71.8	5.4
Sep-2002	11.7	32.6	3.1
Mar-2003	9.3	131.2	9.9
Sep-2003	7.4	21.2	1.3
Mar-2004	7.9	25.4	1.6
Sep-2004	0.0	<5.0	0.0
Mar-2005	7.3	19.3	1.1
Sep-2005	0.0	<5.0	0.0
Mar-2006	5.6	17.6	0.8
Sep-2006	4.2	8.9	0.3
Mar-2007	7.5	51.6	3.2
Sep-2007	8.0	108.9	7.1
Mar-2008	7.6	74.3	4.6
Sep-2008	8.1	222.9	14.8
Mar-2009	8.7	268.2	18.9
Sep-2009	8.4	250.9	17.2
Mar-2010	8.1	217.8	14.4
Sep-2010	8.0	196.7	12.9
Sep-2012	7.6	116.0	7.2
Sep-2014	5.0	15.2	0.6
Feb-2017	5.1	15.1	0.6
Oct-2017	3.7	14.0	0.4
Mar-2018	3.8	14.0	0.4
Oct-2018	3.3	14.3	0.4
Mar-2019	3.3	14.3	0.4
Oct-2019	3.3	14.3	0.4
Apr-2020	3.3	14.3	0.4
Jun-2021	3.4	14	0.4

Ricker Method® Plume Stability Characteristics				
1,1,1-TCA Upper Shallow				
Event	Area (acres)	Average Concentration (µg/L)	Mass Indicator (Ibs)	
Sep-1999	5.6	8.3	0.4	
Mar-2000	8.6	47.7	3.3	
Mar-2001	7.9	24.0	1.5	
Sep-2001	0.0	<5.0	0.0	
Mar-2002	9.3	135.1	10.2	
Sep-2002	9.6	51.1	4.0	
Mar-2003	9.6	275.8	21.7	
Sep-2003	7.9	25.6	1.6	
Mar-2004	8.4	41.8	2.9	
Sep-2004	0.0	<5.0	0.0	
Mar-2005	7.1	20.9	1.2	
Sep-2005	0.0	<5.0	0.0	
Mar-2006	5.2	14.1	0.6	
Sep-2006	4.4	10.1	0.4	
Mar-2007	7.5	77.7	4.7	
Sep-2007	8.1	191.4	12.6	
Mar-2008	7.9	140.5	9.0	
Sep-2008	8.1	207.3	13.7	
Mar-2009	8.7	277.8	19.6	
Sep-2009	8.2	178.8	12.0	
Mar-2010	8.0	180.4	11.8	
Sep-2010	7.7	122.2	7.7	
Sep-2012	6.7	47.6	2.6	
Sep-2014	2.3	8.1	0.1	
Feb-2017	2.2	8.1	0.1	
Oct-2017	1.5	8.0	0.1	
Mar-2018	1.5	8.0	0.1	
Oct-2018	1.5	8.0	0.1	
Mar-2019	1.5	8.0	0.1	
Oct-2019	1.5	8.0	0.1	
Apr-2020	1.5	8.0	0.1	
Jun-2021	1.5	8	0.1	

Ricker Method® Plume Stability Characteristics				
1,2-DCA Upper Shallow				
Event	Area (acres)	Average Concentration (µg/L)	Mass Indicator (Ibs)	
Sep-1999	2.7	5.77	0.1	
Mar-2000	0.0	<5.0	0.0	
Mar-2001	1.6	5.89	0.1	
Sep-2001	3.0	6.59	0.2	
Mar-2002	7.6	14.55	0.9	
Sep-2002	5.8	9.67	0.5	
Mar-2003	6.6	16.62	0.9	
Sep-2003	4.8	7.84	0.3	
Mar-2004	0.2	5.22	0.01	
Sep-2004	0.0	<5.0	0.0	
Mar-2005	0.8	<5.0	0.0	
Sep-2005	0.0	<5.0	0.0	
Mar-2006	2.2	6.74	0.1	
Sep-2006	2.3	6.83	0.1	
Mar-2007	4.6	10.96	0.4	
Sep-2007	4.7	11.13	0.4	
Mar-2008	4.7	11.29	0.4	
Sep-2008	0.0	<5.0	0.0	
Mar-2009	0.0	<5.0	0.0	
Sep-2009	0.0	<5.0	0.0	
Mar-2010	0.0	<5.0	0.0	
Sep-2010	0.0	<5.0	0.0	
Sep-2012	1.5	7.17	0.1	
Sep-2014	2.8	9.13	0.2	
Feb-2017	4.2	10.55	0.4	
Oct-2017	2.4	10.68	0.2	
Mar-2018	2.7	11.74	0.3	
Oct-2018	3.0	13.08	0.3	
Mar-2019	3.5	13.72	0.4	
Oct-2019	4.1	14.59	0.5	
Apr-2020	4.1	14.60	0.5	
Jun-2021	4.1	15	0.5	

Ricker Method® Plume Stability Characteristics				
1,1-DCA Upper Shallow				
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)	
Sep-1999	8.4	23	1.6	
Mar-2000	10.6	49	4.2	
Mar-2001	10.0	33	2.7	
Sep-2001	9.2	23	1.7	
Mar-2002	9.3	144	10.9	
Sep-2002	9.3	205	15.6	
Mar-2003	9.3	206	15.6	
Sep-2003	7.8	33	2.1	
Mar-2004	12.1	68	6.7	
Sep-2004	0.0	<5.0	0.0	
Mar-2005	8.4	31	2.1	
Sep-2005	0.0	<5.0	0.0	
Mar-2006	6.9	46	2.6	
Sep-2006	7.9	34	2.2	
Mar-2007	10.7	98	8.5	
Sep-2007	10.2	164	13.6	
Mar-2008	9.2	138	10.4	
Sep-2008	8.2	258	17.3	
Mar-2009	9.4	252	19.3	
Sep-2009	9.7	240	19.0	
Mar-2010	9.9	225	18.2	
Sep-2010	8.2	258	17.3	
Sep-2012	8.0	148	9.7	
Sep-2014	7.6	54	3.3	
Feb-2017	7.9	53	3.4	
Oct-2017	7.1	34	2.0	
Mar-2018	7.8	45	2.9	
Oct-2018	7.7	59	3.7	
Mar-2019	7.1	45	2.6	
Oct-2019	8.1	52	3.4	
Apr-2020	6.6	65	3.5	
Jun-2021	7.3	55	3.3	

Ricker Method® Plume Stability Characteristics				
Total Chloroethanes Upper Shallow				
Event	Area (acres)	Average Concentration (nmol/L)	Mass Indicator (moles)	
Sep-1999	8.37	339	11	
Mar-2000	10.53	794	31	
Mar-2001	9.91	565	21	
Sep-2001	9.12	368	12	
Mar-2002	9.85	2,968	108	
Sep-2002	11.82	2,248	98	
Mar-2003	9.59	5,193	184	
Sep-2003	7.92	722	21	
Mar-2004	12.03	1,043	46	
Sep-2004	0.00	<5	0	
Mar-2005	8.37	586	18	
Sep-2005	0.00	<5	0	
Mar-2006	6.90	683	17	
Sep-2006	7.85	446	13	
Mar-2007	10.62	1,738	68	
Sep-2007	10.14	3,526	132	
Mar-2008	9.16	2,846	96	
Sep-2008	8.15	5,870	177	
Mar-2009	9.35	6,397	221	
Sep-2009	9.69	5,250	188	
Mar-2010	9.84	4,765	173	
Sep-2010	8.15	4,987	150	
Sep-2012	7.96	2,664	78	
Sep-2014	7.49	682	19	
Feb-2017	7.83	686	20	
Oct-2017	7.06	449	12	
Mar-2018	7.76	569	16	
Oct-2018	7.63	718	20	
Mar-2019	7.04	597	16	
Oct-2019	8.03	662	20	
Apr-2020	6.55	829	20	
Jun-2021	7.2	709	19.0	

Ricker Method® Plume Stability Characteristics				
Toluene Upper Shallow				
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)	
Sep-1999	10.6	98.5	8.5	
Mar-2000	11.3	91.0	8.4	
Mar-2001	9.9	41.1	3.3	
Sep-2001	9.3	70.3	5.3	
Mar-2002	13.1	49.7	5.3	
Sep-2002	13.5	68.7	7.6	
Mar-2003	13.4	56.6	6.2	
Sep-2003	6.9	10.9	0.6	
Mar-2004	7.8	46.9	3.0	
Sep-2004	7.3	31.9	1.9	
Mar-2005	6.1	24.7	1.2	
Sep-2005	5.5	37.5	1.7	
Mar-2006	2.7	14.2	0.3	
Sep-2006	6.5	20.7	1.1	
Mar-2007	9.9	22.0	1.8	
Sep-2007	9.3	35.1	2.7	
Mar-2008	10.6	38.0	3.3	
Sep-2008	10.5	56.8	4.9	
Mar-2009	10.2	61.5	5.1	
Sep-2009	10.9	61.0	5.4	
Mar-2010	10.4	54.8	4.6	
Sep-2010	8.5	44.7	3.1	
Sep-2012	7.5	21.9	1.3	
Sep-2014	6.9	13.1	0.7	
Feb-2017	7.9	15.2	1.0	
Oct-2017	5.1	13.8	0.6	
Mar-2018	5.2	14.4	0.6	
Oct-2018	5.1	13.9	0.6	
Mar-2019	5.0	13.6	0.6	
Oct-2019	5.6	16.5	0.8	
Apr-2020	6.0	19.7	1.0	
Jun-2021	5.9	18	0.9	

Ricker Method® Plume Stability Characteristics				
Ethylbenzene Upper Shallow				
Event	Area (acres)	Average Concentration (µg/L)	Mass Indicator (Ibs)	
Sep-1999	15.4	224	28.1	
Mar-2000	13.2	143	15.4	
Mar-2001	12.4	125	12.7	
Sep-2001	11.7	117	11.2	
Mar-2002	16.0	163	21.2	
Sep-2002	13.9	280	31.7	
Mar-2003	13.9	160	18.1	
Sep-2003	12.0	64	6.3	
Mar-2004	7.7	160	10.0	
Sep-2004	7.6	105	6.5	
Mar-2005	8.8	84	6.0	
Sep-2005	9.6	110	8.6	
Mar-2006	5.9	80	3.8	
Sep-2006	9.8	76	6.1	
Mar-2007	11.2	112	10.2	
Sep-2007	10.5	122	10.4	
Mar-2008	11.6	141	13.3	
Sep-2008	11.3	171	15.7	
Mar-2009	11.6	181	17.1	
Sep-2009	11.7	204	19.5	
Mar-2010	11.7	230	22.0	
Sep-2010	11.0	116	10.4	
Sep-2012	10.4	44	3.8	
Sep-2014	9.7	24	1.9	
Feb-2017	9.9	24	1.9	
Oct-2017	7.0	15	0.8	
Mar-2018	7.4	23	1.4	
Oct-2018	9.0	35	2.6	
Mar-2019	10.3	27	2.3	
Oct-2019	11.8	36	3.4	
Apr-2020	10.4	40	3.4	
Jun-2021	9.9	38	3.1	

Ricker Method® Plume Stability Characteristics				
Xylene Upper Shallow				
Event	Area (acres)	Average Concentration (μg/L)	Mass Indicator (Ibs)	
Sep-1999	15.8	833	107.2	
Mar-2000	14.0	449	51.1	
Mar-2001	13.9	373	42.1	
Sep-2001	13.8	296	33.3	
Mar-2002	16.9	623	85.7	
Sep-2002	14.7	1,102	132.1	
Mar-2003	14.2	540	62.8	
Sep-2003	13.7	215	24.0	
Mar-2004	11.5	470	44.1	
Sep-2004	8.4	329	22.4	
Mar-2005	14.5	240	28.4	
Sep-2005	14.8	342	41.2	
Mar-2006	10.4	204	17.3	
Sep-2006	11.8	245	23.7	
Mar-2007	12.5	390	39.9	
Sep-2007	10.5	310	26.6	
Mar-2008	12.2	466	46.2	
Sep-2008	12.0	529	52.0	
Mar-2009	12.1	547	53.8	
Sep-2009	12.2	676	67.1	
Mar-2010	12.2	791	78.5	
Sep-2010	11.6	353	33.5	
Sep-2012	12.0	146	14.3	
Sep-2014	11.6	64	6.1	
Feb-2017	11.2	62	5.7	
Oct-2017	9.1	33	2.4	
Mar-2018	9.0	51	3.7	
Oct-2018	10.2	90	7.5	
Mar-2019	10.5	68	5.8	
Oct-2019	10.7	78	6.8	
Apr-2020	10.9	104	9.2	
Jun-2021	11.0	101	9.1	

Appendix I

Groundwater Plume Analytics® Presentation.pptx

Member of WSP

Groundwater Plume Analytics® Services

The material contained in this presentation, including text, graphic representations and the oral description thereof, is the sole and exclusive property of EarthCon Consultants, Inc. and is considered Proprietary and Confidential. This material, or any copy, facsimile, photograph or other reproduction of whatever kind, may not be disseminated to any third party without the express written consent of EarthCon Consultants, Inc.

Groundwater Plume Analytics® Services

PCE

TCE

Cis-1,2-DCE

trans-1,2-DCE

1,1-DCE

Vinyl Chloride

Total Chloroethenes

1,1,2-TCA

1,1,1-TCA

1,2-DCA

1,1-DCA

Total Chloroethanes

Deep Fractional Charts

Toluene

Ethylbenzene

Xylene

Geochemical

Groundwater Elevation

Groundwater Plume Analytics® Services

PCE **Upper Shallow** Sep-1999

Concentration (µg/L)

Plume Characteristics

Plume Area: 17.1 acres
Plume Average Concentration: 264 μg/L

Plume Mass Indicator: 36.8 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

Member of WSP © EarthCon 2021

TCE **Upper Shallow** Sep-1999

Plume Characteristics

Plume Area: 15.8 acres
Plume Average Concentration: 26.6 µg/L

Plume Mass Indicator: 3.4 lbs

cis-1,2-DCE **Upper Shallow** Sep-1999

Plume Characteristics

Plume Area: 16.4 acres
Plume Average Concentration: 1,144 μg/L

Plume Mass Indicator: 153 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior © EarthCon 2021 of the aforementioned metrics over time.

Member of WSP

trans-1,2-DCE **Upper Shallow** Sep-1999

Plume Characteristics

Plume Area: 12.8 acres
Plume Average Concentration: 16.8 μg/L

Plume Mass Indicator: 1.8 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

Member of WSP © EarthCon 2021

1,1-DCE **Upper Shallow** Sep-1999

Plume Characteristics

Plume Area: 11.9 acres
Plume Average Concentration: 17.2 µg/L

Plume Mass Indicator: 1.7 lbs

Vinyl Chloride **Upper Shallow** Sep-1999

Plume Characteristics

Plume Area: 15.1 acres
Plume Average Concentration: 20.4 μg/L

Plume Mass Indicator: 2.5 lbs

Total Chloroethenes Upper Shallow Sep-1999

Concentration (nmol/L)

Plume Characteristics

Plume Area: 17.4 acres
Plume Average Concentration: 13,471 nmol/L

Plume Mass Indicator: 869 moles

MW-7

MW-9

MW-6R

MW-8

Total Chloroethenes Level Center of Mass

240 ft

480 ft

0 ft

Concentration (nmol/L)

Chloroethenes Upper Shallow

Plume Differences Sep-2008 vs Mar-2009

US Pat. No. 10,400,583

Spatial Change Indicator™

MW-4 Monitoring Well Mw-5 Hanging Well Plume Center of Mass Sep-2008 Plume Boundary Mar-2009 Plume Boundary

Plume Characteristics

Area: 5% Decrease

Average Concentration: 20% Decrease

Mass Indicator: 24% Decrease

Mass Increase: 5.87 moles Increase
Mass Decrease: 801 moles Decrease

Chloroethenes Upper Shallow

Plume Differences Feb-2017 vs Oct-2017

US Pat. No. 10,400,583

Spatial Change Indicator™

Decrease Increase

MW-4 Monitoring Well Mw-5 Hanging Well Plume Center of Mass Feb-2017 Plume Boundary Oct-2017 Plume Boundary

Plume Characteristics

Area: 1% Decrease

Average Concentration: 41% Decrease

Mass Indicator: 41% Decrease

Mass Increase: 4.64 moles Increase
Mass Decrease: 197 moles Decrease

Plume Center of Mass

1,1,2-TCA Upper Shallow Sep-1999

Concentration (µg/L)

Plume Characteristics

Plume Area: 5.6 acres

Plume Average Concentration: 8.3 µg/L

Plume Mass Indicator: 0.38 lbs

1,1,1-TCA Upper Shallow Sep-1999

Concentration (µg/L)

Plume Characteristics

Plume Area: 5.6 acres

Plume Average Concentration: 8.3 µg/L

Plume Mass Indicator: 0.38 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

© EarthCon 2021

Member of WSP

1,2-DCA **Upper Shallow** Sep-1999

Concentration (µg/L)

Plume Characteristics

Plume Area: 2.7 acres
Plume Average Concentration: 5.8 μg/L

Plume Mass Indicator: 0.13 lbs

1,1-DCA Upper Shallow Sep-1999

Concentration (µg/L)

Plume Characteristics

Plume Area: 8.4 acres

Plume Average Concentration: 23.2 µg/L

Plume Mass Indicator: 1.6 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

© EarthCon 2021 Member of WSP

Total Chloroethanes Upper Shallow Sep-1999

Concentration (nmol/L)

Plume Characteristics

Plume Area: **8.4 acres**Plume Average Concentration: **339 nmol/L**

Plume Mass Indicator: 10.5 moles

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

© EarthCon 2021

Chloroethanes Upper Shallow Center of Mass

MW-1

MW-7

MW-9

MW-6R

MW-8

240 ft

480 ft

0 ft

Concentration (nmol/L)

Chloroethanes Upper Shallow

Plume Differences Sep-2008 vs Mar-2009

US Pat. No. 10,400,583

Spatial Change Indicator™

MW-4 Monitoring Well Monitoring Well Hanging Well Plume Center of Mass Sep-2008 Plume Boundary Mar-2009 Plume Boundary

Plume Characteristics

Area: 15% Increase

Average Concentration: 9% Increase

Mass Indicator: 25% Increase

Mass Increase: 44.2 moles Increase
Mass Decrease: 0.00 moles Decrease

Concentration (nmol/L)

Chloroethanes Upper Shallow

Plume Differences Feb-2017 vs Oct-2017

US Pat. No. 10,400,583

Spatial Change Indicator™

MW-5 Hanging Well Plume Center of Mass Feb-2017 Plume Boundary Oct-2017 Plume Boundary

Plume Characteristics

Area: 10% Decrease

Average Concentration: 34% Decrease

Mass Indicator: 41% Decrease

Mass Increase: 0.09 moles Increase
Mass Decrease: 8.22 moles Decrease

Toluene **Upper Shallow** Sep-1999

Concentration (µg/L)

Plume Characteristics

Plume Area: 10.6 acres
Plume Average Concentration: 98.5 μg/L

Plume Mass Indicator: 8.5 lbs

Ethylbenzene **Upper Shallow** Sep-1999

Plume Characteristics

Plume Area: 15.4 acres
Plume Average Concentration: 224 µg/L

Plume Mass Indicator: 28.1 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

Member of WSP

Xylenes Upper Shallow Sep-1999

Plume Characteristics

Plume Area: 15.8 acres
Plume Average Concentration: 833 µg/L

Plume Mass Indicator: 107 lbs

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

Member of WSP © EarthCon 2021

Dissolved Oxygen Upper Shallow Jun-2021

Concentration (mg/L)

ORP Upper Shallow Jun-2021

Ferrous Iron Upper Shallow Jun-2021

Concentration (mg/L)

Methane Upper Shallow Jun-2021

Ethane Upper Shallow Jun-2021

Concentration (µg/L)

Ethene Upper Shallow Jun-2021

Concentration (µg/L)

Total Organic Carbon Upper Shallow Jun-2021

Concentration (mg/L)

Groundwater Elevation
Upper Shallow
May-2000

Elevation (ft)

277 276.5 276 275.5 275 274.5 274 273.5 273 272.5 272 271.5 271 270.5 270 269.5 269 268.5 268

MW-1 Monitoring Well MW-9 Hanging Well 112 Elevation (ft)

Characteristics

Average Groundwater Elevation: 272.41 ft

This analysis requires fixed data points within a fixed area for the purposes of assessing reliable changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

