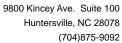


Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

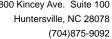
Sample: FB	Lab ID:	9269410902	2 Collected	1: 10/16/23	3 13:57	Received: 10/	18/23 08:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepara	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0074	1	10/24/23 11:45	10/24/23 22:35	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	84	%	60-140		1	10/24/23 11:45	10/24/23 22:35	301-79-56	
3260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		10/23/23 13:59	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		10/23/23 13:59	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		10/23/23 13:59	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		10/23/23 13:59	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		10/23/23 13:59	75-65-0	v2
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		10/23/23 13:59	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		10/23/23 13:59	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		10/23/23 13:59	108-20-3	
Ethanol	ND	ug/L	200	144	1		10/23/23 13:59	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		10/23/23 13:59	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		10/23/23 13:59	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		10/23/23 13:59	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		10/23/23 13:59	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		10/23/23 13:59	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		10/23/23 13:59	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		10/23/23 13:59	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		10/23/23 13:59	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	100	%	70-130		1		10/23/23 13:59	460-00-4	
1,2-Dichloroethane-d4 (S)	89	%	70-130		1		10/23/23 13:59		
Toluene-d8 (S)	104	%	70-130		1		10/23/23 13:59	2037-26-5	



Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

Sample: TB	Lab ID:	92694109023	Collected	: 10/16/23	8 08:00	Received: 10	/18/23 08:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical I	Method: EPA 8	260D						
	Pace Analy	tical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		10/23/23 14:17	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		10/23/23 14:17	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		10/23/23 14:17	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		10/23/23 14:17	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		10/23/23 14:17	75-65-0	v2
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		10/23/23 14:17	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		10/23/23 14:17	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		10/23/23 14:17	108-20-3	
Ethanol	ND	ug/L	200	144	1		10/23/23 14:17	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		10/23/23 14:17	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		10/23/23 14:17	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		10/23/23 14:17	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		10/23/23 14:17	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		10/23/23 14:17	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		10/23/23 14:17	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		10/23/23 14:17	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		10/23/23 14:17	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	103	%	70-130		1		10/23/23 14:17	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1		10/23/23 14:17	17060-07-0	
Toluene-d8 (S)	103	%	70-130		1		10/23/23 14:17	2037-26-5	



Project: JAKE HUGGINS
Pace Project No.: 92694109

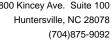
Date: 10/25/2023 04:54 PM

Sample: GAC	Lab ID:	92694109024	Collected	d: 10/16/23	3 14:00	Received: 10/	18/23 08:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Meth	od: EPA	8011			
	Pace Ana	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0076	1	10/24/23 11:45	10/24/23 22:45	106-93-4	
Surrogates	0.4	24	00.440			10/04/00 11 15	10/01/00 00 15	004 70 50	
1-Chloro-2-bromopropane (S)	84	%	60-140		1	10/24/23 11:45	10/24/23 22:45	301-79-56	
3260 MSV	Analytical	Method: EPA 8	260D						
	Pace Ana	lytical Services	- Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		10/23/23 17:13	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		10/23/23 17:13	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		10/23/23 17:13	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		10/23/23 17:13	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		10/23/23 17:13	75-65-0	v2
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		10/23/23 17:13	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		10/23/23 17:13	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		10/23/23 17:13	108-20-3	
Ethanol	ND	ug/L	200	144	1		10/23/23 17:13	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		10/23/23 17:13	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		10/23/23 17:13	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		10/23/23 17:13	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		10/23/23 17:13	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		10/23/23 17:13	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		10/23/23 17:13	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		10/23/23 17:13	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		10/23/23 17:13	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	100	%	70-130		1		10/23/23 17:13	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		10/23/23 17:13	17060-07-0	
Toluene-d8 (S)	106	%	70-130		1		10/23/23 17:13	2037-26-5	

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

Sample: WSW-1	Lab ID:	92694109025	Collected:	10/16/23	3 14:15	Received: 10/	18/23 08:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	nod: EPA	\ 504.1			
	Pace Ana	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0055	1	10/24/23 11:48	10/24/23 16:01	106-93-4	
Surrogates 1-Chloro-2-bromopropane (S)	80	%	70-130		1	10/24/23 11:48	10/24/23 16:01	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Ana	lytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		10/20/23 17:10	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		10/20/23 17:10	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		10/20/23 17:10	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		10/20/23 17:10	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		10/20/23 17:10	91-20-3	
Toluene	ND	ug/L	0.50	0.20	1		10/20/23 17:10		
Xylene (Total)	ND	ug/L	0.50	0.22	1		10/20/23 17:10		
m&p-Xylene	ND	ug/L	1.0	0.39	1		10/20/23 17:10		
o-Xylene	ND	ug/L	0.50	0.22	1		10/20/23 17:10		
Surrogates	115	ug/L	0.00	0.22	•		10/20/20 11:10	00 11 0	
1,2-Dichlorobenzene-d4 (S)	104	%	70-130		1		10/20/23 17:10	2199-69-1	
4-Bromofluorobenzene (S)	95	%	70-130		1		10/20/23 17:10		
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Ana	lytical Services	- Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		10/20/23 23:15	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		10/20/23 23:15	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		10/20/23 23:15	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		10/20/23 23:15		
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		10/20/23 23:15		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		10/20/23 23:15		
Ethanol	ND	ug/L	200	72.2	1		10/20/23 23:15		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		10/20/23 23:15		
Surrogates	ND	ug/ <u>_</u>	10.0	0.2	•		10,20,20 20.10	301 02-0	
4-Bromofluorobenzene (S)	98	%	70-130		1		10/20/23 23:15	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130		1		10/20/23 23:15		
Toluene-d8 (S)	107	%	70-130		1		10/20/23 23:15		

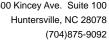


ANALYTICAL RESULTS

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

Sample: WSW-2	Lab ID:	92694109026	Collected	d: 10/16/23	3 14:25	Received: 10/	18/23 08:10 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepa	ration Meth	nod: FP/	\ 504.1			
004 000 EBB and BB01	-	ytical Services		. addorr mod	.ou. בו י				
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.0054	1	10/24/23 11:48	10/24/23 16:12	106-93-4	
Surrogates 1-Chloro-2-bromopropane (S)	86	%	70-130		1	10/24/23 11:48	10/24/23 16:12	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
52 H2 HIGT GG 2.6t	•	vtical Services							
Benzene	ND	•	0.50	0.21	1		10/20/23 17:36	71 42 2	
1,2-Dichloroethane	ND ND	ug/L ug/L	0.50	0.21	1		10/20/23 17:36	_	
,	ND ND	-	0.50	0.16	1		10/20/23 17:36		
Ethylbenzene		ug/L		_					
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		10/20/23 17:36		
Naphthalene -	ND	ug/L	0.50	0.35	1		10/20/23 17:36		
Toluene	ND	ug/L	0.50	0.20	1		10/20/23 17:36		
Xylene (Total)	ND	ug/L	0.50	0.22	1		10/20/23 17:36		
m&p-Xylene	ND	ug/L	1.0	0.39	1		10/20/23 17:36		
o-Xylene	ND	ug/L	0.50	0.22	1		10/20/23 17:36	95-47-6	
Surrogates									
1,2-Dichlorobenzene-d4 (S)	103	%	70-130		1		10/20/23 17:36		
4-Bromofluorobenzene (S)	93	%	70-130		1		10/20/23 17:36	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		10/22/23 19:00	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		10/22/23 19:00	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		10/22/23 19:00	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		10/22/23 19:00	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		10/22/23 19:00		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		10/22/23 19:00		
Ethanol	ND	ug/L	200	72.2	1		10/22/23 19:00		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		10/22/23 19:00	-	
Surrogates	ND	ug, L	10.0	0.2	'		10,22,20 10.00	501 0 <u>2</u> -0	
4-Bromofluorobenzene (S)	98	%	70-130		1		10/22/23 19:00	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130		1		10/22/23 19:00		
Toluene-d8 (S)	104	%	70-130		1		10/22/23 19:00		



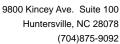
Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

Sample: WSW-DUP	Lab ID:	92694109027	Collected:	10/16/23	3 00:00	Received: 10/	18/23 08:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	nod: EPA	₹ 504.1			
		ytical Services							
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0055	1	10/24/23 11:48	10/24/23 16:22	106-93-4	
Surrogates									
I-Chloro-2-bromopropane (S)	82	%	70-130		1	10/24/23 11:48	10/24/23 16:22	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		10/20/23 18:03	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		10/20/23 18:03	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		10/20/23 18:03	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		10/20/23 18:03	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		10/20/23 18:03	91-20-3	
Toluene	ND	ug/L	0.50	0.20	1		10/20/23 18:03	108-88-3	
Kylene (Total)	ND	ug/L	0.50	0.22	1		10/20/23 18:03	1330-20-7	
n&p-Xylene	ND	ug/L	1.0	0.39	1		10/20/23 18:03	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.22	1		10/20/23 18:03	95-47-6	
Surrogates		J							
1,2-Dichlorobenzene-d4 (S)	103	%	70-130		1		10/20/23 18:03	2199-69-1	
1-Bromofluorobenzene (S)	93	%	70-130		1		10/20/23 18:03	460-00-4	
3260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		10/20/23 18:42	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		10/20/23 18:42	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		10/20/23 18:42	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		10/20/23 18:42	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		10/20/23 18:42	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.31	1		10/20/23 18:42	108-20-3	
Ethanol	ND	ug/L	200	72.2	1		10/20/23 18:42	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		10/20/23 18:42	637-92-3	
Surrogates		- J							
4-Bromofluorobenzene (S)	100	%	70-130		1		10/20/23 18:42	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130		1		10/20/23 18:42	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		10/20/23 18:42	2037-26-5	

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM


Sample: WSW-FB	Lab ID:	92694109028	Collected:	10/16/23	14:32	Received: 10/	18/23 08:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	A 504.1			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.0055	1	10/24/23 11:48	10/24/23 16:33	106-93-4	
Surrogates		•							
1-Chloro-2-bromopropane (S)	81	%	70-130		1	10/24/23 11:48	10/24/23 16:33	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		10/20/23 14:33	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		10/20/23 14:33	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		10/20/23 14:33	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		10/20/23 14:33	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		10/20/23 14:33		
Toluene	ND	ug/L	0.50	0.20	1		10/20/23 14:33		
Xylene (Total)	ND	ug/L	0.50	0.22	1		10/20/23 14:33		
m&p-Xylene	ND	ug/L	1.0	0.39	1		10/20/23 14:33		
o-Xylene	ND	ug/L	0.50	0.22	1		10/20/23 14:33		
Surrogates		ug/ <u>L</u>	0.00	0.22	•		10/20/20 1 1:00	00 11 0	
1,2-Dichlorobenzene-d4 (S)	105	%	70-130		1		10/20/23 14:33	2199-69-1	
4-Bromofluorobenzene (S)	95	%	70-130		1		10/20/23 14:33		
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
		ytical Services							
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		10/20/23 20:49	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		10/20/23 20:49	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		10/20/23 20:49	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		10/20/23 20:49	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		10/20/23 20:49		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		10/20/23 20:49	108-20-3	
Ethanol	ND	ug/L	200	72.2	1		10/20/23 20:49		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		10/20/23 20:49		
Surrogates	.10	~9, -	10.0	0.2	•		. 5, 20, 25 25.40	55. 5 <u>L</u> 5	
4-Bromofluorobenzene (S)	98	%	70-130		1		10/20/23 20:49	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		10/20/23 20:49		
Toluene-d8 (S)	108	%	70-130		1		10/20/23 20:49		

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

Sample: WSW-TB	Lab ID:	92694109029	Collected:	10/16/23	08:00	Received: 10	/18/23 08:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		10/20/23 14:59	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		10/20/23 14:59	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		10/20/23 14:59	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		10/20/23 14:59	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		10/20/23 14:59	91-20-3	
Toluene	ND	ug/L	0.50	0.20	1		10/20/23 14:59	108-88-3	
Xylene (Total)	ND	ug/L	0.50	0.22	1		10/20/23 14:59	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.39	1		10/20/23 14:59	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.22	1		10/20/23 14:59	95-47-6	
Surrogates		_							
1,2-Dichlorobenzene-d4 (S)	105	%	70-130		1		10/20/23 14:59	2199-69-1	
1-Bromofluorobenzene (S)	94	%	70-130		1		10/20/23 14:59	460-00-4	
3260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		10/20/23 21:07	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		10/20/23 21:07	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		10/20/23 21:07	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		10/20/23 21:07	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		10/20/23 21:07	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.31	1		10/20/23 21:07	108-20-3	
Ethanol	ND	ug/L	200	72.2	1		10/20/23 21:07	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		10/20/23 21:07	637-92-3	
Surrogates		-							
4-Bromofluorobenzene (S)	96	%	70-130		1		10/20/23 21:07	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		10/20/23 21:07	17060-07-0	
Toluene-d8 (S)	109	%	70-130		1		10/20/23 21:07	2037-26-5	

Project: JAKE HUGGINS

Pace Project No.: 92694109

1,2-Dichlorobenzene-d4 (S)

4-Bromofluorobenzene (S)

Date: 10/25/2023 04:54 PM

QC Batch: 807849 Analysis Method: EPA 524.2
QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Charlotte

111

101

70-130

70-130

Associated Lab Samples: 92694109025, 92694109026, 92694109027, 92694109028, 92694109029

METHOD BLANK: 4183150 Matrix: Water

Associated Lab Samples: 92694109025, 92694109026, 92694109027, 92694109028, 92694109029

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	0.16	10/20/23 13:14	
Benzene	ug/L	ND	0.50	0.21	10/20/23 13:14	
Ethylbenzene	ug/L	ND	0.50	0.22	10/20/23 13:14	
m&p-Xylene	ug/L	ND	1.0	0.39	10/20/23 13:14	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.14	10/20/23 13:14	
Naphthalene	ug/L	ND	0.50	0.35	10/20/23 13:14	
o-Xylene	ug/L	ND	0.50	0.22	10/20/23 13:14	
Toluene	ug/L	ND	0.50	0.20	10/20/23 13:14	
Xylene (Total)	ug/L	ND	0.50	0.22	10/20/23 13:14	
1,2-Dichlorobenzene-d4 (S)	%	106	70-130		10/20/23 13:14	
4-Bromofluorobenzene (S)	%	96	70-130		10/20/23 13:14	

LABORATORY CONTROL SAMPLE:	4183151	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		19.0	95	70-130	
Benzene	ug/L	20	17.1	85	70-130	
Ethylbenzene	ug/L	20	16.9	84	70-130	
m&p-Xylene	ug/L	40	35.0	87	70-130	
Methyl-tert-butyl ether	ug/L	20	16.4	82	70-130	
Naphthalene	ug/L	20	18.2	91	70-130	
o-Xylene	ug/L	20	16.8	84	70-130	
Toluene	ug/L	20	16.5	82	70-130	
Xylene (Total)	ug/L	60	51.8	86		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

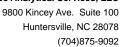
QC Batch: 807648 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109026

METHOD BLANK: 4182189 Matrix: Water


Associated Lab Samples: 92694109026

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	51.9	10/22/23 14:48	
Diisopropyl ether	ug/L	ND	1.0	0.31	10/22/23 14:48	
Ethanol	ug/L	ND	200	72.2	10/22/23 14:48	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.2	10/22/23 14:48	
tert-Amyl Alcohol	ug/L	ND	100	36.4	10/22/23 14:48	
tert-Amylmethyl ether	ug/L	ND	10.0	2.7	10/22/23 14:48	
tert-Butyl Alcohol	ug/L	ND	100	26.8	10/22/23 14:48	
tert-Butyl Formate	ug/L	ND	50.0	29.4	10/22/23 14:48	
1,2-Dichloroethane-d4 (S)	%	104	70-130		10/22/23 14:48	
4-Bromofluorobenzene (S)	%	102	70-130		10/22/23 14:48	
Toluene-d8 (S)	%	104	70-130		10/22/23 14:48	

LABORATORY CONTROL SAMPLE:	4182190					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	400	374	93	70-130	
Diisopropyl ether	ug/L	20	20.0	100	70-130	
Ethanol	ug/L	800	817	102	70-130	
Ethyl-tert-butyl ether	ug/L	40	38.7	97	70-130	
tert-Amyl Alcohol	ug/L	400	405	101	70-130	
tert-Amylmethyl ether	ug/L	40	40.1	100	70-130	
tert-Butyl Alcohol	ug/L	200	191	96	70-130	
tert-Butyl Formate	ug/L	160	168	105	70-130	
1,2-Dichloroethane-d4 (S)	%			108	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX S	PIKE DUPL	LICATE: 4182		MOD	4182192							
		92694014007	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	374	311	94	78	39-157	19	30	
Diisopropyl ether	ug/L	ND	20	20	17.2	14.3	86	72	63-144	18	30	
Ethanol	ug/L	ND	800	800	739	623	92	78	39-176	17	30	
Ethyl-tert-butyl ether	ug/L	ND	40	40	35.4	29.2	88	73	66-137	19	30	
tert-Amyl Alcohol	ug/L	ND	400	400	374	321	93	80	54-153	15	30	
tert-Amylmethyl ether	ug/L	ND	40	40	38.4	31.8	96	80	69-139	19	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 4182	191		4182192							
		92694014007	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
tert-Butyl Alcohol	ug/L	ND	200	200	269	213	135	107	43-188	23	30	
tert-Butyl Formate	ug/L	ND	160	160	ND	ND	10	7	10-170		30	M1
1,2-Dichloroethane-d4 (S)	%						108	109	70-130			
4-Bromofluorobenzene (S)	%						103	102	70-130			
Toluene-d8 (S)	%						96	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

QC Batch: 807854 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109015, 92694109016, 92694109017, 92694109018, 92694109019, 92694109020, 92694109025,

92694109028, 92694109029

METHOD BLANK: 4183185 Matrix: Water

Associated Lab Samples: 92694109015, 92694109016, 92694109017, 92694109018, 92694109019, 92694109020, 92694109025,

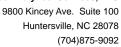
92694109028, 92694109029

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	1.0	0.32	10/20/23 14:09	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	51.9	10/20/23 14:09	
Benzene	ug/L	ND	1.0	0.34	10/20/23 14:09	
Diisopropyl ether	ug/L	ND	1.0	0.31	10/20/23 14:09	
Ethanol	ug/L	ND	200	72.2	10/20/23 14:09	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.2	10/20/23 14:09	
Ethylbenzene	ug/L	ND	1.0	0.30	10/20/23 14:09	
m&p-Xylene	ug/L	ND	2.0	0.71	10/20/23 14:09	
Methyl-tert-butyl ether	ug/L	ND	1.0	0.42	10/20/23 14:09	
Naphthalene	ug/L	ND	1.0	0.64	10/20/23 14:09	
o-Xylene	ug/L	ND	1.0	0.34	10/20/23 14:09	
tert-Amyl Alcohol	ug/L	ND	100	36.4	10/20/23 14:09	
tert-Amylmethyl ether	ug/L	ND	10.0	2.7	10/20/23 14:09	
tert-Butyl Alcohol	ug/L	ND	100	26.8	10/20/23 14:09	
tert-Butyl Formate	ug/L	ND	50.0	29.4	10/20/23 14:09	
Toluene	ug/L	ND	1.0	0.48	10/20/23 14:09	
Xylene (Total)	ug/L	ND	1.0	0.34	10/20/23 14:09	
1,2-Dichloroethane-d4 (S)	%	100	70-130		10/20/23 14:09	
4-Bromofluorobenzene (S)	%	96	70-130		10/20/23 14:09	
Toluene-d8 (S)	%	108	70-130		10/20/23 14:09	

LABORATORY CONTROL SAMPLE:	4183186					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		22.4	112	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	359	90	70-130	
Benzene	ug/L	20	21.7	108	70-130	
Diisopropyl ether	ug/L	20	18.7	93	70-130	
Ethanol	ug/L	800	875	109	70-130	
Ethyl-tert-butyl ether	ug/L	40	38.6	96	70-130	
Ethylbenzene	ug/L	20	21.4	107	70-130	
m&p-Xylene	ug/L	40	42.4	106	70-130	
Methyl-tert-butyl ether	ug/L	20	20.7	104	70-130	
Naphthalene	ug/L	20	21.6	108	70-130	
o-Xylene	ug/L	20	20.4	102	70-130	
tert-Amyl Alcohol	ug/L	400	359	90	70-130	
tert-Amylmethyl ether	ug/L	40	40.3	101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS
Pace Project No.: 92694109


Date: 10/25/2023 04:54 PM

LABORATORY CONTROL SAMPLE:	4183186					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butyl Alcohol	ug/L	200	184	92	70-130	
tert-Butyl Formate	ug/L	160	150	94	70-130	
Toluene	ug/L	20	20.7	103	70-130	
(ylene (Total)	ug/L	60	62.7	105	70-130	
,2-Dichloroethane-d4 (S)	%			106	70-130	
4-Bromofluorobenzene (S)	%			99	70-130	
oluene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:	4183187						
		92694109015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	24.5	123	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	393	98	39-157	
Benzene	ug/L	ND	20	24.4	122	70-151	
Diisopropyl ether	ug/L	ND	20	20.8	104	63-144	
Ethanol	ug/L	ND	800	956	120	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	41.2	103	66-137	
Ethylbenzene	ug/L	ND	20	23.6	118	66-153	
m&p-Xylene	ug/L	ND	40	46.3	116	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	21.8	109	54-156	
Naphthalene	ug/L	ND	20	22.1	111	61-148	
o-Xylene	ug/L	ND	20	22.7	114	70-148	
tert-Amyl Alcohol	ug/L	ND	400	420	105	54-153	
tert-Amylmethyl ether	ug/L	ND	40	43.4	109	69-139	
tert-Butyl Alcohol	ug/L	ND	200	236	118	43-188	
tert-Butyl Formate	ug/L	ND	160	37.0J	23	10-170	
Toluene	ug/L	ND	20	23.1	116	59-148	
Xylene (Total)	ug/L	ND	60	69.0	115	63-158	
1,2-Dichloroethane-d4 (S)	%				105	70-130	
4-Bromofluorobenzene (S)	%				98	70-130	
Toluene-d8 (S)	%				101	70-130	

SAMPLE DUPLICATE: 4183188						
		92694109016	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

SAMPLE DUPLICATE: 4183188						
		92694109016	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Naphthalene	ug/L		ND		30)
o-Xylene	ug/L	ND	ND		30)
tert-Amyl Alcohol	ug/L	ND	ND		30)
tert-Amylmethyl ether	ug/L	ND	ND		30)
tert-Butyl Alcohol	ug/L	ND	ND		30)
tert-Butyl Formate	ug/L	ND	ND		30)
Toluene	ug/L	ND	ND		30)
Xylene (Total)	ug/L	ND	ND		30)
1,2-Dichloroethane-d4 (S)	%	104	104			
4-Bromofluorobenzene (S)	%	96	99			
Toluene-d8 (S)	%	109	110			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

QC Batch: 807862 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109027

METHOD BLANK: 4183227 Matrix: Water

Associated Lab Samples: 92694109027

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	51.9	10/20/23 14:10	
Diisopropyl ether	ug/L	ND	1.0	0.31	10/20/23 14:10	
Ethanol	ug/L	ND	200	72.2	10/20/23 14:10	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.2	10/20/23 14:10	
tert-Amyl Alcohol	ug/L	ND	100	36.4	10/20/23 14:10	
tert-Amylmethyl ether	ug/L	ND	10.0	2.7	10/20/23 14:10	
tert-Butyl Alcohol	ug/L	ND	100	26.8	10/20/23 14:10	
tert-Butyl Formate	ug/L	ND	50.0	29.4	10/20/23 14:10	
1,2-Dichloroethane-d4 (S)	%	105	70-130		10/20/23 14:10	
4-Bromofluorobenzene (S)	%	100	70-130		10/20/23 14:10	
Toluene-d8 (S)	%	102	70-130		10/20/23 14:10	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	400	389	97	70-130	
Diisopropyl ether	ug/L	20	21.8	109	70-130	
Ethanol	ug/L	800	827	103	70-130	
Ethyl-tert-butyl ether	ug/L	40	41.8	105	70-130	
tert-Amyl Alcohol	ug/L	400	377	94	70-130	
tert-Amylmethyl ether	ug/L	40	41.7	104	70-130	
tert-Butyl Alcohol	ug/L	200	178	89	70-130	
tert-Butyl Formate	ug/L	160	173	108	70-130	
1,2-Dichloroethane-d4 (S)	%			106	70-130	
4-Bromofluorobenzene (S)	%			103	70-130	
Toluene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:	4183229						
5 .	11.5	92694113018	Spike	MS	MS	% Rec	0 ""
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	400	509	127	39-157	
Diisopropyl ether	ug/L	ND	20	28.9	144	63-144	
Ethanol	ug/L	ND	800	1110	139	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	54.5	136	66-137	
tert-Amyl Alcohol	ug/L	ND	400	505	126	54-153	
tert-Amylmethyl ether	ug/L	ND	40	53.6	134	69-139	
tert-Butyl Alcohol	ug/L	ND	200	371	185	43-188	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

MATRIX SPIKE SAMPLE:	4183229						
		92694113018	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butyl Formate	ug/L	ND	160	ND	5	10-170	M1
1,2-Dichloroethane-d4 (S)	%				108	70-130)
4-Bromofluorobenzene (S)	%				104	70-130)
Toluene-d8 (S)	%				103	70-130)

SAMPLE DUPLICATE: 4183230						
		92694113019	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	108	108			
4-Bromofluorobenzene (S)	%	100	98			
Toluene-d8 (S)	%	102	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

QC Batch: 807932 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109002, 92694109003, 92694109004, 92694109005, 92694109006, 92694109007, 92694109009,

92694109010, 92694109011, 92694109012, 92694109013, 92694109022, 92694109023, 92694109024

METHOD BLANK: 4183545 Matrix: Water

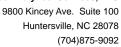
Associated Lab Samples: 92694109002, 92694109003, 92694109004, 92694109005, 92694109006, 92694109007, 92694109009, 92694109011, 92694109012, 92694109013, 92694109022, 92694109023, 92694109024

Blank Reporting Parameter Limit MDL Qualifiers Units Result Analyzed 1,2-Dichloroethane ug/L ND 5.0 2.1 10/23/23 13:24 ND 100 3,3-Dimethyl-1-Butanol ug/L 53.9 10/23/23 13:24 ND 5.0 1.7 10/23/23 13:24 Benzene ug/L ND 5.0 10/23/23 13:24 Diisopropyl ether ug/L 3.5 ND 200 Ethanol ug/L 144 10/23/23 13:24 Ethyl-tert-butyl ether ug/L ND 10.0 8.5 10/23/23 13:24 Ethylbenzene ug/L ND 5.0 1.8 10/23/23 13:24 m&p-Xylene ug/L ND 10.0 4.1 10/23/23 13:24 Methyl-tert-butyl ether ug/L ND 5.0 10/23/23 13:24 Naphthalene ug/L ND 5.0 2.1 10/23/23 13:24 o-Xylene ND 5.0 2.0 10/23/23 13:24 ug/L tert-Amyl Alcohol ND 100 65.6 10/23/23 13:24 ug/L tert-Amylmethyl ether ND 10.0 3.0 10/23/23 13:24 ug/L tert-Butyl Alcohol ND 100 91.0 10/23/23 13:24 ug/L 50.0 tert-Butyl Formate ND 24.1 10/23/23 13:24 ug/L Toluene ug/L ND 5.0 2.0 10/23/23 13:24 Xylene (Total) ug/L ND 5.0 5.0 10/23/23 13:24 1,2-Dichloroethane-d4 (S) % 90 70-130 10/23/23 13:24 4-Bromofluorobenzene (S) % 104 70-130 10/23/23 13:24 Toluene-d8 (S) % 110 70-130 10/23/23 13:24

LABORATORY CONTROL SAMPLE:	4183546					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.6	103	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	386	96	70-130	
Benzene	ug/L	20	22.7	114	70-130	
Diisopropyl ether	ug/L	20	20.0	100	70-130	
Ethanol	ug/L	800	791	99	70-130	
Ethyl-tert-butyl ether	ug/L	40	39.7	99	70-130	
Ethylbenzene	ug/L	20	21.5	107	70-130	
m&p-Xylene	ug/L	40	43.8	110	70-130	
Methyl-tert-butyl ether	ug/L	20	20.8	104	70-130	
Naphthalene	ug/L	20	22.9	115	70-130	
o-Xylene	ug/L	20	21.0	105	70-130	
tert-Amyl Alcohol	ug/L	400	384	96	70-130	
tert-Amylmethyl ether	ug/L	40	42.6	106	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS
Pace Project No.: 92694109


Date: 10/25/2023 04:54 PM

ABORATORY CONTROL SAMPLE:	4183546					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
t-Butyl Alcohol	ug/L	200	175	88	70-130	v3
-Butyl Formate	ug/L	160	175	110	70-130	
ene	ug/L	20	21.8	109	70-130	
ie (Total)	ug/L	60	64.8	108	70-130	
ichloroethane-d4 (S)	%			100	70-130	
omofluorobenzene (S)	%			102	70-130	
ene-d8 (S)	%			103	70-130	

MATRIX SPIKE SAMPLE:	4183547						
		92694109003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	27.2	136	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	515	129	39-157	
Benzene	ug/L	ND	20	29.0	145	70-151	
Diisopropyl ether	ug/L	ND	20	28.9	143	63-144	
Ethanol	ug/L	ND	800	1130	141	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	54.5	136	66-137	
Ethylbenzene	ug/L	ND	20	26.9	135	66-153	
m&p-Xylene	ug/L	ND	40	55.3	138	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	27.5	135	54-156	
Naphthalene	ug/L	ND	20	26.9	135	61-148	
o-Xylene	ug/L	ND	20	27.0	135	70-148	
tert-Amyl Alcohol	ug/L	ND	400	515	129	54-153	
tert-Amylmethyl ether	ug/L	ND	40	54.6	137	69-139	
tert-Butyl Alcohol	ug/L	ND	200	372	186	43-188	
tert-Butyl Formate	ug/L	ND	160	ND	6	10-170 P	5
Toluene	ug/L	ND	20	27.0	135	59-148	
Xylene (Total)	ug/L	ND	60	82.3	137	63-158	
1,2-Dichloroethane-d4 (S)	%				106	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				103	70-130	

SAMPLE DUPLICATE: 4183548						
		92694109004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30	·
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

SAMPLE DUPLICATE: 4183548						
		92694109004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Naphthalene	ug/L		ND		30	
o-Xylene	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	96	106			
4-Bromofluorobenzene (S)	%	104	100			
Toluene-d8 (S)	%	108	102			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

QC Batch: 808416 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109001, 92694109008, 92694109014, 92694109021

METHOD BLANK: 4185793 Matrix: Water

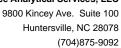
Associated Lab Samples: 92694109001, 92694109008, 92694109014, 92694109021

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	10/24/23 11:48	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	10/24/23 11:48	
Benzene	ug/L	ND	5.0	1.7	10/24/23 11:48	
Diisopropyl ether	ug/L	ND	5.0	3.5	10/24/23 11:48	
Ethanol	ug/L	ND	200	144	10/24/23 11:48	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	10/24/23 11:48	
Ethylbenzene	ug/L	ND	5.0	1.8	10/24/23 11:48	
m&p-Xylene	ug/L	ND	10.0	4.1	10/24/23 11:48	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	10/24/23 11:48	
Naphthalene	ug/L	ND	5.0	2.1	10/24/23 11:48	
o-Xylene	ug/L	ND	5.0	2.0	10/24/23 11:48	
tert-Amyl Alcohol	ug/L	ND	100	65.6	10/24/23 11:48	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	10/24/23 11:48	
tert-Butyl Alcohol	ug/L	ND	100	91.0	10/24/23 11:48	
tert-Butyl Formate	ug/L	ND	50.0	24.1	10/24/23 11:48	
Toluene	ug/L	ND	5.0	2.0	10/24/23 11:48	
Xylene (Total)	ug/L	ND	5.0	5.0	10/24/23 11:48	
1,2-Dichloroethane-d4 (S)	%	107	70-130		10/24/23 11:48	
4-Bromofluorobenzene (S)	%	100	70-130		10/24/23 11:48	
Toluene-d8 (S)	%	102	70-130		10/24/23 11:48	

LABORATORY CONTROL SAMPLE:	4185794					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		21.6	108	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	417	104	70-130	
Benzene	ug/L	20	22.0	110	70-130	
Diisopropyl ether	ug/L	20	21.9	110	70-130	
Ethanol	ug/L	800	911	114	70-130	
Ethyl-tert-butyl ether	ug/L	40	41.8	104	70-130	
Ethylbenzene	ug/L	20	21.1	106	70-130	
m&p-Xylene	ug/L	40	43.1	108	70-130	
Methyl-tert-butyl ether	ug/L	20	20.6	103	70-130	
Naphthalene	ug/L	20	20.8	104	70-130	
o-Xylene	ug/L	20	21.7	108	70-130	
tert-Amyl Alcohol	ug/L	400	407	102	70-130	
tert-Amylmethyl ether	ug/L	40	42.3	106	70-130	
tert-Butyl Alcohol	ug/L	200	188	94	70-130	
tert-Butyl Formate	ug/L	160	173	108	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS
Pace Project No.: 92694109


Date: 10/25/2023 04:54 PM

LABORATORY CONTROL SAMPLE:	4185794					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L	20	20.5	102	70-130	
Xylene (Total)	ug/L	60	64.8	108	70-130	
1,2-Dichloroethane-d4 (S)	%			105	70-130	
4-Bromofluorobenzene (S)	%			104	70-130	
Toluene-d8 (S)	%			103	70-130	

MATRIX SPIKE SAMPLE:	4185796						
		92694089027	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	25.6	128	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	490	123	39-157	
Benzene	ug/L	12.0	20	38.9	134	70-151	
Diisopropyl ether	ug/L	ND	20	27.4	134	63-144	
Ethanol	ug/L	ND	800	993	124	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	51.0	127	66-137	
Ethylbenzene	ug/L	25.3	20	50.5	126	66-153	
m&p-Xylene	ug/L	18.1	40	69.3	128	69-152	
Methyl-tert-butyl ether	ug/L	3.3J	20	28.8	127	54-156	
Naphthalene	ug/L	57.5	20	80.3	114	61-148	
o-Xylene	ug/L	2.8J	20	27.9	125	70-148	
tert-Amyl Alcohol	ug/L	ND	400	560	140	54-153	
tert-Amylmethyl ether	ug/L	ND	40	50.7	127	69-139	
tert-Butyl Alcohol	ug/L	ND	200	319	145	43-188	
tert-Butyl Formate	ug/L	ND	160	131	82	10-170	
Toluene	ug/L	ND	20	26.4	125	59-148	
Xylene (Total)	ug/L	20.9	60	97.1	127	63-158	
1,2-Dichloroethane-d4 (S)	%				106	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				102	70-130	

SAMPLE DUPLICATE: 4185795						
		92694089023	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	7.6	8.0	5	30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	2.0J	ND		30	
m&p-Xylene	ug/L	23.4	20.9	11	30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	64.7	59.5	8	30	
o-Xylene	ug/L	36.8	35.6	4	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

SAMPLE DUPLICATE: 4185795						
		92694089023	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	60.2	56.4	7	30	
1,2-Dichloroethane-d4 (S)	%	105	101			
4-Bromofluorobenzene (S)	%	101	102			
Toluene-d8 (S)	%	103	104			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

QC Batch: 808340 Analysis Method: EPA 504.1

QC Batch Method: EPA 504.1 Analysis Description: GCS 504 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109025, 92694109026, 92694109027, 92694109028

METHOD BLANK: 4185458 Matrix: Water

Associated Lab Samples: 92694109025, 92694109026, 92694109027, 92694109028

Blank Reporting MDL Parameter Units Result Limit Analyzed Qualifiers 1,2-Dibromoethane (EDB) ND 0.020 0.0056 10/24/23 13:43 ug/L 1-Chloro-2-bromopropane (S) % 101 70-130 10/24/23 13:43

LABORATORY CONTROL SAMPLE & LCSD: 4185459 4185460 LCS Spike LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) 0.29 6 ug/L 0.25 0.31 124 116 70-130 20 1-Chloro-2-bromopropane (S) 109 101 70-130 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4185462 4185463 MS MSD 92693873002 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 1,2-Dibromoethane (EDB) ug/L ND 0.26 0.26 0.72 0.65 271 245 65-135 20 M1 1-Chloro-2-bromopropane 83 70-130 % 84

SAMPLE DUPLICATE: 4185461

Date: 10/25/2023 04:54 PM

(S)

		92693873001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1-Chloro-2-bromopropane (S)	%	99	96			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

QC Batch: 808108 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109001, 92694109002, 92694109003

METHOD BLANK: 4184307 Matrix: Water

Associated Lab Samples: 92694109001, 92694109002, 92694109003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND ND	0.020	0.0074	10/23/23 19:12	
1-Chloro-2-bromopropane (S)	%	93	60-140		10/23/23 19:12	

LABORATORY CONTROL SAMPLE &	LCSD: 4184308		4	184309						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	0.25	0.26	0.28	106	111	60-140	5	20	
1-Chloro-2-bromopropane (S)	%				95	98	60-140			

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 4184	311		4184312							
		2692665003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND	0.25	0.25	0.24	0.24	98 88	96 88	60-140 60-140	2	20	

SAMPLE DUPLICATE: 4184310						
		92692665002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1-Chloro-2-bromopropane (S)	%	98	94			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS

Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

QC Batch: 808337 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92694109004, 92694109005, 92694109006, 92694109007, 92694109008, 92694109009, 92694109010,

92694109018, 92694109019, 92694109020, 92694109021, 92694109022, 92694109024

METHOD BLANK: 4185440 Matrix: Water

Associated Lab Samples: 92694109004, 92694109005, 92694109006, 92694109007, 92694109008, 92694109009, 92694109010,

92694109011, 92694109012, 92694109013, 92694109014, 92694109015, 92694109016, 92694109017,

Parameter		Units	Blan Resu		leporting Limit	ME	DL	Analyzed	ı	Qualifiers		
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)		ug/L %		ND 93	0.020 60-140		0.0074	10/24/23 18 10/24/23 18				
LABORATORY CONTROL SA	MPLE & L	-CSD: 418544	.1	4	1185442							
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max		
Parameter		Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua	alifiers
1,2-Dibromoethane (EDB)		ug/L	0.25	0.25	0.25	102	99	60-140	2	20		
1-Chloro-2-bromopropane (S)		%				93	91	60-140				
MATRIX SPIKE & MATRIX SF	IKE DUPI	LICATE: 4185	444		4185445							
			MS	MSD								
		92694109005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dibromoethane (EDB)	ug/L	ND	0.25	0.25	0.42	0.43	17	70 175	60-14	0 3	20	M1
1-Chloro-2-bromopropane (S)	%						8	36 89	60-14	0		

SAMPLE DUPLICATE: 4185443						
		92694109004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1-Chloro-2-bromopropane (S)	%	93	90			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JAKE HUGGINS
Pace Project No.: 92694109

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/25/2023 04:54 PM

C8	Result may	be biased hid	gh due to carr	vover from	previously	analyzed sample.

- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92694109025	WSW-1	EPA 504.1	808340	EPA 504.1	808449
2694109026	WSW-2	EPA 504.1	808340	EPA 504.1	808449
2694109027	WSW-DUP	EPA 504.1	808340	EPA 504.1	808449
2694109028	WSW-FB	EPA 504.1	808340	EPA 504.1	808449
2694109001	MW-1	EPA 8011	808108	EPA 8011	808209
2694109002	MW-2	EPA 8011	808108	EPA 8011	808209
2694109003	MW-3	EPA 8011	808108	EPA 8011	808209
2694109004	MW-4	EPA 8011	808337	EPA 8011	808446
2694109005	MW-5	EPA 8011	808337	EPA 8011	808446
2694109006	MW-6	EPA 8011	808337	EPA 8011	808446
2694109007	MW-7	EPA 8011	808337	EPA 8011	808446
2694109008	MW-8	EPA 8011	808337	EPA 8011	808446
2694109009 2694109009	MW-9	EPA 8011	808337	EPA 8011	808446
2694109010	MW-10	EPA 8011	808337	EPA 8011	808446
2694109010 2694109011	DW-1	EPA 8011	808337	EPA 8011	808446
2694109011 2694109012	DW-1 DW-2	EPA 8011	808337	EPA 8011	808446
2694109012 2694109013	DW-3	EPA 8011	808337	EPA 8011	808446
2694109013 2694109014	DW-4	EPA 8011	808337	EPA 8011	808446
2694109015	SW-1	EPA 8011	808337	EPA 8011	808446
2694109016 2694109016	SW-2	EPA 8011	808337	EPA 8011	808446
2694109017 2694109017	SW-3				
2694109017 2694109018	SW-4	EPA 8011	808337	EPA 8011 EPA 8011	808446
		EPA 8011	808337		808446
2694109019	SW-5	EPA 8011	808337	EPA 8011	808446
2694109020	SW-6	EPA 8011	808337	EPA 8011	808446
2694109021	DUP	EPA 8011	808337	EPA 8011	808446
2694109022	FB	EPA 8011	808337	EPA 8011	808446
2694109024	GAC	EPA 8011	808337	EPA 8011	808446
2694109025	WSW-1	EPA 524.2	807849		
2694109026	WSW-2	EPA 524.2	807849		
2694109027	WSW-DUP	EPA 524.2	807849		
2694109028	WSW-FB	EPA 524.2	807849		
2694109029	WSW-TB	EPA 524.2	807849		
2694109015	SW-1	EPA 8260D	807854		
2694109016	SW-2	EPA 8260D	807854		
2694109017	SW-3	EPA 8260D	807854		
2694109018	SW-4	EPA 8260D	807854		
2694109019	SW-5	EPA 8260D	807854		
2694109020	SW-6	EPA 8260D	807854		
2694109025	WSW-1	EPA 8260D	807854		
2694109026	WSW-2	EPA 8260D	807648		
2694109027	WSW-DUP	EPA 8260D	807862		
2694109028	WSW-FB	EPA 8260D	807854		
2694109029	WSW-TB	EPA 8260D	807854		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGINS
Pace Project No.: 92694109

Date: 10/25/2023 04:54 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92694109002	MW-2	EPA 8260D	807932		
92694109003	MW-3	EPA 8260D	807932		
92694109004	MW-4	EPA 8260D	807932		
92694109005	MW-5	EPA 8260D	807932		
92694109006	MW-6	EPA 8260D	807932		
92694109007	MW-7	EPA 8260D	807932		
92694109008	MW-8	EPA 8260D	808416		
2694109009	MW-9	EPA 8260D	807932		
92694109010	MW-10	EPA 8260D	807932		
92694109011	DW-1	EPA 8260D	807932		
92694109012	DW-2	EPA 8260D	807932		
92694109013	DW-3	EPA 8260D	807932		
92694109014	DW-4	EPA 8260D	808416		
92694109021	DUP	EPA 8260D	808416		
92694109022	FB	EPA 8260D	807932		
92694109023	ТВ	EPA 8260D	807932		
92694109024	GAC	EPA 8260D	807932		

16.3		Da	Signature)	Received by/Company: (Signature)	(\$28	Date/Time	е)	Relinquished by/Company: (Signature)
Trip Blank Received:	72 1470	- D	Signature)	Received by/Company: (Signature	me:	Date/	e)	Relinquished by/Company: (Signature)
	ft, Table	lo	7	No plan	800	10/		
Cooler 1 Corrected Temp: ONLY Comments:	FEDEX UPS Client Courier Pace Courier Date/Time: MTJL LAB USE ONLY	Da	Signature)	Received by/Company: (Signature)	(5) S	Date		Selinguished hy/Company: (Signature
		Sample	z		Badahan samala(a) sa			
Therm ID#: 77070 Cooler 1 Temp Upon Receipt: 4	Lab Tracking #: 2910773	Lab Tr		3	Packing Material Used:	=1		
Lat	SHORT HOLDS PRESENT (<72 hours): Y N N/A	SHORT	None	Wet Blue Dry	Type of Ice Used:		ons / Possible I	Customer Remarks / Special Conditions / Possible Hazards:
oder			7		13:04	_		1.W-10
no oxfor					13:12			p-wn/
Shong odo.					13:52			71/25
Slight ador					1 12:17			L-my
Oder					11:01			Nr. 6
51,395 ode					10:52			Mw. S
NO odd					(0:37			MW-4
no odar					1 10:45			MW-3
Slight oder			_		1 11:40	_	_ (MW- 2
odor		7	6		10/16/23 12:57	6	600	MW-
		l		Date Time	Date Time			ž
rap sampre # / commences		3te,	Res # of Ctns	Composite End	Collected (or Composite Start)	Comp/ Grab	Matrix *	Customer Sample ID
		Knr B		GW), Wastewater (WW), Vapor (V), Other (OT)	DW), Ground Water (sue (TS), Bioassay (B),	ing Water (I Air (AR), Tiss	below): Drink), Wipe (WP), <i>t</i>	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)
pH Strips: Sulfide Present		501		Analysis:	[] 4 Day [] 5 Day arges Apply)	[] 3 Day [] 4 Day (Expedite Charges Apply)	[] 2 Day [(E] Archive:
Cl Strips:		7.	ble):	Field Filtered (if applicable): [] Yes [] No	Next Day		S	Sample Disposal: [] Dispose as appropriate [] Return
		-De		Myes []No	7			
Acce		1	ce:	Immediately Packed on Ice:	d:	ate Require	Turnaround Date Required:	ly (signature):
Correct Bottles Sufficient Volume Samples Received on Ice		1,0	н	DW PWS ID #: DW Location Code:		er#:	Purchase Order #: Quote #:	Collected By (print):
Custody Signatures Present Collector Signature Present Bottles Intact		×/57		Compliance Monitoring? [] Yes [] No	123	450	Site/Facility ID #:	Phone:
Custody Seals Present/Intact		60		Ce []PT[]MT[]CT	SUFTURENCE		ins	Jake Hugg
Lab Sample Receipt Checklist:	Alidiyses	0			State: County/City:			Customer Project Name/Number:
lah Profile/Line:	m hydroxide, (D) TSP, (U) Unpreserved, (O) Other	(C) ammoniun		ddress:	Site Collection Info/Address:			Сору То:
oric acid, (4) sodium hydroxide, (5) zi ane, (A) ascorbic acid, (B) ammonium	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate,	** Preservative Types: (6) methanol, (7) sodiu	S	@ Meci N	Email To:)) (Report To: B. Shane
Lau rroject Manager:		2					* Rd	Address: 231 Doole
AB USE ONLY		92694109			Billing Information:			Company: M = C
			fields	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	s a LEGAL DOCUMENT	of-Custody i	Chain-c	Pace Analytical
List Pace Workorder Number or re	MO#: 92694109	#UM	ıment	CHAIN-OF-CUSTODY Analytical Request Document	TODY Analytic	OF-CUS	CHAIN-	2

Relinquished by/Company: (Signature)	Relinquished by/Company: (Signature)	HI M	Relinquished by/Company: (Signature)			Customer Remarks / Special Conditions / Possible Hazards:	Sw. 6	5~-5	Sw-4	5W-3	Sw-2	Swil	Dw - 4	n. 3	nw-2	DW-1 6W		Customer Sample ID Matrix *	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	[] 2 Day	sposal: Rush: Rush: S		ignature):	Collected By (print): Purchase Order #: Quote #:	Phone: Site/Facility ID #:	Jake Huggins	Customer Project Name/Number:		Report To: B. Shane	Address: 231 Rolf Rd	Company: AECT	Pace Analytical Chain-o	,
ne:	Date/Time: Re	o C		Radchem sample(s) screened (<500 cpm):	Packing Material Used:	Type of Ice Used:	1 10:30	10:25	10.20	10:15	02:11	13.28	1 13:45	12:10	1 11:32	6 10/16/23 12:50	П	Grab Composite Start)	ng Water (DW), Ground Water (G ir (AR), Tissue (TS), Bioassay (B), V	[] 3 Day [] 4 Day [] 5 Day / (Expedite Charges Apply)	[] Next Day			990	73423	1	State: County/City:	Site Collection Info/Address:	Email To: 11		Billing Information:	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	CHAIN-OF-CUSTODY Analytical Request Document
Received by/Company: (Signature)	Received by/Company: (Signature)	De last	Received by/Company: (Signature)	eened (<500 cpm): Y N NA	50	Wet Blue Dry None										6		Composite End Res # of Ctns		Analysis:	Field Filtered (if applicable): [] Yes [] No	Myes [] No	Immediately Packed on Ice:	DW PWS ID #: DW Location Code:	Compliance Monitoring? [] Yes	C []PT[]MT[]CT [YET	Time Zone Collected:		@ Meci. Net			- Complete all relevent fields	al Request Document
Date/Time: PM:	10-18-23 1628 Pre	m	Date/Time:	Samples received via: FEDEX UPS Client	Lab Tracking #: 2910774	SHORT HOLDS PRESENT (<72 hours):										×	B	te D	(nm)	· (,	z - 1	DC.	A	CX	1526	cn	Analyses	(C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	 Preservative Types: (1) nitric acid, (2) sulfu (6) methanol, (7) sodium bisulfate, (8) sodiun 	Container Preservative Type **	ALL SHAD		LAB USE ONLY- Affix Work
		Table #: Acctnum:	MTJL LAB USE ONLY Comm	Coole Courier Pace Courier Coole		Y N N/A Lat		LDL	707	トルし	しのし	LD)	24245	no oder	no octor	nooder		нар sample # / сошителтs:	LAB USE ONLY:	pH Strips: Sulfide Present	Residual Chlorine Pr Cl Strips:	USDA Regulated Soils Samples in Holding T	VOA - Headspac		Custody Signatures Present Collector Signature Presen Bottles Intact	Custody Seals	Lab Profile/Line:	served, (O) Other	Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, 6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate,	be ** Lab Project Manager:	ALL SHADED AREAS are for LAB USE ONLY		JSE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here
Non Conformance(s): Page: YES / NO of:	Trip Blank Received: 🖞 N NA HCL MeOH TSP Other		Comments:	Cooler 1 Therm Corr. Factor: V OC Cooler 1 Corrected Temp: L V OC	2,1,2	Lab Sample Temperature Info: Temp Blank Received: Y N NA	020	019	810	7)0	oll	210	eder ou	013	012	~ \$1 ₁	10/11/26		strips:	N A	rine Present Y N NA	ils YN	Z 2	E R R	et Rek Z Z Z	Çţ.	b Profile/Line: Lab Sample Receipt Checklist:		roxide, (5) zinc acetate, ammonium sulfate,		ONLY age 5	66 of	

Relinquished by/Company: (Signature)	Relinquished by/Company: (Signature)	5	Relinquished by/Company: (Signature)			Customer Remarks / Special Conditions / Possible Hazards:	M-MSW-TI	M3m- FB	WSW-dup	wsu-3	W5W-2	1-75m	640	7) Who	Customer Sample ID	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	[] Archive:	posal: Return R		(signature):	Collected By (print): Pu	Phone: Sit	Jake Huggins	Customer Project Name/Number:	Report To: D. Share	Address: 231 Dooley	Company: COHEC	Pace Analytical	3
Dat	Dat	7	Dat			s / Possible Hazards:			0 W) 1	5000	,			5	Matrix * Grab	vipe (WP), Air (AR), T	[] 2 Day [] 3 Day [] 4 Day (Expedite Charges Apply)	S		Turnaround Date Required:	Purchase Order #: Quote #:	Site/Facility ID #:				Rd		Chain-of-Custody	CHAIN-OF-CU
ne: _	Date/Time:	10/18 800	Date/Time:	Radchem sample(s)	Packing Material Used:	Type of Ice Used:	8.00	1 14:3	10/16 -		1 19:25	11.15	1 14:00	02.3	1 13:50	2	Composite Start) Date Time	issue (TS), Bioassay (B	arges Apply)	ye		red:		123	F	State: County/City:	Email To:) (Billing Information:	is a LEGAL DOCUMEN	STODY Analyt
Received by/Company: (Signature)	deceived by/Company: (Signature)	0	Received by/Company: (Signature)	Radchem sample(s) screened (<500 cpm):	ed: BB	Wet Blue [2					<u> </u>)		Composite End Date Time	(GW), Wastewater (V), Vapor (V), Other (O	Analysis:	Field Filtered (if applicable): [] Yes [] No	[L] Yes [] No	Immediately Packed on Ice:	DW PWS ID #: DW Location Code:	Compliance Monitoring?	h	lity: Time Zone Collected:	Address:			Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	CHAIN-OF-CUSTODY Analytical Request Document
ny: (Signature)	ny: (Signature)	Port	ny: (Signature)	Y N NA		Dry None	6	9	9		9	9	6	2	6	(6)	Cl Ctns	N),		o slicable):		on Ice:	1		E F		Net 16			ent fields	ocument
me:	1528	10/10/27 03/6 Table #:	Date/Time:	Samples received via: FEDEX UPS Client Co	Lab Tracking #: 29107	SHORT HOLDS PRESENT (<72 hours):	×	メメス	×××		*X X	×	\overline{x}		×	×	E B O F	DB Levery SYS	80 80 80	100 41 60 4-	2-	R	CA	529	4-7	Analyses	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Container Preservative Type **	ALL SHADE		LAB USE ONLY- Affix Workor
		Table #: Acctnum:	MTJL LAB USE ONLY C	Courier Pace Courier C	75	Y N N/A				FN/0 -	A							LAB USE ONLY: Lab Sample #	pH Strips: Sulfide Present Lead Acetate St	Cl Strips: Sample pH	USDA Regulated Son Samples in Holding	VOA - Head	Correct Bottles Sufficient Volume Samples Received	Collector Signature Bottles Intact	Custody Se	Lab Profile/Line:	acid, (3) hydrochloric acid, (4) sodium niosulfate, (9) hexane, (A) ascorbic aci ved, (O) Other	** Lab Project Manager:	ALL SHADED AREAS are for LAB USE ONLY		USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here
Non Conformance(s): Page:	Trip Blank Received: Ø N NA HCL MeOH TSP Other		Comments:	Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC	422	Temp Blank Received: Y N NA	027	02)	02	8.0	026	02	024	023	50	67	3062016	MARCHANT GEROS	rips: Y N	Acceptable Y N	Time &	ptable WN	on Ice	Present XN	Custody Seals Present/Intact Y N NA	Receipt Checklist:	n hydroxide, (5) zinc acetate, d, (B) ammonium sulfate,	nager:	ISE ONLY		e Workorder Number or

DC#_Title: ENV-FRM-HUN1-0083 v02_Sample Condition Upon Receipt

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project #

WO#:92694109

PM: JWB Due Date: 10/25/23

CLIENT: 92-MIDLAND

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl [pH < 2]	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35.250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1											/					6												
2						/	/	/			1		1	/		6												
3					/	7	7	/			/		/	/	/	6									7			
4	/				/	/	/	/			/		/	/	/	(,								/				
5	/				/	/	/				/		/	/	/	6								/		_		
6	/		-			/	/				/		/	/	/	6									/	-		
7	/					/	/				/		/	/		6								/				
8	/		<u> </u>			/	/	/			/	-	/	/		6								/				
9	/			-	/	/	/	/	-		/	-	/	/		6			-					/				
10	/				/	/	/	/	-		/	-	/	/		6								/				
11	/			-	/	/	/	/	-		/	-	/	/	/	Ψ						-		1	/			
12					-	/	/		-			\vdash	/	1	/			-				\vdash		/				
						7		7				_	/	$\overline{7}$	7									1				

Amount of Preservative added	Lot #
3.	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

DC#_Title: ENV-FRM-HUN1-0083 v02_Sample Condition Upon Receipt

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

Project #

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (Cl·)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4CI (N/A)(CI·)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1											/					6												
2							/						1			6								/	/			
3					1	/	1	/			1			1		6								/	7			
4	1				1	/	/	/			/		/	/	/	6								/	/			
5	1				/	1	7	/			/		/	/	Z	6								/	/			
6	/				1	/	/				/		/	/	/	6								/	/			
7	K				/	/	/	/						1	/	6								/				
8	1				/	/	/				/		/	1	1	6				T				/				
9	/				/	/	/	/			/		/	/	/	6				_				/	/			
10	1				/	/	/	/			/		X,	/	/	6								/	/			
11	1				/	1	1				/		1	/	/	1								/	/			
12					1																			1	/	-		

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

DC#_Title: ENV-FRM-HUN1-0083 v02_Sample Condition Upon Receipt

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI·)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																6												
2											/					6								/	/			
3							1	/			/			1	/	2								/	/			
4	/				/	1	/	/			/		/	/	/	6								/	/			
5	/				/	1	/	/			/		/	/	/	6	3							/	/			
6	/				/	/	/	/			/		/	/	/	6	3							/	/			
7	K				/	/	X	1			/		1	F	1				_					1	7			
8	/				/	/	/	/			/	-	/	/	/	6	3			_				/	/			
9	/				/	/	/	/			/		/	/	/	6	1							/	/			
10	/				/	/	/	/			/		/	/	/	6	2							/	/			
11	/				/	/	/	/			/	-		1	/	v								/	/			
12	/				/								/											/				

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

APPENDIX C:

TAX MAP

(Not Applicable)

APPENDIX D:

SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
(Not Applicable)

APPENDIX E:

WELL COMPLETION LOGS & 1903 FORMS

(Not Applicable)

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS
(Not Applicable)

APPENDIX G:

DISPOSAL MANIFEST

October 30, 2023

Re: Treatment of Purge Water
Jake Huggins DBA Outpost at Willowcreek
Florence, South Carolina
UST Permit# 03423
MECI Project Number 22-7924D

To Whom it May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDHEC must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 80 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

41.50 Gallons of Purge water were treated on October 16, 2023 at the referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist **APPENDIX H:**

LOCAL ZONING REGULATIONS

(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:

ACCESS AGREEMENTS

(Not Applicable)

APPENDIX K:

DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?			X
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?			X
17	Has the method of well development been detailed?			X
18	Has justification been provided for the locations of the monitoring wells?			X
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figures 4-4A)	X		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
26	Does the report include a brief discussion of the aquifer evaluation and results?			X
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format?			X
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the current and historical laboratory data been provided in tabular format? (Table 1)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)			X
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)			X
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figure 3-3A)	X		
40	Has the site potentiometric map been provided? (Figure 4-4A)	X		
41	Have the geologic cross-sections been provided?			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	X		
45	Is the laboratory performing the analyses properly certified?	X		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix E)			X
48	Have the well completion logs and SCDHEC Form 1903 been provided? (Appendix E)			X
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)			X
50	Have the disposal manifests been provided? (Appendix G)	X		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
53	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
54	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	X		

APPENDIX L: DETAILED RECEPTOR INFORMATION

Receptor ID: (03423-WSW01)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Well is inside barn building.

Sample collected from spigot on water supply well.

GPS: 34.096044, -79.701503

Receptor ID: (03423-WSW02)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Sample collected from spigot on WSW.

GPS: 34.095156, -79.700508

Receptor ID: (03423-WSW03)

Parcel ID:

00213-01-052

Property Owner Name:

Linda L Huggins

Property Owner Address:

3695 Willow Creek Rd, Florence, SC 29505

Well has been disconnected.

Unable to sample with bailer due to metal elbow at well

GPS: 34.096743, -79.701503

Receptor ID: (03423-Possible WSW)

Parcel ID:

00214-01-016

Property Owner Name:

Trent P Stallings

Property Owner Address:

3118 Willow Creek Rd, Florence, SC 29505

WSW Details:

Possible well house attatched to residence.

Resident did not respond to attempts to make contact.

GPS: 34.094158, -79.700555

Receptor ID: (03423-SW01)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095076, -79.696772

Receptor ID: (03423-SW02)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095847, -79.697296

Receptor ID: (03423-SW03)

Parcel ID:

00213-01-017 Property Owner Name:

Barbara M Williams

Property Owner Address:

9296 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream.

GPS: 34.094620, -79.698172

APPENDIX M:

PHOTOS

APPENDIX N:

MANN-KENDALL STATISTICAL ANALYSES

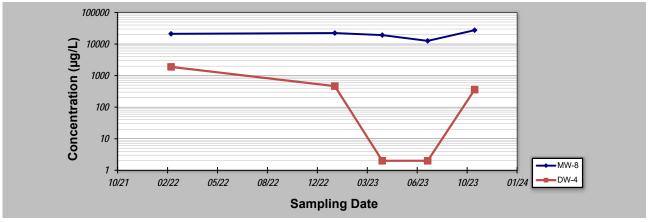
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: BENZENE Concentration Units: µg/L MW-1 MW-2 MW-6 DW-4 Sampling Point ID: MW-8 MW-10 BENZENE CONCENTRATION (µg/L) 15-Feb-22 3720 1070 67.5 624 203 356 9-Jan-23 620 122 83.3 4390 2060 63 6 3 14-Apr-23 749 90.2 68.1 3620 634 1.7 16-Oct-23 1100 76.3 38.5 5330 341 6 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.26 0.43 1.13 0.21 1.48 Mann-Kendall Statistic (S) Confidence Factor 95.8% 40.8% 88.3% 50.0% **Concentration Trend:** Stable No Trend Increasing Decreasing Decreasing Stable 10000 Concentration (µg/L) 1000 100 10 MW-1 MW-2 05/22 08/22 12/22 03/23 10/21 02/22 06/23 10/23 01/24 MW-6 MW-8 **Sampling Date** MW-10

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com


DW-4

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date: 30-Oct-23
Facility Name: Jake Huggins DBA Outpost @ Willowcreek
Conducted By: Jeff Coleman

Job ID: UST#03423
Constituent: TOLUENE
Concentration Units: µg/L

Samp	Dling Point ID:	WW-8	DW-4					
Sampling Event	Sampling Date		TOLUENE CONCENTRATION (µg/L)					
1	15-Feb-22	21100	1890					
2	9-Jan-23	22300	464					
3	14-Apr-23	19200	2					
4	14-Jul-23	12600	2					
5	16-Oct-23	27500	359					
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
	t of Variation:	0.26	1.44					
	I Statistic (S):	0	-5					
Confi	dence Factor:	40.8%	82.1%					
Concen	tration Trend:	Stable	No Trend					

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

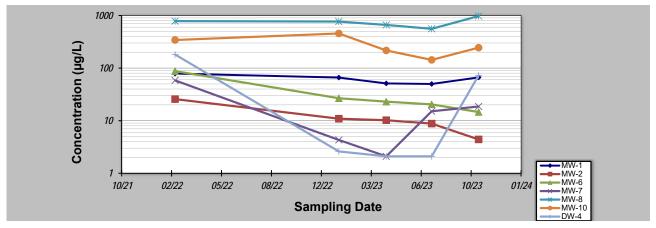
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: ETHYLBENZENE Concentration Units: µg/L MW-8 MW-10 Sampling Point ID: ETHYLBENZENE CONCENTRATION (µg/L) 15-Feb-22 753 2200 9-Jan-23 2080 1100 3 14-Apr-23 1840 428 16-Oct-23 2810 503 6 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.18 0.50 Mann-Kendall Statistic (S) Confidence Factor 40.8% 75.8% Concentration Trend: Stable Stable 10000 Concentration (µg/L) 1000 100 10 MW-8 05/22 08/22 12/22 03/23 06/23 10/21 02/22 10/23 01/24 **Sampling Date** MW-10

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: XYLENES Concentration Units: µg/L MW-8 Sampling Point ID: XYLENES CONCENTRATION (µg/L) 15-Feb-22 12800 9-Jan-23 13300 3 14-Apr-23 10800 16-Oct-23 16200 6 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.19 Mann-Kendall Statistic (S) Confidence Factor 40.8% **Concentration Trend:** Stable 100000 MW-8 Concentration (µg/L) 10000 1000 100 10 08/22 12/22 03/23 10/21 02/22 05/22 06/23 10/23 01/24 Sampling Date

Notes:


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date:	30-Oct-23
Facility Name:	Jake Huggins DBA Outpost @ Willowcreek
Conducted By:	Jeff Coleman

Job ID: UST#03423
Constituent: NAPHTHALENE
Concentration Units: µg/L

Sam	pling Point ID:	MW-1	MW-2	MW-6	MW-7	MW-8	MW-10	DW-4
Sampling Event	Sampling Date			NAPHTHAL	ENE CONCENTRA	λΤΙΟΝ (μg/L)		
1	15-Feb-22	78.7	25.7	87.5	58.3	781	342	181
2	9-Jan-23	66	10.9	26.7	4.3	766	455	2.6
3	14-Apr-23	51.1	10.2	23	2.1	661	216	2.1
4	14-Jul-23	49.9	8.8	20.4	15.1	558	143	2.1
5	16-Oct-23	66.5	4.4	14.6	18.6	975	244	72.7
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
Coefficien	nt of Variation:	0.19	0.67	0.87	1.15	0.21	0.43	1.50
Mann-Kenda	II Statistic (S):	-4	-10	-10	0	-2	-4	-3
	idence Factor:	75.8%	99.2%	99.2%	40.8%	59.2%	75.8%	67.5%
Concen	ntration Trend:	Stable	Decreasing	Decreasing	No Trend	Stable	Stable	No Trend

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

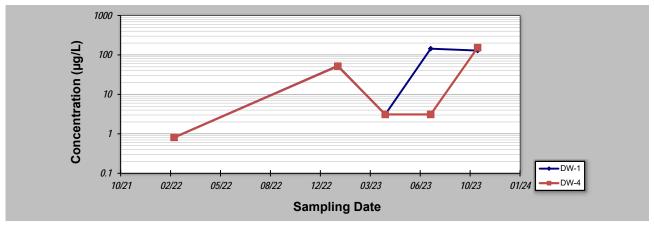
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L MW-1 MW-2 MW-5 MW-8 Sampling Point ID: MW-6 MW-10 MTBE CONCENTRATION (µg/L) 15-Feb-22 405 14.3 166 510 264 690 9-Jan-23 342 22 2 126 865 3 14-Apr-23 343 195 22.3 132 435 260 59.5 112 16-Oct-23 488 200 156 1000 6 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.25 0.38 0.63 0.96 Mann-Kendall Statistic (S) 10 59.2% Confidence Factor 99.2% 88.3% 99.2% 59.2% 88.3% **Concentration Trend:** Stable No Trend Stable Stable Increasing Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-2 05/22 08/22 12/22 03/23 06/23 10/21 02/22 10/23 01/24 MW-5 MW-6 **Sampling Date** MW-8

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

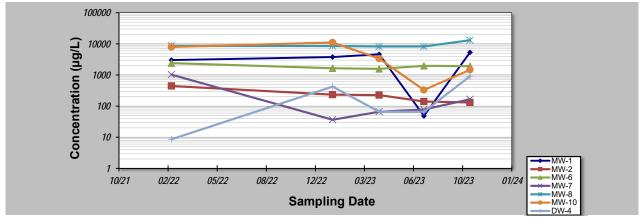
DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com


MW-10

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date: 30-Oct-23 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman


Job ID: UST#03423 Constituent: MTBE Concentration Units: µg/L

Samı	pling Point ID:	DW-1	DW-4					
Sampling Event	Sampling Date		MTBE CONCENTRATION (μg/L)					
1	15-Feb-22	0.81	0.81					
2	9-Jan-23	52.9	51.8					
3	14-Apr-23	3.1	3.1					
4	14-Jul-23	144	3.1					
5	16-Oct-23	129	153					
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
Coefficien	t of Variation:	1.03	1.55					
Mann-Kenda	II Statistic (S):	6	5					
	dence Factor:	88.3%	82.1%					
	tration Trend:	No Trend	No Trend					

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TAA Concentration Units: µg/L MW-1 MW-2 MW-6 MW-7 MW-8 Sampling Point ID: MW-10 DW-4 TAA CONCENTRATION (µg/L) 15-Feb-22 3030 442 2410 1030 8690 7950 8.6 3770 9-Jan-23 233 1640 36.4 8510 11100 422 3 14-Apr-23 4640 225 1570 65.6 8200 3350 65.6 4 1930 1460 16-Oct-23 5340 131 166 13100 913 6 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.61 0.53 0.23 Mann-Kendall Statistic (S) -10 59.2% 50.0% 88.3% Confidence Factor 75.8% 82.1% **Concentration Trend:** No Trend Stable Stable Stable No Trend Decreasing No Trend

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: DIPE Concentration Units: µg/L MW-1 MW-8 MW-10 Sampling Point ID: DIPE CONCENTRATION (µg/L) 15-Feb-22 160 268 9-Jan-23 191 239 555 3 14-Apr-23 178 436 165 16-Oct-23 297 68.1 6 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.27 Mann-Kendall Statistic (S) 88.3% Confidence Factor 95.8% **Concentration Trend:** Stable Increasing Prob. Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-8 05/22 08/22 12/22 03/23 06/23 10/21 02/22 10/23 01/24 MW-10 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

May 3, 2024

RECEIVED MAY 06 2024 UST DIVISION

Mr. Robert A. Dunn, Hydrogeologist Corrective Action Section Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan

Jake Huggins DBA Outpost at Willowcreek

Florence, South Carolina UST Permit# 03423

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site. MECI is making this proposal to collect current analytical data to evaluate the groundwater quality beneath the site.

If you have any question or comments, please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Mr. Robert Dunn From: Jeff L. Coleman		C Project Manager) or Project Manager)					
Contractor: Midlands Environmental Consultants, Inc. UST Contractor Certification Number: 009							
	Facility Name: Jake Huggins DBA Outpost at Willowcreek, LLC. UST Permit #: 03423						
Responsible Party: BW Stokes Oil Company	Phone: (843) 621-58	65					
RP Address: 1001 Chase Street, Florence, SC 29501							
Property Owner (if different): Barbara Williams							
Property Owner Address: 3309 Willow Creek Road, Floren	ce, SC 29505						
Current Use of Property: Vacant Lot/Residence							
Scope of Work (Please check all that apply)	C. Constant and Constitue	Пслс					
☐ IGWA ☐ Tier II ☐ Monitoring Well Installatio	☑ Groundwater Sampling ☐ Other	☐ GAC					
	Other						
Analyses (Please check all that apply) Groundwater/Surface Water:							
✓ BTEXNMDCA (8260D)	□ BOD □	Methane					
✓ Oxygenates (8260D)		Ethanol					
☑ EDB (8011) ☐ TPH		Dissolved Iron					
☐ PAH (8270E) ☐ pH	☐ Other						
Drinking Water Supply Wells:							
☑ BTEXNMDCA (524.2) ☐ Mecury (2)	200.8 245.1 or 245.2)						
✓ Oxygenates & Ethanol (8260D) ☐ RCRA Me	etals (200.8)						
Soil:		— • • • • •					
☐ BTEXNM ☐ Lead ☐ RCRA Metals	☐ TPH-DRO (3550B/8015B)	☐ Grain Size					
PAH Oil & Grease (907	71) TPH-GRO (5030B/8015B)	□ тос					
Air:							
☐ BTEXN							
Sample Collection (Estimate the number of samples							
Soil2 Water S 14 Monitoring Wells6 Surface							
Widnitoring Wells Surface	Duplicate	mp blank					
Field Screening Methodology							
Estimate number and total completed depth for each	point, and include their proposed locations on t	he attached map.					
# of shallow points proposed:	Estimated Footage:	feet per point					
# of deep points proposed:							
Field Screening Methodology:							
Permanent Monitoring Wells							
Estimate number and total completed depth for each	well, and include their proposed locations on th	ne attached map.					
# of shallow wells:	Estimated Footage:	feet per point					
# of deep wells:	Estimated Footage:	feet per point					
# of recovery wells:	Estimated Footage:	feet per point					
Comments, if warranted:							

UST Permit #: 03423 Fa	acility Name: _	Jake Huggins DBA Outpost at Willowcreek	
Implementation Schedule (Number of o Field Work Start-Up: 5/3/2024 Report Submittal: 8/3/2024			
Aquifer Characterization Pump Test: Slug Test: (Check of	one and provid	de explanation below for choice)	
Investigation Derived Waste Disposal Soil:	_Tons	Purge Water: 100.00	_ Gallons
Soil: Drilling Fluids:	Gallons	Free-Phase Product:	Gallons
event, etc.	event to collect curr ted since October		of AFVR
Name of Laboratory:SCDHEC Certification Number:	Y (Yes/No)	If no, indicate laboratory information below. If no, indicate driller information below.	
	Proposed Legend with Streets or I Location o	GS topographic map showing the site location. ccurately scaled, but does not need to be surveyed. The monitoring well locations th facility name and address, UST permit number, and be highways (indicate names and numbers) f all present and former ASTs and USTs of all potential receptors OHEC Form D-3664	

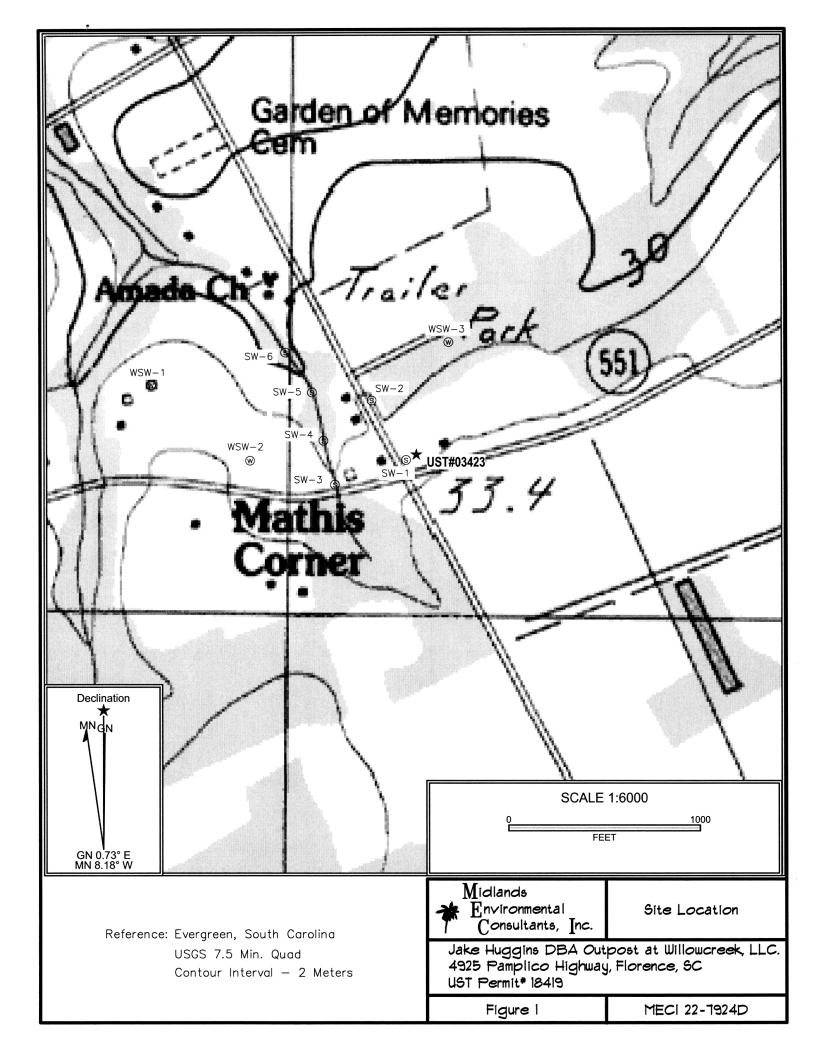
ASSESSMENT COMPONENT COST AGREEMENT

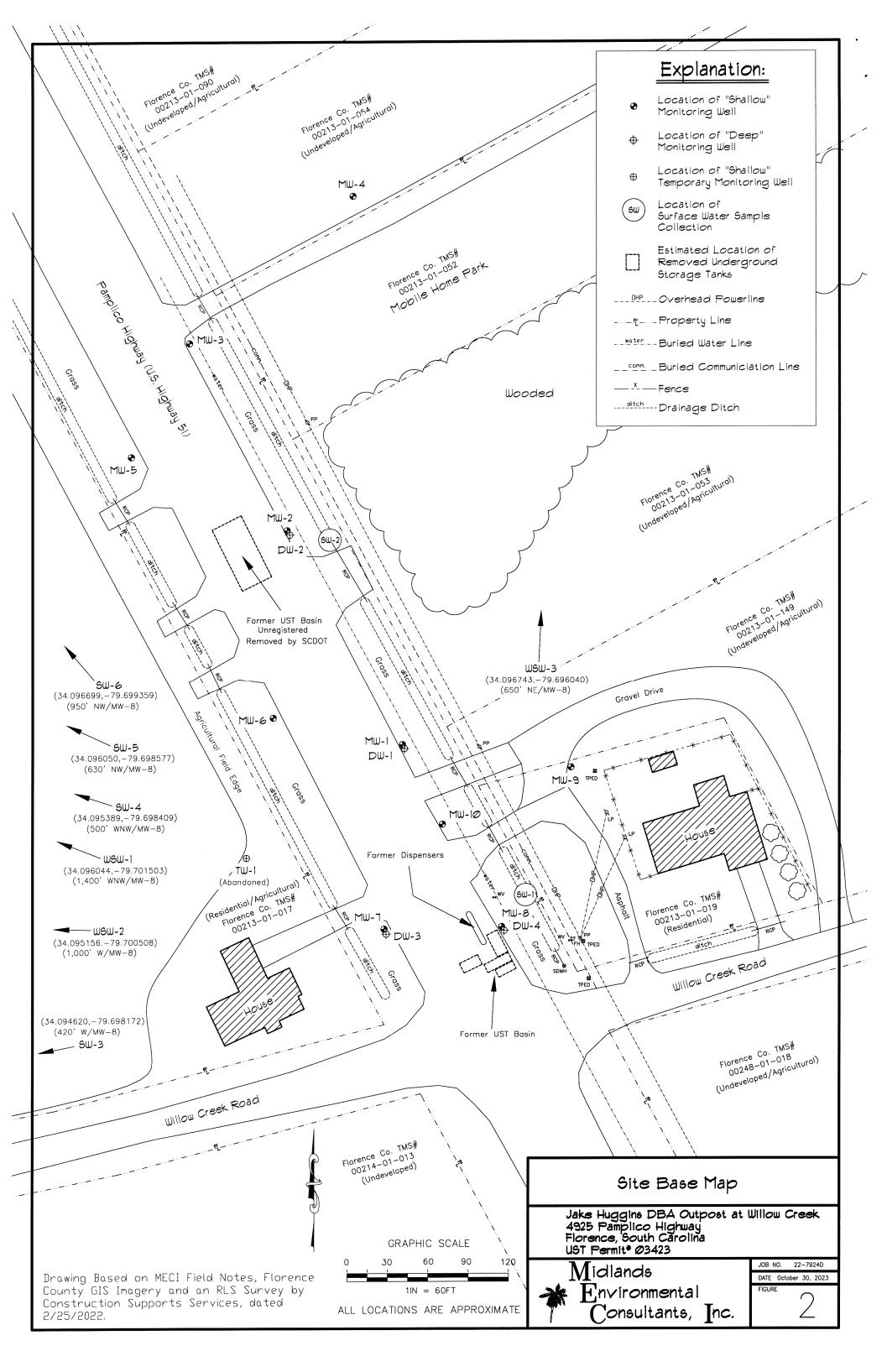
South Carolina Department of Health and Environmental Control
Underground Storage Tank Management Division
State Underground Petroleum Environmental Response Bank Account
August 9, 2023

Facility Name: Jake Huggins DBA Outpost @ Willowcreek, LLC.

UST Permit #: 03423 Cost Agreement #: Proposal ITEM **UNIT PRICE** TOTAL **QUANTITY** UNIT A. Plan Preparation 1.2 Site-specific Work Plan each \$183.22 \$183.22 2.2 Tax Map \$85.50 \$0.00 each 3.2 QAPP Contractor Addendum (App B) \$250.00 \$0.00 each **B. Survey** 1.1 Receptor Survey \$673.06 \$0.00 each C. Survey 1.2 Comprehensive Survey \$1,270.36 \$0.00 each \$0.00 5.1 Ground Penetrating Radar Survey (100 x 100) each \$1,111.57 D. Mob/Demob \$0.00 1.2 Equipment \$1,245.93 each 2.2 Personnel \$1,033.38 2 \$516.69 each 3.2 Adverse Terrain Vehicle \$610.75 \$0.00 each E. Soil Borings \$0.00 1.1 Soil Borings (hand auger) \$21.80 foot F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including sampling and analyst) 1.2 Standard \$0.00 per foot \$33.50 2.2 Fractured Rock \$0.00 \$41.40 per foot G. H. Well Abandonment 1.2 2" diameter or less per foot \$3.79 \$0.00 2.2 Greater than 2" to 6" diameter \$0.00 per foot \$5.50 3.2 Dug/Bored well (up to 6 feet diameter) per foot \$18.32 \$0.00 I. Well Installation (In accordance with R.61-71) 1.2 Water Table (hand augered) per foot \$31.40 \$0.00 2.B Water Table (drill rig) 2" Diameter \$54.90 \$0.00 per foot 2.2 Single-cased 2" Diameter Monitoring Well >50ft \$59.80 \$0.00 per foot 3.2 Telescoping per foot \$84.70 \$0.00 \$0.00 4.2 Rock Drilling per foot \$81.80 \$0.00 5.2 2" Rock Coring per foot \$88.50 6.2 Multi-sampling ports/screens \$0.00 per foot \$59.40 7.2 Recovery Well (4" diameter) \$0.00 per foot \$69.60 9.2 Rotosonic (2" diameter) \$0.00 per foot \$119.00 10.2 Re-develop Existing Well per foot \$0.00 \$13.44

J. Groundwater Sample Collection / Gauging Depth	to Water/Pr	roduct		
1.2 Groundwater Purge	4	per well	\$73.29	\$293.16
2.2 Air or Vapors		sample	\$14.66	\$0.00
3.2 Water Supply Sample	2	sample	\$26.87	\$53.74
4.1A HydraSleeve		sample	\$34.20	\$0.00
4.2B No-purge Groundwater Sample/Surface wate	16	sample	\$57.24	\$915.84
5.2 Gauge Well only		sample	\$8.55	\$0.00
6.2 Sample Below Product		sample	\$14.66	\$0.00
7.2 Passive Diffusion Bag		sample	\$31.75	\$0.00
8.2 Field Duplicates (MWs & WSWs) and Field Bla	4	sample	\$30.06	\$120.24
9.2 Groundwater (low flow purge)		sample	\$111.16	\$0.00
10.2 Equipment Blank		sample	\$30.06	\$0.00
11.1 Sample Product		per well	\$52.66	\$0.00
K. Laboratory Analyses-Groundwater		The trial tipe lands are at		nemak at turka at digil sa saga araw
1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D)	22	per sample	\$149.02	\$3,278.44
2.2 Lead, Filtered		per sample	\$16.85	\$0.00
3.2 Rush EPA Method 8260B		per sample	\$187.62	\$0.00
4.2 Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$34.20	\$0.00
5.2 PAH's		per sample	\$74.02	\$0.00
6.2 Lead		per sample	\$19.54	\$0.00
7.2 EDB by EPA 8011	21	per sample	\$55.21	\$1,159.41
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water		i de la companio de la como de la La como de la como de		
14.2 BTEXNM+1,2 DCA (524.2)	5	per sample	\$151.52	\$757.60
15.2 7-OXYGENATES & ETHANOL (8260D)	5	per sample	\$112.07	\$560.35
16.2 EDB (504.1)	4	per sample	\$97.11	\$388.44
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00


K. Analyses-Air				
25.2 BTEX + Naphthalene		per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification				
27.1 C3-C44 Whole Oil (ASTM D3328)	1.1.1.6. And the second of Combination Statements and the Second Combines of Combines o	per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)		per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)		per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)		per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)		per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)		per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)		per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints		per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report		each	\$595.30	\$0.00
L. Aquifer Characterization				
1.2 Pumping Test		per hour	\$28.09	\$0.00
2.2 Slug Test		per test	\$233.31	\$0.00
3.2 Fractured Rock		per test	\$122.15	\$0.00
M. Free Product	i i ne in ya kumata			
1.1 Free Product Recovery Rate Test		each	\$46.42	\$0.00
N.				
O. Risk Evaluation				
1.2 Tier I Risk Evaluation		each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation		each	\$122.15	\$0.00
P. Survey				
1.1 Subsequent Survey		each	\$297.65	\$0.00
Q. Disposal (gallons or tons)				
1.2 Wastewater	100	gallon	\$1.19	\$119.00
2.2 Free Product		gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal		ton	\$156.25	\$0.00
4.2 Drilling fluids		gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)	Capacita Commence			
The All Colling and the second collection of the Colling and t		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)	an a			
1.2 Southeast Region		standard	\$12,622.56	\$0.00
2.2 All Other Counties		standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)	District Control Control Control	rentale, hajinda nabi		
1.2 Southeast Region		standard	\$4,353.67	\$0.00
2.2 All Other Counties		standard	\$4,720.01	\$0.00
22. Active Correction Action		PFP	Bid Cost	\$0.00


W. Aggressive Fluid & Vapor Recovery (AFVR)			
1.2 8-hour Event	per event	\$1,787.40	\$0.00
2.1 24-hour Event	per event	\$4,407.78	\$0.00
3.1 48-hour Event	per event	\$7,242.29	\$0.00
4.1 96-hour Event	per event	\$14,482.28	\$0.00
5.1 Off-gas Treatment 8 hour	per event	\$141.17	\$0.00
6.2 Off-gas Treatment 24 hour	per event	\$294.30	\$0.00
7.2 Off-gas Treatment 48 hour	per event	\$386.10	\$0.00
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00
9.1 Off-gas Treatment 8 hour (w/chlorinated compounds)	per event	\$464.40	\$0.00
10.1 Off-gas Treatment 24 hour (w/chlorinated compound	s) per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compound	s) per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compound	s) per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system instal	llation & service:		
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00

Y. Well Repair				TALL HE TIME BUT THE STREET OF
1.2 Additional Copies of the Report Delivered	4	each	\$61.07	\$244.28
2.2 Repair 2x2 MW pad		each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad		each	\$107.49	\$0.00
4.2 Replace well vault		each	\$144.14	\$0.00
5.2 Replace well cover bolts		each	\$3.18	\$0.00
6.2 Replace locking well cap & lock		each	\$18.32	\$0.00
7.2 Replace/Repair stick-up		each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up		each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount		each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate		each	\$14.66	\$0.00
11.1 Down-hole Camera		per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization				
1.1 HRSC Screening Equipment Mobilization		each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1		per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2		per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3		per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model		each	\$4,363.20	\$0.00
S. Report Prep & Project Management	12%	percent	\$9,107.10	\$1,092.85
TOTAL				\$10,199.95

DHEC D-4406 (07/2023)

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

JUN 1 2 2024

B W STOKES OIL CO INC ATTN MR BENNIE STOKES PO BOX 1656 FLORENCE SC 29503

Re: Site-Specific Work Plan Approval & Groundwater Sampling Notice to Proceed Jake Huggins Dba Outpost At Willowcreek; 4925 Pamplico Hwy., Florence, SC UST Permit #03423; CA #65749 Release reported February 26, 2002 Site-Specific Work Plan (SSWP) received May 06, 2024 Florence County

Dear Mr. Stokes:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed and approved the referenced SSWP. All scopes of work should be conducted in compliance with the most recent revision of the Quality Assurance Program Plan (QAPP) for the UST Management Division, your contractor's ACQAP, the submitted SSWP, and all applicable regulations.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". According to DHEC records, approximately \$109,743.30 has been expended from the SUPERB account to date. This scope of work, as recommended by your contractor, is proposed to cost approximately \$10,199.96.

The Monitoring Report and invoice should be submitted within 60 days of the date of this correspondence. If the report cannot be submitted by the required due date, an extension must be requested in writing, via mail or email, prior to the due date. DHEC will issue a Notice of Alleged Violation if the report is not submitted by the required due date. The approved costs are detailed in the enclosed Cost Agreement (CA).

In accordance with Section IV.A.4.c of the SUPERB Site Rehabilitation & Fund Access Regulation (R.61-98), the contractor shall be required to indemnify the property owner, underground storage tank owner/operator and the State of South Carolina from and against all claims, damages, losses and expenses arising out of or resulting from activity conducted by the contractor, its agents, employees or subcontractors.

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

UST #03423; SSWP Approval & Groundwater Sampling Notice to Proceed Page 2

Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that the SUPERB Account cannot compensate any costs that are not pre-approved. If for any reason additional tasks will be completed, the additional tasks and the associated cost, must be pre-approved by the UST Management Division for the costs to be paid. DHEC reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, DHEC reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work. Reimbursement for site rehabilitation activities shall in no event exceed the actual costs incurred as required by SUPERB Site Rehabilitation and Fund Access Regulations (R.61-98 § III.3.b).

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a DHEC-certified site rehabilitation contractor as required by the SUPERB Site Rehabilitation and Fund Access Regulation, R.61-98.

DHEC grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All Investigation-Derived Waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the Project Manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

The contractor will be responsible for keeping and preserving suitable records of hydrological and other site assessments, site plans, contracts, accounts, invoices, or other transactions related to the cleanup and rehabilitation and the records must be accessible to the department during regular business hours. In addition, this includes all subcontractor agreements, invoices, correspondence, plans, reports, records, including electronic and paper formats. All records must be maintained for 10 years after project completion.

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions please contact me by email dunnra@dhec.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn, Hydrogeologist

Robert Dunn

Corrective Action & Field Support Section

Underground Storage Tank Management Division

Bureau of Land and Waste Management

Enc: Approved CA

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 (w/ Enc)

Technical file (w/ Enc)

Approved Cost Agreement 65749

Facility: 03423 JAKE HUGGINS DBA OUTPOST AT WILLOWCREEK LLC

DUNNRA PO Number:

Task / Description	Categories	Item Description	Qty / Pct	Unit Price	<u>Amount</u>
A PLAN PREPARA	TION			13150	***
		1.2 SITE SPECIFIC WORK PLAN	1.0000	\$183.220	183.22
D MOB/DEMOB					
		2.2 PERSONNEL	2.0000	\$516.690	1,033.38
J SAMPLE COLLEC	CTION				
		1.2 GROUND WATER PURGE	4.0000	\$73.290	293.16
		3.2 WATER SUPPLY SAMPLE	2.0000	\$26.870	53.74
		4.2B NO-PURGE GROUNDWATER	16.0000	\$57.240	915.84
		8.2 FIELD DUPL. (MWS & WSWS) & FB	4.0000	\$30.060	120.24
K ANALYSES					
	DW DRINKING WATER	14.2 BTEXNM+1,2 DCA (524.2) WSW	5.0000	\$151.520	757.60
		15.2 OXYGENATES & ETHANOL 8260D	5.0000	\$112.070	560.35
		16.2 EDB (504.1)	4.0000	\$97.110	388.44
	GW GROUNDWATER	1.2 BTEXNM+OXYGS+1,2 DCA+ETH 8260D	22.0000	\$149.020	3,278.44
		7.2 EDB BY EPA 8011	21.0000	\$55.210	1,159.41
Q DISPOSAL					
		1.2 WASTEWATER	100.0000	\$1.190	119.00
S REPORT PROJEC	CT MANAGEMENT				
		S REPORT PREP & PROJ. MANAGEMENT	0.1200	\$9,107.100	1,092.85
Y WELL REPAIR					
		1.2 ADDITIONAL COPIES OF REPORT	4.0000	\$61.070	244.28
			T-4-1 A		10 100 05

Total Amount 10,199.95

Document Receipt Information

Hard Copy CD Email
Date Received 7-16-24
O 3423
Permit Number Rubert Dunn
Project Manager
Name of Contractor MECL
DescriptionGWM report
Docket Number 47 4ecl
Scanned
Verified

GROUNDWATER MONITORING REPORT

Jake Huggins DBA Outpost at Willowcreek
4925 Pamplico Highway
Florence, South Carolina
Florence County
UST Permit# 03423
CA# 65749

Prepared By:

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

July 8, 2024

MECI Project No. 24-8374

July 8, 2024

Mr. Robert Dunn, Hydrogeologist Corrective Action & Field Support Section Underground Storage Tank Division Bureau of Land and Waste Management South Carolina Department of Environmental Services 2600 Bull Street Columbia, South Carolina 29201

Subject: Groundwater Monitoring Report

Jake Huggins DBA Outpost at Willowcreek

4925 Pamplico Highway Florence, South Carolina

Florence County

UST Permit# 03423; CA# 65749

MECI Project# 24-8374

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

On behalf of BW Stokes Oil Company, Inc., Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Groundwater Monitoring Report for the referenced site. This report describes assessment activities conducted at the site and results of those activities in general accordance with South Carolina Department of Environmental Services (SCDES) guidelines, including adherence to the UST Division Programmatic Quality Assurance Program Plan (QAPP).

Midlands Environmental appreciates the opportunity to offer our professional environmental services to you on this project. Please feel free to contact us at 803-808-2043, if you have any immediate questions or comments.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist Bryan T. Shane, P.G. Principal Geologist

Cc: SCDOT, PO Box 191, Columbia, SC 29201

Linda T. Huggins, 3695 Willow Creek Road, Florence, SC 29505 Barbara M. Williams, 3309 Willow Creek Road, Florence, SC 29505 Willie B. Winchester Jr., 3101 Willow Creek Road, Florence, SC 29505 William L. Huggins, 621 Mallard Pond Road, Murrells Inlet, SC 29576

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 RECEPTOR SURVEY & SITE DATA	3
3.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYSES	5
4.0 GROUNDWATER ANALYTICAL RESULTS	7
5.0 HISTORICAL COC CONCENTRATION TRENDS	7
6.0 MONITORING SUMMARY	8
7.0 COMMENTS & RECOMMENDATIONS	9
8.0 QUALIFICATIONS OF REPORT	9

TABLE OF CONTENTS (cont.)

TABLES: Table 1 – GROUNDWATER COC CONCENTRATION DATA

Table 2 – POTENTIOMETRIC DATA

FIGURES: Figure 1 – TOPOGRAPHIC MAP

Figure 2 – SITE BASE MAP

Figure 3 – GROUNDWATER COC SITE MAP

Figure 3A – GROUNDWATER COC SITE MAP (Oxygenates)

Figure 4 – POTENTIOMETRIC DATA SITE MAP (Groundwater Contour / "Shallow" Zone) Figure 4A – POTENTIOMETRIC DATA SITE MAP (Groundwater Contour / "Deep" Zone)

Figure 5 – BENZENE ISOPLETH ("Shallow" Zone)

Figure 5A - NAPHTHALENE ISOPLETH ("Shallow" Zone)

Figure 5B – MTBE ISOPLETH ("Shallow" Zone)

**APPENDIX A - SITE SURVEY

APPENDIX B - SAMPLING LOGS, LABORATORY DATA SHEETS AND CHAIN OF CUSTODY FORMS

**APPENDIX C – TAX MAP DATA

**APPENDIX D – SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS

**APPENDIX E – WELL LOGS & 1903 FORMS

**APPENDIX F – AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G - DISPOSAL MANIFESTS

**APPENDIX H – LOCAL ZONING REGULATIONS

**APPENDIX I – FATE & TRANSPORT MODELING

**APPENDIX J – ACCESS AGREEMENTS

APPENDIX K – DATA VERIFICATION CHECKLIST

APPENDIX L – DETAILED RECEPTOR INFORMATION

APPENDIX M - MANN-KENDALL STATISTICAL ANALYSES

NOTE: ITEMS LISTED WITH AN ** BESIDE IT WERE NOT NEEDED AS A PART OF THIS SCOPE OF WORK

1.0 INTRODUCTION

i. Facility Information

Name: Jake Huggins DBA Outpost at Willowcreek

UST Permit# 03423

Address: 4925 Pamplico Highway, Florence SC 29505

Telephone #: N/A

ii. Owner/Operator Information

Name BW Stokes Oil Company, Inc.

Address P.O. Box 1656, Florence, SC 29503

Telephone # (843) 621-5865

iii. Property Owner Information

Name Barbara Williams

Tax Map #: Florence County Tax Map #: 00213-01-019

Address 3309 Willow Creek Road, Florence, SC 29505

Telephone # (843) 662-0808

iv. Contractor Information

Name: Midlands Environmental Consultants, Inc.

Certification #: 9

Address: P. O. Box 854, Lexington, SC 29072

Telephone #: (803) 808-2043

v. Well Driller Information

Name: N/A

Certification #: N/A

Address: N/A

Telephone #: N/A

vi. Laboratory Information

Name: Pace Analytical Services, LLC.

Certification #: 99006001

Address: 9800 Kincey Ave. Suite 100, Huntersville, NC 28078

Telephone #: (704) 875-9092

vii. Facility History

Release Date:	Release #1 reported 2/26/2002
Estimated Quantity of Release:	Unknown
Other Releases at Facility:	Release #2 (NFA'd 7/28/2020)
Release Ranking:	2BB
Current Site Usage:	Residence (SCDOT Right of Way)

Tank #	Capacity/Product	In Use/Abandoned	Tank Status
1	2,000 Gal. Regular/Unleaded Gasoline	Abandoned	Removed (6/30/2016)
2	4,000 Gal. Gasoline Plus	Abandoned	Removed (6/30/2016)
3	6,000 Gal. Gasoline Super/Premium	Abandoned	Removed (6/30/2016)
4	3,000 Gal. Regular/Unleaded Gasoline	Abandoned	Removed (6/30/2016)
5	500 Gal. Kerosene	Abandoned	Removed (6/30/2016)

The following table presents previous site activities performed at the site:

Date	Assessment Type	Notes:
Pre 2008	Unknown MWI	Completed by unknown contractor. Installation of MW-1 through MW-4.
8/26/2008	Tier II Assessment	Completed by Davis & Brown. Monitoring wells MW-5, MW-6 installed. MW-5 installed as IGWA associated with second release. Analytical results from MW-1, MW-4, MW-5 and MW-6 were above RBSL for Benzene, MTBE, Naphthalene.
5/12/2009	Tier II Assessment	Completed by Davis & Brown. Installation of MW-7 through MW-22, MW-1D, and MW-2D. Multiple wells detected concentrations above RBSL's.
6/4/2015	Groundwater Sampling Event	Completed by Davis & Brown. Monitoring wells MW-14 through 20 and MW-2D reported destroyed. Multiple wells detected concentrations above RBSL's.
Circa 2016	DOT Construction	SCDOT widening destroys remaining well network.
3/7/2022	Tier II Assessment	Completed by MECI. This assessment included field screening of soil and groundwater samples, the installation of monitoring wells MW-1 thru MW-10 and DW-1 thru DW-4, sampling and chemical analysis of monitoring wells and nearby receptors and aquifer slug test.
1/9/2023	Groundwater Sampling Event	Completed by MECI.
4/14/2023	Groundwater Sampling Event	Completed by MECI.
7/14/2023	Groundwater Sampling Event	Completed by MECI.
10/16/2023	Groundwater Sampling Event	Completed by MECI.

viii. Regional Geology and Hydrogeology

The site is located in the Coastal Plain Physiographic Province, which is generally comprised of Upper Cretaceous to present aged, wedge-shaped formations that begin at the "Fall Line" and dip towards the Atlantic Ocean with ground surface elevations typically less than 300 feet. The sedimentary soils of these formations consist of unconsolidated sand, clay, gravel, marl, cemented sands, and limestone that were deposited unconformably over Mesozoic/Paleozoic age basement rock consisting of granite, schist, and gneiss similar to the rocks of the Piedmont Physiographic Province. The thickness of the Coastal Plain sediments varies from zero at the "Fall Line" to more than 4,000 feet at the southern tip of South Carolina near Hilton Head Island.

The Coastal Plain province was formed during Quaternary, Tertiary, and late Cretaceous geologic periods and can be divided generally into three subunits: Upper Coastal Plain, Middle Coastal Plain, and Lower Coastal Plain. The Lower Coastal Plain comprises approximately one-half of the entire Atlantic Coastal Plain of South Carolina and is separated from the middle coastal plain by the Surry Scarp, a seaward facing scarp with a toe elevation of 90 to 100 feet. The Middle Coastal Plain and the Upper Coastal Plain each compose approximately one fourth of the Coastal Plain

area and are separated by the Orangeburg Scarp, a seaward facing scarp with a toe elevation of 250 to 270 feet.

The Lower Coastal Plain is typically identified as the area east of the Surry Scarp below elevation 100 feet, with a vertical stratigraphic sequence overlying the basement rock consisting of unconsolidated Cretaceous, Tertiary, and Quaternary sedimentary deposits. The surface deposits of the Lower Coastal Plain were formed during the Quaternary period which was characterized by the formation of the Carolina Bays and scarps throughout the east coast due to sea level rise and fall, the formation of the barrier islands, and the formation of flood plains from major rivers. Preceding the Quaternary period, limestone was deposited in the Lower Coastal Plain.

The Middle Coastal Plain is typically identified as the area between the Orangeburg Scarp and the Surry Scarp and falls between elevation 100 feet and 270 feet. The vertical stratigraphic sequence overlying the basement rock consists of unconsolidated Cretaceous and Tertiary sedimentary deposits formed as a result of scouring from the regressive cycles of the Ocean as it retreated. During the Eocene epoch of the Tertiary period, limestone was deposited in the Middle Coastal Plain.

The Upper Coastal Plain is typically identified as the area between the "Fall Line" and the Orangeburg Scarp and falls between elevations 270 feet and 300 feet. The Upper Coastal Plain was formed during the Tertiary and late Cretaceous periods and is marked by the formation of the Sandhills dunes as a result of fluvial deposits over the Coastal Plain consisting of marine sediments, limestone, and sand.

Coastal Plain formations generally dip toward the Atlantic Ocean. Consequently, regional groundwater movement is to the southeast. On a regional scale, hydraulic gradients are relatively low. Locally, in the surficial aquifer, groundwater discharges into streams, lakes or springs where the groundwater table intersects lows occupied by these water bodies.

2.0 RECEPTOR SURVEY & SITE DATA

i. Known Potential Receptors

Receptor ID#	Notes
WSW-1	WSW-1 is located approximately 1,400' feet west-north of MW-8 at 3101 Willow Creek Road. Samples have historically been collected from the spigot on the water supply which is located inside one of the bran buildings at the property. GPS: 34.096044, -79.701503
WSW-2	WSW-2 is located approximately 1,000' feet west of MW-8 at 3119 Willow Creek Road. Samples have historically been collected from the spigot on the water supply. GPS: 34.095156, -79.700508
WSW-3	WSW-3 is located approximately 650' feet northeast of MW-8 at 4905 Legettes Road. Well Disconnected; Unable to sample with bailer due to metal elbow at well head. GPS: 34.096743, -79.696040
Possible WSW	According to Ms. Williams, there is no well on the property.
Possible WSW	According to Ms. Williams, there is no well on the property.
SW-1	Sampled collected from drainage ditch adjacent to MW-8. GPS: 34.095076, -79.696772
SW-2	Sampled collected from drainage ditch adjacent to MW-2. GPS: 34.095847, -79.697296
SW-3	Sampled collected approximately 420' west of MW-8 from a stream. GPS: 34.094620, -79.698172
SW-4	Sampled collected approximately 500' west-northwest of MW-8 from a stream. GPS: 34.095389, -79.698409
SW-5	Sampled collected approximately 630' west-northwest of MW-8 from a stream. GPS: 34.096050, -79.698577
SW-6	Sampled collected approximately 950' northwest of MW-8 from a stream. GPS: 34.096699, -79.699359

Underground Utilities

Known underground utilities at the site include buried water, gas and telecommunication lines. Utilities are buried approximately 2'-4' feet below ground surface (BGS).

ii. Receptor Survey Results

A receptor survey was not requested as part of the approved cost agreement.

iii. Site/Adjacent Land Usage (Residential, Commercial, Agricultural, Industrial, etc.)

Site	Residential
North	Residential
South	Agricultural
East	Agricultural
West	Residential
Permit #'s of UST Sites within 1,000' feet of site	N/A

iv. Site Specific Geology and Hydrogeology

The mean elevation of the property as depicted on the local USGS quadrangle (Evergreen, SC) appears to be approximately 33 meters (108 feet) above sea level. The subject site is located in the Middle Coastal Plain. According to Newell et al. (In Review), the subject site is located in the Bear Bluff Formation. The Bear Bluff Formation is a Pliocene age unit described as consisting of gray to cream, fossiliferous, coarse-grained calcareous sand and sandy limestones.

Coastal plain sediments were encountered during drilling activities conducted at the site during previous assessment activities. A generalized vertical profile to the investigated depth of 35' feet below ground surface (BGS) is as follows:

Depth (Feet BGS)	Generalized Soil Description
0.0'-6.0'	Brown/Yellow Fine SAND
6.0'-16.0'	Pink/Grey Silty Fine SAND
16.0'-34.0'	Tan, Medium SAND
34.0'-35.0'	Dark Grey, Fine Sandy CLAY

The following table presents grain size distribution results from samples analyzed for grain size during previous assessment activities:

Sample ID#	Sample Depth	% Gravel	% Coarse Sand	% Medium Sand	% Fine Sand	% Silt	% Clay
03423-SB01	8'-10'	0	0	38.0	40.2	4.2	17.6
03423-SB01	24'-26'	0	3.0	44.0	45.5	3.2	4.3
03423-SB01	32'-34'	0	4.0	3.0	3.7	49.7	39.6

On June 24, 2024, stabilized groundwater levels were measured in the monitoring well network. Depth to groundwater ranged from 3.03 feet below top of casing (BTOC) to 4.60 feet BTOC in the wells measured. The groundwater measurements are summarized in tabular form in Table 2 and presented on Figure 4/4A.

The potentiometric surface indicates that the groundwater flow beneath the site is generally to the northwest, toward drainage features associated with the Little Willow Creek. The February 2022 horizontal gradient was calculated to be approximately 0.0118 foot per foot (ft/ft). Calculated average groundwater flow velocities based on aquifer testing was determine to be approximately 97.98 feet per year (ft/yr.).

Based on comparison between the "deep" wells and the close by water table bracketing monitoring wells, the vertical gradient appears to be generally flat.

3.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYSES

On June 24, 2024, MECI personnel collected groundwater samples from fourteen (14) monitoring wells, two (2) surface water locations and two (2) water supply wells at the subject site. During sampling activities, surface water location SW-3, SW-4, SW-5 and SW-6 were found to be dry and water supply well WSW-3 was unable to be sampled due to the well being inactive with no electrical supply. As approved SCDES, only monitoring wells which did not bracket the water table were to be purged prior to sample collection. Four (4) monitoring wells were purged prior to sample collection.

Prior to sampling, MECI personnel utilized an electronic water level indicator for water level measurements and an oil/water interface probe for free phase petroleum product level measurements. Where applicable, purging was completed by bailing at least five well volumes of water from the well, or until all water was evacuated from the well, whichever occurred first. Sampling/purging was completed utilizing a prepackaged, clear, disposable polyethylene bailer and nylon rope. A new set of nitrile gloves were worn at each monitoring well, and at all time samples were handled. Field measurements of pH, conductivity, dissolved oxygen, and water temperature were obtained before well sampling process. MECI utilized YSIPro20 meter for DO (mg/L) and temperature readings (°C) and YSI Pro 1030 meter for pH and conductivity (uS) readings and a MicroTPI turbidimeter for turbidity readings (NTU). The attached Monitoring Well Purge and Sampling Data Sheets present the results of the field measurements obtained. The wells were sampled in accordance with the most recent revision of SCDES's Quality Assurance Program Plan for the Underground Storage Tank Management Division and the most recent revision of MECI's Standard Operating Procedures.

Groundwater samples obtained were sent to Pace Analytical Services, Inc. of Huntersville, NC (SCDES Laboratory Certification #99006001) for analysis.

The following sampling matrix contains well development and requested analyses for each well:

Sample ID	Purge	No Purge	Sampled Below Product	Duplicate/Field Blank	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260D)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260D)	8 Oxygenates (EPA Method 8260D)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
							Analyte Sampled						
MW-1		X					X	X	X	X			
MW-2		X					X	X	X	X			

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dichloroethane EDB = Ethylene Dibromide

Sample ID	Purge	No Purge	Sampled Below Product	Duplicate/Field Blank	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260D)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260D)	8 Oxygenates (EPA Method 8260D)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									Ar	nalyte Sampl	led		
MW-3		X					X	X	X	X			
MW-4		X					X	X	X	X			
MW-5		X					X	X	X	X			
MW-6		X					X	X	X	X			
MW-7		X					X	X	X	X			
MW-8		X					X	X	X	X			
MW-9		X					X	X	X	X			
MW-10		X					X	X	X	X			
DW-1	X						X	X	X	X			
DW-2	X						X	X	X	X			
DW-3	X						X	X	X	X			
DW-4	X						X	X	X	X			
SW-1		X					X	X	X	X			
SW-2		X					X	X	X	X			
SW-3					X								
SW-4					X								
SW-5					X								
SW-6					X								
DUP-1				X			X	X	X	X			
Field Blank				X			X	X	X	X			
Trip Blank							X		X	X			
WSW-1										X		X	X
WSW-2										X		X	X
WSW-3					X								
DUP.				X						X		X	X
Field Blank				X						X		X	X
Trip Blank									_	X		X	
Notes: BTEX = Benzer	ie, Tolue	ene, Eth	ylbenzei	1e, & To	otal Xyle	nes				A		A	

MTBE=Methyl tertiary butyl ether

1,2 DCA = 1,2 Dichloroethane EDB = Ethylene Dibromide

The results of the laboratory analyses are summarized in Table 1 and presented in Appendix B.

Purge water produced by the purging process was treated on-site utilizing a granular activated carbon unit. A total of 33.00 gallons of purge water was disposed of in this manner. A disposal manifest for the referenced purge water is attached in Appendix G and the required post-GAC laboratory results in presented in Appendix B.

4.0 GROUNDWATER ANALYTICAL RESULTS

Free phase petroleum product was not detected in any of the monitoring wells during sampling activities. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-8. Of the eighteen sampling locations analyzed, eight monitoring wells (MW-1, MW-2, MW-5, MW-6, MW-8, MW-10, DW-1 and DW-4) detected petroleum constituents above Risk-Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL (ug/l)	Wells Above RBSL
Product	0.01'	N/A
Benzene	5	MW-1, MW-2, MW-6, MW-8, MW-10 & DW-4
Toluene	1,000	MW-8
Ethylbenzene	700	MW-8
Total Xylenes	10,000	MW-8
Naphthalene	25	MW-1, MW-8 & MW-10
MTBE	40	MW-1, MW-2, MW-5, MW-6, MW-8, MW-10 & DW-1
1,2 DCA	5	N/A
EDB	0.05	N/A
TAA	240	MW-1 & MW-10
TAME	128	N/A
ETBA	NE	RBSL Not Established
TBA	1,400	N/A
TBF	NE	RBSL Not Established
DIPE	150	MW-1 & MW-6
Ethanol	10,000	N/A
ETBE	47	N/A

The analytical results from the remainder of the sampling points did not indicate petroleum impact above the RBSL. Results of the analyses for each sampling point and specific parameters are listed on Table 1 and provided in Appendix B.

5.0 HISTORICAL COC CONCENTRATION TRENDS

Fourteen monitoring wells were included in the groundwater sampling program established for the site. Six monitoring wells (MW-3, MW-4, MW-7, MW-9, DW-2 and DW-3) exhibited results below the established RBSL. Mann-Kendall statistical analyses of the Chemicals of Concern (CoC's) with historical concentrations above the RBSL were completed utilizing the GIS Environmental Mann-Kendall Toolkit. The statistical analysis compares historical CoC results to determine if there is an increasing, decreasing, stable or not trend to the data. If the analytical results were non-detect (ND) the reporting limit was used. The analyses included analytical data for Benzene (MW-1, MW-2, MW-6, MW-8, MW-10 and DW-4), Toluene (MW-8 and DW-4), Ethylbenzene (MW-8 and MW-10), Xylenes (MW-8), Naphthalene (MW-1, MW-2, MW-6, MW-7, MW-8, MW-10 and DW-4), MTBE (MW-1, MW-2, MW-5, MW-6, MW-8, MW-10, DW-1 and DW-4), TAA (MW-1, MW-2, MW-6, MW-7, MW-8, MW-10 and DW-4) and DIPE (MW-1, MW-8 and MW-10). The statistical analyses show:

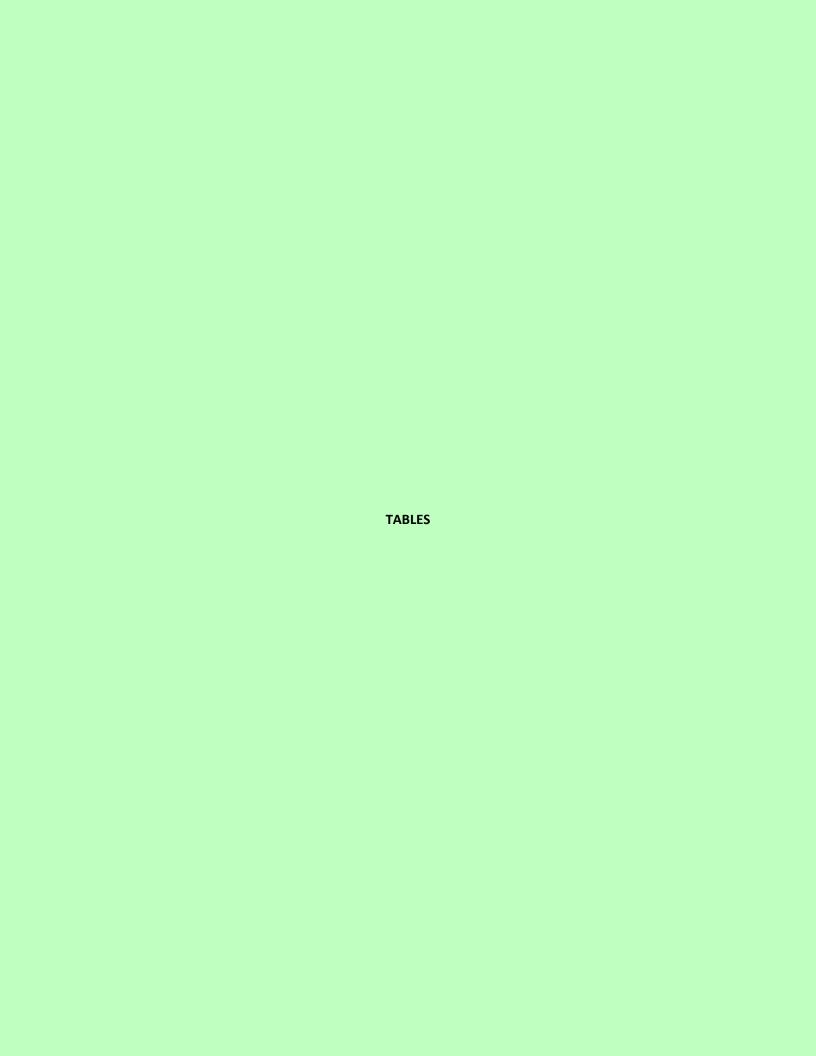
Benzene –decreasing (MW-2 and MW-6), probably decreasing (MW-10) and no trend (MW-1, MW-8 and DW-4).

- Toluene –no trend (MW-8 and DW-4).
- Ethylbenzene stable (MW-10) and no trend (MW-8).
- Xylenes no trend (MW-8)
- Naphthalene decreasing (MW-2 and MW-6), probably decreasing (MW-1), stable (MW-8 and MW-10) and no trend (MW-7 and DW-4).
- MTBE increasing (MW-5), decreasing (MW-2), probably decreasing (MW-10) and no trend (MW-1, MW-6, MW-8, DW-1 and DW-4).
- TAA decreasing (MW-2), probably decreasing (MW-10), stable (MW-6) and no trend (MW-1, MW-7, MW-8 and DW-4).
- DIPE increasing (MW-8) and no trend (MW-1 and MW-10).

6.0 MONITORING SUMMARY

- Groundwater flow is primarily to the northwest, toward drainage features associated with the Little Willow Creek.
- Free phase petroleum product was not detected in any of the monitoring wells during sampling activities.
- Fourteen groundwater monitoring wells, two surface water locations and two water supply wells were sampled on June 24, 2024. Petroleum compounds were detected above RBSL's in groundwater monitoring wells MW-1, MW-2, MW-5, MW-6, MW-8, MW-10, DW-1 and DW-4. Compounds above the established RBSL's include Benzene, Toluene, Ethylbenzene, Total Xylenes, Naphthalene, MTBE, TAA and DIPE.
- The analytical results also reported petroleum constituents above the laboratory method detection limit and/or "J" values in samples collected from DW-2, WSW-1 and WSW-2; however, the concentrations did not exceed the RBSL.
- Analytical results did not indicate petroleum impact in any of the samples collected from the surface water locations or water supply wells sampled. Samples were unable to be collected from surface water locations SW-3, SW-4, SW-5 and SW-6 due to the areas being found dry and water supply well WSW-3 due to the well being inactive.
- In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed batch samples. The duplicated samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the Relative Percent Differences (RPD) between each pair of samples. The RPD control limit for the groundwater samples is 20%. Duplicate samples were collected from the parent samples of MW-8 and WSW-2. The precision for the target analytes were met for these sample pairs and the analytical results detected the same compounds at similar concentrations. Furthermore, field blanks and trip blanks were collected and submitted during the groundwater sampling

activities. No detectable concentrations of the requested method constituents were reported in any of the field or trip blanks associated with the monitoring wells or surface water samples. Low levels of Toluene (0.56 μ g/l and 0.59 μ g/l) were detected in the field blank and trip blank associated with the water supply well samples; however, low levels of Toluene should not affect the data usability and these low levels are most likely due to laboratory error and/or carryover.


7.0 COMMENTS & RECOMMENDATIONS

- Since February of 2022, increasing trends in MTBE to be appear to be occurring in MW-5 and increasing trends in DIPE appear to be occurring in MW-8. Overall, the Mann-Kendall statistical analyses show a decreasing or stable trends in MW-2, MW-6 and MW-10. No trends have been established to date in MW-1, MW-7, DW-1 and DW-4.
- Data gaps currently persist horizontally north of MW-5, west of MW-5/MW-6 and south of MW-8. With the exception of the southerly direction from MW-8/DW-4, it appears these data gaps persist due to property access issues encountered at the site in 2022.
- MECI concurs with SCDES that further definition of the plume is not warranted at this time.
- MECI request the site be modeled to current site conditions and the Site-Specific Target Levels (SSTL's) be relinquished to our office. Based on the modeling, MECI will be able to better evaluate site rehabilitation needs.

8.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in hydrogeological assessment and waste management projects of this type. Our evaluation of site conditions has been based on our understanding of the site, project information provided to us, and data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpretation of subsurface data between borings. Contents of this report are intended for the sole use of BW Stokes Oil Company, Inc., SCDES and MECI under mutually agreed upon terms and conditions. If other parties wish to rely on this report, please contact MECI prior to their use of this information so that a mutual understanding and agreement of the terms and conditions of our services can be established.

-oOo-

																USIPE	KIVII 1# U3423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Naphthalene (µg/L)	MTBE (µg/L)	1, 2 DCA (μg/l)	EDB (µg/L)	ТАА (µg/L)	TAME (µg/L)	ETBA (µg/l.)	ТВА (µg/L)	TBF (μg/L)	DIPE (µg/L)	Ethanol (µg/L)	ETBE (µg/L)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	2/15/2022	624	19.3	158	67.9	78.7	264	<0.250	<0.00512	3030	56.9	<7.00	169	<6.90	160	<50.0	<0.720
	1/9/2023	620	16.4	74.1	16.9	66.0	342	<1.6	<0.0075	3770	60.6	<260	200 J	<147	191	<361	<16.2
	4/14/2023	749	11.5 J	39.7	<25.0	51.1	343	<10.3	<0.0073	4640	59.9	<270	<455	<120	178	<720	<42.3
03423-MW01	7/14/2023	964	10.4 J	23.8 J	<25.0	49.9	465	<10.3	<0.0075	4830	78.2	<270	<455	<120	268	<720	<42.3
	10/16/2023	1100	<20.1	<18.4	<50.0	66.5	488	<20.6	<0.0074	5340	82.9 J	<539	<910	<241	297	<1440	<84.6
	6/24/2024	695	<10.0	10.2 J	<25.0	44.0	306	<10.3	<0.0078	3560	59.3	<270	<455	<120	176	<720	<42.3
	2/15/2022	203	<0.250	0.522 J	1.34	25.7	405	<0.250	<0.00515	442	26.9	<7.00	83.3	<6.90	78.2	<50.0	<0.720
	1/9/2023	122	<0.97	<0.61	<0.68	10.9	256	<0.64	< 0.0074	233	14.6 J	<104	<53.6	<58.8	44.4	<144	<6.5
00400 MMM00	4/14/2023	90.2	<4.0	<3.7	<10.0	10.2	195	<4.1	< 0.0074	225	10.5 J	<108	<182	<48.2	33.0	<288	<16.9
03423-MW02	7/14/2023	95.2	<4.0	<3.7	<10.0	8.8 J	178	<4.1	< 0.0077	141 J	9.0 J	<108	<182	<48.2	36.2	<288	<16.9
	10/16/2023	76.3	<4.0	<3.7	<10.0	4.4 J	200	<4.1	< 0.0075	<131	8.7 J	<108	<182	<48.2	30.8	<288	<16.9
	6/24/2024	23.5	<2.0	<1.8	<5.0	<2.1	122	<2.1	<0.0077	<65.6	5.3 J	<53.9	<91.0	<24.1	26.4	<144	<8.5
	2/15/2022	<0.270	3.15	0.279 J	<0.230	<2.40	1.95 J	<0.250	<0.00486	<8.60	<0.780	<7.00	<6.90	<6.90	0.893 J	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	1.1	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	0.61 J	<72.2	<3.2
03423-MW03	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
00.20	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0077	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0078	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	0.252 J	1.91	<2.40	<0.810	<0.250	<0.00509	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-MW04	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023 10/16/2023	<1.7 <1.7	<2.0 <2.0	<1.8 <1.8	<5.0 <5.0	<2.1 <2.1	<3.1	<2.1 <2.1	<0.0074	<65.6 <65.6	<3.0 <3.0	<53.9 <53.9	<91.0 <91.0	<24.1	<3.5	<144 <144	<8.5 <8.5
	6/24/2024	<1.7 <1.7	<2.0	<1.8	<5.0 <5.0	<2.1 <2.1	<3.1 <3.1	<2.1 <2.1	<0.0076 <0.0081	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1 <24.1	<3.5 <3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	14.3	<0.250	<0.00519	<8.60	<0.780	<7.00	<6.90	<6.90	3.06 J	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	22.2	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	3.8	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	22.3	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	4.1 J	<144	<8.5
03423-MW05	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	23.4	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	2.9 J	59.5	<2.1	<0.0071	<65.6	<3.0	<53.9	<91.0	<24.1	8.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	45.6	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	5.4	<144	<8.5
	2/15/2022	356	30.1	134	11.6	87.5	166	<1.25	<0.00497	2410	46.4	<35.0	86.6 J	<34.5	122	<250	<3.60
	1/9/2023	83.3	4.6	4.5	3.3	26.7	126	<0.32	<0.0076	1640	29.6	<51.9	52.4 J	<29.4	88.1	<72.2	<3.2
00400 10465	4/14/2023	68.1	2.9 J	3.3 J	<5.0	23.0	132	<2.1	< 0.0072	1570	26.1	<53.9	<91.0	<24.1	80.1	<144	<8.5
03423-MW06	7/14/2023	45.4	4.1 J	6.0	<5.0	20.4	167	<2.1	< 0.0073	1960	34.7	<53.9	<91.0	<24.1	117	<144	<8.5
	10/16/2023	38.5	2.6 J	<1.8	<5.0	14.6	156	<2.1	< 0.0075	1930	28.6	<53.9	<91.0	<24.1	111	<144	<8.5
	6/24/2024	17.3	4.8 J	<3.7	<10.0	11.2	241	<4.1	< 0.0073	<131	40.2	<108	<182	<48.2	151	<288	<16.9

																UST PEF	RMIT# 03423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	Naphthalene (μg/L)	MTBE (µg/L)	1, 2 DCA (µg/L)	EDB (µg/L)	TAA (µg/L)	TAME (Hg/L)	ETBA (µg/L)	TBA (µg/L)	TBF (µg/L)	DIPE (μg/L)	Ethanol (µg/L)	ETBE (µg/L)
		RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL
	2/15/2022	5 37.2	1,000 0.699 J	700 82.1	10,000 3.95	25 58.3	40 15.8	5 <0.250	0.05 <0.00492	240 1030	128 4.67	NE <7.00	1,400 31.3 J	NE <6.90	20.3	10,000 <50.0	47 <0.720
	1/9/2023	< 0.34	<0.48	1.8	<0.34	4.3	1.4	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	1.6	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW07	7/14/2023	<1.7	<2.0	4.4 J	<5.0	15.1	3.6 J	<2.1	<0.0074	77.7 J	<3.0	<53.9	<91.0	<24.1	4.2 J	<144	<8.5
	10/16/2023	<1.7	<2.0	14.0	<5.0	18.6	4.7 J	<2.1	<0.0075	166	<3.0	<53.9	<91.0	<24.1	6.0	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	3720	21100	2200	12800	781	690	<12.5	0.121	8690	127	<350	370 J	<345	268 J	<2500	<36.0
	1/9/2023	4390	22300	2080	13300	766	531	<40.2	<0.0075	8510 J	<332	<6490	<3350	<3680	239	<9020	<405
03423-MW08	4/14/2023	3620	19200	1840	10800	661	435 J	<258	<0.0074	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
03423-1010000	7/14/2023	3110	12600	1920	10000	558 J	<388	<258	<0.0073	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
	10/16/2023	5330	27500	2810	16200	975 J	1000 J	<412	<0.0075	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	6/24/2024	4760	25300	2570	13400	778 J	696 J	<412	<0.0074	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	2/15/2022	0.278 J	3.89	4.80	27.4	<2.40	<0.810	<0.250	<0.00494	77.4	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-MW09	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0070	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024 2/15/2022	<1.7 1070	<2.0	<1.8	<5.0 2380	<2.1	<3.1 510	<2.1 <12.5	<0.0074	<65.6	<3.0 120	<53.9	<91.0 <345	<24.1	<3.5	<144	<8.5
	1/9/2023	2060	297 439	753 1100	2640	342 455	865	<4.0	<0.00507 <0.0077	7950 11100	168	<350 <649	535 J	<345 <368	339 J 555	<2500 <902	<36.0 <40.5
	4/14/2023	634	49.9	428	308	216	260	<10.3	<0.0077	3350	56.9	<270	<455	<120	165	<720	<42.3
03423-MW10	7/14/2023	79.3	15.1 J	329	116	143	25.4	<10.3	<0.0075	<328	<15.2	<270	<455	<120	17.6 J	<720	<42.3
	10/16/2023	299	83.8	503	747	244	112	<10.3	<0.0074	1460	22.5 J	<270	<455	<120	68.1	<720	<42.3
	6/24/2024	227	66.5	465	789	256	110	<10.3	<0.0074	1350	<15.2	<270	<455	<120	75.3	<720	<42.3
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00529	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	52.9	<0.32	< 0.0076	<36.4	4.2 J	<51.9	<26.8	<29.4	15.2	<72.2	<3.2
02402 DW04	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0072	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW01	7/14/2023	3.4 J	<2.0	<1.8	<5.0	<2.1	144	<2.1	<0.0075	<65.6	9.6 J	<53.9	<91.0	<24.1	40.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	129	<2.1	<0.0073	<65.6	7.3 J	<53.9	<91.0	<24.1	34.2	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	73.2	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	22.0	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	7.40	<0.250	<0.00510	<8.60	<0.780	<7.00	<6.90	<6.90	2.61 J	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	6.1	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	2.0	<72.2	<3.2
03423-DW02	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	5.2	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	19.9	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	3.7 J	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	36.2	<2.1	<0.0076	<65.6	<3.0	<53.9	<91.0	<24.1	5.6	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	24.0	<2.1	<0.0072	<65.6	<3.0	<53.9	<91.0	<24.1	3.8 J	<144	<8.5
	2/15/2022	<0.270 <0.34	<0.250 <0.48	<0.200 <0.30	<0.230 <0.34	<2.40 <0.64	<0.810	<0.250	<0.00485 <0.0077	<8.60 <36.4	<0.780 <2.7	<7.00 <51.9	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023 4/14/2023	<0.34 <1.7	<0.48 <2.0	<1.8	<0.34 <5.0	<0.64 <2.1	<0.42 <3.1	<0.32 <2.1	<0.0077	<36.4 <65.6	<3.0	<51.9 <53.9	<26.8 <91.0	<29.4 <24.1	<0.31 <3.5	<72.2 <144	<3.2 <8.5
03423-DW03	7/14/2023	<1.7 <1.7	<2.0	<1.8	<5.0 <5.0	<2.1 <2.1	<3.1	<2.1 <2.1	<0.0074	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	<3.5 <3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0 <5.0	<2.1	<3.1	<2.1	<0.0076	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	67.5	1890	611	4230	181	<0.810	<0.250	<0.00489	<8.60	<0.780	<7.00	<6.90	<6.90	1.69 J	<50.0	<0.720
	1/9/2023	63.6	464	20.1	291	<2.6	51.8	<1.3	<0.0077	422	<10.6	<208	<107	<118	21.2	<289	<13.0
00400 51404	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW04	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	341	359	98.9	1630	72.7	153	<8.2	<0.0075	913	20.9 J	<216	<364	<96.4	54.4	<576	<33.8
	6/24/2024	6.0	30.8	3.5 J	24.4	3.8 J	11.5	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	5.0 J	<144	<8.5
03423-TW01*	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	< 0.250	< 0.00636	<8.60	<0.780	<7.00	<6.90	<6.90	< 0.700	<50.0	<0.720

Well ID#	Sample Date	RBSL	Benzene	Benze Benze BBSL 5	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Naphthalene (µg/L)	MTBE (µg/L)	1, 2 DCA (µg/L)	EDB (μg/L)	TAA (μg/L)	TAME (μg/t)	ETBA (µg/l.)	ТВА (µg/L)	TBF (μg/L)	DIPE (µg/L)	Ethanol (µg/L)	ETBE (µg/L)
			RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47		
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00503	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023	< 0.34	<0.48	<0.30	0.43 J	<0.64	<0.42	< 0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
00400 01404	4/14/2023	< 0.34	0.98 J	< 0.30	< 0.34	< 0.64	0.68 J	< 0.32	<0.0078	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-SW01	7/14/2023	< 0.34	0.52 J	< 0.30	< 0.34	< 0.64	< 0.42	< 0.32	< 0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	10/16/2023	< 0.34	<0.48	<0.30	< 0.34	<0.64	< 0.42	< 0.32	< 0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	6/24/2024	< 0.34	<0.48	<0.30	<0.34	<0.64	< 0.42	< 0.32	< 0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	2/15/2022	<0.270	< 0.250	<0.200	<0.230	<2.40	0.832 J	< 0.250	<0.00494	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	1.2	< 0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	0.49 J	<72.2	<3.2		
03423-SW02	4/14/2023	< 0.34	<0.48	< 0.30	<0.34	<0.64	< 0.42	< 0.32	< 0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-37702	7/14/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	0.63 J	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	10/16/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	< 0.42	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	6/24/2024	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00497	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-SW03	4/14/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-34403	7/14/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	10/16/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY		
	2/28/2022	<0.270	15.9	0.228 J	<0.230	<2.40	<0.810	<0.250	<0.00492	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0080	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-SW04	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
00.20 0	7/14/2023	<0.34	0.49 J	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY		
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00503	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0079	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-SW05	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	7/14/2023	<0.34	0.63 J	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0079	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY		
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00507	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023	<0.34	<0.48	<0.30	<0.34	< 0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
03423-SW06	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	7/14/2023	< 0.34	0.64 J	<0.30	<0.34	< 0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42 DRY	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2 DRY		
	6/24/2024	DRY	DRY	DRY	DRY	DRY		DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY			
	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	<0.00513	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720		
	1/9/2023 4/14/2023	<0.21 <0.21	<0.20	<0.22 <0.22	<0.22	<0.35	<0.14 <0.14	<0.16 <0.16	<0.0056	<36.4 <36.4	<2.7 <2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2 <3.2		
03423-WSW01	7/14/2023	<0.21	<0.20 0.46 J	<0.22	<0.22 <0.22	<0.35 <0.35	<0.14	<0.16	<0.0055 <0.0055	<36.4 <36.4	<2.7	<51.9 <51.9	<26.8 <26.8	<29.4 <29.4	<0.31 <0.31	<72.2 <72.2	<3.2		
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4 <36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2		
	6/24/2024	<0.21	0.48 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0060	<36.4 <36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2		
	2/15/2022	NS	0.46 J NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	<20.6 NS	NS	NS	NS	NS		
	1/9/2023	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	< 0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2		
03423-WSW02	7/14/2023	<0.21	0.45 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2		
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0054	<36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2	<3.2		
	6/24/2024	<0.21	0.63	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0054	<36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2	<3.2		

																UST PER	RMII# 0342
Well ID#	Sample Date	e Benzene (Hg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	Naphthalene (µg/L)	MTBE (µg/t)	1, 2 DCA (µg/L)	EDB (µg/L)	TAA (µg/L)	TAME (µg/L)	ETBA (µg/L)	TBA (μg/L)	TBF (με/L)	DIPE (µg/L)	Ethanol (μg/L)	ETBE (µg/L)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	2/15/2022	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/9/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/14/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
03423-WSW03	7/14/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/24/2024	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
DUP-1 (MW10)	2/15/2022	1090	359	783	2440	325	496	<2.50	< 0.00499	7770	129	<70.0	298 J	<69.0	343	<500	<7.20
DUP. (WSW01)	2/15/2022	< 0.0820	<0.0860	<0.0990	<0.0860	< 0.430	< 0.0930	< 0.0860	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
DUP-1 (TW01)	2/28/2022	< 0.270	<0.250	<0.200	<0.230	<2.40	<0.810	< 0.250	<0.00581	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
DUP-1 (MW01)	1/9/2023	736	19.2	93.2	21.4	78.8	429	<1.6	<0.0075	4900	64.8	<260	258 J	<147	240	<361	<16.2
DUP. (WSW01)	1/9/2023	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP. (MW08)	4/14/2023	4400	21900	2110	13000	765	614 J	<258	<0.0075	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
DUP. (WSW01)	4/14/2023	<0.21	0.21 J	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP. (MW08)	7/14/2023	3350	12500	1810	9530	670	<388	<258	<0.0074	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
DUP. (WSW01)	7/14/2023	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP.(MW08)	10/16/2023	4670	23400	2430	14000	679 J	834 J	<412	<0.0075	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
DUP.(WSW01)	10/16/2023	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP-1(MW08)	6/24/2024	4520	22800	2650	12900	891 J	740 J	<412	< 0.0073	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
DUP.(WSW02)	6/24/2024	<0.21	0.50 J	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0059	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	<0.00499	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
Field Blank	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<0.21	0.25 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0053	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<0.21	0.56	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0061	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
Trip Blank	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
•	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<0.21	0.50 J	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<0.21	0.59	<0.22	<0.22	<0.35	<0.14	<0.16	NT NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
otes:	1. BDL = Below Pra	ctical Quantitative Lir	mits		8. NT = Not Tested				15. "J" values report o	concentrations above th	ne method		21. TAME = tert-Amy	ı Methyl Ether			

- 2. ug/l = micrograms per liter
- 3. mg/l = milligrams per liter
 4. MTBE = Methyl-Tertiary-Butyl Ether
- 5. See Appendix for Laboratory Detection Limits
- 6. NL = Not Located
- 7. DRY = Well was Dry at the time of Sampling

- 9. EDB = Ethylene Dibromide
- 10. 1,2 DCA = 1,2-Dichloroethane
- 11. FPP = Free Phase Petroleum Product
- * = Wells Have Been Abandoned
 * "J" Values used in Total BTEX Calculations
 * B = Detected in Method Blank

- detection limits (MDL) and below actual reporting limit (RL).
- 16. S = MS/MSD Failure
 17. P = The RPD between the two columns exceeds 40%.
- 18. DIPE = Diisopropyl Ether

 19. ETBE = Ethyl ter-butyl Ether

 20. TAA = tert-Amyl Alcohol

- 22. TBA = ter-Butyl Alcohol

 23. TBF = tert-Butyl Formate

 24. TAME = tert-Amyl Methyl Ether

- 25. * = TW-1 was a temporary well and has been abandoned.
- 26. NS = Not Sampled

 27. Bolded data is above the RBSL (Risk-Based Screening Level)

TABLE 2 POTENTIOMETRIC DATA JAKE HUGGINS JUNE 24, 2024 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 24-8374 UST PERMIT# 03423

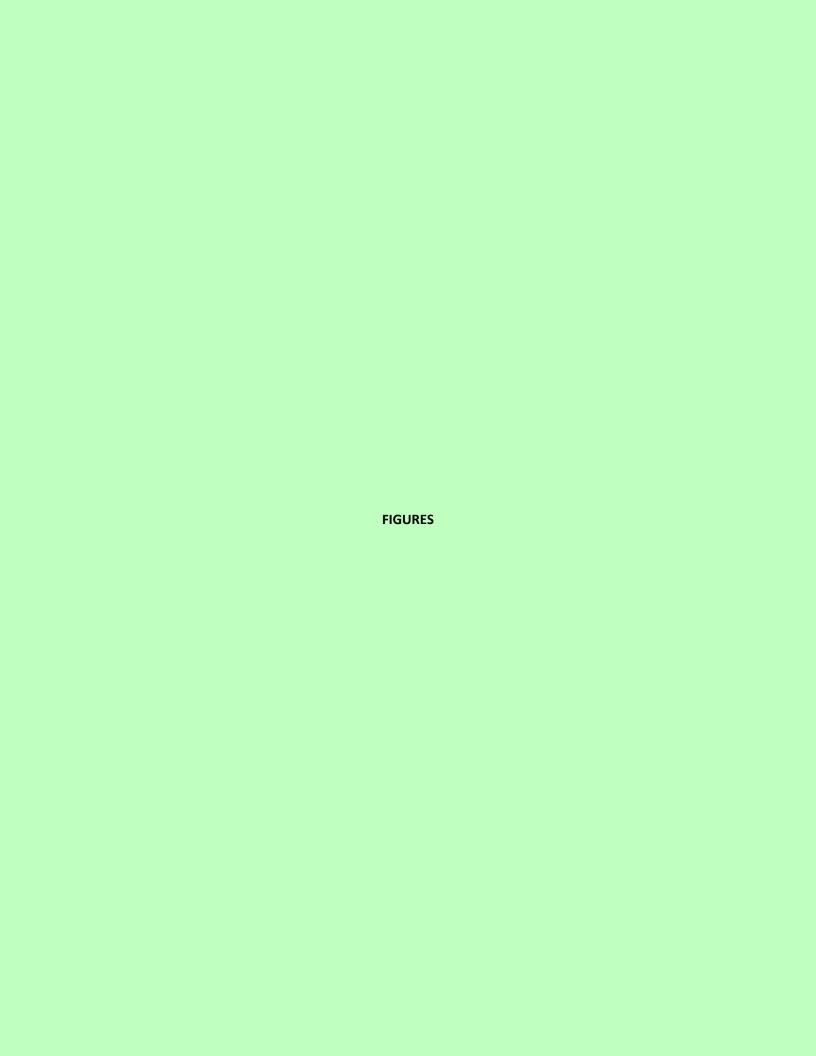
Well	Sample	Screened	Depth to	Depth to	Product	TOC	Groundwater
Number	Date	Interval	Product (ft)	Water (ft)	Thickness (ft)	Elevation	Elevation
	2/15/2022	1110011011	***	2.67	***	98.72	96.05
	1/9/2023		***	3.48	***	98.72	95.24
	4/14/2023		***	3.41	***	98.72	95.31
03423-MW01	7/14/2023	3-13	***	3.02	***	98.72	95.70
	10/16/2023		***	3.46	***	98.72	95.26
	6/24/2024		***	3.03	***	98.72	95.69
	2/15/2022		***	2.64	***	96.40	93.76
	1/9/2023		***	3.25	***	96.40	93.15
00400 141400	4/14/2023	0.40	***	3.23	***	96.40	93.17
03423-MW02	7/14/2023	3-13	***	3.04	***	96.40	93.36
	10/16/2023		***	3.28	***	96.40	93.12
	6/24/2024		***	3.02	***	96.40	93.38
	2/15/2022		***	2.42	***	94.95	92.53
	1/9/2023		***	3.15	***	94.95	91.80
00400 141400	4/14/2023	0.40	***	3.06	***	94.95	91.89
03423-MW03	7/14/2023	3-13	***	3.29	***	94.95	91.66
	10/16/2023		***	3.62	***	94.95	91.33
	6/24/2024		***	3.62	***	94.95	91.33
	2/15/2022		***	2.61	***	94.88	92.27
	1/9/2023		***	3.45	***	94.88	91.43
03423-MW04	4/14/2023	3-13	***	3.39	***	94.88	91.49
03423-1010004	7/14/2023	3-13	***	3.63	***	94.88	91.25
	10/16/2023		***	4.53	***	94.88	90.35
	6/24/2024		***	4.10	***	94.88	90.78
	2/15/2022		***	2.46	***	94.88	92.42
	1/9/2023		***	3.16	***	94.88	91.72
03423-MW05	4/14/2023	3-13	***	3.07	***	94.88	91.81
03423-1010003	7/14/2023	3-13	***	3.47	***	94.88	91.41
	10/16/2023		***	5.43	***	94.88	89.45
	6/24/2024		***	3.61	***	94.88	91.27
	2/15/2022		***	2.83	***	97.86	95.03
	1/9/2023		***	3.50	***	97.86	94.36
03423-MW06	4/14/2023	3-13	***	3.32	***	97.86	94.54
33 123 10000	7/14/2023		***	3.07	***	97.86	94.79
	10/16/2023		***	3.24	***	97.86	94.62
	6/24/2024		***	3.05	***	97.86	94.81
	2/15/2022		***	2.91	***	100.29	97.38
	1/9/2023		***	3.98	***	100.29	96.31
03423-MW07	4/14/2023	3-13	***	3.78	***	100.29	96.51
23.20	7/14/2023		***	3.54	***	100.29	96.75
	10/16/2023		***	4.44	***	100.29	95.85
	6/24/2024		***	3.95	***	100.29	96.34

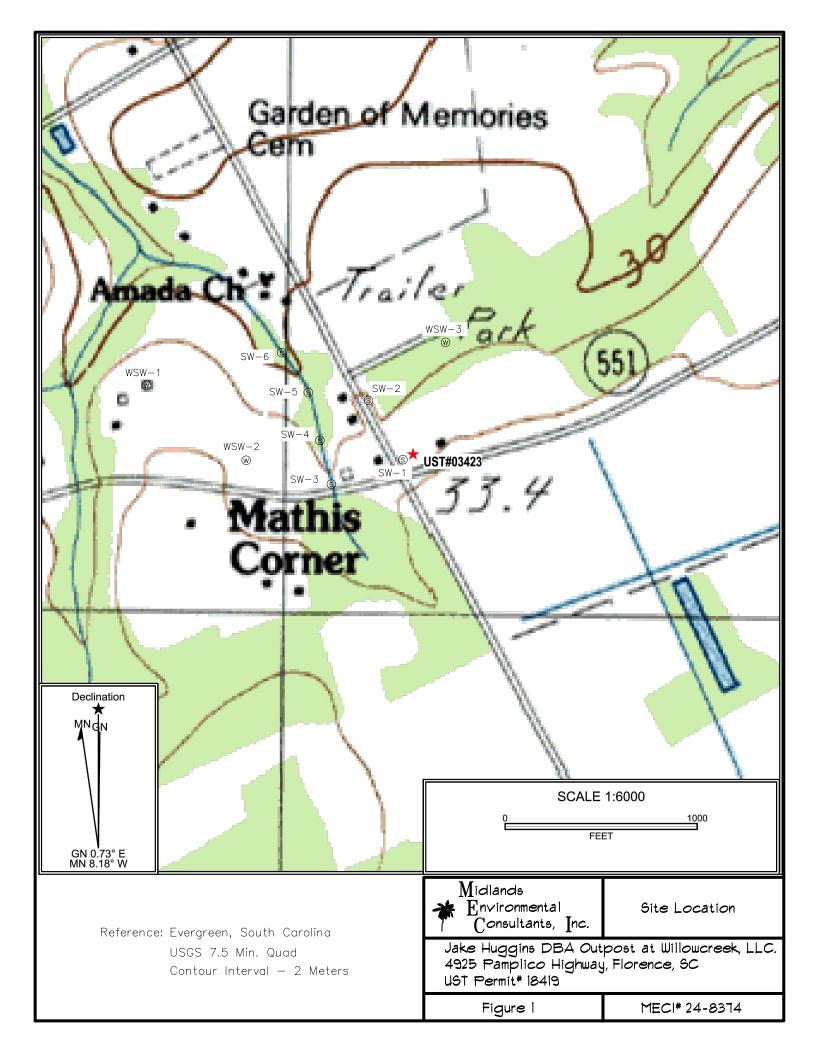
TABLE 2 POTENTIOMETRIC DATA JAKE HUGGINS JUNE 24, 2024 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 24-8374 UST PERMIT# 03423

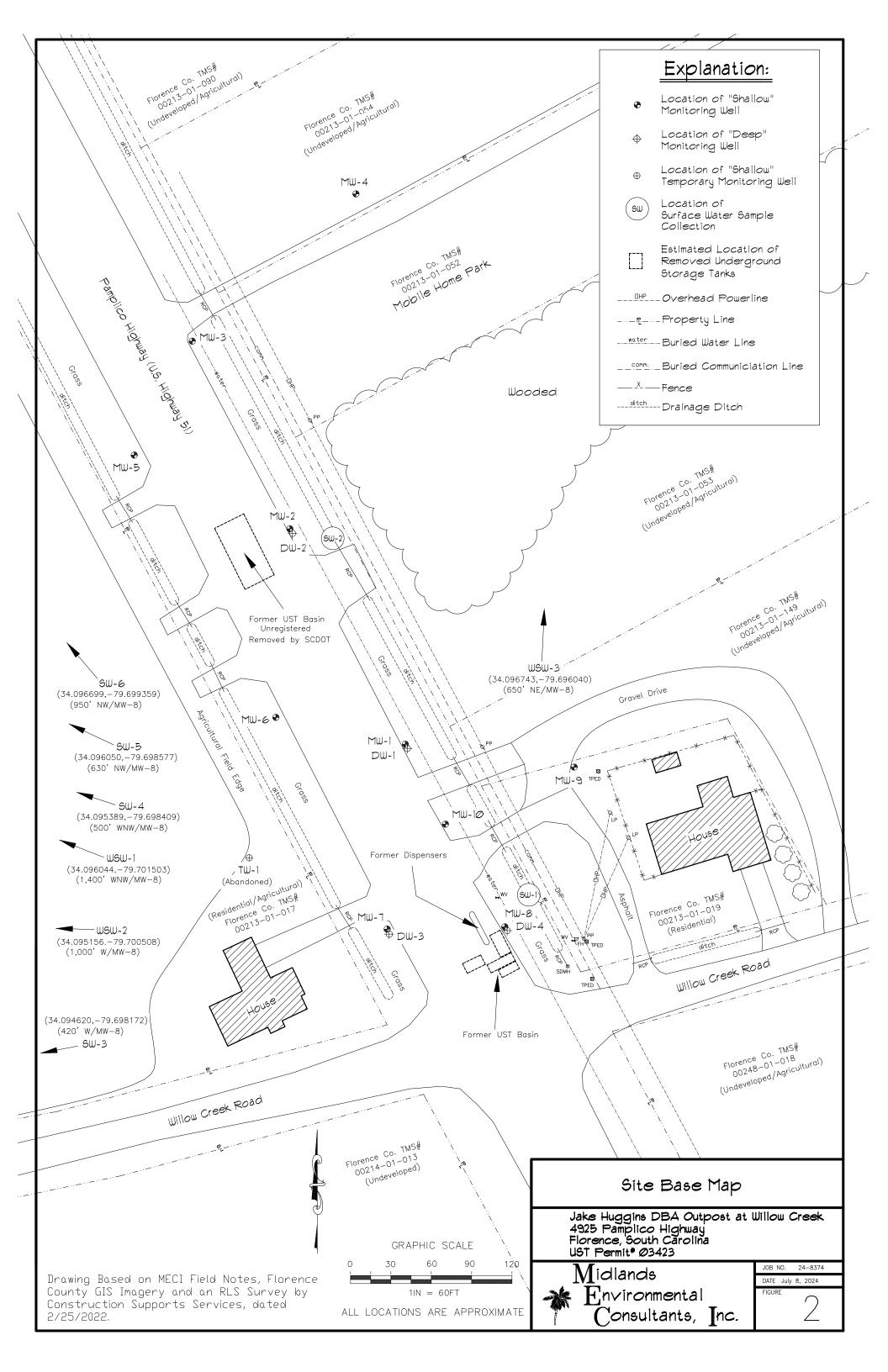
Well	Sample	Screened	Depth to	Depth to	Product	TOC	Groundwater
Number	Date	Interval	Product (ft)	Water (ft)	Thickness (ft)	Elevation	Elevation
	2/15/2022		***	3.76	***	100.92	97.16
	1/9/2023		***	4.38	***	100.92	96.54
03423-MW08	4/14/2023	3-13	***	4.13	***	100.92	96.79
03423-1010000	7/14/2023	3-13	***	3.90	***	100.92	97.02
	10/16/2023		***	4.46	***	100.92	96.46
	6/24/2024		***	4.07	***	100.92	96.85
	2/15/2022		***	3.97	***	100.92	96.95
	1/9/2023		***	3.27	***	100.92	97.65
03423-MW09	4/14/2023	3-13	***	3.19	***	100.92	97.73
03423-1010009	7/14/2023	3-13	***	4.22	***	100.92	96.70
	10/16/2023		***	5.21	***	100.92	95.71
	6/24/2024		***	4.60	***	100.92	96.32
	2/15/2022		***	2.93	***	99.69	96.76
	1/9/2023		***	3.68	***	99.69	96.01
03423-MW10	4/14/2023	3-13	***	3.56	***	99.69	96.13
03423-10100 10	7/14/2023	3-13	***	3.17	***	99.69	96.52
	10/16/2023		***	4.07	***	99.69	95.62
	6/24/2024		***	3.06	***	99.69	96.63
	2/15/2022		***	2.54	***	98.57	96.03
	1/9/2023		***	3.22	***	98.57	95.35
02422 DW04	4/14/2023	20.25	***	3.17	***	98.57	95.40
03423-DW01	7/14/2023	20-25	***	3.13	***	98.57	95.44
	10/16/2023		***	3.84	***	98.57	94.73
	6/24/2024		***	3.60	***	98.57	94.97
	2/15/2022		***	2.51	***	96.48	93.97
	1/9/2023		***	3.01	***	96.48	93.47
03423-DW02	4/14/2023	20-25	***	3.03	***	96.48	93.45
03423-07702	7/14/2023	20-23	***	3.53	***	96.48	92.95
	10/16/2023		***	3.75	***	96.48	92.73
	6/24/2024		***	3.65	***	96.48	92.83
	2/15/2022		***	2.92	***	100.05	97.13
	1/9/2023		***	3.53	***	100.05	96.52
03423-DW03	4/14/2023	20-25	***	3.41	***	100.05	96.64
03423-07703	7/14/2023	20-23	***	3.14	***	100.05	96.91
	10/16/2023		***	4.14	***	100.05	95.91
	6/24/2024		***	3.51	***	100.05	96.54
	2/15/2022		***	3.86	***	101.03	97.17
	1/9/2023		***	4.41	***	101.03	96.62
03423-DW04	4/14/2023	20-25	***	4.36	***	101.03	96.67
00720-D VV 04	7/14/2023	20-23	***	4.22	***	101.03	96.81
	10/16/2023		***	5.25	***	101.03	95.78
	6/24/2024		***	4.50	***	101.03	96.53

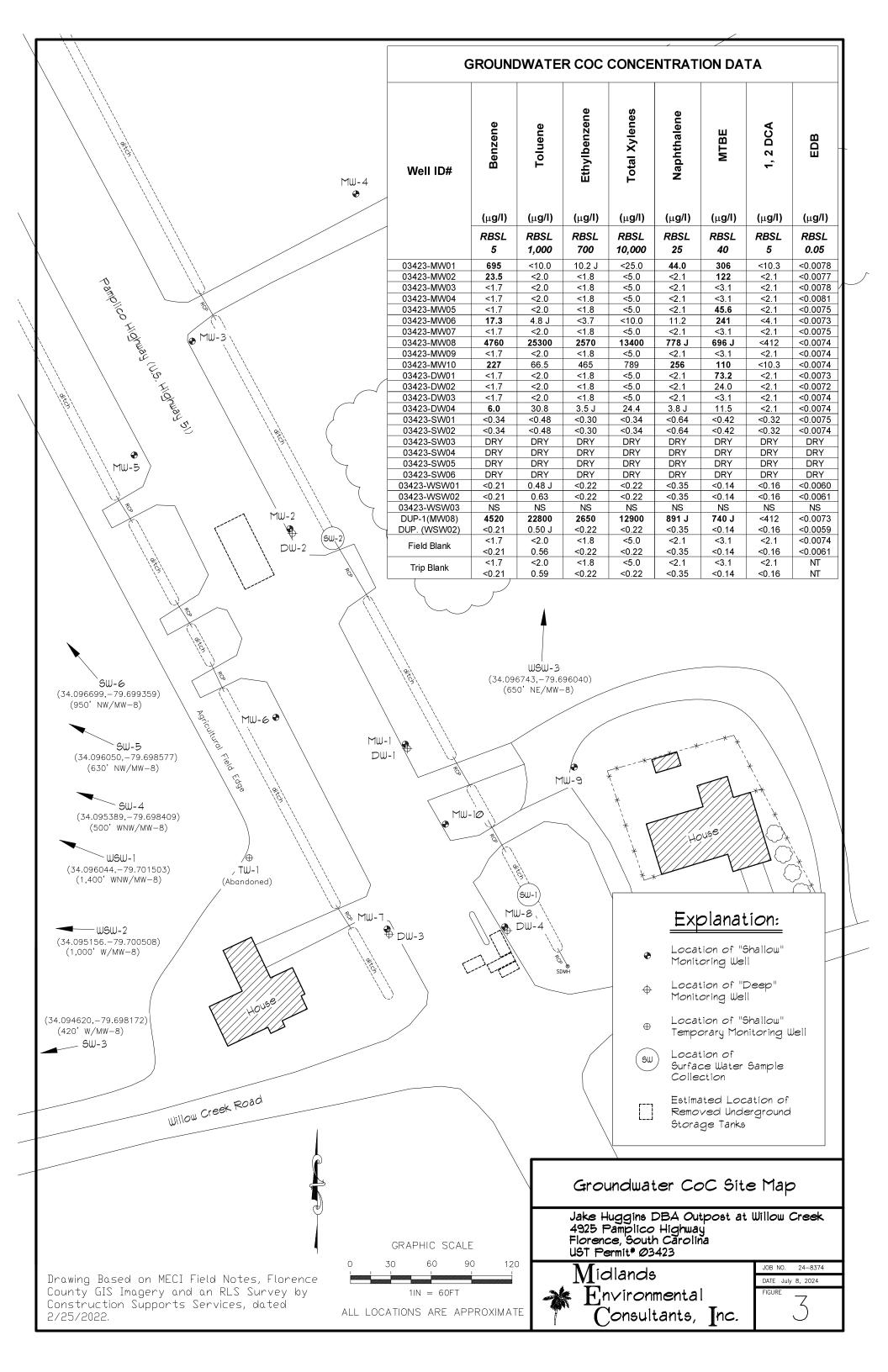
Notes:

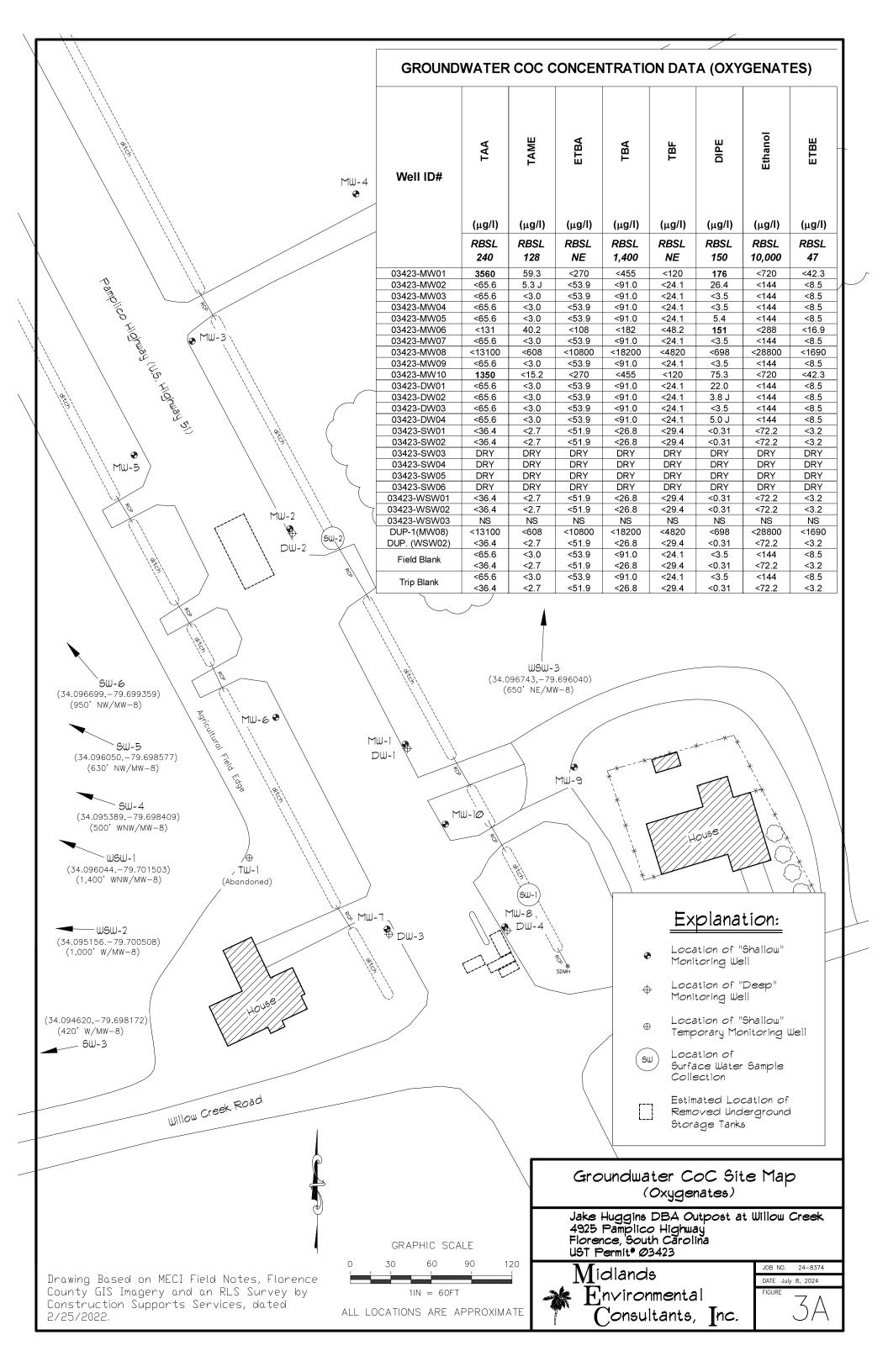
^{1.} Elevations are NAV88.

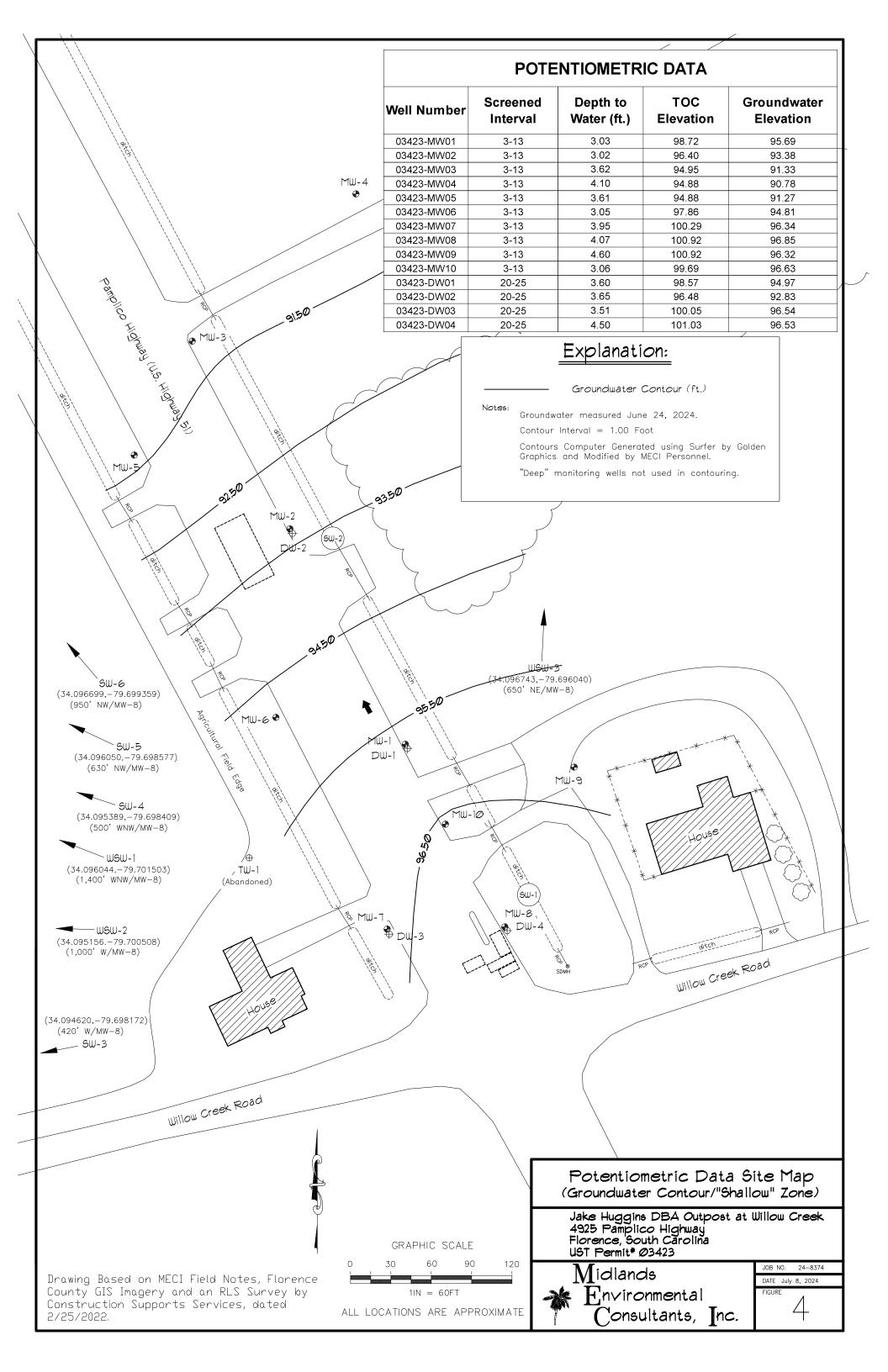

^{2.} Groundwater depths were measured from the top of the PVC riser pipe.

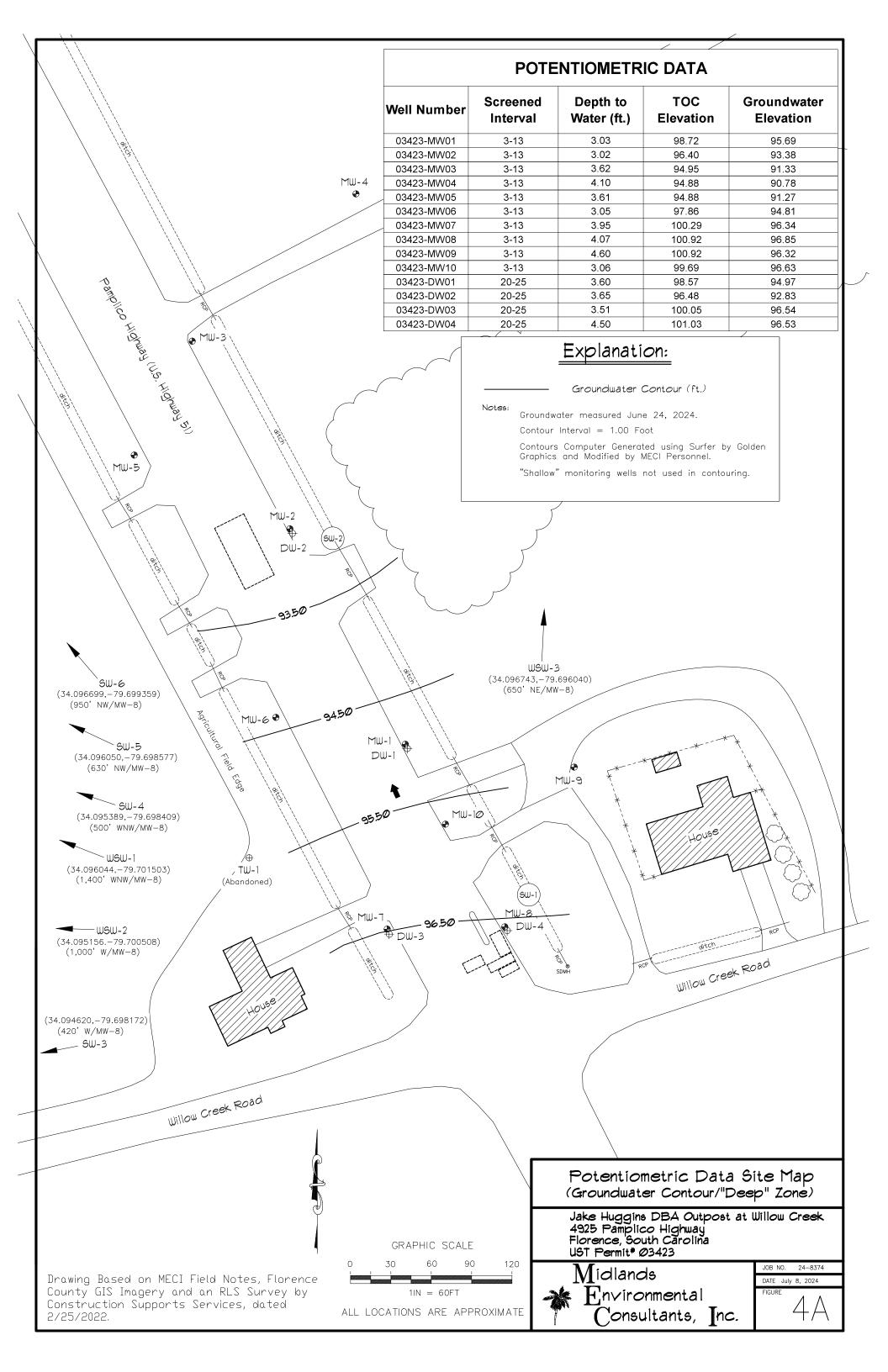

^{3.} NM = Not Measured

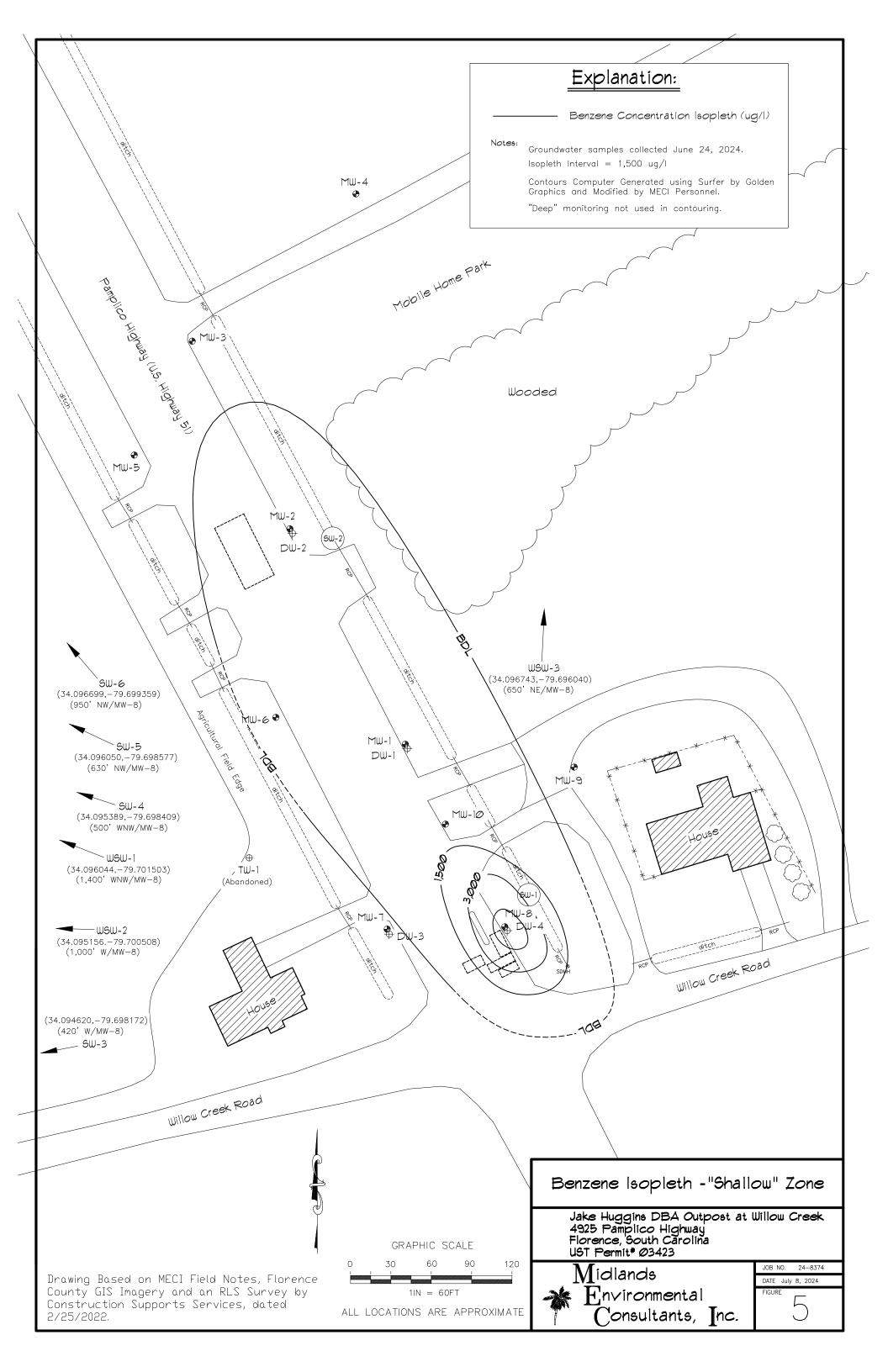

^{4.} DRY = Well Gauged DRY

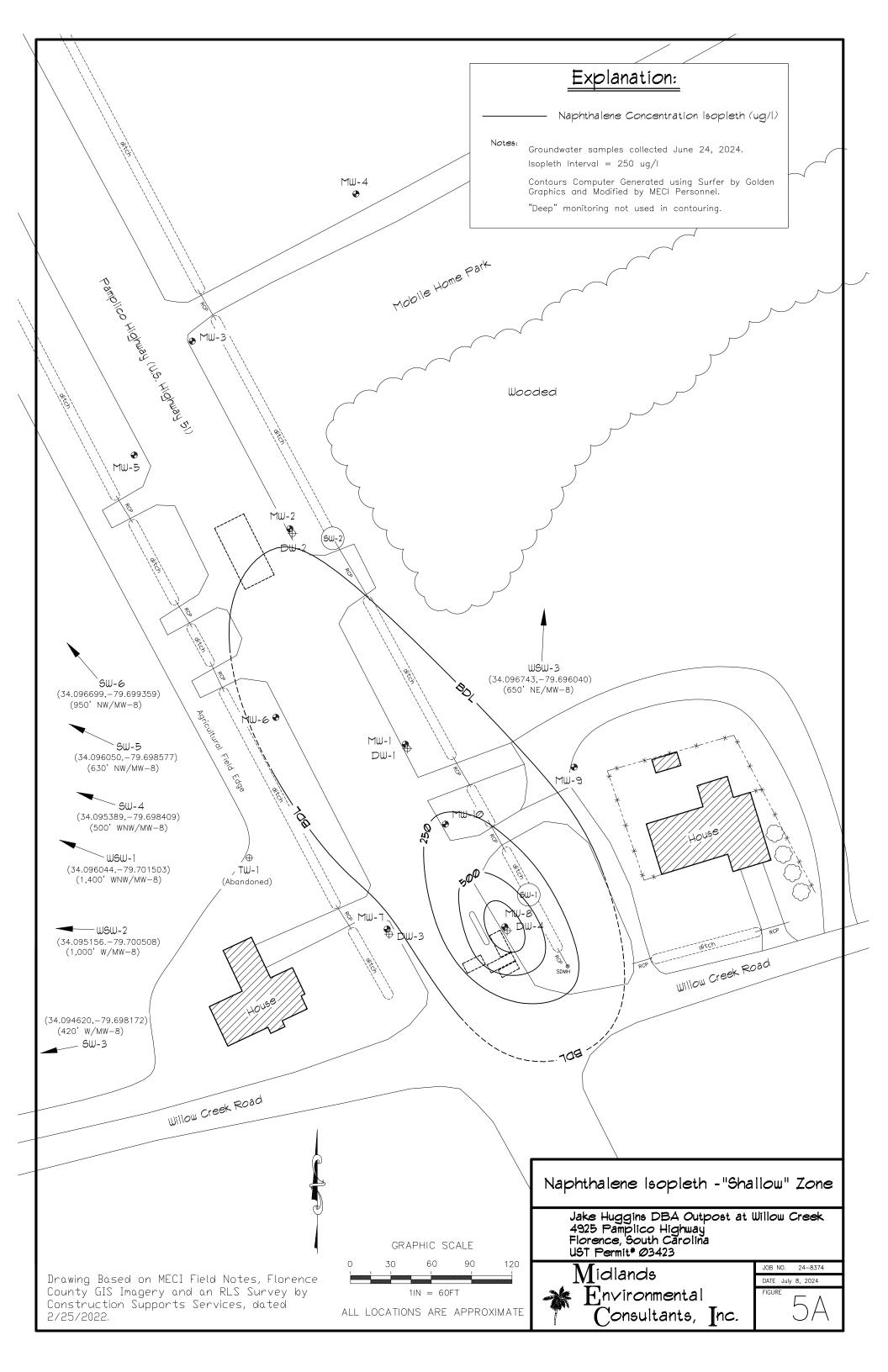

^{5.} TD = Total Depth

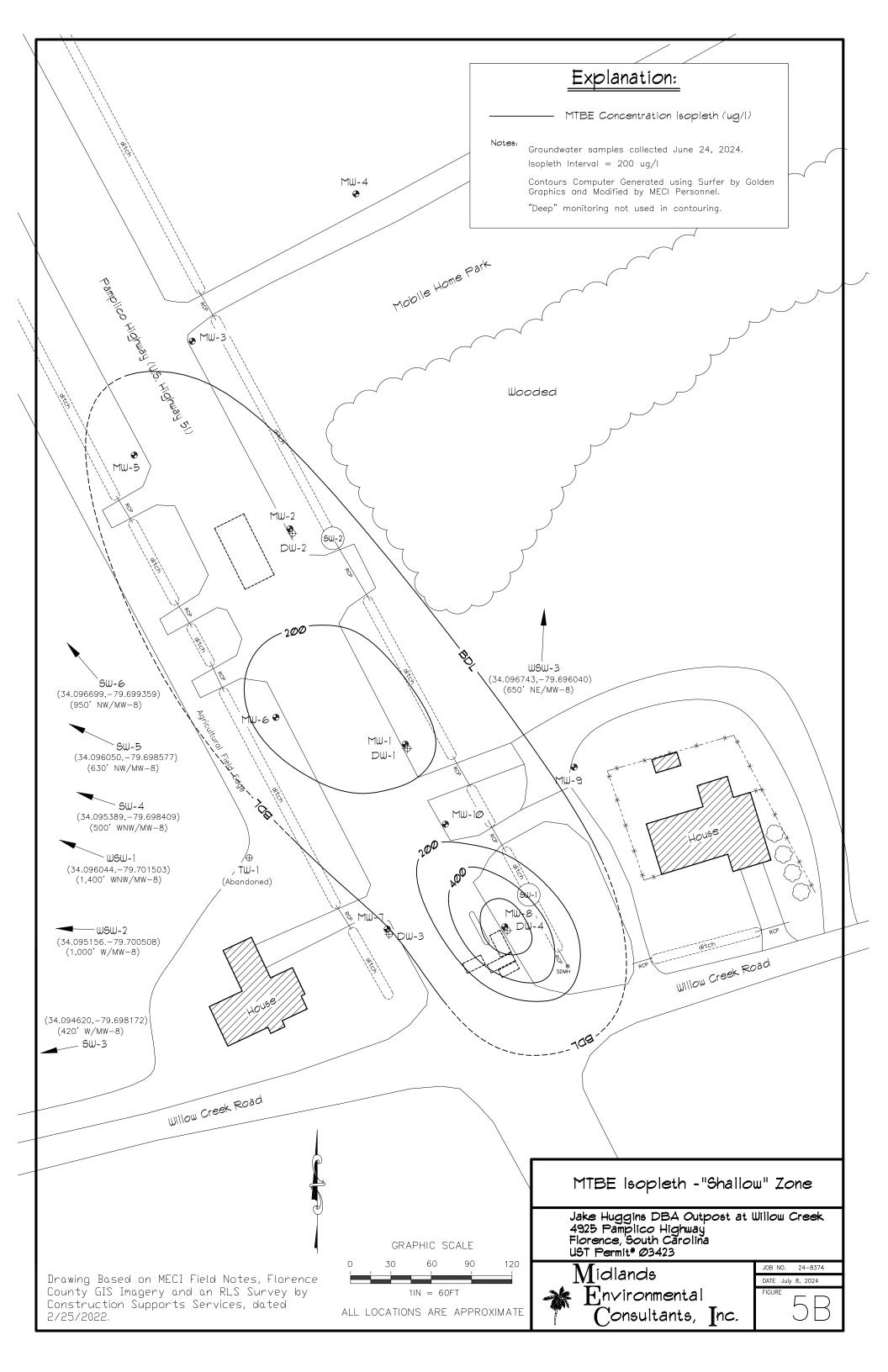

^{6. * =} Groundwater elevation corrected for the presence of free product using a specific gravity of 0.85.











APPENDIX A:

SITE SURVEY

(Not Applicable)

APPENDIX B: SAMPLING LOGS, LABORATORY DATA SHEETS, & CHAIN-OF-CUSTODY FORMS

	Midlands
一番	Environmental
T	Consultants, Inc.

Monitoring Well Purge And Sampling Data

ieeld Personnel:	TO NO MI	
ies.a.r.		-
	M/24/24	

Job Number: 24-6374

Calibration Data for:

Salmpling Date(s):

Calibration Successful? Yes or No (Please Circle) Yes

pH: Yes Conductivity: No Dissolved Oxygen: Yes No

Turbidity: Conductivity Calibrated Every 3 Months by QA Manager

Well No.	Purge	Sample	pH(i)	cond(i)	Temp.	DO	Turbidity		Depth to (fee	i):	Well Depth	Water Height	Gallons	Purged	
	Volume	Time	116 /	0.0	(°C)	(mg/l)	(NTU)	product	initial H₂O	final H₂0	(feet)	*(feet)	**calc.	actual	Notes
	Initial	12:12	4.61	89.7	27.2	1.41	0.88								-111
	1st										3				Slight
1.	2nd								-		7				
MW-01	3rd								300		13			-	odor
* *	4th							,	7 -7						
	5th								3.07						
	Sampling	11105	11 (1)	11000		0									
	Initial	11:07	4.81	105.3	25.5	2.61	9.10		0 2		3-				60
-	1st						77		3.02				-		Ø No
MW-02	2nd					2,347					13				da
/ • (•	3rd 4th														000
-	5th												~		
	Sampling					100									
	Initial	0-30	5.99	25/	0/ 8	1) 211	111	100	American pa	100		F 98 - 91			
+	1st	10 . 10	1.41	335.1	16.8	7-34	11.				3-				Un
4111-	2nd								. 12		3		-		7.0
1884/188	3rd								3.62		()				2/1/
CAN CO	4th													_	andr
MW	5th												100		
	Sampling						26 (7) 88 (8)					ς	···		
	Initial	10:98	5.25	13301	24.7	170	14.11						OUT CASE		
100	1st		5,00,	18001	7	1.9	17-11				3 -				
MW-04	2nd								0		,3				109
, ,	3rd		-				- F		4.10		1)	/			ada
	4th								1.	1000			-		CA O.
	5th														
	Sampling														

= (Depth of Well) - (Depth to Water = Water Height

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	DO SN	Turbidity
Case #1	15H101448	17E101302	201301183
Case #2	15E101481	14H103098	201301174
Case #3	17E100512	17E103488	201510251

	Midlands
1.7	
*	Environmental
T	Consultants, Inc.
Field Pa	reannel: TO DE MIN

Monitoring Well Purge And Sampling Data

	101	
Field Personnel:	De So Me	
Sampling Date(s):	06/24/24	

Job Number: 24-6374

Calibration Data for: Calibration Data for .

Calibration Successful? Yes or No (Please Circle) oH:

No

Conductivity: Yes No Dissolved Óxygen: Yes No

Turbidity: Conductivity Calibrated Every 3 Months by QA Manager

Well No.	Purge Sample		pH(i)	cond(i)	Temp.	DO	Turbidity		Depth to (feet	0:	PROTECTION OF THE PROPERTY OF THE PARTY OF T	Well Depth Water Height		Appropriate to the second seco	
	Volume	Time	1	1	(°C)	(mg/l)	(NTU)	product			(feet)	*(feet)		s Purged	Notes
	Initial	10:48	4.80	86.1	27.9	7.57	9,21			When the second	(reet)	(Teet)	**calc.	actual	
1	1st						""				7			Remove the second	20
MW-05	2nd 3rd								41		3-				dod
	4th								3.61		13	/		1	00 04
	5th				1.						1)				
	Sampling												1		
	Initial	11/2-1	De or	715 1 5			fort /								
es (1st	10:50	4.86	Coy. 6	27.4	3.28	9.78				0				,
MW-6	2nd								3-				Slaht		
V/W (3rd				T to deliver a fig.			3.05		13 _					
	4th				1 - 1 - 1 - 1 - 1									00 or	
	5th												1	4.4	0001
	Sampling			98 60,1											
	Initial	11:18	4,50	0000	Mai		1								1 1 1
	1st	11010	100	(DO-9-	N6.5	1.89	13.12			1037			1.80		
1	2nd				1						3 -	1			a,
Mr.7	3rd	-							01		3		-		100
	4th					- 13			3.95		1 /		4		apor
	5th					3778			1				V		
	Sampling														
	Initial	12:25	5,87	197.4	289	1.90	2 00								
	1st	1-1/-	101	1000	10,1	1,70	13.20								ill.
	2nd								- 1		3-		1		DUP-
Mary	3rd					-			4.07		3-		1		Jan .
1000	4th								1,		1)	/ -	-4/2		GOOT
	5th														
	Sampling						100,000		Marie Tarrier	3.50		200			

*= (Depth of Well) - (Depth to Water = Water Height

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	DOSN	Turbidity
Case #1	15H101448		201301183
Case #2	15E101481	14H103098	201301183
Case #3	17E100512	17E103488	201510251

	Midlands
常	Environmental
1	Consultants, Inc.

Monitoring Well Purge And Sampling Data

Field Personnel: Sampling Date(s):

Job Name: Dake Hussin's

Calibration Datafor: Calibration Successful? Yes or No (Please Circle)

Job Number: 24-6374

pH: Conductivity: No Dissolved Óxygen: Yes No

Well No.	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO	Turbidity	, c	epth to (fee	t):		Water Height		ery 3 Months by	
	Initial	(2.30	5.62	130.8	(°C)	(mg/l)	(NTU)		initial H₂O		(feet)	*(feet)	**calc.	s Purged	Notes
1	1st	1) 4	120.8	14,1	2.45	272				3-		ouic.	actual	- /
Mora	2nd												~		Two odo
	3rd				6.4.00				1. 1 4		3				1 000
	4th								460						
	5th								Vert						
	Sampling		-												
	Initial	1919	6.11	757	201,9	175	0,09								
	1st	-				1					3-				56342
MW-6	2nd 3rd								2.9		13		_		SAIDE
1000	4th								().9		1				alor
	5th								1				7		
	Sampling														
	Initial	(2:07	5.45	108-2	002	/						200		# 35469	
	1st	(2712	5.71	1051	38.5	2.46	9.22				0-				
Dwd	2nd		5.48	10 76	16:3	2.214	1.80		10		20-		2 400	Da	1/1
	3rd	241	1.18	1046	28-1	2.38	5.1E		3,60	3.le8	23	21,90	3.49	Vi	
	4th				446			300	-/			100		l H	000
	5th	13:25											14		
362	Sampling	(M. 100)	5.47	198.3	28.2	2.46	14.88						17.45	Sgal	
	Initial		5,23 W	A Ray		3.42	3 14							001	
2002		11:16	7.64	91.9	951	N N	9,70		3.65		20'	21.35	3.49	nan	
	2nd	11:01	5.70	98.1	24.8		4.80		3.24	7 74	15	71010		nma 1	1/2
	3rd					70	(10-			3.74		THA	AA		000
	4th											MA	1740	Som	day
1	5th Sampling	7 402 1	02	20.0									7:45	2 1	1
epth of Well) - (Depth		3323 5	,25	92.8	24.7	543	14 71		216				γ.	of april	

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Gallons
0.047
0.163
0.653
1.469

Sampling Case#	Ph/Conductance SN	DO SN	T
Case #1	15H101448		Turbidity
Case #2			201301183
	15E101481	14H103098	201301174
Case #3	17E100512	17E103488	201510251

Midlands Environmental onsultants, Inc. Field Personnel:

Sampling Date(s):

Sampling Case#:

Monitoring Well Purge And Sampling Data

Job Name: Take Hosin's Job Number: 24-63 74

Calibration Data for : Calibration Successful? Yes or No (Please Circle) pH: Conductivity:

Dissolved Oxygen:

Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO Turbidity Well Depth Water Height Volume Depth to (feet): Time Gallons Purged (°C) (mg/l)(NTU) product initial H₂O final H₂O Initial Notes (feet) *(feet) **calc. 001105 20110 13.0 11:10 22.2 351 4th 5th Sampling Initial 2nd 3rd 4th 5th Sampling GNO Initial 34.095076, -79.696777 1st 2nd 3rd 5th Sampling 1st 3rd 4th 5th (100 Sampling *= (Depth of Well) - (Depth to Water = Water Height

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * \times .163 for 2" wells, or * \times .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	DO SN	Telephone and
Case #1			Turbidity
	15H101448	17E101302	201301183
Case #2	15E101481		
		14H103098	201301174
Case #3	17E100512		
		171103408	201510251

${ m M}$ ídlands	
Environmental	
Consultants, Inc.	
Field Personnel:	lob Na

Sampling Date(s):

Sampling Case#:

Monitoring Well Purge And Sampling Data

Job Name	Jake	Hipsin
Job Mame:	<u>J</u>	(1020,40

Calibration Data for:

Calibration Successful? Yes or No (Please Circle) Job Number: 24-6374 pH: Yes No Conductivity: Yes No Dissolved Óxygen: Yes

Well No.	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO (mg/l)	Turbidity	Depth to (fee			Water Height		NO Pry 3 Months by Purged	
1	Initial	13.		0		(mg/i)	(NTU)	product initial H ₂ O	final H ₂ 0	(feet)	*(feet)	**calc.	actual	Notes
5w-1	1st	1).	10	10116	CARD	100	M	34 00	1600	011 -	70 1	Mary Company of the St.	actual	
	2nd			00	A 08	18	ľ	1.0	1600	79 -;	701	503		
V6W-2	3rd			AIO						(
6WIL	4th	13.	70)	Bolle	All s	com	CP 600	1 3/21	will	ow				
And.	5th	1/		1600		/	10.0	1	000	2				
	Sampling				M v	ell.			CV	1				
	Initial				-11	,			,	υ.				
2	1st	ARM	m	well	0.2	/NAI	A		15-6/524					
W4W -3	2nd	400	XXXI	10011		COM	erfed	3695	w.	11ou				
10	3rd	Kill	1647.			00			w .	cell				
	4th	- Common of the				MIC			a	2		- 100 mg		
	5th					10			1	6				
	Sampling													
VGN-FB	Initial	12-1	1					Market Street Control						
0 , 100	1st	1711)											
van-OUP	2nd	12,		0	0				27/12/24					
My DUY	3rd	15100		Re	26	Sw-	2				Carlo Carlo			
	4th			/	7	-)00								
6v-13	5th	0500										100000		
70 19	Sampling	0000												
JUR-1	Initial	10.00	1	me c	7	0								
100	1st	2.1		1	1	Mus	2							
13	2nd	121-	-	SECRETARISM THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO										
1 9	3rd	11,5	0											
-01	4th	1 1												
~ to -1	5th	0500												
A.S.	Sampling													

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	DOSN	
Case #1	15H101448		Turbidity
Case #2	15E101481		201301183
		14H103098	201301174
Case #3	17E100512	17E103488	201510251

N / 1 - 11 -	
Mídlands	
* Environmental	
Livionmental	
T Consultants, Inc.	
, Compared to Tile.	
Field Personnel	

Monitoring Well Purge And Sampling Data

rield Personnel: Sampling Date(s):

Job Number: 24-6374

pH:

Calibration Data for : Calibration Successful? Yes or No (Please Circle)

Conductivity: Dissolved Oxygen:

No Yes No Yes No

	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO	Turbidity	epth to (fee		Water Height		INO ery 3 Months by	ALCOHOL:
	Initial				(°C)	(mg/l)	(NTU)	initial H ₂ O	(feet)	*(feet)	Gallon: _**calc.	s Purged	Notes
	1st				- 20.7					(1000)	caic.	actual	
0 1	2nd	· A ·	252										
1 AC	3rd	10-	7										
()	4th												
	5th												
	Sampling												
	Initial					- E #							
	1st												
	2nd												
	3rd												
	4th					198							
	5th												
	Sampling												
	Initial												
Ť	1st												
	2nd												
	3rd												
-	4th												
4	5th												
	Sampling						100						
	Initial		-										
	1st												
	2nd												
	3rd												
	4th						0.00						
Γ	5th						2						
	Sampling												

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	DO SN	
Case #1	15H101448		Turbidity
		17E101302	201301183
Case #2	15E101481	14H103098	201301174
Case #3	17E100512		
	111100512	17E103488	201510251

July 03, 2024

Mr. Bryan Shane, P.G. Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Dear Mr. Shane, P.G.:

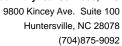
Enclosed are the analytical results for sample(s) received by the laboratory on June 26, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


James Battle

Jonathan W Biddix jonathan.biddix@pacelabs.com 704-977-0978 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental

CERTIFICATIONS

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 9800 Kincey Ave. Ste 100, Huntersville, NC 28078

North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Laboratory ID: 99006

South Carolina Certification #: 99006001

South Carolina Drinking Water Cert. #: 99006003

Florida/NELAP Certification #: E87627

Kentucky UST Certification #: 84

Louisiana DoH Drinking Water #: LA029

Virginia/VELAP Certification #: 460221

(704)875-9092

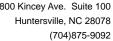
SAMPLE SUMMARY

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92738733001	MW-1	Water	06/24/24 12:22	06/26/24 09:51
92738733002	MW-2	Water	06/24/24 11:07	06/26/24 09:51
92738733003	MW-3	Water	06/24/24 10:30	06/26/24 09:51
92738733004	MW-4	Water	06/24/24 10:28	06/26/24 09:51
92738733005	MW-5	Water	06/24/24 10:48	06/26/24 09:51
92738733006	MW-6	Water	06/24/24 10:50	06/26/24 09:51
92738733007	MW-7	Water	06/24/24 11:18	06/26/24 09:51
92738733008	MW-8	Water	06/24/24 12:25	06/26/24 09:51
92738733009	MW-9	Water	06/24/24 12:30	06/26/24 09:51
92738733010	MW-10	Water	06/24/24 12:23	06/26/24 09:51
92738733011	DW-1	Water	06/24/24 13:05	06/26/24 09:51
92738733012	DW-2	Water	06/24/24 13:23	06/26/24 09:51
92738733013	DW-3	Water	06/24/24 13:20	06/26/24 09:51
92738733014	DW-4	Water	06/24/24 13:27	06/26/24 09:51
92738733015	SW-1	Water	06/24/24 12:45	06/26/24 09:51
92738733016	SW-2	Water	06/24/24 12:48	06/26/24 09:51
92738733017	DUP-1	Water	06/24/24 00:00	06/26/24 09:51
92738733018	FB	Water	06/24/24 13:30	06/26/24 09:51
92738733019	GAC	Water	06/24/24 13:32	06/26/24 09:51
92738733020	ТВ	Water	06/24/24 08:00	06/26/24 09:51
92738733021	WSW-1	Water	06/24/24 13:10	06/26/24 09:51
92738733022	WSW-2	Water	06/24/24 13:00	06/26/24 09:51
92738733023	WSW-DUP	Water	06/24/24 00:00	06/26/24 09:51
92738733024	WSW-FB	Water	06/24/24 13:15	06/26/24 09:51
92738733025	WSW-TB	Water	06/24/24 08:00	06/26/24 09:51

(704)875-9092



SAMPLE ANALYTE COUNT

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92738733001	MW-1	EPA 8011	HH	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733002	MW-2	EPA 8011	НН	2	PASI-C
		EPA 8260D	JJK	20	PASI-C
92738733003	MW-3	EPA 8011	НН	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92738733004	MW-4	EPA 8011	НН	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92738733005	MW-5	EPA 8011	НН	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92738733006	MW-6	EPA 8011	НН	2	PASI-C
		EPA 8260D	TMK	20	PASI-C
92738733007	MW-7	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733008	MW-8	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733009	MW-9	EPA 8011	HH	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733010	MW-10	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733011	DW-1	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733012	DW-2	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733013	DW-3	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733014	DW-4	EPA 8011	HH	2	PASI-C
		EPA 8260D	TMK	20	PASI-C
92738733015	SW-1	EPA 8011	HH	2	PASI-C
		EPA 8260D	TMK	20	PASI-C
92738733016	SW-2	EPA 8011	НН	2	PASI-C
		EPA 8260D	TMK	20	PASI-C
92738733017	DUP-1	EPA 8011	НН	2	PASI-C
		EPA 8260D	TMK	20	PASI-C
92738733018	FB	EPA 8011	НН	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92738733019	GAC	EPA 8011	НН	2	PASI-C

SAMPLE ANALYTE COUNT

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260D	SAS	20	PASI-C
92738733020	ТВ	EPA 8260D	SAS	20	PASI-C
92738733021	WSW-1	EPA 504.1	НН	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	TMK	11	PASI-C
92738733022	WSW-2	EPA 504.1	НН	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	TMK	11	PASI-C
92738733023	WSW-DUP	EPA 504.1	НН	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	TMK	11	PASI-C
92738733024	WSW-FB	EPA 504.1	НН	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	TMK	11	PASI-C
92738733025	WSW-TB	EPA 524.2	JN	11	PASI-C
		EPA 8260D	TMK	11	PASI-C

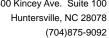
PASI-C = Pace Analytical Services - Charlotte

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: MW-1	Lab ID:	9273873300	1 Collected	l: 06/24/24	12:22	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	0.0078	1	06/28/24 13:21	06/28/24 20:56	106-93-4	
Surrogates									
-Chloro-2-bromopropane (S)	101	%	60-140		1	06/28/24 13:21	06/28/24 20:56	301-79-56	
3260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
ert-Amyl Alcohol	3560	ug/L	500	328	5		07/02/24 15:58	75-85-4	
ert-Amylmethyl ether	59.3	ug/L	50.0	15.2	5		07/02/24 15:58	994-05-8	
Benzene	695	ug/L	25.0	8.7	5		07/02/24 15:58	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	500	270	5		07/02/24 15:58	624-95-3	
ert-Butyl Alcohol	ND	ug/L	500	455	5		07/02/24 15:58	75-65-0	
ert-Butyl Formate	ND	ug/L	250	120	5		07/02/24 15:58	762-75-4	
1,2-Dichloroethane	ND	ug/L	25.0	10.3	5		07/02/24 15:58	107-06-2	v1
Diisopropyl ether	176	ug/L	25.0	17.4	5		07/02/24 15:58	108-20-3	
Ethanol	ND	ug/L	1000	720	5		07/02/24 15:58	64-17-5	
Ethylbenzene	10.2J	ug/L	25.0	9.2	5		07/02/24 15:58	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	50.0	42.3	5		07/02/24 15:58	637-92-3	
Methyl-tert-butyl ether	306	ug/L	25.0	15.5	5		07/02/24 15:58	1634-04-4	
Naphthalene	44.0	ug/L	25.0	10.4	5		07/02/24 15:58	91-20-3	v3
Foluene	ND	ug/L	25.0	10.0	5		07/02/24 15:58	108-88-3	
(ylene (Total)	ND	ug/L	25.0	25.0	5		07/02/24 15:58	1330-20-7	
n&p-Xylene	ND	ug/L	50.0	20.6	5		07/02/24 15:58	179601-23-1	
o-Xylene	ND	ug/L	25.0	10.2	5		07/02/24 15:58	95-47-6	
Surrogates		-							
I-Bromofluorobenzene (S)	102	%	70-130		5		07/02/24 15:58	460-00-4	
,2-Dichloroethane-d4 (S)	99	%	70-130		5		07/02/24 15:58	17060-07-0	
Toluene-d8 (S)	99	%	70-130		5		07/02/24 15:58	2037-26-5	

(704)875-9092

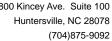

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

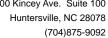
Sample: MW-2	Lab ID:	9273873300	2 Collected	d: 06/24/24	11:07	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	\ 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	0.0077	1	06/28/24 13:21	06/28/24 21:07	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	100	%	60-140		1	06/28/24 13:21	06/28/24 21:07	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/03/24 15:01	75-85-4	
ert-Amylmethyl ether	5.3J	ug/L	10.0	3.0	1		07/03/24 15:01	994-05-8	
Benzene	23.5	ug/L	5.0	1.7	1		07/03/24 15:01	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/03/24 15:01	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/03/24 15:01	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/03/24 15:01	762-75-4	v2
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/03/24 15:01	107-06-2	
Diisopropyl ether	26.4	ug/L	5.0	3.5	1		07/03/24 15:01	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/03/24 15:01	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/03/24 15:01	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/03/24 15:01	637-92-3	
Methyl-tert-butyl ether	122	ug/L	5.0	3.1	1		07/03/24 15:01	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/03/24 15:01	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/03/24 15:01	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/03/24 15:01	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/03/24 15:01	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/03/24 15:01	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	98	%	70-130		1		07/03/24 15:01	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/03/24 15:01	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/03/24 15:01	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

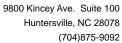
Sample: MW-3	Lab ID:	92738733003	Collected	d: 06/24/24	10:30	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	3011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	0.0078	1	06/28/24 13:21	06/28/24 21:18	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	97	%	60-140		1	06/28/24 13:21	06/28/24 21:18	301-79-56	
8260 MSV	Analytical	Method: EPA	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 21:31	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 21:31	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 21:31	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 21:31	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 21:31	75-65-0	v3
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 21:31	762-75-4	v3
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 21:31	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 21:31	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 21:31	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 21:31	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 21:31	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 21:31	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 21:31	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 21:31	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 21:31	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 21:31	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 21:31	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		06/27/24 21:31		
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		06/27/24 21:31		
Toluene-d8 (S)	100	%	70-130		1		06/27/24 21:31	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: MW-4	Lab ID:	92738733004	Collected	d: 06/24/24	10:28	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	3011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.022	0.0081	1	06/28/24 13:21	06/28/24 21:28	106-93-4	
Surrogates		-							
I-Chloro-2-bromopropane (S)	107	%	60-140		1	06/28/24 13:21	06/28/24 21:28	301-79-56	
3260 MSV	Analytical	Method: EPA	3260D						
	Pace Anal	ytical Services	- Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 21:49	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 21:49	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 21:49	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 21:49	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 21:49	75-65-0	v2
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 21:49	762-75-4	v2
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 21:49	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 21:49	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 21:49	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 21:49	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 21:49	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 21:49	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 21:49	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 21:49	108-88-3	
Kylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 21:49	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 21:49	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 21:49	95-47-6	
Surrogates									
1-Bromofluorobenzene (S)	99	%	70-130		1		06/27/24 21:49	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		06/27/24 21:49	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		06/27/24 21:49	2037-26-5	



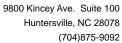
Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: MW-5	Lab ID:	92738733005	Collected	l: 06/24/24	10:48	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Ana	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0075	1	07/01/24 08:38	07/01/24 13:45	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	106	%	60-140		1	07/01/24 08:38	07/01/24 13:45	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Ana	lytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 22:07	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 22:07	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 22:07	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 22:07	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 22:07	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 22:07	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 22:07	107-06-2	
Diisopropyl ether	5.4	ug/L	5.0	3.5	1		06/27/24 22:07	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 22:07	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 22:07	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 22:07	637-92-3	
Methyl-tert-butyl ether	45.6	ug/L	5.0	3.1	1		06/27/24 22:07	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 22:07	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 22:07	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 22:07	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 22:07	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 22:07	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		1		06/27/24 22:07	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		06/27/24 22:07	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		06/27/24 22:07	2037-26-5	

Project: JAKE HUGGIN'S Pace Project No.: 92738733

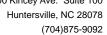
Date: 07/03/2024 07:47 PM


Sample: MW-6	Lab ID:	9273873300	6 Collected	l: 06/24/24	10:50	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0073	1	07/01/24 08:38	07/01/24 14:07	106-93-4	M1,R1
Surrogates									
1-Chloro-2-bromopropane (S)	113	%	60-140		1	07/01/24 08:38	07/01/24 14:07	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	200	131	2		07/01/24 18:48	75-85-4	
tert-Amylmethyl ether	40.2	ug/L	20.0	6.1	2		07/01/24 18:48	994-05-8	
Benzene	17.3	ug/L	10.0	3.5	2		07/01/24 18:48	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	200	108	2		07/01/24 18:48	624-95-3	
tert-Butyl Alcohol	ND	ug/L	200	182	2		07/01/24 18:48	75-65-0	
tert-Butyl Formate	ND	ug/L	100	48.2	2		07/01/24 18:48	762-75-4	
1,2-Dichloroethane	ND	ug/L	10.0	4.1	2		07/01/24 18:48	107-06-2	
Diisopropyl ether	151	ug/L	10.0	7.0	2		07/01/24 18:48	108-20-3	
Ethanol	ND	ug/L	400	288	2		07/01/24 18:48	64-17-5	
Ethylbenzene	ND	ug/L	10.0	3.7	2		07/01/24 18:48	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	16.9	2		07/01/24 18:48	637-92-3	
Methyl-tert-butyl ether	241	ug/L	10.0	6.2	2		07/01/24 18:48	1634-04-4	
Naphthalene	11.2	ug/L	10.0	4.2	2		07/01/24 18:48	91-20-3	
Toluene	4.8J	ug/L	10.0	4.0	2		07/01/24 18:48	108-88-3	
Xylene (Total)	ND	ug/L	10.0	10.0	2		07/01/24 18:48	1330-20-7	
m&p-Xylene	ND	ug/L	20.0	8.2	2		07/01/24 18:48	179601-23-1	
o-Xylene	ND	ug/L	10.0	4.1	2		07/01/24 18:48	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		2		07/01/24 18:48	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		2		07/01/24 18:48	17060-07-0	
Toluene-d8 (S)	101	%	70-130		2		07/01/24 18:48	2037-26-5	

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

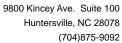
Sample: MW-7	Lab ID:	92738733007	Collected	d: 06/24/24	11:18	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0075	1	07/01/24 08:38	07/01/24 14:39	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	95	%	60-140		1	07/01/24 08:38	07/01/24 14:39	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 21:56	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 21:56	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 21:56	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 21:56	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 21:56	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 21:56	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 21:56	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 21:56	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 21:56	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 21:56	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 21:56	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 21:56	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 21:56	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 21:56	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 21:56	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 21:56	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 21:56	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	96	%	70-130		1		06/27/24 21:56	460-00-4	
1,2-Dichloroethane-d4 (S)	86	%	70-130		1		06/27/24 21:56	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		06/27/24 21:56	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

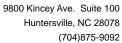
Sample: MW-8	Lab ID:	9273873300	8 Collected	d: 06/24/24	1 12:25	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Meth	od: EPA	A 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 14:50	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	102	%	60-140		1	07/01/24 08:38	07/01/24 14:50	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	20000	13100	200		06/27/24 23:29	75-85-4	
tert-Amylmethyl ether	ND	ug/L	2000	608	200		06/27/24 23:29	994-05-8	
Benzene	4760	ug/L	1000	348	200		06/27/24 23:29	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	20000	10800	200		06/27/24 23:29	624-95-3	
tert-Butyl Alcohol	ND	ug/L	20000	18200	200		06/27/24 23:29	75-65-0	
tert-Butyl Formate	ND	ug/L	10000	4820	200		06/27/24 23:29	762-75-4	
1,2-Dichloroethane	ND	ug/L	1000	412	200		06/27/24 23:29	107-06-2	
Diisopropyl ether	ND	ug/L	1000	698	200		06/27/24 23:29	108-20-3	
Ethanol	ND	ug/L	40000	28800	200		06/27/24 23:29	64-17-5	
Ethylbenzene	2570	ug/L	1000	368	200		06/27/24 23:29	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	2000	1690	200		06/27/24 23:29	637-92-3	
Methyl-tert-butyl ether	696J	ug/L	1000	620	200		06/27/24 23:29	1634-04-4	
Naphthalene	778J	ug/L	1000	418	200		06/27/24 23:29	91-20-3	
Toluene	25300	ug/L	1000	402	200		06/27/24 23:29	108-88-3	
Xylene (Total)	13400	ug/L	1000	1000	200		06/27/24 23:29	1330-20-7	
m&p-Xylene	8490	ug/L	2000	822	200		06/27/24 23:29	179601-23-1	
o-Xylene	4870	ug/L	1000	408	200		06/27/24 23:29	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	96	%	70-130		200		06/27/24 23:29	460-00-4	
1,2-Dichloroethane-d4 (S)	82	%	70-130		200		06/27/24 23:29	17060-07-0	
Toluene-d8 (S)	99	%	70-130		200		06/27/24 23:29	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

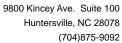
Sample: MW-9	Lab ID:	92738733009	Collected	d: 06/24/24	12:30	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	3011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 15:01	106-93-4	
Surrogates					_				
I-Chloro-2-bromopropane (S)	94	%	60-140		1	07/01/24 08:38	07/01/24 15:01	301-79-56	
3260 MSV	Analytical	Method: EPA	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 21:01	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 21:01	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 21:01	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 21:01	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 21:01	75-65-0	v3
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 21:01	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 21:01	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 21:01	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 21:01	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 21:01	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 21:01	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 21:01	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 21:01	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 21:01	108-88-3	
Kylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 21:01	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 21:01	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 21:01	95-47-6	
Surrogates									
1-Bromofluorobenzene (S)	96	%	70-130		1		06/27/24 21:01	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130		1		06/27/24 21:01		
Toluene-d8 (S)	99	%	70-130		1		06/27/24 21:01	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

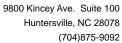
Sample: MW-10	Lab ID:	92738733010	Collected	l: 06/24/24	12:23	Received: 06/	26/24 09:51 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP		Method: EPA 8 ytical Services		ation Metho	od: EPA	x 8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 15:12	106-93-4	
1-Chloro-2-bromopropane (S)	95	%	60-140		1	07/01/24 08:38	07/01/24 15:12	301-79-56	
8260 MSV	,	Method: EPA 8 ytical Services							
tert-Amyl Alcohol	1350	ug/L	500	328	5		06/27/24 23:48	75-85-4	
tert-Amylmethyl ether	ND	ug/L	50.0	15.2	5		06/27/24 23:48	994-05-8	
Benzene	227	ug/L	25.0	8.7	5		06/27/24 23:48	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	500	270	5		06/27/24 23:48	624-95-3	
tert-Butyl Alcohol	ND	ug/L	500	455	5		06/27/24 23:48	75-65-0	
tert-Butyl Formate	ND	ug/L	250	120	5		06/27/24 23:48	762-75-4	
1,2-Dichloroethane	ND	ug/L	25.0	10.3	5		06/27/24 23:48	107-06-2	
Diisopropyl ether	75.3	ug/L	25.0	17.4	5		06/27/24 23:48	108-20-3	
Ethanol	ND	ug/L	1000	720	5		06/27/24 23:48	64-17-5	
Ethylbenzene	465	ug/L	25.0	9.2	5		06/27/24 23:48	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	50.0	42.3	5		06/27/24 23:48	637-92-3	
Methyl-tert-butyl ether	110	ug/L	25.0	15.5	5		06/27/24 23:48	1634-04-4	
Naphthalene	256	ug/L	25.0	10.4	5		06/27/24 23:48	91-20-3	
Toluene	66.5	ug/L	25.0	10.0	5		06/27/24 23:48	108-88-3	
Xylene (Total)	789	ug/L	25.0	25.0	5		06/27/24 23:48	1330-20-7	
m&p-Xylene	530	ug/L	50.0	20.6	5		06/27/24 23:48	179601-23-1	
o-Xylene	260	ug/L	25.0	10.2	5		06/27/24 23:48	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	98	%	70-130		5		06/27/24 23:48		
1,2-Dichloroethane-d4 (S)	82	%	70-130		5		06/27/24 23:48		
Toluene-d8 (S)	100	%	70-130		5		06/27/24 23:48	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

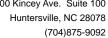
Sample: DW-1	Lab ID:	92738733011	Collected	1: 06/24/24	13:05	Received: 06/	26/24 09:51 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	-	Method: EPA 8		ation Metho	od: EPA	A 8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.0073	1	07/01/24 08:38	07/01/24 15:23	106-93-4	
1-Chloro-2-bromopropane (S)	91	%	60-140		1	07/01/24 08:38	07/01/24 15:23	301-79-56	
8260 MSV	•	Method: EPA 8 ytical Services							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 22:15	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 22:15	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 22:15		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 22:15	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 22:15	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 22:15		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 22:15		
Diisopropyl ether	22.0	ug/L	5.0	3.5	1		06/27/24 22:15	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 22:15	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 22:15		
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 22:15	637-92-3	
Methyl-tert-butyl ether	73.2	ug/L	5.0	3.1	1		06/27/24 22:15	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 22:15	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 22:15	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 22:15	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 22:15	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 22:15	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	93	%	70-130		1		06/27/24 22:15	460-00-4	
1,2-Dichloroethane-d4 (S)	86	%	70-130		1		06/27/24 22:15	17060-07-0	
Toluene-d8 (S)	98	%	70-130		1		06/27/24 22:15	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

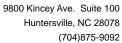
Sample: DW-2	Lab ID:	92738733012	Collected	d: 06/24/24	13:23	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.0072	1	07/01/24 08:38	07/01/24 15:34	106-93-4	
Surrogates		· ·							
1-Chloro-2-bromopropane (S)	102	%	60-140		1	07/01/24 08:38	07/01/24 15:34	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 22:33	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 22:33	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 22:33	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 22:33	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 22:33	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 22:33	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 22:33	107-06-2	
Diisopropyl ether	3.8J	ug/L	5.0	3.5	1		06/27/24 22:33	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 22:33	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 22:33	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 22:33	637-92-3	
Methyl-tert-butyl ether	24.0	ug/L	5.0	3.1	1		06/27/24 22:33	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 22:33	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 22:33	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 22:33	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 22:33	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 22:33	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	95	%	70-130		1		06/27/24 22:33	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130		1		06/27/24 22:33	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		06/27/24 22:33	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: DW-3	Lab ID:	9273873301	3 Collected	l: 06/24/24	13:20	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 15:45	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	92	%	60-140		1	07/01/24 08:38	07/01/24 15:45	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	es - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 21:19	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 21:19	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 21:19	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 21:19	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 21:19	75-65-0	v2
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 21:19	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 21:19	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 21:19	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 21:19	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 21:19	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 21:19	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 21:19	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 21:19	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 21:19	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 21:19	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 21:19	179601-23-1	
p-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 21:19	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	95	%	70-130		1		06/27/24 21:19	460-00-4	
1,2-Dichloroethane-d4 (S)	84	%	70-130		1		06/27/24 21:19	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		06/27/24 21:19	2037-26-5	



Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

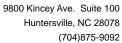
Sample: DW-4	Lab ID:	92738733014	Collected	d: 06/24/24	13:27	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	-	Method: EPA 8		ation Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 15:55	106-93-4	
Surrogates									
-Chloro-2-bromopropane (S)	96	%	60-140		1	07/01/24 08:38	07/01/24 15:55	301-79-56	
260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/01/24 18:30	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/01/24 18:30	994-05-8	
Benzene	6.0	ug/L	5.0	1.7	1		07/01/24 18:30	71-43-2	
,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/01/24 18:30	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/01/24 18:30	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/01/24 18:30	762-75-4	
,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/01/24 18:30	107-06-2	
Diisopropyl ether	5.0J	ug/L	5.0	3.5	1		07/01/24 18:30	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/01/24 18:30	64-17-5	
thylbenzene	3.5J	ug/L	5.0	1.8	1		07/01/24 18:30	100-41-4	
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/01/24 18:30	637-92-3	
lethyl-tert-butyl ether	11.5	ug/L	5.0	3.1	1		07/01/24 18:30	1634-04-4	
laphthalene	3.8J	ug/L	5.0	2.1	1		07/01/24 18:30	91-20-3	C8
oluene	30.8	ug/L	5.0	2.0	1		07/01/24 18:30	108-88-3	
(ylene (Total)	24.4	ug/L	5.0	5.0	1		07/01/24 18:30	1330-20-7	
n&p-Xylene	15.5	ug/L	10.0	4.1	1		07/01/24 18:30	179601-23-1	
-Xylene	8.9	ug/L	5.0	2.0	1		07/01/24 18:30	95-47-6	
Surrogates									
-Bromofluorobenzene (S)	100	%	70-130		1		07/01/24 18:30	460-00-4	
,2-Dichloroethane-d4 (S)	104	%	70-130		1		07/01/24 18:30	17060-07-0	
oluene-d8 (S)	101	%	70-130		1		07/01/24 18:30	2037-26-5	

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: SW-1	Lab ID:	9273873301	5 Collected	l: 06/24/24	12:45	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0075	1	07/01/24 08:38	07/01/24 16:06	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	134	%	60-140		1	07/01/24 08:38	07/01/24 16:06	301-79-56	
3260 MSV Low Level SC	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 21:16	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 21:16	994-05-8	
Benzene	ND	ug/L	1.0	0.34	1		07/01/24 21:16	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 21:16	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 21:16	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 21:16	762-75-4	P5
1,2-Dichloroethane	ND	ug/L	1.0	0.32	1		07/01/24 21:16	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 21:16	108-20-3	
Ethanol	ND	ug/L	200	72.2	1		07/01/24 21:16	64-17-5	
Ethylbenzene	ND	ug/L	1.0	0.30	1		07/01/24 21:16	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		07/01/24 21:16	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	0.42	1		07/01/24 21:16	1634-04-4	
Naphthalene	ND	ug/L	1.0	0.64	1		07/01/24 21:16	91-20-3	
Toluene	ND	ug/L	1.0	0.48	1		07/01/24 21:16	108-88-3	
Kylene (Total)	ND	ug/L	1.0	0.34	1		07/01/24 21:16	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	0.71	1		07/01/24 21:16	179601-23-1	
p-Xylene	ND	ug/L	1.0	0.34	1		07/01/24 21:16	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	100	%	70-130		1		07/01/24 21:16	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130		1		07/01/24 21:16	17060-07-0	
Гoluene-d8 (S)	99	%	70-130		1		07/01/24 21:16	2037-26-5	

(704)875-9092


ANALYTICAL RESULTS

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

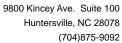
Date: 07/03/2024 07:47 PM

Sample: SW-2	Lab ID:	92738733016	Collected	l: 06/24/24	12:48	Received: 06/	26/24 09:51 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	-	Method: EPA (ation Metho	od: EPA	x 8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 16:17	106-93-4	
1-Chloro-2-bromopropane (S)	90	%	60-140		1	07/01/24 08:38	07/01/24 16:17	301-79-56	
8260 MSV Low Level SC	•	Method: EPA 8							
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 21:34	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 21:34	994-05-8	
Benzene	ND	ug/L	1.0	0.34	1		07/01/24 21:34	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 21:34	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 21:34	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 21:34	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	0.32	1		07/01/24 21:34	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 21:34	108-20-3	
Ethanol	ND	ug/L	200	72.2	1		07/01/24 21:34	64-17-5	
Ethylbenzene	ND	ug/L	1.0	0.30	1		07/01/24 21:34	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		07/01/24 21:34	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	0.42	1		07/01/24 21:34	1634-04-4	
Naphthalene	ND	ug/L	1.0	0.64	1		07/01/24 21:34	91-20-3	
Toluene	ND	ug/L	1.0	0.48	1		07/01/24 21:34	108-88-3	
Xylene (Total)	ND	ug/L	1.0	0.34	1		07/01/24 21:34	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.71	1		07/01/24 21:34	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.34	1		07/01/24 21:34	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	102	%	70-130		1		07/01/24 21:34		
1,2-Dichloroethane-d4 (S)	103	%	70-130		1		07/01/24 21:34		
Toluene-d8 (S)	100	%	70-130		1		07/01/24 21:34	2037-26-5	

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: DUP-1	Lab ID:	92738733017	Collected	1: 06/24/24	4 00:00	Received: 06/	26/24 09:51 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP		Method: EPA 8 ytical Services		ation Metho	od: EPA	A 8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0073	1	07/01/24 08:38	07/01/24 16:28	106-93-4	
1-Chloro-2-bromopropane (S)	113	%	60-140		1	07/01/24 08:38	07/01/24 16:28	301-79-56	
8260 MSV	•	Method: EPA 8 ytical Services							
tert-Amyl Alcohol	ND	ug/L	20000	13100	200		07/01/24 19:07	75-85-4	
ert-Amylmethyl ether	ND	ug/L	2000	608	200		07/01/24 19:07	994-05-8	
Benzene	4520	ug/L	1000	348	200		07/01/24 19:07	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	20000	10800	200		07/01/24 19:07	624-95-3	
ert-Butyl Alcohol	ND	ug/L	20000	18200	200		07/01/24 19:07	75-65-0	
tert-Butyl Formate	ND	ug/L	10000	4820	200		07/01/24 19:07	762-75-4	
1,2-Dichloroethane	ND	ug/L	1000	412	200		07/01/24 19:07	107-06-2	
Diisopropyl ether	ND	ug/L	1000	698	200		07/01/24 19:07	108-20-3	
Ethanol	ND	ug/L	40000	28800	200		07/01/24 19:07	64-17-5	
Ethylbenzene	2650	ug/L	1000	368	200		07/01/24 19:07	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	2000	1690	200		07/01/24 19:07	637-92-3	
Methyl-tert-butyl ether	740J	ug/L	1000	620	200		07/01/24 19:07	1634-04-4	
Naphthalene	891J	ug/L	1000	418	200		07/01/24 19:07	91-20-3	
Toluene	22800	ug/L	1000	402	200		07/01/24 19:07	108-88-3	
Xylene (Total)	12900	ug/L	1000	1000	200		07/01/24 19:07	1330-20-7	
m&p-Xylene	8160	ug/L	2000	822	200		07/01/24 19:07	179601-23-1	
o-Xylene	4710	ug/L	1000	408	200		07/01/24 19:07	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	100	%	70-130		200		07/01/24 19:07		
1,2-Dichloroethane-d4 (S)	104	%	70-130		200		07/01/24 19:07		
Toluene-d8 (S)	100	%	70-130		200		07/01/24 19:07	2037-26-5	



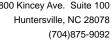
Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: FB	Lab ID:	9273873301	8 Collected	l: 06/24/24	13:30	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0074	1	07/01/24 08:38	07/01/24 16:39	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	100	%	60-140		1	07/01/24 08:38	07/01/24 16:39	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 20:23	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 20:23	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 20:23	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 20:23	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 20:23	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 20:23	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 20:23	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 20:23	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 20:23	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 20:23	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 20:23	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 20:23	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 20:23	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 20:23	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 20:23	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 20:23	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 20:23	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	95	%	70-130		1		06/27/24 20:23	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130		1		06/27/24 20:23	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		06/27/24 20:23	2037-26-5	

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM


Sample: GAC	Lab ID:	92738733019	Collected	l: 06/24/24	13:32	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0075	1	07/01/24 08:38	07/01/24 16:50	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	96	%	60-140		1	07/01/24 08:38	07/01/24 16:50	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 21:38	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 21:38	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 21:38	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 21:38	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 21:38	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 21:38	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 21:38	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 21:38	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 21:38	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 21:38	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 21:38	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 21:38	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 21:38	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 21:38	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 21:38	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 21:38	179601-23-1	
p-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 21:38	95-47-6	
Surrogates		Č							
4-Bromofluorobenzene (S)	94	%	70-130		1		06/27/24 21:38	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130		1		06/27/24 21:38	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		06/27/24 21:38	2037-26-5	

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

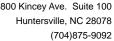
Sample: TB	Lab ID:	92738733020	Collected	d: 06/24/24	1 08:00	Received: 06	6/26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		06/27/24 20:42	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		06/27/24 20:42	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		06/27/24 20:42	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		06/27/24 20:42	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		06/27/24 20:42	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		06/27/24 20:42	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		06/27/24 20:42	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		06/27/24 20:42	108-20-3	
Ethanol	ND	ug/L	200	144	1		06/27/24 20:42	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		06/27/24 20:42	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		06/27/24 20:42	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		06/27/24 20:42	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		06/27/24 20:42	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		06/27/24 20:42	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		06/27/24 20:42	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		06/27/24 20:42	179601-23-1	
p-Xylene	ND	ug/L	5.0	2.0	1		06/27/24 20:42	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	95	%	70-130		1		06/27/24 20:42	460-00-4	
1,2-Dichloroethane-d4 (S)	86	%	70-130		1		06/27/24 20:42	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		06/27/24 20:42	2037-26-5	

Project: JAKE HUGGIN'S
Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: WSW-1	Lab ID:	92738733021	Collected:	06/24/24	13:10	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP	A 504.1			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	0.0060	1	07/01/24 14:23	07/01/24 23:30	106-93-4	
Surrogates		-							
1-Chloro-2-bromopropane (S)	110	%	70-130		1	07/01/24 14:23	07/01/24 23:30	301-79-56	
524.2 MSV SC List	Analytical Method: EPA 524.2								
	Pace Analytical Services - Charlotte								
Benzene	ND	ug/L	0.50	0.21	1		07/02/24 20:11	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		07/02/24 20:11	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		07/02/24 20:11	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		07/02/24 20:11	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		07/02/24 20:11	91-20-3	
Toluene	0.48J	ug/L	0.50	0.20	1		07/02/24 20:11		
Xylene (Total)	ND	ug/L	0.50	0.22	1		07/02/24 20:11		
m&p-Xylene	ND	ug/L	1.0	0.39	1		07/02/24 20:11		
o-Xylene	ND	ug/L	0.50	0.22	1		07/02/24 20:11		
Surrogates	110	ug/ <u>L</u>	0.00	0.22	•		0170272120.11	00 11 0	
1,2-Dichlorobenzene-d4 (S)	91	%	70-130		1		07/02/24 20:11	2199-69-1	
4-Bromofluorobenzene (S)	92	%	70-130		1		07/02/24 20:11		
8260 MSV Low Level SC	Analytical Method: EPA 8260D								
		ytical Services							
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 21:53	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 21:53	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 21:53	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 21:53		
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 21:53		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 21:53		
Ethanol	ND	ug/L	200	72.2	1		07/01/24 21:53		
Ethyl-tert-butyl ether	ND	ug/L ug/L	10.0	3.2	1		07/01/24 21:53		
Surrogates	ND	ug/L	10.0	5.2	'		07/01/24 21:00	001-02-0	
4-Bromofluorobenzene (S)	101	%	70-130		1		07/01/24 21:53	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/01/24 21:53		
Toluene-d8 (S)	101	%	70-130		1		07/01/24 21:53		

(704)875-9092

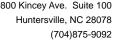


ANALYTICAL RESULTS

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: WSW-2	Lab ID:	92738733022	Collected:	06/24/24	13:00	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	\ 504.1			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.022	0.0061	1	07/01/24 14:23	07/02/24 00:02	106-93-4	
Surrogates		•							
1-Chloro-2-bromopropane (S)	105	%	70-130		1	07/01/24 14:23	07/02/24 00:02	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		07/02/24 19:45	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		07/02/24 19:45	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		07/02/24 19:45	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		07/02/24 19:45	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		07/02/24 19:45	91-20-3	
Toluene	0.63	ug/L	0.50	0.20	1		07/02/24 19:45		
Xylene (Total)	ND	ug/L	0.50	0.22	1		07/02/24 19:45	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.39	1		07/02/24 19:45	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.22	1		07/02/24 19:45		
Surrogates		-9-			•				
1,2-Dichlorobenzene-d4 (S)	115	%	70-130		1		07/02/24 19:45	2199-69-1	
4-Bromofluorobenzene (S)	113	%	70-130		1		07/02/24 19:45	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	•	ytical Services							
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 22:11	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 22:11	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 22:11	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 22:11		
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 22:11		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 22:11		
Ethanol	ND	ug/L	200	72.2	1		07/01/24 22:11		
Ethyl-tert-butyl ether	ND ND	ug/L	10.0	3.2	1		07/01/24 22:11		
Surrogates	ND	ug/L	10.0	0.2	'		07/01/27 22.11	001-02-0	
4-Bromofluorobenzene (S)	101	%	70-130		1		07/01/24 22:11	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130		1		07/01/24 22:11	17060-07-0	
Toluene-d8 (S)	98	%	70-130		1		07/01/24 22:11		



ANALYTICAL RESULTS

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

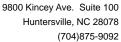
Sample: WSW-DUP	Lab ID:	92738733023	Collected:	06/24/24	00:00	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	A 504.1			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	0.0059	1	07/01/24 14:23	07/02/24 00:24	106-93-4	
Surrogates 1-Chloro-2-bromopropane (S)	97	%	70-130		1	07/01/24 14:23	07/02/24 00:24	301-79-56	
					'	01/01/24 14.25	01/02/24 00:24	301-73-30	
524.2 MSV SC List	•	Method: EPA 5							
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		07/02/24 19:19	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		07/02/24 19:19	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		07/02/24 19:19	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		07/02/24 19:19	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		07/02/24 19:19	91-20-3	
Toluene	0.50J	ug/L	0.50	0.20	1		07/02/24 19:19	108-88-3	
Xylene (Total)	ND	ug/L	0.50	0.22	1		07/02/24 19:19	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.39	1		07/02/24 19:19	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.22	1		07/02/24 19:19		
Surrogates		9-			•				
1,2-Dichlorobenzene-d4 (S)	116	%	70-130		1		07/02/24 19:19	2199-69-1	
4-Bromofluorobenzene (S)	113	%	70-130		1		07/02/24 19:19	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 22:29	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 22:29	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 22:29	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 22:29		
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 22:29		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 22:29		
Ethanol	ND	ug/L	200	72.2	1		07/01/24 22:29		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		07/01/24 22:29		
Surrogates	.10	~g, =	10.0	0.2	•		0.70172122.20	00.020	
4-Bromofluorobenzene (S)	102	%	70-130		1		07/01/24 22:29	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		07/01/24 22:29	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/01/24 22:29	2037-26-5	

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: WSW-FB	Lab ID:	92738733024	Collected:	06/24/24	1 13:15	Received: 06/	26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	\ 504.1			
	Pace Ana	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.022	0.0061	1	07/01/24 14:23	07/02/24 00:34	106-93-4	
1-Chloro-2-bromopropane (S)	98	%	70-130		1	07/01/24 14:23	07/02/24 00:34	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Ana	lytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		07/02/24 14:58	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		07/02/24 14:58	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		07/02/24 14:58	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		07/02/24 14:58	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		07/02/24 14:58	91-20-3	
Toluene	0.56	ug/L	0.50	0.20	1		07/02/24 14:58	108-88-3	C0
Xylene (Total)	ND	ug/L	0.50	0.22	1		07/02/24 14:58	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.39	1		07/02/24 14:58	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.22	1		07/02/24 14:58		
Surrogates		9-			-		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		07/02/24 14:58	2199-69-1	
4-Bromofluorobenzene (S)	97	%	70-130		1		07/02/24 14:58	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Ana	lytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 20:39	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 20:39	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 20:39	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 20:39	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 20:39		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 20:39		
Ethanol	ND	ug/L	200	72.2	1		07/01/24 20:39		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		07/01/24 20:39	-	
Surrogates	110	49, L	10.0	0.2			51,01/2 T 20.00	00, 02 0	
4-Bromofluorobenzene (S)	101	%	70-130		1		07/01/24 20:39	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130		1		07/01/24 20:39	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/01/24 20:39		



ANALYTICAL RESULTS

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Sample: WSW-TB	Lab ID:	92738733025	Collected	d: 06/24/24	1 08:00	Received: 06	5/26/24 09:51 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA	524.2						
	Pace Anal	ytical Services	s - Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		07/02/24 14:31	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		07/02/24 14:31	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		07/02/24 14:31	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		07/02/24 14:31	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		07/02/24 14:31	91-20-3	
Toluene	0.59	ug/L	0.50	0.20	1		07/02/24 14:31	108-88-3	C0
Xylene (Total)	ND	ug/L	0.50	0.22	1		07/02/24 14:31	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.39	1		07/02/24 14:31	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.22	1		07/02/24 14:31	95-47-6	
Surrogates		· ·							
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		07/02/24 14:31	2199-69-1	
4-Bromofluorobenzene (S)	97	%	70-130		1		07/02/24 14:31	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Services	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	36.4	1		07/01/24 20:58	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		07/01/24 20:58	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		07/01/24 20:58	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		07/01/24 20:58	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		07/01/24 20:58	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.31	1		07/01/24 20:58	108-20-3	
Ethanol	ND	ug/L	200	72.2	1		07/01/24 20:58	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		07/01/24 20:58	637-92-3	
Surrogates									
1-Bromofluorobenzene (S)	100	%	70-130		1		07/01/24 20:58	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/01/24 20:58	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/01/24 20:58	2037-26-5	

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 865630 Analysis Method: EPA 524.2

QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733021, 92738733022, 92738733023, 92738733024, 92738733025

METHOD BLANK: 4462353 Matrix: Water

Associated Lab Samples: 92738733021, 92738733022, 92738733023, 92738733024, 92738733025

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	0.50	0.16	07/02/24 14:05	
Benzene	ug/L	ND	0.50	0.21	07/02/24 14:05	
Ethylbenzene	ug/L	ND	0.50	0.22	07/02/24 14:05	
m&p-Xylene	ug/L	ND	1.0	0.39	07/02/24 14:05	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.14	07/02/24 14:05	
Naphthalene	ug/L	ND	0.50	0.35	07/02/24 14:05	
o-Xylene	ug/L	ND	0.50	0.22	07/02/24 14:05	
Toluene	ug/L	ND	0.50	0.20	07/02/24 14:05	
Xylene (Total)	ug/L	ND	0.50	0.22	07/02/24 14:05	
1,2-Dichlorobenzene-d4 (S)	%	105	70-130		07/02/24 14:05	
4-Bromofluorobenzene (S)	%	117	70-130		07/02/24 14:05	

LABORATORY CONTROL SAMPLE:	4462354					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		23.9	120	70-130	
Benzene	ug/L	20	23.2	116	70-130	
Ethylbenzene	ug/L	20	23.8	119	70-130	
m&p-Xylene	ug/L	40	47.8	120	70-130	
Methyl-tert-butyl ether	ug/L	20	22.1	110	70-130	
Naphthalene	ug/L	20	20.2	101	70-130	
o-Xylene	ug/L	20	24.3	122	70-130	
Toluene	ug/L	20	22.2	111	70-130	
Xylene (Total)	ug/L	60	72.2	120		
1,2-Dichlorobenzene-d4 (S)	%			102	70-130	
4-Bromofluorobenzene (S)	%			105	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 864846 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733015, 92738733016, 92738733021, 92738733022, 92738733023, 92738733024, 92738733025

METHOD BLANK: 4458765 Matrix: Water

Associated Lab Samples: 92738733015, 92738733016, 92738733021, 92738733022, 92738733023, 92738733024, 92738733025

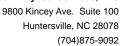
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	1.0	0.32	07/01/24 14:30	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	51.9	07/01/24 14:30	
Benzene	ug/L	ND	1.0	0.34	07/01/24 14:30	
Diisopropyl ether	ug/L	ND	1.0	0.31	07/01/24 14:30	
Ethanol	ug/L	ND	200	72.2	07/01/24 14:30	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.2	07/01/24 14:30	
Ethylbenzene	ug/L	ND	1.0	0.30	07/01/24 14:30	
m&p-Xylene	ug/L	ND	2.0	0.71	07/01/24 14:30	
Methyl-tert-butyl ether	ug/L	ND	1.0	0.42	07/01/24 14:30	
Naphthalene	ug/L	ND	1.0	0.64	07/01/24 14:30	
o-Xylene	ug/L	ND	1.0	0.34	07/01/24 14:30	
tert-Amyl Alcohol	ug/L	ND	100	36.4	07/01/24 14:30	
tert-Amylmethyl ether	ug/L	ND	10.0	2.7	07/01/24 14:30	
tert-Butyl Alcohol	ug/L	ND	100	26.8	07/01/24 14:30	
ert-Butyl Formate	ug/L	ND	50.0	29.4	07/01/24 14:30	
Toluene	ug/L	ND	1.0	0.48	07/01/24 14:30	
Xylene (Total)	ug/L	ND	1.0	0.34	07/01/24 14:30	
1,2-Dichloroethane-d4 (S)	%	103	70-130		07/01/24 14:30	
4-Bromofluorobenzene (S)	%	101	70-130		07/01/24 14:30	
Toluene-d8 (S)	%	99	70-130		07/01/24 14:30	

LABORATORY CONTROL SAMPLE:	4458766					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		19.9	99	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	427	107	70-130	
Benzene	ug/L	20	19.4	97	70-130	
Diisopropyl ether	ug/L	20	19.3	96	70-130	
Ethanol	ug/L	800	977	122	70-130	
Ethyl-tert-butyl ether	ug/L	40	40.0	100	70-130	
Ethylbenzene	ug/L	20	21.5	108	70-130	
m&p-Xylene	ug/L	40	43.1	108	70-130	
Methyl-tert-butyl ether	ug/L	20	19.6	98	70-130	
Naphthalene	ug/L	20	20.9	105	70-130	
o-Xylene	ug/L	20	21.1	105	70-130	
tert-Amyl Alcohol	ug/L	400	415	104	70-130	
tert-Amylmethyl ether	ug/L	40	41.0	103	70-130	
tert-Butyl Alcohol	ug/L	200	202	101	70-130	
tert-Butyl Formate	ug/L	160	175	109	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733


Date: 07/03/2024 07:47 PM

LABORATORY CONTROL SAMPL	E: 4458766					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		20.2	101	70-130	
Xylene (Total)	ug/L	60	64.1	107	70-130	
1,2-Dichloroethane-d4 (S)	%			95	70-130	
4-Bromofluorobenzene (S)	%			103	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	4458767						
		92738733015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	22.1	111	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	427	107	39-157	
Benzene	ug/L	ND	20	24.4	122	70-151	
Diisopropyl ether	ug/L	ND	20	22.7	112	63-144	
Ethanol	ug/L	ND	800	971	121	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	44.8	112	66-137	
Ethylbenzene	ug/L	ND	20	24.6	123	66-153	
m&p-Xylene	ug/L	ND	40	52.4	131	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	23.0	115	54-156	
Naphthalene	ug/L	ND	20	26.9	134	61-148	
o-Xylene	ug/L	ND	20	25.9	130	70-148	
tert-Amyl Alcohol	ug/L	ND	400	432	108	54-153	
tert-Amylmethyl ether	ug/L	ND	40	44.3	111	69-139	
tert-Butyl Alcohol	ug/L	ND	200	307	154	43-188	
tert-Butyl Formate	ug/L	ND	160	ND	8	10-170 P	5
Toluene	ug/L	ND	20	26.8	133	59-148	
Xylene (Total)	ug/L	ND	60	78.3	131	63-158	
1,2-Dichloroethane-d4 (S)	%				100	70-130	
4-Bromofluorobenzene (S)	%				101	70-130	
Toluene-d8 (S)	%				99	70-130	

SAMPLE DUPLICATE: 4458768						
		92738733016	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xylene	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

SAMPLE DUPLICATE: 4458768						
		92738733016	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	103	98			
4-Bromofluorobenzene (S)	%	102	103			
Toluene-d8 (S)	%	100	100			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 864608 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733003, 92738733004, 92738733005

METHOD BLANK: 4457469 Matrix: Water

Associated Lab Samples: 92738733003, 92738733004, 92738733005

710000lated Lab Campies: 92750	733003, 9273073300	+, 92730733003				
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	5.0	2.1	06/27/24 13:06	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	06/27/24 13:06	
Benzene	ug/L	ND	5.0	1.7	06/27/24 13:06	
Diisopropyl ether	ug/L	ND	5.0	3.5	06/27/24 13:06	
Ethanol	ug/L	ND	200	144	06/27/24 13:06	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	06/27/24 13:06	
Ethylbenzene	ug/L	ND	5.0	1.8	06/27/24 13:06	
m&p-Xylene	ug/L	ND	10.0	4.1	06/27/24 13:06	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	06/27/24 13:06	
Naphthalene	ug/L	ND	5.0	2.1	06/27/24 13:06	
o-Xylene	ug/L	ND	5.0	2.0	06/27/24 13:06	
tert-Amyl Alcohol	ug/L	ND	100	65.6	06/27/24 13:06	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	06/27/24 13:06	
tert-Butyl Alcohol	ug/L	ND	100	91.0	06/27/24 13:06	
tert-Butyl Formate	ug/L	ND	50.0	24.1	06/27/24 13:06	
Toluene	ug/L	ND	5.0	2.0	06/27/24 13:06	
Xylene (Total)	ug/L	ND	5.0	5.0	06/27/24 13:06	
1,2-Dichloroethane-d4 (S)	%	95	70-130		06/27/24 13:06	
4-Bromofluorobenzene (S)	%	104	70-130		06/27/24 13:06	
Toluene-d8 (S)	%	85	70-130		06/27/24 13:06	

LABORATORY CONTROL SAMPLE:	4457470					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.9	104	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	409	102	70-130	
Benzene	ug/L	20	21.8	109	70-130	
Diisopropyl ether	ug/L	20	20.5	102	70-130	
Ethanol	ug/L	800	765	96	70-130	
Ethyl-tert-butyl ether	ug/L	40	39.7	99	70-130	
Ethylbenzene	ug/L	20	21.7	108	70-130	
m&p-Xylene	ug/L	40	43.3	108	70-130	
Methyl-tert-butyl ether	ug/L	20	19.9	99	70-130	
Naphthalene	ug/L	20	16.8	84	70-130	
o-Xylene	ug/L	20	22.1	111	70-130	
tert-Amyl Alcohol	ug/L	400	397	99	70-130	
tert-Amylmethyl ether	ug/L	40	42.0	105	70-130	
tert-Butyl Alcohol	ug/L	200	193	96	70-130	
tert-Butyl Formate	ug/L	160	173	108	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733


Date: 07/03/2024 07:47 PM

LABORATORY CONTROL SAMPLE:	4457470					
Doromotor	Units	Spike	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Parameter	- Units	Conc. 	Result	% Rec	Limits	Qualifiers
Toluene	ug/L	20	22.1	111	70-130	
Xylene (Total)	ug/L	60	65.4	109	70-130	
1,2-Dichloroethane-d4 (S)	%			91	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	4457471						
		92738733003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	18.4	92	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	446	112	39-157	
Benzene	ug/L	ND	20	20.2	101	70-151	
Diisopropyl ether	ug/L	ND	20	17.9	90	63-144	
Ethanol	ug/L	ND	800	789	99	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	36.8	92	66-137	
Ethylbenzene	ug/L	ND	20	21.4	107	66-153	
m&p-Xylene	ug/L	ND	40	44.0	110	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	18.4	92	54-156	
Naphthalene	ug/L	ND	20	22.5	112	61-148	
o-Xylene	ug/L	ND	20	21.8	109	70-148	
tert-Amyl Alcohol	ug/L	ND	400	456	114	54-153	
tert-Amylmethyl ether	ug/L	ND	40	40.1	100	69-139	
tert-Butyl Alcohol	ug/L	ND	200	275	138	43-188 v3	3
tert-Butyl Formate	ug/L	ND	160	ND	10	10-170 v3	3
Toluene	ug/L	ND	20	19.5	98	59-148	
Xylene (Total)	ug/L	ND	60	65.8	110	63-158	
1,2-Dichloroethane-d4 (S)	%				90	70-130	
4-Bromofluorobenzene (S)	%				102	70-130	
Toluene-d8 (S)	%				94	70-130	

SAMPLE DUPLICATE: 4457472						
		92738733004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xylene	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

SAMPLE DUPLICATE: 4457472						
		92738733004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
tert-Amyl Alcohol	ug/L	ND	ND		30)
tert-Amylmethyl ether	ug/L	ND	ND		30)
tert-Butyl Alcohol	ug/L	ND	ND		30	0 v2
tert-Butyl Formate	ug/L	ND	ND		30	0 v2
Toluene	ug/L	ND	ND		30)
Xylene (Total)	ug/L	ND	ND		30)
1,2-Dichloroethane-d4 (S)	%	97	92			
4-Bromofluorobenzene (S)	%	99	98			
Toluene-d8 (S)	%	101	100			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 864609 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733007, 92738733008, 92738733009, 92738733010, 92738733011, 92738733012, 92738733013,

92738733018, 92738733019, 92738733020

METHOD BLANK: 4457475 Matrix: Water

Associated Lab Samples: 92738733007, 92738733008, 92738733009, 92738733010, 92738733011, 92738733012, 92738733013,

92738733018, 92738733019, 92738733020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND .	5.0	2.1	06/27/24 14:48	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	06/27/24 14:48	
Benzene	ug/L	ND	5.0	1.7	06/27/24 14:48	
Diisopropyl ether	ug/L	ND	5.0	3.5	06/27/24 14:48	
Ethanol	ug/L	ND	200	144	06/27/24 14:48	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	06/27/24 14:48	
Ethylbenzene	ug/L	ND	5.0	1.8	06/27/24 14:48	
m&p-Xylene	ug/L	ND	10.0	4.1	06/27/24 14:48	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	06/27/24 14:48	
Naphthalene	ug/L	ND	5.0	2.1	06/27/24 14:48	
o-Xylene	ug/L	ND	5.0	2.0	06/27/24 14:48	
tert-Amyl Alcohol	ug/L	ND	100	65.6	06/27/24 14:48	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	06/27/24 14:48	
tert-Butyl Alcohol	ug/L	ND	100	91.0	06/27/24 14:48	
tert-Butyl Formate	ug/L	ND	50.0	24.1	06/27/24 14:48	
Toluene	ug/L	ND	5.0	2.0	06/27/24 14:48	
Xylene (Total)	ug/L	ND	5.0	5.0	06/27/24 14:48	
1,2-Dichloroethane-d4 (S)	%	85	70-130		06/27/24 14:48	
4-Bromofluorobenzene (S)	%	95	70-130		06/27/24 14:48	
Toluene-d8 (S)	%	100	70-130		06/27/24 14:48	

LABORATORY CONTROL SAMPLE:	4457476					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		16.7	83	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	426	106	70-130	
Benzene	ug/L	20	20.7	104	70-130	
Diisopropyl ether	ug/L	20	20.3	102	70-130	
Ethanol	ug/L	800	707	88	70-130	
Ethyl-tert-butyl ether	ug/L	40	38.6	96	70-130	
Ethylbenzene	ug/L	20	19.9	99	70-130	
m&p-Xylene	ug/L	40	40.1	100	70-130	
Methyl-tert-butyl ether	ug/L	20	19.1	96	70-130	
Naphthalene	ug/L	20	22.5	112	70-130	
o-Xylene	ug/L	20	20.9	105	70-130	
tert-Amyl Alcohol	ug/L	400	399	100	70-130	
tert-Amylmethyl ether	ug/L	40	37.9	95	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733


Date: 07/03/2024 07:47 PM

LABORATORY CONTROL SAMPLE:	4457476					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butyl Alcohol	ug/L	200	176	88	70-130	
tert-Butyl Formate	ug/L	160	141	88	70-130	
Toluene	ug/L	20	19.9	99	70-130	
(ylene (Total)	ug/L	60	61.0	102	70-130	
,2-Dichloroethane-d4 (S)	%			84	70-130	
I-Bromofluorobenzene (S)	%			100	70-130	
oluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	4457477						
		92738733009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	21.8	109	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	559	140	39-157	
Benzene	ug/L	ND	20	27.7	138	70-151	
Diisopropyl ether	ug/L	ND	20	27.0	135	63-144	
Ethanol	ug/L	ND	800	929	116	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	50.7	127	66-137	
Ethylbenzene	ug/L	ND	20	26.3	131	66-153	
m&p-Xylene	ug/L	ND	40	52.7	132	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	25.2	126	54-156	
Naphthalene	ug/L	ND	20	26.7	133	61-148	
o-Xylene	ug/L	ND	20	27.1	136	70-148	
tert-Amyl Alcohol	ug/L	ND	400	511	128	54-153	
tert-Amylmethyl ether	ug/L	ND	40	49.0	123	69-139	
tert-Butyl Alcohol	ug/L	ND	200	242	121	43-188 v3	3
tert-Butyl Formate	ug/L	ND	160	149	93	10-170	
Toluene	ug/L	ND	20	26.0	130	59-148	
Xylene (Total)	ug/L	ND	60	79.9	133	63-158	
1,2-Dichloroethane-d4 (S)	%				82	70-130	
4-Bromofluorobenzene (S)	%				98	70-130	
Toluene-d8 (S)	%				99	70-130	

SAMPLE DUPLICATE: 4457478						
		92738733013	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	ND		30	<u> </u>
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

SAMPLE DUPLICATE: 4457478						
		92738733013	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Naphthalene	ug/L		ND		30)
o-Xylene	ug/L	ND	ND		30)
tert-Amyl Alcohol	ug/L	ND	ND		30)
tert-Amylmethyl ether	ug/L	ND	ND		30)
tert-Butyl Alcohol	ug/L	ND	ND		30) v2
tert-Butyl Formate	ug/L	ND	ND		30)
Toluene	ug/L	ND	ND		30)
Xylene (Total)	ug/L	ND	ND		30)
1,2-Dichloroethane-d4 (S)	%	84	83			
4-Bromofluorobenzene (S)	%	95	96			
Toluene-d8 (S)	%	99	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

QC Batch: 865020 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733006, 92738733014, 92738733017

METHOD BLANK: 4459846 Matrix: Water

Associated Lab Samples: 92738733006, 92738733014, 92738733017

	0.00000, 02.00.0001	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	 ug/L	ND	5.0	2.1	07/01/24 14:12	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/01/24 14:12	
Benzene	ug/L	ND	5.0	1.7	07/01/24 14:12	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/01/24 14:12	
Ethanol	ug/L	ND	200	144	07/01/24 14:12	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/01/24 14:12	
Ethylbenzene	ug/L	ND	5.0	1.8	07/01/24 14:12	
n&p-Xylene	ug/L	ND	10.0	4.1	07/01/24 14:12	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/01/24 14:12	
Naphthalene	ug/L	ND	5.0	2.1	07/01/24 14:12	
o-Xylene	ug/L	ND	5.0	2.0	07/01/24 14:12	
tert-Amyl Alcohol	ug/L	ND	100	65.6	07/01/24 14:12	
ert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/01/24 14:12	
ert-Butyl Alcohol	ug/L	ND	100	91.0	07/01/24 14:12	
ert-Butyl Formate	ug/L	ND	50.0	24.1	07/01/24 14:12	
Toluene	ug/L	ND	5.0	2.0	07/01/24 14:12	
Xylene (Total)	ug/L	ND	5.0	5.0	07/01/24 14:12	
1,2-Dichloroethane-d4 (S)	%	102	70-130		07/01/24 14:12	
4-Bromofluorobenzene (S)	%	101	70-130		07/01/24 14:12	
Toluene-d8 (S)	%	99	70-130		07/01/24 14:12	

METHOD BLANK: 4464723 Matrix: Water

Associated Lab Samples: 92738733006, 92738733014, 92738733017

Date: 07/03/2024 07:47 PM

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
						- Qualificity
1,2-Dichloroethane	ug/L	ND	5.0	2.1	07/03/24 13:24	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/03/24 13:24	
Benzene	ug/L	ND	5.0	1.7	07/03/24 13:24	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/03/24 13:24	
Ethanol	ug/L	ND	200	144	07/03/24 13:24	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/03/24 13:24	
Ethylbenzene	ug/L	ND	5.0	1.8	07/03/24 13:24	
m&p-Xylene	ug/L	ND	10.0	4.1	07/03/24 13:24	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/03/24 13:24	
Naphthalene	ug/L	ND	5.0	2.1	07/03/24 13:24	
o-Xylene	ug/L	ND	5.0	2.0	07/03/24 13:24	
tert-Amyl Alcohol	ug/L	ND	100	65.6	07/03/24 13:24	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/03/24 13:24	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

METHOD BLANK: 4464723 Matrix: Water

Associated Lab Samples: 92738733006, 92738733014, 92738733017

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
tert-Butyl Alcohol	ug/L	ND	100	91.0	07/03/24 13:24	
tert-Butyl Formate	ug/L	ND	50.0	24.1	07/03/24 13:24	
Toluene	ug/L	ND	5.0	2.0	07/03/24 13:24	
Xylene (Total)	ug/L	ND	5.0	5.0	07/03/24 13:24	
1,2-Dichloroethane-d4 (S)	%	100	70-130		07/03/24 13:24	
4-Bromofluorobenzene (S)	%	98	70-130		07/03/24 13:24	
Toluene-d8 (S)	%	100	70-130		07/03/24 13:24	

METHOD BLANK: 4464735 Matrix: Water

Associated Lab Samples: 92738733006, 92738733014, 92738733017

	33000, 327 307 3301-	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	07/02/24 15:51	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/02/24 15:51	
Benzene	ug/L	ND	5.0	1.7	07/02/24 15:51	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/02/24 15:51	
Ethanol	ug/L	ND	200	144	07/02/24 15:51	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/02/24 15:51	
Ethylbenzene	ug/L	ND	5.0	1.8	07/02/24 15:51	
m&p-Xylene	ug/L	ND	10.0	4.1	07/02/24 15:51	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/02/24 15:51	
Naphthalene	ug/L	ND	5.0	2.1	07/02/24 15:51	
o-Xylene	ug/L	ND	5.0	2.0	07/02/24 15:51	
ert-Amyl Alcohol	ug/L	ND	100	65.6	07/02/24 15:51	
ert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/02/24 15:51	
ert-Butyl Alcohol	ug/L	ND	100	91.0	07/02/24 15:51	
ert-Butyl Formate	ug/L	ND	50.0	24.1	07/02/24 15:51	
Toluene	ug/L	ND	5.0	2.0	07/02/24 15:51	
Xylene (Total)	ug/L	ND	5.0	5.0	07/02/24 15:51	
I,2-Dichloroethane-d4 (S)	%	100	70-130		07/02/24 15:51	
4-Bromofluorobenzene (S)	%	100	70-130		07/02/24 15:51	
Toluene-d8 (S)	%	100	70-130		07/02/24 15:51	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.9	105	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	407	102	70-130	
Benzene	ug/L	20	20.5	103	70-130	
Diisopropyl ether	ug/L	20	20.2	101	70-130	
Ethanol	ug/L	800	969	121	70-130	
Ethyl-tert-butyl ether	ug/L	40	40.7	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

ABORATORY CONTROL SAMPLE:	4459847					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
hylbenzene	ug/L		21.4	107	70-130	
p-Xylene	ug/L	40	42.7	107	70-130	
thyl-tert-butyl ether	ug/L	20	19.9	99	70-130	
ohthalene	ug/L	20	19.9	99	70-130	
ylene	ug/L	20	21.1	106	70-130	
-Amyl Alcohol	ug/L	400	405	101	70-130	
-Amylmethyl ether	ug/L	40	41.4	104	70-130	
Butyl Alcohol	ug/L	200	199	99	70-130	
Butyl Formate	ug/L	160	177	111	70-130	
ene	ug/L	20	21.3	106	70-130	
ene (Total)	ug/L	60	63.8	106	70-130	
Dichloroethane-d4 (S)	%			103	70-130	
omofluorobenzene (S)	%			101	70-130	
iene-d8 (S)	%			100	70-130	

LABORATORY CONTROL SAMPLE:	4464724					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	20.3	101	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	393	98	70-130	
Benzene	ug/L	20	20.5	102	70-130	
Diisopropyl ether	ug/L	20	20.4	102	70-130	
Ethanol	ug/L	800	850	106	70-130	
Ethyl-tert-butyl ether	ug/L	40	40.8	102	70-130	
Ethylbenzene	ug/L	20	21.4	107	70-130	
m&p-Xylene	ug/L	40	43.3	108	70-130	
Methyl-tert-butyl ether	ug/L	20	20.5	102	70-130	
Naphthalene	ug/L	20	20.3	102	70-130	
o-Xylene	ug/L	20	21.2	106	70-130	
tert-Amyl Alcohol	ug/L	400	400	100	70-130	
tert-Amylmethyl ether	ug/L	40	39.6	99	70-130	
tert-Butyl Alcohol	ug/L	200	185	93	70-130	
tert-Butyl Formate	ug/L	160	170	107	70-130	
Toluene	ug/L	20	20.5	102	70-130	
Xylene (Total)	ug/L	60	64.5	108	70-130	
1,2-Dichloroethane-d4 (S)	%			97	70-130	
4-Bromofluorobenzene (S)	%			99	70-130	
Toluene-d8 (S)	%			98	70-130	

LABORATORY CONTROL SAMPLE:	4464736					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.4	102	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	364	91	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

LABORATORY CONTROL SAMPLE: 4464736 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Benzene ug/L 20 20.7 103 70-130 Diisopropyl ether ug/L 20 20.1 101 70-130 Ethanol ug/L 800 915 114 70-130 Ethyl-tert-butyl ether 40 41.1 103 70-130 ug/L Ethylbenzene 20 20.0 100 70-130 ug/L m&p-Xylene ug/L 40 40.4 101 70-130 Methyl-tert-butyl ether ug/L 20 20.1 101 70-130 Naphthalene 20 17.2 86 70-130 ug/L o-Xylene 20 19.9 99 70-130 ug/L tert-Amyl Alcohol ug/L 400 374 94 70-130 tert-Amylmethyl ether ug/L 40 40.6 101 70-130 tert-Butyl Alcohol ug/L 200 177 89 70-130 tert-Butyl Formate ug/L 160 172 108 70-130 Toluene 20 20.3 101 70-130 ug/L ug/L Xylene (Total) 60 60.3 101 70-130 1,2-Dichloroethane-d4 (S) % 95 70-130 4-Bromofluorobenzene (S) % 100 70-130 Toluene-d8 (S) % 101 70-130

MATRIX SPIKE SAMPLE:	4459848						
		92738886003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	 ug/L	ND	20	ND	17	70-137	M1
3,3-Dimethyl-1-Butanol	ug/L	ND	400	ND	0	39-157	M1
Benzene	ug/L	7580	20	7540	-155	70-151	M1
Diisopropyl ether	ug/L	ND	20	ND	98	63-144	
Ethanol	ug/L	ND	800	ND	20	39-176	M1
Ethyl-tert-butyl ether	ug/L	ND	40	ND	55	66-137	M1
Ethylbenzene	ug/L	2640	20	2620	-87	66-153	M1
m&p-Xylene	ug/L	11200	40	10900	-619	69-152	M1
Methyl-tert-butyl ether	ug/L	3830	20	3720	-555	54-156	M1
Naphthalene	ug/L	622J	20	620J	-6	61-148	M1
o-Xylene	ug/L	5460	20	5380	-368	70-148	M1
tert-Amyl Alcohol	ug/L	14900	400	15400	126	54-153	
tert-Amylmethyl ether	ug/L	ND	40	426J	121	69-139	
tert-Butyl Alcohol	ug/L	ND	200	ND	477	43-188	M1,v2
tert-Butyl Formate	ug/L	ND	160	ND	50	10-170	P5,v2
Toluene	ug/L	20800	20	20900	789	59-148	M1
Xylene (Total)	ug/L	16600	60	16300	-535	63-158	MS
1,2-Dichloroethane-d4 (S)	%				90	70-130	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

SAMPLE DUPLICATE: 4459849						
		92738886004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	149	202	30	30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	5.9J		30	
m&p-Xylene	ug/L	25.4	45.4	56	30	D6
Methyl-tert-butyl ether	ug/L	8.2J	10.1		30	
Naphthalene	ug/L	ND	4.4J		30	
o-Xylene	ug/L	6.5J	12.9		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	14.6	25.6	55	30	D6
Xylene (Total)	ug/L	31.9	58.2	58	30	
1,2-Dichloroethane-d4 (S)	%	100	100			
4-Bromofluorobenzene (S)	%	101	101			
Toluene-d8 (S)	%	100	99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 865393 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733001

METHOD BLANK: 4461357 Matrix: Water

Associated Lab Samples: 92738733001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	 ug/L	ND	5.0	2.1	07/02/24 10:38	v1
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/02/24 10:38	
Benzene	ug/L	ND	5.0	1.7	07/02/24 10:38	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/02/24 10:38	
Ethanol	ug/L	ND	200	144	07/02/24 10:38	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/02/24 10:38	
Ethylbenzene	ug/L	ND	5.0	1.8	07/02/24 10:38	
m&p-Xylene	ug/L	ND	10.0	4.1	07/02/24 10:38	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/02/24 10:38	
Naphthalene	ug/L	ND	5.0	2.1	07/02/24 10:38	v2
o-Xylene	ug/L	ND	5.0	2.0	07/02/24 10:38	
tert-Amyl Alcohol	ug/L	ND	100	65.6	07/02/24 10:38	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/02/24 10:38	
tert-Butyl Alcohol	ug/L	ND	100	91.0	07/02/24 10:38	
tert-Butyl Formate	ug/L	ND	50.0	24.1	07/02/24 10:38	
Toluene	ug/L	ND	5.0	2.0	07/02/24 10:38	
Xylene (Total)	ug/L	ND	5.0	5.0	07/02/24 10:38	
1,2-Dichloroethane-d4 (S)	%	102	70-130		07/02/24 10:38	
4-Bromofluorobenzene (S)	%	105	70-130		07/02/24 10:38	
Toluene-d8 (S)	%	103	70-130		07/02/24 10:38	

LABORATORY CONTROL SAMPLE:	4461358					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		24.4	122	70-130	v1
3,3-Dimethyl-1-Butanol	ug/L	400	318	80	70-130	
Benzene	ug/L	20	20.7	104	70-130	
Diisopropyl ether	ug/L	20	19.4	97	70-130	
Ethanol	ug/L	800	832	104	70-130	
Ethyl-tert-butyl ether	ug/L	40	43.1	108	70-130	
Ethylbenzene	ug/L	20	16.8	84	70-130	
m&p-Xylene	ug/L	40	34.6	87	70-130	
Methyl-tert-butyl ether	ug/L	20	20.5	103	70-130	
Naphthalene	ug/L	20	14.6	73	70-130	v3
o-Xylene	ug/L	20	17.6	88	70-130	
tert-Amyl Alcohol	ug/L	400	389	97	70-130	
tert-Amylmethyl ether	ug/L	40	41.5	104	70-130	
tert-Butyl Alcohol	ug/L	200	162	81	70-130	
tert-Butyl Formate	ug/L	160	200	125	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

LABORATORY CONTROL SAMPLE:	4461358					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		19.4	97	70-130	
Xylene (Total)	ug/L	60	52.3	87	70-130	
1,2-Dichloroethane-d4 (S)	%			107	70-130	
4-Bromofluorobenzene (S)	%			107	70-130	
Toluene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	4461359						
		92738886022	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	25.7	129	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	487	122	39-157	
Benzene	ug/L	ND	20	24.7	123	70-151	
Diisopropyl ether	ug/L	ND	20	33.2	166	63-144	M1,v1
Ethanol	ug/L	ND	800	1290	161	39-176	v1
Ethyl-tert-butyl ether	ug/L	ND	40	54.1	135	66-137	
Ethylbenzene	ug/L	ND	20	23.0	115	66-153	
m&p-Xylene	ug/L	ND	40	45.7	114	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	24.7	124	54-156	
Naphthalene	ug/L	ND	20	23.6	111	61-148	v3
o-Xylene	ug/L	9.3	20	31.5	111	70-148	
tert-Amyl Alcohol	ug/L	ND	400	473	118	54-153	
tert-Amylmethyl ether	ug/L	ND	40	45.4	114	69-139	
tert-Butyl Alcohol	ug/L	ND	200	239	120	43-188	
tert-Butyl Formate	ug/L	ND	160	176	110	10-170	
Toluene	ug/L	ND	20	22.9	115	59-148	
Xylene (Total)	ug/L	9.3	60	77.2	113	63-158	
1,2-Dichloroethane-d4 (S)	%				114	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				102	70-130	

SAMPLE DUPLICATE: 4461360						
		92738886021	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30)
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30)
Benzene	ug/L	ND	ND		30)
Diisopropyl ether	ug/L	ND	ND		30) v1
Ethanol	ug/L	ND	ND		30) v1
Ethyl-tert-butyl ether	ug/L	ND	ND		30)
Ethylbenzene	ug/L	ND	ND		30)
m&p-Xylene	ug/L	ND	ND		30)
Methyl-tert-butyl ether	ug/L	ND	ND		30)
Naphthalene	ug/L	ND	ND		30) v2
o-Xylene	ug/L	ND	ND		30)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

SAMPLE DUPLICATE: 4461360						
		92738886021	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	102	118			
4-Bromofluorobenzene (S)	%	105	100			
Toluene-d8 (S)	%	102	104			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 865899 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733002

METHOD BLANK: 4463712 Matrix: Water

Associated Lab Samples: 92738733002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	07/03/24 14:25	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/03/24 14:25	
Benzene	ug/L	ND	5.0	1.7	07/03/24 14:25	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/03/24 14:25	
Ethanol	ug/L	ND	200	144	07/03/24 14:25	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/03/24 14:25	
Ethylbenzene	ug/L	ND	5.0	1.8	07/03/24 14:25	
m&p-Xylene	ug/L	ND	10.0	4.1	07/03/24 14:25	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/03/24 14:25	
Naphthalene	ug/L	ND	5.0	2.1	07/03/24 14:25	
o-Xylene	ug/L	ND	5.0	2.0	07/03/24 14:25	
tert-Amyl Alcohol	ug/L	ND	100	65.6	07/03/24 14:25	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/03/24 14:25	
tert-Butyl Alcohol	ug/L	ND	100	91.0	07/03/24 14:25	
tert-Butyl Formate	ug/L	ND	50.0	24.1	07/03/24 14:25	v2
Toluene	ug/L	ND	5.0	2.0	07/03/24 14:25	
Xylene (Total)	ug/L	ND	5.0	5.0	07/03/24 14:25	
1,2-Dichloroethane-d4 (S)	%	99	70-130		07/03/24 14:25	
4-Bromofluorobenzene (S)	%	98	70-130		07/03/24 14:25	
Toluene-d8 (S)	%	101	70-130		07/03/24 14:25	

LABORATORY CONTROL SAMPLE:	4463713					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		19.6	98	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	346	86	70-130	
Benzene	ug/L	20	20.4	102	70-130	
Diisopropyl ether	ug/L	20	20.1	101	70-130	
Ethanol	ug/L	800	824	103	70-130	
Ethyl-tert-butyl ether	ug/L	40	37.4	94	70-130	
Ethylbenzene	ug/L	20	20.3	102	70-130	
m&p-Xylene	ug/L	40	40.4	101	70-130	
Methyl-tert-butyl ether	ug/L	20	19.0	95	70-130	
Naphthalene	ug/L	20	17.5	88	70-130	
o-Xylene	ug/L	20	19.8	99	70-130	
tert-Amyl Alcohol	ug/L	400	359	90	70-130	
tert-Amylmethyl ether	ug/L	40	36.9	92	70-130	
tert-Butyl Alcohol	ug/L	200	184	92	70-130	
tert-Butyl Formate	ug/L	160	116	73	70-130 v	3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

LADODATORY CONTROL CAMPLE. 4402742

LABORATORY CONTROL SAMPL	E: 4463713	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		20.2	101	70-130	
Xylene (Total)	ug/L	60	60.2	100	70-130	
1,2-Dichloroethane-d4 (S)	%			98	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 4463	958		4463959							
			MS	MSD								
	9	2738733002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	21.6	20.6	108	103	70-137	5	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	400	382	100	96	39-157	4	30	
Benzene	ug/L	23.5	20	20	43.5	49.3	100	129	70-151	12	30	
Diisopropyl ether	ug/L	26.4	20	20	49.1	48.4	114	110	63-144	2	30	
Ethanol	ug/L	ND	800	800	929	901	116	113	39-176	3	30	
Ethyl-tert-butyl ether	ug/L	ND	40	40	40.8	39.9	102	100	66-137	2	30	
Ethylbenzene	ug/L	ND	20	20	22.5	22.1	112	110	66-153	2	30	
m&p-Xylene	ug/L	ND	40	40	45.2	44.2	113	110	69-152	2	30	
Methyl-tert-butyl ether	ug/L	122	20	20	148	147	129	123	54-156	1	30	
Naphthalene	ug/L	ND	20	20	20.6	20.5	97	97	61-148	0	30	
o-Xylene	ug/L	ND	20	20	22.0	21.6	109	108	70-148	1	30	
tert-Amyl Alcohol	ug/L	ND	400	400	466	448	108	103	54-153	4	30	
tert-Amylmethyl ether	ug/L	5.3J	40	40	47.1	46.0	104	102	69-139	2	30	
tert-Butyl Alcohol	ug/L	ND	200	200	236	231	108	105	43-188	2	30	
tert-Butyl Formate	ug/L	ND	160	160	55.7	41.7J	35	26	10-170		30	v3
Toluene	ug/L	ND	20	20	22.5	21.9	112	110	59-148	2	30	
Xylene (Total)	ug/L	ND	60	60	67.1	65.8	112	110	63-158	2	30	
1,2-Dichloroethane-d4 (S)	%						97	94	70-130			
4-Bromofluorobenzene (S)	%						101	101	70-130			
Toluene-d8 (S)	%						100	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 865263 Analysis Method: EPA 504.1

QC Batch Method: EPA 504.1 Analysis Description: GCS 504 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733021, 92738733022, 92738733023, 92738733024

METHOD BLANK: 4460652 Matrix: Water

Associated Lab Samples: 92738733021, 92738733022, 92738733023, 92738733024

Blank Reporting MDL Parameter Units Result Limit Analyzed Qualifiers 1,2-Dibromoethane (EDB) ND 0.020 0.0057 07/01/24 22:58 ug/L 1-Chloro-2-bromopropane (S) % 80 70-130 07/01/24 22:58

LABORATORY CONTROL SAMPLE & LCSD: 4460653 4460654 LCS Spike LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) 20 R1 ug/L 0.26 0.20 0.26 77 100 70-130 25 1-Chloro-2-bromopropane (S) 86 103 70-130 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4460655 4460656 MS MSD 92738733021 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 1,2-Dibromoethane (EDB) ug/L ND 0.26 0.26 0.30 0.31 115 120 65-135 20 1-Chloro-2-bromopropane 107 70-130 % 111 (S)

SAMPLE DUPLICATE: 4460657
92738733022 Dup

		92738733022	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	0
1-Chloro-2-bromopropane (S)	%	105	110			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

QC Batch: 864940 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733001, 92738733002, 92738733003, 92738733004

METHOD BLANK: 4459323 Matrix: Water

Associated Lab Samples: 92738733001, 92738733002, 92738733003, 92738733004

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed 1,2-Dibromoethane (EDB) ND 0.022 0.0083 06/28/24 16:59 ug/L 1-Chloro-2-bromopropane (S) % 104 60-140 06/28/24 16:59

LABORATORY CONTROL SAMPLE & LCSD: 4459324 4459420 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) ug/L 0.26 0.23 0.26 87 98 60-140 11 20 1-Chloro-2-bromopropane (S) 102 103 60-140 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4459326 4459327 MS MSD 92738731017 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 1,2-Dibromoethane (EDB) ug/L ND 0.27 0.27 0.28 0.27 105 101 60-140 20 1-Chloro-2-bromopropane 103 60-140 % 99 (S)

SAMPLE DUPLICATE: 4459325

Date: 07/03/2024 07:47 PM

		92738731015	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1-Chloro-2-bromopropane (S)	%	105	99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

QC Batch: 865207 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92738733005, 92738733006, 92738733007, 92738733008, 92738733009, 92738733011,

92738733019

METHOD BLANK: 4460572 Matrix: Water

Associated Lab Samples: 92738733005, 92738733006, 92738733007, 92738733008, 92738733009, 92738733011,

92738733012, 92738733013, 92738733014, 92738733015, 92738733016, 92738733017, 92738733018,

92738733019

	927387330	713										
Parameter		Units	Blanl Resu		Reporting Limit	M	DL	Analyze	ed Q	ualifiers		
1,2-Dibromoethane (EDB)		ug/L		ND	0.020		0.0074	07/01/24 1	3:13			
1-Chloro-2-bromopropane (S))	%		100	60-140			07/01/24 1	3:13			
LABORATORY CONTROL SA	AMPLE & I	_CSD: 446057	'3		4460574							
Parameter		Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qua	alifiers
1,2-Dibromoethane (EDB)		ug/L	0.25	0.3	3 0.30	135	121	60-140	11	20		
1-Chloro-2-bromopropane (S))	%				122	110	60-140				
MATRIX SPIKE & MATRIX SI	PIKE DUPL	_ICATE: 4460	576		4460577							
MATRIX SPIKE & MATRIX SP	PIKE DUPI	LICATE: 4460	576 MS	MSD	4460577							
MATRIX SPIKE & MATRIX SPIRE & MATRIX	PIKE DUPL Units	ICATE: 4460 92738733006 Result		MSD Spike Conc.	4460577 MS Result	MSD Result	MS % Red	MSD c % Rec	% Rec Limits	RPD	Max RPD	Qual
		92738733006	MS Spike	Spike	MS		% Red	_	Limits 27 60-140	21	RPD	Qual M1,R1

SAMPLE DUPLICATE: 4460575						
		92738733005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1-Chloro-2-bromopropane (S)	%	106	106			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JAKE HUGGIN'S
Pace Project No.: 92738733

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/03/2024 07:47 PM

C0	Result confirmed by second analysis.
C8	Result may be biased high due to carryover from previously analyzed sample.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
MS	Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
P5	The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
R1	RPD value was outside control limits.
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
v2	The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
v3	The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

(704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92738733021	WSW-1	EPA 504.1	865263	EPA 504.1	865373
92738733022	WSW-2	EPA 504.1	865263	EPA 504.1	865373
2738733023	WSW-DUP	EPA 504.1	865263	EPA 504.1	865373
2738733024	WSW-FB	EPA 504.1	865263	EPA 504.1	865373
92738733001	MW-1	EPA 8011	864940	EPA 8011	864971
92738733002	MW-2	EPA 8011	864940	EPA 8011	864971
2738733002	MW-3	EPA 8011	864940	EPA 8011	864971
2738733003	MW-4	EPA 8011	864940	EPA 8011	864971
2738733005	MW-5	EPA 8011	865207	EPA 8011	865233
	MW-6				
2738733006		EPA 8011	865207	EPA 8011	865233
2738733007	MW-7	EPA 8011	865207	EPA 8011	865233
2738733008	MW-8	EPA 8011	865207	EPA 8011	865233
2738733009	MW-9	EPA 8011	865207	EPA 8011	865233
2738733010	MW-10	EPA 8011	865207	EPA 8011	865233
2738733011	DW-1	EPA 8011	865207	EPA 8011	865233
2738733012	DW-2	EPA 8011	865207	EPA 8011	865233
2738733013	DW-3	EPA 8011	865207	EPA 8011	865233
2738733014	DW-4	EPA 8011	865207	EPA 8011	865233
2738733015	SW-1	EPA 8011	865207	EPA 8011	865233
2738733016	SW-2	EPA 8011	865207	EPA 8011	865233
2738733017	DUP-1	EPA 8011	865207	EPA 8011	865233
2738733018	FB	EPA 8011	865207	EPA 8011	865233
2738733019	GAC	EPA 8011	865207	EPA 8011	865233
2738733021	WSW-1	EPA 524.2	865630		
2738733022	WSW-2	EPA 524.2	865630		
2738733023	WSW-DUP	EPA 524.2	865630		
2738733024	WSW-FB	EPA 524.2	865630		
2738733025	WSW-TB	EPA 524.2	865630		
2738733015	SW-1	EPA 8260D	864846		
2738733016	SW-2	EPA 8260D	864846		
2738733021	WSW-1	EPA 8260D	864846		
2738733022	WSW-2	EPA 8260D	864846		
2738733023	WSW-DUP	EPA 8260D	864846		
2738733024	WSW-FB	EPA 8260D	864846		
2738733025	WSW-TB	EPA 8260D	864846		
92738733001	MW-1	EPA 8260D	865393		
92738733002	MW-2	EPA 8260D	865899		
2738733003	MW-3	EPA 8260D	864608		
2738733004	MW-4	EPA 8260D	864608		
2738733005	MW-5	EPA 8260D	864608		
92738733006	MW-6	EPA 8260D	865020		
92738733007	MW-7	EPA 8260D	864609		
2738733008	MW-8	EPA 8260D	864609		
2738733009	MW-9	EPA 8260D	864609		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGIN'S

Pace Project No.: 92738733

Date: 07/03/2024 07:47 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92738733010	MW-10	EPA 8260D	864609		
92738733011	DW-1	EPA 8260D	864609		
92738733012	DW-2	EPA 8260D	864609		
92738733013	DW-3	EPA 8260D	864609		
92738733014	DW-4	EPA 8260D	865020		
92738733017	DUP-1	EPA 8260D	865020		
92738733018	FB	EPA 8260D	864609		
92738733019	GAC	EPA 8260D	864609		
92738733020	ТВ	EPA 8260D	864609		

Relinquished by/Company: (Signature)	Reinquisned by/Company (Signature)	Reinquished by/Company: (Signature)		Z	Customer Remarks / Special Conditions / Possible Hazards:	32-10	MW-9	MW-8	F-MW	9-MW	MW-5	MW-9	MW-3	MW-Z	MW-1		Customer Sample ID	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	[] Hold:	Sample Disposal: // [] Dispose as appropriate [] Return	Joseph Jak	y (signature	Collected By (print):	Phone:	Jake Huggins	Customer Project Name/Number:	Copy To:	5	Address: 231 Nool	Company: MECI	Pace Analytical	2
e)		(WE(I)			ons / Possible Ha	<	11								W W		Matrix *	below): Drinking , Wipe (WP), Air	(Exp	S		Turnaround Date Required:	Purchase Order #: Quote #:	Site/Facility ID #:					S NA		Chain-of-	CHAIN-C
bate/fime:	6/2Lb4	6/26/2	Rac	Pac		€				_					6		Comp / Grab C	g Water (DW (AR), Tissue	(Expedite Charges Apply)		52	Required:	#	٠	5	State:	Situ	Em	7	Bill	Custody is a)F-CUST(
ie: •	py 15%	124 (0:5)	Ichem sample(Packing Material Used:	Type of Ice Used:	12:2	12.	12.	1.1	10:5	10:48	10:2	10.3) 11.0	124 12.2	Date Time	Collected (or Composite Start)), Ground Wat (TS), Bioassay	rges Apply)	, ay					7		Site Collection Info/Address:	Email To: 🍸 /		Billing Information:	LEGAL DOCUN	DDY Anal
Received by	vereived by	\sim	Radchem sample(s) screened (<500 cpm):	Used:	Wet	23	30	15	8	0.	8	8	30	7	2	e Date	t) Composite End	ter (GW), Waste (B), Vapor (V), (Analysis: _		[V] Yes	Immediate	DW PWS ID #: DW Location Code:	Compliano [] Yes	2710000 00 144	County/City: Tim	fo/Address:	(D mer I her		n:	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	CHAIN-OF-CUSTODY Analytical Request Document
Received by/Company: (Signature)	HHA PACE	Company: (Sign			Blue Dry											Time		water (WW), Other (OT)		Field Filtered (if applicable): [] Yes [] No	ON	Immediately Packed on Ice:)#: on Code:	Compliance Monitoring? [] Yes [] No	JPT[JMT[]CT	Zone (AM A	50			e all relevent fi	iest Docui
gnature)	Pace	(Signature)	NA		None	<			19210					9	6		Res # of Ctns						13		a Me						elds	ment
	0.5	100	vamp	2 6	SHOP									-	X		ae	2728	5	(x)	4	DC	10%	3 (99 10=)	(6) methano (C) ammoniu	** Preservat	N.			
Date/Time:	6/26/24 DO	196 54 0 95	FEDEX UPS Client	292	SHORT HOLDS PRESENT (<72 hours):													se or								Analyses	ıl, (7) sodium bisulfate, (8) sı ım hydroxide, (D) TSP, (U) L	ive Types: (1) nitric acid, (2)	Container Preservative Type **	AI 9273		LAB USE ONLY SECTION OF THE CONTRACT OF THE CO
PM: PB:	Uremplate: Prelogin:	Table #: Acctnum:	Courier	2924501	hours): Y(N) N/A																				99.56		odium thiosulfate, (9) hey Inpreserved, (0) Other	sulfuric acid, (3) hydroch	e Type **	738733		
		Circ	Pace Courier			51,0	200	Od wy	No.	5/10/	N) 0	26	ての	No	5110		Lab Sample		pH Strips: Sulfide Pr	Residual C Cl Strips: Sample pH	USDA Reg Samples	' 6	Correct Sufficie	Collector Bottles	Custody	Lab Profile/Line:	(ane, (A) ascorbic	loric acid, (4) sod	Lab Project Manager:			
Non Conformance(s): Page: yes / NO of:	Trip Blank Received: Y HCL MeOH TSP	33/2	Cooler 1 Inerm Corr. ractor: Cooler 1 Corrected Temp: Comments:	Therm ID#: 231070 Cooler 1 Temp Upon Receipt: Q	Lab Sample Temperature Into: Temp Blank Received: Y	44 Odar	Od 95)	ONON	I Oder	Oder	Odar	000p	0 dos	sht Odon	10 22	pre # / Comments:	USE ONLY:	ent	Acceptable	ils g Time <	eadspace Acceptable	Bottles ent Volume	Signatures Present or Signature Present Intact	als Present/Intact	Line: Dle Receipt Checklist:	(6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	dium hydroxide, (5) zinc acetate,	Manager:	A STANDARD		or.
ge:)	N NA Other		0.5%	101	~ ≥) ×	711	(4)	000	107	DQ.	200	009	007	200	and		1,44	1	Y N NA	Y N (NA)	Y N WA	ON NA	N N N N N N N N N N N N N N N N N N N		Y N WA				P	age 5	7 of 6	62

Relinquished by Company: (Signatu	Relinquished by/Company: (Signature)	Tray Dufuse	Relinquished by/Company: (Signature)		Customer Remarks / Special Conditions / Possible Hazards:	760	GAC	FB "	D 1	SW-2	SW-	b-wd	19W-3	DW-6	DW-1		Customer Sample ID	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	[]Hold:	Dispose as appropriate [] Return Tarchive:	Sample Disposal:	d By	Troy Day 9 las	Email:	Phone:	Jake Huga	Customer Project Name/Number:	17. III	Shano	Address: Act 231	Company: MECI	Pace Analytical	TOPPE .
		(MECI)			ions / Possible Hazarc	(0 E		Matrix * Grab	x below): Drinking W. L), Wipe (WP), Air (AR		[] Same Day	Rush:	Turnaround Date Required:	Quote #:	3425	Site/Facility ID #:	200				Dooley Rd		CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	
'Date/Time:	Date/Time:	424	Radch	Pac		<						·			561			ater (DW) श), Tissue।	en en	\$		equired:				SC	Stal C	Site	Em.		Bill	CUSTO	
Ü.		24 (9.	Radchem sample(s) screened (<500 cpm):	Packing Material Used:	Type of Ice Used:	8]3,	/3		21	12	12	1 13	13	24 13	Date 1	Collected (or Composite Start)	, Ground \ (TS), Bioas	-	[] Next Day						7	87 B	Site Collection Info/Address	Email To: T		Billing Information:	DDY An	
Rec	15 72 Rea	(15	ple(s) scre	ial Used:		00	132	:30		× 2.	79.	3:27	:20	: 23	50:		(or start)	Water (GV say (B), Va	_	15 034	11 7	7 5	0 0	, –	_	09200	County/City	Info/Add	601		ation:	alytica	r F
eived by/	HIP H		ened (<50		Wet Blue											Date	Composite End	v), Wastev apor (V), O	Analysis:	[] Yes	[V] res Field Filtere	nmediatel	DW Location Code:] Yes	ompliance			ress:	Mec			I Requ Complete	100
Company:	PALL	3	0 cpm):		le Dry											Time	e End	vater (WW ther (OT)		[] Yes [] No	d (if applic	Immediately Packed on Ice:	n Code:	. J.No	Compliance Monitoring?]PT[]MT[]CT	Time Zone Collected:		500			est Doo	ß
Received by/Company: (Signature)	Received by/Company: (Signature)	12	creened (<500 cpm): Y N		None	- 1											Res #	λ,		abie).	able):	n Ice:			lg?	1	Merted.		7			cument nt fields	
-		7.	NA			×	V V						01	^	6 ×	00	Ctns of	skx	00	∀)	d'	7-	(Wel	W)	()	18		<u> </u>	5 :	U			
Date	Coy	2/1	Samples rec	Lab Tracking #:	SHORT HOLDS	111	\vee								×		1105					1	10,	8	8	dЭ		(b) methanol, (7) sodium bisuriate, (8) sodium thosuriate, (9) nexane, (A) ascorbic acid, (b) ammonium suriate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	reservative	~			
Date/Time:	Date/Time:	16/24	FEDEX UPS	king #:) sodium bii hydroxide, (Types: (1) n	Container I		AB USE OI	
	4 15:34	OPE,	/ia: Client	292	PRESENT (<72 hours):																e li						Analyses	D) TSP, (U)	itric acid, (2	Preservati	ALL SH	NLY- Affix	
PM: PB:		Table #: Acctnum:	6	2924502	hours):																		el el el			Pic.		Unpreserve) sulfuric ac	ner Preservative Type **	ALL SHADED AREAS	Workorde	
	: E	n: ::	51)2	z						- 10																	d, (O) Othe	id, (3) hydr		AREAS	ar/Login La ATJL Log-i	
			Pace Courier B USE ONLY		N/A				0	100		フ	>	>	フ		Lab	LAB	ns Hd	C1 Sa	Rea	VOA	Susse	Во	000	C: 14	Labi	nexane, (A)	ochloric aci	Lab		ler/Login Label Here or List MTJL Log-in Number Here	
N _o	Ŧ #		000	0 = -					dor	70-	1d_	10 a) o (Jo () (b Sample	ad Acetate B USE ONLY:	pH Strips: Sulfide Pr	Cl Strips: Sample pH		A I	Sufficient	Bottles Ir	Custody Si	Custody Se	_ab Profile/Line:	ascorbic ac	d, (4) sodiur	Lab Project Manager:	r LAB L	or List Pac Here	
Non Conformance(s): YES / NO	Trip Blank Received: HCL MeOH T		Cooler 1 herm Corr. Factor: Cooler 1 Corrected Temp: Comments:	Therm ID#:	Lab Sample Temperature Info:							dor	1 dar	2000	2 20		#	te S	Present				Volume Teived	Bottles Intact	Signatures Present	Custody Seals Present/Intact	e:	ю, (в) amm	n hydroxide	nager:	are for LAB USE ONLY	LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here	
mance(eceiv	10.1	erm Col	mp Upo	mperati							n)		,)		Comments	š:		ple	Time	ceptal	on Ice	6 516	Pres	ent/T	Charles	onium su	, (5) zinc	e en	4	ier Nun	
s):	/ed: TSF			귀	4 4						78									7	+	216		Sei	ent	+ 1		l d	ace	104		ğ	W.
s): Page: of:	/ed: Y N TSP Other		Temp:		are Info:											101	27		Y N NA	Y N N	Y K	N N N	AN N A AN N A N N A	K H	. K	<	14.04	rate,	acetate,	2.5		iber or	7

Non Conformance(s): Page: 3 YES / NO of: 3	PB:	Date/Time:		(Signature)	Received by/Company: (Signature)	Recei	Time:	Dafe/	e)	Relinquished by/Company: (Signature)	Re
Trip Blank Received: Y N NA HCL MeOH TSP Other	7 15 30 Template: Prelogin:	WC/Y		Phila	HHA/PMA	Sec.	Blow 16	Sel :	1	Relinquished by/Company: (Signature	Re.
	Acctnum:	Pate Time		all all	MATI	(15.6	1		(MECT)	Ly Jayley	2 .
NLY Comments:	/	Date/Time:		(Signature)	Received by/Company: (Signature)		Date/Time:	Date/	е)	Relinquished by/Company: (Signature)	Rel
Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC	ed via: UPS Client Courier Pace Courier	Samples received via: FEDEX UPS	NA	×	Radchem sample(s) screened (<500 cpm):	mple(s) screen	Radchem sai				
Therm ID#:oC Cooler 1 Temp Upon Receipt:oC	2924503	Lab Tracking #:			ar ett.	erial Used:	Packing Material Used:				
Info:	SHORT HOLDS PRESENT (<72 hours): Y N N/A	SHORT HOLDS		None	Blue Dry	Jsed: Wet	Type of Ice Used:		ns / Possible H	Customer Remarks / Special Conditions / Possible Hazards:	Cri
						11					
-70ts											
		×	×	3		8:00	0	\in	<	WSW-TB	
420		4	6			13:15				WSW-FB	
27										WSW-Dup	
027						3:00		_	_	WSW-Z	
(29		×	X	2		13:10	6/24	6	OW	WSW-1	
M11 W.		90			Date Time	Time Da	Date				
Lab Sample # / Comments:		928	# of Ctns	Res #	Composite End		Collected (or Composite Start)	Comp / Grab	Matrix *	Customer Sample ID	C C
LAB USE ONLY:	TO BE	04	1	<i>b</i>	r (V), Other (OT)	assay (B), Vapo	sue (TS), Bio	ir (AR), Tis	, Wipe (WP), t	Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	-0 -
ph Strips: Sulfide Present Y N NA Tead Acetate Strips:	75 (12	P 7	h		ysis:	Analysis:	ges Apply)	(Expedite Charges Apply)) (E] Hold:	-
Acceptable Y N		3	75		es []No	15 Dav	[] Next Day [] 4 Day [[]Same Day [Day f]3 Day	Dav	opriate [] Return	
ding Time Y N		1	IV.	able):	[√] Yes [] No Field Filtered (if applicable):	[V] Yes			Rush:	Sample Disposal:	S
eptable YN		17	00	ı lce:	ately Pa	lmm	d:	ate Require	Turnaround Date Required:	Collected By (signature):	€
ant Volume Y N Received on Ice Y N	\$ 1K	,00	2-1		DW Location Code:	DW			Quote #:	Tray Rough (=>	1 6
< K :		a 6	wi		[] Yes [] No	L J Yes		100	3 Y		C E
Custody Signatures Present Y N NA		K X	1/0	Вż	nce N	Com		,# 	Site/Facility ID #:		밁
≺ " z	#18# ###	0	148	1 CT MET	[]PT[]MT[]CT	Larence	SC 1F		5	Un Ko Hoger Number:	C (E
Lab Profile/Line:	Analyses				_	G WW D	57 hm				2
(6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	um bisulfate, (8) 3 codium thio sculfate, (1) hexane, (A) ascorbic acid. (B) ammonium sulfate, um bisulfate, (S) 3 codium thio sculfate, (1) hexane, (A) ascorbic acid. (B) ammonium sulfate, um bisulfate, (D) TSP, (U) Unpreserved, (O) Other	(6) methanol, (7) sodiu (C) ammonium hydroxi	(C) ar		2 117	Site Collection Info/Address:	Site Collecti	Ţ		Copy To: B. Showe	8
de esta (A) codium hudrovido (E) sino protesta	A Pincipal (12) Fundamental (2) Fundamental	3 X	5				Fmail To:		1/2	Report To:	R
Lab Project Manager:	iner Preservative Type **	Contai	3						7	Address: 77/ h_/e	A
e for LAB USE ONLY	ALL SHADED AREAS are for LAB USE ONLY					mation:	Billing Information:			Company: MECT	S
				t fields	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	OCUMENT - Co	is a LEGAL Do	of-Custody	Chain-	Pace Analytical	
: Pace Workorder Number or	E ONLY- Affix Workorder/Login Label Here or List MTJL Log-in Number Here	LAB US		ument	CHAIN-OF-CUSTODY Analytical Request Document	nalytical I	STODY A	OF-CUS	CHAIN		\neg

,	2	
1	Pace	
	INDIVIDUAL HEIGH	٠

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Qualtrax ID: 69614

Project #

WO#:92738733

PM: JWB

Due Date: 07/03/24

CLIENT: 92-MIDLAND

	atory F	-	ing Loc	cation	: Ashe] Gr cle on		ood [] н		ville [R	aleigh		Mech	anicsy	/iiie	Atl	antaL	_ к	erner	sville[]			
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (Ct-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		8P45-125 mL Plastic H2SO4 (pH < 2) (G-)	BP3N-250 mt plastic HNO3 (pH < 2)	BP42-125 mL Plastic 2N Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CF.)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Ci-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H25O4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(Cl·)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
cc																													
1																	6												
2												1					Ce												
3	1											1					6												
4																	6												
5	/																G												
6	/				1							1		1			6												
7	1											1					G			-									
8	/																6												
9												/		1			6												
10	1													/			6												
11																	6												
12																	(6)											

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Page 2 of 2

Page 60 of 62

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project #

WO#: 92738733

Due Date: 07/03/24

CLIENT: 92-MIDLAND

	atory F		ing Lo	cation	: Ashe	eville [] E	den] Gr	eenw	ood [] Hu	inters	ville [☑ R	aleigh		Mech	anicsy	/ille	Ati	anta	Т	erners	ville				_
Client	ME	()	-			Pr	ofile/	EZ (Cir	cle on	e)			N	otes_															
lem#	BP4U-125 mL Plastic Unpreserved (N/A) (CH)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic 2N Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Ci-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) [Ci-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H25O4 (pH < 2)	DG94-40 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mt VOA HCI (N/A)	VG9T-40 mL VOA Na 25203 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mt Plastic Unpreserved (N/A)	V/GK (3 vials per kit)·VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
cc																													
1																	6												
2																	6												
3	1										7-2-	1		1	X	N	6												
4												1					6												
5														/			6												
6												/		1			16												
7					/							1		1			6												
8					/												2												
9					1							/		1			6	3							/				
10					1							1		/			6	2											
11												1					6	3											
12																	1	23)										
									اجو	L A	dine	tmei	nt L	og f	or D	.000	2100	l Car	nnl	20									1
-	Sampl	e ID	Tv	ne of	Prese	rvative	. .	oH up	on rec			te ore	_				Time		_		Ar	nount	of Pre	eserva	tive		Lot	#	1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Date preservation adjusted

Time preservation

adjusted

added

Sample ID

Type of Preservative

pH upon receipt

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project #

WO#: 92738733

PM: JWB

Due Date: 07/03/24

CLIENT: 92-MIDLAND

Labora Client_	1/1/	-1-	ing Lo	cation	: Ashe			den[EZ (Cir			ood [] Hu		ville [] otes_	R	aleigh		Mech	anicsv	rille 🗌	Atl	anta] к	erners	ville]			
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP45-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	8P4B-125 mL Plastk NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2504 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mt VOA Na25203 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 [N/A]	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
CC																													
1	/											1					6												
2																													
3																													
4	/													/															
5	/				1									/															
6	/											1		/															
7	/											/		/															
8	/													1															
9	1											1		1											1				
10	1				1		1		1							1									/				
11	1				1							1		1											/				
12	1																												

Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Page 62 of 62

APPENDIX C:

TAX MAP

(Not Applicable)

APPENDIX D:

SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
(Not Applicable)

APPENDIX E:

WELL COMPLETION LOGS & 1903 FORMS

(Not Applicable)

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS
(Not Applicable)

APPENDIX G:

DISPOSAL MANIFEST

July 8, 2024

Re: Treatment of Purge Water
Jake Huggins DBA Outpost at Willowcreek
Florence, South Carolina
UST Permit# 03423
MECI Project# 24-8374

To Whom it May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDHEC must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 80 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

33.00 Gallons of Purge water were treated on June 24, 2024 at the referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist **APPENDIX H:**

LOCAL ZONING REGULATIONS

(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:

ACCESS AGREEMENTS

(Not Applicable)

APPENDIX K:

DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?			X
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?			X
17	Has the method of well development been detailed?			X
18	Has justification been provided for the locations of the monitoring wells?			X
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figures 4-4A)	X		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
26	Does the report include a brief discussion of the aquifer evaluation and results?			X
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format?			X
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the current and historical laboratory data been provided in tabular format? (Table 1)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)			X
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)			X
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figure 3-3A)	X		
40	Has the site potentiometric map been provided? (Figure 4-4A)	X		
41	Have the geologic cross-sections been provided?			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	X		
45	Is the laboratory performing the analyses properly certified?	X		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix E)			X
48	Have the well completion logs and SCDES Form 1903 been provided? (Appendix E)			X
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)			X
50	Have the disposal manifests been provided? (Appendix G)	X		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
53	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
54	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	X		

APPENDIX L: DETAILED RECEPTOR INFORMATION

Receptor ID: (03423-WSW01)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Well is inside barn building.

Sample collected from spigot on water supply well.

GPS: 34.096044, -79.701503

Receptor ID: (03423-WSW02)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Sample collected from spigot on WSW.

GPS: 34.095156, -79.700508

Receptor ID: (03423-WSW03)

Parcel ID:

00213-01-052

Property Owner Name:

Linda L Huggins

Property Owner Address:

3695 Willow Creek Rd, Florence, SC 29505

Well has been disconnected.

Unable to sample with bailer due to metal elbow at well

GPS: 34.096743, -79.701503

Receptor ID: (03423-Possible WSW)

Parcel ID:

00214-01-016

Property Owner Name:

Trent P Stallings

Property Owner Address:

3118 Willow Creek Rd, Florence, SC 29505

WSW Details:

Possible well house attatched to residence.

Resident did not respond to attempts to make contact.

GPS: 34.094158, -79.700555

Receptor ID: (03423-SW01)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095076, -79.696772

Receptor ID: (03423-SW02)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095847, -79.697296

Receptor ID: (03423-SW03)

Parcel ID:

00213-01-017 Property Owner Name:

Barbara M Williams

Property Owner Address:

9296 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream.

GPS: 34.094620, -79.698172

APPENDIX M:

MANN-KENDALL STATISTICAL ANALYSES

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 8-Jul-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: BENZENE Concentration Units: µg/L MW-1 MW-2 MW-6 DW-4 Sampling Point ID: MW-8 MW-10 BENZENE CONCENTRATION (µg/L) 15-Feb-22 3720 1070 67.5 624 203 356 9-Jan-23 620 122 83.3 4390 2060 63 6 3 14-Apr-23 749 90.2 68.1 3620 634 1.7 16-Oct-23 1100 76.3 38.5 5330 341 17.3 4760 6 24-Jun-24 695 23.5 227 6 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.25 0.58 1.25 0.20 Mann-Kendall Statistic (S) -15 Confidence Factor 86.4% 64.0% 57.0% **Concentration Trend:** No Trend No Trend Prob. Decreasing No Trend Decreasing Decreasing 10000 Concentration (µg/L) 1000 100 10 MW-1 MW-2 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 11/24 MW-6 MW-8 Sampling Date MW-10

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

DW-4

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TOLUENE Concentration Units: µg/L MW-8 DW-4 Sampling Point ID: TOLUENE CONCENTRATION (µg/L) 15-Feb-22 21100 1890 9-Jan-23 22300 464 3 14-Apr-23 19200 2 359 16-Oct-23 27500 6 24-Jun-24 25300 30.8 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.24 Mann-Kendall Statistic (S) Confidence Factor 64.0% 81.5% **Concentration Trend:** No Trend No Trend 100000 Concentration (µg/L) 10000 1000 100 10 MW-8 DW-4 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 30-Oct-23 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: ETHYLBENZENE Concentration Units: µg/L MW-8 MW-10 Sampling Point ID: ETHYLBENZENE CONCENTRATION (µg/L) 15-Feb-22 2200 753 9-Jan-23 2080 1100 3 14-Apr-23 1840 428 16-Oct-23 2810 503 465 6 24-Jun-24 2570 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.48 Mann-Kendall Statistic (S) Confidence Factor 64.0% 76.5% **Concentration Trend:** No Trend Stable 10000 Concentration (µg/L) 1000 100 10 MW-8 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 11/24 Sampling Date MW-10

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: XYLENES Concentration Units: µg/L MW-8 Sampling Point ID: XYLENES CONCENTRATION (µg/L) 15-Feb-22 12800 9-Jan-23 13300 3 14-Apr-23 10800 16-Oct-23 16200 6 24-Jun-24 13400 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation Mann-Kendall Statistic (S) Confidence Factor 64.0% **Concentration Trend:** No Trend 100000 MW-8 Concentration (µg/L) 10000 1000 100 10 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 11/24 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: NAPHTHALENE Concentration Units: µg/L MW-1 MW-2 MW-6 MW-8 Sampling Point ID: MW-7 MW-10 DW-4 NAPHTHALENE CONCENTRATION (µg/L) 15-Feb-22 87.5 78.7 25.7 58.3 781 181 342 9-Jan-23 66 10.9 26.7 4.3 455 26 3 14-Apr-23 51.1 10.2 23 2.1 661 216 2.1 4.4 14.6 975 16-Oct-23 66.5 18.6 244 72.7 2.1 11.2 6 24-Jun-24 44 2.1 778 256 3.8 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.22 0.80 0.93 0.19 1.65 Mann-Kendall Statistic (S) -15 Confidence Factor 99.9% 70.3% 50.0% 64.0% 57.0% Concentration Trend: Prob. Decreasing Stable No Trend Decreasing Decreasing No Trend Stable 1000 Concentration (µg/L) 100 10 MW-

Notes:

10/21

02/22

05/22

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

12/22

08/22

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.

03/23

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

06/23

Sampling Date

10/23

01/24

04/24

07/24

11/24

MW-2 MW-6

MW-7

MW-10

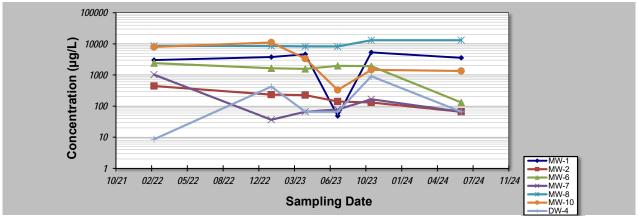
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L MW-1 MW-2 MW-5 MW-8 Sampling Point ID: MW-6 MW-10 MTBE CONCENTRATION (µg/L) 15-Feb-22 405 14.3 166 510 264 690 9-Jan-23 342 22 2 126 865 3 14-Apr-23 343 195 22.3 132 435 260 4 59.5 112 16-Oct-23 488 200 156 1000 45.6 241 110 6 24-Jun-24 306 122 696 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.24 0.43 0.25 Mann-Kendall Statistic (S) Confidence Factor 86.4% 99.2% 50.0% **Concentration Trend:** No Trend No Trend No Trend Prob. Decreasing Decreasing Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-2 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 11/24 MW-5 MW-6 **Sampling Date** MW-8

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

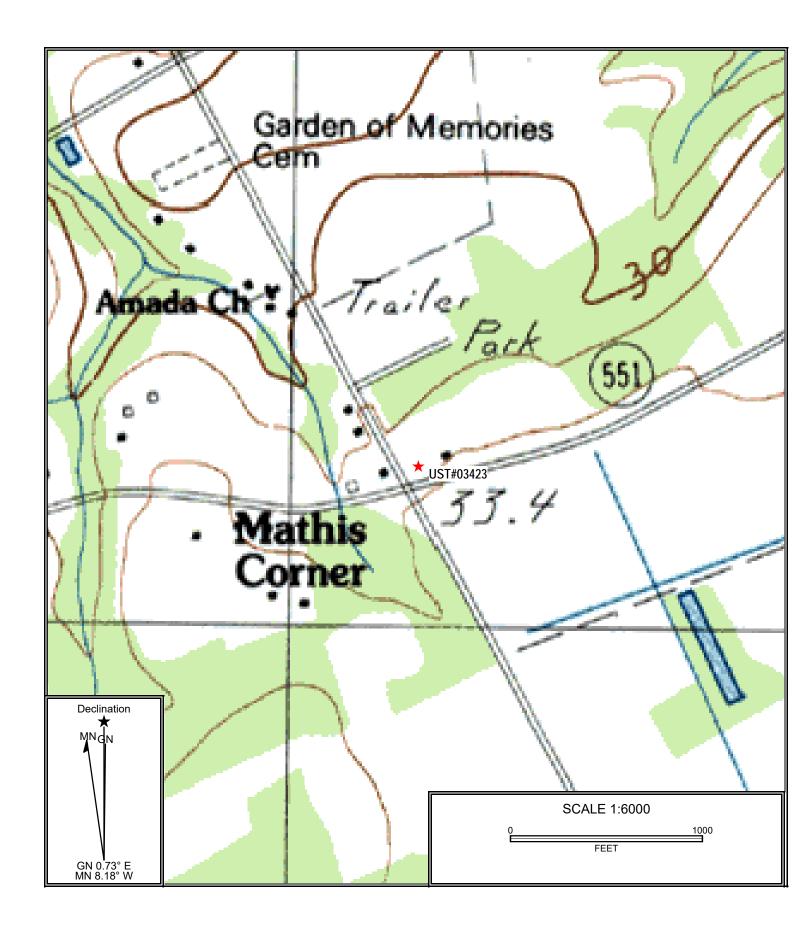

MW-10

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L DW-1 DW-4 Sampling Point ID: MTBE CONCENTRATION (µg/L) 15-Feb-22 0.81 0.81 9-Jan-23 52 9 51.8 3 14-Apr-23 3.1 3.1 144 16-Oct-23 129 153 6 24-Jun-24 73.2 11.5 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation Mann-Kendall Statistic (S) Confidence Factor 86.4% 81.5% **Concentration Trend:** No Trend No Trend 1000 Concentration (µg/L) 100 10 DW-1 0.1 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TAA Concentration Units: µg/L MW-1 MW-2 MW-6 MW-8 Sampling Point ID: MW-7 MW-10 DW-4 TAA CONCENTRATION (µg/L) 15-Feb-22 3030 442 2410 1030 7950 8.6 8690 9-Jan-23 3770 233 1640 36.4 8510 11100 422 3 14-Apr-23 4640 225 1570 65.6 8200 3350 65.6 4 1930 1460 5 16-Oct-23 5340 131 166 13100 913 131 13100 1350 6 24-Jun-24 3560 65.6 65.6 65.6 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.54 0.64 0.24 Mann-Kendall Statistic (S) Confidence Factor 64.0% 99.9% 86.4% 39.3% 64.0% 70.3% **Concentration Trend:** No Trend Stable No Trend Prob. Decreasing No Trend Decreasing No Trend


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 24-Jun-24 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: DIPE Concentration Units: µg/L MW-1 MW-8 MW-10 Sampling Point ID: DIPE CONCENTRATION (µg/L) 15-Feb-22 160 268 9-Jan-23 191 239 555 3 14-Apr-23 178 436 165 16-Oct-23 297 698 68.1 6 24-Jun-24 176 698 75.3 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.27 0.43 1.01 Mann-Kendall Statistic (S) Confidence Factor 76.5% 86.4% Concentration Trend: No Trend No Trend Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-8 06/23 10/21 02/22 05/22 08/22 12/22 03/23 10/23 01/24 04/24 07/24 11/24 MW-10 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

December 10, 2024

RECEIVED
DEC 13 2024
UST DIVISION

Mr. Robert A. Dunn, Hydrogeologist Corrective Action Section Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Environmental Services 2600 Bull Street Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan

Jake Huggins DBA Outpost at Willowcreek

Florence, South Carolina UST Permit# 03423

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site. MECI is making this proposal to collect current analytical data to evaluate the groundwater quality beneath the site.

If you have any question or comments, please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Seff V. Coleman Senior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Mr. Robert Dunn (SCDHEC Project Manager) From: Jeff L. Coleman (Contractor Project Manager)								
Contractor: Midlands Environmental Consultants, Inc. UST Contractor Certification Number: 009								
Facility Name: Jake Huggins DBA Outpost at Willowcreek, LLC. UST Permit #: 03423 Facility Address: 4925 Pamplico Highway, Florence, SC 29505								
	Responsible Party: BW Stokes Oil Company Phone: (843) 621-5865							
RP Address: 1001 Chase Street, Florence	, SC 29501							
Property Owner (if different): Barbara								
Property Owner Address: 3309 Willow 0		9505						
Current Use of Property: Vacant Lot/Re	esidence							
Scope of Work (Please check all tha	t apply)							
☐ IGWA ☐ Tier II		Groundwater Sampling	☐ GAC					
☐ Tier I ☐ Monitoring	Well Installation	☐ Other						
Analyses (Please check all that apply	y)							
Groundwater/Surface Water:								
☑ BTEXNMDCA (8260D)	☐ Lead	☐ BOD						
Oxygenates (8260D)	☐ 8 RCRA Metals	☐ Nitrate	☐ Ethanol					
☑ EDB (8011)	☐ TPH	☐ Sulfate	☐ Dissolved Iron					
☐ PAH (8270E)	☐ pH	Other						
Drinking Water Supply Wells:								
BTEXNMDCA (524.2)		5.1 or 245.2)	.1)					
✓ Oxygenates & Ethanol (8260D)	RCRA Metals (20	0.8)						
Soil:								
	CRA Metals	TPH-DRO (3550B/8015B)						
	I & Grease (9071)	☐ TPH-GRO (5030B/8015B)	☐ TOC					
Air:								
☐ BTEXN								
Sample Collection (Estimate the nun			ollected.)					
Soil	3 Water Supply W		2 Field Blank					
14 Monitoring Wells	6 Surface Water	2 Duplicate	2 Trip Blank					
Field Screening Methodology								
Field Screening Methodology	domile for ooole waint and	d Sandada II a San						
Estimate number and total completed of	depth for each point, and	d include their proposed locations	on the attached map.					
# of shallow points proposed:	ES	timated Footage:	feet per point					
# of deep points proposed:	ES	umated Footage:	feet per point					
Field Screening Methodology:								
Permanent Monitoring Wells								
Estimate number and total completed of	depth for each well, and	include their proposed locations	on the attached map.					
# of shallow wells: feet per point								
# of deep wells:	Estimate	d Footage:	feet per point					
# of recovery wells:	feet per point							
Comments, if warranted:	Comments, if warranted:							

UST Pe	ermit #: 03423	Facility Name:	Jake Huggins DBA Outpost at Willowcreek	
Field W	mentation Schedule (Number of Work Start-Up: 1/10/2025 t Submittal: 4/10/2025	of calendar days	Fig. 1.11M - 1. O - 1.11 - AMARIANA	
-	er Characterization Test: Slug Test: (Check	k one and prov	vide explanation below for choice)	
	igation Derived Waste Disposal		Purge Water: 200.0	Gallons
Drilling	Fluids:	Gallons	Free-Phase Product:	
For exa event, e -MECI pro -Sampling -MECI pro	etc.	yells to be abang g event to collect currolleted since June of s samples.		of AFVR
Yes La N S N	Name of Laboratory Director:	?? (Yes/No)	If no, indicate laboratory information below.	
N	Vell Driller as indicated in ACQAP? Name of Well Driller: SCLLR Certification Number:		If no, indicate driller information below.	
<u>N/A</u> Ot	other variations from ACQAP. Plea	ase describe be	elow.	
-				
Attachm		tion of the US(GS topographic map showing the site location.	
	Prepare a site base map. This manust include the following: North Arrow Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well location Proposed soil boring locations Assessment Component Cost Ag	Proposed r Legend with Streets or h Location of Location of	monitoring well locations th facility name and address, UST permit number, and ba highways (indicate names and numbers) of all present and former ASTs and USTs of all potential receptors OHEC Form D-3664	·
	,	,		

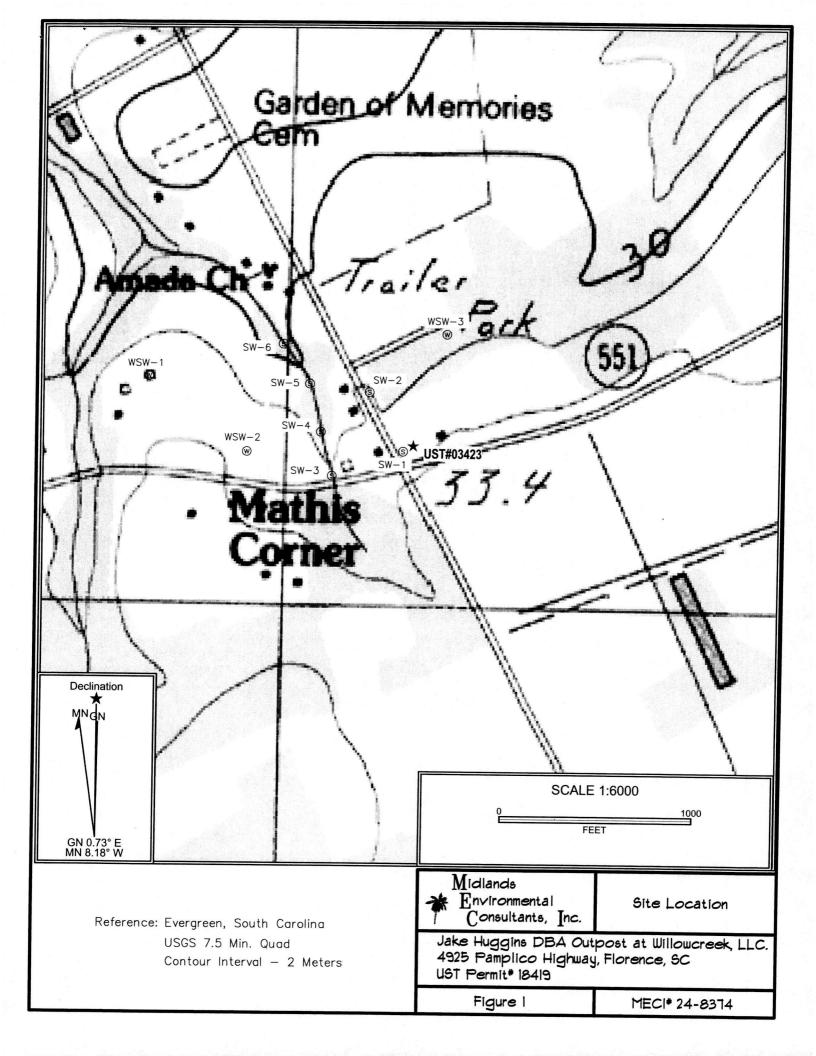
ASSESSMENT COMPONENT COST AGREEMENT

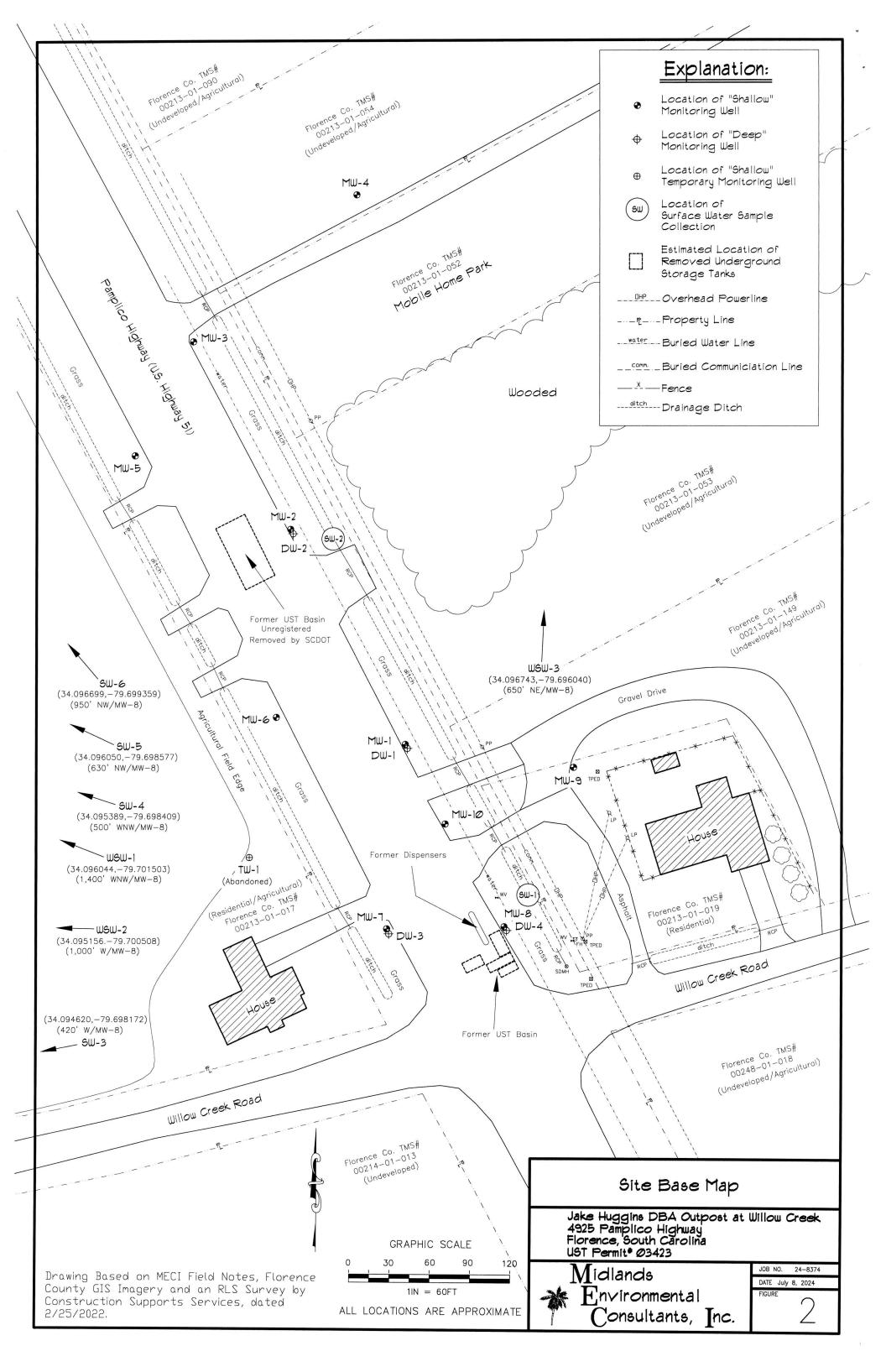
South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 9, 2023

Facility Name: Jake Huggins DBA Outpost @ Willowcreek, LLC.

UST Permit #: 03423	Cost Ag	reement #:	Proposal	
ITEM	QUANTITY	UNIT	UNIT PRICE	TOTAL
A. Plan Preparation				
1.2 Site-specific Work Plan	1	each	\$183.22	\$183.22
2.2 Tax Map		each	\$85.50	\$0.00
3.2 QAPP Contractor Addendum (App B)		each	\$250.00	\$0.00
B. Survey				
1.1 Receptor Survey		each	\$673.06	\$0.00
C. Survey				
1.2 Comprehensive Survey		each	\$1,270.36	\$0.00
5.1 Ground Penetrating Radar Survey (100 x 100)		each	\$1,111.57	\$0.00
D. Mob/Demob				
1.2 Equipment		each	\$1,245.93	\$0.00
2.2 Personnel	2	each	\$516.69	\$1,033.38
3.2 Adverse Terrain Vehicle		each	\$610.75	\$0.00
E. Soil Borings				
1.1 Soil Borings (hand auger)	and the second of the second of the second of	foot	\$21.80	\$0.00
F. Soil Borings (requiring equipment, push technology	ogy, etc) or Fie	ld Screening (i	ncluding sampling and an	alyst)
1.2 Standard		per foot	\$33.50	\$0.00
2.2 Fractured Rock		per foot	\$41.40	\$0.00
G.				
H. Well Abandonment				
1.2 2" diameter or less		per foot	\$3.79	\$0.00
2.2 Greater than 2" to 6" diameter		per foot	\$5.50	\$0.00
3.2 Dug/Bored well (up to 6 feet diameter)		per foot	\$18.32	\$0.00
I. Well Installation (In accordance with R.61-71)	¥			
1.2 Water Table (hand augered)		per foot	\$31.40	\$0.00
2.B Water Table (drill rig) 2" Diameter		per foot	\$54.90	\$0.00
2.2 Single-cased 2" Diameter Monitoring Well >50ft		per foot	\$59.80	\$0.00
3.2 Telescoping		per foot	\$84.70	\$0.00
4.2 Rock Drilling		per foot	\$81.80	\$0.00
5.2 2" Rock Coring		per foot	\$88.50	\$0.00
6.2 Multi-sampling ports/screens		per foot	\$59.40	\$0.00
7.2 Recovery Well (4" diameter)		per foot	\$69.60	\$0.00
9.2 Rotosonic (2" diameter)		per foot	\$119.00	\$0.00
10.2 Re-develop Existing Well		per foot	\$13.44	\$0.00

J. Groundwater Sample Collection / Gauging Depth	to Water/P	roduct		
1.2 Groundwater Purge	14	per well	\$73.29	\$1,026.06
2.2 Air or Vapors		sample	\$14.66	\$0.00
3.2 Water Supply Sample	3	sample	\$26.87	\$80.61
4.1A HydraSleeve		sample	\$34.20	\$0.00
4.2B No-purge Groundwater Sample/Surface wate	6	sample	\$57.24	\$343.44
5.2 Gauge Well only		sample	\$8.55	\$0.00
6.2 Sample Below Product		sample	\$14.66	\$0.00
7.2 Passive Diffusion Bag		sample	\$31.75	\$0.00
8.2 Field Duplicates (MWs & WSWs) and Field Bla	4	sample	\$30.06	\$120.24
9.2 Groundwater (low flow purge)		sample	\$111.16	\$0.00
10.2 Equipment Blank		sample	\$30.06	\$0.00
11.1 Sample Product		per well	\$52.66	\$0.00
K. Laboratory Analyses-Groundwater				
1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D)	22	per sample	\$149.02	\$3,278.44
2.2 Lead, Filtered		per sample	\$16.85	\$0.00
3.2 Rush EPA Method 8260B		per sample	\$187.62	\$0.00
4.2 Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$34.20	\$0.00
5.2 PAH's		per sample	\$74.02	\$0.00
6.2 Lead		per sample	\$19.54	\$0.00
7.2 EDB by EPA 8011	21	per sample	\$55.21	\$1,159.41
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water				
14.2 BTEXNM+1,2 DCA (524.2)	6	per sample	\$151.52	\$909.12
15.2 7-OXYGENATES & ETHANOL (8260D)	6	per sample	\$112.07	\$672.42
16.2 EDB (504.1)	5	per sample	\$97.11	\$485.55
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00


K. Analyses-Air			
25.2 BTEX + Naphthalene	per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification			
27.1 C3-C44 Whole Oil (ASTM D3328)	per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)	per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)	per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)	per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)	per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)	per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)	per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints	per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report	each	\$595.30	\$0.00
L. Aquifer Characterization			
1.2 Pumping Test	per hour	\$28.09	\$0.00
2.2 Slug Test	per test	\$233.31	\$0.00
3.2 Fractured Rock	per test	\$122.15	\$0.00
M. Free Product			
1.1 Free Product Recovery Rate Test	each	\$46.42	\$0.00
N.			
O. Risk Evaluation			
1.2 Tier I Risk Evaluation	each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation	each	\$122.15	\$0.00
P. Survey			
1.1 Subsequent Survey	each	\$297.65	\$0.00
Q. Disposal (gallons or tons)			
1.2 Wastewater 200	gallon	\$1.19	\$238.00
2.2 Free Product	gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal	ton	\$156.25	\$0.00
4.2 Drilling fluids	gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)			
-	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)			
1.2 Southeast Region	standard	\$12,622.56	\$0.00
2.2 All Other Counties	standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)			
1.2 Southeast Region	standard	\$4,353.67	\$0.00
2.2 All Other Counties	standard	\$4,720.01	\$0.00
22. Active Correction Action	PFP B	id Cost	\$0.00


W. Aggressive Fluid & Vapor Recovery (AFVR)			
1.2 8-hour Event	per event	\$1,787.40	\$0.00
2.1 24-hour Event	per event	\$4,407.78	\$0.00
3.1 48-hour Event	per event	\$7,242.29	\$0.00
4.1 96-hour Event	per event	\$14,482.28	\$0.00
5.1 Off-gas Treatment 8 hour	per event	\$141.17	\$0.00
6.2 Off-gas Treatment 24 hour	per event	\$294.30	\$0.00
7.2 Off-gas Treatment 48 hour	per event	\$386.10	\$0.00
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00
9.1 Off-gas Treatment 8 hour (w/chlorinated compounds)	per event	\$464.40	\$0.00
10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installation 8	service:		
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00

			, age o
	each	\$61.07	\$0.00
	each	\$61.07	\$0.00
	each	\$107.49	\$0.00
	each	\$144.14	\$0.00
	each	\$3.18	\$0.00
	each	\$18.32	\$0.00
	each	\$163.68	\$0.00
	each	\$183.22	\$0.00
	each		\$0.00
	each	\$14.66	\$0.00
	per foot	\$29.25	\$0.00
	each	\$1,468.80	\$0.00
	per foot		\$0.00
	per foot		\$0.00
	per foot		\$0.00
	each		\$0.00
12%	percent	\$9,529.89	\$1,143.59
			\$10,673.48
	12%	each each each each each each each each	each \$107.49 each \$1107.49 each \$3.18 each \$3.18 each \$18.32 each \$163.68 each \$183.22 each \$158.79 each \$14.66 per foot \$29.25 each \$31.32 per foot \$36.18 per foot \$29.16 each \$4,363.20

DHEC D-4406 (07/2023)

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

Robert A. Dunn
Corrective Action & Field Support Section
Underground Storage Tank Management Division
2600 Bull Street
Columbia, SC 29201

MAR 17 2025

B W STOKES OIL CO INC ATTN MR BENNIE STOKES PO BOX 1656 FLORENCE SC 29503

Re: Site-Specific Work Plan Approval & Groundwater Sampling Notice to Proceed Jake Huggins Dba Outpost At Willowcreek; 4925 Pamplico Hwy., Florence, SC UST Permit #03423; CA #69734
Release reported February 26, 2002
Site-Specific Work Plan (SSWP) received December 13, 2024
Florence County

Dear Mr. Stokes:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Environmental Servies (SCDES) has reviewed and approved the referenced SSWP. All scopes of work should be conducted in compliance with your contractor's ACQAP, the submitted SSWP, and all applicable regulations.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". According to SCDES records, approximately \$118,059.02 has been expended from the SUPERB account to date. This scope of work, as recommended by your contractor, is anticipated to cost approximately \$10,673.48.

The Monitoring Report and invoice should be submitted within 60 days of the date of this correspondence. If the report cannot be submitted as required, an extension request must be submitted in writing prior to the due date. The Department will issue a Notice of Alleged Violation if the report or an extension request is not submitted by the required due date. The approved costs are detailed in the enclosed Cost Agreement (CA).

The contractor must provide notification to the UST Project Manager via email 4 days prior to initiation of any site rehabilitation activities. If there are any changes to the schedule, the UST Project Manager must be contacted within 24 hours of those changes.

In accordance with Section IV.A.4.c of the SUPERB Site Rehabilitation & Fund Access Regulation (R.61-98), the contractor shall be required to indemnify the property owner, underground storage tank owner/operator and the State of South Carolina from and against all claims, damages, losses and expenses arising out of or resulting from activity conducted by the contractor, its agents, employees or subcontractors.

UST #03423; SSWP Approval & Groundwater Sampling Notice to Proceed Page 2

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that the SUPERB Account cannot compensate any costs that are not pre-approved. If for any reason additional tasks will be completed, the additional tasks and the associated cost, must be pre-approved by the UST Management Division for the costs to be paid. SCDES reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, SCDES reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work. Reimbursement for site rehabilitation activities shall in no event exceed the actual costs incurred as required by SUPERB Site Rehabilitation and Fund Access Regulations (R.61-98 § III.3.b).

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a SCDES-certified site rehabilitation contractor as required by the SUPERB Site Rehabilitation and Fund Access Regulation, R.61-98.

SCDES grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All Investigation-Derived Waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the Project Manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

The contractor will be responsible for keeping and preserving suitable records of hydrological and other site assessments, site plans, contracts, accounts, invoices, or other transactions related to the cleanup and rehabilitation and the records must be accessible to the department during regular business hours. In addition, this includes all subcontractor agreements, invoices, correspondence, plans, reports, records, including electronic and paper formats. All records must be maintained for 10 years after project completion.

UST #03423; SSWP Approval & Groundwater Sampling Notice to Proceed Page 3

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions please contact me by email Robert.Dunn@des.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn Hydrogeologist III

Enc: Approved CA

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 (w/ Enc)

Technical file (w/ Enc)

Approved Cost Agreement 69734

Facility: 03423 JAKE HUGGINS DBA OUTPOST AT WILLOWCREEK LLC

DUNNRA
PO Number:

Task / Description Categories Item Description Qty / Pct Unit Price Amount

A PLAN PREPARATION

Task / Description	<u>Categories</u>	Item_ Description_	Qty / Pct	Unit Price	Amount
A PLAN PREPARAT	TION				
		1.2 SITE SPECIFIC WORK PLAN	1.0000	\$183.220	183.22
D MOB/DEMOB					
		2.2 PERSONNEL	2.0000	\$516.690	1,033.38
J SAMPLE COLLEC	TION				
		1.2 GROUND WATER PURGE	14.0000	\$73.290	1,026.06
		3.2 WATER SUPPLY SAMPLE	3.0000	\$26.870	80.61
		4.2B NO-PURGE GROUNDWATER	6.0000	\$57.240	343.44
		8.2 FIELD DUPL. (MWS & WSWS) & FB	4.0000	\$30.060	120.24
K ANALYSES					
	DW DRINKING WATER	14.2 BTEXNM+1,2 DCA (524.2) WSW	6.0000	\$151.520	909.12
		15.2 OXYGENATES & ETHANOL 8260D	6.0000	\$112.070	672.42
		16.2 EDB (504.1)	5.0000	\$97.110	485.55
	GW GROUNDWATER	1.2 BTEXNM+OXYGS+1,2 DCA+ETH 8260D	22.0000	\$149.020	3,278.44
		7.2 EDB BY EPA 8011	21.0000	\$55.210	1,159.41
Q DISPOSAL					
		1.2 WASTEWATER	200.0000	\$1.190	238.00
S REPORT PROJECT	T MANA GEMENT				
		S REPORT PREP & PROJ. MANA GEMENT	0.1200	\$9,529.890	1,143.59

Total Amount 10,673.48

March 13, 2025 Page 1 of 1 suprcait.rdf Rev: 1.15

Robert A. Dunn

From:

ilc@meci.net

Sent:

Thursday, April 10, 2025 8:30 AM

To: Cc: Robert A. Dunn Stephanie M. Briney

Subject:

UST#03423/CA#69734-Addendum

Attachments:

69734 Addendum.xlsx

Robert,

Please find the attached addendum for the above referenced site. Let me know if you have any questions or concerns.

Thanks,

Jeff L. Coleman
Senior Scientist/Managing Principal
Midlands Environmental Consultants, Inc.
(office) 803-808-2043 Ext. 2
(cell) 803-446-0365
jlc@meci.net

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

ASSESSMENT COMPONENT COST AGREEMENT

South Carolina Department of Health and Environmental Control
Underground Storage Tank Management Division
State Underground Petroleum Environmental Response Bank Account
August 9, 2023

Facility Name: Jake Huggins BDA Outposy @ Willowcreek UST Permit #: Cost Agreement #: 69734 3423 ITEM QUANTITY UNIT **UNIT PRICE** TOTAL A. Plan Preparation \$183.22 \$0.00 1.2 Site-specific Work Plan each \$0.00 2.2 Tax Map each \$85.50 \$250.00 \$0.00 3.2 QAPP Contractor Addendum (App B) each B. Survey \$0.00 1.1 Receptor Survey each \$673.06 C. Survey 1.2 Comprehensive Survey \$0.00 each \$1,270.36 \$0.00 5.1 Ground Penetrating Radar Survey (100 x 100) each \$1,111.57 D. Mob/Demob 1.2 Equipment \$1,245.93 \$0.00 each \$0.00 2.2 Personnel each \$516.69 \$0.00 3.2 Adverse Terrain Vehicle each \$610.75 E. Soil Borings \$21.80 \$0.00 1.1 Soil Borings (hand auger) foot F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including sampling and analyst) 1.2 Standard \$0.00 per foot \$33.50 2.2 Fractured Rock per foot \$0.00 \$41.40 Addendum H. Well Abandonment \$10,673.48 \$0.00 Previously Approved: 1.2.2" diameter or less per foot \$3 79 \$5.50 \$0.00 2.2 Greater than 2" to 6" diameter per foot 3.2 Dug/Bored well (up to 6 feet diameter) per foot \$18.32 \$0.00 Increase: (\$384.60). Well Installation (In accordance with R.61-71) 1.2 Water Table (hand augered) \$0.00 New Approved Total: \$10,288.87 per foot \$31.40 \$54.90 \$0.00 2.B Water Table (drill rig) 2" Diameter per foot \$59.80 \$0.00 Project Manager: 2.2 Single-cased 2" Diameter Monitoring Well >50ft per foot per foot \$84.70 \$0.00 3.2 Telescoping 4.2 Rock Drilling \$81.80 \$0.00 Section Manager: per foot \$0.00 5.2 2" Rock Coring per foot \$88.50 \$0.00 Finance: \$59.40 6.2 Multi-sampling ports/screens per foot \$0.00 7.2 Recovery Well (4" diameter) \$69.60 per foot 9.2 Rotosonic (2" diameter) per foot \$119.00 \$0.00 Date: 10.2 Re-develop Existing Well per foot \$0.00 \$13.44 # of pages J. Groundwater Sample Collection / Gauging Depth to Water/Product \$0.00 From: 1.2 Groundwater Purge per well \$73.29 \$0.00 \$14.66 2.2 Air or Vapors sample UST/SCDHEC (\$26.87)\$26.87 3.2 Water Supply Sample -1 sample \$0.00 \$34.20 4.1A HydraSleeve sample 4.2B No-purge Groundwater Sample/Surface water \$57.24 \$0.00 fax # (sample Phone # (5.2 Gauge Well only sample \$8.55 \$0.00 The SCDHEC reserves the authority to pay \$0.00 6.2 Sample Below Product sample \$14.66 \$0.00 only for work properly performed and/or 7.2 Passive Diffusion Bag \$31.75 sample 8.2 Field Duplicates (MWs & WSWs) and Field Blanks \$30.06 \$0.00 technically justified and will only pay sample \$111.16 \$0.00 rates in accordance with established criteria 9.2 Groundwater (low flow purge) sample 10.2 Equipment Blank sample \$30.06 \$0.00 \$0.00 11.1 Sample Product per well \$52.66 K. Laboratory Analyses-Groundwater 1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D) \$149.02 per sample \$149.02 1 \$0.00 per sample \$16.85 2.2 Lead, Filtered 3.2 Rush EPA Method 8260B per sample \$187.62 \$0.00 per sample \$0.00 4.2 Trimethal, Butyl, and Isopropyl Benzenes \$34.20 per sample \$0.00 5.2 PAH's \$74.02 \$0.00 6.2 Lead per sample \$19.54

7.2 EDP by EDA 9011	1	per sample	\$55.21	\$55.21
7.2 EDB by EPA 8011 8.2 EDB by EPA Method 8011 Rush	1	per sample	\$83.31	\$0.00
9.2 8 RCRA Metals			\$77.45	\$0.00
FEMALE AND THE SECOND CONTRACTOR		per sample	\$50.09	\$0.00
10.2 TPH (9070)		per sample	\$6.35	\$0.00
11.2 PH		per sample	100000000000000000000000000000000000000	\$0.00
12.2 BOD		per sample per sample	\$24.42 \$18.08	\$0.00
13.2 Ethanol K. Analyses-Drinking Water		per sample	\$10.00	\$0.00
14.2 BTEXNM+1,2 DCA (524.2)	-1	per sample	\$151.52	(\$151.52
15.2 7-OXYGENATES & ETHANOL (8260D)	-1	per sample	\$112.07	(\$112.07
16.2 EDB (504.1)	-1	per sample	\$97.11	(\$97.11
17.2 RCRA METALS (200.8)	·	per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00
C. Analyses-Air				
25.2 BTEX + Naphthalene	TA CANTENNAMES OF	per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification			#405.00	60.00
27.1 C3-C44 Whole Oil (ASTM D3328)		per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)		per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)		per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)		per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)		per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)		per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)		per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints		per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report		each	\$595.30	\$0.00
L. Aquifer Characterization		l por bour	\$28.09	\$0.00
1.2 Pumping Test		per hour	\$233.31	\$0.00
2.2 Slug Test		per test per test	\$122.15	\$0.00
3.2 Fractured Rock M. Free Product		per test	1 \$122.15	φυ.υι
1.1 Free Product Recovery Rate Test		each	\$46.42	\$0.00
N.				
O. Risk Evaluation			Autolis (1917)	
1.2 Tier I Risk Evaluation		each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation		each	\$122.15	\$0.00
P. Survey				
1.1 Subsequent Survey		each	\$297.65	\$0.00
Q. Disposal (gallons or tons)				
1.2 Wastewater	-134.5	gallon	\$1.19	(\$160.06
2.2 Free Product		gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal		ton	\$156.25	\$0.00
4.2 Drilling fluids		gallon gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)		1b	I #0.00 I I	\$0.00
		each	\$0.00 \$0.00	\$0.00
		each each	\$0.00	\$0.00
F. Tier I Assessment (Use DHEC 3665 form)		Gacii	J \$0.00	Ψ0.0
1.2 Southeast Region		standard	\$12,622.56	\$0.00
2.2 All Other Counties		standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)				
1.2 Southeast Region		standard	\$4,353.67	\$0.00
2.2 All Other Counties		standard	\$4,720.01	\$0.00
22. Active Correction Action		PFP	Bid Cost	\$0.00
N. Aggressive Fluid & Vapor Recovery (AFVR)				
1.2 8-hour Event		per event	\$1,787.40	\$0.0
2.1 24-hour Event		per event	\$4,407.78	\$0.0
3.1 48-hour Event		per event	\$7,242.29	\$0.0
4.1 96-hour Event		per event	\$14,482.28	\$0.0
5.1 Off-gas Treatment 8 hour		per event	\$141.17	\$0.0
6.2 Off-gas Treatment 24 hour		per event	\$294.30	\$0.0
		nor event	\$386.10	\$0.00
7.2 Off-gas Treatment 48 hour		per event	4000	
7.2 Off-gas Treatment 48 hour 8.1 Off-gas Treatment 96 hour		per event	\$898.84	\$0.00

10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
	gallon	\$0.64	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds) 14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
	each	\$29.68	\$0.00
15.1 Additional Hook-ups		\$0.53	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$777.60	\$0.00
17.2 AFVR Mobilization/Demobilization	each		\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69 \$36.94	\$0.00
19.1 Well sock 2" ID well	each	\$49.03	\$0.00
20.1 Well sock 4" ID well	each	\$49.95	\$0.00
21.1 pad (per pad)	each	\$108.00	\$0.00
22.1 3" diameter x 10' length boom	each	E NOTON DOOR	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40 \$760.32	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	Maria (1990)	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installation	each	\$2,320.86	\$0.00
1.2 New GAC System Installation	each	\$1,099.35	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$427.53	\$0.00
3.2 Filter replacement/removal	each	\$335.92	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$305.38	\$0.00
5.2 GAC System housing	each	\$183.22	\$0.00
6.2 In-line particulate filter	foot	\$1.84	\$0.00
7.2 Additional piping & fittings Y. Well Repair	1000	\$1.04	Ψ0.00
1.2 Additional Copies of the Report Delivered	each	\$61.07	\$0.00
	each	\$61.07	\$0.00
2.2 Repair 2x2 MW pad	each	\$107.49	\$0.00
3.2 Repair 4x4 MW pad	each	\$144.14	\$0.00
4.2 Replace well vault	each	\$3.18	\$0.00
5.2 Replace well cover bolts			\$0.00
6.2 Replace locking well cap & lock	each	\$18.32	• 10000 10000
7.2 Replace/Repair stick-up	each	\$163.68	\$0.00 \$0.00
8.2 Convert Flush-mount to Stick-up	each	\$183.22	
9.2 Convert Stick-up to Flush-mount	each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate	each	\$14.66	\$0.00
11.1 Down-hole Camera	per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization		• • • • • • • • • • • • • • • • • • •	40.00
1.1 HRSC Screening Equipment Mobilization	each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1	per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2	per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3	per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model	each	\$4,363.20	\$0.00
S. Report Prep & Project Management 12%	percent	(\$343.40)	(\$41.21
TOTAL			(\$384.60)

DHEC D-4406 (07/2023)

Document Receipt Information

Traid Copy	CD
Date Received	4-23-25
Permit Number	B 3423
Project Manager	Robert Sum.
Name of Contractor	MECI
Traine of Contractor	
Description_	6 WM
-	
Docket Number	5/ dech
Saar 1	
Scanned	
Verified	

GROUNDWATER MONITORING REPORT

Jake Huggins DBA Outpost at Willowcreek
4925 Pamplico Highway
Florence, South Carolina
Florence County
UST Permit# 03423
CA# 69734

Prepared By:

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

April 9, 2025

MECI Project No. 25-8491

Midlands Environmental Consultants, Inc.

April 9, 2025

Mr. Robert Dunn, Hydrogeologist
Corrective Action & Field Support Section
Underground Storage Tank Division
Bureau of Land and Waste Management
South Carolina Department of Environmental Services
2600 Bull Street
Columbia, South Carolina 29201

Subject:

Groundwater Monitoring Report

Jake Huggins DBA Outpost at Willowcreek

4925 Pamplico Highway Florence, South Carolina

Florence County

UST Permit# 03423; CA# 69734

MECI Project# 25-8491

Certified Site Rehabilitation Contractor UCC-0009

USA DSITO CHETIN

RECEIVED

APR 2 3 2025

UST DIVISION

Dear Mr. Dunn,

On behalf of BW Stokes Oil Company, Inc., Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Groundwater Monitoring Report for the referenced site. This report describes assessment activities conducted at the site and results of those activities in general accordance with South Carolina Department of Environmental Services (SCDES) guidelines, including adherence to the UST Division Programmatic Quality Assurance Program Plan (QAPP).

Midlands Environmental appreciates the opportunity to offer our professional environmental services to you on this project. Please feel free to contact us at 803-808-2043, if you have any immediate questions or comments.

Sincerely,

eff L. Coleman Senior Scientist

Midlands Environmental Consultants, Inc.

Bryan T. Shane, P.G. Principal Geologist

Cc: SCDOT, PO Box 191, Columbia, SC 29201

Linda T. Huggins, 3695 Willow Creek Road, Florence, SC 29505 Barbara M. Williams, 3309 Willow Creek Road, Florence, SC 29505 Willie B. Winchester Jr., 3101 Willow Creek Road, Florence, SC 29505 William L. Huggins, 621 Mallard Pond Road, Murrells Inlet, SC 29576

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 RECEPTOR SURVEY & SITE DATA	3
3.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYSES	5
4.0 GROUNDWATER ANALYTICAL RESULTS	6
5.0 HISTORICAL COC CONCENTRATION TRENDS	7
6.0 MONITORING SUMMARY	8
7.0 COMMENTS & RECOMMENDATIONS	9
8.0 OUALIFICATIONS OF REPORT	9

TABLE OF CONTENTS (cont.)

TABLES: Table 1 – GROUNDWATER COC CONCENTRATION DATA

Table 2 – POTENTIOMETRIC DATA

FIGURES: Figure 1 – TOPOGRAPHIC MAP

Figure 2 – SITE BASE MAP

Figure 3 – GROUNDWATER COC SITE MAP

Figure 3A – GROUNDWATER COC SITE MAP (Oxygenates)

Figure 4 – POTENTIOMETRIC DATA SITE MAP (Groundwater Contour / "Shallow" Zone) Figure 4A – POTENTIOMETRIC DATA SITE MAP (Groundwater Contour / "Deep" Zone)

Figure 5 – BENZENE ISOPLETH ("Shallow" Zone)

Figure 5A - NAPHTHALENE ISOPLETH ("Shallow" Zone)

Figure 5B – MTBE ISOPLETH ("Shallow" Zone)

**APPENDIX A - SITE SURVEY

APPENDIX B - SAMPLING LOGS, LABORATORY DATA SHEETS AND CHAIN OF CUSTODY FORMS

**APPENDIX C – TAX MAP DATA

**APPENDIX D – SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS

**APPENDIX E – WELL LOGS & 1903 FORMS

**APPENDIX F – AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G - DISPOSAL MANIFESTS

**APPENDIX H – LOCAL ZONING REGULATIONS

**APPENDIX I – FATE & TRANSPORT MODELING

**APPENDIX J – ACCESS AGREEMENTS

APPENDIX K – DATA VERIFICATION CHECKLIST

APPENDIX L – DETAILED RECEPTOR INFORMATION

APPENDIX M - MANN-KENDALL STATISTICAL ANALYSES

NOTE: ITEMS LISTED WITH AN ** BESIDE IT WERE NOT NEEDED AS A PART OF THIS SCOPE OF WORK

1.0 INTRODUCTION

i. Facility Information

Name: Jake Huggins DBA Outpost at Willowcreek

UST Permit# 03423

Address: 4925 Pamplico Highway, Florence SC 29505

Telephone #: N/A

ii. Owner/Operator Information

Name BW Stokes Oil Company, Inc.

Address P.O. Box 1656, Florence, SC 29503

Telephone # (843) 621-5865

iii. Property Owner Information

Name Barbara Williams

Tax Map #: Florence County Tax Map #: 00213-01-019
Address 3309 Willow Creek Road, Florence, SC 29505

Telephone # (843) 662-0808

iv. Contractor Information

Name: Midlands Environmental Consultants, Inc.

Certification #: 9

Address: P. O. Box 854, Lexington, SC 29072

Telephone #: (803) 808-2043

v. Well Driller Information

Name: N/A

Certification #: N/A

Address: N/A Telephone #: N/A

vi. Laboratory Information

Name: Pace Analytical Services, LLC.

Certification #: 99006001

Address: 9800 Kincey Ave. Suite 100, Huntersville, NC 28078

Telephone #: (704) 875-9092

vii. Facility History

Release D	Pate:	Release #1 reported 2/26/2002			
Estimated Quantity of Release:		Unknown			
Other Releases at Facility:		Release #2 (NFA'd 7/28	3/2020)		
Release R	Ranking:	2BB			
Current Site Usage:		Residence (SCDOT Right of Way)			
Tank#	Capacity/Product	In Use/Abandoned Tank Status			
1	2,000 Gal. Regular/Unleaded Gasoline	Abandoned	Removed (6/30/2016)		
2	4,000 Gal. Gasoline Plus	Abandoned Removed (6/30/201			
3	6,000 Gal. Gasoline Super/Premium	Abandoned Removed (6/30/20			
4	3,000 Gal. Regular/Unleaded Gasoline	ne Abandoned Removed (6/3			
5	500 Gal. Kerosene	Abandoned	Removed (6/30/2016)		

The following table presents previous site activities performed at the site:

Date	Assessment Type	Notes:
Pre 2008	Unknown MWI	Completed by unknown contractor. Installation of MW-1 through MW-4.
8/26/2008	Tier II Assessment	Completed by Davis & Brown. Monitoring wells MW-5, MW-6 installed. MW-5 installed as IGWA associated with second release. Analytical results from MW-1, MW-4, MW-5 and MW-6 were above RBSL for Benzene, MTBE, Naphthalene.
5/12/2009	Tier II Assessment	Completed by Davis & Brown. Installation of MW-7 through MW-22, MW-1D, and MW-2D. Multiple wells detected concentrations above RBSL's.
6/4/2015	Groundwater Sampling Event	Completed by Davis & Brown. Monitoring wells MW-14 through 20 and MW-2D reported destroyed. Multiple wells detected concentrations above RBSL's.
Circa 2016	DOT Construction	SCDOT widening destroys remaining well network.
3/7/2022	Tier II Assessment	Completed by MECI. This assessment included field screening of soil and groundwater samples, the installation of monitoring wells MW-1 thru MW-10 and DW-1 thru DW-4, sampling and chemical analysis of monitoring wells and nearby receptors and aquifer slug test.
1/9/2023	Groundwater Sampling Event	Completed by MECI.
4/14/2023	Groundwater Sampling Event	Completed by MECI.
7/14/2023	Groundwater Sampling Event	Completed by MECI.
10/16/2023	Groundwater Sampling Event	Completed by MECI.
6/24/2024	Groundwater Sampling Event	Completed by MECI.

viii. Regional Geology and Hydrogeology

The site is located in the Coastal Plain Physiographic Province, which is generally comprised of Upper Cretaceous to present aged, wedge-shaped formations that begin at the "Fall Line" and dip towards the Atlantic Ocean with ground surface elevations typically less than 300 feet. The sedimentary soils of these formations consist of unconsolidated sand, clay, gravel, marl, cemented sands, and limestone that were deposited unconformably over Mesozoic/Paleozoic age basement rock consisting of granite, schist, and gneiss similar to the rocks of the Piedmont Physiographic Province. The thickness of the Coastal Plain sediments varies from zero at the "Fall Line" to more than 4,000 feet at the southern tip of South Carolina near Hilton Head Island.

The Coastal Plain province was formed during Quaternary, Tertiary, and late Cretaceous geologic periods and can be divided generally into three subunits: Upper Coastal Plain, Middle Coastal Plain, and Lower Coastal Plain. The Lower Coastal Plain comprises approximately one-half of the entire Atlantic Coastal Plain of South Carolina and is separated from the middle coastal plain by the Surry Scarp, a seaward facing scarp with a toe elevation of 90 to 100 feet. The Middle Coastal Plain and the Upper Coastal Plain each compose approximately one fourth of the Coastal Plain area and are separated by the Orangeburg Scarp, a seaward facing scarp with a toe elevation of 250 to 270 feet.

The Lower Coastal Plain is typically identified as the area east of the Surry Scarp below elevation 100 feet, with a vertical stratigraphic sequence overlying the basement rock consisting of unconsolidated Cretaceous, Tertiary, and Quaternary sedimentary deposits. The surface deposits of the Lower Coastal Plain were formed during the Quaternary period which was characterized by

the formation of the Carolina Bays and scarps throughout the east coast due to sea level rise and fall, the formation of the barrier islands, and the formation of flood plains from major rivers. Preceding the Quaternary period, limestone was deposited in the Lower Coastal Plain.

The Middle Coastal Plain is typically identified as the area between the Orangeburg Scarp and the Surry Scarp and falls between elevation 100 feet and 270 feet. The vertical stratigraphic sequence overlying the basement rock consists of unconsolidated Cretaceous and Tertiary sedimentary deposits formed as a result of scouring from the regressive cycles of the Ocean as it retreated. During the Eocene epoch of the Tertiary period, limestone was deposited in the Middle Coastal Plain.

The Upper Coastal Plain is typically identified as the area between the "Fall Line" and the Orangeburg Scarp and falls between elevations 270 feet and 300 feet. The Upper Coastal Plain was formed during the Tertiary and late Cretaceous periods and is marked by the formation of the Sandhills dunes as a result of fluvial deposits over the Coastal Plain consisting of marine sediments, limestone, and sand.

Coastal Plain formations generally dip toward the Atlantic Ocean. Consequently, regional groundwater movement is to the southeast. On a regional scale, hydraulic gradients are relatively low. Locally, in the surficial aquifer, groundwater discharges into streams, lakes or springs where the groundwater table intersects lows occupied by these water bodies.

2.0 RECEPTOR SURVEY & SITE DATA

i. Known Potential Receptors

Creek Road. th is located			
156, -79.700508			
oad. Well			
96772			
97296			
620, -79.698172			
Underground Utilities			

Known underground utilities at the site include buried water, gas and telecommunication lines. Utilities are buried approximately 2'-4' feet below ground surface (BGS).

ii. Receptor Survey Results

A receptor survey was not requested as part of the approved cost agreement.

iii. Site/Adjacent Land Usage (Residential, Commercial, Agricultural, Industrial, etc.)

Site	Residential			
North	Residential			
South	Agricultural			
East	Agricultural			
West	Residential			
Permit #'s of UST Sites within 1,000' feet of site	N/A			

iv. Site Specific Geology and Hydrogeology

The mean elevation of the property as depicted on the local USGS quadrangle (Evergreen, SC) appears to be approximately 33 meters (108 feet) above sea level. The subject site is located in the Middle Coastal Plain. According to Newell et al. (In Review), the subject site is located in the Bear Bluff Formation. The Bear Bluff Formation is a Pliocene age unit described as consisting of gray to cream, fossiliferous, coarse-grained calcareous sand and sandy limestones.

Coastal plain sediments were encountered during drilling activities conducted at the site during previous assessment activities. A generalized vertical profile to the investigated depth of 35' feet below ground surface (BGS) is as follows:

Depth (Feet BGS)	Generalized Soil Description
0.0'-6.0'	Brown/Yellow Fine SAND
6.0'-16.0'	Pink/Grey Silty Fine SAND
16.0'-34.0'	Tan, Medium SAND
34.0'-35.0'	Dark Grey, Fine Sandy CLAY

The following table presents grain size distribution results from samples analyzed for grain size during previous assessment activities:

Sample ID#	Sample Depth	% Gravel	% Coarse Sand	% Medium Sand	% Fine Sand	% Silt	% Clay
03423-SB01	8'-10'	0	0	38.0	40.2	4.2	17.6
03423-SB01	24'-26'	0	3.0	44.0	45.5	3.2	4.3
03423-SB01	32'-34'	0	4.0	3.0	3.7	49.7	39.6

On March 28, 2025, stabilized groundwater levels were measured in the monitoring well network. Depth to groundwater ranged from 1.99 feet below top of casing (BTOC) to 3.48 feet BTOC in the wells measured. The groundwater measurements are summarized in tabular form in Table 2 and presented on Figure 4/4A.

The potentiometric surface indicates that the groundwater flow beneath the site is generally to the northwest, toward drainage features associated with the Little Willow Creek. The February 2022 horizontal gradient was calculated to be approximately 0.0118 foot per foot (ft/ft). Calculated average

groundwater flow velocities based on aquifer testing was determine to be approximately 97.98 feet per year (ft/yr.).

Based on comparison between the "deep" wells and the close by water table bracketing monitoring wells, the vertical gradient appears to be generally flat.

3.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYSES

On March 28, 2025, MECI personnel collected groundwater samples from fourteen (14) monitoring wells, six (6) surface water locations and two (2) water supply wells at the subject site. During sampling activities, water supply well WSW-3 was unable to be sampled due to the well being inactive with no electrical supply. As approved SCDES, all monitoring wells were to be purged prior to sample collection. Fourteen (14) monitoring wells were purged prior to sample collection.

Prior to sampling, MECI personnel utilized an electronic water level indicator for water level measurements and an oil/water interface probe for free phase petroleum product level measurements. Where applicable, purging was completed by bailing at least five well volumes of water from the well, or until all water was evacuated from the well, whichever occurred first. Sampling/purging was completed utilizing a prepackaged, clear, disposable polyethylene bailer and nylon rope. A new set of nitrile gloves were worn at each monitoring well, and at all time samples were handled. Field measurements of pH, conductivity, dissolved oxygen, and water temperature were obtained before well sampling process. MECI utilized YSIPro20 meter for DO (mg/L) and temperature readings (°C) and YSI Pro 1030 meter for pH and conductivity (uS) readings and a MicroTPI turbidimeter for turbidity readings (NTU). The attached Monitoring Well Purge and Sampling Data Sheets present the results of the field measurements obtained. The wells were sampled in accordance with the most recent revision of SCDES's Quality Assurance Program Plan for the Underground Storage Tank Management Division and the most recent revision of MECI's Standard Operating Procedures.

Groundwater samples obtained were sent to Pace Analytical Services, Inc. of Huntersville, NC (SCDES Laboratory Certification #99006001) for analysis.

The following sampling matrix contains well development and requested analyses for each well:

Sample ID	Purge	No Purge	Sampled Below Product	Duplicate/Field Blank	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260D)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260D)	8 Oxygenates (EPA Method 8260D)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									Ar	nalyte Sampl	led		
MW-1	X						X	X	X	X			
MW-2	X						X	X	X	X			
MW-3	X						X	X	X	X			
MW-4	X						X	X	X	X			
MW-5	X						X	X	X	X			
MW-6	X						X	X	X	X			

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dichloroethane EDB = Ethylene Dibromide

Sample ID	Purge	No Purge	Sampled Below Product	Duplicate/Field Blank	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260D)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260D)	8 Oxygenates (EPA Method 8260D)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									An	alyte Sampl	ed		
MW-7	X						X	X	X	X			
MW-8	X						X	X	X	X			
MW-9	X						X	X	X	X			
MW-10	X						X	X	X	X			
DW-1	X						X	X	X	X			
DW-2	X						X	X	X	X			
DW-3	X						X	X	X	X			
DW-4	X						X	X	X	X			
SW-1		X					X	X	X	X			
SW-2		X					X	X	X	X			
SW-3		X					X	X	X	X			
SW-4		X					X	X	X	X			
SW-5		X					X	X	X	X			
SW-6		X					X	X	X	X			
DUP-1				X			X	X	X	X			
Field Blank				X			X	X	X	X			
Trip Blank							X		X	X			
WSW-1										X		X	X
WSW-2										X		X	X
WSW-3					X								
DUP.				X						X		X	X
Field Blank				X						X		X	X
Trip Blank Notes: BTEX = Benzen										X		X	

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dichloroethane EDB = Ethylene Dibromide

The results of the laboratory analyses are summarized in Table 1 and presented in Appendix B.

Purge water produced by the purging process was treated on-site utilizing a granular activated carbon unit. A total of 65.50 gallons of purge water was disposed of in this manner. A disposal manifest for the referenced purge water is attached in Appendix G and the required post-GAC laboratory results in presented in Appendix B.

4.0 GROUNDWATER ANALYTICAL RESULTS

Free phase petroleum product was not detected in any of the monitoring wells during sampling activities. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-8. Of the twenty-two sampling locations analyzed, six monitoring wells (MW-1, MW-2, MW-5, MW-6, MW-8 and MW-

10) detected petroleum constituents above Risk-Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL (ug/l)	Wells Above RBSL
Product	0.01'	N/A
Benzene	5	MW-1, MW-2, MW-6, MW-8 & MW-10
Toluene	1,000	MW-8
Ethylbenzene	700	MW-8
Total Xylenes	10,000	MW-8
Naphthalene	25	MW-1, MW-8 & MW-10
MTBE	40	MW-1, MW-2, MW-5, MW-6, MW-8, MW-10
1,2 DCA	5	N/A
EDB	0.05	N/A
TAA	240	MW-1, MW-6 & MW-10
TAME	128	N/A
ETBA	NE	RBSL Not Established
TBA	1,400	N/A
TBF	NE	RBSL Not Established
DIPE	150	MW-6 & MW-10
Ethanol	10,000	N/A
ETBE	47	N/A

The analytical results from the remainder of the sampling points did not indicate petroleum impact above the RBSL. Results of the analyses for each sampling point and specific parameters are listed on Table 1 and provided in Appendix B.

5.0 HISTORICAL COC CONCENTRATION TRENDS

Fourteen monitoring wells were included in the groundwater sampling program established for the site. Five monitoring wells (MW-3, MW-4, MW-9, DW-2 and DW-3) have historically exhibited results below the established RBSL. Mann-Kendall statistical analyses of the Chemicals of Concern (CoC's) with historical concentrations above the RBSL were completed utilizing the GIS Environmental Mann-Kendall Toolkit. The statistical analysis compares historical CoC results to determine if there is an increasing, decreasing, stable or not trend to the data. If the analytical results were non-detect (ND) the reporting limit was used. The analyses included analytical data for Benzene (MW-1, MW-2, MW-6, MW-8, MW-10 and DW-4), Toluene (MW-8 and DW-4), Ethylbenzene (MW-8 and MW-10), Xylenes (MW-8), Naphthalene (MW-1, MW-2, MW-6, MW-7, MW-8, MW-10 and DW-4), MTBE (MW-1, MW-2, MW-5, MW-6, MW-8, MW-10, DW-1 and DW-4), TAA (MW-1, MW-2, MW-6, MW-7, MW-8, MW-10 and DW-4) and DIPE (MW-1, MW-6, MW-8 and MW-10).

The statistical analyses show:

- Benzene –decreasing (MW-2 and MW-6), stable (MW-10) and no trend (MW-1, MW-8 and DW-4).
- Toluene –probably decreasing (DW-4) and no trend (MW-8).
- Ethylbenzene stable (MW-10) and no trend (MW-8).
- Xylenes no trend (MW-8)

- Naphthalene decreasing (MW-1, MW-2 and MW-6), stable (MW-8 and MW-10) and no trend (MW-7 and DW-4).
- MTBE increasing (MW-5), probably increasing (MW-6), decreasing (MW-2), stable (MW-10) and no trend (MW-1, MW-8, DW-1 and DW-4).
- TAA decreasing (MW-2), stable (MW-6 and MW-10) and no trend (MW-1, MW-7, MW-8 and DW-4).
- DIPE increasing (MW-8), stable (MW-1 and MW-10) and no trend (MW-6).

6.0 MONITORING SUMMARY

- Groundwater flow is primarily to the northwest, toward drainage features associated with the Little Willow Creek.
- Free phase petroleum product was not detected in any of the monitoring wells during sampling activities.
- Fourteen groundwater monitoring wells, six surface water locations and two water supply wells were sampled on March 28, 2025. Petroleum compounds were detected above RBSL's in groundwater monitoring wells MW-1, MW-2, MW-5, MW-6, MW-8 and MW-10. Compounds above the established RBSL's include Benzene, Toluene, Ethylbenzene, Total Xylenes, Naphthalene, MTBE, TAA and DIPE.
- The analytical results also reported petroleum constituents above the laboratory method detection limit and/or "J" values in samples collected from DW-2; however, the concentrations did not exceed the RBSL.
- Analytical results did not indicate petroleum impact in any of the samples collected from the surface water locations or water supply wells sampled. Samples were unable to be collected from water supply well WSW-3 due to the well being inactive.
- In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed batch samples. The duplicated samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the Relative Percent Differences (RPD) between each pair of samples. The RPD control limit for the groundwater samples is 20%. Duplicate samples were collected from the parent samples of MW-6 and WSW-1. The precision for the target analytes were met for these sample pairs and the analytical results detected the same compounds at similar concentrations. Furthermore, field blanks and trip blanks were collected and submitted during the groundwater sampling activities. No detectable concentrations of the requested method constituents were reported in any of the field or trip blanks.

7.0 COMMENTS & RECOMMENDATIONS

- Since June 24, 2024, increasing trends in MTBE to be appear to be occurring in MW-5/MW-6 and increasing trends in DIPE appear to be occurring in MW-8. Overall, the Mann-Kendall statistical analyses show a decreasing or stable trends in MW-2 and MW-10. No trends have been established to date in MW-1, MW-7, DW-1 and DW-4.
- Data gaps currently persist horizontally north of MW-5, west of MW-5/MW-6 and south of MW-8. With the exception of the southerly direction from MW-8/DW-4, it appears these data gaps persist due to property access issues encountered at the site in 2022.
- MECI concurs with SCDES that further definition of the plume is not warranted at this time; however, if increasing MTBE trends continue, additional assessment maybe necessary north of MW-5 and west of MW-5/MW-6.
- MECI request the site be modeled to current site conditions and the Site-Specific Target Levels (SSTL's) be relinquished to our office. Based on the modeling, MECI will be able to better evaluate site rehabilitation needs.

8.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in hydrogeological assessment and waste management projects of this type. Our evaluation of site conditions has been based on our understanding of the site, project information provided to us, and data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpretation of subsurface data between borings. Contents of this report are intended for the sole use of BW Stokes Oil Company, Inc., SCDES and MECI under mutually agreed upon terms and conditions. If other parties wish to rely on this report, please contact MECI prior to their use of this information so that a mutual understanding and agreement of the terms and conditions of our services can be established.

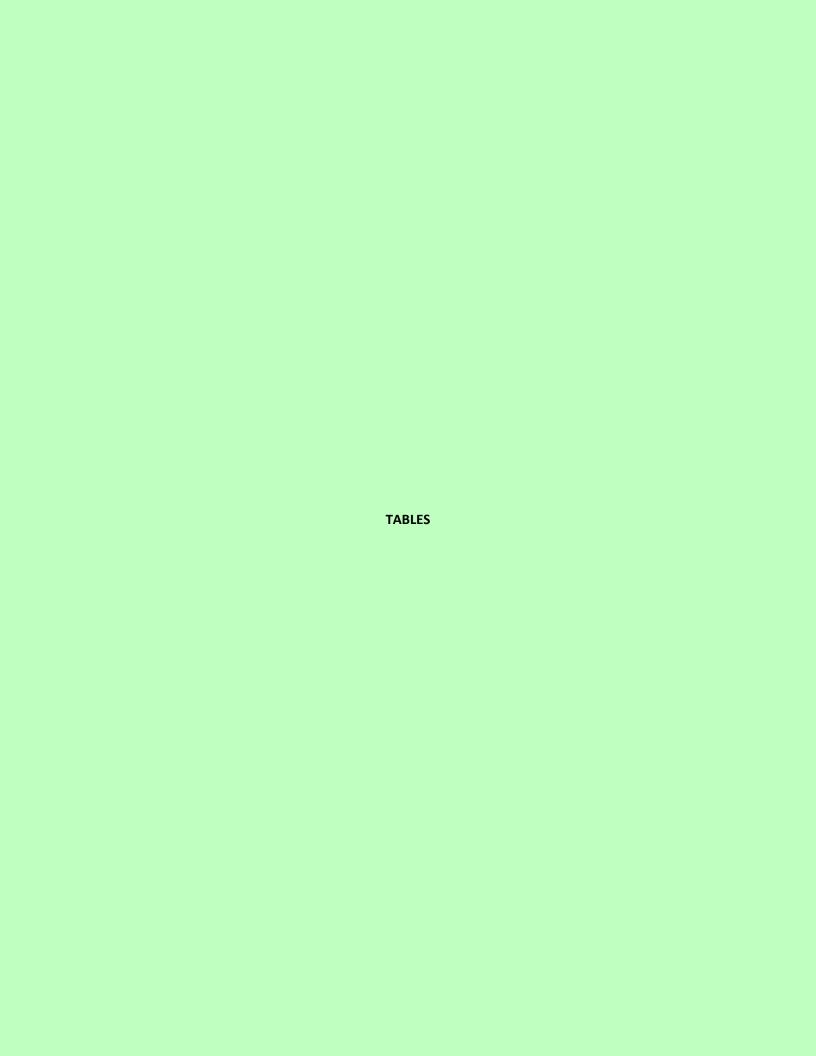


TABLE 1
GROUNDWATER COC CONCENTRATION DATA
JAKE HUGGINS
MARCH 28, 2025 SAMPLING EVENT
FLORENCE, SOUTH CAROLINA
MECI PROJECT# 25-8491
UST PERMIT# 03423

																OST I EN	WIII 1# 00420
Well ID#	Sample Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	Naphthalene (µg/L)	MTBE (µg/L)	1, 2 DCA (µg/L)	EDB (µg/L)	ТАА (µg/L)	TAME (µg/L)	ETBA (µg/L)	ТВА (µg/L)	TBF (μg/L)	DIPE (µg/L)	Ethanol (μg/L)	ETBE (µg/L)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	2/15/2022	624	19.3	158	67.9	78.7	264	< 0.250	< 0.00512	3030	56.9	<7.00	169	<6.90	160	<50.0	<0.720
	1/9/2023	620	16.4	74.1	16.9	66.0	342	<1.6	< 0.0075	3770	60.6	<260	200 J	<147	191	<361	<16.2
	4/14/2023	749	11.5 J	39.7	<25.0	51.1	343	<10.3	< 0.0073	4640	59.9	<270	<455	<120	178	<720	<42.3
03423-MW01	7/14/2023	964	10.4 J	23.8 J	<25.0	49.9	465	<10.3	< 0.0075	4830	78.2	<270	<455	<120	268	<720	<42.3
	10/16/2023	1100	<20.1	<18.4	<50.0	66.5	488	<20.6	< 0.0074	5340	82.9 J	<539	<910	<241	297	<1440	<84.6
	6/24/2024	695	<10.0	10.2 J	<25.0	44.0	306	<10.3	<0.0078	3560	59.3	<270	<455	<120	176	<720	<42.3
	3/28/2025	333	<5.0	6.5 J	<12.5	25.4	193	<5.2	<0.0075	1900	35.3	<135	<228	<60.2	110	<360	<21.2
	2/15/2022	203	<0.250	0.522 J	1.34	25.7	405	< 0.250	<0.00515	442	26.9	<7.00	83.3	<6.90	78.2	<50.0	<0.720
	1/9/2023	122	< 0.97	<0.61	<0.68	10.9	256	< 0.64	< 0.0074	233	14.6 J	<104	<53.6	<58.8	44.4	<144	<6.5
	4/14/2023	90.2	<4.0	<3.7	<10.0	10.2	195	<4.1	< 0.0074	225	10.5 J	<108	<182	<48.2	33.0	<288	<16.9
03423-MW02	7/14/2023	95.2	<4.0	<3.7	<10.0	8.8 J	178	<4.1	< 0.0077	141 J	9.0 J	<108	<182	<48.2	36.2	<288	<16.9
	10/16/2023	76.3	<4.0	<3.7	<10.0	4.4 J	200	<4.1	<0.0075	<131	8.7 J	<108	<182	<48.2	30.8	<288	<16.9
	6/24/2024	23.5	<2.0	<1.8	<5.0	<2.1	122	<2.1	<0.0077	<65.6	5.3 J	<53.9	<91.0	<24.1	26.4	<144	<8.5
	3/28/2025	37.8	<2.0	<1.8	<5.0	<2.1	190	<2.1	< 0.0076	<65.6	7.4 J	<53.9	<91.0	<24.1	29.2	<144	<8.5
	2/15/2022	<0.270	3.15	0.279 J	<0.230	<2.40	1.95 J	<0.250	<0.00486	<8.60	<0.780	<7.00	<6.90	<6.90	0.893 J	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	< 0.30	< 0.34	<0.64	1.1	< 0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	0.61 J	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW03	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0077	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0078	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	< 0.250	0.252 J	1.91	<2.40	<0.810	< 0.250	<0.00509	<8.60	<0.780	<7.00	<6.90	<6.90	< 0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW04	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0076	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0081	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	14.3	<0.250	<0.00509	<8.60	<0.780	<7.00	<6.90	<6.90	3.06 J	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	< 0.34	<0.64	22.2	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	3.8	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	22.3	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	4.1 J	<144	<8.5
03423-MW05	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	23.4	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	2.9 J	59.5	<2.1	<0.0072	<65.6	<3.0	<53.9	<91.0	<24.1	8.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	45.6	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	5.4	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	50.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	8.7	<144	<8.5
	2/15/2022	356	30.1	134	11.6	87.5	166	<1.25	<0.00497	2410	46.4	<35.0	86.6 J	<34.5	122	<250	<3.60
	1/9/2023	83.3	4.6	4.5	3.3	26.7	126	<0.32	<0.0076	1640	29.6	<51.9	52.4 J	<29.4	88.1	<72.2	<3.2
	4/14/2023	68.1	2.9 J	3.3 J	<5.0	23.0	132	<2.1	<0.0072	1570	26.1	<53.9	<91.0	<24.1	80.1	<144	<8.5
03423-MW06	7/14/2023	45.4	4.1 J	6.0	<5.0	20.4	167	<2.1	<0.0073	1960	34.7	<53.9	<91.0	<24.1	117	<144	<8.5
	10/16/2023	38.5	2.6 J	<1.8	<5.0	14.6	156	<2.1	<0.0075	1930	28.6	<53.9	<91.0	<24.1	111	<144	<8.5
	6/24/2024	17.3	4.8 J	<3.7	<10.0	11.2	241	<4.1	<0.0073	<131	40.2	<108	<182	<48.2	151	<288	<16.9
	3/28/2025	9.8 J	<4.0	<3.7	<10.0	4.4 J	216	<4.1	<0.0075	3080	31.7	<108	200	<48.2	199	<288	<16.9

TABLE 1 GROUNDWATER COC CONCENTRATION DATA JAKE HUGGINS MARCH 28, 2025 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 25-8491 UST PERMIT# 03423

															UST PERMIT# 03423		
Well ID#	Sample Date	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	Naphthalene (µg/L)	MTBE (µg/L)	1, 2 DCA (µg/L)	EDB (µg/L)	TAA (µg/L)	TAME (Hg/L)	ETBA (µg/L)	TBA (µg/L)	TBF (μg/L)	DIPE (μg/L)	Ethanol (μg/L)	ETBE (µg/L)
		RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL
	2/15/2022	5 37.2	1,000 0.699 J	700 82.1	10,000 3.95	25 58.3	40 15.8	5 <0.250	0.05 <0.00492	240 1030	128 4.67	NE <7.00	1,400 31.3 J	NE <6.90	150 20.3	10,000 <50.0	47 <0.720
	1/9/2023	< 0.34	<0.48	1.8	<0.34	4.3	1.4	<0.32	<0.00492	<36.4	4.07 <2.7	<7.00 <51.9	<26.8	<29.4	1.6	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW07	7/14/2023	<1.7	<2.0	4.4 J	<5.0	15.1	3.6 J	<2.1	<0.0074	77.7 J	<3.0	<53.9	<91.0	<24.1	4.2 J	<144	<8.5
00.20	10/16/2023	<1.7	<2.0	14.0	<5.0	18.6	4.7 J	<2.1	<0.0075	166	<3.0	<53.9	<91.0	<24.1	6.0	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	3720	21100	2200	12800	781	690	<12.5	0.121	8690	127	<350	370 J	<345	268 J	<2500	<36.0
	1/9/2023	4390	22300	2080	13300	766	531	<40.2	<0.0075	8510 J	<332	<6490	<3350	<3680	239	<9020	<405
	4/14/2023	3620	19200	1840	10800	661	435 J	<258	<0.0074	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
03423-MW08	7/14/2023	3110	12600	1920	10000	558 J	<388	<258	<0.0073	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
	10/16/2023	5330	27500	2810	16200	975 J	1000 J	<412	<0.0075	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	6/24/2024	4760	25300	2570	13400	778 J	696 J	<412	<0.0074	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	3/28/2025	4110 0.278 J	20900	2260 4.80	11800	646 J	756 J <0.810	<412 <0.250	<0.0075	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	2/15/2022 1/9/2023	<0.34	3.89 <0.48	<0.30	27.4 <0.34	<2.40 <0.64	<0.42	<0.250	<0.00494 <0.0077	77.4 <36.4	<0.780 <2.7	<7.00 <51.9	<6.90 <26.8	<6.90 <29.4	<0.700 <0.31	<50.0 <72.2	<0.720 <3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0077	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW09	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
00.20	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	1070	297	753	2380	342	510	<12.5	<0.00507	7950	120	<350	<345	<345	339 J	<2500	<36.0
	1/9/2023	2060	439	1100	2640	455	865	<4.0	<0.0077	11100	168	<649	535 J	<368	555	<902	<40.5
	4/14/2023	634	49.9	428	308	216	260	<10.3	<0.0075	3350	56.9	<270	<455	<120	165	<720	<42.3
03423-MW10	7/14/2023	79.3	15.1 J	329	116	143	25.4	<10.3	<0.0075	<328	<15.2	<270	<455	<120	17.6 J	<720	<42.3
	10/16/2023	299	83.8	503	747	244	112	<10.3	<0.0074	1460	22.5 J	<270	<455	<120	68.1	<720	<42.3
	6/24/2024	227 1360	66.5	465	789 421	256 221	110 457	<10.3	<0.0074	1350	<15.2	<270	<455	<120	75.3	<720	<42.3
	3/28/2025 2/15/2022	<0.270	57.7 <0.250	533 <0.200	<0.230	<2.40	<0.810	<20.6 <0.250	<0.0076 <0.00529	5750 <8.60	105 <0.780	<539 <7.00	<910 <6.90	<241 <6.90	346 <0.700	<1440 <50.0	<84.6 <0.720
	1/9/2023	<0.270	<0.48	<0.30	<0.34	<0.64	52.9	<0.32	<0.00329	<36.4	4.2 J	<51.9	<26.8	<29.4	15.2	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0070	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW01	7/14/2023	3.4 J	<2.0	<1.8	<5.0	<2.1	144	<2.1	<0.0075	<65.6	9.6 J	<53.9	<91.0	<24.1	40.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	129	<2.1	< 0.0073	<65.6	7.3 J	<53.9	<91.0	<24.1	34.2	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	73.2	<2.1	< 0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	22.0	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	7.40	<0.250	<0.00510	<8.60	<0.780	<7.00	<6.90	<6.90	2.61 J	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	6.1	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	2.0	<72.2	<3.2
00.400 514400	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	5.2	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW02	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	19.9	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	3.7 J	<144	<8.5
	10/16/2023 6/24/2024	<1.7 <1.7	<2.0 <2.0	<1.8 <1.8	<5.0 <5.0	<2.1 <2.1	36.2 24.0	<2.1 <2.1	<0.0076 <0.0072	<65.6 <65.6	<3.0 <3.0	<53.9 <53.9	<91.0 <91.0	<24.1 <24.1	5.6 3.8 J	<144 <144	<8.5 <8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0 <5.0	<2.1	4.0 J	<2.1	<0.0072	<65.6	<3.0	<53.9 <53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.0077	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW03	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0076	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	67.5	1890	611	4230	181	<0.810	<0.250	<0.00489	<8.60	<0.780	<7.00	<6.90	<6.90	1.69 J	<50.0	<0.720
	1/9/2023	63.6	464	20.1	291	<2.6	51.8	<1.3	<0.0077	422	<10.6	<208	<107	<118	21.2	<289	<13.0
02422 51404	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW04	7/14/2023	<1.7	<2.0 359	<1.8	<5.0 1630	<2.1 72.7	<3.1 453	<2.1	<0.0074	<65.6	<3.0	<53.9 <216	<91.0 <364	<24.1 <96.4	< 3.5	<144 <576	<8.5
	10/16/2023 6/24/2024	341 6.0	30.8	98.9 3.5 J	1630 24.4	3.8 J	153 11.5	<8.2 <2.1	<0.0075 <0.0074	913 <65.6	20.9 J <3.0	<53.9	<364 <91.0	<96.4 <24.1	54.4 5.0 J	<576 <144	<33.8 <8.5
	3/28/2025	6.0 <1.7	<2.0	3.5 J <1.8	<5.0	3.6 J <2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1 <24.1	<3.5	<144	<8.5
03423-TW01*	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.0073	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
			3.200						2.2000		1 200		3.00	3.00		30.0	

TABLE 1
GROUNDWATER COC CONCENTRATION DATA
JAKE HUGGINS
MARCH 28, 2025 SAMPLING EVENT
FLORENCE, SOUTH CAROLINA
MECI PROJECT# 25-8491
UST PERMIT# 03423

Mark For September Septe										UST PERMIT# 03423								
1992 1992	Well ID#	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1, 2 DCA	EDB	TAA	TAME	ETBA	ТВА	18F	DIPE	Ethanol	ETBE
2																		
March Marc		2/15/2022		1		· · · · · · · · · · · · · · · · · · ·												
Control Cont		1/9/2023	<0.34	<0.48	<0.30	0.43 J	<0.64	<0.42	< 0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
100-1002-100-100-100-100-100-100-100-100																		
Coloring Coloring	03423-SW01																	
2000000 9034																		
2155022 4270 4220																		
1600033 0.914 0.948 0.938 0.934 0.946 1.7 0.938 0.947 0.947 0.948 0.947 0.948 0.94																		
04473333																		
101690733 93.54 93.65 93.05 93.54 93.05 93.54 93.05 93.54 93.05 93.55 93.05																		
62000034 0.54 0.06 0.30 0.35 0.06 0.30 0.35 0.06 0.00 0.0	03423-SW02	7/14/2023	< 0.34	<0.48	<0.30	< 0.34	< 0.64	0.63 J	< 0.32	< 0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
20,000,000,000,000,000,000,000,000,000,		10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0075			<51.9		<29.4	<0.31		
2 150022 -0.270 -0.250 -0.220 -0.230 -0.240 -0.250																		
1690733 49,58 49,48 49,38 49,58 49,58 49,54 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,32 40,000 40,42 40,4																		
\$\frac{\pmath{4}{\pmath{2}}}{\pmath{2}} \text{col}{\pmath{2}}{\pmath{2}} \text{col}{\pmath{2}} \text{col}{\pmath{2}} \text{col}{\pmath{2}} \text{col}{\pmath{2}} \text{col}{\pmath{2}} \qua																		
0.1425-9W09 7714-0039 -0.94 -0.96 -0.95 -0																		
10110000003	03423-SW03																	
	00120 01100																	
22889072																		
1000023		3/28/2025	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	< 0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
4142023 40,34 40,46 40,30 40,34 40,64 40,42 40,32 40,0076 40,64 42,7 4519 426,8 49,44 40,31 472,2 43,2 40,0076 40,64 40,64 40,42 40,32 40,0076 40,64 42,7 4519 426,8 429,4 40,31 472,2 43,2 43,20 40,64 40		2/28/2022	<0.270	15.9	0.228 J	<0.230	<2.40	<0.810	<0.250	<0.00492	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
03423-8W04 7142023 0.34 0.48 0.49 0.05 0.34 0.06 0.042 0.032 0.0074 0.86 0.27 0.0074 0.86 0.27 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.87 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.87 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.87 0.0074 0.86 0.0074 0.86 0.0074 0.86 0.0074 0.87 0																		
1016/2023 0.34 0.44 0.30 0.34 0.04 0.42 0.32 0.0074 0.04 0.070	00400 01404																	
	03423-5004																	
3/28/2025																		
228/2022 40,270 40,250 40,250 40,200 40,220 40,810 40,820 40,0850																		
March Marc															+			
03423-SW05		1/9/2023	< 0.34	<0.48	<0.30	< 0.34	< 0.64	< 0.42	< 0.32	< 0.0079	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
10/16/2023 4-0.34		4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
BCH/2024 DRY	03423-SW05		< 0.34				<0.64									<0.31		
3/28/2025																		
2/28/2022																		
18/2023 -0.34 -0.48 -0.30 -0.34 -0.64 -0.42 -0.32 -0.0076 -36.4 -2.7 -51.9 -26.8 -29.4 -0.31 -72.2 -3.2 -0.34 -0.64 -0.42 -0.32 -0.0073 -36.4 -2.7 -51.9 -26.8 -29.4 -0.31 -72.2 -3.2 -0.34 -0.64 -0.42 -0.32 -0.0076 -36.4 -2.7 -51.9 -26.8 -29.4 -0.31 -72.2 -3.2 -0.0076 -36.4 -2.7 -2.5															+			
4/14/2023 4/14																		
10/16/2023																		
B/24/2024	03423-SW06	7/14/2023	< 0.34	0.64 J	<0.30	< 0.34	< 0.64	< 0.42	< 0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	< 0.31	<72.2	<3.2
3/28/2025 <0.34 <0.48 <0.30 <0.34 <0.64 <0.42 <0.32 <0.0074 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.021 <0.020 <0.080 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800 <0.0800		10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
2/15/2022 <0.0820 <0.0860 <0.0990 <0.0860 <0.0990 <0.0860 <0.0930 <0.0860 <0.00513 <8.60 <0.780 <7.00 <6.90 <6.90 <0.700 <50.0 <0.720 <0.720 <1/9/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <3.2 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.25 <0.22 <0.35 <0.14 <0.16 <0.0058 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.25 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.25 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.25 <0.24 <0.25 <0.25 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2																		
1/9/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <3.2 <0.41/4/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <3.2 <0.41/4/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24																		
4/14/2023 4/14																		
03423-WSW01																		
10/16/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.31 <72.2 <3.2 <0.24 <0.24 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0060 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.31 <72.2 <3.2 <0.22 <0.35 <0.14 <0.16 <0.0058 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.31 <72.2 <3.2 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0058 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.31 <72.2 <3.2 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0058 <0.44 <0.16 <0.0058 <0.44 <0.16 <0.0058 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.16 <0.0056 <0.44 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44 <0.45 <0.44	03423-WSW01																	
6/24/2024	00120 1101101																	
3/28/2025 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0058 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.32 <0.32 <0.22 <0.32 <0.32 <0.22 <0.35 <0.14 <0.16 <0.0058 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.31 <0.20 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.22 <0.31 <0.20 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0054 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0054 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0054 <0.0054 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054																		
1/9/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0055 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0054 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0054 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <																		
4/14/2023 <0.21 <0.20 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0056 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2 <0.24 <0.31 <72.2 <3.2 <0.24 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <		2/15/2022	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
03423-WSW02																		
10/16/2023 <0.21																		
6/24/2024 <0.21 0.63 <0.22 <0.22 <0.35 <0.14 <0.16 <0.0061 <36.4 <2.7 <51.9 <26.8 <29.4 <0.31 <72.2 <3.2	03423-WSW02																	
		3/28/2025	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4 <36.4	<2.7 <2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2

TABLE 1
GROUNDWATER COC CONCENTRATION DATA
JAKE HUGGINS
MARCH 28, 2025 SAMPLING EVENT
FLORENCE, SOUTH CAROLINA
MECI PROJECT# 25-8491
UST PERMIT# 03423

																UST PER	RMIT# 03423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (µg/l)	Ethylbenzene (µg/L)	ж Тotal Xylenes (нg/L)	Naphthalene (μg/L)	MTBE (µg/L)	1, 2 DCA (µg/1)	EDB (HE/L)	LBST	TAME (µg/L)	ETBA (µg/L)	TBA (µg/L)	LBST	(1/8H) BIO	Ethanol (µg/L)	TSE (µg/1)
		KBSL 5	1,000	700	10,000	25	RBSL 40	RBSL 5	0.05	240	128	NE NE	1,400	NE NE	150	10,000	47
	2/15/2022	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/9/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/14/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
03423-WSW03	7/14/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/2023	NS NC	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS NC	NS
	6/24/2024 3/28/2025	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
DUP-1 (MW10)	2/15/2022	1090	359	783	2440	325	496	<2.50	<0.00499	7770	129	<70.0	298 J	<69.0	343	<500	<7.20
DUP. (WSW01)	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
DUP-1 (TW01)	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00581	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
DUP-1 (MW01)	1/9/2023	736	19.2	93.2	21.4	78.8	429	<1.6	<0.0075	4900	64.8	<260	258 J	<147	240	<361	<16.2
DUP. (WSW01)	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP. (MW08)	4/14/2023	4400	21900	2110	13000	765	614 J	<258	<0.0075	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
DUP. (WSW01)	4/14/2023	<0.21	0.21 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP. (MW08)	7/14/2023	3350	12500	1810	9530	670	<388	<258	<0.0074	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
DUP. (WSW01)	7/14/2023 10/16/2023	<0.21 4670	<0.20 23400	<0.22 2430	<0.22 14000	<0.35 679 J	<0.14 834 J	<0.16 <412	<0.0055 <0.0075	<36.4 <13100	<2.7 <608	<51.9 <10800	<26.8 <18200	<29.4 <4820	<0.31 <698	<72.2 <28800	<3.2 <1690
DUP.(MW08) DUP.(WSW01)	10/16/2023	4670 <0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP-1(MW08)	6/24/2024	4520	22800	2650	12900	891 J	740 J	<412	<0.0033	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
DUP.(WSW02)	6/24/2024	<0.21	0.50 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0059	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP-1 (MW06)	3/28/2025	9.7 J	<4.0	<3.7	<10.0	6.1 J	198	<4.1	<0.0076	3270	33.9	<108	204	<48.2	164	<288	<16.9
DUP. (WSW01)	3/28/2025	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0060	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	<0.00499	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023 4/14/2023	<1.7 <0.21	<2.0 <0.20	<1.8 <0.22	<5.0 <0.22	<2.1 <0.35	<3.1 <0.14	<2.1 <0.16	<0.0075 <0.0056	<65.6 <36.4	<3.0 <2.7	<53.9 <51.9	<91.0 <26.8	<24.1 <29.4	<3.5 <0.31	<144 <72.2	<8.5 <3.2
Field Blank	7/14/2023	<0.21 <1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0036	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
Ticia Biatik	7/14/2023	<0.21	0.25 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<0.21	0.56	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0061	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0060	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022 2/28/2022	<0.0820 <0.270	<0.0860 <0.250	<0.0990 <0.200	<0.0860 <0.230	<0.430 <2.40	<0.0930 <0.810	<0.0860 <0.250	NT NT	<8.60 <8.60	<0.780 <0.780	<7.00 <7.00	<6.90 <6.90	<6.90 <6.90	<0.700 <0.700	<50.0 <50.0	<0.720 <0.720
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0 <50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
Trip Plank	4/14/2023	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
Trip Blank	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<0.21	0.50 J	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024 3/28/2025	<0.21 <1.7	0.59 <2.0	<0.22 <1.8	<0.22 <5.0	<0.35 <2.1	<0.14 <3.1	<0.16 <2.1	NT NT	<36.4 <65.6	<2.7 <3.0	<51.9 <53.9	<26.8 <91.0	<29.4 <24.1	<0.31 <3.5	<72.2 <144	<3.2 <8.5
	3/28/2025	<0.21	<2.0 <0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT NT	<36.4	<3.0 <2.7	<53.9 <51.9	<91.0 <26.8	<29.4	<0.31	<72.2	<3.2
Notes:		actical Quantitative Limi			8. NT = Not Tested	0.00	J.11	3.10	15. "J" values report co			31.0	21. TAME = tert-Amyl		5.01	. 2.2	V.2

- BDL = Below Practical Qual
 ug/l = micrograms per liter
- mg/l = milligrams per liter
 MTBE = Methyl-Tertiary-Butyl Ether 5. See Appendix for Laboratory Detection Limits
- 6. NL = Not Located
 7. DRY = Well was Dry at the time of Sampling

- 8. NT = Not Tested
 9. EDB = Ethylene Dibromide
 10. 1,2 DCA = 1,2-Dichloroethane
 11. FPP = Free Phase Petroleum Product
- 12. * = Wells Have Been Abandoned 13. "J" Values used in Total BTEX Calculations14. B = Detected in Method Blank

- detection limits (MDL) and below actual reporting limit (RL).
- 16. S = MS/MSD Failure

 17. P = The RPD between the two columns exceeds 40%.

- 18. DIPE = Diisopropyl Ether
 19. ETBE = Ethyl ter-butyl Ether
 20. TAA = tert-Amyl Alcohol

- 21. TAME = tert-Amyl Methyl Ether22. TBA = ter-Butyl Alcohol
- 23. TBF = tert-Butyl Formate
 24. TAME = tert-Amyl Methyl Ether
- 25. * = TW-1 was a temporary well and has been abandoned.
- 26. NS = Not Sampled
 27. Bolded data is above the RBSL (Risk-Based Screening Level)

TABLE 2 POTENTIOMETRIC DATA JAKE HUGGINS MARCH 28, 2025 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 25-8491 UST PERMIT# 03423

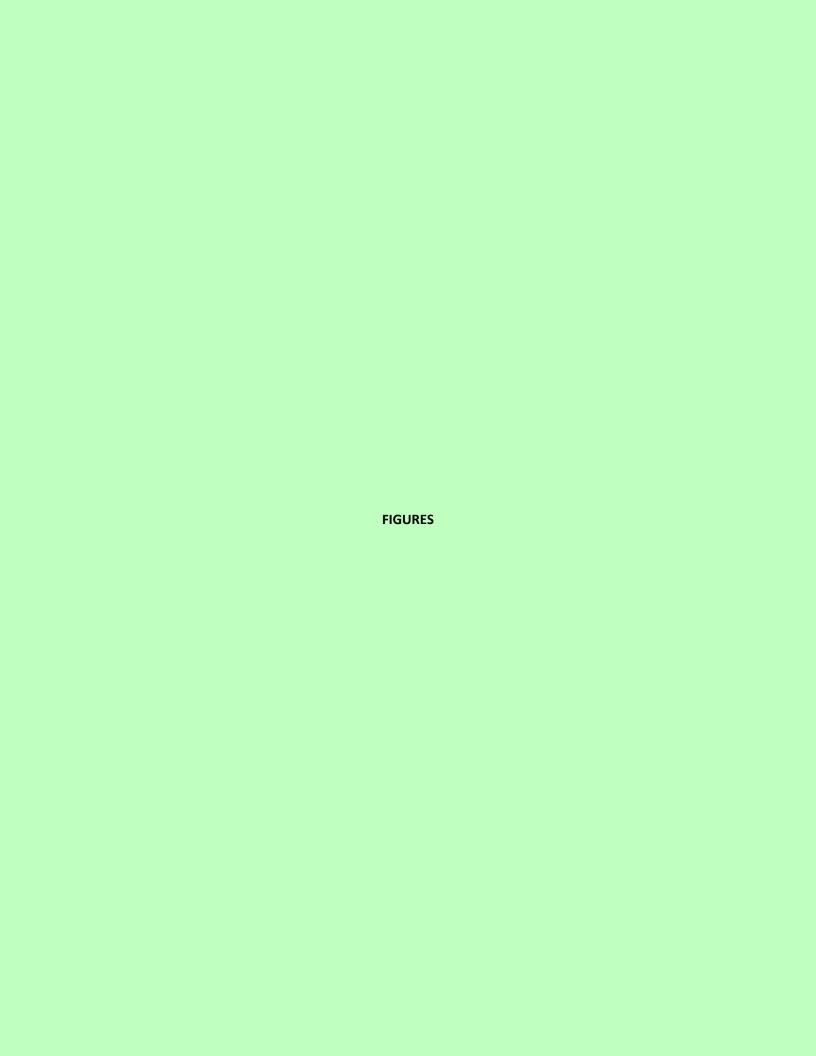
Well	Sample	Screened	Depth to	Depth to	Product	TOC	Groundwater
Number	Date	Interval	Product (ft)	Water (ft)	Thickness (ft)	Elevation	Elevation
Number	2/15/2022	interval	***	2.67	***	98.72	96.05
	1/9/2023		***	3.48	***	98.72	95.24
	4/14/2023		***	3.41	***	98.72	95.31
03423-MW01	7/14/2023	3-13	***	3.02	***	98.72	95.70
03423-1010001	10/16/2023	3-13	***	3.46	***	98.72	95.26
	6/24/2024		***	3.03	***	98.72	95.69
	3/28/2025		***	2.18	***	98.72	96.54
	2/15/2022		***	2.64	***	96.40	93.76
	1/9/2023		***	3.25	***	96.40	93.76
			***	3.23	***	96.40	93.17
03423-MW02	4/14/2023 7/14/2023	3-13	***	3.04	***	96.40 96.40	93.17
03423-1010002		3-13	***	3.28	***		
	10/16/2023		***	3.02	***	96.40	93.12
	6/24/2024		***	3.02 1.99	***	96.40	93.38
	3/28/2025		***	2.42	***	96.40	94.41
	2/15/2022		***		***	94.95	92.53
	1/9/2023		***	3.15	***	94.95	91.80
00400 1 11400	4/14/2023	0.40	***	3.06	***	94.95	91.89
03423-MW03	7/14/2023	3-13		3.29		94.95	91.66
	10/16/2023		***	3.62	***	94.95	91.33
	6/24/2024		***	3.62	***	94.95	91.33
	3/28/2025		***	2.16	***	94.95	92.79
	2/15/2022		***	2.61	***	94.88	92.27
	1/9/2023		***	3.45	***	94.88	91.43
	4/14/2023		***	3.39	***	94.88	91.49
03423-MW04	7/14/2023	3-13	***	3.63	***	94.88	91.25
	10/16/2023		***	4.53	***	94.88	90.35
	6/24/2024		***	4.10	***	94.88	90.78
	3/28/2025		***	2.45	***	94.88	92.43
	2/15/2022		***	2.46	***	94.88	92.42
	1/9/2023		***	3.16	***	94.88	91.72
	4/14/2023		***	3.07	***	94.88	91.81
03423-MW05	7/14/2023	3-13	***	3.47	***	94.88	91.41
	10/16/2023		***	5.43	***	94.88	89.45
	6/24/2024		***	3.61	***	94.88	91.27
	3/28/2025		***	2.29	***	94.88	92.59
	2/15/2022		***	2.83	***	97.86	95.03
	1/9/2023		***	3.50	***	97.86	94.36
	4/14/2023		***	3.32	***	97.86	94.54
03423-MW06	7/14/2023	3-13	***	3.07	***	97.86	94.79
	10/16/2023		***	3.24	***	97.86	94.62
	6/24/2024		***	3.05	***	97.86	94.81
	3/28/2025		***	2.49	***	97.86	95.37
	2/15/2022		***	2.91	***	100.29	97.38
	1/9/2023		***	3.98	***	100.29	96.31
	4/14/2023		***	3.78	***	100.29	96.51
03423-MW07	7/14/2023	3-13	***	3.54	***	100.29	96.75
00720-IVIVVO1	10/16/2023	0-10	***	4.44	***	100.29	95.85
	6/24/2024		***	3.95	***	100.29	96.34
			***		***		
	3/28/2025	<u> </u>		2.90	<u> </u>	100.29	97.39

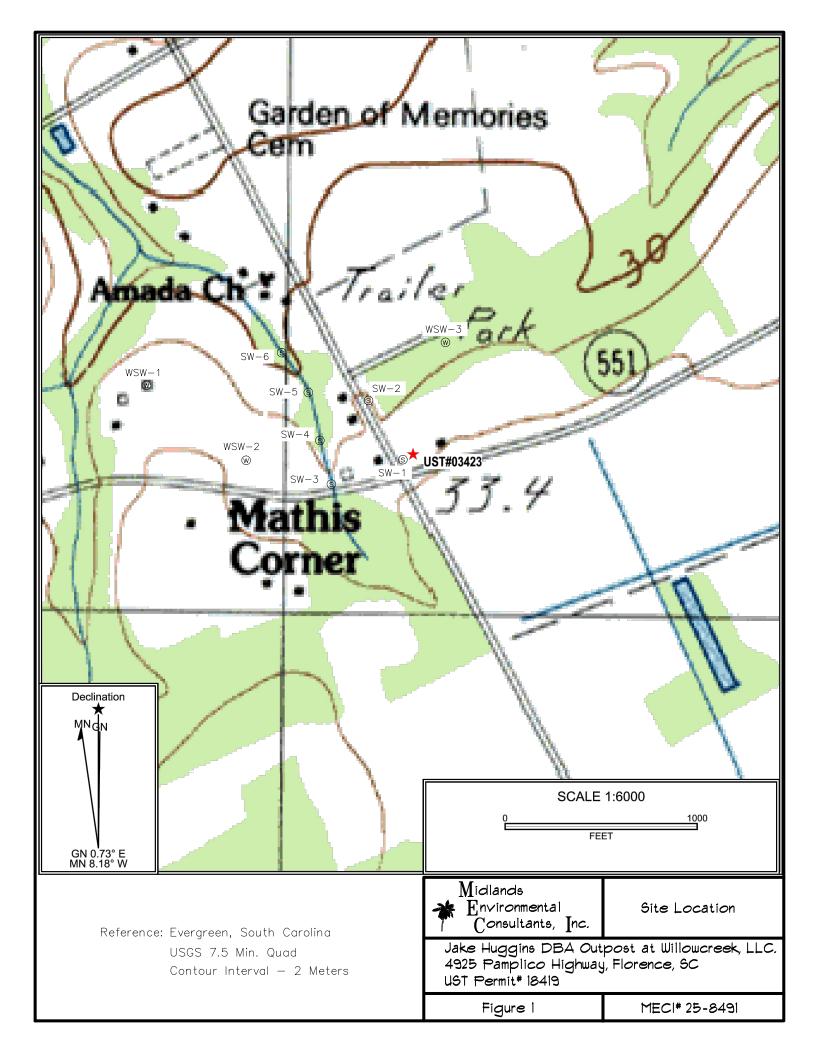
TABLE 2 POTENTIOMETRIC DATA JAKE HUGGINS MARCH 28, 2025 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 25-8491 UST PERMIT# 03423

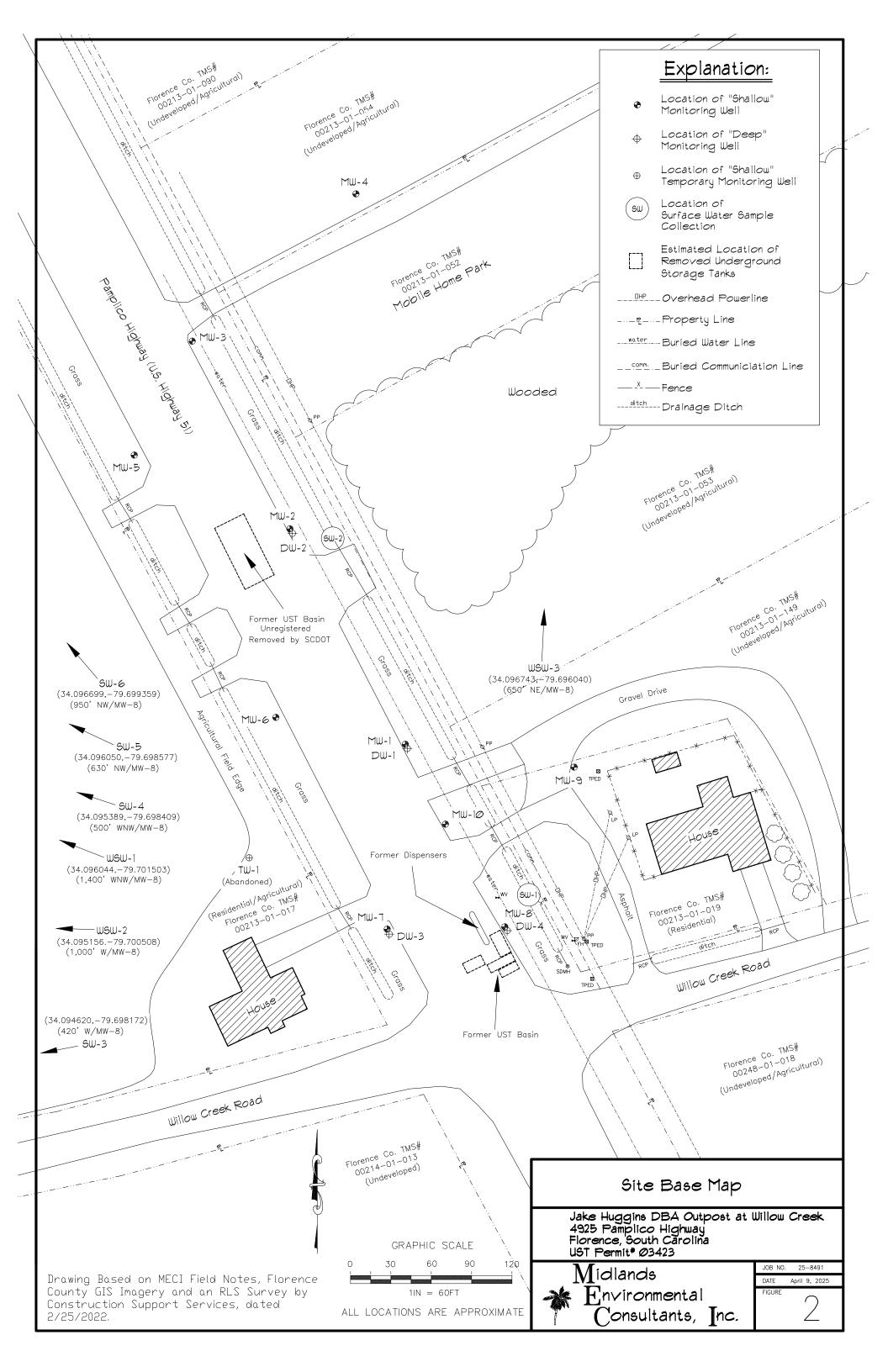
Depth to Water (ft) 3.76 4.38 4.13 3.90 4.46 4.07 1.99 3.97 3.27 3.19 4.22 5.21	Product Thickness (ft) *** *** *** *** *** *** ***	TOC Elevation 100.92 100.92 100.92 100.92 100.92 100.92 100.92 100.92	97.16 96.54 96.79 97.02 96.46 96.85 98.93 96.95 97.65
3.76 4.38 4.13 3.90 4.46 4.07 1.99 3.97 3.27 3.19 4.22	*** *** *** *** *** *** *** ***	100.92 100.92 100.92 100.92 100.92 100.92 100.92 100.92 100.92	97.16 96.54 96.79 97.02 96.46 96.85 98.93 96.95
4.38 4.13 3.90 4.46 4.07 1.99 3.97 3.27 3.19 4.22	*** *** *** *** *** *** ***	100.92 100.92 100.92 100.92 100.92 100.92 100.92	96.54 96.79 97.02 96.46 96.85 98.93 96.95
4.13 3.90 4.46 4.07 1.99 3.97 3.27 3.19 4.22	*** *** *** *** *** ***	100.92 100.92 100.92 100.92 100.92 100.92 100.92	96.79 97.02 96.46 96.85 98.93 96.95
3.90 4.46 4.07 1.99 3.97 3.27 3.19 4.22	*** *** *** *** ***	100.92 100.92 100.92 100.92 100.92 100.92	97.02 96.46 96.85 98.93 96.95
4.46 4.07 1.99 3.97 3.27 3.19 4.22	*** *** *** ***	100.92 100.92 100.92 100.92 100.92	96.46 96.85 98.93 96.95
4.07 1.99 3.97 3.27 3.19 4.22	*** *** *** ***	100.92 100.92 100.92 100.92	96.85 98.93 96.95
1.99 3.97 3.27 3.19 4.22	*** *** *** ***	100.92 100.92 100.92	98.93 96.95
3.97 3.27 3.19 4.22	*** *** ***	100.92 100.92	96.95
3.27 3.19 4.22	***	100.92	
3.19 4.22	***		
4.22			
			97.73
5.21	***	100.92	96.70
			95.71
			96.32
			97.58
			96.76
			96.01
			96.13
			96.52
			95.62
3.06		99.69	96.63
2.56		99.69	97.13
2.54	***	98.57	96.03
3.22	***	98.57	95.35
3.17	***	98.57	95.40
3.13	***	98.57	95.44
3.84	***	98.57	94.73
3.60	***	98.57	94.97
2.11	***	98.57	96.46
2.51	***	96.48	93.97
3.01	***	96.48	93.47
3.03	***	96.48	93.45
3.53	***	96.48	92.95
3.75	***	96.48	92.73
3.65	***	96.48	92.83
2.21	***	96.48	94.27
2.92	***	100.05	97.13
3.53	***	100.05	96.52
3.41	***	100.05	96.64
3.14	***	100.05	96.91
4.14	***	100.05	95.91
3.51	***	100.05	96.54
2.40	***	100.05	97.65
3.86	***		97.17
4.41	***	101.03	96.62
	***		96.67
	***		96.81
	***		95.78
	***		96.53
	***		97.55
	5.21 4.60 3.34 2.93 3.68 3.56 3.17 4.07 3.06 2.56 2.54 3.22 3.17 3.13 3.84 3.60 2.11 2.51 3.01 3.03 3.53 3.75 3.65 2.21 2.92 3.53 3.41 3.14 4.14 3.51 2.40 3.86	5.21 *** 4.60 *** 3.34 *** 2.93 *** 3.68 *** 3.56 *** 3.17 *** 3.06 *** 2.56 *** 2.54 *** 3.22 *** 3.17 *** 3.13 *** 3.60 *** 2.11 *** 2.51 *** 3.03 *** 3.53 *** 3.75 *** 3.65 *** 2.21 *** 2.92 *** 3.53 *** 3.41 *** 3.51 *** 2.40 *** 3.86 *** 4.41 *** 4.36 *** 4.50 ***	5.21 *** 100.92 4.60 *** 100.92 3.34 *** 100.92 3.34 *** 100.92 3.34 *** 100.92 3.34 *** 99.69 3.68 *** 99.69 3.56 *** 99.69 3.17 *** 99.69 3.06 *** 99.69 2.54 *** 98.57 3.17 *** 98.57 3.13 *** 98.57 3.14 *** 98.57 2.51 *** 96.48 3.01 *** 96.48 3.03 *** 96.48 3.05 *** 96.48 3.53 *** 96.48 2.21 *** 96.48 2.22 *** 100.05 3.53 *** 96.48 2.22 *** 100.05 3.51 *** 100.05 3.51 *** 100.05 3.51 ***

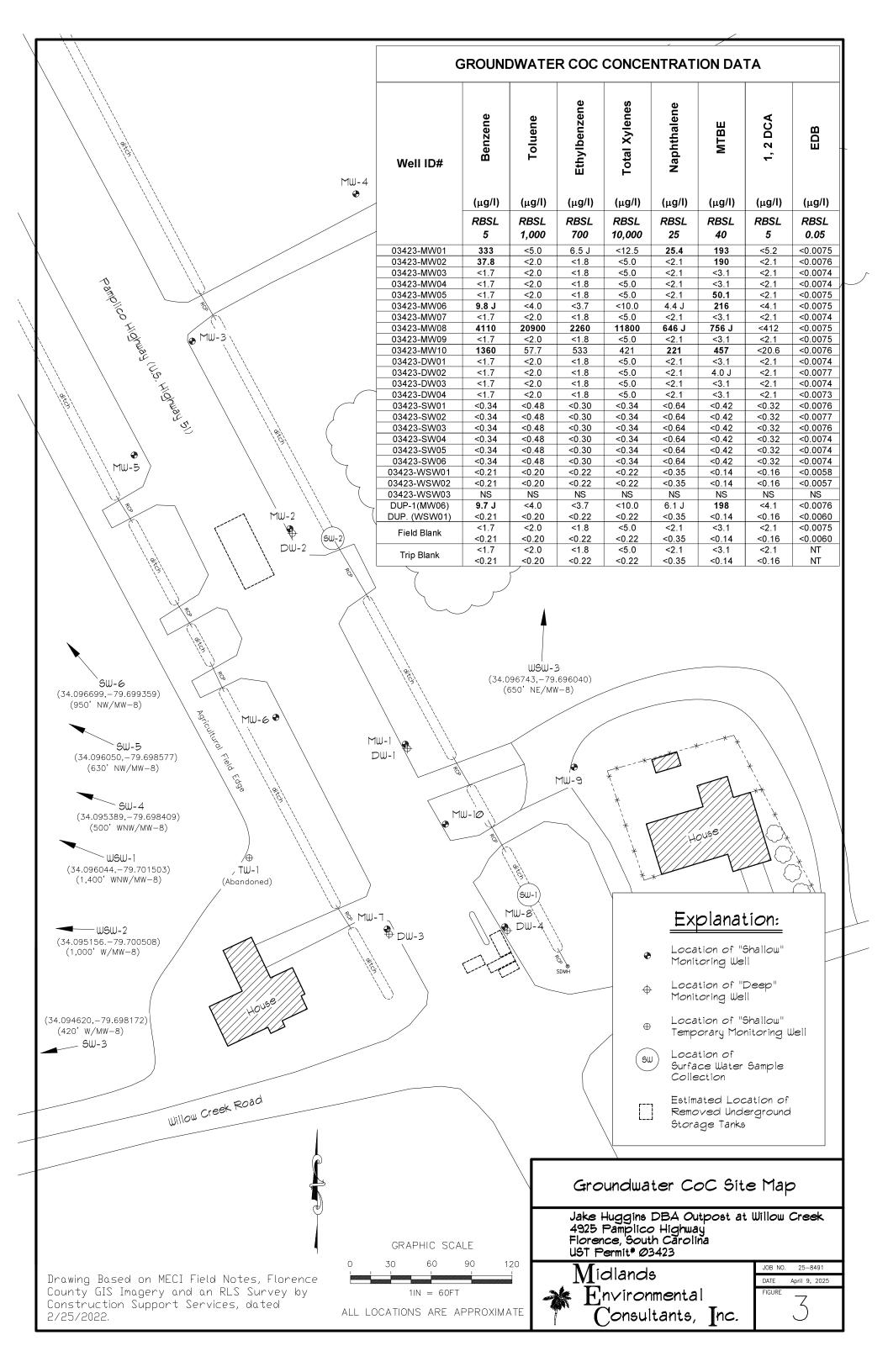
Notes:

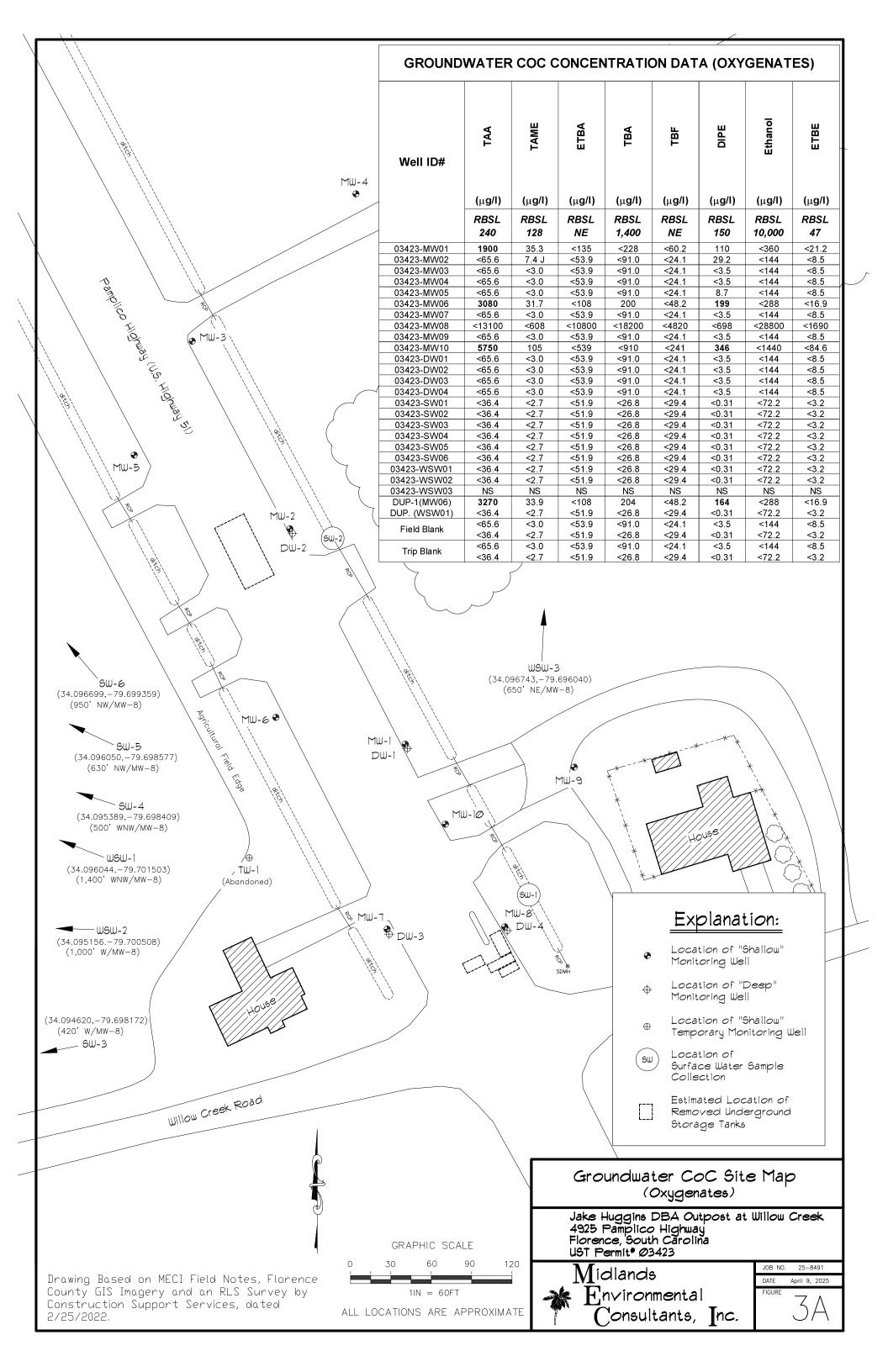
^{1.} Elevations are NAV88.

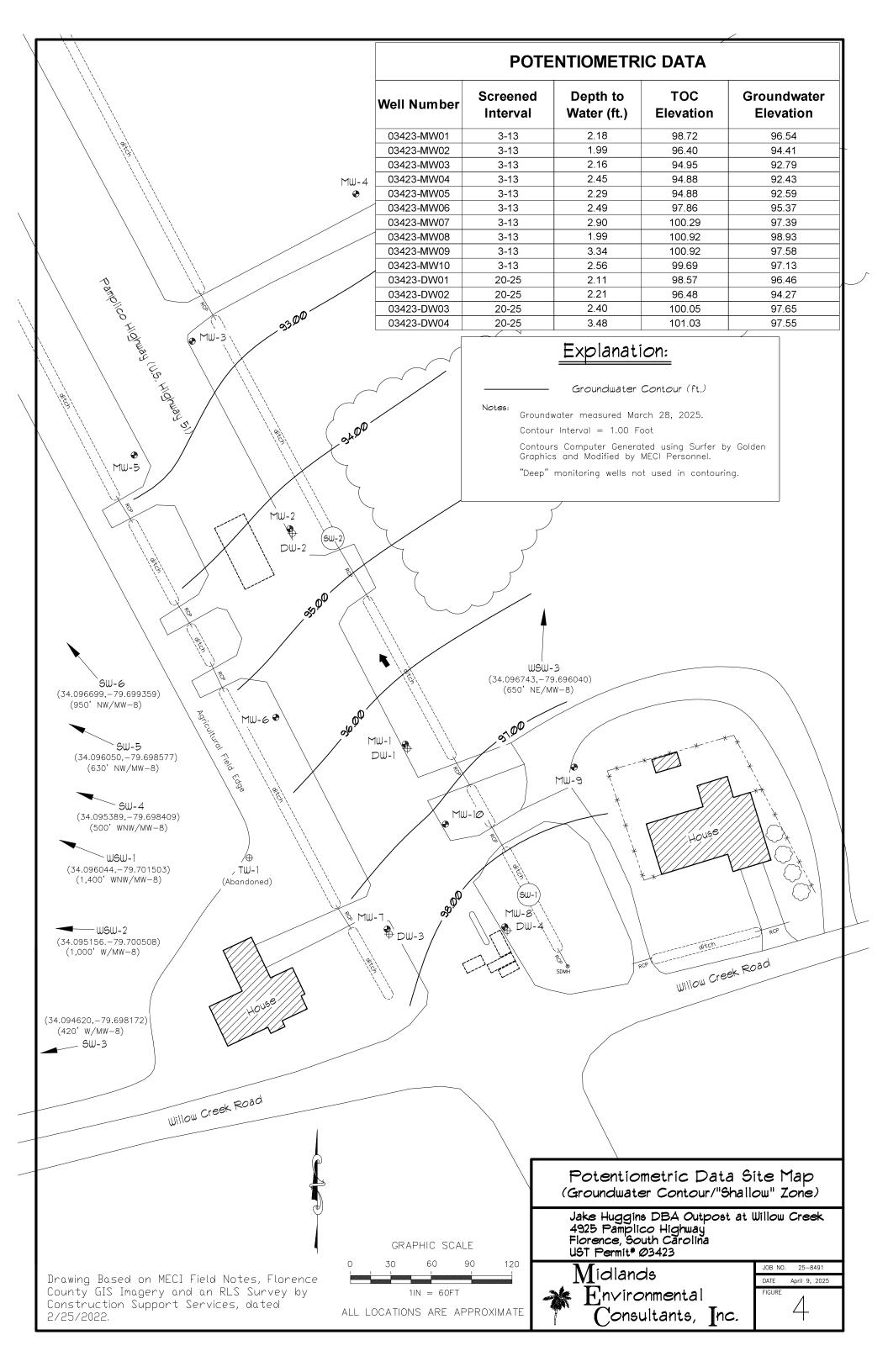

Groundwater depths were measured from the top of the PVC riser pipe.

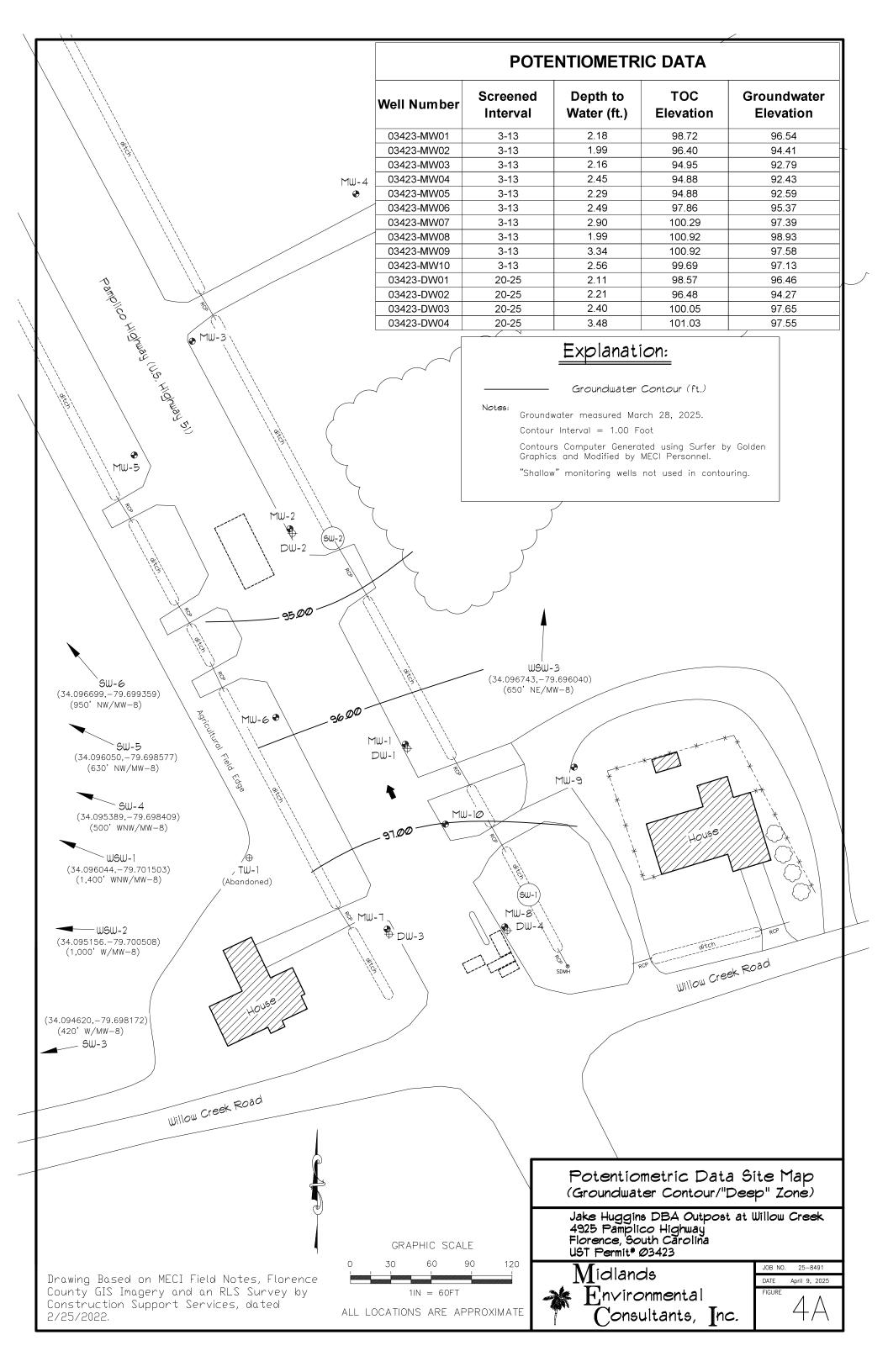

^{3.} NM = Not Measured

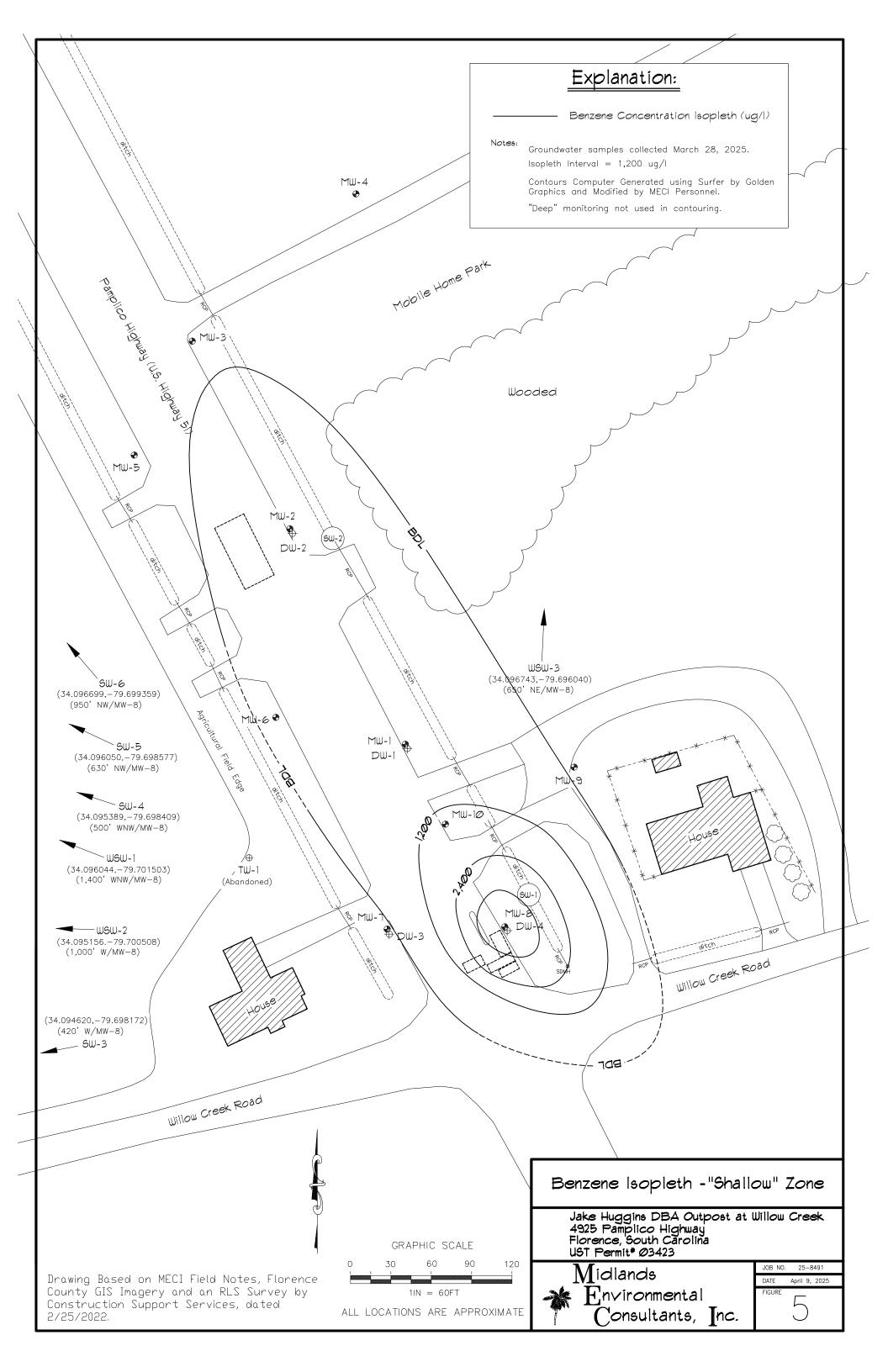

^{4.} DRY = Well Gauged DRY

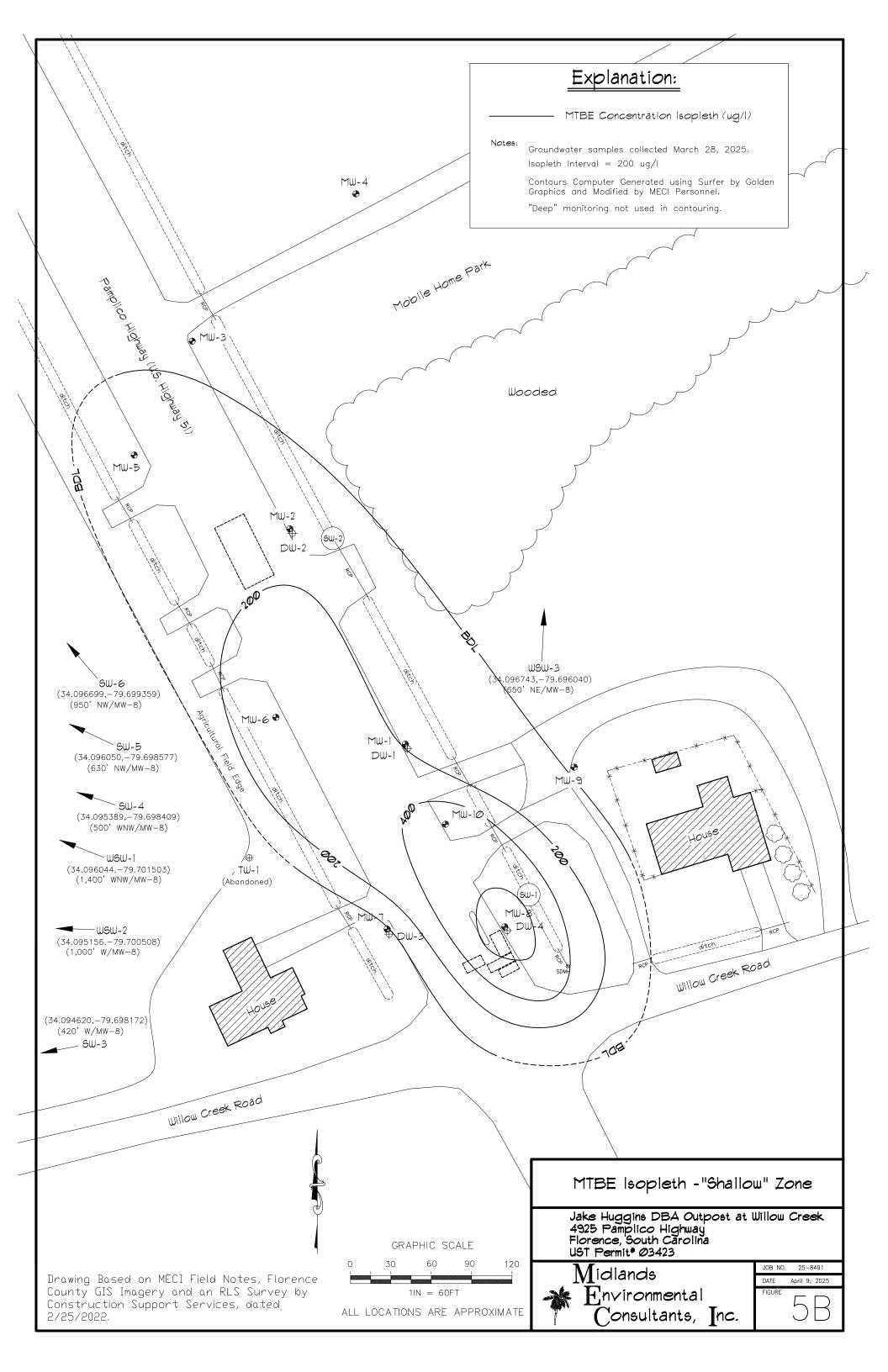

^{5.} TD = Total Depth


^{6. * =} Groundwater elevation corrected for the presence of free product using a specific gravity of 0.85.









APPENDIX A:

SITE SURVEY

(Not Applicable)

APPENDIX B: SAMPLING LOGS, LABORATORY DATA SHEETS, & CHAIN-OF-CUSTODY FORMS

Midlands
Environmental
Consultants, Inc.
Field Personnel:
Sampling Date(s):

Sampling Case#:

Monitoring Well Purge
And Sampling Data

Job Name: Dake Hyggin

Calibration Data for :

Calibration Successful? Yes or No (Please Circle) pH: Yes No

Conductivity: Yes No
Dissolved Oxygen: Yes No

Turbidity: Conductivity Calibrated Every 3 Months by QA Manager

Well No.	Purge	Sample	pH(i)	cond(i)	Temp.	DO	Turbidity	Depth to (fe	et):	Well Depth	Water Height	Gallons	Purged	Notes
	Volume	Time	, ,,		(°C)	(mg/l)	(NTU)		final H ₂ 0	(feet)	(*(feet)	**calc.	actual	Notes
	Initial	10:36	6.24	65.5	15.3	4.10	9.37			0	1		2 -	51:34
	1st	10:38	6.08	64.1	15,1	4.15	15,66			3-13	resetti)	1.76	0.2	F
	2nd	10:40	5.99	63.7	14-8	W.22	20,11	2. (8	2,40	15		1/ / / / /	(c)	adar
MW-1	3rd							~ 0	10		0.82		2 7/	
	4th										1 00	8,80	3.75	
*	5th												gar	
3.	Sampling	12:20	6.02	64.7	13.6	4.15	9.50	<u></u>				<u> </u>		1 (/ /
	Initial	10808	6.08	132.5	15.6	4.90	9.70					1 7-	PB	51.94
	1st	10:10	5.90	130.7	15.1	4.95	9-99	I Ae		1 3	1, ,	1, 19	6	oder
	2nd	10:12	5.47	131,2	14.8	5.02	12.60	1-41	2.08	1/3	11,01		0	
MW-2	3rd									15	. , ,	0 0 -	3.75	
1.	4th 5th											8.95		
5 0	Sampling	17:13	- 59	12(5	149	5.00	10.80		1				gar	
	Initial	9:40	9.40	84.0	147	5,90	9.60		-				0 -	100
	1st	9:42	8,87	83.2	14.1	507	11-18					177	175	10
	2nd	9:44	8.4	83.8	14.2	6.10	13.80	0 11	01-	3	C 00	1-17	(P)	OVEN
MW-3	3rd	2	0.49	13000	1110	1	11.0	2.16	2.60	13	10,84		20	3 - C1
	4th										1-1-1	a m	2 200	
	5th											8.83	2 900 A	7.5
¥	Sampling	12:00	8,70	87.3	14.6	5,92	9.80						good	
	Initial	9:41	9.16	70.8	14.1	5,67	9.77					1 7 -	20	Or Been
是 () () ()	1st	9:743	8-64	70.2	13:5	5.82	12.10		- 0-		/	1, +2	208	P
	2nd	9:45	8,27	70.3	13.5	5.20	7.66	2.48	2.70	3	10.53	/	(CX)	Odon
MW- Y	3rd (/							3	1000	6	9	
	4th									15		8.60	350	edded 1
	5th	20101	10 000	70.0	100	2-10	0 00					0 , 00	gar	bult
• 11	Sampling	reiol.	8.80	70.2	17.8	5.69	9.90							1000

^{*= (}Depth of Well) - (Depth to Water = Water Height

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Turbidity DOSN Sampling Case# Ph/Conductance SN 17E101302 201301183 15H101448 Case #1 201301174 Case #2 15E101481 14H103098 17E103488 201510251 17E100512 Case #3

^{**=} One Well Volume x 5 = Gallons Purged (calculated)

Monitoring Well Purge Midlands Finvironmental **And Sampling Data** Consultants, Calibration Data for: Field Personnel: Calibration Successful? Yes or No (Please Circle) pH: Yes No Sampling Date(s): Conductivity: Yes No Dissolved Oxygeh: Yes No Sampling Case#: Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) DO Temp. Turbidity Well Depth Water Height Depth to (feet): **Gallons Purged** Notes Volume Time (°C) product initial H₂O final H₂0 (mg/l) (NTU) (feet) *(feet) **calc. actual 9:50 9.36 Initial 9.32 9:52 8.80 1st 3.09 13.8€ 2,29 2,40 9:52 19,20 5.12 4th 5th 2:00 Sampling 8,62 869 5,08 2 Initial 55.0 4.30 6.32 56. 12.88 6. 3./3 4.5 1718 2nd 3rd 4th 5th 2:06 9.88 Sampling 4.29 Initial 5.70 100

1060 61.4 6. 12 2.66 0:03 3.01 2nd 2,90 5th 9.82 Sampling 20 9.78 4,21 16.0 6.90 230,7 4, 23 13,10 2nd 4.24 4th 5th 21766.99 Sampling 9.40 = (Depth of Well) - (Depth to Water = Water Height **= One Well Volume x 5 = Gallons Purged (calculated) Sampling Case# Ph/Conductance SN DO SN Turbidity

One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

201301183 Case #1 15H101448 17E101302 Case #2 15E101481 14H103098 201301174 Case #3 17E100512 17E103488 201510251

Midlands Environmental Consultants, Field Personnel: Sampling Date(s): Sampling Case#:

Monitoring Well Purge And Sampling Data

Calibration Data for:

Calibration Successful? Yes or No (Please Circle) pH: Yes No

Conductivity: Yes No Dissolved Óxygeh: Yes No

Turbidity: Conductivity Calibrated Every 3 Months by QA Manager

Well No.	Purge	Sample	pH(i)	cond(i)	Temp.	DO	Turbidity		epth to (fee	t):	Well Depth	Water Height	Gallons	Purged	Notes
	Volume	Time			(°C)	(mg/l)	(NTU)	product	initial H₂O	final H₂0	(feet)	*(feet)	**calc.	actual	Notes
	Initial	10:32	7.89	204.3	15.3	5.72	9.27								Nor -
	1st	10:74	7.91	200,2	(5.	5,0	12,10				3		1,57	00	
mw-9	2nd	10036	7.95	189.6	19.9	4.80	15-65		3 34	7.66	1/3	2 2 2	12/	0	400
	3rd					,			0101	1.60	15	986			
	4th												7 -	3 33	
**	5th	1.0.100	7 0 1	000	1 /	-							7.85	1	
	Sampling	12273	7.91	200,	13,2	5,34	10.8	2							
	Initial	00:24	742	360.3	16-3	3.10	9.19								ader
	1st	(0,26	7.50	25 0.	61	2.80	12.09				5		774	014	000
MW-10	2nd	c:28	7,60	351.2	15. F	2.20	507		2.56	2,80	5	1000	1.7	(9)	
	3rd								2006		1/5	10,44		9	
	4th 5th										2	,	850	3.50	
	Sampling	10 1111	7.47	3531	1/ 7	2.90	10.80					1-			
	Initial	10327	1 3	100	16.0	110									110
	1st		6.14	100.1	10.0	6.10	4.34		2.11					DM	MYP1
001	2nd	10:31	/	29.8	(5.2	5.90	12.10		ann an	2,20	4		3.73	0	HALLAN
DW-1	3rd	(0,11	6,7	11.0	(3.0	5.84	18.60		N/SH		30	22.89		()	Vac
	4th									-	30			7 -	No
	5th										O.		(8,65	7,50	008
Olass a	Sampling	12115	6.60	99.5	1.505	5.90	10,15						(8),6)	3ee	-00
	Initial	10:10	6.23	105.5	156	5.82	9.89								1/0
	1st	10:14	6.70	1016	15:2	3.60	12.80						3.71	00	No
100	2nd		6.82	98.4	14.8	5.15	18,10		0 21	2.37	2	22 72	3. 1	0.1	900
DW-2	3rd								Ch 1 - 1	2017	30	22.79		(e)	
	4th			11.27							2ª		N	7 000	
a r f	5th										0		18.55	Toso	
	Sampling	1214	6.77	99.7	15.7	5.70	10,12						11 9	gar	

*= (Depth of Well) - (Depth to Water = Water Height One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells

**= One Well Volume x 5 = Gallons Purged (calculated)

Casing Gallons 0.047 2" 0.163 4" 0.653 1.469

Sampling Case#	Ph/Conductance SN	DO SN	Turbidity
Case #1	15H101448	17E101302	201301183
Case #2	15E101481	14H103098	201301174
Case #3	17E100512	17E103488	201510251

Monitoring Well Purge Midlands Finvironmental **And Sampling Data** Consultants, Calibration Data for: Field Personnel: Calibration Successful? Yes or No (Please Circle) Job Number: 25-849 pH: No Yes Sampling Date(s): Conductivity: Yes No Dissolved Oxygeh: Yes No Sampling Case#: Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO **Turbidity** Well Depth Water Height Depth to (feet): **Gallons Purged** Notes Volume Time (°C) (mg/I)(NTU) product initial H₂O final H₂O (feet) *(feet) **calc. actual 9:59 28.9 9.20 16.4 7,95 25.2 3.05 010.00 2nd 25,8 2.95 20,85 3rd 5th 2:10 Sampling 126. 16.5 9.90 Initial 22.6 6,20 20,8 6.20 1st 6.0 548 4th 5th 119.4 10,18 Sampling 8,00 Initial 102.2 1st 2nd 83.3 5.90 3rd 4.00 9.13 (34.095847, =79.697292) 4th) andles -som Sampling Initial 81.2 7,76 :30 13.0 7.0 (34.0946420, -74.698 JOH 2nd 3rd 90.6 13.2 10.80 .095389, -79.698409) Sampling *= (Depth of Well) - (Depth to Water = Water Height **= One Well Volume x 5 = Gallons Purged (calculated) Sampling Case# Ph/Conductance SN DO SN Turbidity One Well Volume = \times .047 for 1" wells * \times .163 for 2" wells, or * \times .66 for 4" wells, 1.469 for 6" wells Case #1 15H101448 17E101302 201301183 Case #2 15E101481 14H103098 201301174 Gallons Casing Case #3 17E100512 17E103488 201510251 0.047 2" 0.163

4"

0.653

Monitoring Well Purge Consultants, Inc. Finvironmental **And Sampling Data** Calibration Data for: Field Personnel: Calibration Successful? Yes or No (Please Circle) Job Number: 25-849 Yes Sampling Date(s): Conductivity: Yes No Dissolved Oxygen: No Sampling Case#: Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO Turbidity Well Depth Water Height Depth to (feet): **Gallons Purged** Volume Time (°C) Notes (mg/l) (NTU) product initial H₂O final H₂0 (feet) *(feet) **calc. actual 88,5 5W-6 9,10 20 34.09 6050, -79 698577) Vano 3rd 101,41 10,15 (34.096699, -79.99359) 5W-6 Sampling Initial Dup-1 1st 2nd 3rd 1:3 4th GAC X :00 Sampling Initial 4.20 3101 Willow Creek Rd. (34.096044, -79.70 1503) WSW-1 2nd 4th 3101 Willow Creek Rd. (34.095156) - 79. 700508) WSW-Z Sampling Initial 3695 Willow Creek Rd. (34.096743, -79.701543 WSW-2 3rd 3/18 willow Creek Rd. (34.0044158, -79.700555) WSW-4 Sampling *= (Depth of Well) - (Depth to Water = Water Height **= One Well Volume x 5 = Gallons Purged (calculated) Sampling Case# Ph/Conductance SN One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells DO SN Turbidity Case #1 15H101448 17E101302 201301183 Case #2 15E101481 14H103098 201301174 Casing Gallons Case #3 17E100512 17E103488 201510251 0.047 0.163 4" 0.653 6" 1.469

Midlands

Midlands
Finvironmental
Consultants, Inc.
Field Personnel:
Sampling Date(s):

Sampling Case#:

Monitoring Well Purge
And Sampling Data

Name: 25-8491

Calibration Data for :

Calibration Successful? Yes or No (Please Circle)
pH:
Yes No
Conductivity: Yes No
Dissolved Oxygen: Yes No
Turbidity: Conductivity Calibrated Every 3 Months by QA Manager

Well No.	Purge	Sample	pH(i)	cond(i)	Temp.	DO	Turbidity		epth to (feet	t):	Well Depth	Water Height	Gallons	Purged	Notes
	Volume	Time			(°C)	(mg/l)	(NTU)	product	initial H ₂ O	final H ₂ 0	(feet)	*(feet)	**calc.	actual	Notes
	Initial	20	2		(11'00									
WSW-DU	p 1st	1)7/1/1	, at	WSW -	1	110									
	2nd		1	-											
	3rd		14 21						-						
1	4th														
WSW-FA	5th	17.	27												
	Sampling		/												
	Initial												-		
,	1st	080	d												
WSW-TB	2nd	00													
	3rd											-			
	4th														
	5th														
	Sampling														
	Initial														
	1st														
	2nd														
	3rd											-			
	4th														
	5th														
	Sampling														
	Initial														
	1st														
	2nd														
1997	3rd											1 11 11			
	4th								7.1						
	5th														
	Sampling														
*= (Depth of Well) - (Dep	oth to Water =	Water Height				**= One Well	Volume x 5 =	Gallons P	urged (calc	culated)		Sampling Case#	Ph/Conductance SN	DO SN	Turbidity

 Casing
 Gallons

 1"
 0.047

 2"
 0.163

 4"
 0.653

 6"
 1.469

Sampling Case#	Ph/Conductance SN	DO SN	Turbidity
Case #1	15H101448	17E101302	201301183
Case #2	15E101481	14H103098	201301174
Case #3	17E100512	17E103488	201510251

April 07, 2025

Mr. Bryan Shane, P.G. Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Dear Mr. Shane, P.G.:

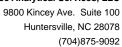
Enclosed are the analytical results for sample(s) received by the laboratory on March 28, 2025. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Blake Hiltor

Blake Hilton blake.hilton@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental

CERTIFICATIONS

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

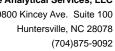
9800 Kincey Ave. Ste 100, Huntersville, NC 28078 South Carolina Drinking Water Cert. #: 99006003

North Carolina Drinking Water Certification #: 37706 Florida/NELAP Certification #: E87627 North Carolina Field Services Certification #: 5342 Kentucky UST Certification #: 84

North Carolina Wastewater Certification #: 12 Louisiana DoH Drinking Water #: LA029

South Carolina Laboratory ID: 99006 Virginia/VELAP Certification #: 460221

(704)875-9092

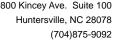


SAMPLE ANALYTE COUNT

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92787830001	MW-1	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92787830002	MW-2	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92787830003	MW-3	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830004	MW-4	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830005	MW-5	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830006	MW-6	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830007	MW-7	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830008	MW-8	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830009	MW-9	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830010	MW-10	EPA 8011	НН	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92787830011	DW-1	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830012	DW-2	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830013	DW-3	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830014	DW-4	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830015	SW-1	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830016	SW-2	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830017	SW-3	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830018	SW-4	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830019	SW-5	EPA 8011	HH	2	PASI-C

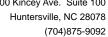

SAMPLE ANALYTE COUNT

Project: **JAKE HUGGINS 3423**

Pace Project No.: 92787830

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260D	LMB	20	PASI-C
92787830020	SW-6	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830021	DUP	EPA 8011	НН	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92787830022	FB	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830023	GAC	EPA 8011	НН	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92787830024	ТВ	EPA 8260D	LMB	20	PASI-C
92787830025	WSW-1	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	LMB	11	PASI-C
92787830026	WSW-2	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	LMB	11	PASI-C
92787830027	WSW-DUP	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	LMB	11	PASI-C
92787830028	WSW-FB	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	LMB	11	PASI-C
92787830029	WSW-TB	EPA 524.2	JN	11	PASI-C
		EPA 8260D	LMB	11	PASI-C

PASI-C = Pace Analytical Services - Charlotte

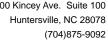


Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-1	Lab ID: 927	87830001	Collected: 03/28/2	25 12:20	Received: 03	/28/25 20:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/03/25 08:17	04/04/25 05:58	106-93-4	
1-Chloro-2-bromopropane (S)	103	%	60-140	1	04/03/25 08:17	04/04/25 05:58	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	1900	ug/L	250	2.5		04/02/25 14:03	75-85-4	
tert-Amylmethyl ether	35.3	ug/L	25.0	2.5		04/02/25 14:03	994-05-8	
Benzene	333	ug/L	12.5	2.5		04/02/25 14:03	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	250	2.5		04/02/25 14:03	624-95-3	
ert-Butyl Alcohol	ND	ug/L	250	2.5		04/02/25 14:03	75-65-0	
ert-Butyl Formate	ND	ug/L	125	2.5		04/02/25 14:03	762-75-4	
1,2-Dichloroethane	ND	ug/L	12.5	2.5		04/02/25 14:03	107-06-2	
Diisopropyl ether	110	ug/L	12.5	2.5		04/02/25 14:03	108-20-3	
Ethanol	ND	ug/L	500	2.5		04/02/25 14:03	64-17-5	
Ethylbenzene	6.5J	ug/L	12.5	2.5		04/02/25 14:03	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	25.0	2.5		04/02/25 14:03	637-92-3	
Methyl-tert-butyl ether	193	ug/L	12.5	2.5		04/02/25 14:03	1634-04-4	
Naphthalene	25.4	ug/L	12.5	2.5		04/02/25 14:03	91-20-3	
Toluene	ND	ug/L	12.5	2.5		04/02/25 14:03	108-88-3	
Kylene (Total)	ND	ug/L	12.5	2.5		04/02/25 14:03	1330-20-7	
n&p-Xylene	ND	ug/L	25.0	2.5		04/02/25 14:03	179601-23-1	
o-Xylene	ND	ug/L	12.5	2.5		04/02/25 14:03	95-47-6	
Surrogates		-						
I-Bromofluorobenzene (S)	98	%	70-130	2.5		04/02/25 14:03	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130	2.5		04/02/25 14:03	17060-07-0	
Toluene-d8 (S)	100	%	70-130	2.5		04/02/25 14:03	2037-26-5	

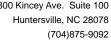


Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-2	Lab ID: 927	87830002	Collected: 03/28/2	5 12:13	Received: 03	3/28/25 20:12 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/03/25 08:17	04/04/25 06:10	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140	1	04/03/25 08:17	04/04/25 06:10	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	e60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/02/25 00:27	75-85-4	
tert-Amylmethyl ether	7.4J	ug/L	10.0	1		04/02/25 00:27	994-05-8	
Benzene	37.8	ug/L	5.0	1		04/02/25 00:27	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/02/25 00:27	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/02/25 00:27	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/02/25 00:27	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/02/25 00:27	107-06-2	
Diisopropyl ether	29.2	ug/L	5.0	1		04/02/25 00:27	108-20-3	
Ethanol	ND	ug/L	200	1		04/02/25 00:27	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/02/25 00:27	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/02/25 00:27	637-92-3	
Methyl-tert-butyl ether	190	ug/L	5.0	1		04/02/25 00:27	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/02/25 00:27	91-20-3	
Toluene	ND	ug/L	5.0	1		04/02/25 00:27	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/02/25 00:27	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/02/25 00:27	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/02/25 00:27	95-47-6	
Surrogates		ū						
4-Bromofluorobenzene (S)	104	%	70-130	1		04/02/25 00:27	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130	1		04/02/25 00:27	17060-07-0	
Toluene-d8 (S)	95	%	70-130	1		04/02/25 00:27	2037-26-5	

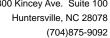


Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-3	Lab ID: 927	87830003	Collected: 03/28/2	25 12:00	Received: 03	3/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/03/25 08:17	04/04/25 06:21	106-93-4	
1-Chloro-2-bromopropane (S)	113	%	60-140	1	04/03/25 08:17	04/04/25 06:21	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		03/31/25 21:00	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		03/31/25 21:00	994-05-8	
Benzene	ND	ug/L	5.0	1		03/31/25 21:00	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		03/31/25 21:00	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		03/31/25 21:00	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		03/31/25 21:00	762-75-4	L1,v1
1,2-Dichloroethane	ND	ug/L	5.0	1		03/31/25 21:00	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		03/31/25 21:00	108-20-3	
Ethanol	ND	ug/L	200	1		03/31/25 21:00	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		03/31/25 21:00	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		03/31/25 21:00	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		03/31/25 21:00	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		03/31/25 21:00	91-20-3	
Toluene	ND	ug/L	5.0	1		03/31/25 21:00	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		03/31/25 21:00	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		03/31/25 21:00	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		03/31/25 21:00	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	98	%	70-130	1		03/31/25 21:00	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		03/31/25 21:00	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		03/31/25 21:00	2037-26-5	

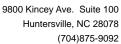


Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-4	Lab ID: 927	87830004	Collected: 03/28/2	25 12:01	Received: 03	/28/25 20:12 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EP	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 16:43	106-93-4	
1-Chloro-2-bromopropane (S)	125	%	60-140	1	04/04/25 08:25	04/04/25 16:43	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		03/31/25 21:19	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	1		03/31/25 21:19	994-05-8	
Benzene	ND	ug/L	5.0	1		03/31/25 21:19	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		03/31/25 21:19	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		03/31/25 21:19	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		03/31/25 21:19	762-75-4	L1,v1
1,2-Dichloroethane	ND	ug/L	5.0	1		03/31/25 21:19	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		03/31/25 21:19	108-20-3	
Ethanol	ND	ug/L	200	1		03/31/25 21:19	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		03/31/25 21:19	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		03/31/25 21:19	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		03/31/25 21:19	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		03/31/25 21:19	91-20-3	
Toluene	ND	ug/L	5.0	1		03/31/25 21:19	108-88-3	
(Ylene (Total)	ND	ug/L	5.0	1		03/31/25 21:19	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	1		03/31/25 21:19	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		03/31/25 21:19	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	98	%	70-130	1		03/31/25 21:19	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		03/31/25 21:19	17060-07-0	
Гoluene-d8 (S)	100	%	70-130	1		03/31/25 21:19	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

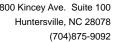
Sample: MW-5	Lab ID: 927	87830005	Collected: 03/28/2	5 12:05	Received: 03	3/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	I Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 17:11	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140	1	04/04/25 08:25	04/04/25 17:11	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 08:20	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 08:20	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 08:20	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 08:20	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 08:20	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 08:20	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 08:20	107-06-2	
Diisopropyl ether	8.7	ug/L	5.0	1		04/01/25 08:20	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 08:20	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 08:20	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 08:20	637-92-3	
Methyl-tert-butyl ether	50.1	ug/L	5.0	1		04/01/25 08:20	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 08:20	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 08:20	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 08:20	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 08:20	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 08:20	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	96	%	70-130	1		04/01/25 08:20	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	70-130	1		04/01/25 08:20	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		04/01/25 08:20	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-6	Lab ID: 927	87830006	Collected: 03/28/2	5 12:06	Received: 03	3/28/25 20:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 17:45	106-93-4	
1-Chloro-2-bromopropane (S)	106	%	60-140	1	04/04/25 08:25	04/04/25 17:45	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	3080	ug/L	200	2		04/01/25 16:01	75-85-4	
tert-Amylmethyl ether	31.7	ug/L	20.0	2		04/01/25 16:01	994-05-8	
Benzene	9.8J	ug/L	10.0	2		04/01/25 16:01	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	200	2		04/01/25 16:01	624-95-3	
ert-Butyl Alcohol	200	ug/L	200	2		04/01/25 16:01	75-65-0	
ert-Butyl Formate	ND	ug/L	100	2		04/01/25 16:01	762-75-4	
1,2-Dichloroethane	ND	ug/L	10.0	2		04/01/25 16:01	107-06-2	
Diisopropyl ether	199	ug/L	10.0	2		04/01/25 16:01	108-20-3	v1
Ethanol	ND	ug/L	400	2		04/01/25 16:01	64-17-5	
Ethylbenzene	ND	ug/L	10.0	2		04/01/25 16:01	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	2		04/01/25 16:01	637-92-3	
Methyl-tert-butyl ether	216	ug/L	10.0	2		04/01/25 16:01	1634-04-4	
Naphthalene	4.4J	ug/L	10.0	2		04/01/25 16:01	91-20-3	
Toluene	ND	ug/L	10.0	2		04/01/25 16:01	108-88-3	
Xylene (Total)	ND	ug/L	10.0	2		04/01/25 16:01	1330-20-7	
m&p-Xylene	ND	ug/L	20.0	2		04/01/25 16:01	179601-23-1	
o-Xylene	ND	ug/L	10.0	2		04/01/25 16:01	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	102	%	70-130	2		04/01/25 16:01	460-00-4	
1,2-Dichloroethane-d4 (S)	123	%	70-130	2		04/01/25 16:01	17060-07-0	
Toluene-d8 (S)	103	%	70-130	2		04/01/25 16:01	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-7	Lab ID: 927	87830007	Collected: 03/28/2	25 12:07	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 17:56	106-93-4	
1-Chloro-2-bromopropane (S)	109	%	60-140	1	04/04/25 08:25	04/04/25 17:56	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 01:00	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 01:00	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 01:00	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 01:00	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 01:00	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 01:00	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 01:00	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		04/01/25 01:00	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 01:00	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 01:00	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 01:00	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		04/01/25 01:00	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 01:00	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 01:00	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 01:00	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 01:00	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 01:00	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	94	%	70-130	1		04/01/25 01:00	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		04/01/25 01:00	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		04/01/25 01:00	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-8	Lab ID: 927	87830008	Collected: 03/28/2	25 12:26	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 18:08	106-93-4	
1-Chloro-2-bromopropane (S)	122	%	60-140	1	04/04/25 08:25	04/04/25 18:08	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	20000	200		04/01/25 19:08	75-85-4	
tert-Amylmethyl ether	ND	ug/L	2000	200		04/01/25 19:08	994-05-8	
Benzene	4110	ug/L	1000	200		04/01/25 19:08	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	20000	200		04/01/25 19:08	624-95-3	
tert-Butyl Alcohol	ND	ug/L	20000	200		04/01/25 19:08	75-65-0	
tert-Butyl Formate	ND	ug/L	10000	200		04/01/25 19:08	762-75-4	
1,2-Dichloroethane	ND	ug/L	1000	200		04/01/25 19:08	107-06-2	
Diisopropyl ether	ND	ug/L	1000	200		04/01/25 19:08	108-20-3	v1
Ethanol	ND	ug/L	40000	200		04/01/25 19:08	64-17-5	
Ethylbenzene	2260	ug/L	1000	200		04/01/25 19:08	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	2000	200		04/01/25 19:08	637-92-3	
Methyl-tert-butyl ether	756J	ug/L	1000	200		04/01/25 19:08	1634-04-4	
Naphthalene	646J	ug/L	1000	200		04/01/25 19:08	91-20-3	
Toluene	20900	ug/L	1000	200		04/01/25 19:08	108-88-3	
Xylene (Total)	11800	ug/L	1000	200		04/01/25 19:08	1330-20-7	
m&p-Xylene	7550	ug/L	2000	200		04/01/25 19:08	179601-23-1	
o-Xylene	4260	ug/L	1000	200		04/01/25 19:08	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	103	%	70-130	200		04/01/25 19:08	460-00-4	
1,2-Dichloroethane-d4 (S)	119	%	70-130	200		04/01/25 19:08	17060-07-0	
Toluene-d8 (S)	102	%	70-130	200		04/01/25 19:08	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: MW-9	Lab ID: 927	87830009	Collected: 03/28/2	25 12:23	Received: 03	/28/25 20:12 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 18:19	106-93-4	
1-Chloro-2-bromopropane (S)	106	%	60-140	1	04/04/25 08:25	04/04/25 18:19	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 01:18	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 01:18	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 01:18	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 01:18	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 01:18	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 01:18	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 01:18	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		04/01/25 01:18	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 01:18	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 01:18	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 01:18	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		04/01/25 01:18	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 01:18	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 01:18	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 01:18	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 01:18	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 01:18	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	97	%	70-130	1		04/01/25 01:18	460-00-4	
1,2-Dichloroethane-d4 (S)	91	%	70-130	1		04/01/25 01:18	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		04/01/25 01:18	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

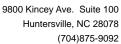
Sample: MW-10	Lab ID: 927	87830010	Collected: 03/28/2	25 12:18	Received: 03	/28/25 20:12 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EPA	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 18:31	106-93-4	
1-Chloro-2-bromopropane (S)	103	%	60-140	1	04/04/25 08:25	04/04/25 18:31	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	5750	ug/L	1000	10		04/02/25 15:44	75-85-4	
tert-Amylmethyl ether	105	ug/L	100	10		04/02/25 15:44	994-05-8	
Benzene	1360	ug/L	50.0	10		04/02/25 15:44	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	1000	10		04/02/25 15:44	624-95-3	
tert-Butyl Alcohol	ND	ug/L	1000	10		04/02/25 15:44	75-65-0	
tert-Butyl Formate	ND	ug/L	500	10		04/02/25 15:44	762-75-4	
1,2-Dichloroethane	ND	ug/L	50.0	10		04/02/25 15:44	107-06-2	
Diisopropyl ether	346	ug/L	50.0	10		04/02/25 15:44	108-20-3	
Ethanol	ND	ug/L	2000	10		04/02/25 15:44	64-17-5	
Ethylbenzene	533	ug/L	50.0	10		04/02/25 15:44	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	100	10		04/02/25 15:44	637-92-3	
Methyl-tert-butyl ether	457	ug/L	50.0	10		04/02/25 15:44	1634-04-4	
Naphthalene	221	ug/L	50.0	10		04/02/25 15:44	91-20-3	
Toluene	57.7	ug/L	50.0	10		04/02/25 15:44	108-88-3	
Xylene (Total)	421	ug/L	50.0	10		04/02/25 15:44	1330-20-7	
m&p-Xylene	330	ug/L	100	10		04/02/25 15:44	179601-23-1	
o-Xylene	91.3	ug/L	50.0	10		04/02/25 15:44	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	100	%	70-130	10		04/02/25 15:44	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130	10		04/02/25 15:44	17060-07-0	
Toluene-d8 (S)	99	%	70-130	10		04/02/25 15:44	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: DW-1	Lab ID: 927	87830011	Collected: 03/28/2	5 12:15	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 18:42	106-93-4	
1-Chloro-2-bromopropane (S)	107	%	60-140	1	04/04/25 08:25	04/04/25 18:42	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 08:57	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 08:57	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 08:57	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 08:57	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 08:57	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 08:57	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 08:57	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		04/01/25 08:57	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 08:57	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 08:57	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 08:57	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		04/01/25 08:57	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 08:57	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 08:57	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 08:57	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 08:57	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 08:57	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	95	%	70-130	1		04/01/25 08:57	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	70-130	1		04/01/25 08:57	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		04/01/25 08:57	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: DW-2	Lab ID: 927	87830012	Collected: 03/28/2	25 12:14	Received: 03	3/28/25 20:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 18:54	106-93-4	
1-Chloro-2-bromopropane (S)	109	%	60-140	1	04/04/25 08:25	04/04/25 18:54	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 08:38	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 08:38	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 08:38	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 08:38	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 08:38	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 08:38	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 08:38	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		04/01/25 08:38	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 08:38	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 08:38	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 08:38	637-92-3	
Methyl-tert-butyl ether	4.0J	ug/L	5.0	1		04/01/25 08:38	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 08:38	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 08:38	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 08:38	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 08:38	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 08:38	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	96	%	70-130	1		04/01/25 08:38	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	70-130	1		04/01/25 08:38	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		04/01/25 08:38	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

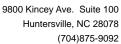
Sample: DW-3	Lab ID: 927	87830013	Collected: 03/28/2	25 12:10	Received: 03	/28/25 20:12 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 19:05	106-93-4	
1-Chloro-2-bromopropane (S)	112	%	60-140	1	04/04/25 08:25	04/04/25 19:05	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 01:36	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 01:36	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 01:36	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 01:36	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 01:36	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 01:36	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 01:36	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		04/01/25 01:36	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 01:36	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 01:36	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 01:36	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		04/01/25 01:36	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 01:36	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 01:36	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 01:36	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 01:36	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 01:36	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	97	%	70-130	1		04/01/25 01:36	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	70-130	1		04/01/25 01:36	17060-07-0	
Toluene-d8 (S)	97	%	70-130	1		04/01/25 01:36	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: DW-4	Lab ID: 927	87830014	Collected: 03/28/2	25 12:20	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 19:17	106-93-4	
1-Chloro-2-bromopropane (S)	114	%	60-140	1	04/04/25 08:25	04/04/25 19:17	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 09:15	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 09:15	994-05-8	
Benzene	ND	ug/L	5.0	1		04/01/25 09:15	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 09:15	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 09:15	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 09:15	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		04/01/25 09:15	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		04/01/25 09:15	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 09:15	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		04/01/25 09:15	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 09:15	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		04/01/25 09:15	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		04/01/25 09:15	91-20-3	
Toluene	ND	ug/L	5.0	1		04/01/25 09:15	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		04/01/25 09:15	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		04/01/25 09:15	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		04/01/25 09:15	95-47-6	
Surrogates		ū						
4-Bromofluorobenzene (S)	92	%	70-130	1		04/01/25 09:15	460-00-4	
1,2-Dichloroethane-d4 (S)	91	%	70-130	1		04/01/25 09:15	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		04/01/25 09:15	2037-26-5	

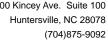


Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: SW-1	Lab ID: 927	87830015	Collected: 03/28/2	5 10:40	Received: 03	/28/25 20:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 19:28	106-93-4	
1-Chloro-2-bromopropane (S)	109	%	60-140	1	04/04/25 08:25	04/04/25 19:28	301-79-56	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 02:50	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 02:50	994-05-8	
Benzene	ND	ug/L	1.0	1		04/01/25 02:50	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 02:50	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 02:50	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 02:50	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	1		04/01/25 02:50	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 02:50	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 02:50	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		04/01/25 02:50	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 02:50	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		04/01/25 02:50	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		04/01/25 02:50	91-20-3	
Toluene	ND	ug/L	1.0	1		04/01/25 02:50	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		04/01/25 02:50	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		04/01/25 02:50	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		04/01/25 02:50	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	102	%	70-130	1		04/01/25 02:50	460-00-4	
1,2-Dichloroethane-d4 (S)	125	%	70-130	1		04/01/25 02:50	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		04/01/25 02:50	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: SW-2	Lab ID: 92787830016		Collected: 03/28/25 11:11		Received: 03/28/25 20:12 M		Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8011 GCS EDB and DBCP	Analytical Method: EPA 8011 Preparation Method: EPA 8011								
	Pace Analytica	l Services -	Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 19:39	106-93-4		
1-Chloro-2-bromopropane (S)	105	%	60-140	1	04/04/25 08:25	04/04/25 19:39	301-79-56		
8260 MSV Low Level SC	Analytical Method: EPA 8260D								
	Pace Analytica	l Services -	Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 03:09	75-85-4		
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 03:09	994-05-8		
Benzene	ND	ug/L	1.0	1		04/01/25 03:09	71-43-2		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 03:09	624-95-3		
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 03:09	75-65-0		
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 03:09	762-75-4		
1,2-Dichloroethane	ND	ug/L	1.0	1		04/01/25 03:09	107-06-2		
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 03:09	108-20-3		
Ethanol	ND	ug/L	200	1		04/01/25 03:09	64-17-5		
Ethylbenzene	ND	ug/L	1.0	1		04/01/25 03:09	100-41-4		
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 03:09	637-92-3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		04/01/25 03:09	1634-04-4		
Naphthalene	ND	ug/L	1.0	1		04/01/25 03:09	91-20-3		
Toluene	ND	ug/L	1.0	1		04/01/25 03:09	108-88-3		
Xylene (Total)	ND	ug/L	1.0	1		04/01/25 03:09	1330-20-7		
m&p-Xylene	ND	ug/L	2.0	1		04/01/25 03:09	179601-23-1		
o-Xylene	ND	ug/L	1.0	1		04/01/25 03:09	95-47-6		
Surrogates		-							
4-Bromofluorobenzene (S)	101	%	70-130	1		04/01/25 03:09	460-00-4		
1,2-Dichloroethane-d4 (S)	124	%	70-130	1		04/01/25 03:09	17060-07-0		
Toluene-d8 (S)	103	%	70-130	1		04/01/25 03:09	2037-26-5		

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

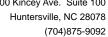
Sample: SW-3	Lab ID: 92787830017		Collected: 03/28/25 09:30		Received: 03/28/25 20:12		/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EPA	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 19:51	106-93-4	
1-Chloro-2-bromopropane (S)	105	%	60-140	1	04/04/25 08:25	04/04/25 19:51	301-79-56	
8260 MSV Low Level SC	Analytical Method: EPA 8260D							
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 03:27	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 03:27	994-05-8	
Benzene	ND	ug/L	1.0	1		04/01/25 03:27	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 03:27	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 03:27	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 03:27	762-75-4	R1
1,2-Dichloroethane	ND	ug/L	1.0	1		04/01/25 03:27	107-06-2	M1
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 03:27	108-20-3	M1,v1
Ethanol	ND	ug/L	200	1		04/01/25 03:27	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		04/01/25 03:27	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 03:27	637-92-3	M1
Methyl-tert-butyl ether	ND	ug/L	1.0	1		04/01/25 03:27	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		04/01/25 03:27	91-20-3	
Toluene	ND	ug/L	1.0	1		04/01/25 03:27	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		04/01/25 03:27	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		04/01/25 03:27	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		04/01/25 03:27	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	100	%	70-130	1		04/01/25 03:27	460-00-4	
1,2-Dichloroethane-d4 (S)	126	%	70-130	1		04/01/25 03:27	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		04/01/25 03:27	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: SW-4	Lab ID: 927	87830018	Collected: 03/28/2	5 09:31	Received: 03	/28/25 20:12 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 20:02	106-93-4	
1-Chloro-2-bromopropane (S)	107	%	60-140	1	04/04/25 08:25	04/04/25 20:02	301-79-56	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 03:46	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 03:46	994-05-8	
Benzene	ND	ug/L	1.0	1		04/01/25 03:46	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 03:46	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 03:46	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 03:46	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	1		04/01/25 03:46	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 03:46	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 03:46	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		04/01/25 03:46	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 03:46	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		04/01/25 03:46	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		04/01/25 03:46	91-20-3	
Toluene	ND	ug/L	1.0	1		04/01/25 03:46	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		04/01/25 03:46	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		04/01/25 03:46	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		04/01/25 03:46	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	101	%	70-130	1		04/01/25 03:46	460-00-4	
1,2-Dichloroethane-d4 (S)	127	%	70-130	1		04/01/25 03:46	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		04/01/25 03:46	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: SW-5	Lab ID: 927	87830019	Collected: 03/28/2	25 09:35	Received: 03	3/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	I Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 20:14	106-93-4	
1-Chloro-2-bromopropane (S)	108	%	60-140	1	04/04/25 08:25	04/04/25 20:14	301-79-56	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 04:05	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 04:05	994-05-8	
Benzene	ND	ug/L	1.0	1		04/01/25 04:05	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 04:05	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 04:05	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 04:05	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	1		04/01/25 04:05	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 04:05	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 04:05	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		04/01/25 04:05	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 04:05	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		04/01/25 04:05	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		04/01/25 04:05	91-20-3	
Toluene	ND	ug/L	1.0	1		04/01/25 04:05	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		04/01/25 04:05	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		04/01/25 04:05	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		04/01/25 04:05	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	102	%	70-130	1		04/01/25 04:05	460-00-4	
1,2-Dichloroethane-d4 (S)	125	%	70-130	1		04/01/25 04:05	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		04/01/25 04:05	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

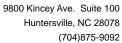
Sample: SW-6	Lab ID: 927	87830020	Collected: 03/28/2	25 09:36	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 20:25	106-93-4	
1-Chloro-2-bromopropane (S)	112	%	60-140	1	04/04/25 08:25	04/04/25 20:25	301-79-56	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 04:24	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 04:24	994-05-8	
Benzene	ND	ug/L	1.0	1		04/01/25 04:24	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 04:24	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 04:24	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 04:24	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	1		04/01/25 04:24	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 04:24	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 04:24	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		04/01/25 04:24	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 04:24	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		04/01/25 04:24	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		04/01/25 04:24	91-20-3	
Toluene	ND	ug/L	1.0	1		04/01/25 04:24	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		04/01/25 04:24	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		04/01/25 04:24	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		04/01/25 04:24	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	102	%	70-130	1		04/01/25 04:24	460-00-4	
1,2-Dichloroethane-d4 (S)	125	%	70-130	1		04/01/25 04:24	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		04/01/25 04:24	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: DUP	Lab ID: 927	87830021	Collected: 03/28/2	25 00:00	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EPA	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 20:37	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140	1	04/04/25 08:25	04/04/25 20:37	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	3270	ug/L	200	2		04/02/25 13:23	75-85-4	
tert-Amylmethyl ether	33.9	ug/L	20.0	2		04/02/25 13:23	994-05-8	
Benzene	9.7J	ug/L	10.0	2		04/02/25 13:23	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	200	2		04/02/25 13:23	624-95-3	
tert-Butyl Alcohol	204	ug/L	200	2		04/02/25 13:23	75-65-0	
tert-Butyl Formate	ND	ug/L	100	2		04/02/25 13:23	762-75-4	
1,2-Dichloroethane	ND	ug/L	10.0	2		04/02/25 13:23	107-06-2	
Diisopropyl ether	164	ug/L	10.0	2		04/02/25 13:23	108-20-3	
Ethanol	ND	ug/L	400	2		04/02/25 13:23	64-17-5	
Ethylbenzene	ND	ug/L	10.0	2		04/02/25 13:23	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	2		04/02/25 13:23	637-92-3	
Methyl-tert-butyl ether	198	ug/L	10.0	2		04/02/25 13:23	1634-04-4	
Naphthalene	6.1J	ug/L	10.0	2		04/02/25 13:23	91-20-3	
Toluene	ND	ug/L	10.0	2		04/02/25 13:23	108-88-3	
Xylene (Total)	ND	ug/L	10.0	2		04/02/25 13:23	1330-20-7	
m&p-Xylene	ND	ug/L	20.0	2		04/02/25 13:23	179601-23-1	
o-Xylene	ND	ug/L	10.0	2		04/02/25 13:23	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	101	%	70-130	2		04/02/25 13:23	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	70-130	2		04/02/25 13:23	17060-07-0	
Toluene-d8 (S)	99	%	70-130	2		04/02/25 13:23	2037-26-5	

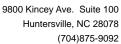


Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: FB	Lab ID: 927	87830022	Collected: 03/28/2	5 12:35	Received: 03	/28/25 20:12 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	od: EP	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 20:48	106-93-4	
1-Chloro-2-bromopropane (S)	113	%	60-140	1	04/04/25 08:25	04/04/25 20:48	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		03/31/25 13:39	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		03/31/25 13:39	994-05-8	
Benzene	ND	ug/L	5.0	1		03/31/25 13:39	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		03/31/25 13:39	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		03/31/25 13:39	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		03/31/25 13:39	762-75-4	L1,v1
1,2-Dichloroethane	ND	ug/L	5.0	1		03/31/25 13:39	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		03/31/25 13:39	108-20-3	
Ethanol	ND	ug/L	200	1		03/31/25 13:39	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		03/31/25 13:39	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		03/31/25 13:39	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		03/31/25 13:39	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		03/31/25 13:39	91-20-3	
Toluene	ND	ug/L	5.0	1		03/31/25 13:39	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		03/31/25 13:39	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		03/31/25 13:39	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		03/31/25 13:39	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	98	%	70-130	1		03/31/25 13:39	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	70-130	1		03/31/25 13:39	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		03/31/25 13:39	2037-26-5	



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: GAC	Lab ID: 927	87830023	Collected: 03/28/2	5 12:30	Received: 03	/28/25 20:12 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	od: EP	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	04/04/25 08:25	04/04/25 20:59	106-93-4	
1-Chloro-2-bromopropane (S)	109	%	60-140	1	04/04/25 08:25	04/04/25 20:59	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		03/31/25 15:47	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		03/31/25 15:47	994-05-8	
Benzene	ND	ug/L	5.0	1		03/31/25 15:47	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		03/31/25 15:47	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		03/31/25 15:47	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		03/31/25 15:47	762-75-4	L1,v1
1,2-Dichloroethane	ND	ug/L	5.0	1		03/31/25 15:47	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		03/31/25 15:47	108-20-3	
Ethanol	ND	ug/L	200	1		03/31/25 15:47	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		03/31/25 15:47	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		03/31/25 15:47	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		03/31/25 15:47	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		03/31/25 15:47	91-20-3	
Toluene	ND	ug/L	5.0	1		03/31/25 15:47	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		03/31/25 15:47	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		03/31/25 15:47	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		03/31/25 15:47	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	97	%	70-130	1		03/31/25 15:47	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		03/31/25 15:47	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		03/31/25 15:47	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: TB	Lab ID: 927	87830024	Collected: 03/28/2	25 08:00	Received: 0	3/28/25 20:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		03/31/25 13:57	7 75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		03/31/25 13:57	994-05-8	
Benzene	ND	ug/L	5.0	1		03/31/25 13:57	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		03/31/25 13:57	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		03/31/25 13:57	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		03/31/25 13:57	762-75-4	L1,v1
1,2-Dichloroethane	ND	ug/L	5.0	1		03/31/25 13:57	7 107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		03/31/25 13:57	7 108-20-3	
Ethanol	ND	ug/L	200	1		03/31/25 13:57	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		03/31/25 13:57	7 100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		03/31/25 13:57	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		03/31/25 13:57	7 1634-04-4	
Naphthalene	ND	ug/L	5.0	1		03/31/25 13:57	7 91-20-3	
Toluene	ND	ug/L	5.0	1		03/31/25 13:57	7 108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		03/31/25 13:57	7 1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		03/31/25 13:57	7 179601-23-1	
o-Xylene	ND	ug/L	5.0	1		03/31/25 13:57	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	96	%	70-130	1		03/31/25 13:57	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130	1		03/31/25 13:57	7 17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		03/31/25 13:57	2037-26-5	

(704)875-9092

ANALYTICAL RESULTS

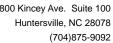
Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: WSW-1	Lab ID: 927	87830025	Collected: 03/28/2	5 11:00	Received: 03	/28/25 20:12 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Meth	nod: EPA 50	04.1 Preparation Met	hod: EF	PA 504.1			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	1	04/02/25 14:46	04/03/25 10:05	106-93-4	
1-Chloro-2-bromopropane (S)	103	%	70-130	1	04/02/25 14:46	04/03/25 10:05	301-79-56	
524.2 MSV SC List	Analytical Meth	nod: EPA 52	24.2					
	Pace Analytica	l Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		03/31/25 21:23	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		03/31/25 21:23	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		03/31/25 21:23	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		03/31/25 21:23	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		03/31/25 21:23	91-20-3	
Toluene	ND	ug/L	0.50	1		03/31/25 21:23	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		03/31/25 21:23	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		03/31/25 21:23	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		03/31/25 21:23	95-47-6	
Surrogates		J						
1,2-Dichlorobenzene-d4 (S)	100	%	70-130	1		03/31/25 21:23	2199-69-1	
4-Bromofluorobenzene (S)	102	%	70-130	1		03/31/25 21:23	460-00-4	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 06:54	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 06:54	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 06:54	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 06:54	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 06:54	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 06:54	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 06:54	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 06:54		
Surrogates								
4-Bromofluorobenzene (S)	101	%	70-130	1		04/01/25 06:54		
1,2-Dichloroethane-d4 (S)	124	%	70-130	1		04/01/25 06:54		
Toluene-d8 (S)	104	%	70-130	1		04/01/25 06:54	2037-26-5	

(704)875-9092

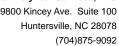

ANALYTICAL RESULTS

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: WSW-2	Lab ID: 9278	37830026	Collected: 03/28/2	25 11:20	Received: 03	3/28/25 20:12 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Meth	od: EPA 50	04.1 Preparation Met	hod: EF	PA 504.1			
	Pace Analytical	Services -	Charlotte					
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	1	04/02/25 14:46	04/03/25 10:16	106-93-4	
Surrogates 1-Chloro-2-bromopropane (S)	114	%	70-130	1	04/02/25 14:46	04/03/25 10:16	301-79-56	
524.2 MSV SC List	Analytical Meth	od: EPA 52	24.2					
	Pace Analytical	Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		04/05/25 19:40	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		04/05/25 19:40	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		04/05/25 19:40	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		04/05/25 19:40	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		04/05/25 19:40	91-20-3	
Toluene	ND	ug/L	0.50	1		04/05/25 19:40	108-88-3	
Kylene (Total)	ND	ug/L	0.50	1		04/05/25 19:40	1330-20-7	
n&p-Xylene	ND	ug/L	1.0	1		04/05/25 19:40	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		04/05/25 19:40	95-47-6	
Surrogates								
1,2-Dichlorobenzene-d4 (S)	94	%	70-130	1		04/05/25 19:40	2199-69-1	
4-Bromofluorobenzene (S)	95	%	70-130	1		04/05/25 19:40	460-00-4	
3260 MSV Low Level SC	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
ert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 07:13	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 07:13	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 07:13	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 07:13	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 07:13	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 07:13	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 07:13	64-17-5	
Ethyl-tert-butyl ether Surrogates	ND	ug/L	10.0	1		04/01/25 07:13	637-92-3	
4-Bromofluorobenzene (S)	101	%	70-130	1		04/01/25 07:13	460-00-4	
1,2-Dichloroethane-d4 (S)	127	%	70-130	1		04/01/25 07:13		
Toluene-d8 (S)	104	%	70-130	1		04/01/25 07:13	2037-26-5	



Project: **JAKE HUGGINS 3423**

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

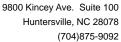
Sample: WSW-DUP	Lab ID: 927	87830027	Collected: 03/28/2	5 00:00	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Meth	nod: EPA 50	04.1 Preparation Met	hod: EF	PA 504.1			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	1	04/03/25 12:59	04/04/25 07:18	106-93-4	
1-Chloro-2-bromopropane (S)	126	%	70-130	1	04/03/25 12:59	04/04/25 07:18	301-79-56	
524.2 MSV SC List	Analytical Meth	nod: EPA 52	24.2					
	Pace Analytica	l Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		04/01/25 06:58	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		04/01/25 06:58	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		04/01/25 06:58	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		04/01/25 06:58	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		04/01/25 06:58	91-20-3	
Toluene	ND	ug/L	0.50	1		04/01/25 06:58	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		04/01/25 06:58	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		04/01/25 06:58	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		04/01/25 06:58	95-47-6	
Surrogates								
1,2-Dichlorobenzene-d4 (S)	100	%	70-130	1		04/01/25 06:58	2199-69-1	
4-Bromofluorobenzene (S)	97	%	70-130	1		04/01/25 06:58	460-00-4	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 07:31	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 07:31	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 07:31	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 07:31	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 07:31	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 07:31	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 07:31	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 07:31		
Surrogates								
4-Bromofluorobenzene (S)	102	%	70-130	1		04/01/25 07:31		
1,2-Dichloroethane-d4 (S)	125	%	70-130	1		04/01/25 07:31		
Toluene-d8 (S)	104	%	70-130	1		04/01/25 07:31	2037-26-5	

Project: **JAKE HUGGINS 3423**

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: WSW-FB	Lab ID: 9278	87830028	Collected: 03/28/2	5 12:27	Received: 03	/28/25 20:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Meth	nod: EPA 50	4.1 Preparation Met	hod: EP	A 504.1			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.022	1	04/03/25 12:59	04/04/25 07:29	106-93-4	
1-Chloro-2-bromopropane (S)	106	%	70-130	1	04/03/25 12:59	04/04/25 07:29	301-79-56	
524.2 MSV SC List	Analytical Meth	nod: EPA 52	4.2					
	Pace Analytica	l Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		04/05/25 17:55	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		04/05/25 17:55	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		04/05/25 17:55	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		04/05/25 17:55	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		04/05/25 17:55	91-20-3	
Toluene	ND	ug/L	0.50	1		04/05/25 17:55	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		04/05/25 17:55	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		04/05/25 17:55	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		04/05/25 17:55	95-47-6	
Surrogates		•						
1,2-Dichlorobenzene-d4 (S)	96	%	70-130	1		04/05/25 17:55	2199-69-1	
4-Bromofluorobenzene (S)	97	%	70-130	1		04/05/25 17:55	460-00-4	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	:60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 01:35	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 01:35	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 01:35	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 01:35	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 01:35	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 01:35	108-20-3	
Ethanol	ND	ug/L	200	1		04/01/25 01:35	64-17-5	
Ethyl-tert-butyl ether Surrogates	ND	ug/L	10.0	1		04/01/25 01:35	637-92-3	
4-Bromofluorobenzene (S)	103	%	70-130	1		04/01/25 01:35	460-00-4	
1,2-Dichloroethane-d4 (S)	127	% %	70-130 70-130	1		04/01/25 01:35		
Toluene-d8 (S)	103	%	70-130 70-130	1		04/01/25 01:35		



Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Sample: WSW-TB	Lab ID: 927	87830029	Collected: 03/28/2	25 08:00	Received: 0	3/28/25 20:12 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical Meth	nod: EPA 52	24.2					
	Pace Analytica	l Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		04/01/25 03:28	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		04/01/25 03:28	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		04/01/25 03:28	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		04/01/25 03:28	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		04/01/25 03:28	91-20-3	
Toluene	ND	ug/L	0.50	1		04/01/25 03:28	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		04/01/25 03:28	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		04/01/25 03:28	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		04/01/25 03:28	95-47-6	
Surrogates								
1,2-Dichlorobenzene-d4 (S)	101	%	70-130	1		04/01/25 03:28		
4-Bromofluorobenzene (S)	101	%	70-130	1		04/01/25 03:28	460-00-4	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		04/01/25 01:54	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		04/01/25 01:54	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		04/01/25 01:54	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		04/01/25 01:54	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		04/01/25 01:54	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		04/01/25 01:54		
Ethanol	ND	ug/L	200	1		04/01/25 01:54	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		04/01/25 01:54	637-92-3	
Surrogates		ū						
4-Bromofluorobenzene (S)	102	%	70-130	1		04/01/25 01:54	460-00-4	
1,2-Dichloroethane-d4 (S)	125	%	70-130	1		04/01/25 01:54	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		04/01/25 01:54	2037-26-5	

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 925983 Analysis Method: EPA 524.2
QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830025


METHOD BLANK: 4756667 Matrix: Water

Associated Lab Samples: 92787830025

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	03/31/25 13:07	
Benzene	ug/L	ND	0.50	03/31/25 13:07	
Ethylbenzene	ug/L	ND	0.50	03/31/25 13:07	
m&p-Xylene	ug/L	ND	1.0	03/31/25 13:07	
Methyl-tert-butyl ether	ug/L	ND	0.50	03/31/25 13:07	
Naphthalene	ug/L	ND	0.50	03/31/25 13:07	
o-Xylene	ug/L	ND	0.50	03/31/25 13:07	
Toluene	ug/L	ND	0.50	03/31/25 13:07	
Xylene (Total)	ug/L	ND	0.50	03/31/25 13:07	
1,2-Dichlorobenzene-d4 (S)	%	97	70-130	03/31/25 13:07	
4-Bromofluorobenzene (S)	%	100	70-130	03/31/25 13:07	

LABORATORY CONTROL SAMPLE	4756668					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		16.9	84	70-130	
Benzene	ug/L	20	18.2	91	70-130	
Ethylbenzene	ug/L	20	17.2	86	70-130	
m&p-Xylene	ug/L	40	35.9	90	70-130	
Methyl-tert-butyl ether	ug/L	20	16.7	83	70-130	
Naphthalene	ug/L	20	17.5	87	70-130	
o-Xylene	ug/L	20	18.4	92	70-130	
Toluene	ug/L	20	17.0	85	70-130	
Xylene (Total)	ug/L	60	54.3	90		
1,2-Dichlorobenzene-d4 (S)	%			102	70-130	
4-Bromofluorobenzene (S)	%			102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 926048 Analysis Method: EPA 524.2

QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830027, 92787830029

METHOD BLANK: 4757014 Matrix: Water

Associated Lab Samples: 92787830027, 92787830029

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	04/01/25 01:18	
Benzene	ug/L	ND	0.50	04/01/25 01:18	
Ethylbenzene	ug/L	ND	0.50	04/01/25 01:18	
m&p-Xylene	ug/L	ND	1.0	04/01/25 01:18	
Methyl-tert-butyl ether	ug/L	ND	0.50	04/01/25 01:18	
Naphthalene	ug/L	ND	0.50	04/01/25 01:18	
o-Xylene	ug/L	ND	0.50	04/01/25 01:18	
Toluene	ug/L	ND	0.50	04/01/25 01:18	
Xylene (Total)	ug/L	ND	0.50	04/01/25 01:18	
1,2-Dichlorobenzene-d4 (S)	%	100	70-130	04/01/25 01:18	
4-Bromofluorobenzene (S)	%	102	70-130	04/01/25 01:18	

LABORATORY CONTROL SAMPLE:	4757015					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		21.0	105	70-130	
Benzene	ug/L	20	22.2	111	70-130	
Ethylbenzene	ug/L	20	21.0	105	70-130	
m&p-Xylene	ug/L	40	43.8	109	70-130	
Methyl-tert-butyl ether	ug/L	20	20.0	100	70-130	
Naphthalene	ug/L	20	20.0	100	70-130	
o-Xylene	ug/L	20	22.2	111	70-130	
Toluene	ug/L	20	20.2	101	70-130	
Xylene (Total)	ug/L	60	65.9	110		
1,2-Dichlorobenzene-d4 (S)	%			102	70-130	
4-Bromofluorobenzene (S)	%			103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 927518 Analysis Method: EPA 524.2

QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830026, 92787830028

METHOD BLANK: 4764595 Matrix: Water

Associated Lab Samples: 92787830026, 92787830028

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	0.50	04/05/25 17:29	
Benzene	ug/L	ND	0.50	04/05/25 17:29	
Ethylbenzene	ug/L	ND	0.50	04/05/25 17:29	
m&p-Xylene	ug/L	ND	1.0	04/05/25 17:29	
Methyl-tert-butyl ether	ug/L	ND	0.50	04/05/25 17:29	
Naphthalene	ug/L	ND	0.50	04/05/25 17:29	
o-Xylene	ug/L	ND	0.50	04/05/25 17:29	
Toluene	ug/L	ND	0.50	04/05/25 17:29	
Xylene (Total)	ug/L	ND	0.50	04/05/25 17:29	
1,2-Dichlorobenzene-d4 (S)	%	95	70-130	04/05/25 17:29	
4-Bromofluorobenzene (S)	%	98	70-130	04/05/25 17:29	

LABORATORY CONTROL SAMPLE	E: 4764596					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.6	103	70-130	
Benzene	ug/L	20	21.2	106	70-130	
Ethylbenzene	ug/L	20	20.9	104	70-130	
m&p-Xylene	ug/L	40	41.7	104	70-130	
Methyl-tert-butyl ether	ug/L	20	19.3	97	70-130	
Naphthalene	ug/L	20	20.4	102	70-130	
o-Xylene	ug/L	20	21.7	108	70-130	
Toluene	ug/L	20	20.2	101	70-130	
Xylene (Total)	ug/L	60	63.3	106		
1,2-Dichlorobenzene-d4 (S)	%			101	70-130	
4-Bromofluorobenzene (S)	%			102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 926017 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830015, 92787830016, 92787830017, 92787830018, 92787830019, 92787830020, 92787830028,

92787830029

METHOD BLANK: 4756894 Matrix: Water

Associated Lab Samples: 92787830015, 92787830016, 92787830017, 92787830018, 92787830019, 92787830020, 92787830028,

92787830029

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dichloroethane	 ug/L	ND	1.0	03/31/25 23:42	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	03/31/25 23:42	
Benzene	ug/L	ND	1.0	03/31/25 23:42	
Diisopropyl ether	ug/L	ND	1.0	03/31/25 23:42	
Ethanol	ug/L	ND	200	03/31/25 23:42	
Ethyl-tert-butyl ether	ug/L	ND	10.0	03/31/25 23:42	
Ethylbenzene	ug/L	ND	1.0	03/31/25 23:42	
m&p-Xylene	ug/L	ND	2.0	03/31/25 23:42	
Methyl-tert-butyl ether	ug/L	ND	1.0	03/31/25 23:42	
Naphthalene	ug/L	ND	1.0	03/31/25 23:42	
o-Xylene	ug/L	ND	1.0	03/31/25 23:42	
tert-Amyl Alcohol	ug/L	ND	100	03/31/25 23:42	
tert-Amylmethyl ether	ug/L	ND	10.0	03/31/25 23:42	
tert-Butyl Alcohol	ug/L	ND	100	03/31/25 23:42	
tert-Butyl Formate	ug/L	ND	50.0	03/31/25 23:42	
Toluene	ug/L	ND	1.0	03/31/25 23:42	
Xylene (Total)	ug/L	ND	1.0	03/31/25 23:42	
1,2-Dichloroethane-d4 (S)	%	124	70-130	03/31/25 23:42	
4-Bromofluorobenzene (S)	%	102	70-130	03/31/25 23:42	
Toluene-d8 (S)	%	103	70-130	03/31/25 23:42	

LABORATORY CONTROL SAMPLE:	4756895					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		25.1	126	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	397	99	70-130	
Benzene	ug/L	20	22.6	113	70-130	
Diisopropyl ether	ug/L	20	25.7	128	70-130	
Ethanol	ug/L	800	938	117	70-130	
Ethyl-tert-butyl ether	ug/L	40	47.5	119	70-130	
Ethylbenzene	ug/L	20	21.2	106	70-130	
m&p-Xylene	ug/L	40	43.1	108	70-130	
Methyl-tert-butyl ether	ug/L	20	23.0	115	70-130	
Naphthalene	ug/L	20	20.0	100	70-130	
o-Xylene	ug/L	20	21.5	107	70-130	
tert-Amyl Alcohol	ug/L	400	405	101	70-130	
tert-Amylmethyl ether	ug/L	40	42.4	106	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

ABORATORY CONTROL SAMPLE:	4756895					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
rt-Butyl Alcohol	ug/L	200	211	106	70-130	
rt-Butyl Formate	ug/L	160	171	107	70-130	
luene	ug/L	20	20.9	105	70-130	
ene (Total)	ug/L	60	64.6	108	70-130	
-Dichloroethane-d4 (S)	%			119	70-130	
Bromofluorobenzene (S)	%			106	70-130	
uene-d8 (S)	%			102	70-130	

MATRIX SPIKE & MATRIX SPIKE	DUPLICATE	E: 47568	96		4756897						
			MS	MSD							
	927	87830017	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	28.8	25.8	144	129	70-137	11	M1
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	540	485	135	121	39-157	11	
Benzene	ug/L	ND	20	20	26.4	23.5	132	118	70-151	12	
Diisopropyl ether	ug/L	ND	20	20	29.6	26.2	148	131	63-144	12	M1,v1
Ethanol	ug/L	ND	800	800	1120	997	140	125	39-176	12	
Ethyl-tert-butyl ether	ug/L	ND	40	40	55.2	48.9	138	122	66-137	12	M1
Ethylbenzene	ug/L	ND	20	20	25.2	22.2	126	111	66-153	13	
m&p-Xylene	ug/L	ND	40	40	50.7	44.6	127	111	69-152	13	
Methyl-tert-butyl ether	ug/L	ND	20	20	26.4	23.3	132	116	54-156	13	
Naphthalene	ug/L	ND	20	20	24.2	22.9	121	114	61-148	6	
o-Xylene	ug/L	ND	20	20	24.9	21.6	125	108	70-148	14	
tert-Amyl Alcohol	ug/L	ND	400	400	522	476	131	119	54-153	9	
tert-Amylmethyl ether	ug/L	ND	40	40	47.8	43.0	119	108	69-139	10	
tert-Butyl Alcohol	ug/L	ND	200	200	325	304	162	152	43-188	7	
tert-Butyl Formate	ug/L	ND	160	160	117	80.1	73	50	10-170	37	R1
Toluene	ug/L	ND	20	20	24.3	21.8	121	109	59-148	11	
Xylene (Total)	ug/L	ND	60	60	75.7	66.2	126	110	63-158	13	
1,2-Dichloroethane-d4 (S)	%						124	121	70-130		
4-Bromofluorobenzene (S)	%						105	103	70-130		
Toluene-d8 (S)	%						101	102	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

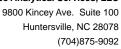
QC Batch: 926034 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830025, 92787830026, 92787830027

METHOD BLANK: 4756962 Matrix: Water


Associated Lab Samples: 92787830025, 92787830026, 92787830027

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND ND	100	04/01/25 00:01	
Diisopropyl ether	ug/L	ND	1.0	04/01/25 00:01	
Ethanol	ug/L	ND	200	04/01/25 00:01	
Ethyl-tert-butyl ether	ug/L	ND	10.0	04/01/25 00:01	
tert-Amyl Alcohol	ug/L	ND	100	04/01/25 00:01	
tert-Amylmethyl ether	ug/L	ND	10.0	04/01/25 00:01	
tert-Butyl Alcohol	ug/L	ND	100	04/01/25 00:01	
tert-Butyl Formate	ug/L	ND	50.0	04/01/25 00:01	
1,2-Dichloroethane-d4 (S)	%	121	70-130	04/01/25 00:01	
4-Bromofluorobenzene (S)	%	101	70-130	04/01/25 00:01	
Toluene-d8 (S)	%	103	70-130	04/01/25 00:01	

LABORATORY CONTROL SAMPLE:	4756963					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	400	420	105	70-130	
Diisopropyl ether	ug/L	20	25.6	128	70-130	
Ethanol	ug/L	800	952	119	70-130	
Ethyl-tert-butyl ether	ug/L	40	48.0	120	70-130	
tert-Amyl Alcohol	ug/L	400	414	104	70-130	
tert-Amylmethyl ether	ug/L	40	42.0	105	70-130	
tert-Butyl Alcohol	ug/L	200	219	110	70-130	
tert-Butyl Formate	ug/L	160	174	108	70-130	
1,2-Dichloroethane-d4 (S)	%			121	70-130	
4-Bromofluorobenzene (S)	%			105	70-130	
Toluene-d8 (S)	%			102	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 47569	64 MS	MSD	4756965						
	927	787827028	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	437	494	109	123	39-157	12	
Diisopropyl ether	ug/L	ND	20	20	25.0	29.5	125	148	63-144	17 N	И1,v1
Ethanol	ug/L	ND	800	800	933	1060	117	133	39-176	13	
Ethyl-tert-butyl ether	ug/L	ND	40	40	46.4	54.7	116	137	66-137	17	
tert-Amyl Alcohol	ug/L	ND	400	400	419	490	105	123	54-153	16	
tert-Amylmethyl ether	ug/L	ND	40	40	40.7	48.7	102	122	69-139	18	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 47569	64		4756965						
	_	787827028	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
tert-Butyl Alcohol	ug/L	ND	200	200	269	318	135	159	43-188	17	
tert-Butyl Formate	ug/L	ND	160	160	71.3	66.6	45	42	10-170	7	
1,2-Dichloroethane-d4 (S)	%						120	123	70-130		
4-Bromofluorobenzene (S)	%						104	104	70-130		
Toluene-d8 (S)	%						102	102	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 925960 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830022, 92787830023, 92787830024

METHOD BLANK: 4756497 Matrix: Water

Associated Lab Samples: 92787830022, 92787830023, 92787830024

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
					- Qualificis
1,2-Dichloroethane	ug/L	ND	5.0	03/31/25 11:49	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	03/31/25 11:49	
Benzene	ug/L	ND	5.0	03/31/25 11:49	
Diisopropyl ether	ug/L	ND	5.0	03/31/25 11:49	
Ethanol	ug/L	ND	200	03/31/25 11:49	
Ethyl-tert-butyl ether	ug/L	ND	10.0	03/31/25 11:49	
Ethylbenzene	ug/L	ND	5.0	03/31/25 11:49	
m&p-Xylene	ug/L	ND	10.0	03/31/25 11:49	
Methyl-tert-butyl ether	ug/L	ND	5.0	03/31/25 11:49	
Naphthalene	ug/L	ND	5.0	03/31/25 11:49	
o-Xylene	ug/L	ND	5.0	03/31/25 11:49	
tert-Amyl Alcohol	ug/L	ND	100	03/31/25 11:49	
tert-Amylmethyl ether	ug/L	ND	10.0	03/31/25 11:49	
tert-Butyl Alcohol	ug/L	ND	100	03/31/25 11:49	
tert-Butyl Formate	ug/L	ND	50.0	03/31/25 11:49	v1
Toluene	ug/L	ND	5.0	03/31/25 11:49	
Xylene (Total)	ug/L	ND	5.0	03/31/25 11:49	
1,2-Dichloroethane-d4 (S)	%	98	70-130	03/31/25 11:49	
4-Bromofluorobenzene (S)	%	97	70-130	03/31/25 11:49	
Toluene-d8 (S)	%	98	70-130	03/31/25 11:49	

LABORATORY CONTROL SAMPLE:	4756498					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	19.9	100	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	391	98	70-130	
Benzene	ug/L	20	20.2	101	70-130	
Diisopropyl ether	ug/L	20	18.9	95	70-130	
Ethanol	ug/L	800	773	97	70-130	
Ethyl-tert-butyl ether	ug/L	40	38.8	97	70-130	
Ethylbenzene	ug/L	20	20.4	102	70-130	
m&p-Xylene	ug/L	40	42.5	106	70-130	
Methyl-tert-butyl ether	ug/L	20	18.5	93	70-130	
Naphthalene	ug/L	20	22.0	110	70-130	
o-Xylene	ug/L	20	21.6	108	70-130	
tert-Amyl Alcohol	ug/L	400	425	106	70-130	
tert-Amylmethyl ether	ug/L	40	40.1	100	70-130	
tert-Butyl Alcohol	ug/L	200	165	83	70-130	
tert-Butyl Formate	ug/L	160	221	138	70-130 L	.1,v1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

LABORATORY CONTROL SAMPLE: 4756498 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 20 Toluene ug/L 20.1 100 70-130 Xylene (Total) ug/L 60 64.1 107 70-130 1,2-Dichloroethane-d4 (S) % 94 70-130 4-Bromofluorobenzene (S) % 98 70-130 Toluene-d8 (S) % 96 70-130

MATRIX SPIKE & MATRIX SPIR	KE DUPLICATI	E: 47564	99		4756500						
			MS	MSD							
	927	87825018	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	19.6	24.1	98	120	70-137	20	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	394	428	98	107	39-157	8	
Benzene	ug/L	ND	20	20	20.6	24.7	103	123	70-151	18	
Diisopropyl ether	ug/L	ND	20	20	19.0	23.1	95	115	63-144	19	
Ethanol	ug/L	ND	800	800	745	839	93	105	39-176	12	
Ethyl-tert-butyl ether	ug/L	ND	40	40	38.3	47.2	96	118	66-137	21	
Ethylbenzene	ug/L	ND	20	20	21.3	23.8	107	119	66-153	11	
m&p-Xylene	ug/L	ND	40	40	43.9	49.5	110	124	69-152	12	
Methyl-tert-butyl ether	ug/L	ND	20	20	18.7	22.7	94	113	54-156	19	
Naphthalene	ug/L	ND	20	20	21.6	24.2	108	121	61-148	11	
o-Xylene	ug/L	ND	20	20	22.9	24.9	114	124	70-148	8	
tert-Amyl Alcohol	ug/L	ND	400	400	423	472	106	118	54-153	11	
tert-Amylmethyl ether	ug/L	ND	40	40	38.5	46.8	96	117	69-139	19	
tert-Butyl Alcohol	ug/L	ND	200	200	186	227	93	114	43-188	20	
tert-Butyl Formate	ug/L	ND	160	160	158	158	99	98	10-170	0 v	1
Toluene	ug/L	ND	20	20	20.4	24.9	102	124	59-148	20	
Xylene (Total)	ug/L	ND	60	60	66.8	74.4	111	124	63-158	11	
1,2-Dichloroethane-d4 (S)	%						91	95	70-130		
4-Bromofluorobenzene (S)	%						98	95	70-130		
Toluene-d8 (S)	%						94	99	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 925965 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830003, 92787830004

METHOD BLANK: 4756517 Matrix: Water

Associated Lab Samples: 92787830003, 92787830004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	03/31/25 12:07	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	03/31/25 12:07	
Benzene	ug/L	ND	5.0	03/31/25 12:07	
Diisopropyl ether	ug/L	ND	5.0	03/31/25 12:07	
Ethanol	ug/L	ND	200	03/31/25 12:07	
Ethyl-tert-butyl ether	ug/L	ND	10.0	03/31/25 12:07	
Ethylbenzene	ug/L	ND	5.0	03/31/25 12:07	
m&p-Xylene	ug/L	ND	10.0	03/31/25 12:07	
Methyl-tert-butyl ether	ug/L	ND	5.0	03/31/25 12:07	
Naphthalene	ug/L	ND	5.0	03/31/25 12:07	
o-Xylene	ug/L	ND	5.0	03/31/25 12:07	
tert-Amyl Alcohol	ug/L	ND	100	03/31/25 12:07	
tert-Amylmethyl ether	ug/L	ND	10.0	03/31/25 12:07	
tert-Butyl Alcohol	ug/L	ND	100	03/31/25 12:07	
tert-Butyl Formate	ug/L	ND	50.0	03/31/25 12:07	v1
Toluene	ug/L	ND	5.0	03/31/25 12:07	
Xylene (Total)	ug/L	ND	5.0	03/31/25 12:07	
1,2-Dichloroethane-d4 (S)	%	91	70-130	03/31/25 12:07	
4-Bromofluorobenzene (S)	%	100	70-130	03/31/25 12:07	
Toluene-d8 (S)	%	99	70-130	03/31/25 12:07	

LABORATORY CONTROL SAMPLE:	4756518					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	20.0	100	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	375	94	70-130	
Benzene	ug/L	20	20.3	101	70-130	
Diisopropyl ether	ug/L	20	19.9	99	70-130	
Ethanol	ug/L	800	732	92	70-130	
Ethyl-tert-butyl ether	ug/L	40	40.1	100	70-130	
Ethylbenzene	ug/L	20	21.2	106	70-130	
m&p-Xylene	ug/L	40	42.9	107	70-130	
Methyl-tert-butyl ether	ug/L	20	19.3	96	70-130	
Naphthalene	ug/L	20	20.6	103	70-130	
o-Xylene	ug/L	20	22.3	112	70-130	
tert-Amyl Alcohol	ug/L	400	421	105	70-130	
tert-Amylmethyl ether	ug/L	40	39.6	99	70-130	
tert-Butyl Alcohol	ug/L	200	162	81	70-130	
tert-Butyl Formate	ug/L	160	225	140	70-130 L	.1,v1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

LABORATORY CONTROL SAMPL	_E: 4756518					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		20.3	101	70-130	
Xylene (Total)	ug/L	60	65.3	109	70-130	
1,2-Dichloroethane-d4 (S)	%			96	70-130	
4-Bromofluorobenzene (S)	%			98	70-130	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICATE	E: 47565	19		4756520						
			MS	MSD							
	927	87827009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1,2-Dichloroethane	ug/L	ND	20	20	23.0	20.2	115	101	70-137	13	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	433	394	108	98	39-157	9	
Benzene	ug/L	ND	20	20	22.6	20.3	113	101	70-151	11	
Diisopropyl ether	ug/L	ND	20	20	21.3	18.7	106	94	63-144	13	
Ethanol	ug/L	ND	800	800	913	763	114	95	39-176	18	
Ethyl-tert-butyl ether	ug/L	ND	40	40	42.5	38.0	106	95	66-137	11	
Ethylbenzene	ug/L	ND	20	20	22.9	19.8	114	99	66-153	14	
n&p-Xylene	ug/L	ND	40	40	46.6	40.7	117	102	69-152	14	
Methyl-tert-butyl ether	ug/L	5.2	20	20	25.9	24.6	104	97	54-156	5	
Naphthalene	ug/L	ND	20	20	21.2	20.5	106	103	61-148	3	
o-Xylene	ug/L	ND	20	20	23.0	20.3	115	101	70-148	13	
ert-Amyl Alcohol	ug/L	ND	400	400	485	419	121	105	54-153	15	
ert-Amylmethyl ether	ug/L	ND	40	40	43.3	37.5	108	94	69-139	14	
ert-Butyl Alcohol	ug/L	ND	200	200	252	220	126	110	43-188	14	
ert-Butyl Formate	ug/L	ND	160	160	99.7	72.4	62	45	10-170	32 R	1,v1
Toluene	ug/L	ND	20	20	22.9	20.0	114	100	59-148	13	
(Ylene (Total)	ug/L	ND	60	60	69.6	61.0	116	102	63-158	13	
,2-Dichloroethane-d4 (S)	%						93	92	70-130		
1-Bromofluorobenzene (S)	%						97	97	70-130		
Toluene-d8 (S)	%						98	96	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 925989 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830007, 92787830009, 92787830013

METHOD BLANK: 4756723 Matrix: Water

Associated Lab Samples: 92787830007, 92787830009, 92787830013

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND -	5.0	04/01/25 00:23	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	04/01/25 00:23	
Benzene	ug/L	ND	5.0	04/01/25 00:23	
Diisopropyl ether	ug/L	ND	5.0	04/01/25 00:23	
Ethanol	ug/L	ND	200	04/01/25 00:23	
Ethyl-tert-butyl ether	ug/L	ND	10.0	04/01/25 00:23	
Ethylbenzene	ug/L	ND	5.0	04/01/25 00:23	
m&p-Xylene	ug/L	ND	10.0	04/01/25 00:23	
Methyl-tert-butyl ether	ug/L	ND	5.0	04/01/25 00:23	
Naphthalene	ug/L	ND	5.0	04/01/25 00:23	
o-Xylene	ug/L	ND	5.0	04/01/25 00:23	
tert-Amyl Alcohol	ug/L	ND	100	04/01/25 00:23	
tert-Amylmethyl ether	ug/L	ND	10.0	04/01/25 00:23	
tert-Butyl Alcohol	ug/L	ND	100	04/01/25 00:23	
tert-Butyl Formate	ug/L	ND	50.0	04/01/25 00:23	
Toluene	ug/L	ND	5.0	04/01/25 00:23	
Xylene (Total)	ug/L	ND	5.0	04/01/25 00:23	
1,2-Dichloroethane-d4 (S)	%	93	70-130	04/01/25 00:23	
4-Bromofluorobenzene (S)	%	96	70-130	04/01/25 00:23	
Toluene-d8 (S)	%	100	70-130	04/01/25 00:23	

LABORATORY CONTROL SAMPLE:	4756724					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	19.6	98	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	411	103	70-130	
Benzene	ug/L	20	20.1	100	70-130	
Diisopropyl ether	ug/L	20	19.4	97	70-130	
Ethanol	ug/L	800	803	100	70-130	
Ethyl-tert-butyl ether	ug/L	40	38.8	97	70-130	
Ethylbenzene	ug/L	20	19.8	99	70-130	
m&p-Xylene	ug/L	40	42.1	105	70-130	
Methyl-tert-butyl ether	ug/L	20	18.4	92	70-130	
Naphthalene	ug/L	20	21.0	105	70-130	
o-Xylene	ug/L	20	21.6	108	70-130	
tert-Amyl Alcohol	ug/L	400	432	108	70-130	
tert-Amylmethyl ether	ug/L	40	39.8	99	70-130	
tert-Butyl Alcohol	ug/L	200	178	89	70-130	
tert-Butyl Formate	ug/L	160	175	110	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

LABORATORY CONTROL SAMPI	LE: 4756724					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		19.6	98	70-130	
Xylene (Total)	ug/L	60	63.8	106	70-130	
1,2-Dichloroethane-d4 (S)	%			91	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICATI	E: 47567	25		4756726						
			MS	MSD							
	927	87832002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	21.8	17.4	109	87	70-137	22	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	394	329	99	82	39-157	18	
Benzene	ug/L	ND	20	20	21.5	18.1	107	91	70-151	17	
Diisopropyl ether	ug/L	ND	20	20	20.8	15.7	104	79	63-144	28	
Ethanol	ug/L	ND	800	800	775	621	97	78	39-176	22	
Ethyl-tert-butyl ether	ug/L	ND	40	40	41.7	33.0	104	83	66-137	23	
Ethylbenzene	ug/L	ND	20	20	21.5	18.0	107	90	66-153	18	
m&p-Xylene	ug/L	ND	40	40	44.0	37.3	110	93	69-152	16	
Methyl-tert-butyl ether	ug/L	ND	20	20	20.1	16.1	101	80	54-156	22	
Naphthalene	ug/L	ND	20	20	21.5	18.1	107	90	61-148	17	
o-Xylene	ug/L	ND	20	20	21.9	18.8	109	94	70-148	15	
tert-Amyl Alcohol	ug/L	ND	400	400	433	342	108	86	54-153	23	
tert-Amylmethyl ether	ug/L	ND	40	40	42.7	33.5	107	84	69-139	24	
tert-Butyl Alcohol	ug/L	ND	200	200	233	189	116	95	43-188	20	
tert-Butyl Formate	ug/L	ND	160	160	60.2	36.2J	38	23	10-170	٧	1
Toluene	ug/L	ND	20	20	22.1	18.3	110	91	59-148	19	
Xylene (Total)	ug/L	ND	60	60	65.8	56.1	110	94	63-158	16	
1,2-Dichloroethane-d4 (S)	%						96	91	70-130		
4-Bromofluorobenzene (S)	%						99	99	70-130		
Toluene-d8 (S)	%						99	98	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 925990 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830005, 92787830011, 92787830012, 92787830014

METHOD BLANK: 4756727 Matrix: Water
Associated Lab Samples: 92787830005, 92787830011, 92787830012, 92787830014

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	5.0	04/01/25 00:41	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	04/01/25 00:41	
Benzene	ug/L	ND	5.0	04/01/25 00:41	
Diisopropyl ether	ug/L	ND	5.0	04/01/25 00:41	
Ethanol	ug/L	ND	200	04/01/25 00:41	
Ethyl-tert-butyl ether	ug/L	ND	10.0	04/01/25 00:41	
Ethylbenzene	ug/L	ND	5.0	04/01/25 00:41	
m&p-Xylene	ug/L	ND	10.0	04/01/25 00:41	
Methyl-tert-butyl ether	ug/L	ND	5.0	04/01/25 00:41	
Naphthalene	ug/L	ND	5.0	04/01/25 00:41	
o-Xylene	ug/L	ND	5.0	04/01/25 00:41	
tert-Amyl Alcohol	ug/L	ND	100	04/01/25 00:41	
tert-Amylmethyl ether	ug/L	ND	10.0	04/01/25 00:41	
tert-Butyl Alcohol	ug/L	ND	100	04/01/25 00:41	
tert-Butyl Formate	ug/L	ND	50.0	04/01/25 00:41	
Toluene	ug/L	ND	5.0	04/01/25 00:41	
Xylene (Total)	ug/L	ND	5.0	04/01/25 00:41	
1,2-Dichloroethane-d4 (S)	%	91	70-130	04/01/25 00:41	
4-Bromofluorobenzene (S)	%	95	70-130	04/01/25 00:41	
Toluene-d8 (S)	%	101	70-130	04/01/25 00:41	

LABORATORY CONTROL SAMPLE:	4756728					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		19.6	98	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	411	103	70-130	
Benzene	ug/L	20	20.1	100	70-130	
Diisopropyl ether	ug/L	20	19.0	95	70-130	
Ethanol	ug/L	800	823	103	70-130	
Ethyl-tert-butyl ether	ug/L	40	39.5	99	70-130	
Ethylbenzene	ug/L	20	19.8	99	70-130	
m&p-Xylene	ug/L	40	40.7	102	70-130	
Methyl-tert-butyl ether	ug/L	20	18.5	92	70-130	
Naphthalene	ug/L	20	22.0	110	70-130	
o-Xylene	ug/L	20	21.4	107	70-130	
tert-Amyl Alcohol	ug/L	400	414	103	70-130	
tert-Amylmethyl ether	ug/L	40	38.2	96	70-130	
tert-Butyl Alcohol	ug/L	200	182	91	70-130	
tert-Butyl Formate	ug/L	160	170	106	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

LABORATORY CONTROL SAMPL	LE: 4756728					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L	20	19.5	97	70-130	
Xylene (Total)	ug/L	60	62.1	103	70-130	
1,2-Dichloroethane-d4 (S)	%			94	70-130	
4-Bromofluorobenzene (S)	%			97	70-130	
Toluene-d8 (S)	%			96	70-130	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICATI	E: 47567	29		4756730						
			MS	MSD							
	927	87825009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	20.5	18.9	103	94	70-137		
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	405	369	101	92	39-157	9	
Benzene	ug/L	ND	20	20	20.2	20.1	101	101	70-151	0	
Diisopropyl ether	ug/L	ND	20	20	19.0	17.7	95	88	63-144	7	
Ethanol	ug/L	ND	800	800	792	695	99	87	39-176	13	
Ethyl-tert-butyl ether	ug/L	ND	40	40	38.1	37.4	95	93	66-137	2	
Ethylbenzene	ug/L	ND	20	20	20.4	20.1	102	100	66-153	2	
m&p-Xylene	ug/L	ND	40	40	41.5	42.1	104	105	69-152	2	
Methyl-tert-butyl ether	ug/L	ND	20	20	18.4	18.1	92	90	54-156	2	
Naphthalene	ug/L	ND	20	20	20.2	20.3	101	102	61-148	1	
o-Xylene	ug/L	ND	20	20	21.7	21.3	109	107	70-148	2	
tert-Amyl Alcohol	ug/L	ND	400	400	431	404	108	101	54-153	7	
tert-Amylmethyl ether	ug/L	ND	40	40	39.1	38.3	98	96	69-139	2	
tert-Butyl Alcohol	ug/L	ND	200	200	249	219	124	109	43-188	13	
tert-Butyl Formate	ug/L	ND	160	160	33.4J	36.2J	21	23	10-170	V	1
Toluene	ug/L	ND	20	20	20.3	20.4	101	102	59-148	1	
Xylene (Total)	ug/L	ND	60	60	63.2	63.5	105	106	63-158	0	
1,2-Dichloroethane-d4 (S)	%						90	99	70-130		
4-Bromofluorobenzene (S)	%						99	100	70-130		
Toluene-d8 (S)	%						96	99	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 926121 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830006, 92787830008

METHOD BLANK: 4757382 Matrix: Water

Associated Lab Samples: 92787830006, 92787830008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	5.0	04/01/25 15:05	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	04/01/25 15:05	
Benzene	ug/L	ND	5.0	04/01/25 15:05	
Diisopropyl ether	ug/L	ND	5.0	04/01/25 15:05	v1
Ethanol	ug/L	ND	200	04/01/25 15:05	
Ethyl-tert-butyl ether	ug/L	ND	10.0	04/01/25 15:05	
Ethylbenzene	ug/L	ND	5.0	04/01/25 15:05	
m&p-Xylene	ug/L	ND	10.0	04/01/25 15:05	
Methyl-tert-butyl ether	ug/L	ND	5.0	04/01/25 15:05	
Naphthalene	ug/L	ND	5.0	04/01/25 15:05	
o-Xylene	ug/L	ND	5.0	04/01/25 15:05	
tert-Amyl Alcohol	ug/L	ND	100	04/01/25 15:05	
tert-Amylmethyl ether	ug/L	ND	10.0	04/01/25 15:05	
tert-Butyl Alcohol	ug/L	ND	100	04/01/25 15:05	
tert-Butyl Formate	ug/L	ND	50.0	04/01/25 15:05	
Toluene	ug/L	ND	5.0	04/01/25 15:05	
Xylene (Total)	ug/L	ND	5.0	04/01/25 15:05	
1,2-Dichloroethane-d4 (S)	%	125	70-130	04/01/25 15:05	
4-Bromofluorobenzene (S)	%	104	70-130	04/01/25 15:05	
Toluene-d8 (S)	%	103	70-130	04/01/25 15:05	

LABORATORY CONTROL SAMPLE:	4757383					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	23.7	119	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	396	99	70-130	
Benzene	ug/L	20	21.4	107	70-130	
Diisopropyl ether	ug/L	20	24.4	122	70-130 v1	
Ethanol	ug/L	800	912	114	70-130	
Ethyl-tert-butyl ether	ug/L	40	45.6	114	70-130	
Ethylbenzene	ug/L	20	20.9	105	70-130	
m&p-Xylene	ug/L	40	42.2	105	70-130	
Methyl-tert-butyl ether	ug/L	20	21.7	108	70-130	
Naphthalene	ug/L	20	20.5	102	70-130	
o-Xylene	ug/L	20	21.0	105	70-130	
tert-Amyl Alcohol	ug/L	400	393	98	70-130	
tert-Amylmethyl ether	ug/L	40	40.4	101	70-130	
tert-Butyl Alcohol	ug/L	200	200	100	70-130	
tert-Butyl Formate	ug/L	160	186	116	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

LABORATORY CONTROL SAMPLE:	4757383					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		20.4	102	70-130	
Xylene (Total)	ug/L	60	63.1	105	70-130	
1,2-Dichloroethane-d4 (S)	%			119	70-130	
4-Bromofluorobenzene (S)	%			106	70-130	
Toluene-d8 (S)	%			103	70-130	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 47573	84		4758084						
			MS	MSD							
	927	787353046	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	25.4	26.5	127	132	70-137	4	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	461J	511	115	128	39-157		
Benzene	ug/L	490	20	20	527	523	185	161	70-151	1 M1	
Diisopropyl ether	ug/L	ND	20	20	25.9	26.7	130	133	63-144	3	
Ethanol	ug/L	ND	800	800	1100	1250	137	157	39-176	13	
Ethyl-tert-butyl ether	ug/L	ND	40	40	50.7	52.0	127	130	66-137	3	
Ethylbenzene	ug/L	346	20	20	384	385	189	195	66-153	0 M1	
n&p-Xylene	ug/L	742	40	40	886	907	359	413	69-152	2 M1	
Methyl-tert-butyl ether	ug/L	ND	20	20	35.5	36.2	129	133	54-156	2	
Naphthalene	ug/L	833	20	20	1050	1120	1110	1440	61-148	6 E,N	/ 11
o-Xylene	ug/L	56.6	20	20	90.5	88.6	169	160	70-148	2 M1	
ert-Amyl Alcohol	ug/L	ND	400	400	723	807	181	202	54-153	11 M1	
ert-Amylmethyl ether	ug/L	ND	40	40	48.9J	50.4	122	126	69-139		
ert-Butyl Alcohol	ug/L	ND	200	200	ND	ND	132	149	43-188		
ert-Butyl Formate	ug/L	ND	160	160	234J	241J	147	151	10-170		
Toluene	ug/L	28.2	20	20	56.2	55.9	140	138	59-148	1	
Kylene (Total)	ug/L	799	60	60	977	996	296	328	63-158	2 MS	
,2-Dichloroethane-d4 (S)	%						95	97	70-130		
4-Bromofluorobenzene (S)	%						97	95	70-130		
Toluene-d8 (S)	%						100	99	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 926379 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830002

METHOD BLANK: 4758654 Matrix: Water

Associated Lab Samples: 92787830002

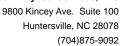
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L		5.0	04/01/25 20:52	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	04/01/25 20:52	
Benzene	ug/L ug/L	ND ND	5.0	04/01/25 20:52	
Diisopropyl ether	•	ND ND	5.0	04/01/25 20:52	
Ethanol	ug/L	ND ND		04/01/25 20:52	
	ug/L		200		
Ethyl-tert-butyl ether	ug/L	ND	10.0	04/01/25 20:52	
Ethylbenzene	ug/L	ND	5.0	04/01/25 20:52	
m&p-Xylene	ug/L	ND	10.0	04/01/25 20:52	
Methyl-tert-butyl ether	ug/L	ND	5.0	04/01/25 20:52	
Naphthalene	ug/L	ND	5.0	04/01/25 20:52	
o-Xylene	ug/L	ND	5.0	04/01/25 20:52	
tert-Amyl Alcohol	ug/L	ND	100	04/01/25 20:52	
tert-Amylmethyl ether	ug/L	ND	10.0	04/01/25 20:52	
tert-Butyl Alcohol	ug/L	ND	100	04/01/25 20:52	
tert-Butyl Formate	ug/L	ND	50.0	04/01/25 20:52	
Toluene	ug/L	ND	5.0	04/01/25 20:52	
Xylene (Total)	ug/L	ND	5.0	04/01/25 20:52	
1,2-Dichloroethane-d4 (S)	%	96	70-130	04/01/25 20:52	
4-Bromofluorobenzene (S)	%	98	70-130	04/01/25 20:52	
Toluene-d8 (S)	%	105	70-130	04/01/25 20:52	

LABORATORY CONTROL SAMPLE:	4758655					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		21.2	106	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	395	99	70-130	
Benzene	ug/L	20	23.4	117	70-130	
Diisopropyl ether	ug/L	20	21.2	106	70-130	
Ethanol	ug/L	800	842	105	70-130	
Ethyl-tert-butyl ether	ug/L	40	43.2	108	70-130	
Ethylbenzene	ug/L	20	21.6	108	70-130	
m&p-Xylene	ug/L	40	44.2	111	70-130	
Methyl-tert-butyl ether	ug/L	20	20.8	104	70-130	
Naphthalene	ug/L	20	23.5	118	70-130	
o-Xylene	ug/L	20	21.8	109	70-130	
tert-Amyl Alcohol	ug/L	400	446	112	70-130	
tert-Amylmethyl ether	ug/L	40	43.5	109	70-130	
tert-Butyl Alcohol	ug/L	200	199	100	70-130	
tert-Butyl Formate	ug/L	160	159	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830


Date: 04/07/2025 11:25 AM

LABORATORY CONTROL SAMPL	E: 4758655					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		21.8	109	70-130	
Xylene (Total)	ug/L	60	66.0	110	70-130	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
4-Bromofluorobenzene (S)	%			99	70-130	
Toluene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	4758657						
		92787825003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	10.9	55	70-137	M1
3,3-Dimethyl-1-Butanol	ug/L	ND	400	203	51	39-157	
Benzene	ug/L	ND	20	11.6	58	70-151 i	M1
Diisopropyl ether	ug/L	ND	20	10.8	54	63-144 I	M1
Ethanol	ug/L	ND	800	436	54	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	21.9	55	66-137 I	M1
Ethylbenzene	ug/L	ND	20	12.2	57	66-153 I	M1
m&p-Xylene	ug/L	ND	40	25.3	58	69-152 l	M1
Methyl-tert-butyl ether	ug/L	ND	20	10.4	52	54-156 I	M1
Naphthalene	ug/L	5.8	20	17.3	57	61-148 I	M1
o-Xylene	ug/L	2.7J	20	14.7	60	70-148 i	M1
tert-Amyl Alcohol	ug/L	ND	400	218	55	54-153	
tert-Amylmethyl ether	ug/L	ND	40	20.6	51	69-139 I	M1
tert-Butyl Alcohol	ug/L	ND	200	136	68	43-188	
tert-Butyl Formate	ug/L	ND	160	31.9J	20	10-170	
Toluene	ug/L	ND	20	11.1	56	59-148 ľ	M1
Xylene (Total)	ug/L	ND	60	40.0	62	63-158 ľ	MS
1,2-Dichloroethane-d4 (S)	%				102	70-130	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				99	70-130	

SAMPLE DUPLICATE: 4758656					
		92787825012	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Benzene	ug/L	ND	ND		
Diisopropyl ether	ug/L	ND	ND		
Ethanol	ug/L	ND	ND		
Ethyl-tert-butyl ether	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
m&p-Xylene	ug/L	ND	ND		
Methyl-tert-butyl ether	ug/L	ND	ND		
Naphthalene	ug/L	ND	ND		
o-Xylene	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

SAMPLE DUPLICATE: 4758656					
		92787825012	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
tert-Amyl Alcohol	ug/L	ND	ND		
tert-Amylmethyl ether	ug/L	ND	ND		
tert-Butyl Alcohol	ug/L	ND	ND		
tert-Butyl Formate	ug/L	ND	ND		
Toluene	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	93	104		
4-Bromofluorobenzene (S)	%	102	101		
Toluene-d8 (S)	%	106	100		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 926701 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830001, 92787830010, 92787830021

METHOD BLANK: 4759638 Matrix: Water

Associated Lab Samples: 92787830001, 92787830010, 92787830021

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	5.0	04/02/25 11:03	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	04/02/25 11:03	
Benzene	ug/L	ND	5.0	04/02/25 11:03	
Diisopropyl ether	ug/L	ND	5.0	04/02/25 11:03	
Ethanol	ug/L	ND	200	04/02/25 11:03	
Ethyl-tert-butyl ether	ug/L	ND	10.0	04/02/25 11:03	
Ethylbenzene	ug/L	ND	5.0	04/02/25 11:03	
m&p-Xylene	ug/L	ND	10.0	04/02/25 11:03	
Methyl-tert-butyl ether	ug/L	ND	5.0	04/02/25 11:03	
Naphthalene	ug/L	ND	5.0	04/02/25 11:03	
o-Xylene	ug/L	ND	5.0	04/02/25 11:03	
tert-Amyl Alcohol	ug/L	ND	100	04/02/25 11:03	
tert-Amylmethyl ether	ug/L	ND	10.0	04/02/25 11:03	
tert-Butyl Alcohol	ug/L	ND	100	04/02/25 11:03	
tert-Butyl Formate	ug/L	ND	50.0	04/02/25 11:03	
Toluene	ug/L	ND	5.0	04/02/25 11:03	
Xylene (Total)	ug/L	ND	5.0	04/02/25 11:03	
1,2-Dichloroethane-d4 (S)	%	111	70-130	04/02/25 11:03	
4-Bromofluorobenzene (S)	%	101	70-130	04/02/25 11:03	
Toluene-d8 (S)	%	102	70-130	04/02/25 11:03	

LABORATORY CONTROL SAMPLE:	4759639					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	20.5	102	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	443	111	70-130	
Benzene	ug/L	20	20.6	103	70-130	
Diisopropyl ether	ug/L	20	20.3	102	70-130	
Ethanol	ug/L	800	806	101	70-130	
Ethyl-tert-butyl ether	ug/L	40	41.1	103	70-130	
Ethylbenzene	ug/L	20	21.5	108	70-130	
m&p-Xylene	ug/L	40	43.3	108	70-130	
Methyl-tert-butyl ether	ug/L	20	19.5	97	70-130	
Naphthalene	ug/L	20	21.8	109	70-130	
o-Xylene	ug/L	20	21.8	109	70-130	
tert-Amyl Alcohol	ug/L	400	452	113	70-130	
tert-Amylmethyl ether	ug/L	40	40.0	100	70-130	
tert-Butyl Alcohol	ug/L	200	211	105	70-130	
tert-Butyl Formate	ug/L	160	184	115	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

o-Xylene

Date: 04/07/2025 11:25 AM

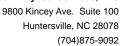
QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

LABORATORY CONTROL SAMPL	E: 4759639					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		20.4	102	70-130	
Xylene (Total)	ug/L	60	65.1	109	70-130	
1,2-Dichloroethane-d4 (S)	%			100	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	4759640						
		92787825007	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	19.6	98	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	429	107	39-157	
Benzene	ug/L	ND	20	21.7	108	70-151	
Diisopropyl ether	ug/L	ND	20	19.9	99	63-144	
Ethanol	ug/L	ND	800	831	104	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	39.4	98	66-137	
Ethylbenzene	ug/L	ND	20	20.8	104	66-153	
m&p-Xylene	ug/L	ND	40	42.4	106	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	18.8	94	54-156	
Naphthalene	ug/L	ND	20	19.6	98	61-148	
o-Xylene	ug/L	ND	20	21.4	105	70-148	
tert-Amyl Alcohol	ug/L	ND	400	444	111	54-153	
tert-Amylmethyl ether	ug/L	ND	40	37.8	94	69-139	
tert-Butyl Alcohol	ug/L	ND	200	259	129	43-188	
tert-Butyl Formate	ug/L	ND	160	89.4	56	10-170	
Toluene	ug/L	ND	20	20.6	103	59-148	
Xylene (Total)	ug/L	ND	60	63.8	106	63-158	
1,2-Dichloroethane-d4 (S)	%				99	70-130	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				99	70-130	


SAMPLE DUPLICATE: 4759641					
		92787827015	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Benzene	ug/L	4.5J	4.5J		
Diisopropyl ether	ug/L	ND	ND		
Ethanol	ug/L	ND	ND		
Ethyl-tert-butyl ether	ug/L	ND	ND		
Ethylbenzene	ug/L	64.1	61.2	5	;
m&p-Xylene	ug/L	13.6	13.2	3	3
Methyl-tert-butyl ether	ug/L	ND	ND		
Naphthalene	ug/L	31.5	31.1	1	

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

10.6

11.1

110

100

101

105

99

101

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

Date: 04/07/2025 11:25 AM

Toluene-d8 (S)

SAMPLE DUPLICATE: 4759641

92787827015 Dup RPD Parameter Units Result Result Qualifiers ND tert-Amyl Alcohol ug/L ND ND ND tert-Amylmethyl ether ug/L ND tert-Butyl Alcohol ug/L ND tert-Butyl Formate ug/L ND ND Toluene ug/L ND ND Xylene (Total) ug/L 24.7 23.8 4

%

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

QC Batch: 926750 Analysis Method: EPA 504.1

QC Batch Method: EPA 504.1 Analysis Description: GCS 504 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

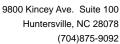
Associated Lab Samples: 92787830025, 92787830026

METHOD BLANK: 4760135 Matrix: Water

Associated Lab Samples: 92787830025, 92787830026

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed 1,2-Dibromoethane (EDB) ND 0.022 04/03/25 05:32 ug/L 122 1-Chloro-2-bromopropane (S) % 70-130 04/03/25 05:32

LABORATORY CONTROL SAMPLE & LCSD: 4760136 4760277 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) ug/L 0.27 0.29 0.33 109 112 70-130 11 20 1-Chloro-2-bromopropane (S) 70-130 % 115 115


MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4760138 4760139 MS MSD 92787826008 Spike Spike MS MSD MS MSD % Rec Units Parameter Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual ND 1,2-Dibromoethane (EDB) ug/L 0.26 0.26 0.31 0.29 123 113 65-135 1-Chloro-2-bromopropane (S) 123 113 70-130 %

SAMPLE DUPLICATE: 4760137

Date: 04/07/2025 11:25 AM

		92787826007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	107	115		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

QC Batch: 927031 Analysis Method: EPA 504.1

QC Batch Method: EPA 504.1 Analysis Description: GCS 504 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830027, 92787830028

METHOD BLANK: 4761675 Matrix: Water

Associated Lab Samples: 92787830027, 92787830028

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed 1,2-Dibromoethane (EDB) ND 0.022 04/04/25 06:44 ug/L 1-Chloro-2-bromopropane (S) % 112 70-130 04/04/25 06:44

LABORATORY CONTROL SAMPLE & LCSD: 4761676 4761677 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD** RPD Qualifiers 1.2-Dibromoethane (EDB) 30 20 R1 ug/L 0.28 0.32 0.24 117 89 70-130 1-Chloro-2-bromopropane (S) 96 70-130 % 117

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4761679 4761680 MS MSD 92788644001 Spike Spike MS MSD MS MSD % Rec Units Parameter Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 1.2 1,2-Dibromoethane (EDB) ug/L 0.26 0.26 1.7 1.8 164 219 65-135 8 M1 1-Chloro-2-bromopropane (S) 180 189 70-130 S0 %

SAMPLE DUPLICATE: 4761678

Date: 04/07/2025 11:25 AM

		92787832019	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	104	96		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 926906 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830001, 92787830002, 92787830003

METHOD BLANK: 4761158 Matrix: Water

Associated Lab Samples: 92787830001, 92787830002, 92787830003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	0.020	04/04/25 01:37	
1-Chloro-2-bromopropane (S)	%	147	60-140	04/04/25 01:37	S3

LABORATORY CONTROL SAMPLE &	LCSD: 4761159		4	761160						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	0.25	0.31	0.30	123	122	60-140	1	20	
1-Chloro-2-bromopropane (S)	%				132	127	60-140			

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 47611	62		4761163						
	00-	707007000	MS	MSD	140	MOD	140	MOD	0/ D		
	927	787827006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dibromoethane (EDB)	ug/L	ND	0.25	0.25	0.29	0.35	117	140	60-140	18	
1-Chloro-2-bromopropane (S)	%						129	142	60-140		S0

SAMPLE DUPLICATE: 4761161					
		92787827005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		-
1-Chloro-2-bromopropane (S)	%	137	133		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

QC Batch: 927234 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787830004, 92787830005, 92787830006, 92787830007, 92787830008, 92787830009, 92787830010,

92787830011, 92787830012, 92787830013, 92787830014, 92787830015, 92787830016, 92787830017,

92787830018, 92787830019, 92787830020, 92787830021, 92787830022, 92787830023

METHOD BLANK: 4763083 Matrix: Water

Associated Lab Samples: 92787830004, 92787830005, 92787830006, 92787830007, 92787830008, 92787830009, 92787830010,

92787830011, 92787830012, 92787830013, 92787830014, 92787830015, 92787830016, 92787830017,

92787830018, 92787830019, 92787830020, 92787830021, 92787830022, 92787830023

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	0.020	04/04/25 16:09	
1-Chloro-2-bromopropane (S)	%	120	60-140	04/04/25 16:09	

LABORATORY CONTROL SAMPLE &	LCSD: 4763084		47	763085						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	0.25	0.30	0.32	120	128	60-140	7	20	
1-Chloro-2-bromopropane (S)	%				126	132	60-140			

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 47630	87		4763088						
	927	787830005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dibromoethane (EDB)	ug/L	ND	0.25	0.25	0.30	0.32	120	127	60-140	6	
1-Chloro-2-bromopropane (S)	%						116	123	60-140		

SAMPLE DUPLICATE: 4763086					
		92787830004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		<u> </u>
1-Chloro-2-bromopropane (S)	%	125	127		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

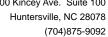
Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

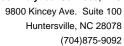

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/07/2025 11:25 AM

E	Analyte concentration exceeded the calibration range. The reported result is estimated.

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- MS Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
- R1 RPD value was outside control limits.
- S0 Surrogate recovery outside laboratory control limits.
- S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2787830025	WSW-1	EPA 504.1	926750	EPA 504.1	926796
2787830026	WSW-2	EPA 504.1	926750	EPA 504.1	926796
2787830027	WSW-DUP	EPA 504.1	927031	EPA 504.1	927078
2787830027 2787830028	WSW-FB	EPA 504.1	927031	EPA 504.1	927078
2787830001	MW-1	EPA 8011	926906	EPA 8011	927119
2787830002 2787830003	MW-2	EPA 8011 EPA 8011	926906	EPA 8011	927119
2/0/030003	MW-3	EPA 8011	926906	EPA 8011	927119
2787830004	MW-4	EPA 8011	927234	EPA 8011	927375
2787830005	MW-5	EPA 8011	927234	EPA 8011	927375
2787830006	MW-6	EPA 8011	927234	EPA 8011	927375
787830007	MW-7	EPA 8011	927234	EPA 8011	927375
2787830008	MW-8	EPA 8011	927234	EPA 8011	927375
2787830009	MW-9	EPA 8011	927234	EPA 8011	927375
2787830010	MW-10	EPA 8011	927234	EPA 8011	927375
2787830011	DW-1	EPA 8011	927234	EPA 8011	927375
787830012	DW-2	EPA 8011	927234	EPA 8011	927375
2787830013	DW-3	EPA 8011	927234	EPA 8011	927375
787830014	DW-4	EPA 8011	927234	EPA 8011	927375
787830015	SW-1	EPA 8011	927234	EPA 8011	927375
787830016	SW-2	EPA 8011	927234	EPA 8011	927375
787830017	SW-3	EPA 8011	927234	EPA 8011	927375
787830018	SW-4	EPA 8011	927234	EPA 8011	927375
787830019	SW-5	EPA 8011	927234	EPA 8011	927375
787830020	SW-6	EPA 8011	927234	EPA 8011	927375
787830021	DUP FB	EPA 8011	927234	EPA 8011	927375
787830022	GAC	EPA 8011	927234	EPA 8011	927375
787830023		EPA 8011	927234	EPA 8011	927375
2787830025	WSW-1	EPA 524.2	925983		
787830026	WSW-2	EPA 524.2	927518		
2787830027	WSW-DUP	EPA 524.2	926048		
2787830028	WSW-FB	EPA 524.2	927518		
2787830029	WSW-TB	EPA 524.2	926048		
787830015	SW-1	EPA 8260D	926017		
2787830016	SW-2	EPA 8260D	926017		
787830017	SW-3	EPA 8260D	926017		
787830018	SW-4	EPA 8260D	926017		
787830019	SW-5	EPA 8260D	926017		
787830020	SW-6	EPA 8260D	926017		
2787830025	WSW-1	EPA 8260D	926034		
2787830026	WSW-2	EPA 8260D	926034		
2787830027	WSW-DUP	EPA 8260D	926034		
	WCW ED				
787830028	WSW-FB	EPA 8260D	926017		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGINS 3423

Pace Project No.: 92787830

Date: 04/07/2025 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92787830001	MW-1	EPA 8260D	926701		
92787830002	MW-2	EPA 8260D	926379		
92787830003 92787830004	MW-3 MW-4	EPA 8260D EPA 8260D	925965 925965		
92787830005	MW-5	EPA 8260D	925990		
92787830006	MW-6	EPA 8260D	926121		
2787830007	MW-7	EPA 8260D	925989		
2787830008	MW-8	EPA 8260D	926121		
2787830009	MW-9	EPA 8260D	925989		
2787830010	MW-10	EPA 8260D	926701		
92787830011 92787830012	DW-1 DW-2	EPA 8260D EPA 8260D	925990 925990		
92787830013	DW-3	EPA 8260D	925989		
2787830014	DW-4	EPA 8260D	925990		
92787830021	DUP	EPA 8260D	926701		
92787830022 92787830023 92787830024	FB GAC TB	EPA 8260D EPA 8260D EPA 8260D	925960 925960 925960		

1	Pace	DC#_Title: ENV-FRM	-HUN1-0083 v	05_Sa	mple Co	onditi	on Upon Receipt	
	Ministra exects	Effective Date: 05/24/20	124					
Asl	ratory receneville meville memple Conditution Receipt rier:	Midlands		ental	Raleigh[P	roject #	lechanicsville Atlanta : WO#: 9278	termination of the second of t
Cuet	ody Seal Pres	sent? Yes	Seals Intact?			40N/	92787830	
Pack The Coo Coo USD	king Material: rmometer: IR Gui ler Temp: ler Temp Cori	Bubble Wrap n ID: Correction Add/Subtrected (°C): Soil (N/A, water sample)	Bubble Bags Type of Ice Factor: act (°C)		☐ Oti	ner Je [Date/Initials Person Examinin Biological Tiss Yes No None Imp should be above freezing to has begun	Sue Frozen? 3-28-25 N/A
1	Did samples or check maps)?	riginate in a quarantine zone with	in the United States:	CA, NY, c	or SC	Di in	d samples originate from a foreign cluding Hawaii and Puerto Rico)?	source (internationally, Yes \textsquare)No
		140					Comments/Discre	
	Chain of Cust	tody Present?	∀Yes	□No	□N/A	1.		
	Samples Arri	ved within Hold Time?	⊠Yes	□No	□N/A	2.		
	Short Hold T	ime Analysis (<72 hr.)?	□Yes	No	□N/A	3.		
	Rush Turn A	round Time Requested?	□Yes	□No	□N/A	4.		
	Sufficient Vo	lume?	□Yes	□No	□N/A	5.		
		ainers Used?	Yes	□No	□N/A	6.		
	10/10/10/10/10/10/10/10/10/10/10/10/10/1	tainers Used?	□Yes	□No	□N/A			
	Containers Ir		Ŭ¥es	□No	□N/A	7.		
		alysis: Samples Field Filtered?	□Yes	Νο	□N/A	8.		
	2500	Date/Time/ID/Analysis Matrix:	₩Yes	□No	□N/A	9.		
	Headspace i	n VOA Vials (>5-6mm)?	□Yes	ΜNο	□n/a	10.		
	Trip Blank Pr	resent?	⊠Yes	□No	□N/A	11.		
		ustody Seals Present?	□Yes	□No	□N/A			
	MENTS/SAMPI	LE DISCREPANCY			S		Field Data Re	quired? □Yes □No
CLIEN	T NOTIFICATIO	n/resolution			, L	ot ID of	split containers:	
	son contacted				Date/Time		Date:	
	Project Mana	ger SRF Review:					B-4	

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Project # WO#: 92787830

PM: BH

Due Date: 04/07/25

CLIENT: 92-MIDLAND

abora	tory F	Receiv	ing Lo	cation	ı: Ashe	eville [_ E	den	G	eenw	ood [] Hu	inters	ville [R	aleigh		Mech	anicsv	/ille[_	Ati	antaL	_ K	erner	viiie	,			
Client_						Pr	ofile/	EZ (Cir	cle on	e)31	781	32	N	otes_															-
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CF.)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		8P45-125 mL Plastic H2SO4 (pH < 2) (G-)	BP3N-250 mt plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Ci-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)[Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) [Cl-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
СС																													
1																	6												
2	/				/	/	/					/					6									/			
3	/				/	/	/	/	/			/		/	/	/	6								/	/			
4	/	\			/	/	/	<u> </u>	/			/		/	X	\setminus	6								/	/			
5					/	/	/	/	/			/		/	/		1								/	/			
6	/	-			/	/	/					/	1	/	/	/	6									/			
7					/	/	/	/	/			/		/	/	/	6								/	/			\vdash
8				+	/	/	/	/	/	<u> </u>		/			/	/	1	-	-						/	/			T
9	/	_		+	/	/	/	/	/			/	+	/	/	/	6	-	-			<u> </u>		-					+
10		+	+	-		/	/	/	/	-	-	1	1		1	/	6					-			/	/			
11	/	+			/	/	/	/	/	_		1	-	/	/	/	1				-				/	/			
12		+	+	+	+	/	/	/	/	-	-	+	+	/	/	/	+				-			-	+		-		
		1				//	1	1	1				<u> </u>	\	//	1									\	1			

Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
)				
	-					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace	
DELIFTED, SPECES	

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

	12	

			E	ffect	ive D	ate:	05/2	24/2	024																~1/				
Exce	ck ma eptano ptions ottom l heck <u>a</u> atory f	e rang : VOA, half of all unp	e for p Colifor box is reserv	reser rm, TC to list ed Nit	vation OC, Oil t num rates	and G ber of for ch	oles. Grease bottle lorine	e, DRO, es	/8015] Gr	(wate	r) DO(:, LLHg] Ни	nters	ville [] Ra	Proj	ject i		anicsv	ille[]	Atl	anta[] K	erners	ville]			
										-,																		\equiv	
CC Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BPZU-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		8P45-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 {pH < 2}	BP42-125 mL Plastic 2N Acetate & NaOH (>9)	8P4B-125 mL Plastic NaOH (pH > 12) (CI·)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Ci-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mi. VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	\vdash																/												
	/					/											6												
2																	6								/	/			
3	1				/	/	1	1	/			1		1	1	1	6								1	1			
4	/				/	1								1			6								/				
5					/				/								6								1	1			

		piirite	ljustment Log for Pres	e		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	+			San San		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

7

8

9

10

11

12

Pace
The part of the later

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Project #

Effective Date: 05/24/2024

3

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

***(ottom Check	haif o <u>all</u> unp	f box i reser	s to lis	st num itrates	ber o	f bott hlorin	les e			,		ь																
Labor	atory	Receiv	ing La	cation	n: Ash	eville		Eden[] G	reenw	vood [] н	unters	ville [☐ R	aleigh		Mech	anicsv	/ille	At	lanta[] к	erners	sville[j			J
Client						P	rofile/	EZ (Ci	rcle or	ne)			N	otes_													1,50		
(rem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP45-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H25O4 (pH < 2)	DG94-40 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A lab)	SP2T-250 ml Sterile Plastic (N/A - lab)	KAN WOOF	BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintiliation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
cc																													
1					1	/	1										6									7			
2					/		1	/	/			/		/	7	/	6								7	\angle			
3	/				/	/	/	/	/					/		/	6								1	/			
4	/				/	/	/	/						/	/	/	7								7	/			
5	/					/		/	/			/		/			1								X	\angle			
6	/				/	/	/	/						/			1								5	\angle			
7					/		/							/			6								3	-			
8	/				/							1					6								-	\leftarrow			
9			_														6								3	\leftarrow			
10	/	-	_		/												6								1	\angle			
11	/				/			/																	\angle	\angle			
12	/				/	/	$\overline{/}$	/																	\angle	_			
	/								/						1														

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
				2		
					-	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/	Relinquished by/Company: [Signature]	Relinquished by/Company: (Signature)	Relinquished by/Company: (Signature)	Relinquished by/Company: (Signature) ME		Additional Instructions from Pace*: -REPORT "J" VALUES	SW-6	SW-5	SW-4	5 W - 3	5W-2	SW-1	DW-4	DW-3	DW-2	DW-1	000000000000000000000000000000000000000	(B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (St.), Caulk (CK), Leachate (LL), Blosolid (BS), Other (OT) Customer Sample ID Matrix • Comp / Composite Start Collected or Composite End # Res. Chlorine	Date Requ		[]Level] Level	1 2 2 2 2 2	Time Zone Collected: [lax lpt lax	3	nfo/Facility ID (as applicable):	JOK C HU99125	Project Name:	Customer Project #:		Street Address: 231 Dooley Road, Lexington, SC 29073	Company Name: Midlands Environmental Consultants, Inc.	Pace* Location Requested (City/State):
tes acknowledgment a				E (I)			<								_	6W		ge (SL), Caulk (CK), Lea	Date Results Requested:	[]Same Day []1 Day []2 Day []3 Day []Other		A Progr	- ICT IX IST	JOSEST						29073	Itants, Inc.	lity/State):
and acceptance	Date/Time:	Date/Time:	Shales	Date/Time: 3 / 2 8			<u></u>									G	Grab	achate (LL), Bio		[] 2 Day [CRA, etc.) as	County /	100		Ιπνοί	Invoid		E-Mail:	Phone #:	Conta	СНА
e of the Pace				125													Date	Composite Start		1 Day []2 Day []3 Day []0		applicable:	County / State origin of sample(s):	applicable):	Purchase Order # (if	nvoice E-Mail:	Invoice To:			#	Contact/Report To:	IN-OF-CI
Terms and C		æ	1116	04:51	Signature:	(Printed Name)											Time	her (OT)		Other	1	Reportable	in of sample(s		1	Ishane@meci.net	Lynn Shane		jlc@meci.net	803-808-2043		USTODY ody is a LEGAL
onditions found a	Received by/Company: (Signature)	Received by/Company: (Signature)	Received by/Company: (Signature)	Received by/Company: (Sipaature)	of Series	ne) Troy	<									3/28	Date	Collected or Composite End	Field Filtered (if applicable): Analysis:							meci.net	ne		.net	2043	Bryan T. Shane, P.G.	CHAIN-OF-CUSTODY Analytical Request Document
at https://www	pany: (Signature)	Jany: (Signature)	any: (Signature)	any: (Signature)	Day	000	9:36	9:35	9:31	9:30	11:11	10:40	12:20	12:10	11.14	12:15	Time	omposite End	applicable): [DAY BANGID II AN AMAN BANGIS III AN ANAIST AND AN ANAIST AND ANAIST ANAIST AND ANAIST ANAIST AND ANAIST AND ANAIST AND ANAIST AND ANAIST AND ANAIST AND ANAIST	J No	SOUTH CAROLINA									Request
v.pacelabs.co			T.	200	line	125	6								_	6	Cont. Res	# Re	Yes []		mit # ac applic											Docume vant fields
m/resource-li																	Results Units	Res. Chlorine	No INC		S. S											nt
brary/resou					# Coolers:	Custome					~		×	×	×	×	H	EXNM, [CA, O	XY'S 8	260D				4 4		6 6		•	. T. S.	Air.	šio
rce/pace-						Customer Remarks /	×	×	X	×	X	×	^				_	EXNM, [CA 52	4.2					4	Identi	6		李龙			
erms-and	Date/Time:	Date/Time:	3/28	S/w/kg	Thermometer ID:	/ Special C											H	B 504.1						Analy	8	dentify Container Preservative Type***	6	Specify (3			5 66 ∑
condition	8.	5	8/28	4	eter ID:	onditions											12.8	AD 6010	ES 82	60D L	OW L	EVE	:L	Analysis Requested	4 2	er Preserv	6 3	Specify Container Size ••	Scar			3 USE OF
/8			161	134	Correc	Special Conditions / Possible Hazards:	×	×	×	×	×	×						EXNM, [VEL	CA, O	XY'S 8	260D	LO	W	ted	4	ative Type	6	Size **	QR Co			VLY- Affi
			0	6	Correction Factor (*C):	Hazards:							-	-			-								_	•			de for ins			k Workor
ENV	Pa		Delive	100	1																								Scan QR Code for instructions			der/Logi
ENV-FRM-CORQ-0019_v02_110123 @	Page: 2 of	[]FedEX []	Delivered by: [] In- Person	Tacking Number:									Nº 00	NO 00	No 0 do	Nº 00		Sample Comment	_	ab Use		AcctNum / Client ID:	Proj. Mgr:	МеОн, (11) Other	H2SO4, (4) HCl, (5) NaOH, (6) Zn Acetate, (7) NaHSO4, (8) Sod, Thiosulfate, (9) Ascorbic Acid,	••• Preservative Types: (1	TerraCore, (9) 90mL, (10)	**Container Size: (1) 1L, (2) 500mL, (3) 250mL, (4)	S			LAB USE ONLY- Affix Workorder/Login Label Here
)_v02_110123 ©	W	JUPS []Other	n []Courier		confected temp. (c)								202	YOU	5	05		en	-						t, (6) Zn Acetate, (7) fate, (9) Ascorbic Acid, (10)	1) None, (2) HNO3, (3)	Other	(2) 500mL, (3) 250mL,				
					9	5												reservation		nforma mple.	ice idei	шіе	u 101		(10)			4		Par	70 F	88 of 70

v02_1	ibrary/resource/pace-terms-and-conditions/	com/resource-library/resourc	is found at https://www.pacelabs.c	f the Pace* Terms and Condition	and acceptance of	and the same of th	C. L. C. L. C. L. C. L. C. L. C. L. C. C. L. C.	
page: of	Date/Time:		Received by/Company: (Signature)	Receivi	Date/Time:		nd hu/Company: (Signature)	Palinanish
[]FedEX []UPS []Other	Date/Time:		Received by/Company: (Signature)	Receive	Date/Time:		Relinquished by/Company: (Signature)	Relinquished
Delivered by: [] In- Person () Courier	Bate/Ime: 1/28 1610	ta	Received by/Company: (Signature)		Date/Jime:		Relinquished by/Company: (Signature)	Relinquished
racking manuer.	1340		Received by/Company: (Signature)	5 13:40	Date/Time:	(I)3W	Reinquished by/Company: (Signature)	Relinquished
N	30	7	of Salar	Signature:				
Obs. Temp. (*C) Corrected Temp. (*C) On Ice	Thermometer ID: Correction Factor (°C):	# Coolers:	ray Daylas	(Printed Name)			Additional Instructions from Pace*: -REPORT "J" VALUES	-REPORT
Nº 0002	Customer Remarks / Special Conditions / Possible Hazards:	Customers	12:18		4	<	~W-10	3
No oder			12.23				MW-9	.>
0005			12:26				X 52 - 8	7
No Odor			12:07				4-1	N
51,96+ 0 dor			90:21				MW-6	3
Na Oder			12.05				NW- 5	3
Organic odar			12:01				WM-H	3
20 Odos			12:00				MW-3	3
Slight ador			12.13				M W - Z	>
51.94+ 000		×	8 12:20 6	3/28	0	GW.	MW-1	>
	O) LE	-	Date Time Cont. Re	Date Time C	Grab D		Customer Campic ID	
Sample Comment	OB 504 KYGEN		Collected or Composite End # 1	Composite Start Collec	Comp /	Sludge (\$L), Caulk (CK), Lea	3), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (\$L), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT) Composite Start Comp / Composite Start	3), Vapor (V
	ATES 82	, DCA, C	Analysis:), Soil/Solid (SS), Oil (OL), Wipe (WP), Tissue	Analysis: Water (WW), Product (P), Soil/Soil	iter (GW), Waste	Date Results Requested: ng Water (DW), Ground Wa	Date Results Other Analysis: Analys	1 Other Matrix Coc
La Profile / Template:	260D I		ered (if applicable): [] Yes [1 Day [2 Day [3 Day []0	Day []	its	[]EQUIS
Table #:			DW PWSID # or WW Permit # as applicable:	ed):	(Pre-approval	Rush	II []Level III []Level IV	[] Level II
AcctNum / Client ID:			Yes []No	Reportable [CRA, etc.) as app	Regulatory Program (DW, RCRA, etc.) as applicable:	id: JAK JF1	ata Deliverables:
Proj. Mgr:			SOUTH CAROLINA	Crate opinio of complete).	Quote #:	i	23	
MeOH, (11) Other	Analysis Requested			(e):		HWY Florence	Banpl, co	477
H2SO4, (4) HCI, (5) NaOH, (6) Zn Accerate, (7)	4 8 4 2 4	4 4		Purchase Order # (if				te Collectio
••• Preservative Types: (1) None, (2) HNO3, (3)	Identify Container Preservative Type***		C	Ī	Invoice E-Mail:		2010 P 9 9 17 S	U. 2 20
TerraCore, (9) 90mL, (10) Other	6 6 6 3 6	6 6		o: Lynn Shane	Invoice To:	1		oject Name:
**Container Size: (1) 1L, (2) \$00mL, (3) 250mL, (4)	Specify Container Size **				CC E-IVIGII.		oject #:	stomer Project #:
lions	系统程数 Scan QR Code for instructions	<u> </u>		jlc@meci.net	E-Mail:			
					Phone #:	n, SC 29073		reet Address:
		i i i i i i i i i i i i i i i i i i i	6	Contact/Report To: Bryan T Shane P G	Contact/	onsultants inc	ame: Midlands Environmental Consultants Inc	mpany Name:
		ent	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields	-OF-CUSTODY Analy	CHAIN			Pace
ogin Label Here	LAB USE ONLY- Affix Workorder/Login Label Here					ed (City/State):	Pace* Location Requested (City/State):	١

ENV-FRM-CORQ-0019_v02_110123 ©		erms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/	a constitution chancel constitutes advisor
Page: 3 of 3			ubnitting a sample via this chain of autodi
[]FedEX []UPS []Other	ULTO DESCRIPTION AND IN	Date/Time: Received by/Company: (Signature)	Relinquished by/Company: (Signature)
Delivered by: [] In- Person L/Courier	25 1/10	1610	telinquished by/Company: (Signature)
	Distribute: /		Relinquished by/Company: (\$ignature)
Tracking Number:		3/7 8/7 5 13 L/Q Received by/Company: (Signature)	Dry Dansen (MECI)
Obs. Temp. (°C) Corrected Temp. (°C) On Ice	Thermometer (D: Correction Factor (*C):	Signature:	Relinquished by/Company: (Simature)
	Customer Remarks / Special Conditions / Possible Hazards:	ame) Tray Daugles	-REPORT "J" VALUES
	X	8.00 6	Additional Instructions from Pace*:
	>	-	1
	<	10 t-2(1	WSW-FB
1	×	DW 6 3/18 - 9	WSW-DCB
DNS Toutties			2000
	> > >	C. C. 1	
	< > >		WSW-2
	×. ×.	DW (3	WSW-1
		X	75
	X	12:30 6 ×	GAL
1	>) 12:356 X	7
Slight oder	×	+	
Consider	BT ECO	A COUNTY CARE INTER COUNTY RESULTS UNITS	795
	OB 50 CYGE	Collected or Composite End # Res. Chlorine	Customer Sample ID
Prelog / Bottle Ord, ID:	IM, DC 04.1 ENATE	L), Biosolid (BS), Other (OT)	(B), Vapor (V), Surface Water (SW),Sediment (SED), Sludge (SL),
Profile / Template:	S 826		* Matrix Codes (Insert in Matrix box below): Drinking Water (DW
orma	30D	Field Filtered (if applicable): 1 1 Vac. 1 1 Vac.	oı
Only Table	555	Rush (Pre-approval required): Day 2 Day 3 Day Other	31
AcctNum / Client ID:		יייב איייטאיז אירטאַיאיזו (טיעי, אינאא, etc.) as applicable: Reportable [] Yes [] No	level III level IV
Proj. Mgr:		[X] ET County / State origin of sample(s): SOUTH CAROLINA	Data Deliverables: AK PT MT CT
MeOH, (11) Other	Analysis Requested	Quote #:	VS+.3423
H2SO4, (4) HCI, (5) NaOH, (6) Zn Accetate, (7)	4 4 8 4 2 4	applicable):	5 Pamplico HWY
••• Preservative Types: (1) None, (2) HNO3, (3)	Identify Container Preservative Type****	Purchase Order # lif	
TerraCore, (9) 90mL (10) Other	6 6 6 6 3 6	Aail:	Jake Muggins
**Container Size: (1) 1L, (2) 500mL, (3) 250mL, (4)	Specify Container Size **	Invoice To: I van Shane	Project Name:
		Cc E-Mail:	Customer Project #:
	B を発行されている。 Scan OR Code for instructions	E-Mail: jlc@meci.net	,
Pag		Phone #:	Street Address: 231 Dooley Road, Lexington, SC 29073
e 7		Cont	1 44
ogin Label Here	LAB USE ONLY- Affix Workorder/Login Label Here	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields	1 6
			Pace* Location Requested (City/State):

APPENDIX C:

TAX MAP

(Not Applicable)

APPENDIX D:

SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
(Not Applicable)

APPENDIX E:

WELL COMPLETION LOGS & 1903 FORMS

(Not Applicable)

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS
(Not Applicable)

APPENDIX G:

DISPOSAL MANIFEST

Re: Treatment of Purge Water
Jake Huggins DBA Outpost at Willowcreek
Florence, South Carolina
Florence County
UST Permit# 03423
MECI Project# 25-8491

To Whom it May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDES must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 80 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

-A total of 65.50 gallons of purge water was treated on March 28, 2025 during groundwater sampling activities performed at the above referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist

APPENDIX H:

LOCAL ZONING REGULATIONS

(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:

ACCESS AGREEMENTS

(Not Applicable)

APPENDIX K:

DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?			X
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?			X
17	Has the method of well development been detailed?			X
18	Has justification been provided for the locations of the monitoring wells?			X
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figures 4-4A)	X		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
26	Does the report include a brief discussion of the aquifer evaluation and results?			X
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format?			X
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the current and historical laboratory data been provided in tabular format? (Table 1)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)			X
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)			X
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figure 3-3A)	X		
40	Has the site potentiometric map been provided? (Figure 4-4A)	X		
41	Have the geologic cross-sections been provided?			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	X		
45	Is the laboratory performing the analyses properly certified?	X		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix E)			X
48	Have the well completion logs and SCDES Form 1903 been provided? (Appendix E)			X
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)			X
50	Have the disposal manifests been provided? (Appendix G)	X		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
53	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
54	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	X		

APPENDIX L: DETAILED RECEPTOR INFORMATION

Receptor ID: (03423-WSW01)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Well is inside barn building.

Sample collected from spigot on water supply well.

GPS: 34.096044, -79.701503

Receptor ID: (03423-WSW02)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Sample collected from spigot on WSW.

GPS: 34.095156, -79.700508

Receptor ID: (03423-WSW03)

Parcel ID:

00213-01-052

Property Owner Name:

Linda L Huggins

Property Owner Address:

3695 Willow Creek Rd, Florence, SC 29505

Well has been disconnected.

Unable to sample with bailer due to metal elbow at well

GPS: 34.096743, -79.701503

Receptor ID: (03423-Possible WSW)

Parcel ID:

00214-01-016

Property Owner Name:

Trent P Stallings

Property Owner Address:

3118 Willow Creek Rd, Florence, SC 29505

WSW Details:

Possible well house attatched to residence.

Resident did not respond to attempts to make contact.

GPS: 34.094158, -79.700555

Receptor ID: (03423-SW01)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095076, -79.696772

Receptor ID: (03423-SW02)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095847, -79.697296

Receptor ID: (03423-SW03)

Parcel ID:

00213-01-017 Property Owner Name:

Barbara M Williams

Property Owner Address:

9296 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream.

GPS: 34.094620, -79.698172

APPENDIX M:

MANN-KENDALL STATISTICAL ANALYSES

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: BENZENE Concentration Units: µg/L MW-1 MW-2 MW-6 DW-4 Sampling Point ID: MW-8 MW-10 BENZENE CONCENTRATION (µg/L) 15-Feb-22 624 203 3720 1070 67.5 356 9-Jan-23 620 122 83.3 4390 2060 63 6 3 14-Apr-23 749 90.2 68.1 3620 634 1.7 16-Oct-23 1100 76.3 38.5 5330 341 6 24-Jun-24 695 23.5 17.3 4760 227 6 28-Mar-25 9.8 4110 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.34 0.64 1.37 0.18 0.88 Mann-Kendall Statistic (S) 100.0% 76.4% Confidence Factor 50.0% 61.4% 71.9% **Concentration Trend:** No Trend No Trend Stable No Trend Decreasing Decreasing 10000 Concentration (µg/L) 1000 100 10 MW-1

Notes

07/21

02/22

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

03/23

08/22

- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

10/23

Sampling Date

04/24

11/24

05/25

12/25

MW-2

MW-6 MW-8

MW-10

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TOLUENE Concentration Units: µg/L MW-8 DW-4 Sampling Point ID: TOLUENE CONCENTRATION (µg/L) 15-Feb-22 21100 1890 9-Jan-23 22300 464 3 14-Apr-23 19200 2 359 16-Oct-23 27500 6 24-Jun-24 25300 30.8 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.22 Mann-Kendall Statistic (S) 90.7% Confidence Factor 50.0% **Concentration Trend:** Prob. Decreasing No Trend 100000 Concentration (µg/L) 10000 1000 100 10 MW-8 DW-4 07/21 02/22 08/22 03/23 10/23 04/24 11/24 05/25 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: ETHYLBENZENE Concentration Units: µg/L MW-8 MW-10 Sampling Point ID: ETHYLBENZENE CONCENTRATION (µg/L) 15-Feb-22 2200 753 9-Jan-23 2080 1100 3 14-Apr-23 1840 428 16-Oct-23 2810 503 6 24-Jun-24 2570 465 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.16 0.44 Mann-Kendall Statistic (S) Confidence Factor 71.9% 61.4% **Concentration Trend:** No Trend Stable 10000 Concentration (µg/L) 1000 100 10 MW-8 08/22 03/23 10/23 04/24 11/24 07/21 02/22 05/25 12/25 Sampling Date MW-10

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: XYLENES Concentration Units: µg/L MW-8 Sampling Point ID: XYLENES CONCENTRATION (µg/L) 15-Feb-22 12800 9-Jan-23 13300 3 14-Apr-23 10800 16-Oct-23 16200 6 24-Jun-24 13400 11800 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.16 Mann-Kendall Statistic (S) Confidence Factor 50.0% **Concentration Trend:** No Trend 100000 MW-8 Concentration (µg/L) 10000 1000 100 10 03/23 10/23 04/24 11/24 07/21 02/22 08/22 05/25 12/25 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: NAPHTHALENE Concentration Units: µg/L MW-1 MW-2 MW-6 MW-7 MW-8 Sampling Point ID: MW-10 DW-4 NAPHTHALENE CONCENTRATION (µg/L) 15-Feb-22 87.5 78.7 25.7 58.3 781 181 342 9-Jan-23 66 10.9 26.7 4.3 455 26 3 14-Apr-23 51.1 10.2 23 2.1 661 216 2.1 4 4.4 975 5 16-Oct-23 66.5 14.6 18.6 244 72.7 6 24-Jun-24 44 2.1 11.2 2.1 778 256 3.8 28-Mar-25 44 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.32 0.89 1.04 0.18 0.38 Mann-Kendall Statistic (S) 100.0% 100.0% Confidence Factor 98.5% 84.5% 71.9% 71.9% 76.4% **Concentration Trend:** No Trend Stable Stable No Trend Decreasing Decreasing Decreasing 1000 Concentration (µg/L) 100 10 MW-MW-2 MW-6 07/21 02/22 08/22 03/23 10/23 04/24 11/24 05/25 12/25 MW-7 **Sampling Date** MW-10

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L MW-1 MW-2 MW-5 MW-8 Sampling Point ID: MW-6 MW-10 MTBE CONCENTRATION (µg/L) 15-Feb-22 405 14.3 166 510 264 690 9-Jan-23 342 22 2 126 865 3 14-Apr-23 343 195 22.3 132 435 260 4 59.5 112 16-Oct-23 488 200 156 1000 6 24-Jun-24 306 122 45.6 241 696 110 28-Mar-25 193 190 457 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.31 0.41 0.51 0.25 0.33 Mann-Kendall Statistic (S) 96.5% Confidence Factor 50.0% 99.5% 71.9% 80.9% **Concentration Trend:** No Trend Prob. Increasing No Trend Stable Decreasing Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-2 08/22 03/23 10/23 04/24 11/24 07/21 02/22 05/25 12/25 MW-5 MW-6 Sampling Date MW-8

Notes

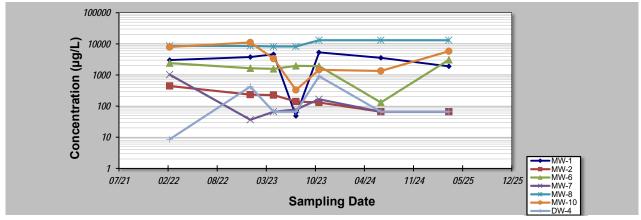
- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

MW-10

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L DW-1 DW-4 Sampling Point ID: MTBE CONCENTRATION (µg/L) 15-Feb-22 0.81 0.81 9-Jan-23 52 9 51.8 3 14-Apr-23 3.1 3.1 144 16-Oct-23 129 153 6 24-Jun-24 73.2 11.5 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation Mann-Kendall Statistic (S) Confidence Factor 66.7% 66.7% **Concentration Trend:** No Trend No Trend 1000 Concentration (µg/L) 100 10 DW-1 0.1 DW-4 03/23 10/23 04/24 11/24 07/21 02/22 08/22 05/25 Sampling Date


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

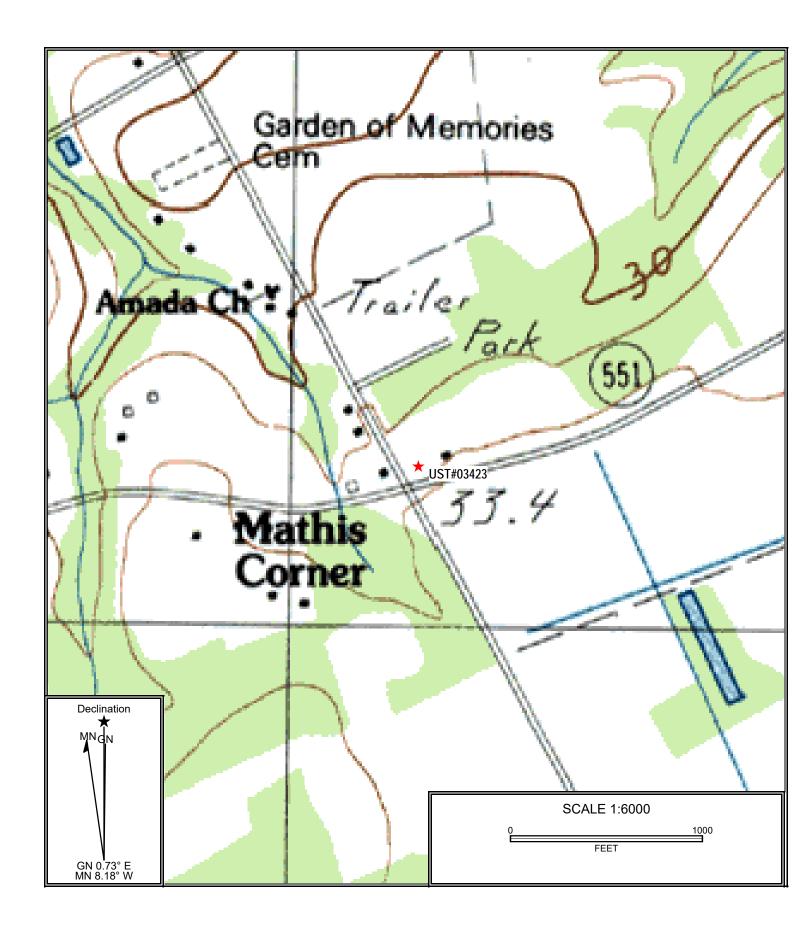
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TAA Concentration Units: µg/L MW-1 MW-2 MW-6 MW-8 Sampling Point ID: MW-7 MW-10 DW-4 TAA CONCENTRATION (µg/L) 15-Feb-22 3030 442 2410 1030 8690 7950 8.6 9-Jan-23 3770 233 1640 36.4 8510 11100 422 3 14-Apr-23 4640 225 1570 65.6 8200 3350 65.6 4 1930 1460 5 16-Oct-23 5340 131 166 13100 913 6 24-Jun-24 3560 65.6 131 65.6 13100 1350 65.6 28-Mar-25 1900 13100 5750 8 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.56 0.70 0.50 Mann-Kendall Statistic (S) 100.0% 50.0% Confidence Factor 50.0% 55.7% 80.9% 80.9% 61.4% Concentration Trend: Stable Stable Stable No Trend Decreasing No Trend No Trend 100000

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com


GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 9-Apr-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: DIPE Concentration Units: µg/L MW-1 MW-6 MW-8 MW10 Sampling Point ID: DIPE CONCENTRATION (µg/L) 15-Feb-22 160 122 268 9-Jan-23 191 88 1 239 555 3 14-Apr-23 178 80.1 436 165 698 16-Oct-23 297 111 68.1 6 24-Jun-24 176 151 698 75.3 110 199 8 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.33 0.33 0.41 0.88 Mann-Kendall Statistic (S) Confidence Factor 98.5% 61.4% 50.0% 88.1% Concentration Trend: Stable Stable No Trend Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-6 08/22 03/23 10/23 04/24 11/24 07/21 02/22 05/25 12/25 MW-8 Sampling Date MW10

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

Robert A. Dunn Corrective Action & Field Support Section Underground Storage Tank Management Division 2600 Bull Street

2600 Bull Street Columbia, SC 29201

B W STOKES OIL CO INC ATTN MR BENNIE STOKES PO BOX 1656 FLORENCE SC 29503

MAY 20 2025

Re: Groundwater Monitoring Report Review & Site-Specific Work Plan Request for Groundwater Sampling Jake Huggins Dba Outpost At Willowcreek; 4925 Pamplico Hwy., Florence, SC UST Permit #03423

Release reported February 26, 2002

Report of Groundwater Monitoring received April 23, 2025

Florence County

Dear Mr. Stokes:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Environmental Services (SCDES) has reviewed the referenced report, and the following comments are provided:

- 1) Monitoring wells MW01, MW02, MW05, MW06, MW08, and MW10 are above Risk-Based Screening Levels (RBSLs) for Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene, MtBE, TAA, and DIPE. The highest concentrations of petroleum Chemicals of Concern (CoC) were found in MW08. An increasing trend was noted in downgradient monitoring wells MW05 and MW06, otherwise the CoC plume appears stable.
 - 2) There were no CoC detections in any receptor. WSW03 is out of service and not in use.
 - 3) SCDES is working to stablish Site-Specific Target Levels (SSTLs) for the referenced release.

To monitor what risk the referenced release may pose to public health and the environment, and in accordance with South Carolina UST Control Regulations (R. 61-92 § 280.65), sampling of all existing monitoring wells plus all water supply wells and surface water bodies within 1,000 feet of the referenced facility as outlined in the most recent revision of the UST Management Division Quality Assurance Program Plan and your contractor's Annual Contractor Quality Assurance Plan (ACQAP) is necessary. The groundwater sampling event must be conducted in compliance with all applicable regulations once the Site-Specific Work Plan (SSWP) is approved. **Your contractor must complete and submit the SSWP on or before August 29, 2025. Please note that approval from SCDES must be issued before work begins.**

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions, please contact me by email robert.dunn@des.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn Hydrogeologist III

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 Technical File

May 28, 2025

Midlands Environmental Consultants, Inc.

Mr. Robert A. Dunn, Hydrogeologist Corrective Action Section Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Environmental Services 2600 Bull Street Columbia, South Carolina 29201 RECEIVED

MAY 3 0 2025

UST DIVISION

Subject:

Site-Specific Work Plan

Jake Huggins DBA Outpost at Willowcreek

Florence, South Carolina UST Permit# 03423

Certified Site Rehabilitation Contractor UCC-0009

UST 53 CHET

Dear Mr. Dunn,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site. MECI is making this proposal to collect current analytical data to evaluate the groundwater quality beneath the site.

If you have any question or comments, please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Yeff L. Coleman Senior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Mr. Robert Dunn	()	SCDHEC Project Manager)
From: Jeff L. Coleman Contractor: Midlands Environmental Consultants, Inc.		Contractor Project Manager)
	UST Contractor Certification Number: 009	
Facility Name: Jake Huggins DBA Outpost at Willowcreek, Facility Address: 4925 Pamplico Highway, Florence, SC 29		<u>#:</u> <u>03423</u>
Responsible Party: BW Stokes Oil Company	Phone: (843	9) 621-5865
RP Address: 1001 Chase Street, Florence, SC 29501		
Property Owner (if different): Barbara Williams		
Property Owner Address: 3309 Willow Creek Road, Flore Current Use of Property: Vacant Lot/Residence	ence, SC 29505	
Scope of Work (Please check all that apply) ☐ IGWA ☐ Tier II	C Groundwater Sampling	☐ GAC
☐ Tier I ☐ Monitoring Well Installat	✓ Groundwater Samplingion ☐ Other	☐ GAC
Analyses (Please check all that apply)		
Groundwater/Surface Water:		
☑ BTEXNMDCA (8260D) ☐ Lead	☐ BOD	
✓ Oxygenates (8260D) □ 8 RCRA	STATE OF THE STATE	☐ Ethanol
☑ EDB (8011) ☐ TPH	☐ Sulfate	☐ Dissolved Iron
☐ PAH (8270E) ☐ pH Drinking Water Supply Wells:	Other	
	(200.8 245.1 or 245.2)	4 1)
	Metals (200.8)	T. 1)
Soil:		
☐ BTEXNM ☐ Lead ☐ RCRA Metals	☐ TPH-DRO (3550B/8015B	Grain Size
☐ PAH ☐ Oil & Grease (90	071) TPH-GRO (5030B/8015B	B) TOC
Air:		
BTEXN		
Sample Collection (Estimate the number of sample Soil 3 Water	The second secon	•
	Supply Wells Air ace Water 2 Duplicate	2 Field Blank 2 Trip Blank
Workship Wells Our	Duplicate	The blank
Field Screening Methodology		
Estimate number and total completed depth for each		
# of shallow points proposed:	Estimated Footage:	feet per point
# of deep points proposed:	Estimated Footage:	feet per point
Field Screening Methodology:		
Permanent Monitoring Wells		
Estimate number and total completed depth for each		
# of shallow wells:	Estimated Footage:	teet per point
# of recovery wells:		
Comments, if warranted:		ioot point

UST	Permit #: 03423 Fac	cility Name:	Jake Huggins DBA Outpost at Willowcreek	
Field			from approval) Field Work Completion: 8/28/2025 # of Copies Provided to Property Owners:	
	ifer Characterization p Test: ☐ Slug Test: ☐ (Check on	ne and provi	de explanation below for choice)	
	stigation Derived Waste Disposal	ons	Purge Water: 200.0	Gallons
Drillin	T ng Fluids: G	Sallons	Free-Phase Product:	_ Gallons
For e event -MECI	t, etc.	to be aband nt to collect currolles.	doned/repaired, well pads/bolts/caps to replace, details or rent analytical data to evaluate the groundwater quality beneath the site.	f AFVR
Yes	Name of Laboratory:SCDHEC Certification Number:	/es/No) /es/No)	If no, indicate laboratory information below. If no, indicate driller information below.	
N/A	Other variations from ACQAP. Please		elow.	
		must be ac	es topographic map showing the site location. Ecurately scaled, but does not need to be surveyed. The monitoring well locations	map
	Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well locations Proposed soil boring locations	Legend wit Streets or h Location of Location of	h facility name and address, UST permit number, and ba nighways (indicate names and numbers) fall present and former ASTs and USTs fall potential receptors	r scale
3.	Assessment Component Cost Agree	ement, SCD	HEC Form D-3664	

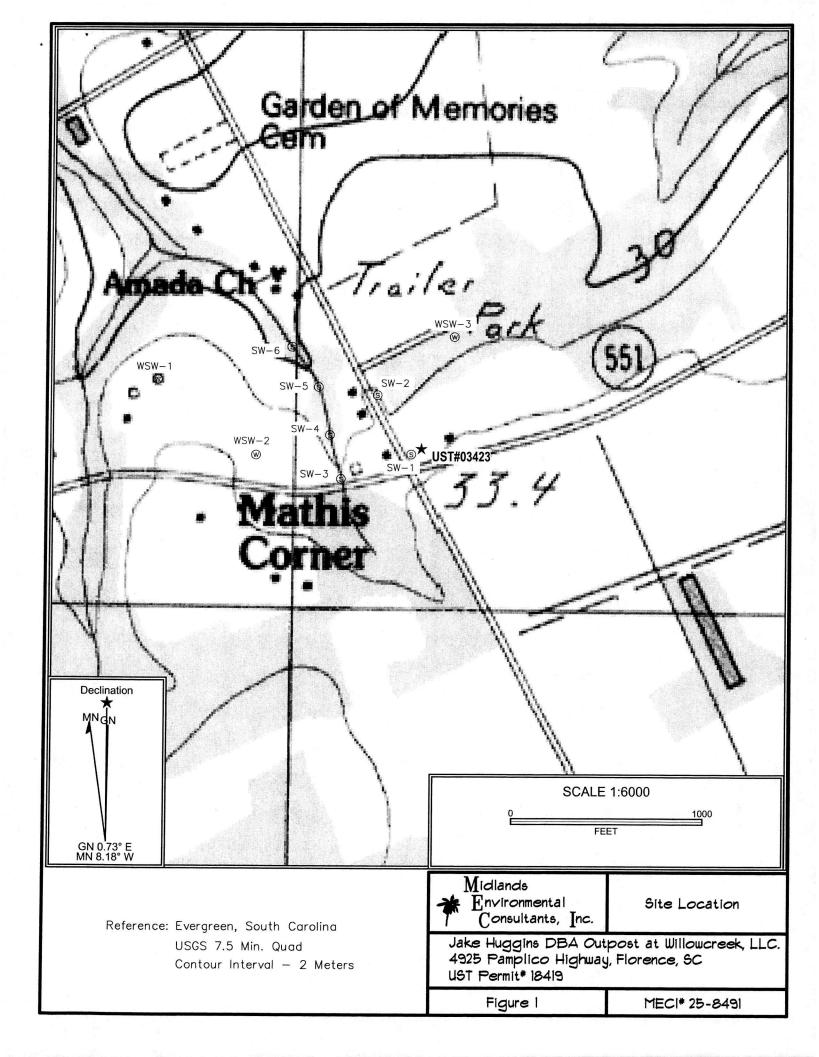
ASSESSMENT COMPONENT COST AGREEMENT

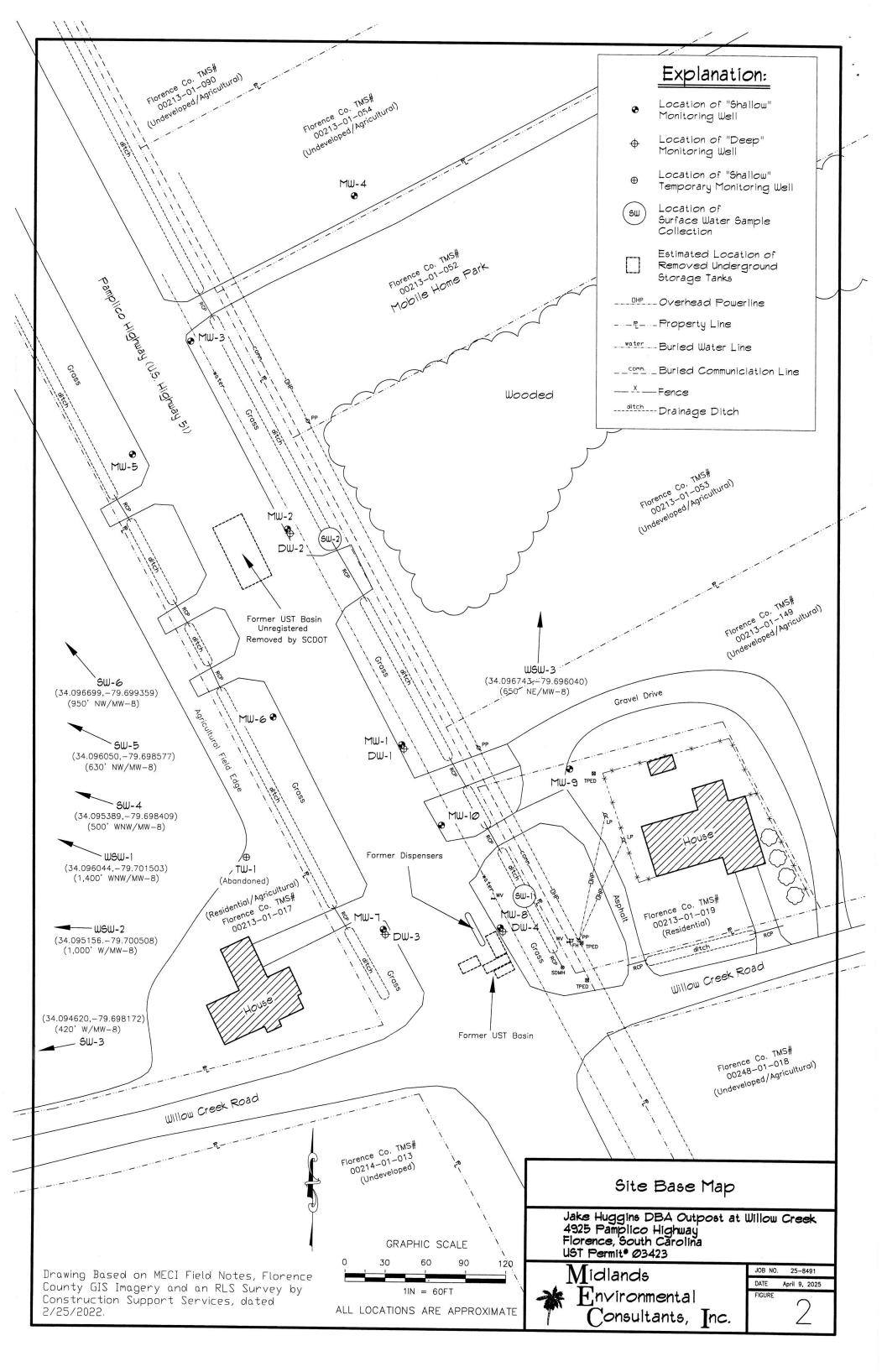
South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 9, 2023

Facility Name: Jake Huggins DBA Outpost @ Willowcreek, LLC.

UST Permit #: 03423	Cost Ag	reement #:	Proposal	
ITEM	QUANTITY	UNIT	UNIT PRICE	TOTAL
A. Plan Preparation				
1.2 Site-specific Work Plan	1 1	each	\$183.22	\$183.22
2.2 Tax Map	1	each	\$85.50	\$0.00
3.2 QAPP Contractor Addendum (App B)		each	\$250.00	\$0.00
B. Survey				
1.1 Receptor Survey		each	\$673.06	\$0.00
C. Survey				
1.2 Comprehensive Survey	1	each	\$1,270.36	\$0.00
5.1 Ground Penetrating Radar Survey (100 x 100)		each	\$1,111.57	\$0.00
D. Mob/Demob				
1.2 Equipment		each	\$1,245.93	\$0.00
2.2 Personnel	2	each	\$516.69	\$1,033.38
3.2 Adverse Terrain Vehicle		each	\$610.75	\$0.00
E. Soil Borings				
1.1 Soil Borings (hand auger)		foot	\$21.80	\$0.00
F. Soil Borings (requiring equipment, push technol	logy, etc) or Fie	ld Screening (including sampling and a	nalyst)
1.2 Standard		per foot	\$33.50	\$0.00
2.2 Fractured Rock		per foot	\$41.40	\$0.00
G.				
H. Well Abandonment				
1.2 2" diameter or less		per foot	\$3.79	\$0.00
2.2 Greater than 2" to 6" diameter		per foot	\$5.50	\$0.00
3.2 Dug/Bored well (up to 6 feet diameter)		per foot	\$18.32	\$0.00
I. Well Installation (In accordance with R.61-71)				
1.2 Water Table (hand augered)		per foot	\$31.40	\$0.00
2.B Water Table (drill rig) 2" Diameter		per foot	\$54.90	\$0.00
2.2 Single-cased 2" Diameter Monitoring Well >50f		per foot	\$59.80	\$0.00
3.2 Telescoping		per foot	\$84.70	\$0.00
4.2 Rock Drilling		per foot	\$81.80	\$0.00
5.2 2" Rock Coring		per foot	\$88.50	\$0.00
6.2 Multi-sampling ports/screens		per foot	\$59.40	\$0.00
7.2 Recovery Well (4" diameter)		per foot	\$69.60	\$0.00
9.2 Rotosonic (2" diameter)		per foot	\$119.00	\$0.00
10.2 Re-develop Existing Well		per foot	\$13.44	\$0.00

J. Groundwater Sample Collection / Gauging Depth	to Water/P	roduct		
1.2 Groundwater Purge	14	per well	\$73.29	\$1,026.06
2.2 Air or Vapors		sample	\$14.66	\$0.00
3.2 Water Supply Sample	3	sample	\$26.87	\$80.61
4.1A HydraSleeve		sample	\$34.20	\$0.00
4.2B No-purge Groundwater Sample/Surface wate	6	sample	\$57.24	\$343.44
5.2 Gauge Well only		sample	\$8.55	\$0.00
6.2 Sample Below Product		sample	\$14.66	\$0.00
7.2 Passive Diffusion Bag		sample	\$31.75	\$0.00
8.2 Field Duplicates (MWs & WSWs) and Field Bla	4	sample	\$30.06	\$120.24
9.2 Groundwater (low flow purge)		sample	\$111.16	\$0.00
10.2 Equipment Blank		sample	\$30.06	\$0.00
11.1 Sample Product		per well	\$52.66	\$0.00
K. Laboratory Analyses-Groundwater				
1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D)	22	per sample	\$149.02	\$3,278.44
2.2 Lead, Filtered		per sample	\$16.85	\$0.00
3.2 Rush EPA Method 8260B		per sample	\$187.62	\$0.00
4.2 Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$34.20	\$0.00
5.2 PAH's		per sample	\$74.02	\$0.00
6.2 Lead		per sample	\$19.54	\$0.00
7.2 EDB by EPA 8011	21	per sample	\$55.21	\$1,159.41
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water				
14.2 BTEXNM+1,2 DCA (524.2)	6	per sample	\$151.52	\$909.12
15.2 7-OXYGENATES & ETHANOL (8260D)	6	per sample	\$112.07	\$672.42
16.2 EDB (504.1)	5	per sample	\$97.11	\$485.55
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil			or N. E. 1887 (CSE 1974) The Armon South	
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00


K. Analyses-Air			-
25.2 BTEX + Naphthalene	per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification			
27.1 C3-C44 Whole Oil (ASTM D3328)	per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)	per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)	per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)	per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)	per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)	per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)	per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints	per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report	each	\$595.30	\$0.00
L. Aquifer Characterization			
1.2 Pumping Test	per hour	\$28.09	\$0.00
2.2 Slug Test	per test	\$233.31	\$0.00
3.2 Fractured Rock	per test	\$122.15	\$0.00
M. Free Product	A Committee of the Comm		e de la companya de
1.1 Free Product Recovery Rate Test	each	\$46.42	\$0.00
N.			
O. Risk Evaluation			
1.2 Tier l Risk Evaluation	each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation	each	\$122.15	\$0.00
P. Survey			
1.1 Subsequent Survey	each	\$297.65	\$0.00
Q. Disposal (gallons or tons)			
1.2 Wastewater 200	gallon	\$1.19	\$238.00
2.2 Free Product	gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal	ton	\$156.25	\$0.00
4.2 Drilling fluids	gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)			
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)			
1.2 Southeast Region	standard	\$12,622.56	\$0.00
2.2 All Other Counties	standard	\$13,844.06	\$0.00
J. IGWA (Use DHEC 3666 form)			
1.2 Southeast Region	standard	\$4,353.67	\$0.00
2.2 All Other Counties	standard	\$4,720.01	\$0.00
2. Active Correction Action	PFP	Bid Cost	\$0.00


W. Aggressive Fluid & Vapor Recovery (AFVR)			
1.2 8-hour Event	per event	\$1,787.40	\$0.00
2.1 24-hour Event	per event	\$4,407.78	\$0.00
3.1 48-hour Event	per event	\$7,242.29	\$0.00
4.1 96-hour Event	per event	\$14,482.28	\$0.00
5.1 Off-gas Treatment 8 hour	per event	\$141.17	\$0.00
6.2 Off-gas Treatment 24 hour	per event	\$294.30	\$0.00
7.2 Off-gas Treatment 48 hour	per event	\$386.10	\$0.00
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00
9.1 Off-gas Treatment 8 hour (w/chlorinated compounds)	per event	\$464.40	\$0.00
10.1 Off-gas Treatment 24 hour (w/chlorinated compound	ds) per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compound	ds) per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compound	ds) per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system insta			
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00

Y. Well Repair	Marine San			
1.2 Additional Copies of the Report Delivered	ALL STREET HIS ACTUAL	each	\$61.07	\$0.00
2.2 Repair 2x2 MW pad		each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad		each	\$107.49	\$0.00
4.2 Replace well vault		each	\$144.14	\$0.00
5.2 Replace well cover bolts		each	\$3.18	\$0.00
6.2 Replace locking well cap & lock		each	\$18.32	\$0.00
7.2 Replace/Repair stick-up		each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up		each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount		each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate		each	\$14.66	\$0.00
11.1 Down-hole Camera		per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization				
1.1 HRSC Screening Equipment Mobilization		each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1		per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2		per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3		per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model		each	\$4,363.20	\$0.00
S. Report Prep & Project Management	12%	percent	\$9,529.89	\$1,143.59
TOTAL				\$10,673.48

DHEC D-4406 (07/2023)

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

Robert A. Dunn
Corrective Action & Field Support Section
Underground Storage Tank Management Division
2600 Bull Street

Columbia, SC 29201

B W STOKES OIL CO INC ATTN MR BENNIE STOKES PO BOX 1656 FLORENCE SC 29503

JUN 25 2025

Re: Site-Specific Work Plan (SSWP) Approval & Groundwater Sampling Notice to Proceed Jake Huggins Dba Outpost at Willowcreek; 4925 Pamplico Hwy., Florence, SC UST Permit #03423; CA #70135 Release reported February 26, 2002 Site Specific Work Plan received May 30, 2025 Florence County

Dear Mr. Stokes:

The Underground Storage Tank (UST) Management Division of the S.C. Department of Environmental Servies (SCDES) has reviewed and approved the referenced SSWP. All scopes of work should be conducted in compliance with the most recent revision of the UST QAPP, your contractor's ACQAP, the submitted SSWP, and all applicable regulations.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". According to SCDES records, approximately \$128,347.90 has been expended from the SUPERB account to date. This scope of work, as recommended by your contractor, is anticipated to cost approximately \$10,673.48.

The Monitoring Report and invoice should be submitted within 60 days of the date of this correspondence. If the report cannot be submitted as required, an extension request must be submitted in writing prior to the due date. The Department will issue a Notice of Alleged Violation if the report or an extension request is not submitted by the required due date.

The contractor must provide notification to the UST Project Manager via email 4 days prior to initiation of any site rehabilitation activities. If there are any changes to the schedule, the UST Project Manager must be contacted within 24 hours of those changes.

In accordance with Section IV.A.4.c of the SUPERB Site Rehabilitation & Fund Access Regulation (R.61-98), the contractor shall be required to indemnify the property owner, underground storage tank owner/operator and the State of South Carolina from and against all claims, damages, losses and expenses arising out of or resulting from activity conducted by the contractor, its agents, employees or subcontractors.

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

UST #03423; SSWP Approval & Groundwater Sampling Notice to Proceed Page 2

Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that the SUPERB Account cannot compensate any costs that are not pre-approved. If for any reason additional tasks will be completed, the additional tasks and the associated cost, must be pre-approved by the UST Management Division for the costs to be paid. SCDES reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, SCDES reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work. Reimbursement for site rehabilitation activities shall in no event exceed the actual costs incurred as required by SUPERB Site Rehabilitation and Fund Access Regulations (R.61-98 § III.3.b).

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a SCDES-certified site rehabilitation contractor as required by the SUPERB Site Rehabilitation and Fund Access Regulation, R.61-98.

SCDES grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All Investigation-Derived Waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the Project Manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

The contractor will be responsible for keeping and preserving suitable records of hydrological and other site assessments, site plans, contracts, accounts, invoices, or other transactions related to the cleanup and rehabilitation and the records must be accessible to the department during regular business hours. In addition, this includes all subcontractor agreements, invoices, correspondence, plans, reports, records, including electronic and paper formats. All records must be maintained for 10 years after project completion.

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions please contact me by email dunnra@dhec.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn Hydrogeologist III

Enc: Approved CA

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 (w/ Enc) Technical file (w/ Enc)

Approved Cost Agreement CA-70135

Facility Name: 03423 - JAKE HUGGINS DBA OUTPOST AT WILLOWCREEK LLC

Facility Number: 03423

PO Number	Description	Comments	Qty / Pct	Unit Price	Amount
70135	A / PLAN PREPARATION / 1.2 /		1	\$183.22	\$183.22
	SITE SPECIFIC WORK PLAN				
70135	D / MOB/DEMOB / 2.2 /		2	\$516.69	\$1033.38
	PERSONNEL				
70135	J / SAMPLE COLLECTION / 1.2 /		14	\$73.29	\$1026.06
	GROUND WATER PURGE				
70135	J / SAMPLE COLLECTION / 3.2 /		3	\$26.87	\$80.61
	WATER SUPPLY SAMPLE				
70135	J / SAMPLE COLLECTION / 4.2B /		6	\$57.24	\$343.44
	NO-PURGE GROUNDWATER				
70135	J / SAMPLE COLLECTION / 8.2 /		4	\$30.06	\$120.24
	FIELD DUPL. (MWS & WSWS) &				
	FB				
70135	K / ANALYSES / 1.2 /		22	\$149.02	\$3278.44
	BTEXNM+OXYGS+1,2 DCA+ETH				
	8260D				
70135	K / ANALYSES / 14.2 /		6	\$151.52	\$909.12
	BTEXNM+1,2 DCA (524.2) WSW				
70135	K / ANALYSES / 15.2 /		6	\$112.07	\$672.42
	OXYGENATES & ETHANOL 8260D				
70135	K / ANALYSES / 16.2 / EDB (504.1)		5	\$97.11	\$485.55
70135	K / ANALYSES / 7.2 / EDB BY EPA		21	\$55.21	\$1159.41
	8011				
70135	Q / DISPOSAL / 1.2 /		200	\$1.19	\$238
	WASTEWATER				
70135	S / REPORT PROJECT		0.12	\$0.12	\$1143.59
	MANAGEMENT / S / REPORT				
	PREP & PROJ. MANAGEMENT				
					Total: \$10673.48

UST#03423/CA#70135-Addendum

From jlc@meci.net <jlc@meci.net>

Date Mon 7/28/2025 4:20 PM

To Robert A. Dunn < Robert.Dunn@des.sc.gov>

Cc Stephanie M. Briney <Stephanie.Briney@des.sc.gov>

1 attachment (86 KB)

70135_Addendum.xlsx;

Robert,

Please find the attached addendum for the above referenced site. Let me know if you have any questions or concerns.

Thanks,

Jeff L. Coleman
Senior Scientist/Managing Principal
Midlands Environmental Consultants, Inc.
(office) 803-808-2043 Ext. 2
(cell) 803-446-0365
jlc@meci.net

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

6.2 Lead

ASSESSMENT COMPONENT COST AGREEMENT

South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 9, 2023

Jake Huggins BDA Outposy @ Willowcreek Facility Name: Cost Agreement #: 70135 UST Permit #: 3423 TOTAL QUANTITY UNIT **UNIT PRICE** ITEM A. Plan Preparation \$183.22 \$0.00 each 1.2 Site-specific Work Plan each \$85.50 \$0.00 2.2 Tax Map \$0.00 3.2 QAPP Contractor Addendum (App B) each \$250.00 B. Survey each \$673.06 \$0.00 1.1 Receptor Survey C. Survey \$0.00 each \$1,270.36 1.2 Comprehensive Survey each \$1,111.57 \$0.00 5.1 Ground Penetrating Radar Survey (100 x 100) D. Mob/Demob \$0.00 \$1,245.93 each 1.2 Equipment (\$516.69) \$516.69 each 2.2 Personnel -1 \$0.00 \$610.75 each 3.2 Adverse Terrain Vehicle E. Soil Borings foot \$21.80 \$0.00 1.1 Soil Borings (hand auger) F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including sampling and analyst) \$0.00 \$33.50 1.2 Standard per foot \$0.00 per foot \$41.40 2.2 Fractured Rock Addendum H. Well Abandonment \$10,673.48 \$0.00 Previously Approved: 1.2 2" diameter or less per foot \$3.79 \$0.00 \$5.50 2.2 Greater than 2" to 6" diameter per foot \$0.00 Increase: (\$2,108.02)3.2 Dug/Bored well (up to 6 feet diameter) per foot \$18.32 . Well Installation (In accordance with R.61-71) \$0.00 New Approved Total: \$8,565.45 per foot \$31.40 1.2 Water Table (hand augered) \$0.00 per foot \$54.90 2.B Water Table (drill rig) 2" Diameter \$0.00 \$59.80 Project Manager: 2.2 Single-cased 2" Diameter Monitoring Well >50ft per foot \$0.00 per foot \$84.70 3.2 Telescoping \$0.00 Section Manager: 4.2 Rock Drilling per foot \$81.80 \$0.00 \$88.50 5.2 2" Rock Coring per foot \$0.00 Finance: \$59.40 6.2 Multi-sampling ports/screens per foot \$69.60 \$0.00 7.2 Recovery Well (4" diameter) per foot \$0.00 Date: 9.2 Rotosonic (2" diameter) per foot \$119.00 \$0.00 per foot \$13.44 10.2 Re-develop Existing Well # of pages J. Groundwater Sample Collection / Gauging Depth to Water/Product From: \$0.00 \$73.29 1.2 Groundwater Purge per well \$0.00 \$14.66 sample 2.2 Air or Vapors UST/SCDHEC (\$26.87)\$26.87 -1 sample 3.2 Water Supply Sample \$34.20 \$0.00 sample 4.1A HydraSleeve (\$228.96) fax # (4.2B No-purge Groundwater Sample/Surface water sample \$57.24 Phone # (\$0.00 \$8.55 5.2 Gauge Well only sample The SCDHEC reserves the authority to pay \$14.66 \$0.00 sample 6.2 Sample Below Product only for work properly performed and/or \$31.75 \$0.00 sample 7.2 Passive Diffusion Bag 8.2 Field Duplicates (MWs & WSWs) and Field Blanks technically justified and will only pay sample \$30.06 \$0.00 rates in accordance with established criteria. \$111.16 \$0.00 9.2 Groundwater (low flow purge) sample sample \$30.06 \$0.00 10.2 Equipment Blank \$0.00 \$52.66 11.1 Sample Product per well K. Laboratory Analyses-Groundwater (\$447.06)1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D) \$149.02 -3 per sample \$16.85 \$0.00 per sample 2.2 Lead, Filtered \$0.00 3.2 Rush EPA Method 8260B per sample \$187.62 \$0.00 \$34.20 4.2 Trimethal, Butyl, and Isopropyl Benzenes per sample \$74.02 \$0.00 5.2 PAH's per sample

per sample

\$19.54

\$0.00

7.2 EDB by EPA 8011	-3	per sample	\$55.21	(\$165.63
8.2 EDB by EPA Method 8011 Rush	·	per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water		por dampio	¥10.00	•
14.2 BTEXNM+1,2 DCA (524.2)	-1	per sample	\$151.52	(\$151.52
15.2 7-OXYGENATES & ETHANOL (8260D)	-1	per sample	\$112.07	(\$112.07
16.2 EDB (504.1)	-1	per sample	\$97.11	(\$97.11
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00
K. Analyses-Air				
25.2 BTEX + Naphthalene		per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification			1	***
27.1 C3-C44 Whole Oil (ASTM D3328)		per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)		per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)		per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)		per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)		per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)		per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)		per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints		per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report		each	\$595.30	\$0.00
L. Aquifer Characterization				
1.2 Pumping Test		per hour	\$28.09	\$0.00
2.2 Slug Test		per test	\$233.31	\$0.00
3.2 Fractured Rock	economic de la company	per test	\$122.15	\$0.00
M. Free Product		l soob	\$46.42	\$0.00
1.1 Free Product Recovery Rate Test		each	\$40.42	φυ.υς
N. O. Risk Evaluation				
1.2 Tier I Risk Evaluation		each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation		each	\$122.15	\$0.00
P. Survey		Cacii	ψ122.10	Carlo Car
1.1 Subsequent Survey		each	\$297.65	\$0.00
Q. Disposal (gallons or tons)				
A SANDON MANAGEMENT OF A CONTRACT OF A MANAGEMENT OF A MANAGEMENT OF A CONTRACT OF A C	-114.5	gallon	\$1.19	(\$136.26
2.2 Free Product		gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal		ton	\$156.25	\$0.00
4.2 Drilling fluids		gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)		And Surface of the Control of the Co		
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)				•••
1.2 Southeast Region		standard	\$12,622.56	\$0.00
2.2 All Other Counties		standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)			1 0405007	\$0.00
1.2 Southeast Region		standard	\$4,353.67	\$0.00
2.2 All Other Counties		standard	\$4,720.01	\$0.00
Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR)	ragio yere diagoni diri	PFP	Bid Cost	φυ.υι
1.2 8-hour Event		per event	\$1,787.40	\$0.00
MACHINE MACHINE SACINGATION AND ASSESSMENT AND ASSESSMENT ASSESSME			\$4,407.78	\$0.00
2.1 24-hour Event		per event		\$0.00
3.1 48-hour Event		per event	\$7,242.29	\$0.00
4.1 96-hour Event		per event	\$14,482.28	
5.1 Off-gas Treatment 8 hour		per event	\$141.17	\$0.0
6.2 Off-gas Treatment 24 hour		per event	\$294.30	\$0.0
7.2 Off-gas Treatment 48 hour		per event	\$386.10	\$0.00 \$0.00
8.1 Off-gas Treatment 96 hour		per event	\$898.84	
9.1 Off-gas Treatment 8 hour (w/chlorinated compoun	1. \	per event	\$464.40	\$0.00

10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
	each	\$108.00	\$0.00
22.1 3" diameter x 10' length boom	each	\$132.84	\$0.00
23.1 5" diameter x 10' length boom	each	\$791.10	\$0.00
24.1 New FPP recovery skimmer (2" wells)			\$0.00
25.1 New FPP recovery skimmer (4" wells)	each each	\$1,247.40 \$760.32	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)		4	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installatio	each	\$2,320.86	\$0.00
1.2 New GAC System Installation	each	\$1,099.35	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$427.53	\$0.00
3.2 Filter replacement/removal	each	\$335.92	\$0.00
4.2 GAC System removal, cleaning, & refurbishment		\$305.38	\$0.00
5.2 GAC System housing	each	\$183.22	\$0.00
6.2 In-line particulate filter	each	\$1.84	\$0.00
7.2 Additional piping & fittings	foot	\$1.04	\$0.00
Y. Well Repair	l each l	\$61.07	\$0.00
1.2 Additional Copies of the Report Delivered		\$61.07	\$0.00
2.2 Repair 2x2 MW pad	each		\$0.00
3.2 Repair 4x4 MW pad	each	\$107.49	\$0.00
4.2 Replace well vault	each	\$144.14	
5.2 Replace well cover bolts	each	\$3.18	\$0.00
6.2 Replace locking well cap & lock	each	\$18.32	\$0.00
7.2 Replace/Repair stick-up	each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up	each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount	each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate	each	\$14.66	\$0.00
11.1 Down-hole Camera	per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization	, ,		
1.1 HRSC Screening Equipment Mobilization	each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1	per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2	per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3	per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model	each	\$4,363.20	\$0.00
S. Report Prep & Project Management 12%	percent	(\$1,882.17)	(\$225.86)
TOTAL			(\$2,108.02)

DHEC D-4406 (07/2023)

Hard Copy

Emai

Date Received	8-5-25
Permit Number	0 342 3
Project Manager	Robert Dunn.
Name of Contractor	MECI
Description	6 WM Report
Docket Number	
Scanned	

.

GROUNDWATER MONITORING REPORT

Jake Huggins DBA Outpost at Willowcreek
4925 Pamplico Highway
Florence, South Carolina
Florence County
UST Permit# 03423
CA# 70135

Prepared By:

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

July 28, 2025

MECI Project No. 25-8521

July 28, 2025

Mr. Robert Dunn, Hydrogeologist Corrective Action & Field Support Section Underground Storage Tank Division Bureau of Land and Waste Management South Carolina Department of Environmental Services 2600 Bull Street Columbia, South Carolina 29201

Subject: Groundwater Monitoring Report

Jake Huggins DBA Outpost at Willowcreek

4925 Pamplico Highway Florence, South Carolina

Florence County

UST Permit# 03423; CA# 70135

MECI Project# 25-8521

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

On behalf of BW Stokes Oil Company, Inc., Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Groundwater Monitoring Report for the referenced site. This report describes assessment activities conducted at the site and results of those activities in general accordance with South Carolina Department of Environmental Services (SCDES) guidelines, including adherence to the UST Division Programmatic Quality Assurance Program Plan (QAPP).

Midlands Environmental appreciates the opportunity to offer our professional environmental services to you on this project. Please feel free to contact us at 803-808-2043, if you have any immediate questions or comments.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist Bryan T. Shane, P.G. Principal Geologist

Cc: SCDOT, PO Box 191, Columbia, SC 29201

Linda T. Huggins, 3695 Willow Creek Road, Florence, SC 29505 Barbara M. Williams, 3309 Willow Creek Road, Florence, SC 29505 Willie B. Winchester Jr., 3101 Willow Creek Road, Florence, SC 29505 William L. Huggins, 621 Mallard Pond Road, Murrells Inlet, SC 29576

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 RECEPTOR SURVEY & SITE DATA	3
3.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYSES	5
4.0 GROUNDWATER ANALYTICAL RESULTS	6
5.0 HISTORICAL COC CONCENTRATION TRENDS	7
6.0 MONITORING SUMMARY	8
7.0 COMMENTS & RECOMMENDATIONS	9
8.0 OUALIFICATIONS OF REPORT	9

TABLE OF CONTENTS (cont.)

TABLES: Table 1 – GROUNDWATER COC CONCENTRATION DATA

Table 2 – POTENTIOMETRIC DATA

FIGURES: Figure 1 – TOPOGRAPHIC MAP

Figure 2 – SITE BASE MAP

Figure 3 – GROUNDWATER COC SITE MAP

Figure 3A – GROUNDWATER COC SITE MAP (Oxygenates)

Figure 4 – POTENTIOMETRIC DATA SITE MAP (Groundwater Contour / "Shallow" Zone) Figure 4A – POTENTIOMETRIC DATA SITE MAP (Groundwater Contour / "Deep" Zone)

Figure 5 – BENZENE ISOPLETH ("Shallow" Zone)

Figure 5A - NAPHTHALENE ISOPLETH ("Shallow" Zone)

Figure 5B – MTBE ISOPLETH ("Shallow" Zone)

**APPENDIX A - SITE SURVEY

APPENDIX B - SAMPLING LOGS, LABORATORY DATA SHEETS AND CHAIN OF CUSTODY FORMS

**APPENDIX C – TAX MAP DATA

**APPENDIX D – SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS

**APPENDIX E – WELL LOGS & 1903 FORMS

**APPENDIX F – AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G - DISPOSAL MANIFESTS

**APPENDIX H – LOCAL ZONING REGULATIONS

**APPENDIX I – FATE & TRANSPORT MODELING

**APPENDIX J – ACCESS AGREEMENTS

APPENDIX K – DATA VERIFICATION CHECKLIST

APPENDIX L – DETAILED RECEPTOR INFORMATION

APPENDIX M - MANN-KENDALL STATISTICAL ANALYSES

NOTE: ITEMS LISTED WITH AN ** BESIDE IT WERE NOT NEEDED AS A PART OF THIS SCOPE OF WORK

1.0 INTRODUCTION

i. Facility Information

Name: Jake Huggins DBA Outpost at Willowcreek

UST Permit# 03423

Address: 4925 Pamplico Highway, Florence SC 29505

Telephone #: N/A

ii. Owner/Operator Information

Name BW Stokes Oil Company, Inc.

Address P.O. Box 1656, Florence, SC 29503

Telephone # (843) 621-5865

iii. Property Owner Information

Name Barbara Williams

Tax Map #: Florence County Tax Map #: 00213-01-019
Address 3309 Willow Creek Road, Florence, SC 29505

Telephone # (843) 662-0808

iv. Contractor Information

Name: Midlands Environmental Consultants, Inc.

Certification #: 9

Address: P. O. Box 854, Lexington, SC 29072

Telephone #: (803) 808-2043

v. Well Driller Information

Name: N/A

Certification #: N/A
Address: N/A

Telephone #: N/A

vi. Laboratory Information

Name: Pace Analytical Services, LLC.

Certification #: 99006001

Address: 9800 Kincey Ave. Suite 100, Huntersville, NC 28078

Telephone #: (704) 875-9092

vii. Facility History

Release D	Pate:	Release #1 reported 2/26/2002				
Estimated	d Quantity of Release:	Unknown				
Other Re	leases at Facility:	Release #2 (NFA'd 7/28	3/2020)			
Release R	Ranking:	2BB				
Current S	Site Usage:	Residence (SCDOT Right of Way)				
Tank#	Capacity/Product	In Use/Abandoned Tank Status				
1	2,000 Gal. Regular/Unleaded Gasoline	Abandoned	Removed (6/30/2016)			
2	4,000 Gal. Gasoline Plus	Abandoned Removed (6/30/2016)				
3	6,000 Gal. Gasoline Super/Premium	Abandoned Removed (6/30/2016)				
4	3,000 Gal. Regular/Unleaded Gasoline	Abandoned Removed (6/30/2				
5	500 Gal. Kerosene	Abandoned Removed (6/30/2016)				

The following table presents previous site activities performed at the site:

Date	Assessment Type	Notes:
Pre 2008	Unknown MWI	Completed by unknown contractor. Installation of MW-1 through MW-4.
8/26/2008	Tier II Assessment	Completed by Davis & Brown. Monitoring wells MW-5, MW-6 installed. MW-5 installed as IGWA associated with second release. Analytical results from MW-1, MW-4, MW-5 and MW-6 were above RBSL for Benzene, MTBE, Naphthalene.
5/12/2009	Tier II Assessment	Completed by Davis & Brown. Installation of MW-7 through MW-22, MW-1D, and MW-2D. Multiple wells detected concentrations above RBSL's.
6/4/2015	Groundwater Sampling Event	Completed by Davis & Brown. Monitoring wells MW-14 through 20 and MW-2D reported destroyed. Multiple wells detected concentrations above RBSL's.
Circa 2016	DOT Construction	SCDOT widening destroys remaining well network.
3/7/2022	Tier II Assessment	Completed by MECI. This assessment included field screening of soil and groundwater samples, the installation of monitoring wells MW-1 thru MW-10 and DW-1 thru DW-4, sampling and chemical analysis of monitoring wells and nearby receptors and aquifer slug test.
1/9/2023	Groundwater Sampling Event	Completed by MECI.
4/14/2023	Groundwater Sampling Event	Completed by MECI.
7/14/2023	Groundwater Sampling Event	Completed by MECI.
10/16/2023	Groundwater Sampling Event	Completed by MECI.
6/24/2024	Groundwater Sampling Event	Completed by MECI.
3/28/2025	Groundwater Sampling Event	Completed by MECI.

viii. Regional Geology and Hydrogeology

The site is located in the Coastal Plain Physiographic Province, which is generally comprised of Upper Cretaceous to present aged, wedge-shaped formations that begin at the "Fall Line" and dip towards the Atlantic Ocean with ground surface elevations typically less than 300 feet. The sedimentary soils of these formations consist of unconsolidated sand, clay, gravel, marl, cemented sands, and limestone that were deposited unconformably over Mesozoic/Paleozoic age basement rock consisting of granite, schist, and gneiss similar to the rocks of the Piedmont Physiographic Province. The thickness of the Coastal Plain sediments varies from zero at the "Fall Line" to more than 4,000 feet at the southern tip of South Carolina near Hilton Head Island.

The Coastal Plain province was formed during Quaternary, Tertiary, and late Cretaceous geologic periods and can be divided generally into three subunits: Upper Coastal Plain, Middle Coastal Plain, and Lower Coastal Plain. The Lower Coastal Plain comprises approximately one-half of the entire Atlantic Coastal Plain of South Carolina and is separated from the middle coastal plain by the Surry Scarp, a seaward facing scarp with a toe elevation of 90 to 100 feet. The Middle Coastal Plain and the Upper Coastal Plain each compose approximately one fourth of the Coastal Plain area and are separated by the Orangeburg Scarp, a seaward facing scarp with a toe elevation of 250 to 270 feet.

The Lower Coastal Plain is typically identified as the area east of the Surry Scarp below elevation 100 feet, with a vertical stratigraphic sequence overlying the basement rock consisting of unconsolidated Cretaceous, Tertiary, and Quaternary sedimentary deposits. The surface deposits

of the Lower Coastal Plain were formed during the Quaternary period which was characterized by the formation of the Carolina Bays and scarps throughout the east coast due to sea level rise and fall, the formation of the barrier islands, and the formation of flood plains from major rivers. Preceding the Quaternary period, limestone was deposited in the Lower Coastal Plain.

The Middle Coastal Plain is typically identified as the area between the Orangeburg Scarp and the Surry Scarp and falls between elevation 100 feet and 270 feet. The vertical stratigraphic sequence overlying the basement rock consists of unconsolidated Cretaceous and Tertiary sedimentary deposits formed as a result of scouring from the regressive cycles of the Ocean as it retreated. During the Eocene epoch of the Tertiary period, limestone was deposited in the Middle Coastal Plain.

The Upper Coastal Plain is typically identified as the area between the "Fall Line" and the Orangeburg Scarp and falls between elevations 270 feet and 300 feet. The Upper Coastal Plain was formed during the Tertiary and late Cretaceous periods and is marked by the formation of the Sandhills dunes as a result of fluvial deposits over the Coastal Plain consisting of marine sediments, limestone, and sand.

Coastal Plain formations generally dip toward the Atlantic Ocean. Consequently, regional groundwater movement is to the southeast. On a regional scale, hydraulic gradients are relatively low. Locally, in the surficial aquifer, groundwater discharges into streams, lakes or springs where the groundwater table intersects lows occupied by these water bodies.

2.0 RECEPTOR SURVEY & SITE DATA

approximately 2'-4' feet below ground surface (BGS).

i. Known Potential Receptors

WSW-1	WSW-1 is located approximately 1,400' feet west-north of MW-8 at 3101 Willow Creek Road. Samples have historically been collected from the spigot on the water supply which is located inside one of the bran buildings at the property. GPS: 34.096044, -79.701503
	WSW-2 is located approximately 1,000' feet west of MW-8 at 3119 Willow Creek Road. Samples have historically been collected from the spigot on the water supply. GPS: 34.095156, -79.700508
WSW-3	WSW-3 is located approximately 650' feet northeast of MW-8 at 4905 Legettes Road. Well Disconnected; Unable to sample with bailer due to metal elbow at well head. GPS: 34.096743, -79.696040
Possible WSW	According to property, there is no well on the property.
Possible WSW	According to property owner, there is no well on the property.
SW-1	Sample collected from drainage ditch adjacent to MW-8. GPS: 34.095076, -79.696772
SW-2	Sample collected from drainage ditch adjacent to MW-2. GPS: 34.095847, -79.697296
SW-3	Sample collected approximately 420' west of MW-8 from a stream. GPS: 34.094620, -79.698172
	Sample collected approximately 500' west-northwest of MW-8 from a stream. GPS: 34.095389, -79.698409
	Sample collected approximately 630' west-northwest of MW-8 from a stream. GPS: 34.096050, -79.698577
SW-6	Sample collected approximately 950' northwest of MW-8 from a stream. GPS: 34.096699, -79.699359
	Underground Utilities

Known underground utilities at the site include buried water, gas and telecommunication lines. Utilities are buried

ii. Receptor Survey Results

A receptor survey was not requested as part of the approved cost agreement.

iii. Site/Adjacent Land Usage (Residential, Commercial, Agricultural, Industrial, etc.)

Site	Residential
North	Residential
South	Agricultural
East	Agricultural
West	Residential
Permit #'s of UST Sites within 1,000' feet of site	N/A

iv. Site Specific Geology and Hydrogeology

The mean elevation of the property as depicted on the local USGS quadrangle (Evergreen, SC) appears to be approximately 33 meters (108 feet) above sea level. The subject site is located in the Middle Coastal Plain. According to Newell et al. (In Review), the subject site is located in the Bear Bluff Formation. The Bear Bluff Formation is a Pliocene age unit described as consisting of gray to cream, fossiliferous, coarse-grained calcareous sand and sandy limestones.

Coastal plain sediments were encountered during drilling activities conducted at the site during previous assessment activities. A generalized vertical profile to the investigated depth of 35' feet below ground surface (BGS) is as follows:

Depth (Feet BGS)	Generalized Soil Description									
0.0'-6.0'	Brown/Yellow Fine SAND									
6.0'-16.0'	Pink/Grey Silty Fine SAND									
16.0'-34.0'	Tan, Medium SAND									
34.0'-35.0'	Dark Grey, Fine Sandy CLAY									

The following table presents grain size distribution results from samples analyzed for grain size during previous assessment activities:

Sample ID#	Sample Depth	% Gravel	% Coarse Sand	% Medium Sand	% Fine Sand	% Silt	% Clay
03423-SB01	8'-10'	0	0	38.0	40.2	4.2	17.6
03423-SB01	24'-26'	0	3.0	44.0	45.5	3.2	4.3
03423-SB01	32'-34'	0	4.0	3.0	3.7	49.7	39.6

On July 15, 2025, stabilized groundwater levels were measured in the monitoring well network. Depth to groundwater ranged from 3.10 feet below top of casing (BTOC) to 5.40 feet BTOC in the wells measured. The groundwater measurements are summarized in tabular form in Table 2 and presented on Figure 4/4A.

The potentiometric surface indicates that the groundwater flow beneath the site is generally to the northwest, toward drainage features associated with the Little Willow Creek. The February 2022 horizontal gradient was calculated to be approximately 0.0118 foot per foot (ft/ft). Calculated average

groundwater flow velocities based on aquifer testing was determine to be approximately 97.98 feet per year (ft/yr.).

Based on comparison between the "deep" wells and the close by water table bracketing monitoring wells, the vertical gradient appears to be generally flat.

3.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYSES

On July 15, 2025, MECI personnel collected groundwater samples from fourteen (14) monitoring wells, two (2) surface water locations and two (2) water supply wells at the subject site. During sampling activities, surface water locations SW-3, SW-4, SW-5 and SW-6 were found to be dry and water supply well WSW-3 was unable to be sampled due to the well being inactive with no electrical supply. As approved SCDES, all monitoring wells were to be purged prior to sample collection. Fourteen (14) monitoring wells were purged prior to sample collection.

Prior to sampling, MECI personnel utilized an electronic water level indicator for water level measurements and an oil/water interface probe for free phase petroleum product level measurements. Where applicable, purging was completed by bailing at least five well volumes of water from the well, or until all water was evacuated from the well, whichever occurred first. Sampling/purging was completed utilizing a prepackaged, clear, disposable polyethylene bailer and nylon rope. A new set of nitrile gloves were worn at each monitoring well, and at all time samples were handled. Field measurements of pH, conductivity, dissolved oxygen, and water temperature were obtained before well sampling process. MECI utilized YSIPro20 meter for DO (mg/L) and temperature readings (°C) and YSI Pro 1030 meter for pH and conductivity (uS) readings and a MicroTPI turbidimeter for turbidity readings (NTU). The attached Monitoring Well Purge and Sampling Data Sheets present the results of the field measurements obtained. The wells were sampled in accordance with the most recent revision of SCDES's Quality Assurance Program Plan for the Underground Storage Tank Management Division and the most recent revision of MECI's Standard Operating Procedures.

Groundwater samples obtained were sent to Pace Analytical Services, Inc. of Huntersville, NC (SCDES Laboratory Certification #99006001) for analysis.

The following sampling matrix contains well development and requested analyses for each well:

Sample ID	Purge	No Purge	Sampled Below Product	Duplicate/Field Blank	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260D)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260D)	8 Oxygenates (EPA Method 8260D)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									Ar	nalyte Samp	led		
MW-1	X						X	X	X	X			
MW-2	X						X	X	X	X			
MW-3	X						X	X	X	X			
MW-4	X						X	X	X	X			
MW-5	X						X	X	X	X			

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dichloroethane

Sample ID	Purge	No Purge	Sampled Below Product	Duplicate/Field Blank	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260D)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260D)	8 Oxygenates (EPA Method 8260D)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									An	alyte Sampl	ed		
MW-6	X						X	X	X	X			
MW-7	X						X	X	X	X			
MW-8	X						X	X	X	X			
MW-9	X						X	X	X	X			
MW-10	X						X	X	X	X			
DW-1	X						X	X	X	X			
DW-2	X						X	X	X	X			
DW-3	X						X	X	X	X			
DW-4	X						X	X	X	X			
SW-1		X					X	X	X	X			
SW-2		X					X	X	X	X			
SW-3		X					X	X	X	X			
SW-4		X					X	X	X	X			
SW-5		X					X	X	X	X			
SW-6		X					X	X	X	X			
DUP-1				X			X	X	X	X			
Field Blank				X			X	X	X	X			
Trip Blank							X		X	X			
WSW-1										X		X	X
WSW-2										X		X	X
WSW-3					X								
DUP.				X						X		X	X
Field Blank				X						X		X	X
Trip Blank Notes: BTEX = Benzen	e Toler	ne Eth	vlhenzo	16 & T	ital Vulo	nes				X		X	

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether

1,2 DCA = 1,2 Dichloroethane

The results of the laboratory analyses are summarized in Table 1 and presented in Appendix B.

Purge water produced by the purging process was treated on-site utilizing a granular activated carbon unit. A total of 85.50 gallons of purge water was disposed of in this manner. A disposal manifest for the referenced purge water is attached in Appendix G and the required post-GAC laboratory results in presented in Appendix B.

4.0 GROUNDWATER ANALYTICAL RESULTS

Free phase petroleum product was not detected in any of the monitoring wells during sampling activities. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-8. Of the eighteen sampling

locations analyzed, six monitoring wells (MW-1, MW-2, MW-5, MW-6, MW-7, MW-8, MW-10, DW-1 and DW-4) detected petroleum constituents above Risk-Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL (ug/l)	Wells Above RBSL
Product	0.01'	N/A
Benzene	5	MW-1, MW-2, MW-6, MW-8, MW-10 & DW-4
Toluene	1,000	MW-8 & DW-4
Ethylbenzene	700	MW-8
Total Xylenes	10,000	MW-8
Naphthalene	25	MW-1, MW-7, MW-8, MW-10 & DW-4
MTBE	40	MW-1, MW-2, MW-5, MW-6, MW-8, DW-1 & DW-4
1,2 DCA	5	N/A
EDB	0.05	N/A
TAA	240	MW-1 & MW-10
TAME	128	N/A
ETBA	NE	RBSL Not Established
TBA	1,400	N/A
TBF	NE	RBSL Not Established
DIPE	150	N/A
Ethanol	10,000	N/A
ETBE	47	N/A

The analytical results from the remainder of the sampling points did not indicate petroleum impact above the RBSL. Results of the analyses for each sampling point and specific parameters are listed on Table 1 and provided in Appendix B.

5.0 HISTORICAL COC CONCENTRATION TRENDS

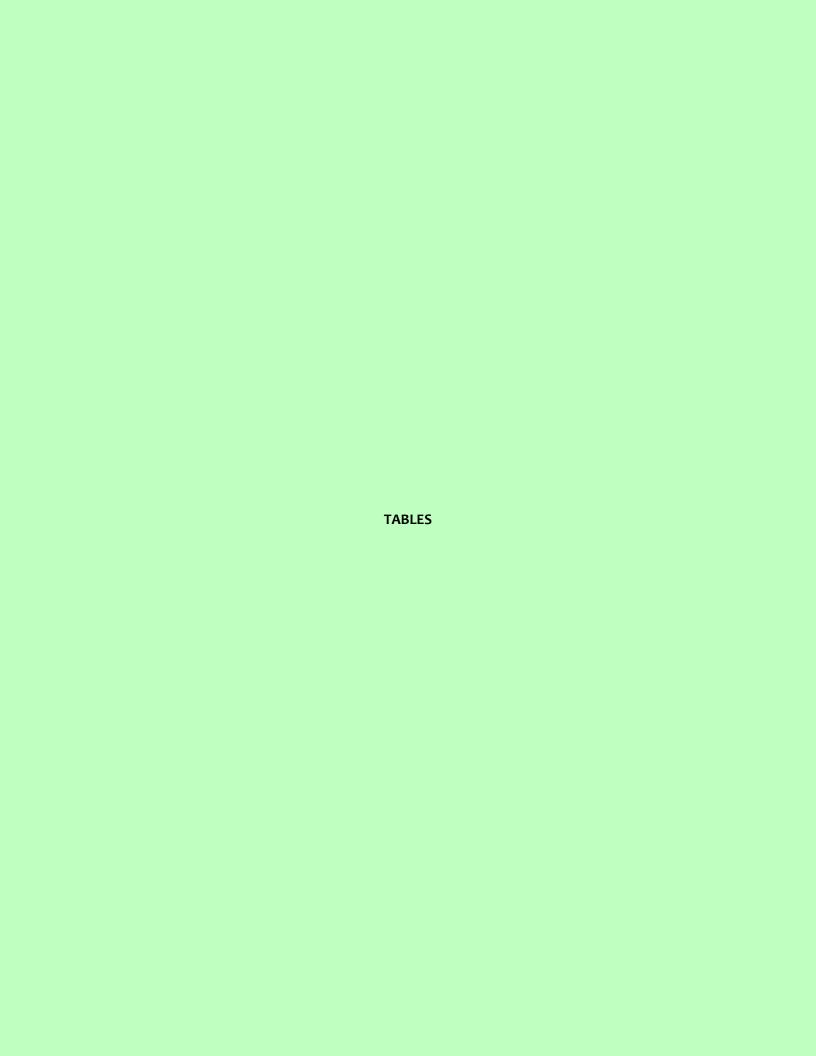
Fourteen monitoring wells were included in the groundwater sampling program established for the site. Five monitoring wells (MW-3, MW-4, MW-9, DW-2 and DW-3) have historically exhibited results below the established RBSL. Mann-Kendall statistical analyses of the Chemicals of Concern (CoC's) with historical concentrations above the RBSL were completed utilizing the GIS Environmental Mann-Kendall Toolkit. The statistical analysis compares historical CoC results to determine if there is an increasing, decreasing, stable or not trend to the data. If the analytical results were non-detect (ND) the method detection limit was used. The analyses included analytical data for Benzene (MW-1, MW-2, MW-6, MW-8, MW-10 and DW-4), Toluene (MW-8 and DW-4), Ethylbenzene (MW-8 and MW-10), Xylenes (MW-8), Naphthalene (MW-1, MW-2, MW-6, MW-7, MW-8, MW-10 and DW-4), MTBE (MW-1, MW-2, MW-5, MW-6, MW-8, MW-10, DW-1 and DW-4), TAA (MW-1, MW-2, MW-6, MW-7, MW-8, MW-10 and DW-4) and DIPE (MW-1, MW-6, MW-8 and MW-10).

The statistical analyses show:

- Benzene decreasing (MW-2 and MW-6), stable (MW-1 and MW-10) and no trend (MW-8 and DW-4).
- Toluene no trend (MW-8 & DW-4).
- Ethylbenzene stable (MW-10) and no trend (MW-8).

- Xylenes no trend (MW-8)
- Naphthalene decreasing (MW-1, MW-2 and MW-6), stable (MW-8 and MW-10) and no trend (MW-7 and DW-4).
- MTBE increasing (MW-5), probably increasing (MW-6), decreasing (MW-2), probably decreasing (MW-10) stable (MW-1) and no trend (MW-8, DW-1 and DW-4).
- TAA decreasing (MW-2), probably decreasing (MW-10), stable (MW-1) and no trend (MW-6, MW-7, MW-8 and DW-4).
- DIPE increasing (MW-8), probably increasing (MW-6) and stable (MW-1 and MW-10).

6.0 MONITORING SUMMARY


- Groundwater flow is primarily to the northwest, toward drainage features associated with the Little Willow Creek.
- Free phase petroleum product was not detected in any of the monitoring wells during sampling activities.
- Fourteen groundwater monitoring wells, two surface water locations and two water supply wells were sampled on July 15, 2025. Petroleum compounds were detected above RBSL's in groundwater monitoring wells MW-1, MW-2, MW-5, MW-6, MW-7, MW-8, MW-10, DW-1 and DW-4. Compounds detected at the site above the established RBSL's include Benzene, Toluene, Ethylbenzene, Total Xylenes, Naphthalene, MTBE and TAA.
- The analytical results also reported petroleum constituents above the laboratory method detection limit and/or "J" values in samples collected from DW-2, WSW-1 and WSW-2; however, the concentrations did not exceed the RBSL.
- Analytical results did not indicate petroleum impact in any of the samples collected from the surface water locations or water supply wells sampled. Samples were unable to be collected from surface water locations SW-3, SW-4. SW-5 and SW-6 due to these areas being found dry and water supply well WSW-3 due to the well being inactive.
- In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed batch samples. The duplicated samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the Relative Percent Differences (RPD) between each pair of samples. The RPD control limit for the groundwater samples is 20%. Duplicate samples were collected from the parent samples of MW-1 and WSW-1. The precision for the target analytes were met for these sample pairs and the analytical results detected the same compounds at similar concentrations. Furthermore, field blanks and trip blanks were collected and submitted during the groundwater sampling activities. No detectable concentrations of the requested method constituents were reported in any of the field or trip blanks associated with the monitoring well or surface water samples or the trip blank associated with the water supply well samples. Low levels of Toluene were detected in the field blank (0.66 μg/L) associated with the drinking water samples; however, low levels of Toluene should not affect the data usability due to these levels being well below the established RBSL for Toluene.

7.0 COMMENTS & RECOMMENDATIONS

- Since March 38, 2025 sampling event, increases have occurred in monitoring wells MW-7, DW-1 and DW-4 to levels above the established RBSL's. Decreases have occurred in monitoring well MW-10. Analytical results from the remainder of the monitoring wells have generally remained constant.
- Increasing trends in MTBE to be appear to be occurring in MW-5/MW-6 and increasing trends in DIPE appear to be occurring in MW-6/MW-8. Overall, the Mann-Kendall statistical analyses show a decreasing or stable trends in MW-2 and MW-10. No trends have been established to date in MW-1, MW-7, DW-1 and DW-4.
- Data gaps currently persist horizontally north of MW-5, west of MW-5/MW-6 and south of MW-8. With the exception of the southerly direction from MW-8/DW-4, it appears these data gaps persist due to property access issues encountered at the site in 2022.
- MECI concurs with SCDES that further definition of the plume is not warranted at this time; however, if increasing MTBE trends continue, additional assessment maybe necessary north of MW-5 and west of MW-5/MW-6.
- MECI request the site be modeled to current site conditions and the Site-Specific Target Levels (SSTL's) be relinquished to our office. Based on the modeling, MECI will be able to better evaluate site rehabilitation needs.

8.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in hydrogeological assessment and waste management projects of this type. Our evaluation of site conditions has been based on our understanding of the site, project information provided to us, and data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpretation of subsurface data between borings. Contents of this report are intended for the sole use of BW Stokes Oil Company, Inc., SCDES and MECI under mutually agreed upon terms and conditions. If other parties wish to rely on this report, please contact MECI prior to their use of this information so that a mutual understanding and agreement of the terms and conditions of our services can be established.

																USIFER	(WITT# U3423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Naphthalene (µg/L)	MTBE (µg/L)	1, 2 DCA (µg/L)	EDB (µg/L)	ΤΑΑ (με/ι)	TAME (Hg/L)	ETBA (µg/L)	TBA (μg/L)	TBF (µg/1)	DIPE (µg/L)	Ethanol (µg/L)	ETBE (µg/L)
		RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL
	0/45/0000	5	1,000	700	10,000	25	40	5	0.05	240	128	NE	1,400	NE	150	10,000	47
	2/15/2022	624	19.3	158	67.9	78.7	264	<0.250	<0.00512	3030	56.9	<7.00	169	<6.90	160	<50.0	<0.720
	1/9/2023	620	16.4	74.1	16.9	66.0	342	<1.6	<0.0075	3770	60.6	<260	200 J	<147	191	<361	<16.2
	4/14/2023	749	11.5 J	39.7	<25.0	51.1	343	<10.3	<0.0073	4640	59.9	<270	<455	<120	178	<720	<42.3
03423-MW01	7/14/2023	964	10.4 J	23.8 J	<25.0	49.9	465	<10.3	<0.0075	4830	78.2	<270	<455	<120	268	<720	<42.3
	10/16/2023	1100	<20.1	<18.4	<50.0	66.5	488	<20.6	<0.0074	5340	82.9 J	<539	<910	<241	297	<1440	<84.6
	6/24/2024	695	<10.0	10.2 J	<25.0	44.0	306	<10.3	<0.0078	3560	59.3	<270	<455	<120	176	<720	<42.3
	3/28/2025	333	<5.0	6.5 J	<12.5	25.4	193	<5.2	<0.0075	1900	35.3	<135	<228	<60.2	110	<360	<21.2
	7/15/2025	256	7.2 J	6.4 J	<12.5	27.5	158	<5.2	<0.0074	1730	29.5	<135	<228	<60.2	89.4	<360	<21.2
	2/15/2022	203	<0.250	0.522 J	1.34	25.7	405	<0.250	<0.00515	442	26.9	<7.00	83.3	<6.90	78.2	<50.0	<0.720
	1/9/2023	122	<0.97	<0.61	<0.68	10.9	256	<0.64	<0.0074	233	14.6 J	<104	<53.6	<58.8	44.4	<144	<6.5
	4/14/2023	90.2	<4.0	<3.7	<10.0	10.2	195	<4.1	<0.0074	225	10.5 J	<108	<182	<48.2	33.0	<288	<16.9
03423-MW02	7/14/2023	95.2	<4.0	<3.7	<10.0	8.8 J	178	<4.1	<0.0077	141 J	9.0 J	<108	<182	<48.2	36.2	<288	<16.9
	10/16/2023	76.3	<4.0	<3.7	<10.0	4.4 J	200	<4.1	<0.0075	<131	8.7 J	<108	<182	<48.2	30.8	<288	<16.9
	6/24/2024	23.5	<2.0	<1.8	<5.0	<2.1	122	<2.1	<0.0077	<65.6	5.3 J	<53.9	<91.0	<24.1	26.4	<144	<8.5
	3/28/2025	37.8	<2.0	<1.8	<5.0	<2.1	190	<2.1	<0.0076	<65.6	7.4 J	<53.9	<91.0	<24.1	29.2	<144	<8.5
	7/15/2025	19.4	<2.0	<1.8	<5.0	<2.1	131	<2.1	<0.0076	<65.6	5.3 J	<53.9	<91.0	<24.1	22.5	<144	<8.5
	2/15/2022	<0.270	3.15	0.279 J	<0.230	<2.40	1.95 J	<0.250	<0.00486	<8.60	<0.780	<7.00	<6.90	<6.90	0.893 J	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	1.1	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	0.61 J	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW03	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0077	<65.6 <65.6	<3.0	<53.9 <53.9	<91.0	<24.1	<3.5 <3.5	<144	<8.5
	10/16/2023 6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1 <3.1	<2.1	<0.0075	<65.6	<3.0		<91.0 <91.0	<24.1	<3.5 <3.5	<144 <144	<8.5 <8.5
	3/28/2025	<1.7 <1.7	<2.0 <2.0	<1.8 <1.8	<5.0 <5.0	<2.1 <2.1	<3.1 <3.1	<2.1 <2.1	<0.0078 <0.0074	<05.6 <65.6	<3.0 <3.0	<53.9 <53.9	<91.0 <91.0	<24.1 <24.1	<3.5 <3.5	<144 <144	<8.5 <8.5
	7/15/2025	<1.7 <1.7	<2.0	<1.8	<5.0 <5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	<3.5	<144 <144	<8.5
	2/15/2022	<0.270	<0.250	0.252 J	1.91	<2.40	<0.810	<0.250	<0.0074	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.00303	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW04	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0076	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	14.3	<0.250	<0.0073	<8.60	<0.780	<7.00	<6.90	<6.90	3.06 J	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.230	<0.64	22.2	<0.32	<0.00509	<36.4	<2.7	<7.00 <51.9	<26.8	<29.4	3.8	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	22.3	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	4.1 J	<144	<8.5
	7/14/2023	<1.7	<2.0	<1.8	<5.0 <5.0	<2.1	23.4	<2.1	<0.0073	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	<3.5	<144	<8.5
03423-MW05	10/16/2023	<1.7 <1.7	<2.0	<1.8	<5.0 <5.0	2.9 J	59.5	<2.1	<0.0074	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	8.5	<144 <144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0 <5.0	<2.1	45.6	<2.1	<0.0072	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	5.4	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	50.1	<2.1	<0.0075	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	8.7	<144	<8.5
	7/15/2025	<1.7	<2.0	<1.8	<5.0 <5.0	<2.1	79.9	<2.1	<0.0073	<65.6	<3.0	<53.9 <53.9	<91.0 <91.0	<24.1	23.0	<144	<8.5
	111312023	>1.1	~2.0	`1.0	₹3.0	~ 2.1	13.3	~2.1	~U.UU14	~ 00.0	\J. U	٠٥٥.٥	١.١٥	~24.1	20.0	~1 44	₹0.5

				~	~												
Well ID#	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Naphthalene (µg/L)	MTBE (μg/L)	1, 2 DCA (µg/L)	EDB (µg/1)	TAA (µg/L)	ТАМЕ (µg/L)	ETBA (µg/L)	ТВА (µg/L)	TBF (µg/1)	DIPE (μg/L)	Ethanol (µg/L)	ETBE (µg/L)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 4.400	RBSL	RBSL	RBSL 10,000	RBSL 47
	2/15/2022	356	30.1	134	11.6	87.5	166	<1.25	<0.00497	2410	46.4	<35.0	1,400 86.6 J	NE <34.5	150 122	<250	<3.60
	1/9/2023	83.3	4.6	4.5	3.3	26.7	126	<0.32	<0.0076	1640	29.6	<51.9	52.4 J	<29.4	88.1	<72.2	<3.2
	4/14/2023	68.1	2.9 J	3.3 J	<5.0	23.0	132	<2.1	<0.0070	1570	26.1	<53.9	<91.0	<24.1	80.1	<144	<8.5
	7/14/2023	45.4	4.1 J	6.0	<5.0	20.4	167	<2.1	<0.0072	1960	34.7	<53.9	<91.0	<24.1	117	<144	<8.5
03423-MW06	10/16/2023	38.5	2.6 J	<1.8	<5.0	14.6	156	<2.1	<0.0075	1930	28.6	<53.9	<91.0	<24.1	111	<144	<8.5
	6/24/2024	17.3	4.8 J	<3.7	<10.0	11.2	241	<4.1	<0.0073	<131	40.2	<108	<182	<48.2	151	<288	<16.9
	3/28/2025	9.8 J	<4.0	<3.7	<10.0	4.4 J	216	<4.1	<0.0075	3080	31.7	<108	200	<48.2	199	<288	<16.9
	7/15/2025	7.2 J	<4.0	<3.7	<10.0	5.2 J	179	<4.1	<0.0074	2820	32.1	<108	<182	<48.2	129	<288	<16.9
	2/15/2022	37.2	0.699 J	82.1	3.95	58.3	15.8	<0.250	<0.00492	1030	4.67	<7.00	31.3 J	<6.90	20.3	<50.0	<0.720
	1/9/2023	<0.34	<0.48	1.8	<0.34	4.3	1.4	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	1.6	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<1.7	<2.0	4.4 J	<5.0	15.1	3.6 J	<2.1	< 0.0074	77.7 J	<3.0	<53.9	<91.0	<24.1	4.2 J	<144	<8.5
03423-MW07	10/16/2023	<1.7	<2.0	14.0	<5.0	18.6	4.7 J	<2.1	<0.0075	166	<3.0	<53.9	<91.0	<24.1	6.0	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	3.2 J	<2.0	4.5 J	<5.0	26.9	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	3720	21100	2200	12800	781	690	<12.5	0.121	8690	127	<350	370 J	<345	268 J	<2500	<36.0
	1/9/2023	4390	22300	2080	13300	766	531	<40.2	<0.0075	8510 J	<332	<6490	<3350	<3680	239	<9020	<405
	4/14/2023	3620	19200	1840	10800	661	435 J	<258	< 0.0074	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
00400 141400	7/14/2023	3110	12600	1920	10000	558 J	<388	<258	< 0.0073	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
03423-MW08	10/16/2023	5330	27500	2810	16200	975 J	1000 J	<412	< 0.0075	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	6/24/2024	4760	25300	2570	13400	778 J	696 J	<412	< 0.0074	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	3/28/2025	4110	20900	2260	11800	646 J	756 J	<412	< 0.0075	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	7/15/2025	4430	26300	2590	14800	918 J	712 J	<412	<0.0074	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
	2/15/2022	0.278 J	3.89	4.80	27.4	<2.40	<0.810	<0.250	<0.00494	77.4	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0070	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-MW09	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
00420-1010009	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	1070	297	753	2380	342	510	<12.5	<0.00507	7950	120	<350	<345	<345	339 J	<2500	<36.0
	1/9/2023	2060	439	1100	2640	455	865	<4.0	<0.0077	11100	168	<649	535 J	<368	555	<902	<40.5
	4/14/2023	634	49.9	428	308	216	260	<10.3	<0.0075	3350	56.9	<270	<455	<120	165	<720	<42.3
03423-MW10	7/14/2023	79.3	15.1 J	329	116	143	25.4	<10.3	<0.0075	<328	<15.2	<270	<455	<120	17.6 J	<720	<42.3
00.20	10/16/2023	299	83.8	503	747	244	112	<10.3	<0.0074	1460	22.5 J	<270	<455	<120	68.1	<720	<42.3
	6/24/2024	227	66.5	465	789	256	110	<10.3	<0.0074	1350	<15.2	<270	<455	<120	75.3	<720	<42.3
	3/28/2025	1360	57.7	533	421	221	457	<20.6	<0.0076	5750	105	<539	<910	<241	346	<1440	<84.6
	7/15/2025	81.1	10.1 J	286	196	189	30.2	<5.2	<0.0073	351	<7.6	<135	<228	<60.2	19.3	<360	<21.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00529	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	52.9	<0.32	<0.0076	<36.4	4.2 J	<51.9	<26.8	<29.4	15.2	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0072	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW01	7/14/2023	3.4 J	<2.0	<1.8	<5.0	<2.1	144	<2.1	<0.0075	<65.6	9.6 J	<53.9	<91.0	<24.1	40.5	<144	<8.5
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	129	<2.1	<0.0073	<65.6	7.3 J	<53.9	<91.0	<24.1	34.2	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	73.2	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	22.0	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	<1.7	<2.0	<1.8	<5.0	<2.1	69.8	<2.1	<0.0075	<65.6	3.2 J	<53.9	<91.0	<24.1	18.6	<144	<8.5

																UST PER	RMIT# 03423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	Naphthalene (µg/L)	MTBE (µg/t)	1, 2 DCA (µg/L)	EDB (µg/L)	TAA (µg/L)	TAME (µg/1)	ETBA (Hg/L)	TBA (με/L)	TBF (με/L)	DIPE (µg/L)	Ethanol (μg/L)	ETBE (Hg/L)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	7.40	<0.250	<0.00510	<8.60	<0.780	<7.00	<6.90	<6.90	2.61 J	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	< 0.64	6.1	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	2.0	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	5.2	<2.1	< 0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
00.400 DIA400	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	19.9	<2.1	< 0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	3.7 J	<144	<8.5
03423-DW02	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	36.2	<2.1	<0.0076	<65.6	<3.0	<53.9	<91.0	<24.1	5.6	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	24.0	<2.1	<0.0072	<65.6	<3.0	<53.9	<91.0	<24.1	3.8 J	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	4.0 J	<2.1	<0.0077	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	<1.7	<2.0	<1.8	<5.0	<2.1	3.3 J	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00485	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	< 0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03423-DW03	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0076	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
00.2021.00	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	2/15/2022	67.5	1890	611	4230	181	<0.810	<0.250	<0.00489	<8.60	<0.780	<7.00	<6.90	<6.90	1.69 J	<50.0	<0.720
	1/9/2023	63.6	464	20.1	291	<2.6	51.8	<1.3	<0.0077	422	<10.6	<208	<107	<118	21.2	<289	<13.0
	4/14/2023 7/14/2023	<1.7 <1.7	<2.0 <2.0	<1.8 <1.8	<5.0 <5.0	<2.1 <2.1	<3.1 <3.1	<2.1 <2.1	<0.0074 <0.0074	<65.6 <65.6	<3.0 <3.0	<53.9 <53.9	<91.0 <91.0	<24.1 <24.1	<3.5 <3.5	<144 <144	<8.5 <8.5
03423-DW04	10/16/2023	341	359	98.9	1630	72.7	153	<8.2	<0.0074	913	20.9 J	<216	<364	<96.4	54.4	<576	<33.8
	6/24/2024	6.0	30.8	3.5 J	24.4	3.8 J	11.5	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	5.0 J	<144	<8.5
	3/28/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0073	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	216	1150	94.7	577	25.2 J	54.2	<20.6	<0.0075	<656	<30.4	<539	<910	<241	<34.9	<1440	<84.6
03423-TW01*	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00636	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00503	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	0.43 J	< 0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	< 0.34	0.98 J	< 0.30	< 0.34	< 0.64	0.68 J	<0.32	<0.0078	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
02422 CW04	7/14/2023	< 0.34	0.52 J	< 0.30	<0.34	< 0.64	<0.42	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-SW01	10/16/2023	< 0.34	<0.48	< 0.30	<0.34	< 0.64	<0.42	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	< 0.34	<0.48	< 0.30	<0.34	<0.64	<0.42	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	3/28/2025	< 0.34	<0.48	< 0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	< 0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	0.832 J	<0.250	<0.00494	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	1.2	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	0.49 J	<72.2	<3.2
	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-SW02	7/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	0.63 J	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	3/28/2025	< 0.34	<0.48	<0.30	<0.34	< 0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025 2/15/2022	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7 <0.780	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2 <0.720
	1/9/2023	<0.270 <0.34	<0.250 <0.48	<0.200 <0.30	<0.230 <0.34	<2.40 <0.64	<0.810 <0.42	<0.250 <0.32	<0.00497 <0.0077	<8.60 <36.4	<0.780 <2.7	<7.00 <51.9	<6.90 <26.8	<6.90 <29.4	<0.700 <0.31	<50.0 <72.2	<0.720 <3.2
	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7 <2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2
	7/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4 <36.4	<2.7 <2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2
03423-SW03	10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	3/28/2025	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
			1			1		1	1	1		1			1	1	

																00112	KIVII I# U3423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (нg/L)	Naphthalene (μg/L)	MTBE (µg/L)	1, 2 DCA (µg/L)	EDB (µg/L)	TAA (µg/L)	TAME (µg/L)	ETBA (µg/L)	TBA (µg/L)	TBF (µg/L)	DIPE (µg/l.)	Ethanol (µg/l.)	ETBE (µg/1)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RB\$L NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	2/28/2022	<0.270	15.9	0.228 J	<0.230	<2.40	<0.810	<0.250	<0.00492	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0080	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/14/2023	<0.34	0.49 J	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-SW04	10/16/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	< 0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	3/28/2025	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	< 0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	< 0.00503	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0079	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-SW05	7/14/2023	< 0.34	0.63 J	<0.30	< 0.34	<0.64	<0.42	<0.32	<0.0079	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-37703	10/16/2023	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0075	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	3/28/2025	< 0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00507	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-SW06	7/14/2023	<0.34	0.64 J	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0076	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	3/28/2025	<0.34	<0.48	<0.30	<0.34	<0.64	<0.42	<0.32	<0.0074	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	<0.00513	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4 <36.4	<2.7	<51.9 <51.9	<26.8 <26.8	<29.4 <29.4	<0.31	<72.2	<3.2
03423-WSW01	7/14/2023 10/16/2023	<0.21	0.46 J	<0.22 <0.22	<0.22	<0.35	<0.14 <0.14	<0.16 <0.16	<0.0055	<36.4 <36.4	<2.7 <2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2 <72.2	<3.2 <3.2
	6/24/2024	<0.21 <0.21	<0.20 0.48 J	<0.22	<0.22 <0.22	<0.35 <0.35	<0.14	<0.16	<0.0055 <0.0060	<36.4 <36.4	<2.7 <2.7	<51.9 <51.9	<26.8	<29.4	<0.31 <0.31	<72.2 <72.2	<3.2
	3/28/2025	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0058	<36.4	<2.7	<51.9 <51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	<0.21	0.79	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/14/2023	<0.21	0.45 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
03423-WSW02	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0054	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<0.21	0.63	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0061	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	3/28/2025	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	< 0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	<0.21	0.77	<0.22	<0.22	< 0.35	<0.14	<0.16	< 0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/9/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/14/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
03433 141614103	7/14/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
03423-WSW03	10/16/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/24/2024	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/2025	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/15/2025	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

																UST PEI	RMIT# 03423
Well ID#	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/l.)	Naphthalene (µg/L)	MTBE (µg/1)	1, 2 DCA (µg/L)	EDB (µg/L)	TAA (µg/L)	TAME (µg/1)	ETBA (µg/1)	ТВА (нg/L)	TBF (µg/L)	DIPE (µg/L)	Ethanol (µg/L)	ETBE (µg/L)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
DUP-1 (MW10)	2/15/2022	1090	359	783	2440	325	496	<2.50	<0.00499	7770	129	<70.0	298 J	<69.0	343	<500	<7.20
DUP. (WSW01)	2/15/2022	<0.0820	<0.0860	<0.0990	<0.0860	<0.430	<0.0930	<0.0860	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
DUP-1 (TW01)	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00581	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
DUP-1 (MW01)	1/9/2023	736	19.2	93.2	21.4	78.8	429	<1.6	<0.0075	4900	64.8	<260	258 J	<147	240	<361	<16.2
DUP. (WSW01)	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP. (MW08)	4/14/2023	4400	21900	2110	13000	765	614 J	<258	<0.0075	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
DUP. (WSW01)	4/14/2023	<0.21	0.21 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP. (MW08)	7/14/2023	3350	12500	1810	9530	670	<388	<258	<0.0074	<8200	<380	<6740	<11400	<3010	<436	<18000	<1060
DUP. (WSW01)	7/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP.(MW08)	10/16/2023 10/16/2023	4670 <0.21	23400 < 0.20	2430 <0.22	14000 < 0.22	679 J <0.35	834 J <0.14	<412 <0.16	<0.0075 <0.0055	<13100 <36.4	<608 <2.7	<10800 <51.9	<18200 <26.8	<4820 <29.4	<698 <0.31	<28800 <72.2	<1690 <3.2
DUP.(WSW01) DUP-1(MW08)	6/24/2024	4520	22800	2650	12900	891 J	740 J	<412	<0.0053	<13100	<608	<10800	<18200	<4820	<698	<28800	<1690
DUP-1(MW06) DUP.(WSW02)	6/24/2024	4520 <0.21	0.50 J	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP-1 (MW06)	3/28/2025	9.7 J	<4.0	<3.7	<10.0	6.1 J	198	<4.1	<0.0039	3270	33.9	<108	204	<48.2	164	<288	<16.9
DUP. (WSW01)	3/28/2025	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0060	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP-1 (MW01)	7/15/2025	232	<4.0	6.0 J	<10.0	28.3	174	<4.1	<0.0074	1630	29.1	<108	<182	<48.2	91.4	<288	<16.9
DUP. (WSW01)	7/15/2025	<0.21	0.78	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022	<0.0820	<0.0860	< 0.0990	<0.0860	<0.430	< 0.0930	<0.0860	< 0.00499	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	<0.00501	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	<0.34	<0.48	<0.30	< 0.34	<0.64	<0.42	<0.32	<0.0077	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0057	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0056	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0075	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
Field Blank	7/14/2023	<0.21	0.25 J	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0053	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024 6/24/2024	<1.7 <0.21	<2.0 0.56	<1.8 <0.22	<5.0 <0.22	<2.1 <0.35	<3.1 <0.14	<2.1 <0.16	<0.0074 <0.0061	<65.6 <36.4	<3.0 <2.7	<53.9 <51.9	<91.0 <26.8	<24.1 <29.4	<3.5 <0.31	<144 <72.2	<8.5
	3/28/2025	<0.21 <1.7	<2.0	<1.8	<0.22 <5.0	<2.1	<3.1	<2.1	<0.0061	<65.6	<3.0	<51.9 <53.9	<26.8 <91.0	<29.4 <24.1	<3.5	<144	<3.2 <8.5
	3/28/2025	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.0073	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	7/15/2025	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0074	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/15/2025	<0.21	0.66	<0.22	<0.22	<0.35	<0.14	<0.16	< 0.0055	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	2/15/2022	<0.270	<0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/15/2022	<0.0820	< 0.0860	<0.0990	<0.0860	< 0.430	<0.0930	<0.0860	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	< 0.250	<0.200	<0.230	<2.40	<0.810	<0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	2/28/2022	<0.270	< 0.250	<0.200	<0.230	<2.40	<0.810	< 0.250	NT	<8.60	<0.780	<7.00	<6.90	<6.90	<0.700	<50.0	<0.720
	1/9/2023	< 0.34	<0.48	<0.30	< 0.34	<0.64	<0.42	< 0.32	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	1/9/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	4/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	4/14/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
Trip Blank	7/14/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	7/14/2023	<0.21	0.50 J	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	10/16/2023	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	10/16/2023	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	6/24/2024	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	6/24/2024	<0.21	0.59	<0.22	<0.22	<0.35	<0.14	<0.16	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	3/28/2025 3/28/2025	<1.7 <0.21	<2.0 <0.20	<1.8 <0.22	<5.0 <0.22	<2.1 <0.35	<3.1 <0.14	<2.1 <0.16	NT NT	<65.6 <36.4	<3.0 <2.7	<53.9 <51.9	<91.0 <26.8	<24.1 <29.4	<3.5 <0.31	<144 <72.2	<8.5
	7/15/2025	<0.21 <1.7	<0.20 <2.0	<0.22	<0.22 <5.0	<0.35 <2.1	<0.14	<0.16	NT NT	<36.4 <65.6	<3.0	<51.9 <53.9	<26.8 <91.0	<29.4 <24.1	<3.5	12.2<br <144	<3.2 <8.5
	7/15/2025	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
lotes:		actical Quantitative Lim			8. NT = Not Tested	3.00	3.11	5.10		concentrations above th		1 31.0	21. TAME = tert-Amy		3.01	, 2.2	+ 3.2
	2. ug/l = microgran				9. EDB = Ethylene D	Dibromide				IDL) and below actual re			22. TBA = ter-Butyl A				

ug/l = micrograms per liter

3. mg/l = milligrams per liter
4. MTBE = Methyl-Tertiary-Butyl Ether

5. See Appendix for Laboratory Detection Limits

NL = Not Located
 DRY = Well was Dry at the time of Sampling

EDB = Ethylene Dibromide

10. 1,2 DCA = 1,2-Dichloroethane

11. FPP = Free Phase Petroleum Product 12. * = Wells Have Been Abandoned

13. "J" Values used in Total BTEX Calculations
14. B = Detected in Method Blank

detection limits (MDL) and below actual reporting limit (RL). 16. S = MS/MSD Failure

17. P = The RPD between the two columns exceeds 40%.

18. DIPE = Diisopropyl Ether19. ETBE = Ethyl ter-butyl Ether

20. TAA = tert-Amyl Alcohol

22. TBA = ter-Butyl Alcohol

23. TBF = tert-Butyl Formate

24. TAME = tert-Amyl Methyl Ether

25. * = TW-1 was a temporary well and has been abandoned.

27. Bolded data is above the RBSL (Risk-Based Screening Level)

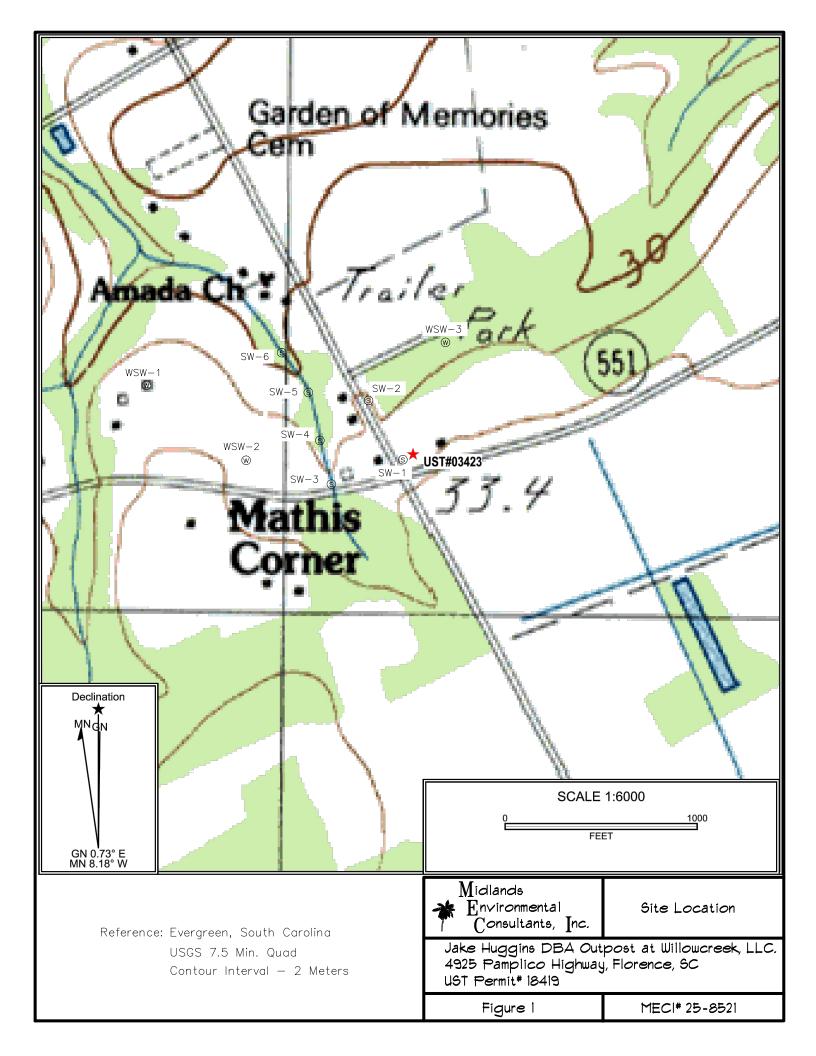
TABLE 2 POTENTIOMETRIC DATA JAKE HUGGINS JULY 15, 2025 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 25-8521 UST PERMIT# 03423

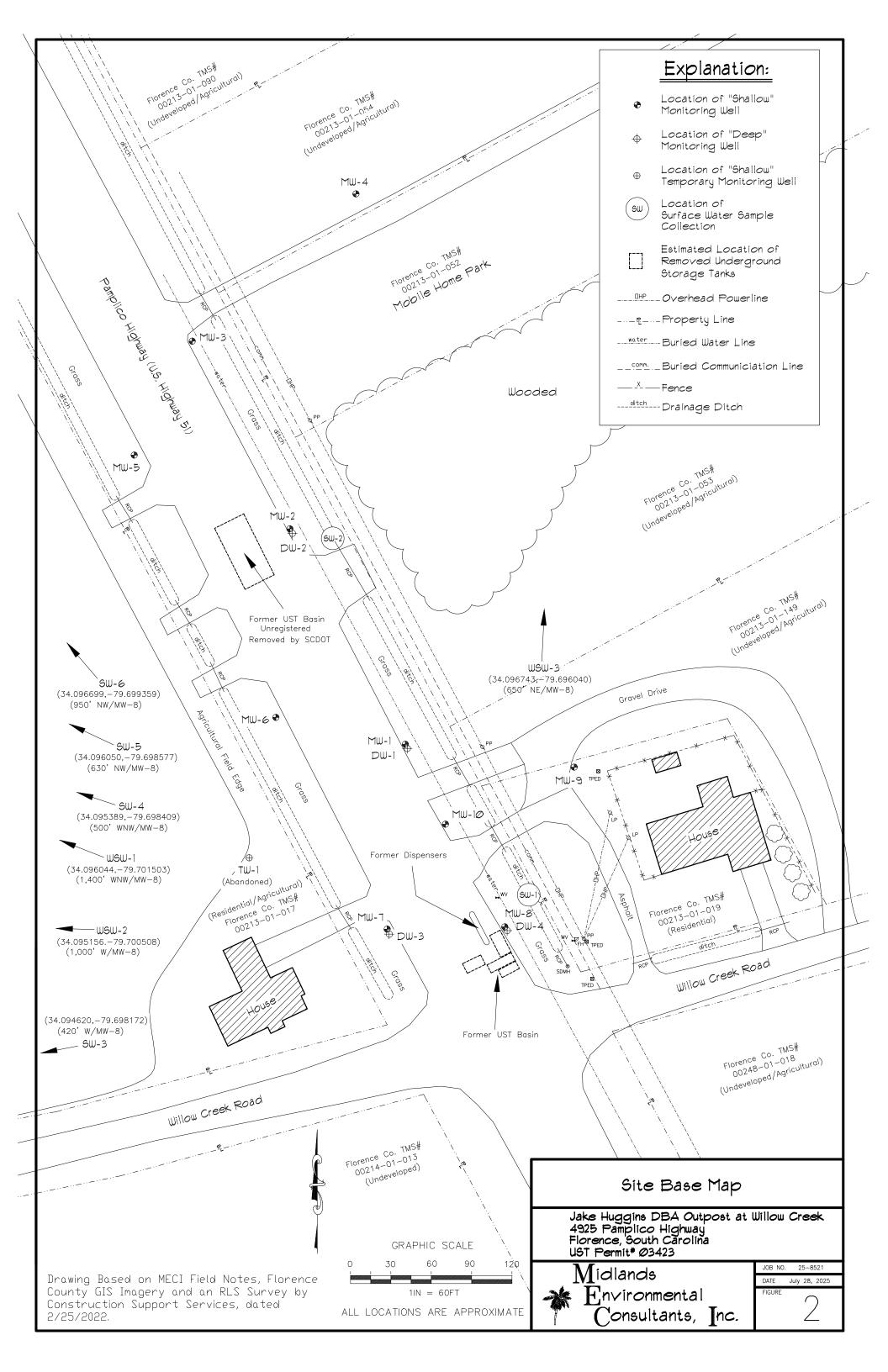
Well	Sample	Screened	Depth to	Depth to	Product	TOC	Groundwater
Number	Date	Interval	Product (ft)	Water (ft)	Thickness (ft)	Elevation	Elevation
	2/15/2022		***	2.67	***	98.72	96.05
	1/9/2023		***	3.48	***	98.72	95.24
	4/14/2023		***	3.41	***	98.72	95.31
02422 1414/04	7/14/2023	3-13	***	3.02	***	98.72	95.70
03423-MW01	10/16/2023	3-13	***	3.46	***	98.72	95.26
	6/24/2024		***	3.03	***	98.72	95.69
	3/28/2025		***	2.18	***	98.72	96.54
	7/15/2025		***	3.45	***	98.72	95.27
	2/15/2022		***	2.64	***	96.40	93.76
	1/9/2023		***	3.25	***	96.40	93.15
	4/14/2023		***	3.23	***	96.40	93.17
03433 1414/03	7/14/2023	2.42	***	3.04	***	96.40	93.36
03423-MW02	10/16/2023	3-13	***	3.28	***	96.40	93.12
	6/24/2024		***	3.02	***	96.40	93.38
	3/28/2025		***	1.99	***	96.40	94.41
	7/15/2025		***	3.27	***	96.40	93.13
	2/15/2022		***	2.42	***	94.95	92.53
	1/9/2023		***	3.15	***	94.95	91.80
	4/14/2023		***	3.06	***	94.95	91.89
00400 10400	7/14/2023	0.40	***	3.29	***	94.95	91.66
03423-MW03	10/16/2023	3-13	***	3.62	***	94.95	91.33
	6/24/2024		***	3.62	***	94.95	91.33
	3/28/2025		***	2.16	***	94.95	92.79
	7/15/2025		***	3.96	***	94.95	90.99
	2/15/2022		***	2.61	***	94.88	92.27
	1/9/2023		***	3.45	***	94.88	91.43
	4/14/2023		***	3.39	***	94.88	91.49
	7/14/2023		***	3.63	***	94.88	91.25
03423-MW04	10/16/2023	3-13	***	4.53	***	94.88	90.35
	6/24/2024		***	4.10	***	94.88	90.78
	3/28/2025		***	2.45	***	94.88	92.43
	7/15/2025		***	4.26	***	94.88	90.62
	2/15/2022		***	2.46	***	94.88	92.42
	1/9/2023		***	3.16	***	94.88	91.72
	4/14/2023		***	3.07	***	94.88	91.81
	7/14/2023		***	3.47	***	94.88	91.41
03423-MW05	10/16/2023	3-13	***	5.43	***	94.88	89.45
	6/24/2024		***	3.61	***	94.88	91.27
	3/28/2025		***	2.29	***	94.88	92.59
	7/15/2025		***	3.98	***	94.88	90.90
	2/15/2022		***	2.83	***	97.86	95.03
			***		***		
	1/9/2023		***	3.50	***	97.86 97.86	94.36
	4/14/2023 7/14/2023		***	3.32	***	97.86 97.86	94.54
03423-MW06		3-13	***	3.07	***	97.86 07.86	94.79
	10/16/2023		***	3.24	***	97.86 07.86	94.62
	6/24/2024		***	3.05	***	97.86	94.81
	3/28/2025		***	2.49	***	97.86	95.37
	7/15/2025		***	3.28	***	97.86	94.58
	2/15/2022		***	2.91	***	100.29	97.38
	1/9/2023		***	3.98	***	100.29	96.31
	4/14/2023			3.78		100.29	96.51
03423-MW07	7/14/2023	3-13	***	3.54	***	100.29	96.75
	10/16/2023		***	4.44	***	100.29	95.85
	6/24/2024		***	3.95	***	100.29	96.34
	3/28/2025		***	2.90	***	100.29	97.39
	7/15/2025		***	4.46	***	100.29	95.83

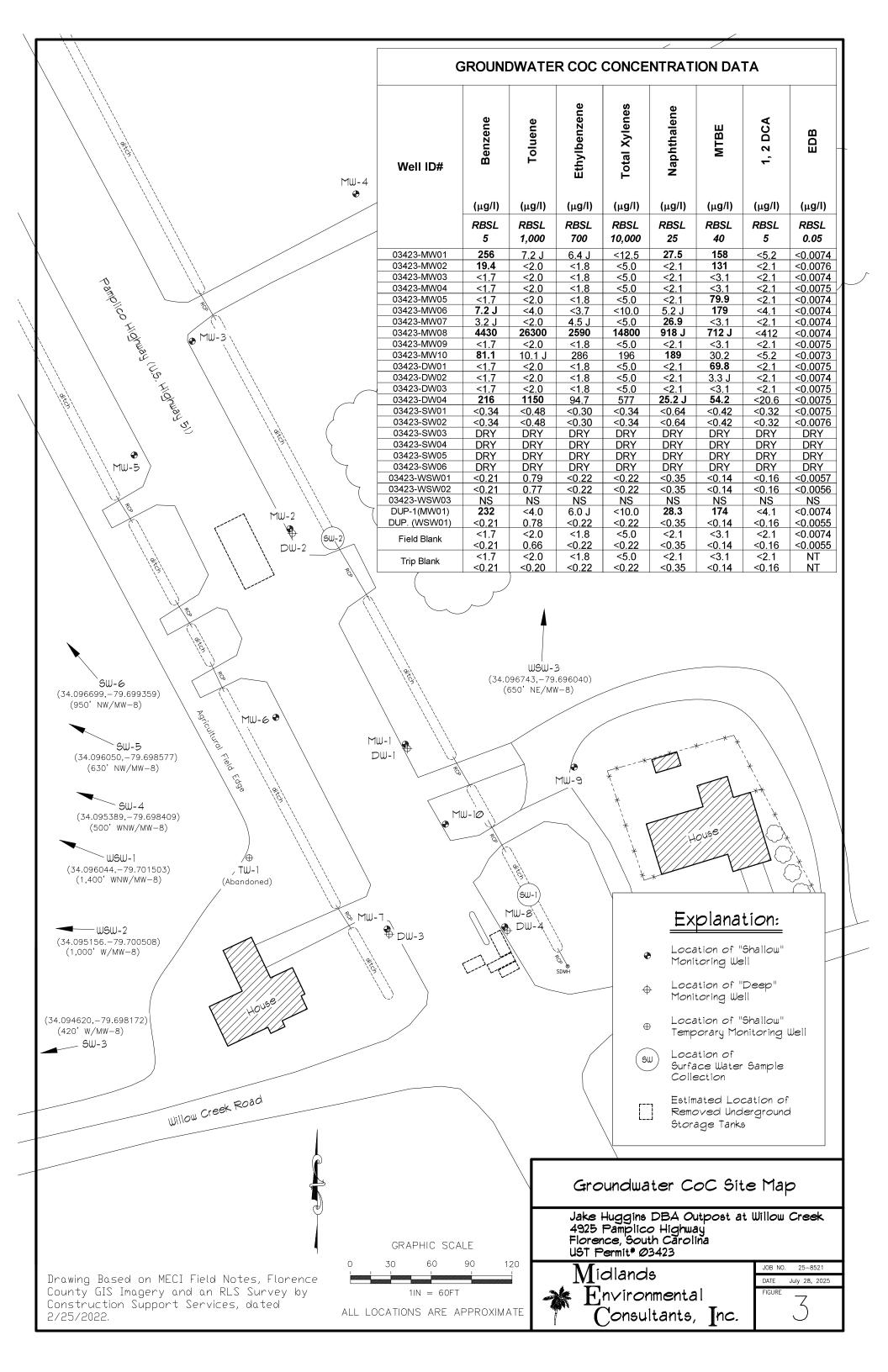
TABLE 2 POTENTIOMETRIC DATA JAKE HUGGINS JULY 15, 2025 SAMPLING EVENT FLORENCE, SOUTH CAROLINA MECI PROJECT# 25-8521 UST PERMIT# 03423

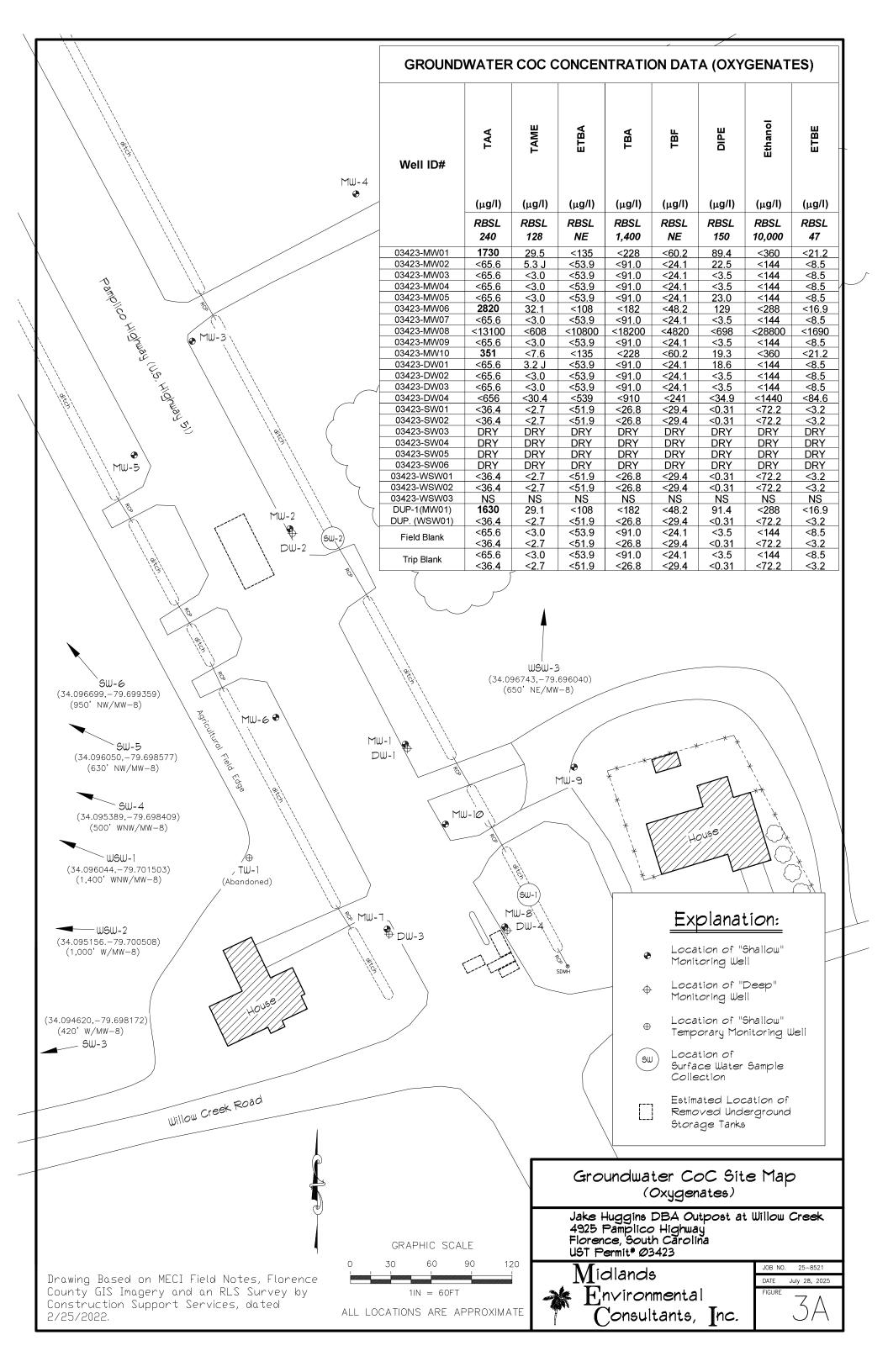
				1117 00720			
Well Number	Sample Date	Screened Interval	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)	TOC Elevation	Groundwater Elevation
Humber	2/15/2022	iiitoi vai	***	3.76	***	100.92	97.16
	1/9/2023		***	4.38	***	100.92	96.54
	4/14/2023		***	4.13	***	100.92	96.79
	7/14/2023		***	3.90	***	100.92	97.02
03423-MW08	10/16/2023	3-13	***	4.46	***	100.92	96.46
	6/24/2024		***	4.07	***	100.92	96.85
	3/28/2025		***	1.99	***	100.92	98.93
	7/15/2025		***	5.10	***	100.92	95.82
	2/15/2022		***	3.97	***	100.92	96.95
	1/9/2023		***	3.27	***	100.92	97.65
	4/14/2023		***	3.19	***	100.92	97.73
	7/14/2023		***	4.22	***	100.92	96.70
03423-MW09	10/16/2023	3-13	***	5.21	***	100.92	95.71
			***	4.60	***		96.32
	6/24/2024		***		***	100.92	
	3/28/2025		***	3.34	***	100.92	97.58
	7/15/2025		***	5.31	***	100.92	95.61
	2/15/2022		***	2.93	***	99.69	96.76
	1/9/2023		***	3.68	***	99.69	96.01
	4/14/2023		***	3.56	***	99.69	96.13
03423-MW10	7/14/2023	3-13	***	3.17	***	99.69	96.52
	10/16/2023		***	4.07	***	99.69	95.62
	6/24/2024			3.06	***	99.69	96.63
	3/28/2025		***	2.56		99.69	97.13
	7/15/2025		***	4.08	***	99.69	95.61
	2/15/2022		***	2.54	***	98.57	96.03
	1/9/2023		***	3.22	***	98.57	95.35
	4/14/2023		***	3.17	***	98.57	95.40
03423-DW01	7/14/2023	20-25	***	3.13	***	98.57	95.44
	10/16/2023		***	3.84	***	98.57	94.73
	6/24/2024		***	3.60	***	98.57	94.97
	3/28/2025		***	2.11	***	98.57	96.46
	7/15/2025		***	3.10	***	98.57	95.47
	2/15/2022		***	2.51	***	96.48	93.97
	1/9/2023		***	3.01	***	96.48	93.47
	4/14/2023		***	3.03	***	96.48	93.45
03423-DW02	7/14/2023	20-25	***	3.53	***	96.48	92.95
03 4 23-DVV02	10/16/2023	20-25	***	3.75	***	96.48	92.73
	6/24/2024		***	3.65	***	96.48	92.83
	3/28/2025		***	2.21	***	96.48	94.27
	7/15/2025		***	4.22	***	96.48	92.26
	2/15/2022		***	2.92	***	100.05	97.13
	1/9/2023		***	3.53	***	100.05	96.52
	4/14/2023		***	3.41	***	100.05	96.64
03403 DW03	7/14/2023	20.25	***	3.14	***	100.05	96.91
03423-DW03	10/16/2023	20-25	***	4.14	***	100.05	95.91
	6/24/2024		***	3.51	***	100.05	96.54
	3/28/2025		***	2.40	***	100.05	97.65
	7/15/2025		***	4.26	***	100.05	95.79
	2/15/2022		***	3.86	***	101.03	97.17
	1/9/2023		***	4.41	***	101.03	96.62
	4/14/2023		***	4.36	***	101.03	96.67
	7/14/2023		***	4.22	***	101.03	96.81
03423-DW04	10/16/2023	20-25	***	5.25	***	101.03	95.78
			***		***		
			***		***		
			***		***		
	6/24/2024 3/28/2025 7/15/2025		***	4.50 3.48 5.40	***	101.03 101.03 101.03	96.53 97.55 95.63

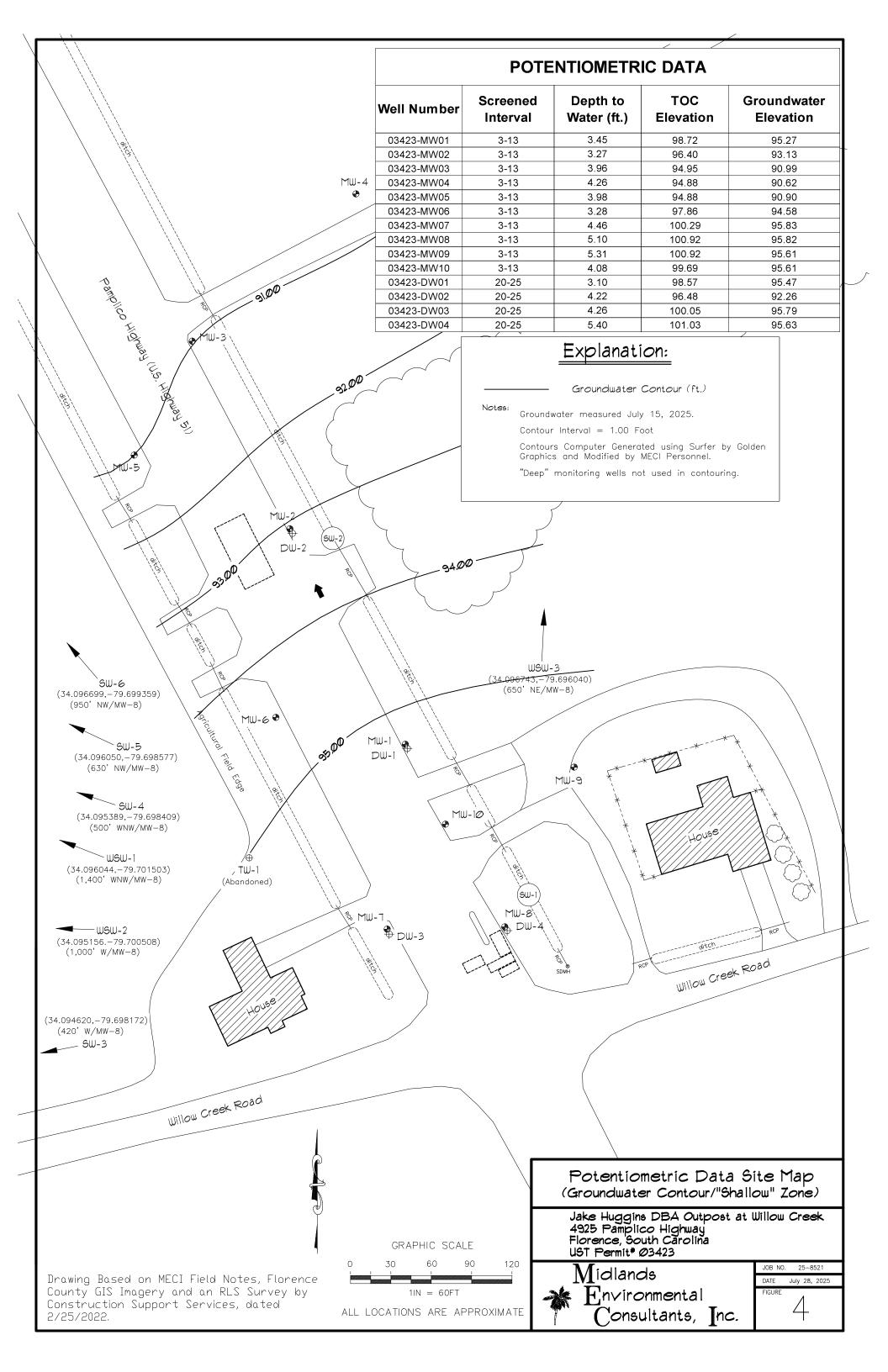
Notes:

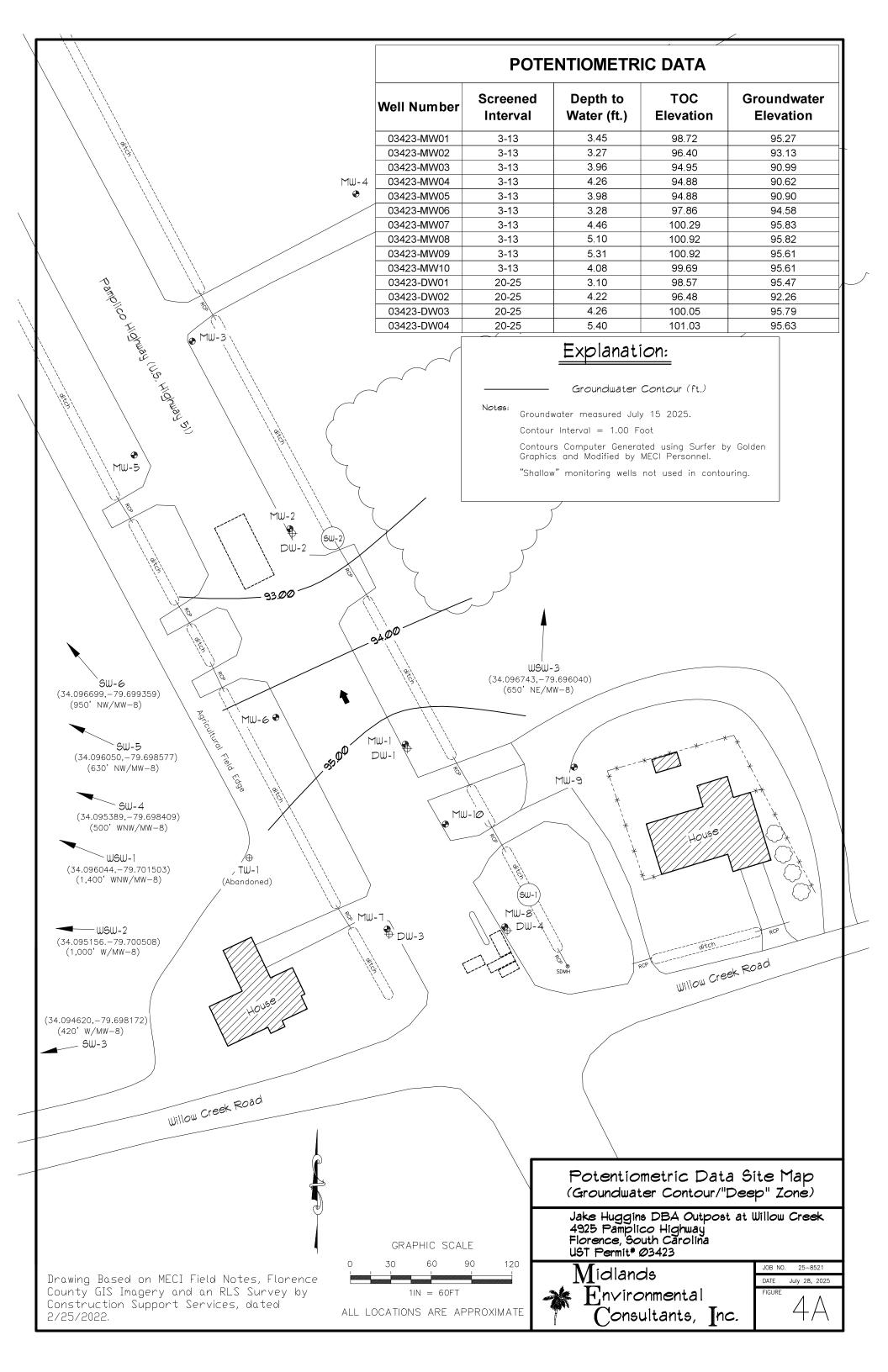

^{1.} Elevations are NAV88.

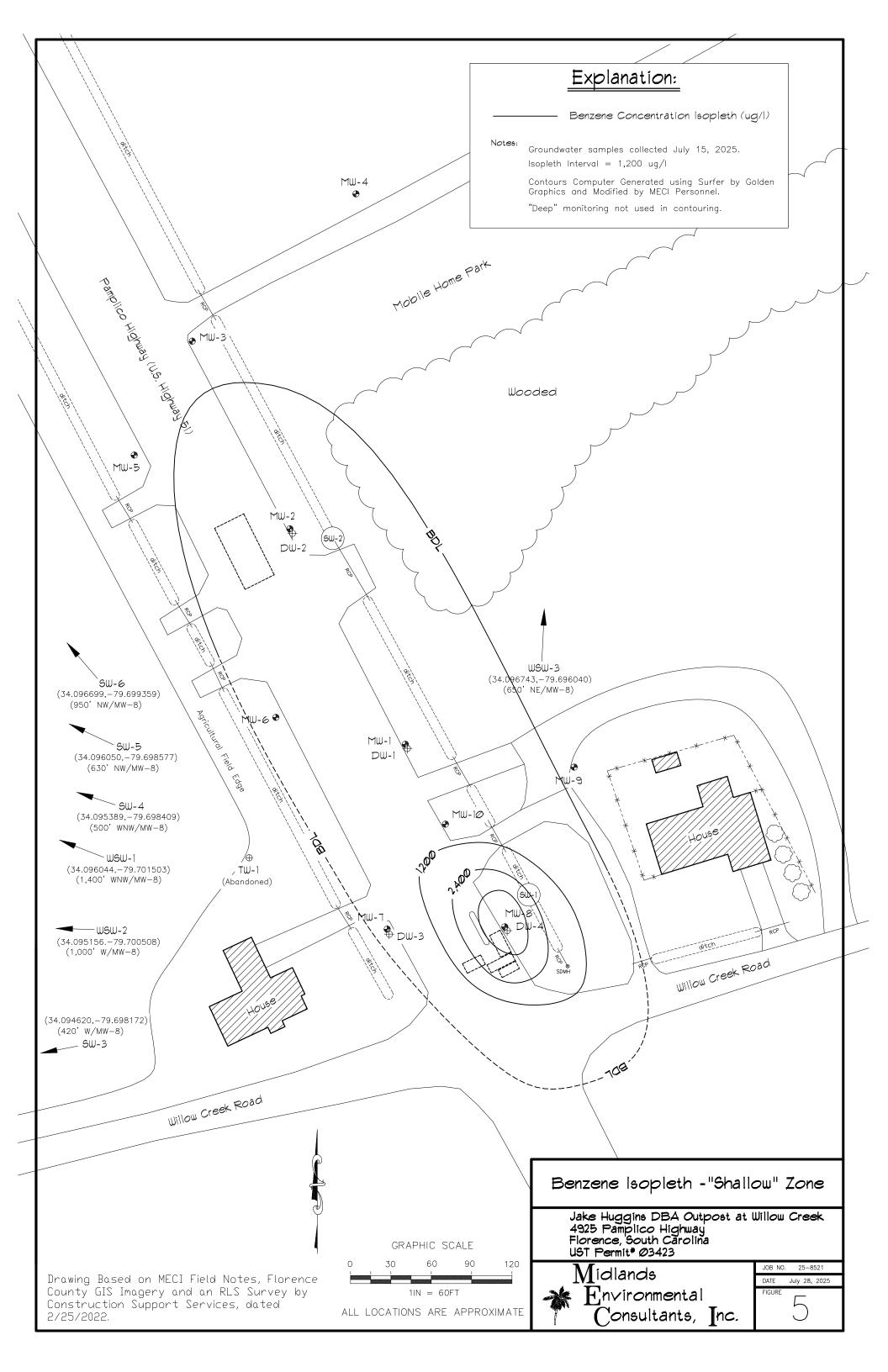

Groundwater depths were measured from the top of the PVC riser pipe.
 NM = Not Measured
 DRY = Well Gauged DRY

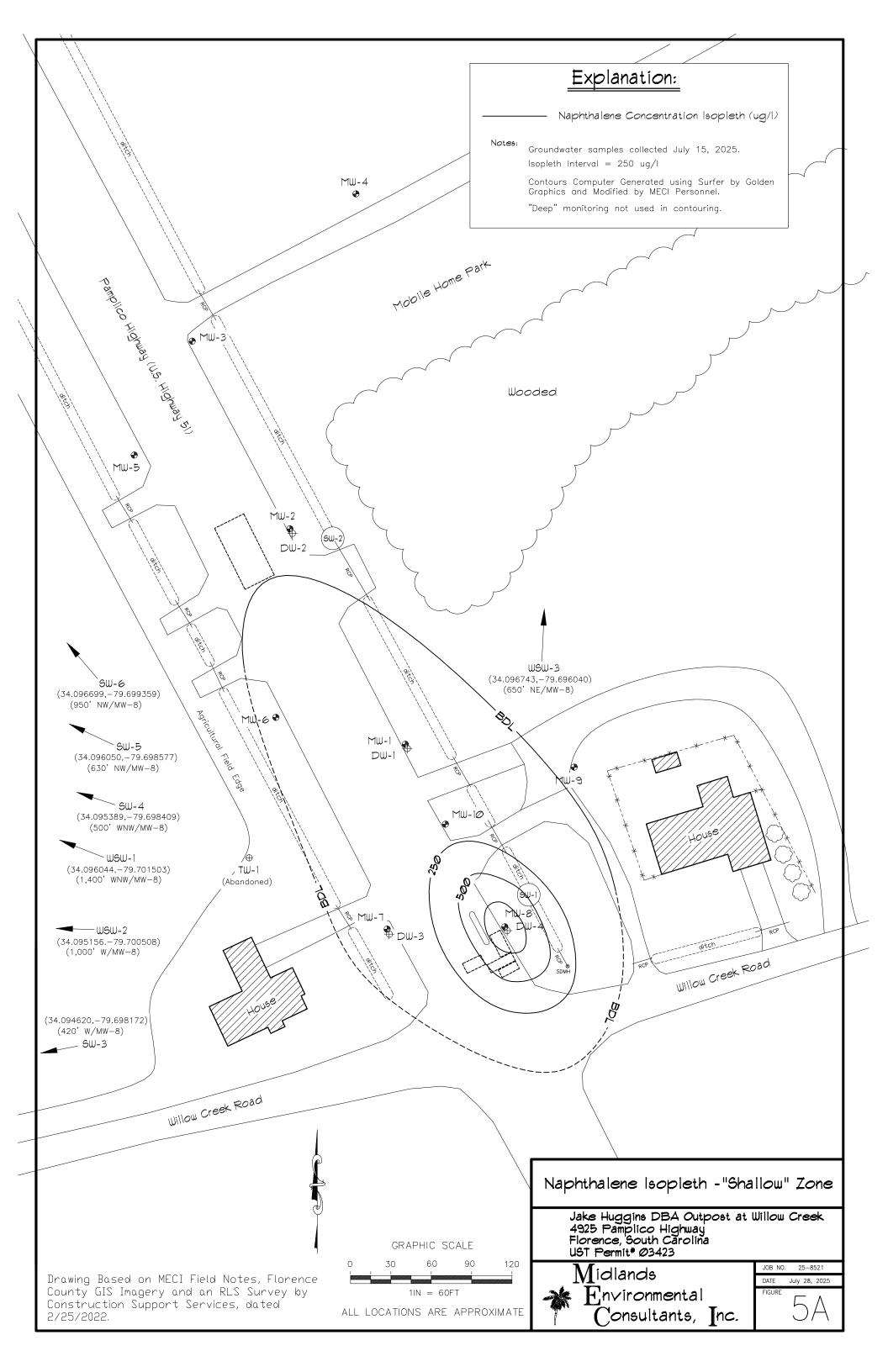

^{5.} TD = Total Depth

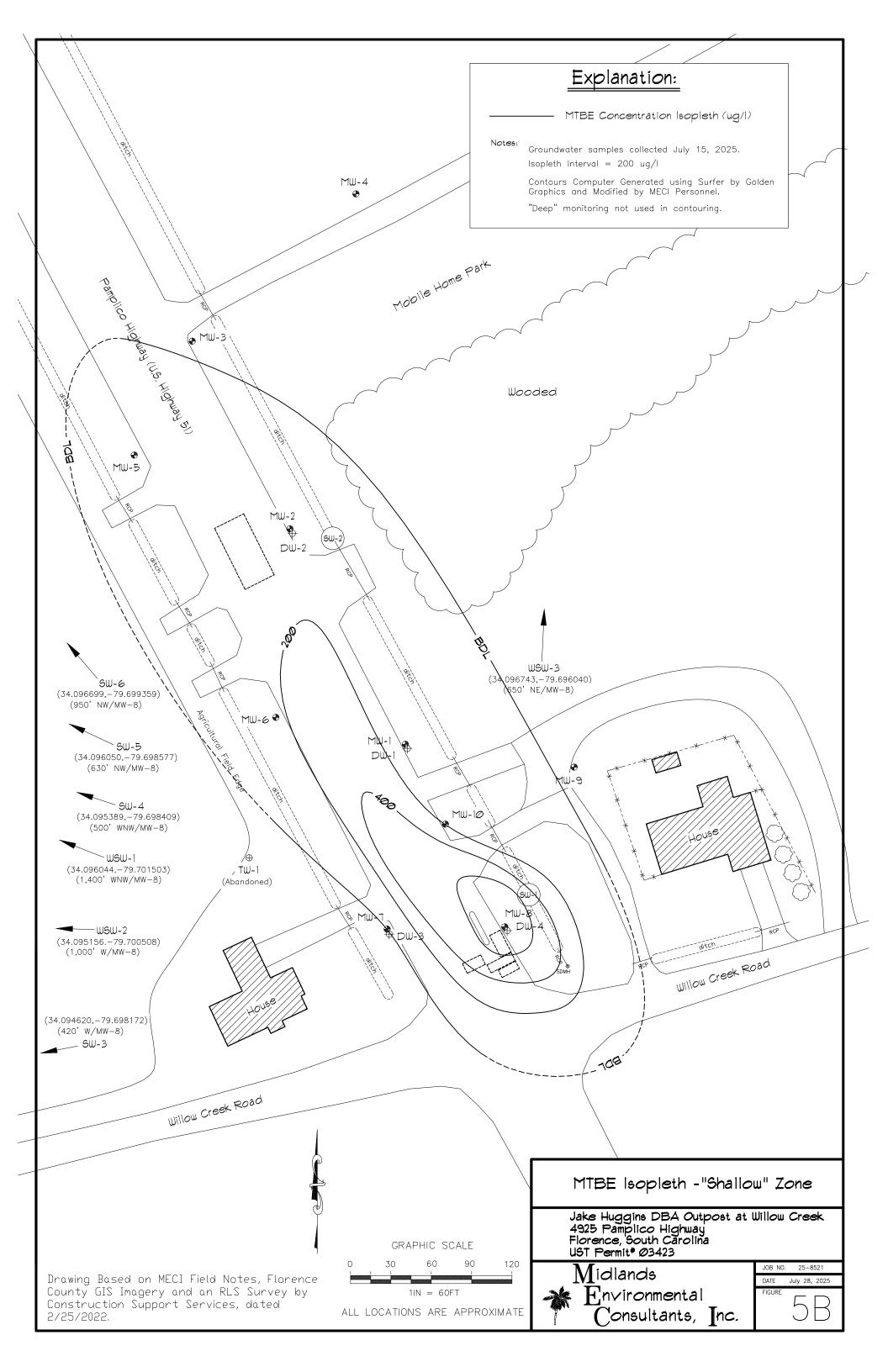

^{6. * =} Groundwater elevation corrected for the presence of free product using a specific gravity of 0.85.











APPENDIX A:

SITE SURVEY

(Not Applicable)

APPENDIX B: SAMPLING LOGS, LABORATORY DATA SHEETS, & CHAIN-OF-CUSTODY FORMS

Midlands **Monitoring Well Purge** Environmental **And Sampling Data** Consultants, Inc. Field Personnel: Calibration Data for: Calibration Successful? Yes or No (Please Circle) Sampling Date(s): :Ha Job Number Yes Conductivity: Sampling Case#: Yes No Dissolved Oxygen: Yes No Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO Turbidity Well Depth Water Height Volume Depth to (feet): Time Gallons Purged (°C) (mg/I)(NTU) product initial H₂O final H₂O Initial 11-22 (feet) Notes 4.58 *(feet) 20.7 **calc. actual 11,24 10 4th 5th Sampling Initial 2nd MW-7 3rd 40.6 4th 5th Initial 10:0C 2nd 3rd 0806 4th 5th Sampling Initial 1st 2nd 241.3 20,11 -99 48,1 4th 5th Sampling *= (Depth of Well) - (Depth to Water = Water Height One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells **= One Well Volume x 5 = Gallons Purged (calculated) Sampling Case# Ph/Conductance SN DO SN Case #1 15H101448 17E101302 201301183 Casing Gallons Case #2 15E101481 14H103098 201301174 0.047 Case #3 17E100512 17E103488 201510251 2" 0.163 4" 0.653 1.469

Midlands Monitoring Well Purge Environmental Consultants, Inc. And Sampling Data Field Personnel: Calibration Data for : Calibration Successful? Yes or No (Please Circle) Sampling Date(s): Yes Conductivity: Sampling Case#: Yes No Dissolved Óxygen:/ Yes No Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO Turbidity Volume Time Depth to (feet): Well Depth Water Height (°C) Gallons Purged (mg/I)(NTU) product initial H₂O final H₂0 Initial 4.46 (feet) Notes 29. *(feet) 2.10 **calc. 4.40 actual 10.2 2-45 12.01 2nd 10:19 108 28:3 2.21 19.61 3rd 10:21 402 104,9 2-26 22-60 4th 5th Sampling 07.328.9 Initial 0226502 1st 4.95 2nd 28.3 0:324.72 20:0 4th 5th Sampling 10.01 Initial 5.00 20,8 210 2nd 20-11 3rd 4th 5th Sampling Initial 1st 7012 13,80 2nd 5,90 6.02 3rd 4th 5th Sampling 74 360,3 *= (Depth of Well) - (Depth to Water = Water Height

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	20.00	
Case #1	15H101448	DOSN	Turbidity
Case #2		17E101302	201301183
	15E101481	14H103098	201301174
Case #3	17E100512		
	171100312	17E103488	201510251

Midlands Monitoring Well Purge Environmental Consultants, Inc. **And Sampling Data** Field Personnel: Calibration Data for: Calibration Successful? Yes or No (Please Circle) Sampling Date(s): pH: Yes Sampling Case#: Conductivity: No Dissolved Óxygen:/ Yes No Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO Turbidity Volume Time Depth to (feet): Well Depth Water Height (°C) Gallons Purged (mg/I)(NTU) Initial product initial H₂O final H₂0 (feet) *(feet) 24.6 **calc. 9.16 actual 1,20 130,G 1,80 13.10 2nd 11:22 23.8 3rd 220,8 237 19,20 4th 5th Sampling 24.5 Initial 1st 20 28 2nd 10,00 MW-10 27.8 3rd 11:13 4th W S 5th Sampling 3:48 1'009 2nd 28.2 3rd 4,01 4th 5th Sampling Initial 1st 95 2nd .9 3rd 5.99 0412 4th Sampling

*= (Depth of Well) - (Depth to Water = Water Height

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

Sampling Case#	Ph/Conductance SN	DO SN	
Case #1	15H101448		Turbidity
		17E101302	201301183
Case #2	15E101481		
Case #3	17E100512		201301174
0400 #0	175100512	17E103488	201510251

Notes

Midla Envi	nds ronmental				Moni	itorin	ıg W	ell P	urge				
7 Cor	ronmental sultants, Inc.	1			And	d Sai	nplir	ıg Da	ata				
Field Personnel: Sampling Date(s):	TY, 00, Chr.			Job Name:	25-8	521			Calib	oration Data	for:	No (Please C	
Sampling Case#:	2			Job Number	Dah.	e /+	195. h	5	Conductive Dissolved	vity:	Yes	No No	
Well No.	Purge Sample Volume Time	pH(i) cond(i)		DO	Turbidity		epth to (feet	·)·				No ery 3 Months by	QA Manager
in.	Initial 0:16 1st 0:20	6.33 (32.0	111	(mg/l)	(NTU) 9.09		initial H ₂ O		(feet)	Water Height *(feet)	Gallon **calc.	s Purged actual	Notes
DW-3	2nd 10:24 3rd 10:28 4th 5th	6.22 127,9	25.4	1.22	12.00		4,26	4.98	50-52	20.74	3.3%	03	NO
	Sampling 2°46	5.40 141.8	26.9	1,29	1050					/ /	16.90	Jan	
bw-4	2nd 11:14	5.43 138.6	25.7	2.18	10.50 30.28 32.95		5.40	6,20	2.	19, Ger-	3.19	Dry	No
	Sampling 13.31	5.41 (37.) t.10 92.9	25.4	7.19	10.18				3	(1,40	15,95	9,75	
SW-1	4th	red C	am	det	ch	(34.	095	076	,-79	.6967	72)		
	Sampling	1195,10 158.7	7W7	1.89	9.15								
5W-2	2nd 3rd 4th 5th	ed from	n dif	eh		(34.	095	84	7, - 7	24.69=	7 7 96)		
= (Depth of Well) - (Dept one Well Volume =x.047	th to Water = Water Height for 1" wells * x .163 for 2" wel	Is, or * x .66 for 4" wells	1 469 for 6" us	= One Well V	′olume x 5 = G a								
	Casing (Gallons 0.047 0.163 0.653 1.469	, 1.408 IOF 6" WE	elis						Case #1 Case #2	15H101448 15E101481 17E100512	14H103098 2	Turbidity 201301183 201301174 201510251

1.469

Midla Envi	nds Conment:	a 1					Mon	itorii	ıg W	ell P	urge				
T Cor	ronmenta sultants	Inc.	1				An	d Sai	npli	ng D	ata				
Field Personnel:	14,00	57/h1	V			Job Name	75-8.	521			Calil	oration Dat	a for :		
Sampling Date(s):	+15.	125				ivenby	794			-	Calibration	n Successi	ul? Yes or N	lo (Please C	ircle)
Sampling Case#:	2				_ `			e IT	095. h	5	Conductiv	vity:	Yes	No No	-
Well No.					_		_				Turbidity:	Oxygen:	Yes Calibrated Eve	No	-
Well NO.	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO	Turbidity		epth to (fee	et):		Water Heigh			/ QA Manager
	Initial	I			(°C)	(mg/l)	(NTU)		initial H ₂ O	T	(feet)	*(feet)	Gallons **calc.	s Purged	Notes
	1st	(1)										, , ,	ouic.	actual	
SW-3	2nd 3rd	-1)	1	0./	5			1201			7				
	4th	1	1	1)[(34.	090	1620	, - 7 4	1.688	1771		
	5th		/-									0 10	19		
	Sampling														
	Initial 1st														
	2nd														
5W-4	3rd		0	()	x 10			(34.	00	7750	701	1212	1		
	4th		15	(1)	(V)			()4.	99	1 8 6	1-44.	69840	ब्)		
	5th Sampling			-	h /								/		v
	Initial		/							· ·					
	1st		el .												
SW-5	2nd			1				/				9.6985	27)		, and the second
JW- 3	3rd 4th		2		V5			(34.)	096	050	-79				
	5th	-11	1) / [0100	(7)		
	Sampling		-/												
	Initial														
	1st 2nd														
5W-6	3rd				,			1	0.0	100	d	79.6	\ \		
	4th	1	1	17KS				()4.	69	66 1	1 - 1	19.19	9359)		
	5th		1								1	, 0	1-1		
*= (Dopth of \^ \)	Sampling														
*= (Depth of Well) - (Dep One Well Volume =x.047	th to Water = M for 1" wells * x	ater Height	alle or * v oo	fa., 411	*	*= One Well V	olume x 5 = G	allons Pur	ged (calcu	ilated)					
				tor 4" wells,	1.469 for 6" w	ells		ul	geu (caict	iidteti)	-	Sampling Case# Case #1	Ph/Conductance SN 15H101448	DO SN 17E101302	Turbidity
	-	Casing 1"	Gallons 0.047									Case #2	15E101481	14H103098	201301183 201301174
		2"	0.163								L	Case #3	17E100512		201510251
		6"	0.653 1.469												

Midla	nds	-1					Mon	itorii	ıg W	ell P	urge				
Con	ronment Isultants	ai B, Inc.	4				An	d Sai	nnli	na D	oto				
Field Personnel:	T2,0	GICHI	J				2								
Sampling Date(s):	7/15	-/2-			_	Job Name	Jak			_	Calibratio	oration Data	afor: ul? Yes or N	lo (Please C	'irala\
	770	1 5			_	Job Number	-Dak	e 1+	195. h	Lr	pH: Conductiv		/ es \	No	ircie)
Sampling Case#:	2					Na	ne			_	Dissolved	l Óxvaen: /	Yes Yes	No No	
Well No.	Purge	Sample	pH(i)	cond(i)				7			Turbidity:	Conductivity	Calibrated Eve	ery 3 Months b	y QA Manager
	Volume	Time	β(ι)	Cond(i)	Temp.	DO (mg/l)	Turbidity		epth to (fee			Water Height		s Purged	
Dep-1	Initial 1st	13:1	10	Line	la P	Aria	(NTU)	product	initial H ₂ O	final H ₂ 0	(feet)	*(feet)	**calc.	actual	Notes
	2nd	+13	/	O UPC	Sp.	1000	1	01	949	0	tod				
FB	3rd	171		GAC	· 12.	-									
	4th	() -	> >	OFFIC	0 15,) 3									
TB-1	5th Sampling	OFEC	/												
	Initial	11:45	7.18	11000	15.9	12 300	32,15								9
1	1st			1.0.0	.,, .,	0, 10	Jak 165	31	01	Wil	low !	1	RI		
WSW-1	2nd 3rd	tisu	5 1/							11	8 44	reen	6/0.		
	4th	-	-Dyx		_			130	1.09	6044	4 _	Freek	7 0 1 5	7)	
	5th	san	if les	FIN	4 SQ.	300	nue				()	71.7	0150	2)	
	Sampling	11:55	8.10	150	12			<i>v</i> /							*
	1st	66673	0.10	105.9	16.7	6.50	2.85	710	1	1 1		.),	10 1		
WSW-Z	2nd							310) 4	1111	ow y	reell	Rd.		
	3rd 4th	Sar	fled	0	7h.		1	/					, i		
	5th	9	4	1	On	86,0	A	(34	.09	5156	, -7	9.70	508		
	Sampling	Al	wel								1				
	Initial 1st	3 / . ()	1.2		1						5 1				
	2nd	Well	d15 C	onhec	ed.	bNS		369	5	Wil	llow 1	Creek	Rd.		
WSW-3	3rd	10			J	010									
	4th 5th		19 bl	ocleed	by	010		17	100	1674	3, -7	19 701	503)		
	Sampling	Con	acc!	on pr	mp	pipie		13	1.9	10-1	7	, , ,			
(Depth of Well) - (Dep	th to Water =	Water Height				**= One \\/="	Values 5								
ne Well Volume =x.047	or 1" wells *	x .163 for 2" w	rells, or * x .6	6 for 4" wells,	1.469 for 6" v	vells	Volume x 5 = 0	Ballons Pui	ged (calc	ulated)	F	Sampling Case#	Ph/Conductance SN	DO SN	Turbidity
		Casing 1"	Gallons									Case #1 Case #2	15H101448 15E101481	17E101302 14H103098	201301183
		2"	0.047 0.163								L	Case #3	17E100512		201510251
		4" 6"	0.653 1.469												

Midlar Envir Constilled Personnel: Sampling Date(s):	nds Onment:	al					Mon	itorii	ıg W	ell P	urge				
T Cons	sultants	. The.					An	d Sai	mnlin	na D	n to				
Field Personnel:	TY, Di	Cachi	\cup				200	- Date	III PALI	ig D	The state of the s				
Sampling Date(s):	7/5	/25	,		_	Job Name:	25-8. Jak	521		-	Calibration	bration Date on Successf	ul? Yes or I	No (Please C	Circle)
Sampling Case#:	2				_ `	Job Number		e 1-t	195. h	5	Conducti	vity: d Oxygen:/	Yes	No No	-
Well No.	Purge Volume	Sample	pH(i)	cond(i)	Temp.	DO	Turbidity		Pepth to (fee	f).	Turbidity:	Conductivity	Calibrated Ev	ery 3 Months b	y QA Manager
	Initial	Time			(°C)	(mg/l)	(NTU)		initial H ₂ O		(feet)	Water Height		s Purged	Notes
WSW-4	1st 2nd	bn5	No	. We	H 0	n Pro	perty					*(feet)	**calc.	actual	
	3rd 4th 5th	wel	his	forice	ally r	JL or	per 18	711	0 ~	7		eeu R	d.		
	Sampling	pri	spert.		- (
WSW-Dup	Initial 1st	11:45	1d W	e of	WS1	w-1									
NSW-DUP WSW-FB WSW-TB	2nd 3rd 4th	11:5	4												
wsw-Tb	5th Sampling	080	0												
	Initial														
	1st														
-	2nd														
}	3rd 4th								1						
-	5th													-	
	Sampling														
	Initial														
	1st														
	2nd														
	3rd														
	4th											-			
	5th														
	Sampling														
(Depth of Well) - (Depth e Well Volume =x.047 f	n to Water = Wor 1" wells * x	.163 for 2" w	ells, or * x .66	for 4" wells,	1.469 for 6" w	*= One Well \ ells	/olume x 5 = 6	Gallons Pur	ged (calcu	llated)		Case #1	Ph/Conductance SN 15H101448	DO SN 17E101302	Turbidity 201301183
		1" 2" 4" 6"	0.047 0.163 0.653 1.469								Ė	Case #2 Case #3	15E101481 17E100512	14H103098	201301174 201510251

July 28, 2025

Mr. Bryan Shane, P.G. Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Dear Mr. Shane, P.G.:

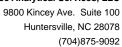
Enclosed are the analytical results for sample(s) received by the laboratory on July 16, 2025. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Blake Hiltor

Blake Hilton blake.hilton@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental

CERTIFICATIONS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 South Carolina Drinking Water Cert. #: 99006003

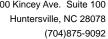
North Carolina Drinking Water Certification #: 37706 Florida/NELAP Certification #: E87627 North Carolina Field Services Certification #: 5342 Kentucky UST Certification #: 84

North Carolina Wastewater Certification #: 12

Louisiana DoH Drinking Water #: LA029

South Carolina Laboratory ID: 99006 Virginia/VELAP Certification #: 460221

(704)875-9092

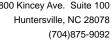


SAMPLE ANALYTE COUNT

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92807874001		EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874002	MW-2	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874003	MW-3	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874004	MW-4	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874005	MW-5	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874006	MW-6	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874007	MW-7	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
2807874008	MW-8	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
2807874009	MW-9	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
2807874010	MW-10	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
2807874011	DW-1	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874012	DW-2	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874013	DW-3	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
2807874014	DW-4	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
2807874015	SW-1	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
2807874016	SW-2	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	LMB	20	PASI-C
92807874017	DUP-1	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
92807874018	FB	EPA 8011	SMS1	2	PASI-C
		EPA 8260D	TMH	20	PASI-C
92807874019	GAC	EPA 8011	SMS1	2	PASI-C

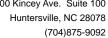

SAMPLE ANALYTE COUNT

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260D	TMH	20	PASI-C
92807874020	ТВ	EPA 8260D	TMH	20	PASI-C
92807874021	WSW-1	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	SAS	11	PASI-C
92807874022	WSW-2	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	SAS	11	PASI-C
92807874023	WSW-DUP	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	SAS	11	PASI-C
92807874024	WSW-FB	EPA 504.1	SMS1	2	PASI-C
		EPA 524.2	JN	11	PASI-C
		EPA 8260D	JN	11	PASI-C
92807874025	WSW-TB	EPA 524.2	JN	11	PASI-C
		EPA 8260D	JN	11	PASI-C

PASI-C = Pace Analytical Services - Charlotte

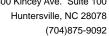

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-1	Lab ID: 928	07874001	Collected: 07/15/2	5 13:40	Received: 07	7/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 19:39	106-93-4	
1-Chloro-2-bromopropane (S)	132	%	60-140	1	07/22/25 07:53	07/22/25 19:39	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	1730	ug/L	250	2.5		07/17/25 22:20	75-85-4	
tert-Amylmethyl ether	29.5	ug/L	25.0	2.5		07/17/25 22:20	994-05-8	
Benzene	256	ug/L	12.5	2.5		07/17/25 22:20	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	250	2.5		07/17/25 22:20	624-95-3	
tert-Butyl Alcohol	ND	ug/L	250	2.5		07/17/25 22:20	75-65-0	
tert-Butyl Formate	ND	ug/L	125	2.5		07/17/25 22:20	762-75-4	
1,2-Dichloroethane	ND	ug/L	12.5	2.5		07/17/25 22:20	107-06-2	
Diisopropyl ether	89.4	ug/L	12.5	2.5		07/17/25 22:20	108-20-3	
Ethanol	ND	ug/L	500	2.5		07/17/25 22:20	64-17-5	
Ethylbenzene	6.4J	ug/L	12.5	2.5		07/17/25 22:20	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	25.0	2.5		07/17/25 22:20	637-92-3	
Methyl-tert-butyl ether	158	ug/L	12.5	2.5		07/17/25 22:20	1634-04-4	
Naphthalene	27.5	ug/L	12.5	2.5		07/17/25 22:20	91-20-3	
Toluene	7.2J	ug/L	12.5	2.5		07/17/25 22:20	108-88-3	
Xylene (Total)	ND	ug/L	12.5	2.5		07/17/25 22:20	1330-20-7	
m&p-Xylene	ND	ug/L	25.0	2.5		07/17/25 22:20	179601-23-1	
o-Xylene	ND	ug/L	12.5	2.5		07/17/25 22:20	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	91	%	70-130	2.5		07/17/25 22:20	460-00-4	
1,2-Dichloroethane-d4 (S)	83	%	70-130	2.5		07/17/25 22:20	17060-07-0	
Toluene-d8 (S)	98	%	70-130	2.5		07/17/25 22:20	2037-26-5	

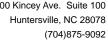

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-2	Lab ID: 928	07874002	Collected: 07/15/2	25 13:10	Received: 07	/16/25 15:10 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EPA	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 20:01	106-93-4	M1
1-Chloro-2-bromopropane (S)	125	%	60-140	1	07/22/25 07:53	07/22/25 20:01	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 18:06	75-85-4	
ert-Amylmethyl ether	5.3J	ug/L	10.0	1		07/17/25 18:06	994-05-8	
Benzene	19.4	ug/L	5.0	1		07/17/25 18:06	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 18:06	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 18:06	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 18:06	762-75-4	P5
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 18:06	107-06-2	
Diisopropyl ether	22.5	ug/L	5.0	1		07/17/25 18:06	108-20-3	M1
Ethanol	ND	ug/L	200	1		07/17/25 18:06	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 18:06	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 18:06	637-92-3	
Methyl-tert-butyl ether	131	ug/L	5.0	1		07/17/25 18:06	1634-04-4	M1
Naphthalene	ND	ug/L	5.0	1		07/17/25 18:06	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 18:06	108-88-3	
(Yolene (Total)	ND	ug/L	5.0	1		07/17/25 18:06	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	1		07/17/25 18:06	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 18:06	95-47-6	
Surrogates								
I-Bromofluorobenzene (S)	88	%	70-130	1		07/17/25 18:06		
I,2-Dichloroethane-d4 (S)	82	%	70-130	1		07/17/25 18:06		
Toluene-d8 (S)	99	%	70-130	1		07/17/25 18:06	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-3	Lab ID: 928	07874003	Collected: 07/15/2	5 12:30	Received: 07	/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 20:33	106-93-4	
1-Chloro-2-bromopropane (S)	112	%	60-140	1	07/22/25 07:53	07/22/25 20:33	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 18:26	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 18:26	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 18:26	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 18:26	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 18:26	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 18:26	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 18:26	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 18:26	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 18:26	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 18:26	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 18:26	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 18:26	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 18:26	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 18:26	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 18:26	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 18:26	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 18:26	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	89	%	70-130	1		07/17/25 18:26	460-00-4	
1,2-Dichloroethane-d4 (S)	83	%	70-130	1		07/17/25 18:26	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/17/25 18:26	2037-26-5	

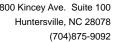
Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-4	Lab ID: 928	07874004	Collected: 07/15/2	25 12:31	Received: 07	7/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 20:44	106-93-4	
1-Chloro-2-bromopropane (S)	110	%	60-140	1	07/22/25 07:53	07/22/25 20:44	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 18:45	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 18:45	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 18:45	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 18:45	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 18:45	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 18:45	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 18:45	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 18:45	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 18:45	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 18:45	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 18:45	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 18:45	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 18:45	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 18:45	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 18:45	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 18:45	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 18:45	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	90	%	70-130	1		07/17/25 18:45	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	1		07/17/25 18:45	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/17/25 18:45	2037-26-5	

00 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092


ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

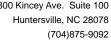
Sample: MW-5	Lab ID: 928	07874005	Collected: 07/15/2	25 12:40	Received: 07	/16/25 15:10 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 21:38	106-93-4	
1-Chloro-2-bromopropane (S)	101	%	60-140	1	07/22/25 07:53	07/22/25 21:38	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 19:05	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 19:05	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 19:05	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 19:05	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 19:05	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 19:05	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 19:05	107-06-2	
Diisopropyl ether	23.0	ug/L	5.0	1		07/17/25 19:05	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 19:05	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 19:05	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 19:05	637-92-3	
Methyl-tert-butyl ether	79.9	ug/L	5.0	1		07/17/25 19:05	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 19:05	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 19:05	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 19:05	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 19:05	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 19:05	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	87	%	70-130	1		07/17/25 19:05	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	1		07/17/25 19:05	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		07/17/25 19:05	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-6	Lab ID: 928	07874006	Collected: 07/15/2	25 12:43	Received: 07	/16/25 15:10 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 21:59	106-93-4	M1
1-Chloro-2-bromopropane (S)	111	%	60-140	1	07/22/25 07:53	07/22/25 21:59	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	2820	ug/L	200	2		07/17/25 22:01	75-85-4	
tert-Amylmethyl ether	32.1	ug/L	20.0	2		07/17/25 22:01	994-05-8	
Benzene	7.2J	ug/L	10.0	2		07/17/25 22:01	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	200	2		07/17/25 22:01	624-95-3	
tert-Butyl Alcohol	ND	ug/L	200	2		07/17/25 22:01	75-65-0	
tert-Butyl Formate	ND	ug/L	100	2		07/17/25 22:01	762-75-4	
1,2-Dichloroethane	ND	ug/L	10.0	2		07/17/25 22:01	107-06-2	
Diisopropyl ether	129	ug/L	10.0	2		07/17/25 22:01	108-20-3	
Ethanol	ND	ug/L	400	2		07/17/25 22:01	64-17-5	
Ethylbenzene	ND	ug/L	10.0	2		07/17/25 22:01	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	2		07/17/25 22:01	637-92-3	
Methyl-tert-butyl ether	179	ug/L	10.0	2		07/17/25 22:01	1634-04-4	
Naphthalene	5.2J	ug/L	10.0	2		07/17/25 22:01	91-20-3	
Toluene	ND	ug/L	10.0	2		07/17/25 22:01	108-88-3	
Xylene (Total)	ND	ug/L	10.0	2		07/17/25 22:01	1330-20-7	
m&p-Xylene	ND	ug/L	20.0	2		07/17/25 22:01	179601-23-1	
o-Xylene	ND	ug/L	10.0	2		07/17/25 22:01	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	84	%	70-130	2		07/17/25 22:01		
1,2-Dichloroethane-d4 (S)	92	%	70-130	2		07/17/25 22:01		
Toluene-d8 (S)	101	%	70-130	2		07/17/25 22:01	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-7	Lab ID: 928	07874007	Collected: 07/15/2	25 12:50	Received: 07	/16/25 15:10 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 22:32	106-93-4	
1-Chloro-2-bromopropane (S)	107	%	60-140	1	07/22/25 07:53	07/22/25 22:32	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 19:25	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 19:25	994-05-8	
Benzene	3.2J	ug/L	5.0	1		07/17/25 19:25	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 19:25	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 19:25	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 19:25	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 19:25	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 19:25	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 19:25	64-17-5	
Ethylbenzene	4.5J	ug/L	5.0	1		07/17/25 19:25	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 19:25	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 19:25	1634-04-4	
Naphthalene	26.9	ug/L	5.0	1		07/17/25 19:25	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 19:25	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 19:25	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 19:25	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 19:25	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	90	%	70-130	1		07/17/25 19:25	460-00-4	
1,2-Dichloroethane-d4 (S)	84	%	70-130	1		07/17/25 19:25	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		07/17/25 19:25	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-8	Lab ID: 928	07874008	Collected: 07/15/2	25 13:41	Received: 07	/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 22:42	106-93-4	
1-Chloro-2-bromopropane (S)	134	%	60-140	1	07/22/25 07:53	07/22/25 22:42	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	20000	200		07/17/25 23:00	75-85-4	
tert-Amylmethyl ether	ND	ug/L	2000	200		07/17/25 23:00	994-05-8	
Benzene	4430	ug/L	1000	200		07/17/25 23:00	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	20000	200		07/17/25 23:00	624-95-3	
tert-Butyl Alcohol	ND	ug/L	20000	200		07/17/25 23:00	75-65-0	
tert-Butyl Formate	ND	ug/L	10000	200		07/17/25 23:00	762-75-4	
1,2-Dichloroethane	ND	ug/L	1000	200		07/17/25 23:00	107-06-2	
Diisopropyl ether	ND	ug/L	1000	200		07/17/25 23:00	108-20-3	
Ethanol	ND	ug/L	40000	200		07/17/25 23:00	64-17-5	
Ethylbenzene	2590	ug/L	1000	200		07/17/25 23:00	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	2000	200		07/17/25 23:00	637-92-3	
Methyl-tert-butyl ether	712J	ug/L	1000	200		07/17/25 23:00	1634-04-4	
Naphthalene	918J	ug/L	1000	200		07/17/25 23:00	91-20-3	
Toluene	26300	ug/L	1000	200		07/17/25 23:00	108-88-3	
Xylene (Total)	14800	ug/L	1000	200		07/17/25 23:00	1330-20-7	
m&p-Xylene	9970	ug/L	2000	200		07/17/25 23:00	179601-23-1	
o-Xylene	4780	ug/L	1000	200		07/17/25 23:00	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	91	%	70-130	200		07/17/25 23:00	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	200		07/17/25 23:00	17060-07-0	
Toluene-d8 (S)	99	%	70-130	200		07/17/25 23:00	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: MW-9	Lab ID: 928	07874009	Collected: 07/15/2	25 13:50	Received: 07	/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 22:53	106-93-4	
1-Chloro-2-bromopropane (S)	103	%	60-140	1	07/22/25 07:53	07/22/25 22:53	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 19:44	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 19:44	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 19:44	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 19:44	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 19:44	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 19:44	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 19:44	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 19:44	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 19:44	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 19:44	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 19:44	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 19:44	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 19:44	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 19:44	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 19:44	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 19:44		
o-Xylene	ND	ug/L	5.0	1		07/17/25 19:44	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	86	%	70-130	1		07/17/25 19:44	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	1		07/17/25 19:44	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		07/17/25 19:44	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

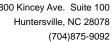
Sample: MW-10	Lab ID: 928	07874010	Collected: 07/15/2	5 13:48	Received: 07	/16/25 15:10 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EPA	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 23:04	106-93-4	
1-Chloro-2-bromopropane (S)	119	%	60-140	1	07/22/25 07:53	07/22/25 23:04	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	351	ug/L	250	2.5		07/23/25 16:32	75-85-4	
tert-Amylmethyl ether	ND	ug/L	25.0	2.5		07/23/25 16:32	994-05-8	
Benzene	81.1	ug/L	12.5	2.5		07/23/25 16:32	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	250	2.5		07/23/25 16:32	624-95-3	
tert-Butyl Alcohol	ND	ug/L	250	2.5		07/23/25 16:32	75-65-0	
tert-Butyl Formate	ND	ug/L	125	2.5		07/23/25 16:32	762-75-4	IH,L1,v1
1,2-Dichloroethane	ND	ug/L	12.5	2.5		07/23/25 16:32	107-06-2	
Diisopropyl ether	19.3	ug/L	12.5	2.5		07/23/25 16:32	108-20-3	
Ethanol	ND	ug/L	500	2.5		07/23/25 16:32	64-17-5	
Ethylbenzene	286	ug/L	12.5	2.5		07/23/25 16:32	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	25.0	2.5		07/23/25 16:32	637-92-3	
Methyl-tert-butyl ether	30.2	ug/L	12.5	2.5		07/23/25 16:32	1634-04-4	
Naphthalene	189	ug/L	12.5	2.5		07/23/25 16:32	91-20-3	
Toluene	10.1J	ug/L	12.5	2.5		07/23/25 16:32	108-88-3	
Xylene (Total)	196	ug/L	12.5	2.5		07/23/25 16:32	1330-20-7	
m&p-Xylene	164	ug/L	25.0	2.5		07/23/25 16:32	179601-23-1	
o-Xylene	32.6	ug/L	12.5	2.5		07/23/25 16:32	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	101	%	70-130	2.5		07/23/25 16:32	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	2.5		07/23/25 16:32	17060-07-0	
Toluene-d8 (S)	100	%	70-130	2.5		07/23/25 16:32	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: DW-1	Lab ID: 928	07874011	Collected: 07/15/2	25 13:30	Received: 07	/16/25 15:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 23:14	106-93-4	
1-Chloro-2-bromopropane (S)	108	%	60-140	1	07/22/25 07:53	07/22/25 23:14	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 20:04	75-85-4	
tert-Amylmethyl ether	3.2J	ug/L	10.0	1		07/17/25 20:04	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 20:04	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 20:04	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 20:04	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 20:04	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 20:04	107-06-2	
Diisopropyl ether	18.6	ug/L	5.0	1		07/17/25 20:04	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 20:04	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 20:04	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 20:04	637-92-3	
Methyl-tert-butyl ether	69.8	ug/L	5.0	1		07/17/25 20:04	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 20:04	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 20:04	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 20:04	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 20:04	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 20:04	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	89	%	70-130	1		07/17/25 20:04	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	1		07/17/25 20:04	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		07/17/25 20:04	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: DW-2	Lab ID: 928	07874012	Collected: 07/15/2	5 13:15	Received: 07	/16/25 15:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 23:25	106-93-4	
1-Chloro-2-bromopropane (S)	98	%	60-140	1	07/22/25 07:53	07/22/25 23:25	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 20:24	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 20:24	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 20:24	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 20:24	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 20:24	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 20:24	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 20:24	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 20:24	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 20:24	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 20:24	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 20:24	637-92-3	
Methyl-tert-butyl ether	3.3J	ug/L	5.0	1		07/17/25 20:24	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 20:24	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 20:24	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 20:24	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 20:24	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 20:24	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	86	%	70-130	1		07/17/25 20:24	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	1		07/17/25 20:24	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/17/25 20:24	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: DW-3	Lab ID: 928	07874013	Collected: 07/15/2	5 12:46	Received: 07	/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 23:36	106-93-4	
1-Chloro-2-bromopropane (S)	105	%	60-140	1	07/22/25 07:53	07/22/25 23:36	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	e60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 20:43	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 20:43	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 20:43	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 20:43	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 20:43	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 20:43	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 20:43	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 20:43	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 20:43	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 20:43	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 20:43	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 20:43	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 20:43	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 20:43	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 20:43	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 20:43	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 20:43	95-47-6	
Surrogates		ū						
4-Bromofluorobenzene (S)	87	%	70-130	1		07/17/25 20:43	460-00-4	
1,2-Dichloroethane-d4 (S)	87	%	70-130	1		07/17/25 20:43	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		07/17/25 20:43	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

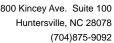
Sample: DW-4	Lab ID: 928	07874014	Collected: 07/15/2	5 13:31	Received: 07	/16/25 15:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 23:47	106-93-4	
1-Chloro-2-bromopropane (S)	102	%	60-140	1	07/22/25 07:53	07/22/25 23:47	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	1000	10		07/23/25 13:10	75-85-4	
tert-Amylmethyl ether	ND	ug/L	100	10		07/23/25 13:10	994-05-8	
Benzene	216	ug/L	50.0	10		07/23/25 13:10	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	1000	10		07/23/25 13:10	624-95-3	
tert-Butyl Alcohol	ND	ug/L	1000	10		07/23/25 13:10	75-65-0	
tert-Butyl Formate	ND	ug/L	500	10		07/23/25 13:10	762-75-4	IH,L1,v1
1,2-Dichloroethane	ND	ug/L	50.0	10		07/23/25 13:10	107-06-2	
Diisopropyl ether	ND	ug/L	50.0	10		07/23/25 13:10	108-20-3	
Ethanol	ND	ug/L	2000	10		07/23/25 13:10	64-17-5	
Ethylbenzene	94.7	ug/L	50.0	10		07/23/25 13:10	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	100	10		07/23/25 13:10	637-92-3	
Methyl-tert-butyl ether	54.2	ug/L	50.0	10		07/23/25 13:10	1634-04-4	
Naphthalene	25.2J	ug/L	50.0	10		07/23/25 13:10	91-20-3	
Toluene	1150	ug/L	50.0	10		07/23/25 13:10	108-88-3	
Xylene (Total)	577	ug/L	50.0	10		07/23/25 13:10	1330-20-7	
m&p-Xylene	378	ug/L	100	10		07/23/25 13:10	179601-23-1	
o-Xylene	199	ug/L	50.0	10		07/23/25 13:10	95-47-6	
Surrogates		Ŭ						
4-Bromofluorobenzene (S)	102	%	70-130	10		07/23/25 13:10	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	10		07/23/25 13:10	17060-07-0	
Toluene-d8 (S)	101	%	70-130	10		07/23/25 13:10	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: SW-1	Lab ID: 928	07874015	Collected: 07/15/2	25 11:29	Received: 07	/16/25 15:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/22/25 23:58	106-93-4	
1-Chloro-2-bromopropane (S)	106	%	60-140	1	07/22/25 07:53	07/22/25 23:58	301-79-56	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/18/25 12:34	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/18/25 12:34	994-05-8	
Benzene	ND	ug/L	1.0	1		07/18/25 12:34	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/18/25 12:34	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/18/25 12:34	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/18/25 12:34	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	1		07/18/25 12:34	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	1		07/18/25 12:34	108-20-3	
Ethanol	ND	ug/L	200	1		07/18/25 12:34	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		07/18/25 12:34	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/18/25 12:34	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/18/25 12:34	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		07/18/25 12:34	91-20-3	
Toluene	ND	ug/L	1.0	1		07/18/25 12:34	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		07/18/25 12:34	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/18/25 12:34	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/18/25 12:34	95-47-6	
Surrogates		ū						
4-Bromofluorobenzene (S)	97	%	70-130	1		07/18/25 12:34	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		07/18/25 12:34	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		07/18/25 12:34	2037-26-5	

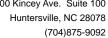


Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: SW-2	Lab ID: 928	07874016	Collected: 07/15/2	5 10:46	Received: 07	/16/25 15:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/23/25 00:08	106-93-4	
1-Chloro-2-bromopropane (S)	105	%	60-140	1	07/22/25 07:53	07/23/25 00:08	301-79-56	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/18/25 12:52	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/18/25 12:52	994-05-8	
Benzene	ND	ug/L	1.0	1		07/18/25 12:52	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/18/25 12:52	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/18/25 12:52	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/18/25 12:52	762-75-4	
1,2-Dichloroethane	ND	ug/L	1.0	1		07/18/25 12:52	107-06-2	
Diisopropyl ether	ND	ug/L	1.0	1		07/18/25 12:52	108-20-3	
Ethanol	ND	ug/L	200	1		07/18/25 12:52	64-17-5	
Ethylbenzene	ND	ug/L	1.0	1		07/18/25 12:52	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/18/25 12:52	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/18/25 12:52	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		07/18/25 12:52	91-20-3	
Toluene	ND	ug/L	1.0	1		07/18/25 12:52	108-88-3	
Xylene (Total)	ND	ug/L	1.0	1		07/18/25 12:52	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/18/25 12:52	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/18/25 12:52	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	96	%	70-130	1		07/18/25 12:52	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		07/18/25 12:52	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		07/18/25 12:52	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: DUP-1	Lab ID: 928	07874017	Collected: 07/15/2	25 00:00	Received: 07	7/16/25 15:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EPA	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/23/25 00:19	106-93-4	
1-Chloro-2-bromopropane (S)	107	%	60-140	1	07/22/25 07:53	07/23/25 00:19	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	1630	ug/L	200	2		07/23/25 11:57	75-85-4	
tert-Amylmethyl ether	29.1	ug/L	20.0	2		07/23/25 11:57	994-05-8	
Benzene	232	ug/L	10.0	2		07/23/25 11:57	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	200	2		07/23/25 11:57	624-95-3	
tert-Butyl Alcohol	ND	ug/L	200	2		07/23/25 11:57	75-65-0	
tert-Butyl Formate	ND	ug/L	100	2		07/23/25 11:57	762-75-4	IH,L1,v1
1,2-Dichloroethane	ND	ug/L	10.0	2		07/23/25 11:57	107-06-2	
Diisopropyl ether	91.4	ug/L	10.0	2		07/23/25 11:57	108-20-3	
Ethanol	ND	ug/L	400	2		07/23/25 11:57	64-17-5	
Ethylbenzene	6.0J	ug/L	10.0	2		07/23/25 11:57	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	2		07/23/25 11:57	637-92-3	
Methyl-tert-butyl ether	174	ug/L	10.0	2		07/23/25 11:57	1634-04-4	
Naphthalene	28.3	ug/L	10.0	2		07/23/25 11:57	91-20-3	
Toluene	ND	ug/L	10.0	2		07/23/25 11:57	108-88-3	
Xylene (Total)	ND	ug/L	10.0	2		07/23/25 11:57	1330-20-7	
m&p-Xylene	ND	ug/L	20.0	2		07/23/25 11:57	179601-23-1	
o-Xylene	ND	ug/L	10.0	2		07/23/25 11:57	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	105	%	70-130	2		07/23/25 11:57	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	2		07/23/25 11:57	17060-07-0	
Toluene-d8 (S)	101	%	70-130	2		07/23/25 11:57	2037-26-5	



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: FB	Lab ID: 928	07874018	Collected: 07/15/2	5 13:53	Received: 07	/16/25 15:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	011 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/23/25 00:30	106-93-4	
1-Chloro-2-bromopropane (S)	103	%	60-140	1	07/22/25 07:53	07/23/25 00:30	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 14:50	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 14:50	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 14:50	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 14:50	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 14:50	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 14:50	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 14:50	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 14:50	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 14:50	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 14:50	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 14:50	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 14:50	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 14:50	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 14:50	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 14:50	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 14:50	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 14:50	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	88	%	70-130	1		07/17/25 14:50	460-00-4	
1,2-Dichloroethane-d4 (S)	91	%	70-130	1		07/17/25 14:50	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		07/17/25 14:50	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: GAC	Lab ID: 928	07874019	Collected: 07/15/2	5 13:55	Received: 07	/16/25 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Meth	nod: EPA 80	11 Preparation Meth	nod: EP/	A 8011			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:53	07/23/25 00:40	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140	1	07/22/25 07:53	07/23/25 00:40	301-79-56	
8260 MSV	Analytical Meth	nod: EPA 82	60D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 21:22	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 21:22	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 21:22	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 21:22	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 21:22	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 21:22	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 21:22	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 21:22	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 21:22	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 21:22	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 21:22	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 21:22	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 21:22	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 21:22	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 21:22	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 21:22	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 21:22	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	86	%	70-130	1		07/17/25 21:22	460-00-4	
1,2-Dichloroethane-d4 (S)	85	%	70-130	1		07/17/25 21:22	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		07/17/25 21:22	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: TB	Lab ID: 928	07874020	Collected: 07/15/2	5 08:00	Received: 0	7/16/25 15:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 14:30	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 14:30	994-05-8	
Benzene	ND	ug/L	5.0	1		07/17/25 14:30	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 14:30	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 14:30	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 14:30	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1		07/17/25 14:30	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1		07/17/25 14:30	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 14:30	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1		07/17/25 14:30	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 14:30	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1		07/17/25 14:30	1634-04-4	
Naphthalene	ND	ug/L	5.0	1		07/17/25 14:30	91-20-3	
Toluene	ND	ug/L	5.0	1		07/17/25 14:30	108-88-3	
Xylene (Total)	ND	ug/L	5.0	1		07/17/25 14:30	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	1		07/17/25 14:30	179601-23-1	
o-Xylene	ND	ug/L	5.0	1		07/17/25 14:30	95-47-6	
Surrogates		ŭ						
4-Bromofluorobenzene (S)	91	%	70-130	1		07/17/25 14:30	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		07/17/25 14:30	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		07/17/25 14:30	2037-26-5	

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: WSW-1	Lab ID: 9280	7874021	Collected: 07/15/2	25 11:45	Received: 07	7/16/25 15:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Meth	od: EPA 50	04.1 Preparation Met	hod: EF	A 504.1			
	Pace Analytical	Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:55	07/22/25 13:37	106-93-4	
1-Chloro-2-bromopropane (S)	112	%	70-130	1	07/22/25 07:55	07/22/25 13:37	301-79-56	
524.2 MSV SC List	Analytical Meth	od: EPA 52	24.2					
	Pace Analytical	Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		07/18/25 22:11	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		07/18/25 22:11	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		07/18/25 22:11	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		07/18/25 22:11	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		07/18/25 22:11	91-20-3	
Toluene	0.79	ug/L	0.50	1		07/18/25 22:11	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		07/18/25 22:11	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		07/18/25 22:11	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		07/18/25 22:11	95-47-6	
Surrogates		Ū						
1,2-Dichlorobenzene-d4 (S)	92	%	70-130	1		07/18/25 22:11	2199-69-1	
4-Bromofluorobenzene (S)	101	%	70-130	1		07/18/25 22:11	460-00-4	
3260 MSV Low Level SC	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/18/25 05:50	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	1		07/18/25 05:50	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/18/25 05:50	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		07/18/25 05:50	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		07/18/25 05:50	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		07/18/25 05:50	108-20-3	
Ethanol	ND	ug/L	200	1		07/18/25 05:50	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/18/25 05:50	637-92-3	
Surrogates		-						
4-Bromofluorobenzene (S)	98	%	70-130	1		07/18/25 05:50	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130	1		07/18/25 05:50	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		07/18/25 05:50	2037-26-5	

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: WSW-2	Lab ID: 9280	7874022	Collected: 07/15/2	25 11:55	Received: 07	7/16/25 15:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Meth	od: EPA 50	04.1 Preparation Met	hod: EF	PA 504.1			
	Pace Analytica	Services -	Charlotte					
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	1	07/22/25 07:55	07/22/25 14:00	106-93-4	
Surrogates 1-Chloro-2-bromopropane (S)	114	%	70-130	1	07/22/25 07:55	07/22/25 14:00	301-79-56	
524.2 MSV SC List	Analytical Meth	od: EPA 52	24.2					
	Pace Analytica	Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		07/18/25 22:38	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		07/18/25 22:38	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		07/18/25 22:38	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		07/18/25 22:38	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		07/18/25 22:38	91-20-3	
Toluene	0.77	ug/L	0.50	1		07/18/25 22:38	108-88-3	
Kylene (Total)	ND	ug/L	0.50	1		07/18/25 22:38	1330-20-7	
n&p-Xylene	ND	ug/L	1.0	1		07/18/25 22:38	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		07/18/25 22:38	95-47-6	
Surrogates								
1,2-Dichlorobenzene-d4 (S)	90	%	70-130	1		07/18/25 22:38	2199-69-1	
4-Bromofluorobenzene (S)	108	%	70-130	1		07/18/25 22:38	460-00-4	
3260 MSV Low Level SC	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	Services -	Charlotte					
ert-Amyl Alcohol	ND	ug/L	100	1		07/18/25 06:08	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	1		07/18/25 06:08	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/18/25 06:08	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		07/18/25 06:08	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		07/18/25 06:08	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		07/18/25 06:08	108-20-3	
Ethanol	ND	ug/L	200	1		07/18/25 06:08	64-17-5	
Ethyl-tert-butyl ether Surrogates	ND	ug/L	10.0	1		07/18/25 06:08	637-92-3	
4-Bromofluorobenzene (S)	101	%	70-130	1		07/18/25 06:08	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%	70-130	1		07/18/25 06:08		
Toluene-d8 (S)	103	%	70-130	1		07/18/25 06:08	2037-26-5	

ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: WSW-DUP	Lab ID: 928	07874023	Collected: 07/15/2	5 00:00	Received: 07	7/16/25 15:10 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Meth	nod: EPA 50	04.1 Preparation Met	hod: EF	PA 504.1			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:55	07/22/25 20:03	106-93-4	
1-Chloro-2-bromopropane (S)	96	%	70-130	1	07/22/25 07:55	07/22/25 20:03	301-79-56	
524.2 MSV SC List	Analytical Meth	nod: EPA 52	24.2					
	Pace Analytica	l Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		07/18/25 23:04	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		07/18/25 23:04	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		07/18/25 23:04	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		07/18/25 23:04	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		07/18/25 23:04	91-20-3	
Toluene	0.78	ug/L	0.50	1		07/18/25 23:04	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		07/18/25 23:04	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		07/18/25 23:04	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		07/18/25 23:04	95-47-6	
Surrogates		Ü						
1,2-Dichlorobenzene-d4 (S)	88	%	70-130	1		07/18/25 23:04	2199-69-1	
4-Bromofluorobenzene (S)	99	%	70-130	1		07/18/25 23:04	460-00-4	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/18/25 06:26	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/18/25 06:26	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/18/25 06:26	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/18/25 06:26	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/18/25 06:26	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		07/18/25 06:26	108-20-3	
Ethanol	ND	ug/L	200	1		07/18/25 06:26		
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/18/25 06:26		
Surrogates								
4-Bromofluorobenzene (S)	95	%	70-130	1		07/18/25 06:26		
1,2-Dichloroethane-d4 (S)	96	%	70-130	1		07/18/25 06:26		
Toluene-d8 (S)	100	%	70-130	1		07/18/25 06:26	2037-26-5	

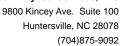
ANALYTICAL RESULTS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: WSW-FB	Lab ID: 928	07874024	Collected: 07/15/2	5 11:59	Received: 07	7/16/25 15:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Meth	od: EPA 50	04.1 Preparation Met	hod: EP	A 504.1			
	Pace Analytica	l Services -	Charlotte					
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	1	07/22/25 07:55	07/22/25 20:14	106-93-4	
1-Chloro-2-bromopropane (S)	94	%	70-130	1	07/22/25 07:55	07/22/25 20:14	301-79-56	
524.2 MSV SC List	Analytical Meth	od: EPA 52	24.2					
	Pace Analytica	l Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		07/18/25 17:22	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		07/18/25 17:22	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		07/18/25 17:22	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		07/18/25 17:22	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		07/18/25 17:22	91-20-3	
Toluene	0.66	ug/L	0.50	1		07/18/25 17:22	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		07/18/25 17:22	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		07/18/25 17:22	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		07/18/25 17:22	95-47-6	
Surrogates		•						
1,2-Dichlorobenzene-d4 (S)	95	%	70-130	1		07/18/25 17:22	2199-69-1	
4-Bromofluorobenzene (S)	110	%	70-130	1		07/18/25 17:22	460-00-4	
8260 MSV Low Level SC	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 15:51	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 15:51	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 15:51	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 15:51	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 15:51	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		07/17/25 15:51	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 15:51	64-17-5	
Ethyl-tert-butyl ether Surrogates	ND	ug/L	10.0	1		07/17/25 15:51	637-92-3	
4-Bromofluorobenzene (S)	97	%	70-130	1		07/17/25 15:51	460-00-4	
1,2-Dichloroethane-d4 (S)	122	%	70-130	1		07/17/25 15:51		
Toluene-d8 (S)	101	%	70-130	1		07/17/25 15:51		



Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Sample: WSW-TB	Lab ID: 928	07874025	Collected: 07/15/2	25 08:00	Received: 07	7/16/25 15:10 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV SC List	Analytical Meth	nod: EPA 52	24.2					
	Pace Analytica	I Services -	Charlotte					
Benzene	ND	ug/L	0.50	1		07/18/25 17:49	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	1		07/18/25 17:49	107-06-2	
Ethylbenzene	ND	ug/L	0.50	1		07/18/25 17:49	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		07/18/25 17:49	1634-04-4	
Naphthalene	ND	ug/L	0.50	1		07/18/25 17:49	91-20-3	
Toluene	ND	ug/L	0.50	1		07/18/25 17:49	108-88-3	
Xylene (Total)	ND	ug/L	0.50	1		07/18/25 17:49	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		07/18/25 17:49	179601-23-1	
o-Xylene	ND	ug/L	0.50	1		07/18/25 17:49	95-47-6	
Surrogates								
1,2-Dichlorobenzene-d4 (S)	93	%	70-130	1		07/18/25 17:49		
4-Bromofluorobenzene (S)	110	%	70-130	1		07/18/25 17:49	460-00-4	
8260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
tert-Amyl Alcohol	ND	ug/L	100	1		07/17/25 16:10	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	1		07/17/25 16:10	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	1		07/17/25 16:10	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	1		07/17/25 16:10	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	1		07/17/25 16:10	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	1		07/17/25 16:10	108-20-3	
Ethanol	ND	ug/L	200	1		07/17/25 16:10	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	1		07/17/25 16:10	637-92-3	
Surrogates		-						
4-Bromofluorobenzene (S)	98	%	70-130	1		07/17/25 16:10	460-00-4	
1,2-Dichloroethane-d4 (S)	121	%	70-130	1		07/17/25 16:10	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		07/17/25 16:10	2037-26-5	

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 948751 Analysis Method: EPA 524.2

QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874021, 92807874022, 92807874023, 92807874024, 92807874025

METHOD BLANK: 4875802 Matrix: Water

Associated Lab Samples: 92807874021, 92807874022, 92807874023, 92807874024, 92807874025

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	07/18/25 14:18	
Benzene	ug/L	ND	0.50	07/18/25 14:18	
Ethylbenzene	ug/L	ND	0.50	07/18/25 14:18	
m&p-Xylene	ug/L	ND	1.0	07/18/25 14:18	
Methyl-tert-butyl ether	ug/L	ND	0.50	07/18/25 14:18	
Naphthalene	ug/L	ND	0.50	07/18/25 14:18	
o-Xylene	ug/L	ND	0.50	07/18/25 14:18	
Toluene	ug/L	ND	0.50	07/18/25 14:18	
Xylene (Total)	ug/L	ND	0.50	07/18/25 14:18	
1,2-Dichlorobenzene-d4 (S)	%	98	70-130	07/18/25 14:18	
4-Bromofluorobenzene (S)	%	112	70-130	07/18/25 14:18	

LABORATORY CONTROL SAMPLE	: 4875803					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		18.9	95	70-130	
Benzene	ug/L	20	20.8	104	70-130	
Ethylbenzene	ug/L	20	21.0	105	70-130	
m&p-Xylene	ug/L	40	42.4	106	70-130	
Methyl-tert-butyl ether	ug/L	20	19.5	98	70-130	
Naphthalene	ug/L	20	18.1	91	70-130	
o-Xylene	ug/L	20	22.1	110	70-130	
Toluene	ug/L	20	20.9	105	70-130	
Xylene (Total)	ug/L	60	64.5	108		
1,2-Dichlorobenzene-d4 (S)	%			122	70-130	
4-Bromofluorobenzene (S)	%			123	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 948402 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874024, 92807874025

METHOD BLANK: 4873735 Matrix: Water

Associated Lab Samples: 92807874024, 92807874025

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	07/17/25 14:03	
Diisopropyl ether	ug/L	ND	1.0	07/17/25 14:03	
Ethanol	ug/L	ND	200	07/17/25 14:03	
Ethyl-tert-butyl ether	ug/L	ND	10.0	07/17/25 14:03	
tert-Amyl Alcohol	ug/L	ND	100	07/17/25 14:03	
tert-Amylmethyl ether	ug/L	ND	10.0	07/17/25 14:03	
tert-Butyl Alcohol	ug/L	ND	100	07/17/25 14:03	
tert-Butyl Formate	ug/L	ND	50.0	07/17/25 14:03	
1,2-Dichloroethane-d4 (S)	%	120	70-130	07/17/25 14:03	
4-Bromofluorobenzene (S)	%	100	70-130	07/17/25 14:03	
Toluene-d8 (S)	%	102	70-130	07/17/25 14:03	

LABORATORY CONTROL SAMPLE:	4873736					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	400	425	106	70-130	
Diisopropyl ether	ug/L	20	21.2	106	70-130	
Ethanol	ug/L	800	949	119	70-130	
Ethyl-tert-butyl ether	ug/L	40	42.3	106	70-130	
tert-Amyl Alcohol	ug/L	400	436	109	70-130	
tert-Amylmethyl ether	ug/L	40	39.8	100	70-130	
tert-Butyl Alcohol	ug/L	200	225	112	70-130	
tert-Butyl Formate	ug/L	160	185	115	70-130	
1,2-Dichloroethane-d4 (S)	%			110	70-130	
4-Bromofluorobenzene (S)	%			102	70-130	
Toluene-d8 (S)	%			100	70-130	

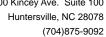
MATRIX SPIKE SAMPLE:	4873737						
		92807872029	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	 ug/L	ND	400	340	85	39-157	
Diisopropyl ether	ug/L	ND	20	22.2	111	63-144	
Ethanol	ug/L	ND	800	758	95	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	42.1	105	66-137	
tert-Amyl Alcohol	ug/L	ND	400	360	90	54-153	
tert-Amylmethyl ether	ug/L	ND	40	38.6	96	69-139	
tert-Butyl Alcohol	ug/L	ND	200	241	121	43-188	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423


Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

MATRIX SPIKE SAMPLE:	4873737						
Parameter	Units	92807872029 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
							Quamoro
tert-Butyl Formate	ug/L	ND	160	ND	12	10-170	
1,2-Dichloroethane-d4 (S)	%				103	70-130	
4-Bromofluorobenzene (S)	%				101	70-130	
Toluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 4873738					
		92807872031	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Diisopropyl ether	ug/L	ND	ND		
Ethanol	ug/L	ND	ND		
Ethyl-tert-butyl ether	ug/L	ND	ND		
tert-Amyl Alcohol	ug/L	ND	ND		
tert-Amylmethyl ether	ug/L	ND	ND		
tert-Butyl Alcohol	ug/L	ND	ND		
tert-Butyl Formate	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	118	104		
4-Bromofluorobenzene (S)	%	99	98		
Toluene-d8 (S)	%	105	102		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 948411 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874021, 92807874022, 92807874023

METHOD BLANK: 4873757 Matrix: Water

Associated Lab Samples: 92807874021, 92807874022, 92807874023

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND -	100	07/17/25 23:19	
Diisopropyl ether	ug/L	ND	1.0	07/17/25 23:19	
Ethanol	ug/L	ND	200	07/17/25 23:19	
Ethyl-tert-butyl ether	ug/L	ND	10.0	07/17/25 23:19	
tert-Amyl Alcohol	ug/L	ND	100	07/17/25 23:19	
tert-Amylmethyl ether	ug/L	ND	10.0	07/17/25 23:19	
tert-Butyl Alcohol	ug/L	ND	100	07/17/25 23:19	
tert-Butyl Formate	ug/L	ND	50.0	07/17/25 23:19	
1,2-Dichloroethane-d4 (S)	%	108	70-130	07/17/25 23:19	
4-Bromofluorobenzene (S)	%	99	70-130	07/17/25 23:19	
Toluene-d8 (S)	%	102	70-130	07/17/25 23:19	

LABORATORY CONTROL SAMPLE:	4873758					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	400	428	107	70-130	
Diisopropyl ether	ug/L	20	19.8	99	70-130	
Ethanol	ug/L	800	902	113	70-130	
Ethyl-tert-butyl ether	ug/L	40	40.1	100	70-130	
tert-Amyl Alcohol	ug/L	400	437	109	70-130	
tert-Amylmethyl ether	ug/L	40	37.6	94	70-130	
tert-Butyl Alcohol	ug/L	200	166	83	70-130	
tert-Butyl Formate	ug/L	160	152	95	70-130	
1,2-Dichloroethane-d4 (S)	%			94	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:	4873759						
		92807872032	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	400	381	95	39-157	
Diisopropyl ether	ug/L	ND	20	20.9	105	63-144	
Ethanol	ug/L	ND	800	888	111	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	41.8	104	66-137	
tert-Amyl Alcohol	ug/L	ND	400	406	102	54-153	
tert-Amylmethyl ether	ug/L	ND	40	36.2	91	69-139	
tert-Butyl Alcohol	ug/L	ND	200	200	100	43-188	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

MATRIX SPIKE SAMPLE:	4873759						
Parameter	Units	92807872032 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
- Taramotor							Quamoro
tert-Butyl Formate	ug/L	ND	160	102	64	10-170	
1,2-Dichloroethane-d4 (S)	%				99	70-130	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 4873760					
		92807872034	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Diisopropyl ether	ug/L	0.79J	0.76J		
Ethanol	ug/L	ND	ND		
Ethyl-tert-butyl ether	ug/L	ND	ND		
tert-Amyl Alcohol	ug/L	ND	ND		
tert-Amylmethyl ether	ug/L	ND	ND		
tert-Butyl Alcohol	ug/L	ND	ND		
tert-Butyl Formate	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	106	108		
4-Bromofluorobenzene (S)	%	99	98		
Toluene-d8 (S)	%	107	97		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 948666 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874015, 92807874016

METHOD BLANK: 4875117 Matrix: Water

Associated Lab Samples: 92807874015, 92807874016

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	1.0	07/18/25 10:09	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	07/18/25 10:09	
Benzene	ug/L	ND	1.0	07/18/25 10:09	
Diisopropyl ether	ug/L	ND	1.0	07/18/25 10:09	
Ethanol	ug/L	ND	200	07/18/25 10:09	
Ethyl-tert-butyl ether	ug/L	ND	10.0	07/18/25 10:09	
Ethylbenzene	ug/L	ND	1.0	07/18/25 10:09	
m&p-Xylene	ug/L	ND	2.0	07/18/25 10:09	
Methyl-tert-butyl ether	ug/L	ND	1.0	07/18/25 10:09	
Naphthalene	ug/L	ND	1.0	07/18/25 10:09	
o-Xylene	ug/L	ND	1.0	07/18/25 10:09	
tert-Amyl Alcohol	ug/L	ND	100	07/18/25 10:09	
tert-Amylmethyl ether	ug/L	ND	10.0	07/18/25 10:09	
tert-Butyl Alcohol	ug/L	ND	100	07/18/25 10:09	
tert-Butyl Formate	ug/L	ND	50.0	07/18/25 10:09	
Toluene	ug/L	ND	1.0	07/18/25 10:09	
Xylene (Total)	ug/L	ND	1.0	07/18/25 10:09	
1,2-Dichloroethane-d4 (S)	%	94	70-130	07/18/25 10:09	
4-Bromofluorobenzene (S)	%	98	70-130	07/18/25 10:09	
Toluene-d8 (S)	%	104	70-130	07/18/25 10:09	

LABORATORY CONTROL SAMPLE:	4875118					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.6	103	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	387	97	70-130	
Benzene	ug/L	20	20.1	101	70-130	
Diisopropyl ether	ug/L	20	18.5	93	70-130	
Ethanol	ug/L	800	730	91	70-130	
Ethyl-tert-butyl ether	ug/L	40	37.3	93	70-130	
Ethylbenzene	ug/L	20	19.7	99	70-130	
m&p-Xylene	ug/L	40	40.5	101	70-130	
Methyl-tert-butyl ether	ug/L	20	19.5	97	70-130	
Naphthalene	ug/L	20	20.8	104	70-130	
o-Xylene	ug/L	20	20.4	102	70-130	
tert-Amyl Alcohol	ug/L	400	388	97	70-130	
tert-Amylmethyl ether	ug/L	40	37.8	94	70-130	
tert-Butyl Alcohol	ug/L	200	211	105	70-130	
tert-Butyl Formate	ug/L	160	156	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Toluene-d8 (S)

Date: 07/28/2025 12:27 PM

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423

%

Pace Project No.: 92807874

LABORATORY CONTROL SAMPLE: 4875118 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Toluene ug/L 20 20.0 100 70-130 Xylene (Total) ug/L 60 61.0 102 70-130 1,2-Dichloroethane-d4 (S) % 101 70-130 4-Bromofluorobenzene (S) % 100 70-130

99

70-130

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 48751	19		4875120						
			MS	MSD							
	928	307878004	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1,2-Dichloroethane	ug/L	ND	20	20	22.8	21.7	114	109	70-137		
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	419	402	105	100	39-157	4	
Benzene	ug/L	ND	20	20	22.9	22.1	115	110	70-151	4	
Diisopropyl ether	ug/L	ND	20	20	20.4	19.2	102	96	63-144	6	
Ethanol	ug/L	ND	800	800	774	764	97	96	39-176	1	
Ethyl-tert-butyl ether	ug/L	ND	40	40	41.7	39.6	104	99	66-137	5	
Ethylbenzene	ug/L	ND	20	20	22.6	21.4	113	107	66-153	6	
m&p-Xylene	ug/L	ND	40	40	46.1	43.3	115	108	69-152	6	
Methyl-tert-butyl ether	ug/L	ND	20	20	21.3	20.6	106	103	54-156	3	
Naphthalene	ug/L	ND	20	20	22.7	22.6	113	113	61-148	1	
o-Xylene	ug/L	ND	20	20	23.4	22.2	117	111	70-148	5	
ert-Amyl Alcohol	ug/L	ND	400	400	431	418	108	104	54-153	3	
ert-Amylmethyl ether	ug/L	ND	40	40	41.5	40.3	104	101	69-139	3	
ert-Butyl Alcohol	ug/L	ND	200	200	168	169	84	84	43-188	0	
ert-Butyl Formate	ug/L	ND	160	160	189	149	118	93	10-170	24	
Toluene	ug/L	ND	20	20	22.5	21.5	112	107	59-148	4	
Xylene (Total)	ug/L	ND	60	60	69.5	65.6	116	109	63-158	6	
1,2-Dichloroethane-d4 (S)	%						100	99	70-130		
4-Bromofluorobenzene (S)	%						101	99	70-130		
Toluene-d8 (S)	%						97	97	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 948425 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874001, 92807874002, 92807874003, 92807874004, 92807874005, 92807874006, 92807874007,

92807874008, 92807874009, 92807874011, 92807874012, 92807874013, 92807874018, 92807874019,

92807874020

METHOD BLANK: 4873901 Matrix: Water

Associated Lab Samples: 92807874001, 92807874002, 92807874003, 92807874004, 92807874005, 92807874006, 92807874007,

92807874008, 92807874009, 92807874011, 92807874012, 92807874013, 92807874018, 92807874019,

92807874020

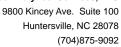
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	5.0	07/17/25 13:51	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	07/17/25 13:51	
Benzene	ug/L	ND	5.0	07/17/25 13:51	
Diisopropyl ether	ug/L	ND	5.0	07/17/25 13:51	
Ethanol	ug/L	ND	200	07/17/25 13:51	
Ethyl-tert-butyl ether	ug/L	ND	10.0	07/17/25 13:51	
Ethylbenzene	ug/L	ND	5.0	07/17/25 13:51	
m&p-Xylene	ug/L	ND	10.0	07/17/25 13:51	
Methyl-tert-butyl ether	ug/L	ND	5.0	07/17/25 13:51	
Naphthalene	ug/L	ND	5.0	07/17/25 13:51	
o-Xylene	ug/L	ND	5.0	07/17/25 13:51	
tert-Amyl Alcohol	ug/L	ND	100	07/17/25 13:51	
tert-Amylmethyl ether	ug/L	ND	10.0	07/17/25 13:51	
tert-Butyl Alcohol	ug/L	ND	100	07/17/25 13:51	
tert-Butyl Formate	ug/L	ND	50.0	07/17/25 13:51	
Toluene	ug/L	ND	5.0	07/17/25 13:51	
Xylene (Total)	ug/L	ND	5.0	07/17/25 13:51	
1,2-Dichloroethane-d4 (S)	%	85	70-130	07/17/25 13:51	
4-Bromofluorobenzene (S)	%	87	70-130	07/17/25 13:51	
Toluene-d8 (S)	%	98	70-130	07/17/25 13:51	

LABORATORY CONTROL SAMPLE:	4873902					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	15.5	77	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	423	106	70-130	
Benzene	ug/L	20	20.3	102	70-130	
Diisopropyl ether	ug/L	20	17.1	85	70-130	
Ethanol	ug/L	800	771	96	70-130	
Ethyl-tert-butyl ether	ug/L	40	32.4	81	70-130	
Ethylbenzene	ug/L	20	19.3	97	70-130	
m&p-Xylene	ug/L	40	39.8	100	70-130	
Methyl-tert-butyl ether	ug/L	20	15.9	79	70-130	
Naphthalene	ug/L	20	21.6	108	70-130	
o-Xylene	ug/L	20	19.7	99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874


LABORATORY CONTROL SAMPL	LE: 4873902					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Amyl Alcohol	ug/L	400	421	105	70-130	
tert-Amylmethyl ether	ug/L	40	38.1	95	70-130	
tert-Butyl Alcohol	ug/L	200	169	84	70-130	
tert-Butyl Formate	ug/L	160	169	105	70-130	
Toluene	ug/L	20	17.8	89	70-130	
Xylene (Total)	ug/L	60	59.6	99	70-130	
1,2-Dichloroethane-d4 (S)	%			86	70-130	
4-Bromofluorobenzene (S)	%			90	70-130	
Toluene-d8 (S)	%			98	70-130	

MATRIX SPIKE SAMPLE:	4873903						
_		92807874002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	21.3	107	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	336	84	39-157	
Benzene	ug/L	19.4	20	40.6	106	70-151	
Diisopropyl ether	ug/L	22.5	20	52.3	149	63-144 N	<i>I</i> 11
Ethanol	ug/L	ND	800	768	96	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	41.9	105	66-137	
Ethylbenzene	ug/L	ND	20	22.1	110	66-153	
m&p-Xylene	ug/L	ND	40	43.8	109	69-152	
Methyl-tert-butyl ether	ug/L	131	20	165	171	54-156 N	/11
Naphthalene	ug/L	ND	20	22.2	108	61-148	
o-Xylene	ug/L	ND	20	21.9	110	70-148	
tert-Amyl Alcohol	ug/L	ND	400	372	93	54-153	
tert-Amylmethyl ether	ug/L	5.3J	40	43.2	95	69-139	
tert-Butyl Alcohol	ug/L	ND	200	297	139	43-188	
tert-Butyl Formate	ug/L	ND	160	ND	3	10-170 F	P5
Toluene	ug/L	ND	20	20.3	101	59-148	
Xylene (Total)	ug/L	ND	60	65.7	110	63-158	
1,2-Dichloroethane-d4 (S)	%				102	70-130	
4-Bromofluorobenzene (S)	%				101	70-130	
Toluene-d8 (S)	%				98	70-130	

Date: 07/28/2025 12:27 PM

		92807874003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Benzene	ug/L	ND	ND		
Diisopropyl ether	ug/L	ND	ND		
Ethanol	ug/L	ND	ND		
Ethyl-tert-butyl ether	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

SAMPLE DUPLICATE: 4873904					
		92807874003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
m&p-Xylene	ug/L		ND		
Methyl-tert-butyl ether	ug/L	ND	ND		
Naphthalene	ug/L	ND	ND		
o-Xylene	ug/L	ND	ND		
tert-Amyl Alcohol	ug/L	ND	ND		
tert-Amylmethyl ether	ug/L	ND	ND		
tert-Butyl Alcohol	ug/L	ND	ND		
tert-Butyl Formate	ug/L	ND	ND		
Toluene	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	83	107		
4-Bromofluorobenzene (S)	%	89	99		
Toluene-d8 (S)	%	98	101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 949119 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874010, 92807874014, 92807874017

METHOD BLANK: 4877726 Matrix: Water

Associated Lab Samples: 92807874010, 92807874014, 92807874017

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	07/23/25 10:26	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	07/23/25 10:26	
Benzene	ug/L	ND	5.0	07/23/25 10:26	
Diisopropyl ether	ug/L	ND	5.0	07/23/25 10:26	
Ethanol	ug/L	ND	200	07/23/25 10:26	
Ethyl-tert-butyl ether	ug/L	ND	10.0	07/23/25 10:26	
Ethylbenzene	ug/L	ND	5.0	07/23/25 10:26	
m&p-Xylene	ug/L	ND	10.0	07/23/25 10:26	
Methyl-tert-butyl ether	ug/L	ND	5.0	07/23/25 10:26	
Naphthalene	ug/L	ND	5.0	07/23/25 10:26	
o-Xylene	ug/L	ND	5.0	07/23/25 10:26	
tert-Amyl Alcohol	ug/L	ND	100	07/23/25 10:26	
tert-Amylmethyl ether	ug/L	ND	10.0	07/23/25 10:26	
tert-Butyl Alcohol	ug/L	ND	100	07/23/25 10:26	
tert-Butyl Formate	ug/L	ND	50.0	07/23/25 10:26	IH,v1
Toluene	ug/L	ND	5.0	07/23/25 10:26	
Xylene (Total)	ug/L	ND	5.0	07/23/25 10:26	
1,2-Dichloroethane-d4 (S)	%	94	70-130	07/23/25 10:26	
4-Bromofluorobenzene (S)	%	98	70-130	07/23/25 10:26	
Toluene-d8 (S)	%	101	70-130	07/23/25 10:26	

LABORATORY CONTROL SAMPLE:	4877727					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		20.0	100	70-130	
3,3-Dimethyl-1-Butanol	ug/L	400	334	84	70-130	
Benzene	ug/L	20	20.6	103	70-130	
Diisopropyl ether	ug/L	20	19.2	96	70-130	
Ethanol	ug/L	800	678	85	70-130	
Ethyl-tert-butyl ether	ug/L	40	40.7	102	70-130	
Ethylbenzene	ug/L	20	20.2	101	70-130	
m&p-Xylene	ug/L	40	41.9	105	70-130	
Methyl-tert-butyl ether	ug/L	20	19.3	97	70-130	
Naphthalene	ug/L	20	22.7	114	70-130	
o-Xylene	ug/L	20	21.0	105	70-130	
tert-Amyl Alcohol	ug/L	400	386	96	70-130	
tert-Amylmethyl ether	ug/L	40	39.6	99	70-130	
tert-Butyl Alcohol	ug/L	200	160	80	70-130	
tert-Butyl Formate	ug/L	160	219	137	70-130 I	H,L1,v1

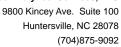
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

SAMPLE DUPLICATE: 4877729

Date: 07/28/2025 12:27 PM


LABORATORY CONTROL SAMPLE:	4877727					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		19.8	99	70-130	
Xylene (Total)	ug/L	60	62.9	105	70-130	
1,2-Dichloroethane-d4 (S)	%			95	70-130	
4-Bromofluorobenzene (S)	%			103	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	4877728						
		92808428001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	25	ND	127	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	500	2200J	439	39-157	M1
Benzene	ug/L	755	25	812	229	70-151	M1
Diisopropyl ether	ug/L	ND	25	103J	139	63-144	
Ethanol	ug/L	ND	1000	ND	165	39-176	
Ethyl-tert-butyl ether	ug/L	ND	50	ND	118	66-137	
Ethylbenzene	ug/L	71.1J	25	105J	135	66-153	
m&p-Xylene	ug/L	ND	50	166J	138	69-152	
Methyl-tert-butyl ether	ug/L	3080	25	3200	499	54-156	M1
Naphthalene	ug/L	ND	25	115J	307	61-148	M1
o-Xylene	ug/L	ND	25	ND	127	70-148	
tert-Amyl Alcohol	ug/L	9320	500	9910	118	54-153	
tert-Amylmethyl ether	ug/L	ND	50	169J	339	69-139	M1
tert-Butyl Alcohol	ug/L	ND	250	ND	93	43-188	
tert-Butyl Formate	ug/L	ND	200	ND	136	10-170	IH,v1
Toluene	ug/L	ND	25	ND	117	59-148	
Xylene (Total)	ug/L	ND	75	ND	0	63-158	
1,2-Dichloroethane-d4 (S)	%				95	70-130	
4-Bromofluorobenzene (S)	%				104	70-130	
Toluene-d8 (S)	%				101	70-130	

		92808428002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Benzene	ug/L	425	436	2	
Diisopropyl ether	ug/L	ND	ND		

1,2-Dichloroethane	ug/L	ND	ND		
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		
Benzene	ug/L	425	436	2	
Diisopropyl ether	ug/L	ND	ND		
Ethanol	ug/L	ND	ND		
Ethyl-tert-butyl ether	ug/L	ND	ND		
Ethylbenzene	ug/L	208	210	1	
m&p-Xylene	ug/L	135J	136J		
Methyl-tert-butyl ether	ug/L	2770	2800	1	
Naphthalene	ug/L	ND	ND		
o-Xylene	ug/L	68.8J	68.1J		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

SAMPLE DUPLICATE: 4877729					
		92808428002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
tert-Amyl Alcohol	ug/L	ND	ND		
tert-Amylmethyl ether	ug/L	ND	ND		
tert-Butyl Alcohol	ug/L	ND	ND		
tert-Butyl Formate	ug/L	ND	ND		IH,v1
Toluene	ug/L	ND	ND		
Xylene (Total)	ug/L	203	ND		
1,2-Dichloroethane-d4 (S)	%	96	99		
4-Bromofluorobenzene (S)	%	98	99		
Toluene-d8 (S)	%	100	101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

QC Batch: 949146 Analysis Method: EPA 504.1

QC Batch Method: EPA 504.1 Analysis Description: GCS 504 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874021, 92807874022, 92807874023, 92807874024

METHOD BLANK: 4877789 Matrix: Water

Associated Lab Samples: 92807874021, 92807874022, 92807874023, 92807874024

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed 1,2-Dibromoethane (EDB) ND 0.020 07/22/25 12:17 ug/L 1-Chloro-2-bromopropane (S) % 111 70-130 07/22/25 12:17

LABORATORY CONTROL SAMPLE & LCSD: 4877790 4877791 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) 0.32 5 ug/L 0.25 0.31 124 130 70-130 20 1-Chloro-2-bromopropane (S) 123 70-130 % 116

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4877793 4877794 MS MSD 92807874022 Spike Spike MS MSD MS MSD % Rec Units Parameter Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual ND 1,2-Dibromoethane (EDB) ug/L 0.25 0.25 0.29 0.30 114 120 65-135 1-Chloro-2-bromopropane (S) 109 70-130 % 114

SAMPLE DUPLICATE: 4877792

Date: 07/28/2025 12:27 PM

		92807874021	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	112	111		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

QC Batch: 949144 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Qualifiers

Associated Lab Samples: 92807874001, 92807874002, 92807874003, 92807874004

METHOD BLANK: 4877777 Matrix: Water

Associated Lab Samples: 92807874001, 92807874002, 92807874003, 92807874004

Blank Reporting
Parameter Units Result Limit

 Parameter
 Units
 Result
 Limit
 Analyzed

 1,2-Dibromoethane (EDB)
 ug/L
 ND
 0.020
 07/23/25 13:50

 1-Chloro-2-bromopropane (S)
 %
 127
 60-140
 07/23/25 13:50

LABORATORY CONTROL SAMPLE & LCSD: 4877778 4877779 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) ug/L 0.25 0.35 0.34 139 138 60-140 20 1-Chloro-2-bromopropane (S) 129 126 60-140 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4877781 4877782 MS MSD 92807874002 Spike Spike MS MSD MS MSD % Rec Units Parameter Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual ND 1,2-Dibromoethane (EDB) ug/L 0.25 0.25 0.35 0.36 144 145 60-140 1 M1 1-Chloro-2-bromopropane (S) 114 116 60-140 %

SAMPLE DUPLICATE: 4877780

Date: 07/28/2025 12:27 PM

		92807874001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	132	110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

QC Batch: 949145 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92807874005, 92807874006, 92807874007, 92807874008, 92807874009, 92807874010, 92807874011,

92807874012, 92807874013, 92807874014, 92807874015, 92807874016, 92807874017, 92807874018,

92807874019

METHOD BLANK: 4877783 Matrix: Water

Associated Lab Samples: 92807874005, 92807874006, 92807874007, 92807874008, 92807874009, 92807874010, 92807874011,

92807874012, 92807874013, 92807874014, 92807874015, 92807874016, 92807874017, 92807874018,

92807874019

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	0.020	07/22/25 21:06	
1-Chloro-2-bromopropane (S)	%	119	60-140	07/22/25 21:06	

LABORATORY CONTROL SAMPLE &	LCSD: 4877784		48	377785						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	0.25	0.33	0.32	133 122	129 118	60-140 60-140	4	20	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4877787 4877788														
	928	807874006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec					
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual			
1,2-Dibromoethane (EDB)	ug/L	ND	0.25	0.25	0.41	0.41	164	164	60-140	0	M1			
1-Chloro-2-bromopropane (S)	%						113	121	60-140					

SAMPLE DUPLICATE: 4877786					
		92807874005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	101	103		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

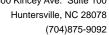
Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.


TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/28/2025 12:27 PM

IH	This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be	
	considered an estimated value.	

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
- The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2807874021	WSW-1	EPA 504.1	949146	EPA 504.1	949214
2807874022	WSW-2	EPA 504.1	949146	EPA 504.1	949214
2807874023	WSW-DUP	EPA 504.1	949146	EPA 504.1	949214
2807874024	WSW-FB	EPA 504.1	949146	EPA 504.1	949214
2807874001	MW-1	EPA 8011	949144	EPA 8011	949212
2807874002	MW-2	EPA 8011	949144	EPA 8011	949212
2807874003	MW-3	EPA 8011	949144	EPA 8011	949212
2807874004	MW-4	EPA 8011	949144	EPA 8011	949212
2807874005	MW-5	EPA 8011	949145	EPA 8011	949213
2807874006	MW-6	EPA 8011	949145	EPA 8011	949213
2807874007	MW-7	EPA 8011	949145	EPA 8011	949213
2807874008 2807874008	MW-8	EPA 8011	949145	EPA 8011	949213
2807874009 2807874009	MW-9	EPA 8011	949145	EPA 8011	949213
2807874009 2807874010	MW-10	EPA 8011	949145	EPA 8011	949213
2807874011 2807874011	DW-1	EPA 8011	949145	EPA 8011	949213
2807874012	DW-1 DW-2	EPA 8011	949145	EPA 8011	949213
2807874012 2807874013	DW-2 DW-3	EPA 8011	949145	EPA 8011	949213
2807874014 2807874014	DW-3 DW-4	EPA 8011	949145	EPA 8011	949213
2807874015	SW-1			EPA 8011	949213
	SW-2	EPA 8011	949145		
2807874016		EPA 8011	949145	EPA 8011	949213
2807874017	DUP-1	EPA 8011	949145	EPA 8011	949213
2807874018 2807874019	FB GAC	EPA 8011 EPA 8011	949145 949145	EPA 8011 EPA 8011	949213 949213
				217(0011	040210
2807874021	WSW-1	EPA 524.2	948751		
2807874022	WSW-2	EPA 524.2	948751		
2807874023	WSW-DUP	EPA 524.2	948751		
2807874024	WSW-FB	EPA 524.2	948751		
2807874025	WSW-TB	EPA 524.2	948751		
2807874015	SW-1	EPA 8260D	948666		
2807874016	SW-2	EPA 8260D	948666		
2807874021	WSW-1	EPA 8260D	948411		
2807874022	WSW-2	EPA 8260D	948411		
2807874023	WSW-DUP	EPA 8260D	948411		
2807874024	WSW-FB	EPA 8260D	948402		
2807874025	WSW-TB	EPA 8260D	948402		
2807874001	MW-1	EPA 8260D	948425		
2807874002	MW-2	EPA 8260D	948425		
2807874003	MW-3	EPA 8260D	948425		
2807874004	MW-4	EPA 8260D	948425		
2807874005	MW-5	EPA 8260D	948425		
2807874006	MW-6	EPA 8260D	948425		
2807874007	MW-7	EPA 8260D	948425		
	MW-8	EPA 8260D	948425		
2807874008					
2807874008 2807874009	MW-9	EPA 8260D	948425		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JAKE HUGGIN'S DBA OUTPOST 3423

Pace Project No.: 92807874

Date: 07/28/2025 12:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92807874011	DW-1	EPA 8260D	948425		
92807874012	DW-2	EPA 8260D	948425		
92807874013	DW-3	EPA 8260D	948425		
92807874014	DW-4	EPA 8260D	949119		
92807874017	DUP-1	EPA 8260D	949119		
92807874018	FB	EPA 8260D	948425		
92807874019	GAC	EPA 8260D	948425		
92807874020	ТВ	EPA 8260D	948425		

	Effective Date: 05/24/2024					
Ash Sa	ratory receiving samples: eville	Huntersvill	le 🗹	Raleigh[hanicsville Atlanta Kernersville WO#: 92807874
Cour	/\\r	USPS Other:		Clie	_	92807874
Cust	ody Seal Present? Yes No Sea	ls Intact?	Yes	No	□N/A	Date/Initials Person Examining Contents:
	mometer:	lubble Bags	□None	Ot	her	Biological Tissue Prozen? 7-16 Yes \[No \[\] N/A
Cool USD	IR GunID: 12 (13) ler Temp: 22 (14) ler Temp Corrected (°C): 2.2 (14) A Regulated Soil (N/A, water sample) Oid samples originate in a quarantine zone within the check maps)? Yes No	2.4	0.0	wet BI	Temp [one should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun smples originate from a foreign source (internationally, fing Hawaii and Puerto Rico)?
		+/			***	Comments/Discrepancy:
T C C C C C C C C C C C C C C C C C C C	Chain of Custody Present?	<u>I</u> Yes	□No	□N/A	1.	
	Samples Arrived within Hold Time?		□No	□N/A	2.	
	Short Hold Time Analysis (<72 hr.)?	Yes	No	□n/a	3.	
	Rush Turn Around Time Requested?	Yes	PNO	□N/A	4.	
	Sufficient Volume?	Yes	No	□N/A	5.	
	Correct Containers Used? -Pace Containers Used?	Tes Dyes	□No	□n/a □n/a	6.	
	Containers Intact?	Yes	□No	□N/A	7.	
	Dissolved analysis: Samples Field Filtered?	□Yes	No	□N/A	8.	
	Sample Labels Match COC?	☑ Yes	□No	□N/A	9.	
	-Includes Date/Time/ID/Analysis Matrix:	WT				
	Headspace in VOA Vials (>5-6mm)?	□yes	No	- N/MM	7-18.	
	Trip Blank Present?	Yes	□No	□N/A	11.	
	Trip Blank Custody Seals Present?	Yes	□No	□N/A	***	
COM	MENTS/SAMPLE DISCREPANCY					Field Data Required? Yes No
CLIEN	IT NOTIFICATION/RESOLUTION				Lot ID of sp	lit containers:
Per	son contacted:			Date/Time	e:	
	Project Manager SCURF Review:					Date:
	Project Manager SRF Review:					Date:

DC#_Intie: EMV-PRIM-HUNT-0083 V05_Sample Condition Upon Receipt

Pace

Pace

Effective Date: 05/24/2024

*Check mark top halfof box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Collorm, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of boxis to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Project #

WO#: 92807874

PM: BH

Due Date: 07/24/25

CLIENT: 92-MIDLAND

Labo	ratory l	Receivi	ing lo	cation	: Ashe	eville [E	den] Gi	eenw	ood [] Hu	inters	ville [R	aleigh		Mech	anics	/ille	At	lanta[_ ĸ	erner	sville[ס		A	
Clien	t					Pr	ofile/	EZ (Cir	cle on	e)		-	N	otes_															-
items	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 ml Plastic Unpreserved (N/A)	BP2U-500 oil Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP45-125 mL Plastic H2504 (ph < 2) (CI-)	BP3N-250 mt plastic HNO3 (pH < 2)	BP4Z-125 mL Piestic ZN Acetate & NaOH (>9)	8P48-125 mt Piastx NaOH (pH > 12) (CF)	WGFU-Wide-mouthed Gass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CL)	AG1H-1 liter Amber HCI (pfr < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI)	AG15-1 liter Amber 112504 [pH < 2]	AG35-250 mL Amper H2\$O4 (pH < 2)	DG94-40 mL Amber NII4CI (N/A){CI-)	DG9H-45 mt VOA HCI (N/A)	VG9T-40 mt VOA Na25203 [N/A]	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mt VOA H3PO4 [N/A]	KP7U-50 mt Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit [N/A]	SPST-125 mL Sterde Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3R. 250 mL Plastic (NH2)2504 (9.3.9.7)	AGOU-100 mL Amber Unpreserved (N/A) (Cr.	VSGU-20 mt Scintifiation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
cc						Western control of																							
1										1							6												
2	+	-			1	1	/	/	/					/	/)												
3		-						-				/																	
_	+	1	-		1			1						1															
4						/																							
5				Commence										1			Andrew Control					•		Maria de la companya	/				
6																									/	/			
7												1		1											/	/			
8																/	T								/	7			
9					1					·						/						Total United	- Part of A A property		/	/			
1	5						/	1	/			/	1	1		/	L					-		-		7			
1	1				1	/	/	/	/			/		/	/	/					The state of the s					/			
1	2	}_	1					/	/					1	/							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/			
<u> </u>						Л	И	<u> </u>	V			T ,	V		у	<u> </u>		1		1			-		1				
$-\Gamma$								MAR AN ELEMENT OF THE CO.	pl	1 Ac	ljust	mer	nt Lo	g fo	r Pr	eser	ved	San	nple	s									
	Samp	le ID	Тур	pe of I	Preser	vative	: Р	H upo	n rece	eipt	Dat	te pres	ervati	ion ad	justed			preser idjuste	vatio	1	Am		of Pre		ive		Lot#		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e.

Out of hold, incorrect preservative, out of temp, incorrect containers.

	Pac	e						/-			d dans and designation																		
			E	ffect	ive C	Date:	05/2	24/2	024					w															7
Exce **Bo	eptance ptions: ettom h heck <u>a</u> atory R	k top e rang VOA, nalf of III unp	e for p Colilo baxis reserv	reser rm, TC to lis ed Nit	vation DC, Oi t num trates	n samp I and G ber of for chi	oles. irease bottle lorine	, DRO es den[/8015] Gi	(wate	er) DO	C, LLHĮ	s unters] R.	Proj		The second secon	anicsv	ville	At	lanta[_ ×	erner	sville[<u> </u>			
	8P4U-125 mt Plustic Unpreserved (N/A) (CF)	BP3U-250 mt Plastic Unpleserved (N/A)	BP2U-500 mt Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Urpreserved (N/A)		8P45-125 mL Plastic H25Q4 (ph < 2) (Ci-)	BP3N-250 mL plastic HNQ3 (pH < 2)	BP42-125 mt Plastic ZN Acetate & H40H (>9)	BP4B-125 mt Piasix NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) [CI-]	AG15-1 liter Amber H25O4 (pH < 2)	AG35-250 int. Amber H2504 (pH < 2)	DG94-40 mL Amber NildCl (N/A)(Cl·)	SA HCI (N/N)	VG9T-40 mt VOA N#252D3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3FO4 (N/A)	KP7U-50 nit Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/G35 kit (N/A)	SPST-125 mt Sterile Plastic (N/A - lab)	SP2T-250 mt Sterde Plastic (N/A - lab)		BP3R: 250 mt Plassic (NH2)25O4 (9.3-9.7)	AGOU:100 mL Amber Unpreserved (N/A) (CI-)	intifation vials (N/A)	DG9U-40 mt Amber Unpreserved vials (fv/A)
Item#	8P4U-125 mL Pi	BP3U-250 ml Pl	8P2U-500 mt Pl	BP1U-1 liter Pla		8P45-125 mL PI	BP3N-250 mt p	BP42-125 mt Pi	BP48-125 ml P	WGFU-Wide-m	AG1U-1 liter An	AGIH-1 liter An	AG3U-250 mL #	AG15-1 liter Arr	AG35-250 mL A	DG94-40 mL Ar	DG9H-40 mt VDA HCI (N/N)	VG9T-40 ml VC	VG9U-40 mt VG	DG9V-40 mL VC	איזייט פיטראא	V/GK (3 vials p	SPST-125 mt Si	\$P2T-250 mt 5	The second secon	8P3R-250 mt P	AG0U-100 mt	VSGU-20 mL Scintiflation	DG9U-40 mt A
CC	And the late of th										The second secon			and the second															
1											Control of the contro			/			6												
2			V														1				a property of the second								
3	A				A	A		A	A			<u> </u>											Production and Produc						
4	/										The state of the s							Section of the sectio											
5	1				1												10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.												
6													***************************************	/			1	•			The second of the second	.							
7																													
8																		Amount of the control											
9					1					\																			
10								1			A to the state of						***************************************						Apparation of the Apparation o						
13																													
13	2									\																			
												-						1.6											1
	Samp	le ID	Ту	pe of	Prese	rvative	2 1	рН ир	on rec			tme ite pre					Time		rvatio		Ar	nount	of Pre		tive		Lot	#	
																													William International
		Vhene											e san	iples, a	э сору	of this	form	will b	e sent	to th	e Nort	th Card	olina D	ENRC	ertifica	ation (Office	(i.e.	

	Pac	E	E	ffect	ive C	ate:	05/2	24/2	024		e. en. o e e e e e e e e e e e e e e e e e e	ayun araba dara daya asa																	
*Bo	ptano ptions ttom l heck a story F	rk top e rang : VOA, half of all unp Receiv	e for p Collor boxis reserv	reser rm, TC tolis ed Nit	rvation DC, Oil t num trates	samp land G ber of for ch eville [iles. irease, bottle lorine	, DRO es den	/8015] Gi	eenw	r) DO	C, LLHE	inters		(2) R		ject	The second secon	anicsv	ville	Ati	anta[x	'erner	sville[]			
Item#	BP4U-125 mt Plustic Unpreserved (N/A) (Ct.)	BP3U-250 mt Plastic Unpreserved (N/A)	BP2U-500 mt Plastic Unpreserved (N/A)	BP1U-2 liter Plastic Unpreserved (W/A)		8P45-125 mL Plastic H25O4 (ph < 2) (Ci-)		BP42-125 mt Plastic 2N Acetate & HaOH (>9)	8P4B-125 mt Prasik Nadh (pH > 12) (CF)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liser Ambe: Unpreserved (N/A) (G.)	AGIH-1 liter Amber HCI (pH < 2)	AG3U-250 mt Amber Unpreserved (N/A) (CF)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	DG94-40 mL Amber NH4Ci (N/A)(Ci-)	DG911-40 nt VOA HC! (N/A)	VG9T-40 mt VOA Na 25 203 (W/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-46 mt VOA H3FO4 (N/A)	KP7U-50 nil Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-vPH/Gas kit (N/A)	SPST-125 mL Sterile Plasik (N/A - lab)	SP2T-250 mt Sterile Plasic (N/A - lab)		BP3R-250 mt Plastic (NH2)25O4 (9:3-9.7)	AGOU-100 rul Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	
CC										•			The state of the s																
1								/			And a second sec			1			6									1			1
2	K				K		/										i												İ
3	1				1		X	1	1						1	1	1					,			X	X			+
4						/				·				1			2									1			1
5	1			W										1			6	3	Water and American Control of the Co			. *			1				I
ő	1													1			6	3	17										
7					1									1											1				
8				Andrew Strategy Andrews														-											***************************************
9													\				6	1											
10																	6	3					Approximation of the state of t				<u></u>		
11			-														7				4								
12																					11 111		And the second s					AND STREET AND STREET	
		and comment to engineers							n	ЦΛ	dive	mer	at Lo	na fo	r Dr	0501	Nec	l San	nnle			60 oo							
	Samp	le ID	Ту	peof	Prese	rvative	: F	Н ир	on rec			te pre					Time	presei adjusti	rvatio		Ап		of Pre		tive		Lot	Ħ	
											-	***************************************	**********************	***************************************															-
	was a financial and wholesa	·····																		- Annual Control of the Control of t		- <u>- 20</u>						111200000000000000000000000000000000000	-
	nte: \	Mhono	wer the	reic	a discr	enanc	y affac	tina N	lorth (aroli	29 (00	inlianc	e sam	nles a	ronv	of this	form	will he	tne? e	to the	Nort	h Caro	lina D	ENRC	ertific:	ation (Office	(i.e.	

Page 2 of 2

Out of hold, incorrect preservative, out of temp, incorrect containers.

		Pac																												
L			(* a =) ()	Ε	ffect	tive C	Date:	05/	24/2	024																				
Lä	acce xcep Bot	ptano itions itom heck a itory l	e rang : VOA, half of all unp	e for p Colifo baxis reserv	reser rm, To to lis	if pH arvation OC, Oi te num trates at Ashe	l and (ber of for ch	ples. Grease bottle clorine	e, DRC es den[/8015] G	(wate	ood [C, LLHI	g unters		(R.	4)	ject		anicsv	ville] At	lanta[□ ×	erner	sville[
The street and distribute department and the street of the		8P4U-125 mt Piastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	8P2U-500 mt Plastic Unpreserved (N/A)	BP1U.; liter Plastic Urpreserved (M/A)		8P45-125 mt Plastic H25O4 (ph < 2) (CI·)	BP3N-250 nil plastic HNO3 (pH < 2)	BP42-125 mt Prastic ZN Acetate & NaDH (29)	BP4B-125 ml Pidstx NdOH (pH > 12) (CF)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Ambe: Unpreserved (N/A) (CL)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) [CF]	AG15-1 liter Amber H2504 (pH < 2)	AG35-250 mL Amber H2804 (pH < 2)	DG94-JO mL Amber NittCl (N/AJCC-)	DG9H-aC mt VOA HCI (N/A)	VG9T-40 mL VOA N×25203 (N/A)	VG9U-40 mt VOA Unpreserved (N/A)	DG9V-46 mt vOA H3FO4 (N/A)	KP7U-50 nil Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 ml Sterde Plastic (N/A lab)		8P3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mt Amber Unpreserved (N/A) (Ct-)	VSGU-20 mL Scintifiation vials (N/A)	
-	CC Item	BP4U.	6P3U-	BP2U	ULAB		6945	BP3N.	BP4Z	8 P 4 B	MGFU	AG1U-	AGIII	AG3U.	AG15-	AG35-	DG94-	-H690	VG9T.	vG9U-	.veba	KP7U	v/GK (\$951.1	\$P2T-2	-	BP3R.	AG00-	VSGU	_
	1							_			-							,												
-	2						/			/								6					-							
-	3					/		/						<u> </u>																
	4						1										/										X			
	5	/	-		W. Table	-						A STATE OF THE STA	/	-									•							
	6					+	1					-		-									***************************************							-
	7					1	1						/	-				-				The second secon	mani.							-
	8	/				1	/		/	/			/	-				-				-				\vdash				
	9		-				1	1		1				<u> </u>			1	-					_							
	10		\		-	+					7			<u>. </u>			1	-												
	11		+			+	/	1	/	1				-							-	-								
	12		+			1	/		(1				-		/														
			\		1									<u></u>									W							L
										- pl	H A	•	mer																	
	5	Sampl	e ID	Ту	oe of	Preser	vative	: F	Н ирс	on rec	eipt	Dat	te pres	ervat	ion ad	justed		Time a	preser djuste		•	Am	iount	of Pres		ive		Lot #		
																										Fall of the Control o	•			
												-								y							-			

Qualtrax ID: 69614 Page 2 of 2

Out of hold, incorrect preservative, out of temp, incorrect containers.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e.

Conquished by/Company: (Signature) Date/Time: Received by/Company: Signature) Date/Time:	relinquished by/Company; (Signature)	telinquinted by pampany: (Signature)	telinquished by/Compriny: (Signature)	REPORT "J" VALUES	Additional Instructions from Pace*:	NE 1 9	MW-X	2	MWIG	MMIL	NW-4	MW-3	75/21/2	MM-I	Customer Sample ID	B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (SL), Caulk (CK), Lebchate (LL), Biosolid (BS), Other (OT)	Other Requested:	? _]LevelIII []LevelIV	Data Deliverables: JAK JPT JMT JCT	Time 700 C T	こくとはイン	Site Collection Info/Facility ID (as applicable):	Total Huggins DRA Oct past at	Customer Project #:	Street Address: 231 Dooley Road, Lexington, SC 29073	Company Name: Midlands Environmental Consultants
Date/Time: Date/Time: Date/Time:	Dite/Time: 1514	This 9	Internal Landson	(Prin	4										Matrix * Comp / Composite Sta	DW), Ground Water (GW), Waste Water (WW), I), Caulk (CK), Leachate (LL), Biosolid (BS), Other (i: a	Rush (Pre-approval required): Same Day [1 Day [2 Day [3 Day [10ther		County / State origin of sample(s):	Quote #:	Purchase Order # (if	Invoice E-Mail:	Invoice To:	Cc E-Mail:	Ē	
Received by/Company: Signature) Received by/Company: Signature) Sand Conditions found at https://www.nasala	Received by/Company: Signature)	Received by/Eompany: Signature)		ame) Troy Day	N 84:81	13:50	13:41	12:50	12:43	04:21	12:31	2:30	13:10	04:81 S1/E	rt Collected or Composite End	Product (P), Soil/Solid (SS), Oil (OL), Wipe (WP)	Field Filtered (if applicable): [] Y	DW PWSID # or WW Permit # as applicable:	1 1	of sample(s): SOUTH CAROLINA			Ishane@meci.net	Lynn Shane	jlc@meci.net	Bryan T. Shane, P.G. 803-808-2043	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields
the control of the co	refuz Hur		# Coolers:	Customer Remark	7								- /	X B	EXNM, 0B 8011	DCA,	OXY'		D		- -	4 4	6 6				ocument nt fields
	116/15 616	Date/Time:	Thermometer ID: Correction Factor (*C):	Customer Remarks / Special Conditions / Possible Hazards:										O> LE	EXNM, B 504.1 YGENA AD 6010 EXNM, YEL	TES 8	2600				Analysis Requested	intily container Preservativ	6 6 6 3 6	Specify Contain	Scan QR Code fo		LAB USE ONLY- Affix Workorder/Login Label Here
Fed	Delivered by:] In- Person	Tracking Number:	(°C): Obs. Temp. (°C)		2 0	2	200	2 0	70	20	No	20	0 - 9	, v.	Preiog / Bottle Ord. ID:			e Only	AcctNum / Client In	Proj Mer	H2SO4, (4) HCI, (5) NaOH, (6) Zn Acetate, (7 NaHSO4, (8) Sod. Thiosulfate, (9) Ascorbic A	••• Preservation	125mL, (5) 100mL, (6) 40mL via TerraCore, (9) 90mL, (10) Other	**Container Size: (1) 1L, (2) 500mL, (3) 250	for instructions		orkorder/Login Label H

Cubmitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace* Terms and Conditions found at https://www.narelahe.com/conditions/found at https://www.narelahe.com/conditions/found at https://www.narelahe.com/conditions/found at https://www.narelahe.com/conditions/found.	clinquished by/Company: (Signature)	(elinquished by Combany: (Signature)	tenguished by/Company: (Signature)	REPORT "J" VALUES	S W - 6	SW-5	SW-4	SW-3	SW-Z	SW-1	h-ma	DW-3	2-mg	DW-1	Customer Sample ID	B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (SL), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT)	Other Req Natrix Codes (Insert in Matrix box below): Drinking W] Level III [] Level IV	Time Zone Collected: [] AK [] PT [] MT [] Data Deliverables:	UST#3423		Jake Huggins DRA or	Customer Project #:	Street Address: 231 Dooley Road, Lexington, SC 29073	Company Name: Midlands Environmental Consultants Inc.
Date/Time: s acknowledgment and acceptance o	Phules Pare/Time:	Date/Time:	Date/Tiple:					1		SW G	(6m G	Matrix * Grab	dge (SL), Caulk (CK), Leachate (LL), Bio	Requested:	Day []	Regulatory Program (DW, RCRA, etc.) as applicable:]CT [X]ET	appli	Willow Creek Purc		Cc E		
Received by/Con the Pace* Terms and Conditions found	Received by/Company	S25 Received by/Company	Signature:	(Printed Name) Troy					S1/L	51/t			-	4	Composite Start Collected o	solid (BS), Other (OT)	Field Filtered Analysis:	Rush (Pre-approval required): 1 Day [2 Day [3 Day [] Other	Reportable [] Ye	rigin of sample(s):	applicable):	Invoice E-Mail: Ishane@meci.net Purchase Order # (if	Invoice To: Lynn Shane	Cc E-Mail:	Report To:	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields
Received by/Company: Signature) ditions found at https://www.pacelabs.com/resource	npany: (Signature)		Brilos	Douglas					10.01		13:31	12:46		20	Collected or Composite End # Res. Chlorine	SS), Oil (OL), Wipe (WP), Tissue (TS), Bioa	Field Filtered (if applicable): [] Yes [] No Analysis:	DW PWSID # or WW Permit # as applicable:	No	SOUTH CAROLINA						T-Complete all relevant fields
Date/Time:	LACEM CONTING	Date/Time:	# Coolers: Thermometer ID: C	Customer Remarks / Special Conditions / Possible Hazards:				×	< >	< 6			- >	B1 EC O>	TEXNN DB 801 FEXNN DB 504 KYGEN AD 60	M, DCA	524.2 8260E	S 8260	LEVEL	Standary contract	4 4 4 8 4 2	Identify Container Preservative Type**	Specify Contain	Scan (LAB USE ONI
Page: 2 of 4	1910 Delivered by:	S\$25 Tracking Number:	Correction Factor (°C): Obs. Temp. (°C) C	ible Hazards:	0,05,	SNO	DNS,	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	70 0	No C	700	No		VEL		Lab Us	e Only						Scan QR Code for instructions		LAB USE ONLY- Affix Workorder/Login Label Here
of 4	_		Carrested Temp. (*C) On Ice:	DN	buy	And	Dry			005	Oder	Odor	Odos	Comment		n non-cc		nce ident		er	Place Parties (1) None, (2) HNO3 (3) H2SO1, (4) HCl, (5) NaOH, (6) Zn Acetate, (7) NaHSD4, (8) Sod. Thidsulfate, (9) Assorbic Acid, (10)	DmL, (10) Other	**Container Size: (1) Lt. (2) 500mL, (3) 250mL, (4)		-Page	250

velinquished by/Company; (Signature) Oute/Time: Pate/Time: Oute/Time: Oute	relinquished by/Company; (Signature)	dinquished by/Company/Signature	REPORT "J" VALUES	WSW-FB	1	W5W-3	WSW-2	WS WIT	VAC	T.B.	D. p. 1	Customer Sample ID	Other Requested: Other Requested: Other Requested: Other Other	[] Equis [] Same [Reg	Time Zone Collected: [] AK [] PT [] MT [US+# 3423	Site Collection Info/Facility ID (as applicable):	Customer Project #: Project Name: The Control of Cont	Street Address: 231 Dooley Road, Lexington, SC 29073	Company Name: Midlands Environmental Company
Date/Time: Date/Time: Date	She Jindi	Date/Tiple:		000		-	DW G	-			6M G	Matrix • Comp /	r (DW), Ground Water (GW), Waste Wa	Kush (Pre-approval required): Same Day [1 Day [2 Day [3 Day [] Other	Regulatory Program (DW RCRA, etc.) as applicable:	County/St County/St	applicable):	110WCVECK Invoice E-Mail:		29073 Contact/Report To: Phone #: E-Mail:	
Received by/Company (Signature) ace* Terms and Conditions found at https://www	Received by/Company Received by/Company	ture: Received by/Company	Collected By: [Printed Name] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7/15		1/13	7/15				3/15	Composite Start Collected or Composite End	Analysis: (WW), Product (P), Soil/Soild (SS), O	quired): DW PWS	Reportable [] Ye	rigin of sample(s):		tynn snane fail: Ishane@meci.net		Bryan T. Shane, P.G. 803-808-2043	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields
(Signature) tps://www.pacelabs.com/resource-lib	(Signature) AND ME	De	Doug las	11.100		11.55 9	_		_	3:53 6	Time Cont. Results Units	nposite End # Res. Chlorine	oplicable): [] Yes [] No II (OL), Wipe (WP), Tissue (TS), Bioassay	DW PWSD # or WW Permit # as applicable:	is []No		The second secon				Request Document
Date/Time:	PAL Date/Time:	# Coolers: Thermometer ID:	Customer Remarks / Special Conditions / Possible Hazards:	< × × × × ×		×	× × ×	>>>	× >	< >	EDI	EXNM, D EXNM, D EXNM, D EXNM, D	CA 524.	2		Analysis	4 4 8 4	6 6 6 6 6	Specify Co.		NAMES OF THE PARTY
	5 0525 Tra	Correction Factor (*C):	tions / Possible Hazards:									D 6010 XNM, DO	CA, OXY	S 8260D	DLOW	Analysis Requested	2 4	6 6 6 3 6	Scan QR Code for instructions		LAB USE ONLY- Affix Workorder/Login Label Here
Page: 3 of 4	Tracking Number: Delivered by: [] In- Person [] Courier	Obs. Temp. (°C) Corrected Temp. (°C)		- UNS, NC	10						Sample Comment	Preiog / Bottle Ord. ID:	Profile / Template:	se Only	AcctNum / Client ID:	MeOH, (11) Other	+12504, (4) HCI, (5) NaOH, (6) Zn Acetate, (Container Size: (1)]1, (2) 500mL, (3) 250 125mL, (5) 100mL, (6) 40mL vial, (7) EnCor TerraCore, (9) 90mL, (10) Other	ctions		/Login Label Here
		On Ice:									Prese	rvation no	n-conform sample.	nce ident	ified for	ic Acid, (10)	03, (3)	ore, (8)		Page 5	6 of 5

lestinguished by/Company: (Signature) lestinguished by/Company: (Signature) lestinguished by/Company: (Signature) lestinguished by/Company: (Signature) jubmitting a sample via this chain of custody constitutes	Additional Instructions from Pace*:	[] Level II [] Level IV [] L	Site Collection Info/Facility ID (as applicable): W USHH3423 Time Zone Collected: [] AK [] PT [] MT [] Data Deliverables: Regular	Pace* Location Requested (City/State): Company Name: Midlands Environmental Consultants, Inc. Street Address: 231 Dooley Road, Lexington, SC 29073 Customer Project #: Project Name:
acknowledgment and		Rusi Same Day J Date Results Date Results Requested: Sudge (SL), Caulk (CK), Lee Matrix D W	MT 1 1CT 1 X 1ET Regulatory Program (DW, RCRA, etc.)	(City/State): sultants, Inc. Sc 29073
Internations of the Pace* Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/		ed): Jother	nvoice Io: Lynn Shane nvoice E-Mail: Ishane@meci.net urchase Order # (if pplicable): pplicable): uounty / State origin of sample(s): SOUTH County / State origin or sample(s): SOUTH County / South Sout	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields Contact/Report To: Bryan T. Shane, P.G. Phone #: 803-808-2043 E-Mail: jlc@meci.net Cc E-Mail:
# Coolers: Thermometer ID: Correction factor (*C): Date/Time: Dat		BTEXNM, DCA, OXY'S 8260D EDB 8011 BTEXNM, DCA 524.2 EDB 504.1 OXYGENATES 8260D LOW LEVE LEAD 6010 BTEXNM, DCA, OXY'S 8260D LO LEVEL	ontainer S 3 3 r Preserva 2 s Request	Y- Affix
(c):		Lab Use Only 및 및 리 >	125% Tera 125% H250 H250 MeO	Norkorder/Login L
Obs. Temp. 'C) Corrected Temp. ('C) Tracking Number: Delivered by: [] In- Person [] Courier		Activum / Client ID: Table #: Profile / Template: Prelog / Bottle Ord. ID: Sample Comm	"Cohtainer Site: (1) It. (2) S00mt, (3) 250 125mt, (5) 100mt, (6) 40mt, vai, (7) Encar TerraCore, (9) 90mt, (10) 0ther TerraCore, (9) 90mt, (10) 0ther 100mt, (10) 0ther	abel Here
		Preservation non-conformance identified to sample.	5 5 5	Page 57 of 57

APPENDIX C:

TAX MAP

(Not Applicable)

APPENDIX D:

SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
(Not Applicable)

APPENDIX E:

WELL COMPLETION LOGS & 1903 FORMS

(Not Applicable)

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS
(Not Applicable)

APPENDIX G:
DISPOSAL MANIFEST

July 28, 2025

Re: Treatment of Purge Water
Jake Huggins DBA Outpost at Willowcreek
Florence, South Carolina
Florence County
UST Permit# 03423
MECI Project# 25-8521

To Whom it May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDES must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 80 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

-A total of 85.50 gallons of purge water was treated on July 15, 2025 during groundwater sampling activities performed at the above referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Jeff L. Coleman Senior Scientist APPENDIX H:
LOCAL ZONING REGULATIONS
(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:
ACCESS AGREEMENTS
(Not Applicable)

APPENDIX K: DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?			X
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?			X
17	Has the method of well development been detailed?			X
18	Has justification been provided for the locations of the monitoring wells?			X
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figures 4-4A)	X		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
26	Does the report include a brief discussion of the aquifer evaluation and results?			X
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format?			X
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the current and historical laboratory data been provided in tabular format? (Table 1)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)			X
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)			X
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figure 3-3A)	X		
40	Has the site potentiometric map been provided? (Figure 4-4A)	X		
41	Have the geologic cross-sections been provided?			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	X		
45	Is the laboratory performing the analyses properly certified?	X		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix E)			X
48	Have the well completion logs and SCDES Form 1903 been provided? (Appendix E)			X
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)			X
50	Have the disposal manifests been provided? (Appendix G)	X		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
53	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
54	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	X		

APPENDIX L: DETAILED RECEPTOR INFORMATION

Receptor ID: (03423-WSW01)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Well is inside barn building.

Sample collected from spigot on water supply well.

GPS: 34.096044, -79.701503

Receptor ID: (03423-WSW02)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Sample collected from spigot on WSW.

GPS: 34.095156, -79.700508

Receptor ID: (03423-WSW03)

Parcel ID:

00213-01-052

Property Owner Name:

Linda L Huggins

Property Owner Address:

3695 Willow Creek Rd, Florence, SC 29505

Well has been disconnected.

Unable to sample with bailer due to metal elbow at well

GPS: 34.096743, -79.701503

Receptor ID: (03423-Possible WSW)

Parcel ID:

00214-01-016

Property Owner Name:

Trent P Stallings

Property Owner Address:

3118 Willow Creek Rd, Florence, SC 29505

WSW Details:

Possible well house attatched to residence.

Resident did not respond to attempts to make contact.

GPS: 34.094158, -79.700555

Receptor ID: (03423-SW01)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095076, -79.696772

Receptor ID: (03423-SW02)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095847, -79.697296

Receptor ID: (03423-SW03)

Parcel ID:

00213-01-017 Property Owner Name:

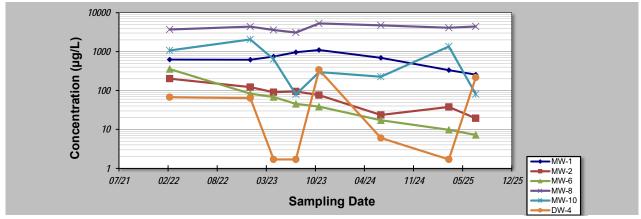
Barbara M Williams

Property Owner Address:

9296 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream.


GPS: 34.094620, -79.698172

APPENDIX M: MANN-KENDALL STATISTICAL ANALYSES

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: BENZENE Concentration Units: µg/L MW-1 MW-2 MW-6 DW-4 Sampling Point ID: MW-8 MW-10 BENZENE CONCENTRATION (µg/L) 15-Feb-22 624 3720 1070 67.5 203 356 9-Jan-23 620 122 83.3 4390 2060 63 6 3 14-Apr-23 749 90.2 68.1 3620 634 1.7 4 16-Oct-23 1100 76.3 38.5 5330 341 6 24-Jun-24 695 23.5 17.3 4760 227 6 28-Mar-25 333 37.8 9.8 4110 1360 8 15-Jul-25 256 19.4 7.2 4430 81.1 216 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.43 0.73 1.48 0.17 0.98 1.44 Mann-Kendall Statistic (S) -10 86.2% Confidence Factor 72.6% 72.6% 50.0% Concentration Trend: Stable No Trend Stable No Trend Decreasing Decreasing 10000

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TOLUENE Concentration Units: µg/L MW-8 DW-4 Sampling Point ID: TOLUENE CONCENTRATION (µg/L) 15-Feb-22 21100 1890 9-Jan-23 22300 464 3 14-Apr-23 19200 2 359 16-Oct-23 27500 6 24-Jun-24 25300 30.8 28-Mar-25 8 15-Jul-25 26300 1150 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.22 1.42 Mann-Kendall Statistic (S) Confidence Factor 72.6% 68.3% **Concentration Trend:** No Trend No Trend 100000 Concentration (µg/L) 10000 1000 100 10 MW-8 DW-4 07/21 02/22 08/22 03/23 10/23 04/24 11/24 05/25 12/25 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: ETHYLBENZENE Concentration Units: µg/L MW-8 MW-10 Sampling Point ID: ETHYLBENZENE CONCENTRATION (µg/L) 15-Feb-22 2200 753 9-Jan-23 2080 1100 3 14-Apr-23 1840 428 16-Oct-23 2810 503 6 24-Jun-24 2570 465 28-Mar-25 533 8 15-Jul-25 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.15 0.48 Mann-Kendall Statistic (S) -10 86.2% 86.2% Confidence Factor **Concentration Trend:** No Trend Stable 10000 Concentration (µg/L) 1000 100 10 MW-8 08/22 03/23 10/23 04/24 11/24 07/21 02/22 05/25 12/25 MW-10 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: XYLENES Concentration Units: µg/L MW-8 Sampling Point ID: XYLENES CONCENTRATION (µg/L) 15-Feb-22 12800 9-Jan-23 13300 3 14-Apr-23 10800 16-Oct-23 16200 6 24-Jun-24 13400 28-Mar-25 8 15-Jul-25 14800 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.16 Mann-Kendall Statistic (S) Confidence Factor 72.6% **Concentration Trend:** No Trend 100000 MW-8 Concentration (µg/L) 10000 1000 100 10 03/23 10/23 04/24 11/24 07/21 02/22 08/22 05/25 12/25 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: NAPHTHALENE Concentration Units: µg/L MW-1 MW-2 MW-6 MW-7 MW-8 Sampling Point ID: MW-10 DW-4 NAPHTHALENE CONCENTRATION (µg/L) 15-Feb-22 87.5 78.7 25.7 58.3 781 181 342 9-Jan-23 66 10.9 26.7 4.3 455 26 3 14-Apr-23 51.1 10.2 23 2.1 661 216 2.1 4 4.4 975 5 16-Oct-23 66.5 14.6 18.6 244 72.7 6 24-Jun-24 44 2.1 11.2 2.1 778 256 3.8 28-Mar-25 2.1 4.4 8 15-Jul-25 27.5 2.1 5.2 189 25.2 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.37 0.96 1.11 1.20 0.38 Mann-Kendall Statistic (S) -26 100.0% -10 100.0% 45.2% 86.2% Confidence Factor 99.3% 59.4% 59.4% **Concentration Trend:** Stable No Trend Decreasing Decreasing Decreasing No Trend Stable 1000 Concentration (µg/L) 100 10 MW-MW-2 MW-6 11/24 07/21 02/22 08/22 03/23 10/23 04/24 05/25 12/25 MW-7 **Sampling Date**

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

MW-10

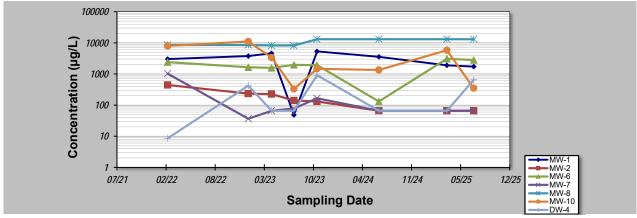
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L MW-1 MW-2 MW-5 MW-8 Sampling Point ID: MW-6 MW-10 MTBE CONCENTRATION (µg/L) 15-Feb-22 405 14.3 166 510 264 9-Jan-23 342 22 2 126 865 3 14-Apr-23 343 195 22.3 132 435 260 59.5 112 16-Oct-23 488 200 156 1000 6 24-Jun-24 306 122 45.6 241 696 110 28-Mar-25 193 190 457 8 15-Jul-25 158 131 79.9 179 712 30.2 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.37 0.43 0.58 0.23 0.30 Mann-Kendall Statistic (S) 98.4% 99.9% 80.1% 91.1% Confidence Factor 72.6% 94.6% Concentration Trend: Stable Prob. Increasing No Trend Prob. Decreasing Decreasing Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-2 08/22 03/23 10/23 04/24 11/24 07/21 02/22 05/25 12/25 MW-5 MW-6 Sampling Date MW-8

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

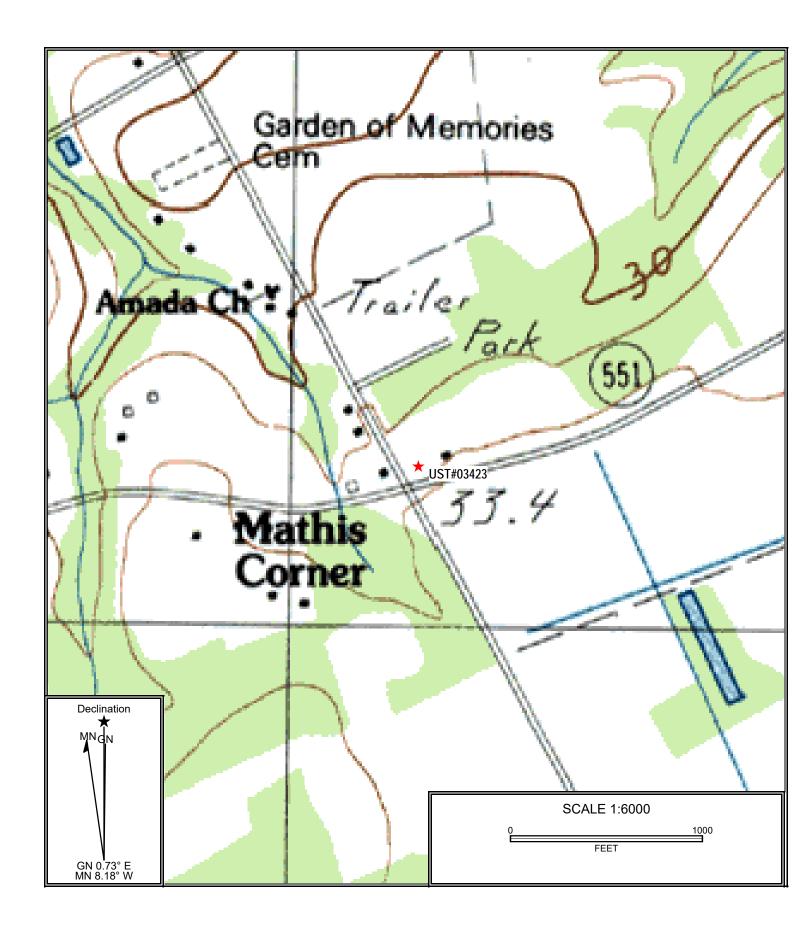

MW-10

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: MTBE Concentration Units: µg/L DW-1 DW-4 Sampling Point ID: MTBE CONCENTRATION (µg/L) 15-Feb-22 0.81 0.81 9-Jan-23 52 9 51.8 3 14-Apr-23 3.1 3.1 144 16-Oct-23 129 153 6 24-Jun-24 73.2 11.5 28-Mar-25 3.1 3.1 8 15-Jul-25 69.8 54.2 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.94 Mann-Kendall Statistic (S) Confidence Factor 68.3% **Concentration Trend:** No Trend No Trend 1000 Concentration (µg/L) 100 10 DW-1 0.1 DW-4 03/23 10/23 04/24 11/24 07/21 02/22 08/22 05/25 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: TAA Concentration Units: µg/L MW-1 MW-2 MW-6 MW-8 Sampling Point ID: MW-7 MW-10 DW-4 TAA CONCENTRATION (µg/L) 15-Feb-22 3030 442 2410 1030 7950 8.6 8690 9-Jan-23 3770 233 1640 36.4 8510 11100 422 3 14-Apr-23 4640 225 1570 65.6 8200 3350 65.6 4 1930 1460 5 16-Oct-23 5340 131 166 13100 913 6 24-Jun-24 3560 65.6 131 65.6 13100 1350 65.6 28-Mar-25 1900 65.6 3080 13100 8 15-Jul-25 1730 65.6 2820 65.6 13100 351 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation 0.57 0.75 0.47 0.23 1.21 Mann-Kendall Statistic (S) 100.0% 88.7% 91.1% Confidence Factor 72.6% 64.0% 64.0% 80.1% Concentration Trend: Stable No Trend No Trend Prob. Decreasing No Trend Decreasing No Trend

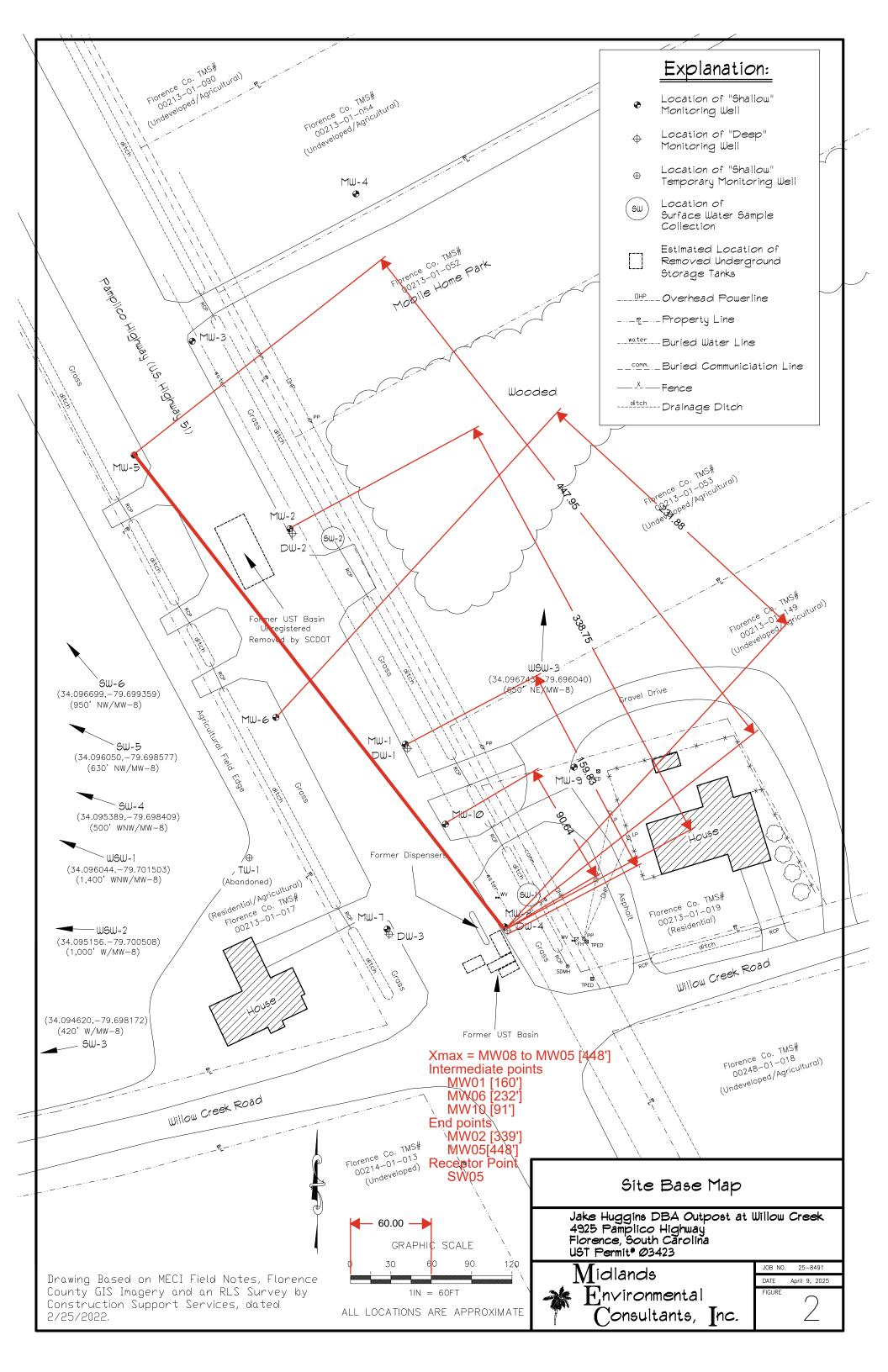

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Jul-25 Job ID: UST#03423 Facility Name: Jake Huggins DBA Outpost @ Willowcreek Conducted By: Jeff Coleman Constituent: DIPE Concentration Units: µg/L MW-1 MW-6 MW-8 MW10 Sampling Point ID: DIPE CONCENTRATION (µg/L) 15-Feb-22 160 122 268 9-Jan-23 191 88 1 239 555 3 14-Apr-23 178 80.1 436 165 698 16-Oct-23 297 111 68.1 6 24-Jun-24 176 151 698 75.3 28-Mar-25 110 199 698 8 15-Jul-25 129 698 19.3 10 11 12 13 15 16 17 18 19 20 Coefficient of Variation 0.38 0.30 0.99 Mann-Kendall Statistic (S) Confidence Factor 80.1% 91.1% 98.9% 80.1% Concentration Trend: Stable Stable Prob. Increasing Increasing 1000 Concentration (µg/L) 100 10 MW-1 MW-6 08/22 03/23 10/23 04/24 11/24 07/21 02/22 05/25 12/25 MW-8 **Sampling Date** MW10

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

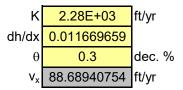


Date Received	9-2-25	•
Permit Number	03423	_
Project Manager	Robert Sunn.	
Name of Contractor	MECI	
 Description	Model	
Docket Number	5.7 clech	
Scanned MAW		
Venifiéd		

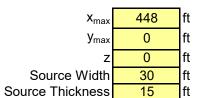
CD

Hard Copy

Email


Domenico Model

UST # 03423


Site Name: JAKE HUGGINS DBA Modeler: ROBERT A. DUNN

Date: 8/28/2025

Groundwater Flow Parameters

Transport Parameters

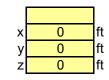
		_
Plume Length	448	ft
α_{x}	16.99483	ft
α_{y}	1.699483	ft
α_{z}	1.00E-99	ft

Simulation Time

50 yrs

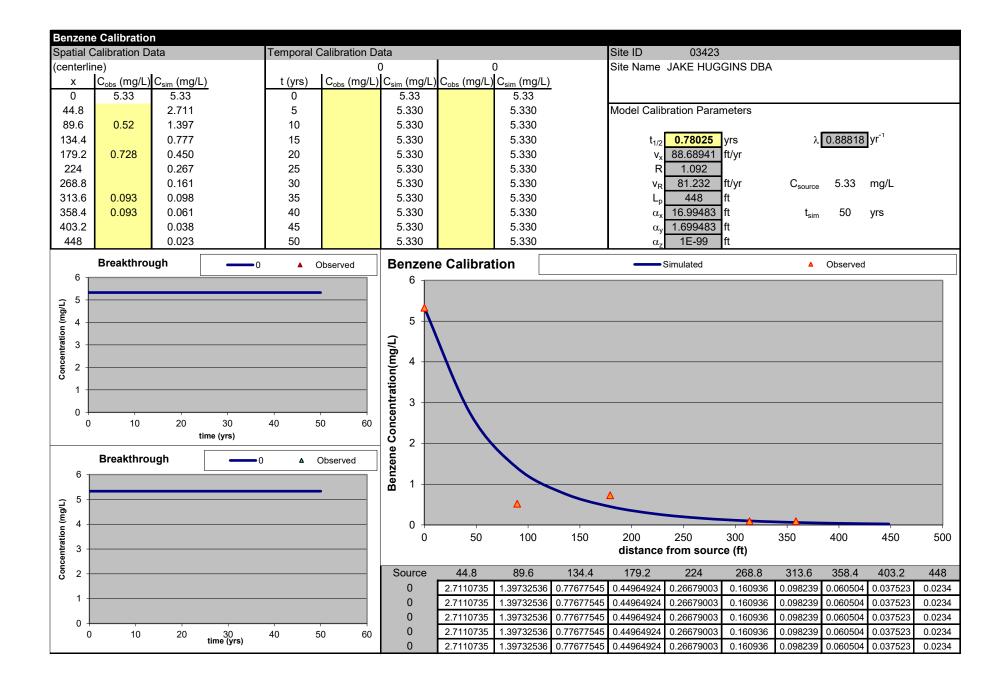
Aquifer Characteristics

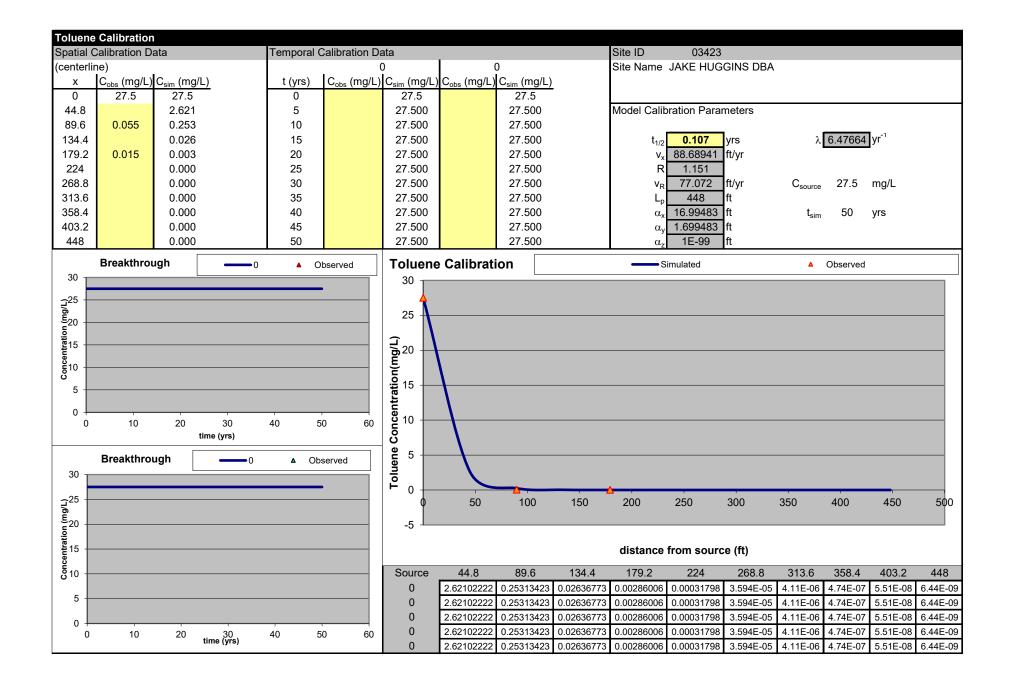
ρ_{d}	1.7	kg/L
f_{oc}	0.0002	

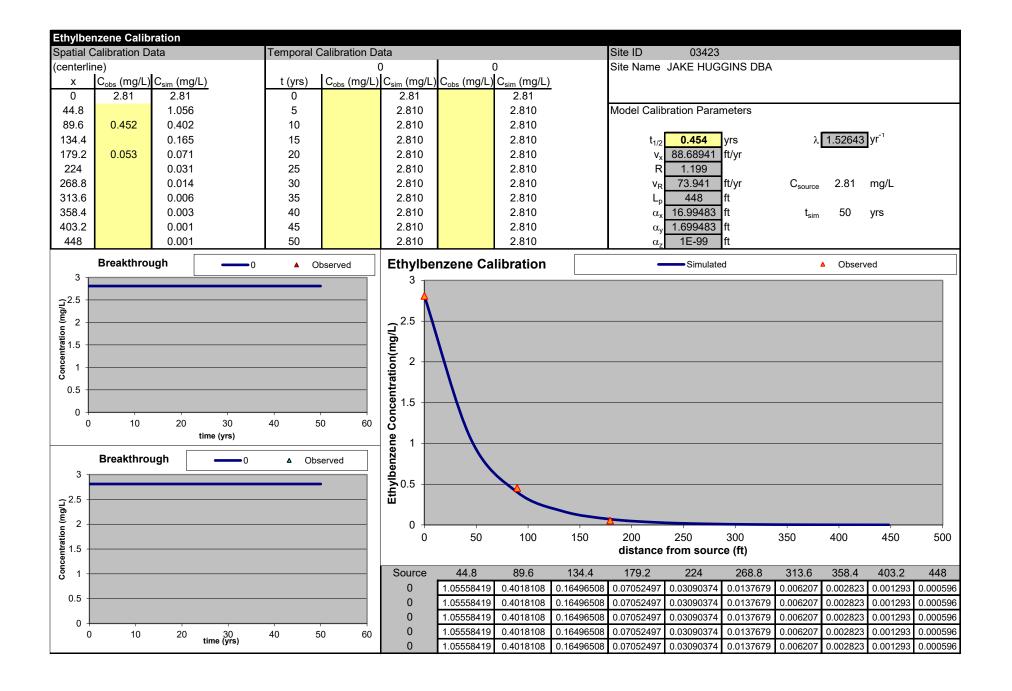

Retarded Velocity (ft/yr)

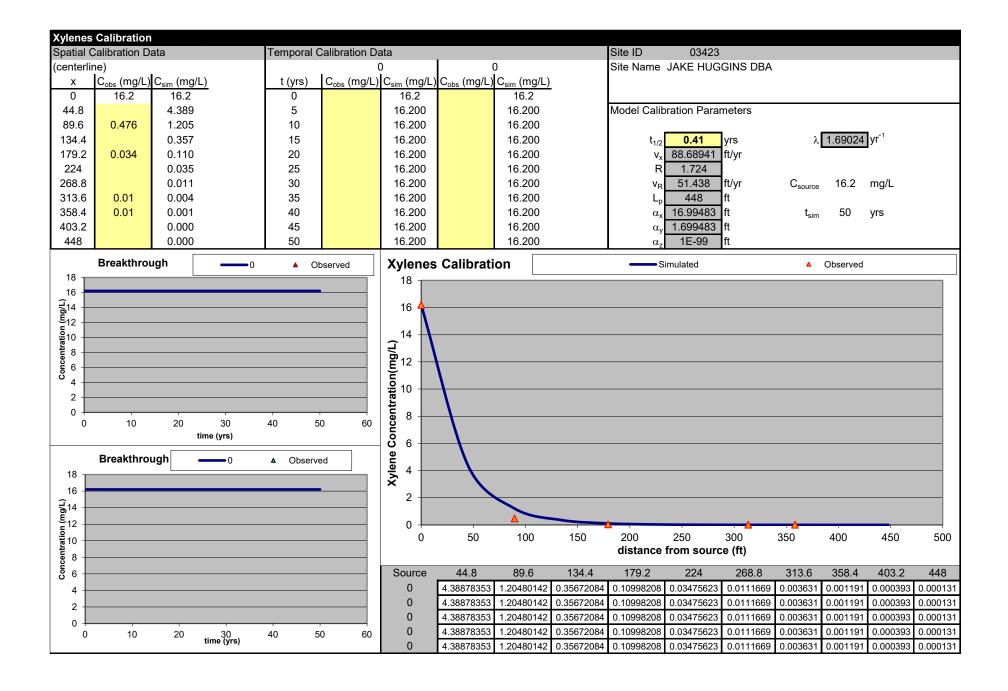
Source Area CoC Data

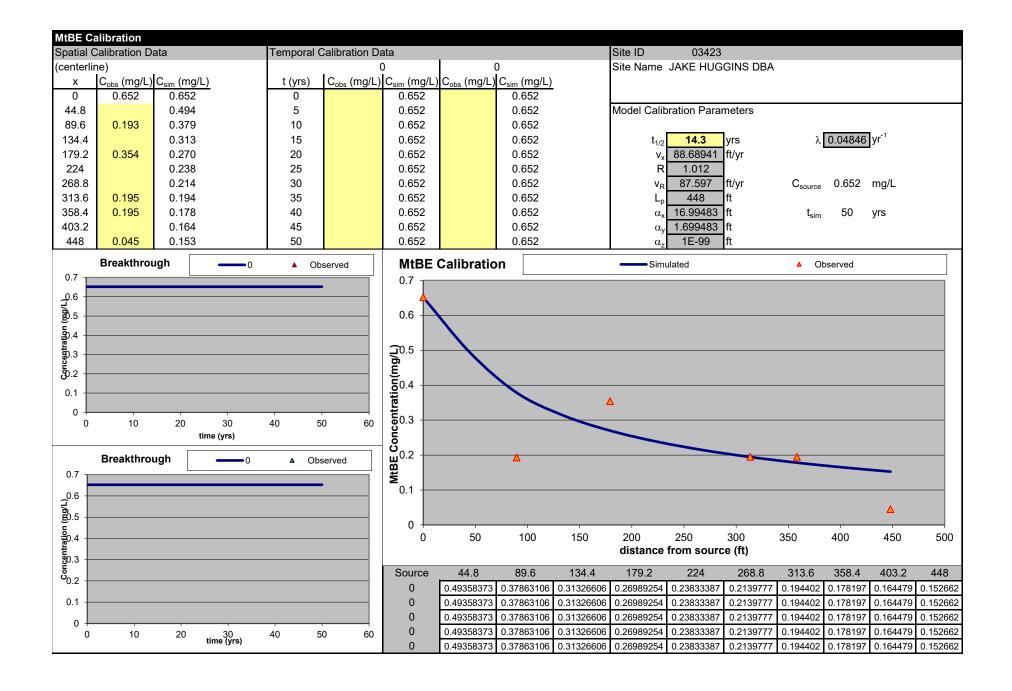
4 000	040
R	v_R

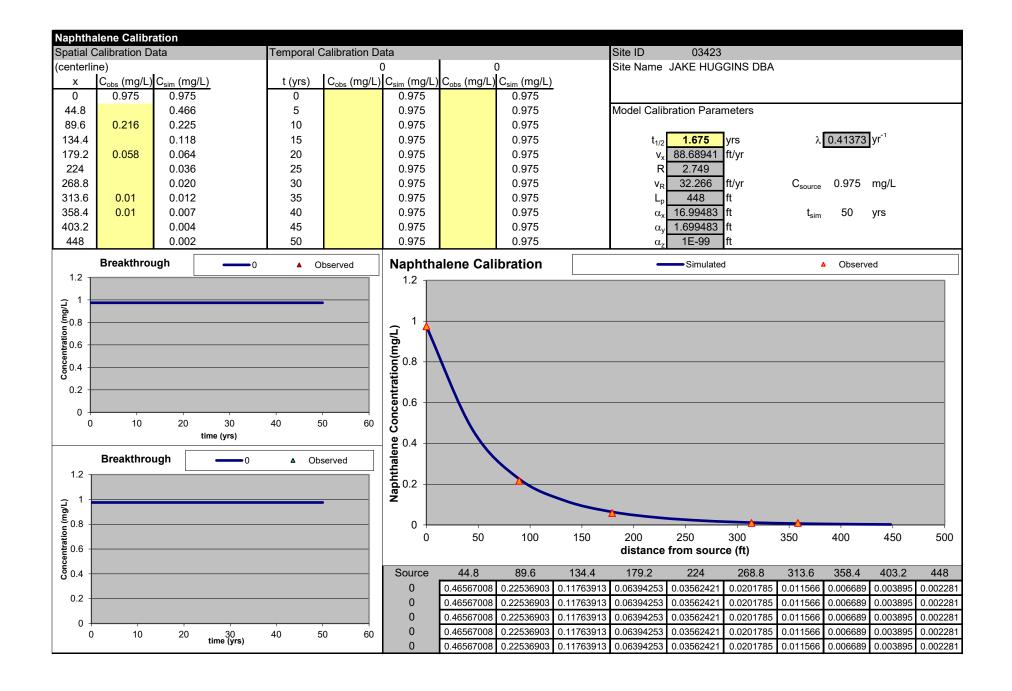

CoC	C _{source} (mg/L)	K _{oc} (L/kg)	CoC	R	v_R
Benzene	5.33	81	Benzene	1.092	81.23
Toluene	27.5	133	Toluene	1.151	77.07
Ethylbenzene	2.81	176	Ethylbenzene	1.199	73.94
Xylenes	16.2	639	Xylenes	1.724	51.44
Naphthalene	0.975	1543	Naphthalene	2.749	32.27
MtBE	0.652	11	MtBE	1.012	87.60
EDB		28	EDB	1.032	85.96
1,2-DCA		17.5	1,2-DCA	1.020	86.96


Simulation Points for Breakthrough Curves




Х	0	ft
у	0	ft
z	0	ft


$$C(x, y, z, t) = \left(\frac{C_0}{8}\right) \exp\left[\left(\frac{x}{2\alpha_x}\right)\left(1 - \sqrt{1 + \frac{4\lambda\alpha_x}{v}}\right)\right] erfc \left[\frac{x - vt\sqrt{1 + \frac{4\lambda\alpha_x}{v}}}{2\sqrt{\alpha_x vt}}\right] \left\{erf\left[\frac{y + \frac{Y}{2}}{2\sqrt{\alpha_y x}}\right] - erf\left[\frac{y - \frac{Y}{2}}{2\sqrt{\alpha_y x}}\right]\right\} \left\{erf\left[\frac{z + Z}{2\sqrt{\alpha_z x}}\right] - erf\left[\frac{z - Z}{2\sqrt{\alpha_z x}}\right]\right\} \left\{erf\left[\frac{z - Z}{2\sqrt{\alpha$$

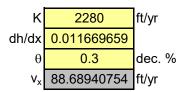


SSTLs t 1000 yrs

UST Permit # 03423 Site Name: JAKE HUGGINS DBA

SSTLs in I	ng/L	RBSL	s (mg/L):	0.005	1.000	0.700	10.000	0.040	0.025	
MW #	x (ft)	y (ft)	z (ft)	Benzene SSTL	Toluene SSTL	Ethylbenzene SSTL	Xylenes SSTL	MtBE SSTL	Naphthalene SSTL	
MW01	500	0	0	1.959	>99999	8077.012	>99999	0.185	19.778	
MW02	364	0	0	0.468	>99999	768.421	>99999	0.148	3.900	
MW05	223	0	0	0.099	82362.935	62.500	4543.632	0.109	0.675	
MW06	380	0	0	0.555	>99999	1016.005	>99999	0.152	4.733	
MW08	630	0	0	7.454	>99999	74050.278	>99999	0.222	90.330	
MW10	558	0	0	3.567	>99999	21772.307	>99999	0.202	39.067	
			λ (yr ⁻¹):	0.888	6.477	1.526	1.690	0.048	0.414	
			R:	1.092	1.151	1.199	1.724	1.012	2.749	
	Pur	e Substance	e Solubility:	1750	526	169	175	5110	31	
		Effective	e Solubility:	44.39	26.54	3.7	21.68	173	6.7	

Domenico Model (Oxygenates)


UST # 03423

Site Name: JAKE HUGGINS DBA Modeler: ROBERT A. DUNN


Date: 8/28/2025

Groundwater Flow Parameters

Source Area CoC Data

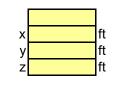
Transport Parameters

_		
Plume Length	448	ft
α_{x}	16.99483	ft
α_{y}	1.699483	ft
α_{z}	1.00E-99	ft

Simulation Time

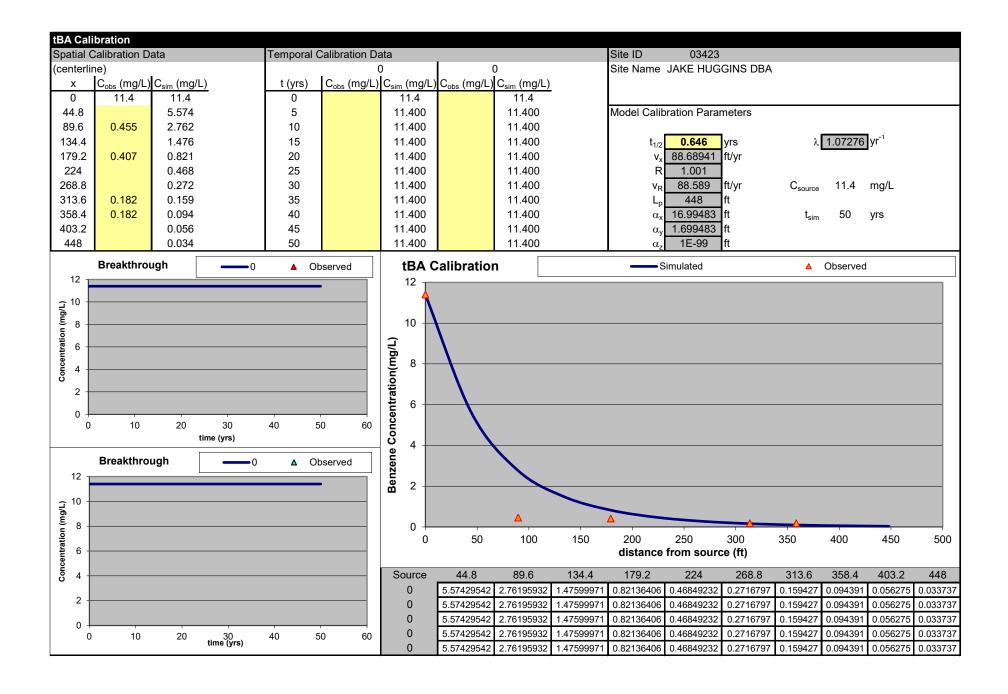
t_{sim} 50 yrs

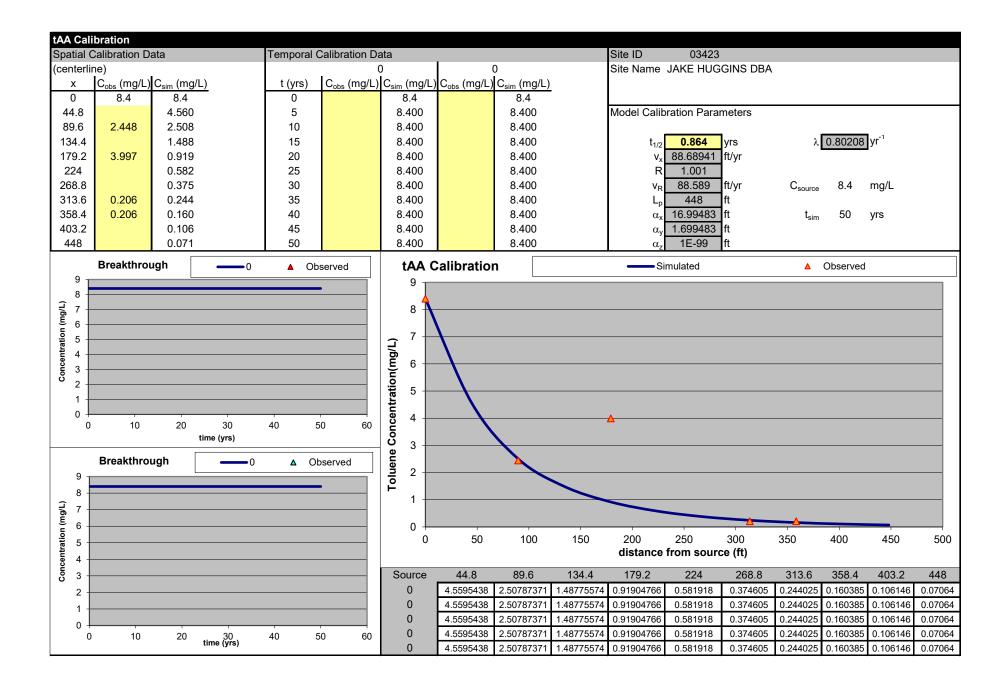
Aquifer Characteristics

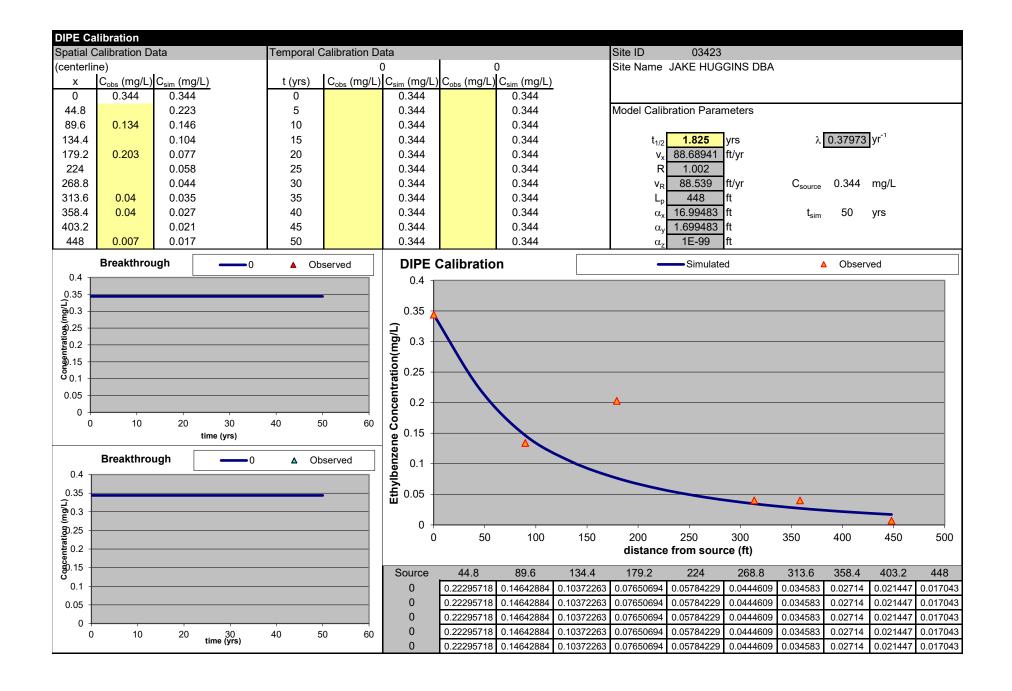

ρ_{d}	1.7	kg/L
f_{oc}	0.0002	

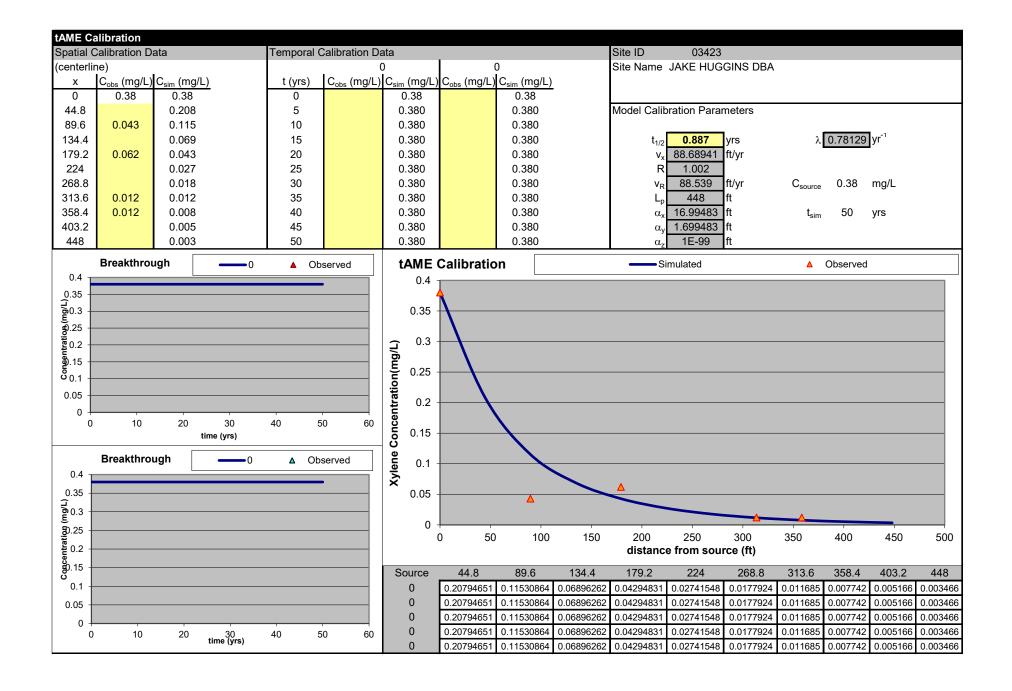
Retarded Velocity

(ft/yr)


Simulation Points for Breakthrough Curves


CoC	C _{source} (mg/L)	K _{oc} (L/kg)	CoC	R	v_R
tBA	11.4	1	tBA	1.001	88.59
tAA	8.4	1	tAA	1.001	88.59
DIPE	0.344	1.5	DIPE	1.002	88.54
tAME	0.38	1.5	tAME	1.002	88.54
EtBE		1.5	EtBE	1.002	88.54
Ethanol		0.5	Ethanol	1.001	88.64





$$C(x, y, z, t) = \left(\frac{C_0}{8}\right) \exp\left[\left(\frac{x}{2\alpha_x}\right)\left(1 - \sqrt{1 + \frac{4\lambda\alpha_x}{v}}\right)\right] erfc \left[\frac{x - vt\sqrt{1 + \frac{4\lambda\alpha_x}{v}}}{2\sqrt{\alpha_x vt}}\right] \left\{erf\left[\frac{y + \frac{Y}{2}}{2\sqrt{\alpha_y x}}\right] - erf\left[\frac{y - \frac{Y}{2}}{2\sqrt{\alpha_y x}}\right]\right\} \left\{erf\left[\frac{z + Z}{2\sqrt{\alpha_z x}}\right] - erf\left[\frac{z - Z}{2\sqrt{\alpha_z x}}\right]\right\} \left\{erf\left[\frac{y - \frac{Y}{2}}{2\sqrt{\alpha_z x}}\right] - erf\left[\frac{z - Z}{2\sqrt{\alpha_z x}}\right]\right\}$$

Equation 1

Ζ

Х

У

Ζ

٧

λ

$$C(x,y,z,t) = \left(\frac{C_0}{8}\right) \times exp\left[\left(\frac{x}{2\alpha_x}\right)\left(1-\sqrt{1+\frac{4\lambda\alpha_x}{v}}\right)\right] \times erfc\left[\frac{x-vt\sqrt{1+\frac{4\lambda\alpha_x}{v}}}{2\sqrt{\alpha_x vt}}\right] \times \left\{erf\left[\frac{y+\frac{Y}{2}}{2\sqrt{\alpha_y x}}\right] - erf\left[\frac{y-\frac{Y}{2}}{2\sqrt{\alpha_y x}}\right]\right\} \times \left\{erf\left[\frac{z+Z}{2\sqrt{\alpha_z x}}\right] - erf\left[\frac{z-Z}{2\sqrt{\alpha_z x}}\right]\right\}$$

Co Concentration of CoC at source (mg/L)

Y with of source perpendicular to GW flow (m)

verticle thickness of source (m)

distance from source to receptor (m)

y-coordinate of receptor relative to source (m)

z-coordinate of receptor relative to source (m)

 α_x longitudinal dispersivity (m) (x/

(x/10)

 α_y transverse dispersitivity (m)

 $(\alpha_x/3)$

vertical dispersivity (m)

 $(\alpha_x/20)$

contaminant velocity (m/s)*

If the CoC adsorbs, the contaminant velocity (v) is replaced by the retarded velocity (v/R), where R is the retardation factor in the saturated zone.

$$R = 1 + \frac{K_{oc} \times F_{oc} \times B_d \times 10^{-6}}{\Phi}$$

Koc chemical specific soil/water partioning coefficient (ml/g)

foc naturally occurring organic carbon (mg/kg) in soil

Bd soil bulk density

Φ porosity (decimal %)

erf error function

erfc complimentary error function

the erf and the erfc are dimensionless numbers that can be derviced from an erf and erfc table. These tables can be found in many hydrogeology

textbooks

first order decay rate (1/sec)

if the first order decay rates have not been determned on a site-specific based that decay rate shall be assumed to be 0.

t time contaminant transport takes place (sec)

Equation 2

If the receptor is not located along the x-axis centerline, y and $z\neq 0$ and $\lambda=0$

$$C(x,y,z,t) = \left(\frac{C_0}{8}\right) \times erfc\left[\frac{(x-vt)}{2\sqrt{\alpha_x vt}}\right] \times \left\{erf\left[\frac{y+\frac{Y}{2}}{2\sqrt{\alpha_y x}}\right] - erf\left[\frac{y-\frac{Y}{2}}{2\sqrt{\alpha_y x}}\right]\right\} \times erf\left\{\left[\frac{z+Z}{2\sqrt{\alpha_z x}}\right] - erf\left[\frac{z-Z}{2\sqrt{\alpha_z x}}\right]\right\}$$

Equation 3

If receptor is long the centerline (x-axis) and hydraulically downgradient of the source. In that case, y=z=0 and λ=0

$$C(x,0,0,t) = \left(\frac{C_0}{2}\right) \times erfc\left[\frac{(x-vt)}{2\sqrt{\alpha_x vt}}\right] \times erf\left[\frac{Y}{4\sqrt{\alpha_y x}}\right] \times erf\left[\frac{Z}{2\sqrt{\alpha_z x}}\right]$$

SSTL Calculations

$$exp\left[\left(\frac{x}{2\alpha_{x}}\right)\left(1-\sqrt{1+\frac{4\lambda\lambda_{x}}{v}}\right)\right]\times erfc\left[\frac{x-vt\sqrt{1+\frac{\lambda\alpha_{x}}{v}}}{2\sqrt{\alpha_{x}vt}}\right]\times \left\{erf\left[\frac{y+\frac{Y}{2}}{2\sqrt{\alpha_{y}x}}\right]-erf\left[\frac{y-\frac{Y}{2}}{2\sqrt{\alpha_{y}x}}\right]\right\}\times erf\left\{\left[\frac{z+Z}{2\sqrt{\alpha_{z}x}}\right]-erf\left[\frac{z-Z}{2\sqrt{\alpha_{z}x}}\right]\right\}$$

Site ID	3423
CoC	MTBE
Source	DW01
Receptor	SW05
<i>C</i> -	

<i>C</i> ₀ Y		mg/L
Υ	9.144	m
Z	4.572	m
Х	152.40	m
у		m
Z		m
V_{S}	4.45E-07	m/s
Time	1000.0	years
λ		/s

Output Data

EXP(0.0000)=	1.0000
ERFC(-15.0045)=	2.0000
ERF(0.0822)=	0.0925
ERF(0.2121)=	0.2358
α_{x}	15.24	
α_y	5.0800	

0.762

 α_z

$$C(x,y,z,t) = 0.00000 \text{ ug/L}$$

$$C_{RBSL} = 0.04 \text{ mg/L}$$

$$C_{SSTL} = 7.335056 \text{ mg/L}$$

$$C_{SSTL} = 7335.056 \text{ ug/L}$$

Site ID	3423
CoC	BENZENE
Source	DW04
Receptor	SW05
C_0	
Υ	9.144

С ₀ Y		mg/L
Υ	9.144	m
Z	4.572	m
X	192.00	m
у		m
Z		m
$V_{\mathcal{S}}$	4.45E-07	m/s
Time	1000.0	years
λ		/s

Output Data

EXP(0.0000)=	1.0000
ERFC(-13.3297)=	2.0000
ERF(0.0652)=	0.0735
ERF(0.1684)=	0.1882
α_{x}	19.20	
$lpha_{\mathcal{Y}}$	6.4000	
α_z	0.960	
C(x,y,z,t)=	0.000000 mg/L	

C(x,y,z,t) = 0.00000 ug/L

$$C_{RBSL} = 0.005 \text{ mg/L}$$

$$C_{SSTL} = 1.4461 \text{ mg/L}$$

$$C_{SSTL} = 1446.1 \text{ ug/L}$$

Site ID			3423	
CoC	MTBE			
Source	DW04			
Receptor	SW05			
C_0				mg/L
Υ		9.144		m
Z		4.572		m
X		192.00		m
У				m
Z				m

 V_s Time

C(x,y,z,t)=

λ

Output Data

4.45E-07 1000.0

EXP(0.0000)=	1.0000
ERFC(-13.3297)=	2.0000
ERF(0.0652)=	0.0735
ERF(0.1684)=	0.1882
α_x	19.20	
α_y	6.4000	
α_z	0.960	
_		
C(x,y,z,t)=	0.000000 mg/L	

0.00000 ug/L

m/s

years

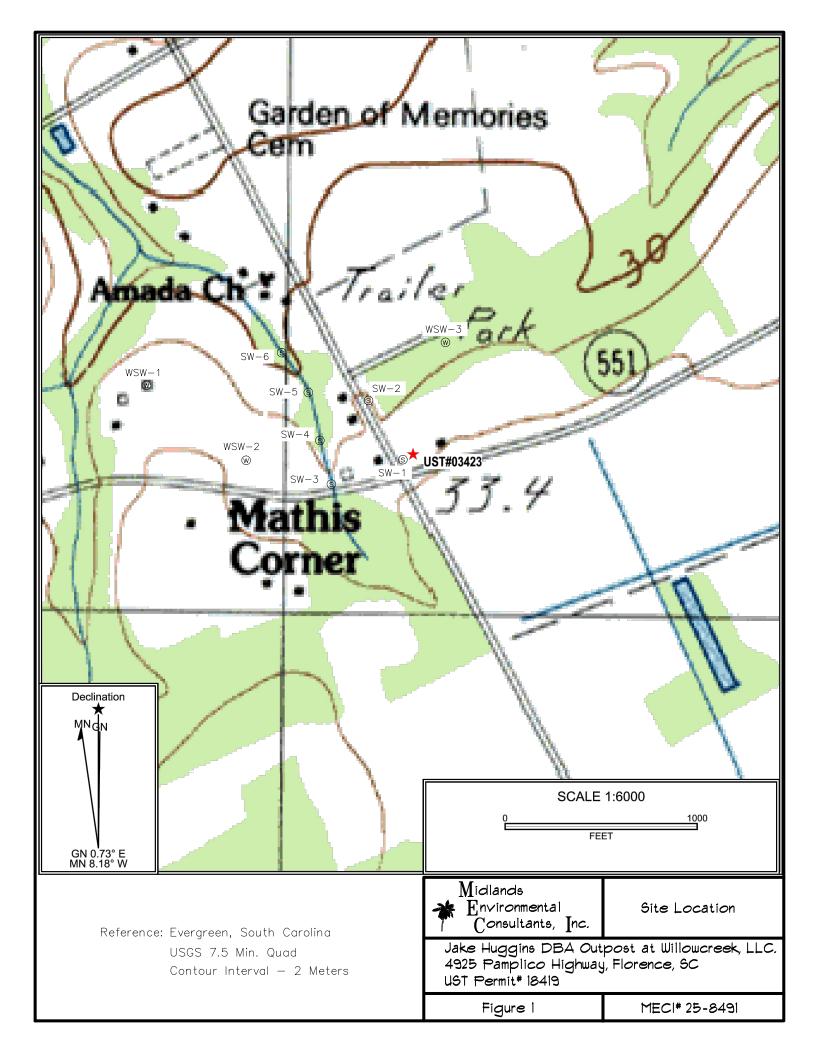
/s

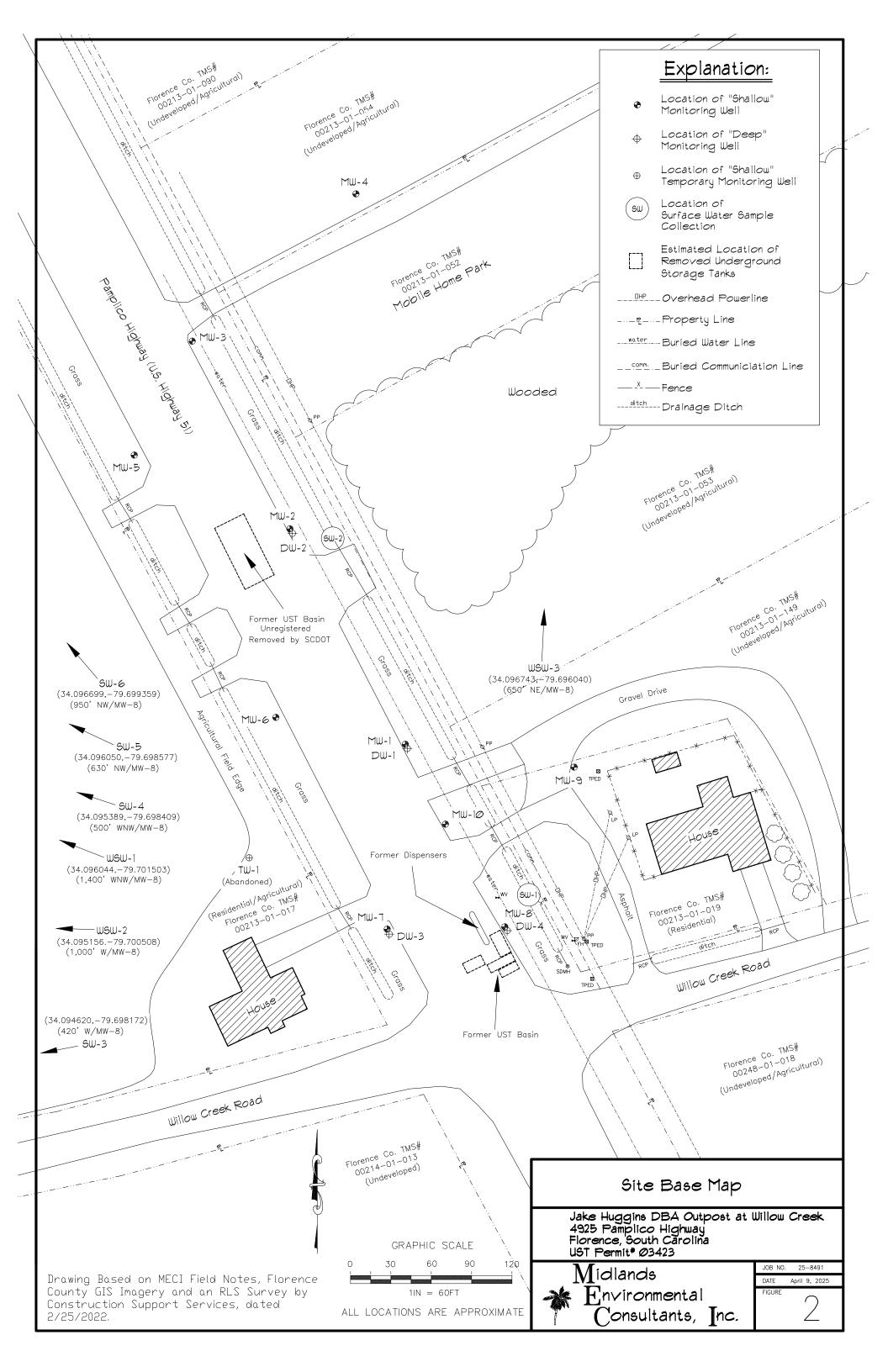
$$C_{RBSL} = 0.04 \text{ mg/L}$$
 $C_{SSTL} = 11.5688 \text{ mg/L}$
 $C_{SSTL} = 11568.8 \text{ ug/L}$

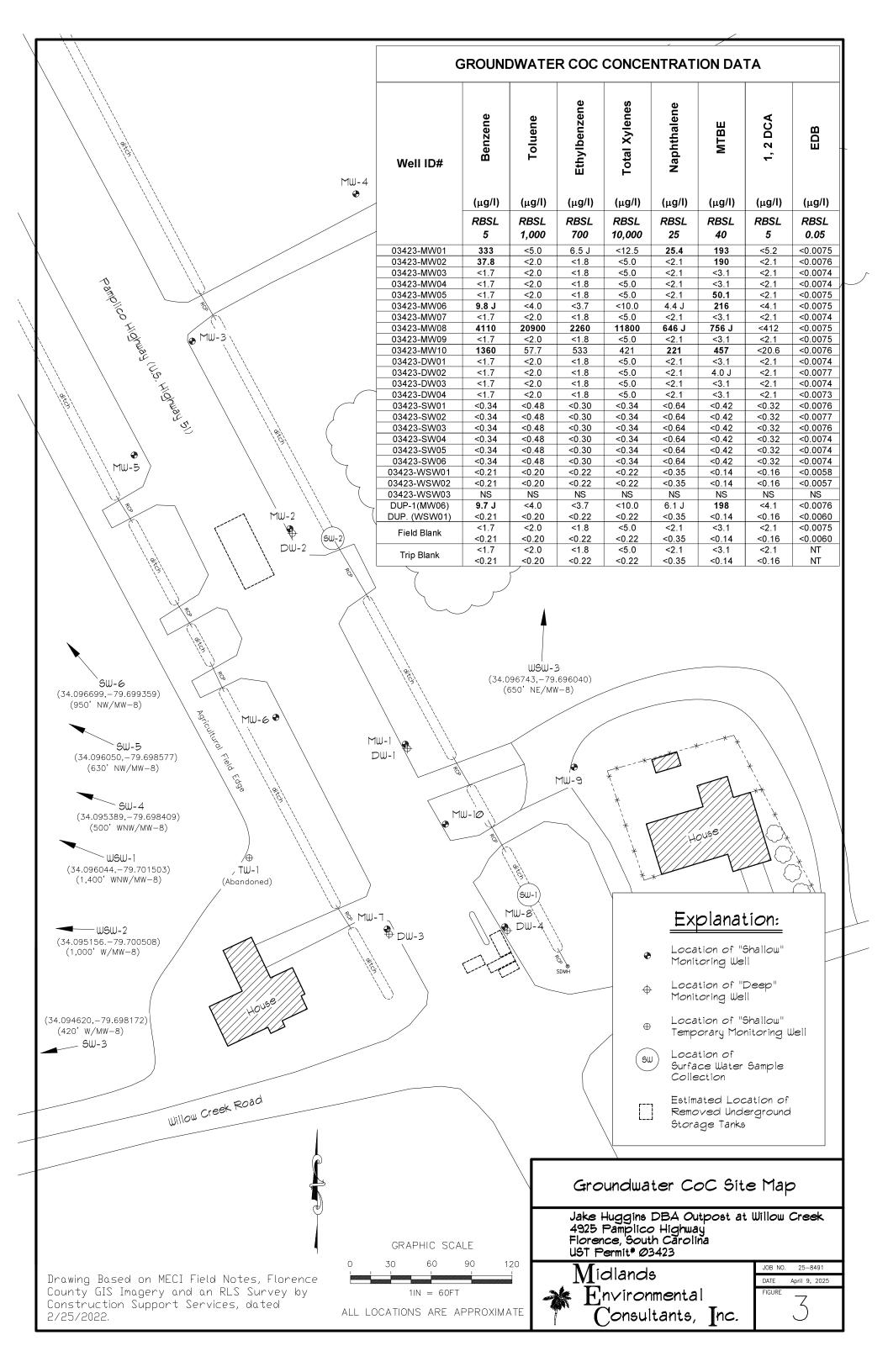
Site ID	3423
CoC	TAA
Source	DW04
Receptor	SW05
C_0	
V	0.144

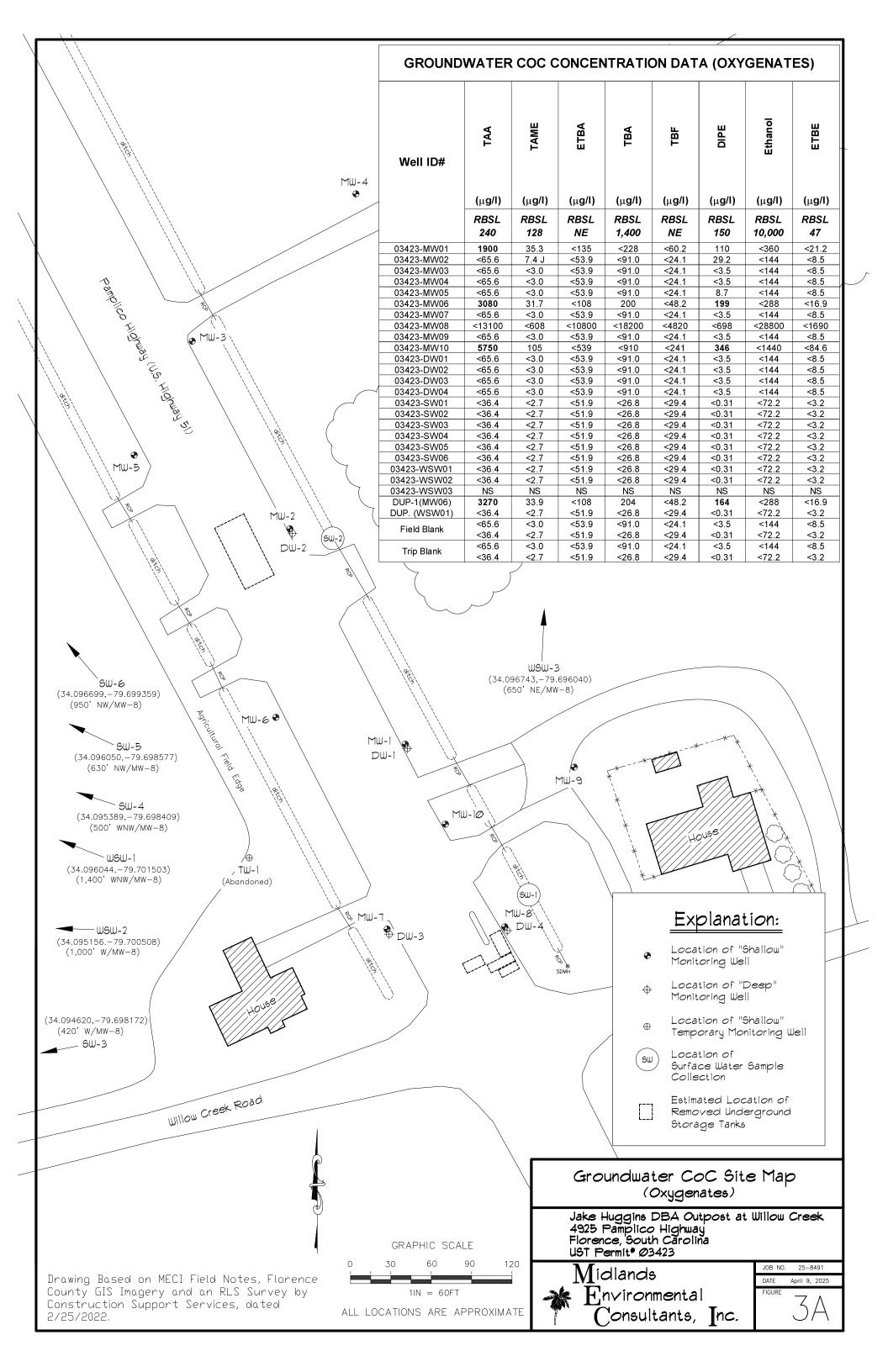
<i>C</i> ₀ Y		mg/L
Υ	9.144	m
Z	4.572	m
X	192.00	m
у		m
Z		m
V_{S}	4.45E-07	m/s
Time	1000.0	years
λ		/s

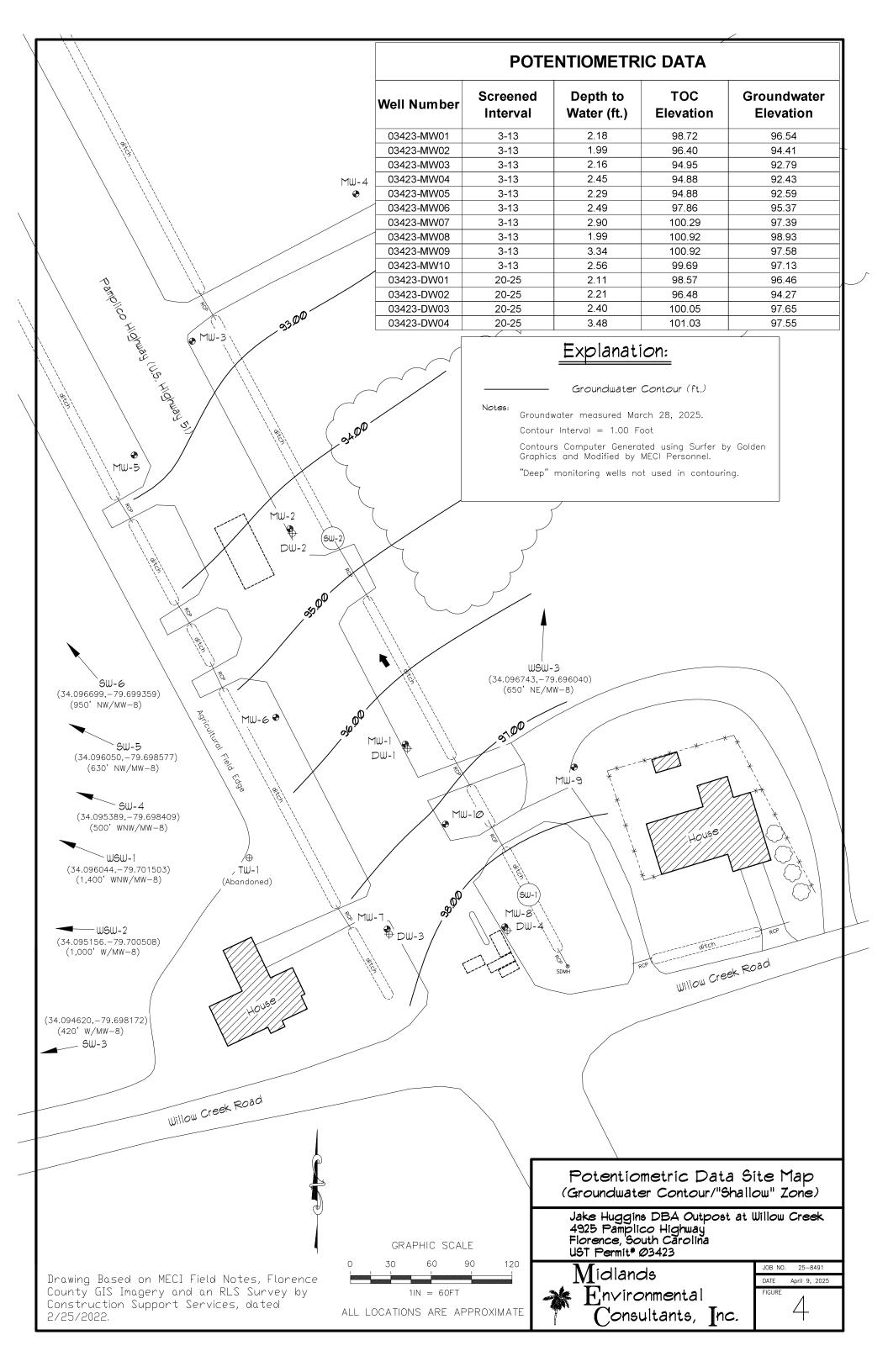
Output Data

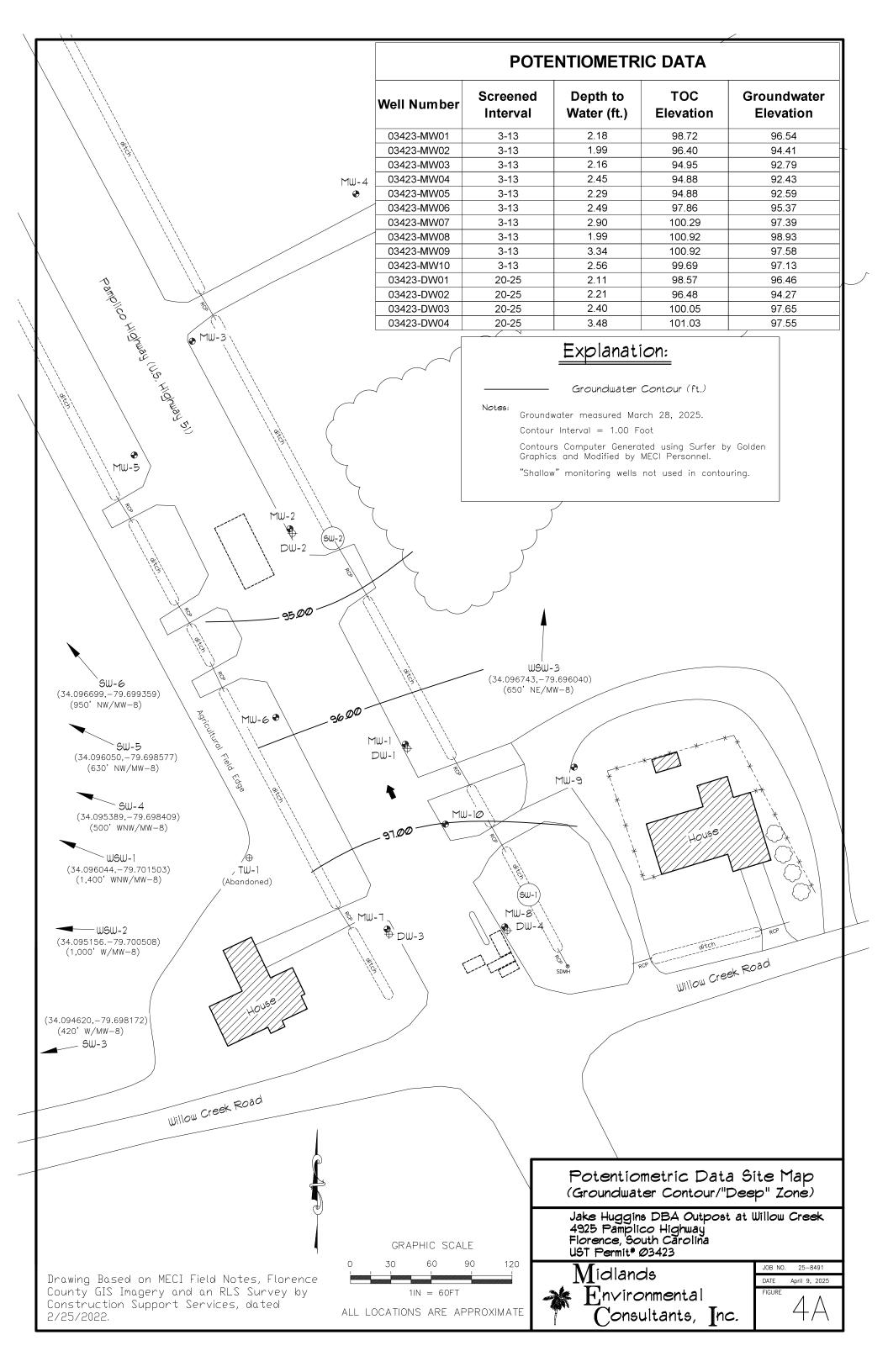

EXP(0.0000)=	1.0000
ERFC(-13.3297)=	2.0000
ERF(0.0652)=	0.0735
ERF(0.1684)=	0.1882
α_{χ}	19.20	
α_y	6.4000	
α_z	0.960	

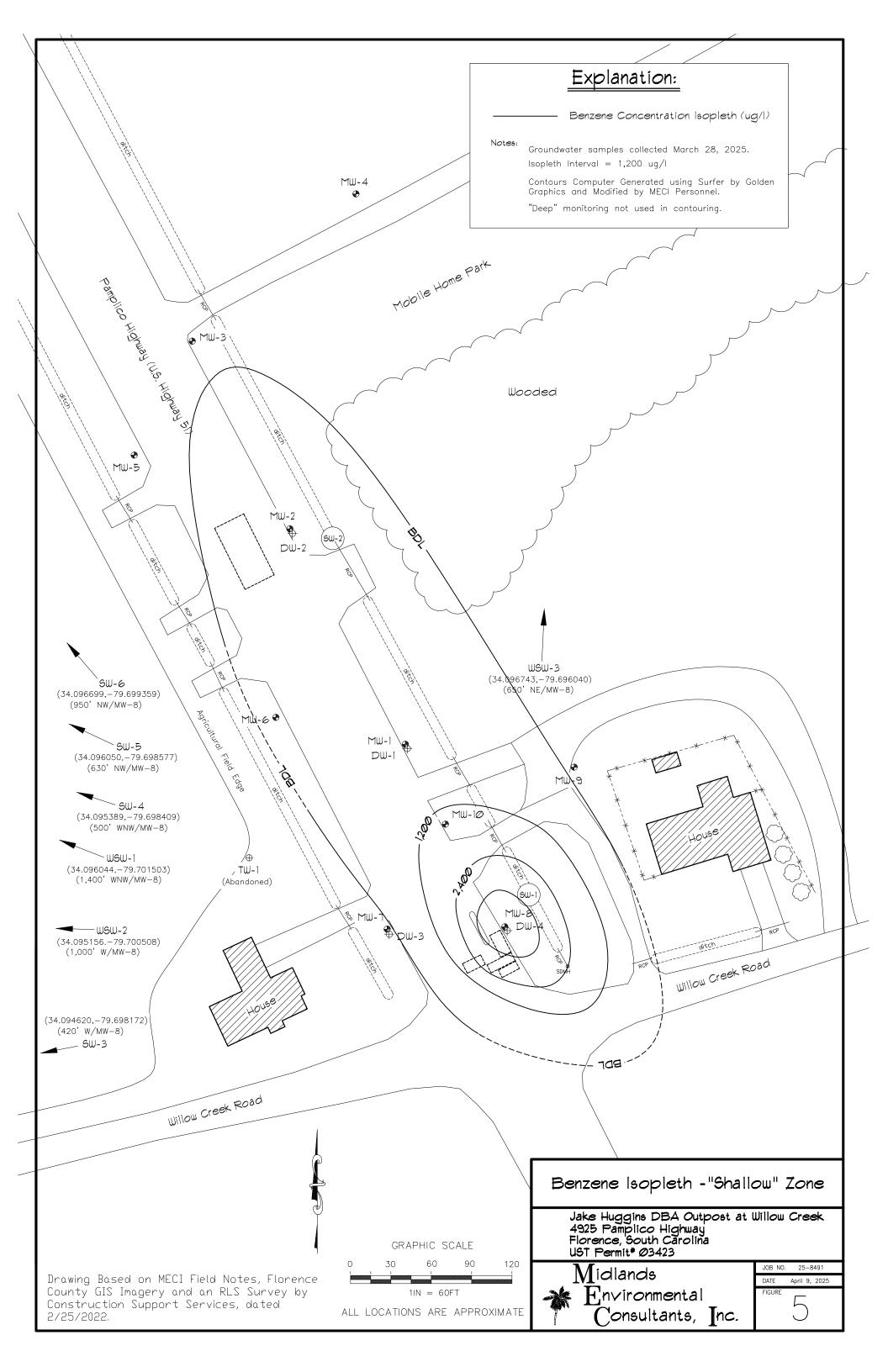

$$C(x,y,z,t) = 0.00000 \text{ ug/L}$$

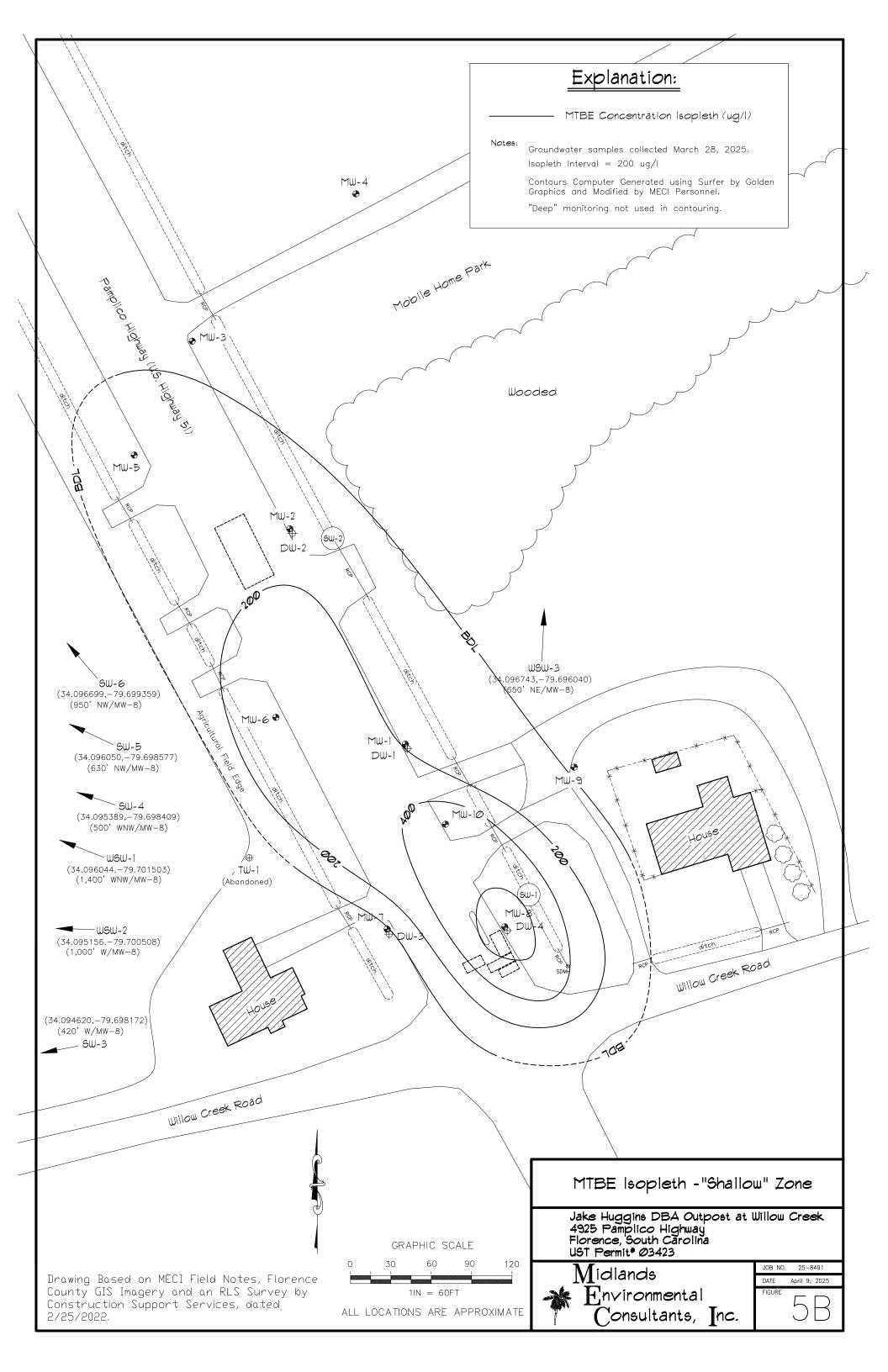

$$C_{RBSL} = 0.24 \text{ mg/L}$$


$$C_{SSTL} = 69.41281 \text{ mg/L}$$


$$C_{SSTL} = 69412.81 \text{ ug/L}$$







Receptor ID: (03423-WSW01)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Well is inside barn building.

Sample collected from spigot on water supply well.

GPS: 34.096044, -79.701503

Receptor ID: (03423-WSW02)

Parcel ID:

00213-01-130

Property Owner Name:

Willie B Winchester Jr.

Property Owner Address:

3101 Willow Creek Rd, Florence, SC 29505

WSW Details:

Sample collected from spigot on WSW.

GPS: 34.095156, -79.700508

Receptor ID: (03423-WSW03)

Parcel ID:

00213-01-052

Property Owner Name:

Linda L Huggins

Property Owner Address:

3695 Willow Creek Rd, Florence, SC 29505

WSW Details:

Well has been disconnected.

Unable to sample with bailer due to metal elbow at well head.

GPS: 34.096743, -79.701503

Receptor ID: (03423-Possible WSW)

Parcel ID:

00214-01-016

Property Owner Name:

Trent P Stallings

Property Owner Address:

3118 Willow Creek Rd, Florence, SC 29505

WSW Details:

Possible well house attatched to residence.

Resident did not respond to attempts to make contact.

GPS: 34.094158, -79.700555

Receptor ID: (03423-SW01)

Parcel ID:

SCDOT Right of Way Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch. GPS: 34.095076, -79.696772

Receptor ID: (03423-SW02)

Parcel ID:

SCDOT Right of Way

Property Owner Name:

SCDOT

Property Owner Address:

PO Box 191, Columbia, SC 29201

SW Details:

Surface water sample collected from drainage ditch.

GPS: 34.095847, -79.697296

Receptor ID: (03423-SW03)

Parcel ID:

00213-01-017

Property Owner Name:

Barbara M Williams

Property Owner Address:

9296 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream.

GPS: 34.094620, -79.698172

Receptor ID: (03423-SW04)

Parcel ID:

00213-01-017

Property Owner Name:

Barbara M Williams

Property Owner Address:

9296 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream. GPS: 34.095389, -79.698409

Receptor ID: (03423-SW05)

Parcel ID:

00213-01-017

Property Owner Name:

Barbara M Williams

Property Owner Address:

9282 Grays Highway, Ridgeland, SC 29936

SW Details:

Surface water sample collected from stream.

GPS: 34.096050, -79.698577

Receptor ID: (03423-SW06)

Parcel ID:

00213-01-017

Property Owner Name:

Barbara M Williams

Property Owner Address:

9372 Grays Highway, Ridgeland, SC 29936

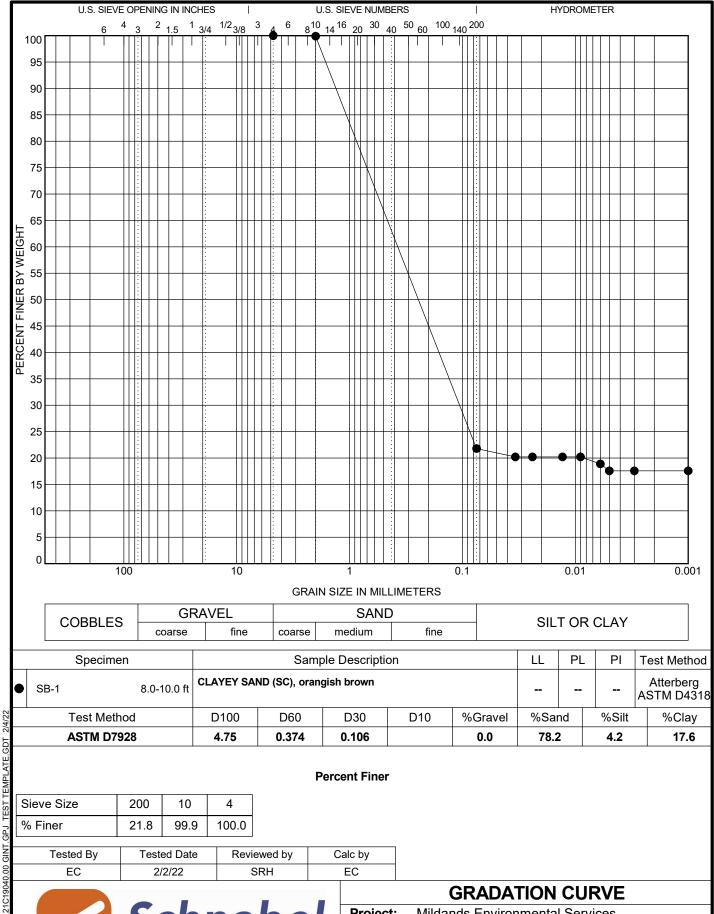
SW Details:

Surface water sample collected from stream.

GPS: 34.096699, -79.699359

DHEC 3531 (04/2015

Summary of Slug Test Underground Storage Tank Management Division


Site Data					
SITE ID #:	03423	COUNTY:	Florence		
FACILITY NAME:	Jake Huggins	Date Performed:	2/14/2022		
SLUG DATA					
See Appendix F	Tablo	3 Figure		for a list of all data measur	romonte
	level logs, etc.)(Complete			_ ioi a list of all data fileasul	Cilicitis.
· ·	/ Data was measured by		Level Troll 500		
	t Data Logger, Manually v			od)	•
,	g table for each well teste		n, cto.)(List Metr	ou)	
	LETE A SECOND SHEE		WELLS ARE TE	ESTED	
OOWII	LETE A OLOGIAD OTTLE	THE WORLD THE WATER	WEELS THE	LOTED	
Slug Test Conducted	in well(s) number	03423-MW02	03423-MW07		
Static Water Level (fe	` '	2.64	2.91		
Initial Rise/Drawdown	•	0.981	0.918		
Radius of well casing	,	0.083	0.083		
Effective Radius of W	• •	0.33	0.33		
Static Saturated Aquif	` '	10.92	9.91		
Length of Well Screer	` '	10	10		
J	,			•	
Calculations					
See Appendix F	Table	Figure		for calculations	
The method for aquife	er calculations was	Bouwer-Rice			•
The aquifer is confinedsemi-confined Xwater table (Check as Appropriate).					propriate).
A larradura vilia arma ali arak a	£ 440500 £/£/!!6	N II II \			
A flydraulic gradiefit o	f <u>1.18E-02</u> ft./ft. ("5	Sitaliow)			
Calculated values by	well were as follows:				
Slug Test Conducted		03423-MW02	03423-MW07	Mathmatical Mean	
Thickness of Aquifer (` '	10.92	9.91	N/A	
Hydraulic Conductivity	'	2.21E-03	1.00E-03	1.61E-03	
Hydraulic Conductivity		6.26E+00	2.84E+00	4.55E+00	
Hydraulic Conductivity	• • • • • • • • • • • • • • • • • • • •	2.28E+03	1.04E+03	1.66E+03	
Effective Porosity (%)	• • •	20.00%	20.00%	20.00%	
Soil Type (i.e. silty sar		SAND	SAND	N/A	
Seepage Velocity (fee		3.69E-01	1.68E-01	2.68E-01	
Seepage Velocity (fee	• /	134.73	61.23	97.98	
1225690 70100119 (100	- , - on ,		520	1	I

DHEC 3531 (04/2015

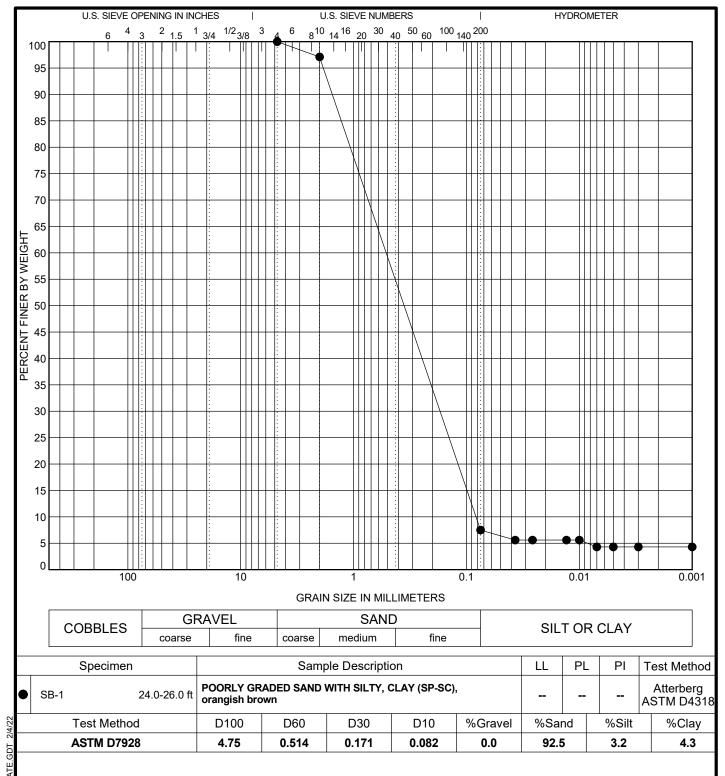
Summary of Slug Test Underground Storage Tank Management Division

Site Data						
SITE ID #:	03423		COUNTY:	Florence		_
FACILITY NAME:	Jake Huggins		Date Performed:	2/14/2022		_
SLUG DATA						
See Appendix F	Table	3	Figure		for a list of all data measu	rements
	level logs, etc.)(Comp		-		_ lor a not of an add moded	Tomonio.
Water Level Recovery	• / / .		. ,	Level Troll 500		
•	it Data Logger, Manua	•			od)	• ·
Complete the following		•		., 515./(5151.	,	
	LETE A SECOND SH		RE THAN FOUR	WELLS ARE TE	ESTED	
Slug Test Conducted	in well(s) number		03423-DW02	03423-DW03]	
Static Water Level (fe	` '	,	2.51	3.86	1	
Initial Rise/Drawdown	•	•	1.961	2.290		
Radius of well casing	'	•	0.083	0.083		
Effective Radius of W	• •	•	0.33	0.33		
Static Saturated Aquif	, ,	•	25.00	25.00		
Length of Well Screer	, ,	•	5	5		
		-			_	
Calculations						
See Appendix F	Table		Figure		for calculations	
The method for aquife	er calculations was		Bouwer-Rice			
The mother for again	or carculations was	•	Boawer 14100			-
The aquifer is	confined	Χ	unconfined		water table (Check as App	oropriate).
A hydraulic gradient o	.f 1.03E_02 ft/ft	("Deen")				
7 (Trydradiio gradietii o	1.000 02	(Всер)				
Calculated values by	well were as follows:					
Calculated values by well were as follows: Slug Test Conducted in Well(s) number			03423-DW02	03423-DW03	Mathmatical Mean	1
Thickness of Aquifer (feet)		,	25.00	25.00	N/A	
Hydraulic Conductivity	• •		8.63E-04	1.56E-04	5.09E-04	
Hydraulic Conductivity (ft/day)			2.45E+00	4.42E-01	1.44E+00	
Hydraulic Conductivity (feet/year)			8.93E+02	1.61E+02	5.27E+02	1
Effective Porosity (%)			20.00%	20.00%	20.00%	1
Soil Type (i.e. silty sand, clay, etc.)			SAND	SAND	N/A	1
Seepage Velocity (feet/day)			1.26E-01	2.27E-02	7.43E-02	1
	seepage Velocity (feet/year) 45.97 8.30 27.14					
	· J · /	L			!	4

Percent Finer

Sieve Size	200	10	4
% Finer	21.8	99.9	100.0

Tested By	Tested Date	Reviewed by	Calc by
EC	2/2/22	SRH	EC


GRADATION CURVE

Project: Mildands Environmental Services

Jake Huggins

SC

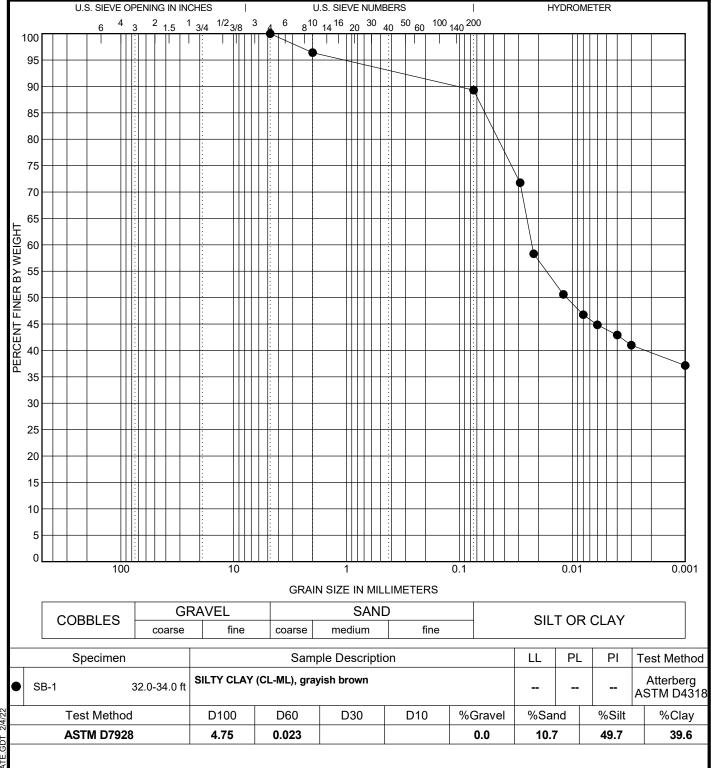
Contract: 21C19040.00.15-17

Percent Finer

Sieve Size	200	10	4
% Finer	07.5	97.1	100.0

21C19040.00 GINT.GPJ

Tested By	Tested Date	Reviewed by	Calc by
EC	2/2/22	SRH	EC


GRADATION CURVE

Project: Mildands Environmental Services

Jake Huggins

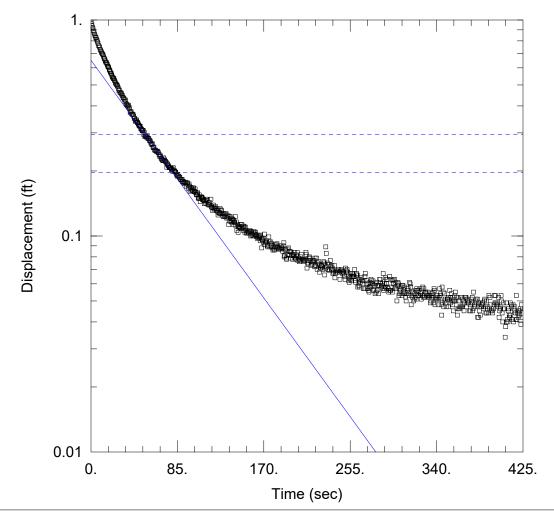
SC

Contract: 21C19040.00.15-17

Percent Finer

21C19040.00 GINT		C		
0.00	EC	2/	2/22	
GINT	Tested By	Test	ed Date	Rev
GPJ T	% Finer	89.3	96.4	100.0
EST T	Sieve Size	200	10	4

Tested By	Tested Date	Reviewed by	Calc by
EC	2/2/22	SRH	EC


GRADATION CURVE

Project: Mildands Environmental Services

Jake Huggins

SC

Contract: 21C19040.00.15-17

Data Set: M:\active\21-7709\AQTESOLV\MW2.aqt

Date: 03/04/22 Time: 09:35:30

PROJECT INFORMATION

Company: MECI
Client: SCDHEC
Project: 21-7709
Location: Florence
Test Well: MW-2
Test Date: 2/14/2022

AQUIFER DATA

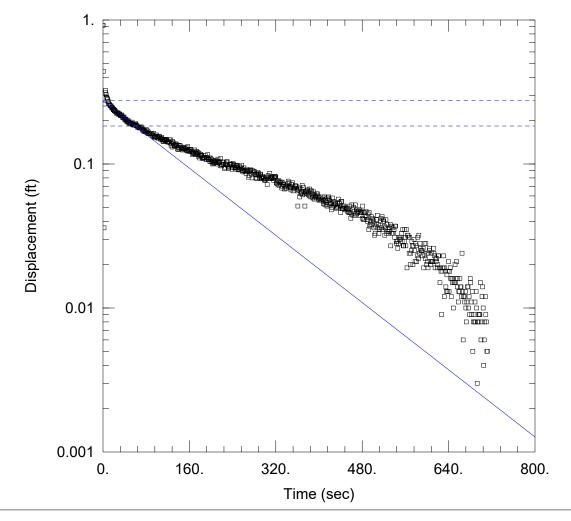
Saturated Thickness: 10.92 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2)

Initial Displacement: <u>0.981</u> ft Total Well Penetration Depth: 13. ft

Casing Radius: 0.083 ft

Static Water Column Height: 10.92 ft


Screen Length: 10. ft Well Radius: 0.33 ft

Gravel Pack Porosity: 0.28

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u>

K = 0.002207 cm/sec y0 = 0.6505 ft

Data Set: M:\active\21-7709\AQTESOLV\MW7.agt

Date: 03/04/22 Time: 09:36:39

PROJECT INFORMATION

Company: MECI
Client: SCDHEC
Project: 21-7709
Location: Florence
Test Well: MW-7
Test Date: 2/14/2022

AQUIFER DATA

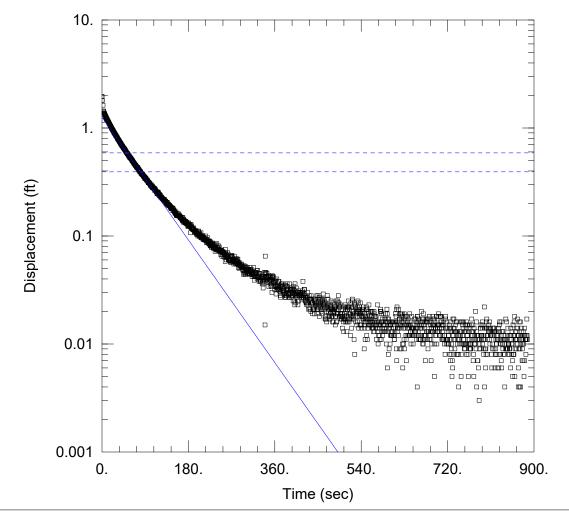
Saturated Thickness: 9.91 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-7)

Initial Displacement: <u>0.918</u> ft Total Well Penetration Depth: 13. ft

Casing Radius: 0.083 ft

Static Water Column Height: 9.91 ft


Screen Length: 10. ft Well Radius: 0.33 ft

Gravel Pack Porosity: 0.28

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u>

K = 0.001003 cm/sec y0 = 0.274 ft

Data Set: M:\active\21-7709\AQTESOLV\DW-2.aqt

Date: 03/04/22 Time: 09:38:42

PROJECT INFORMATION

Company: MECI
Client: SCDHEC
Project: 21-7709
Location: Florence
Test Well: DW-2
Test Date: 2/15/2022

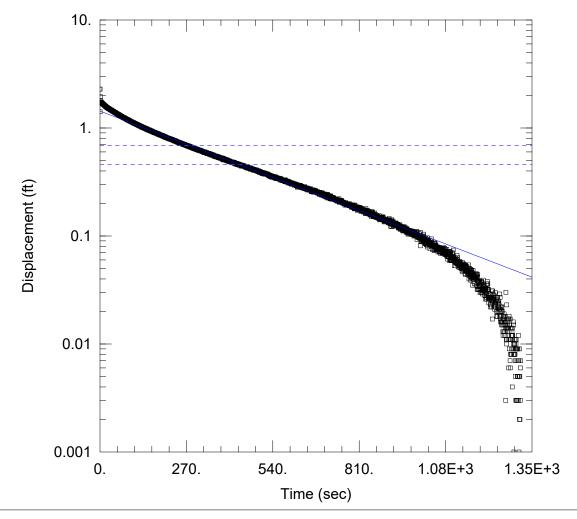
AQUIFER DATA

Saturated Thickness: 25. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DW-2)

Initial Displacement: <u>1.961</u> ft Total Well Penetration Depth: 25. ft

Casing Radius: 0.083 ft


Static Water Column Height: 22.69 ft

Screen Length: <u>5.</u> ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0008627 cm/sec y0 = 1.253 ft

Data Set: M:\active\21-7709\AQTESOLV\DW-3.aqt

Date: 03/04/22 Time: 09:39:38

PROJECT INFORMATION

Company: MECI
Client: SCDHEC
Project: 21-7709
Location: Florence
Test Well: DW-3
Test Date: 2/15/2022

AQUIFER DATA

Saturated Thickness: 25. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DW-3)

Initial Displacement: 2.29 ft

Total Well Penetration Depth: 25. ft

Casing Radius: 0.083 ft

Static Water Column Height: 22.31 ft

Screen Length: <u>5.</u> ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Bouwer-Rice

K = 0.0001558 cm/sec y0 = 1.434 ft