APPENDIX E:
WELL COMPLETION LOGS & 1903 FORMS
(Not Applicable)

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS
(Not Applicable)

APPENDIX G:
DISPOSAL MANIFEST

Re:

Treatment of Purge Water Coastal Truck Stop 76 Florence, South Carolina SCDHEC Site ID Number 03538 MECI Project Number 17-5929

To Whom It May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDHEC must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 30 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

A total of 143.0 gallons were treated on April 4, 2017, at the referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Project Biologist

APPENDIX H:
LOCAL ZONING REGULATIONS
(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:
ACCESS AGREEMENTS
(Not Applicable)

APPENDIX K:
DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?	X		
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?			X
17	Has the method of well development been detailed?			X
18	Has justification been provided for the locations of the monitoring wells?			X
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?			X
	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figure 5)	X		
	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
6 I	Does the report include a brief discussion of the aquifer evaluation and esults?			X
7 I	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A	
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			>	
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X	
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X	
31	Have recommendations for further action been provided and explained?	X			
32	Has the soil analytical data for the site been provided in tabular format? (Table 1)			X	
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		A	
34	Has the <u>current</u> and historical laboratory data been provided in tabular format? (Tables 3 & 3A)	X			
Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)				X	
36	Evaluation)			X	
37	Has the topographic map been provided with all required elements? (Figure 1)	X			
38	Has the site base map been provided with all required elements? (Figure 2)	X			
39	Have the CoC site maps been provided? (Figures 4, 4A, 4B, 4C)	X			
Has the site potentiometric map been provided? (Figure 5)		X			
41	Have the geologic cross-sections been provided? (Figure 6)			X	
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X	
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X	
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	X		<u></u>	
45	Is the laboratory performing the analyses properly certified?	X			
16	Has the tax map been included with all necessary elements? (Appendix C)			X	
17	Have the soil boring/field screening logs been provided? (Appendix E)			X	
18	Have the well completion logs and SCDHEC Form 1903 been provided? (Appendix E)			X	
.9	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)			X	
0	Have the disposal manifests been provided? (Appendix G)	X			
1	Has a copy of the local zoning regulations been provided? (Appendix H)			X	
	Has all fate and transport modeling been provided? (Appendix I)			X X	
3 1	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X X	
, I	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	X			

DAN MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501

JAN 1 0 2018

Re: SSWP Directive for GWS

Coastal 76 Truck Stop, 2513 E Palmetto St, Florence, SC

UST Permit # 03538

Release reported September 27, 1995 Monitoring Report received June 23, 2017

Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed the referenced report submitted by Midlands Environmental Consultants, Inc. The report documents petroleum chemicals in the groundwater above Risk-Based Screening Levels (RBSLs).

To determine what risk the referenced release may pose to human health and the environment, and in accordance with Section 280.65 of the South Carolina Underground Storage Tank Control Regulations, implementation of groundwater sampling is necessary. The groundwater sampling must be conducted in accordance with the most recent revision of the UST Quality Assurance Program Plan (QAPP) and in compliance with all applicable regulations. A copy of the UST QAPP is available at http://www.scdhec.gov/Environment/LW/UST/ReleaseAssessmentClean-up/OualityAssurance/.

Groundwater samples should be collected from all monitoring wells, water supply wells, and surface waters within 1,000 ft radius of the site and analyzed for BTEX + Naphth + MtBE, 1,2-DCA, 8 oxygenates, and EDB.

Your contractor must submit a Site-Specific Work Plan (SSWP) if your contractor has an approved Annual Contractor Quality Assurance Plan (ACQAP). The SSWP and Cost Proposal must be submitted within 30 days from the date of this letter. Every component may not be necessary to complete the above scope of work. The State Underground Petroleum Environmental Response Bank (SUPERB) Account allowable cost for each component is included on the Assessment Component Cost Agreement Form. Please note that approval from DHEC must be issued before work begins.

On all correspondence regarding this site, please reference UST Permit # 03538. Should you have any questions regarding this correspondence, please feel free to contact me at (803) 898-0592, fax me at (803) 898-0673, or e-mail me at patterkc@dhec.sc.gov.

Sincerely,

Kyle Patterson, Hydrogeologist Assessment & Unregulated Petroleum Section Underground Storage Tank Management Division Bureau of Land and Waste Management

cc: Midlands Environmental Consultants, Inc, PO Box 854, Lexington, SC, 29071

Technical file

Mr. Kyle Patterson, Hydrogeologist
Assessment & Unregulated Petroleum Section
Underground Storage Tank Management Division
Bureau of Land and Waste Management
South Carolina Department of Health
and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

Subject:

1 1

Site-Specific Work Plan

Coastal Truck Stop 76 Florence, South Carolina

SCDHEC Site ID Number 03538 MECI Project Number 18-6276

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Patterson,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site.

On January 22 and February 8, 2018, MECI personnel performed a site visits to the subject site to evaluate site conditions, locate monitoring wells and identify potential problems for future sampling activities.

If you have any question or comments please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Kyle V. Pudyley Project Biologist

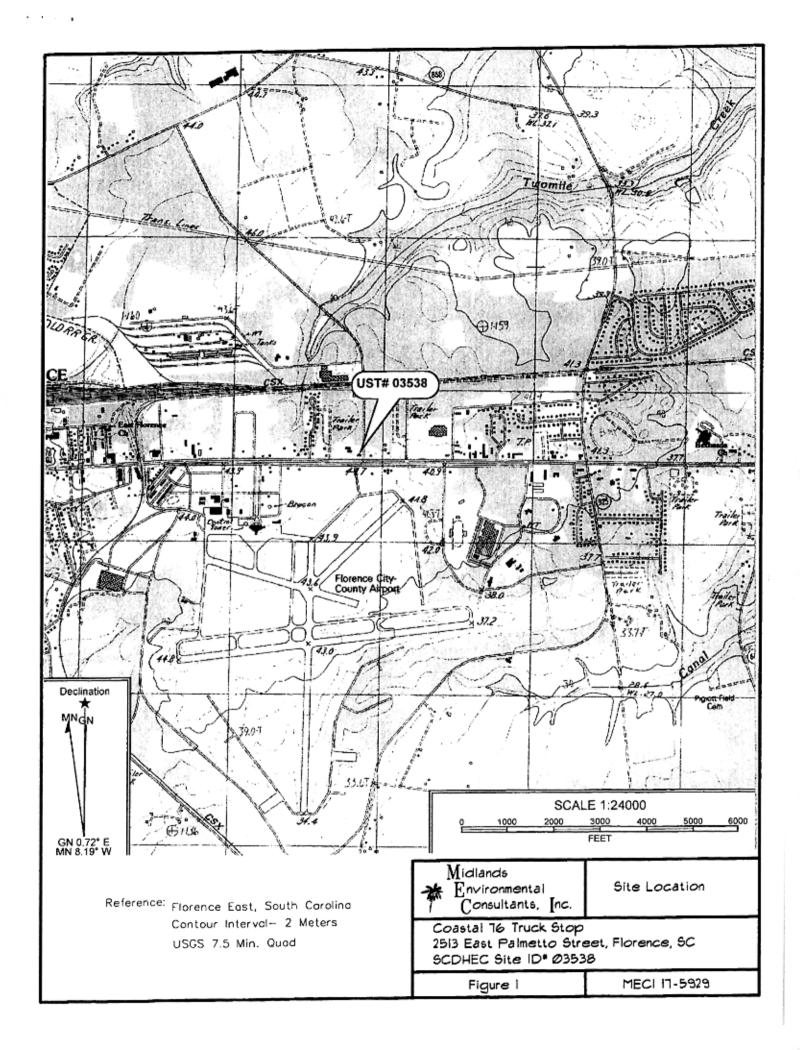
Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

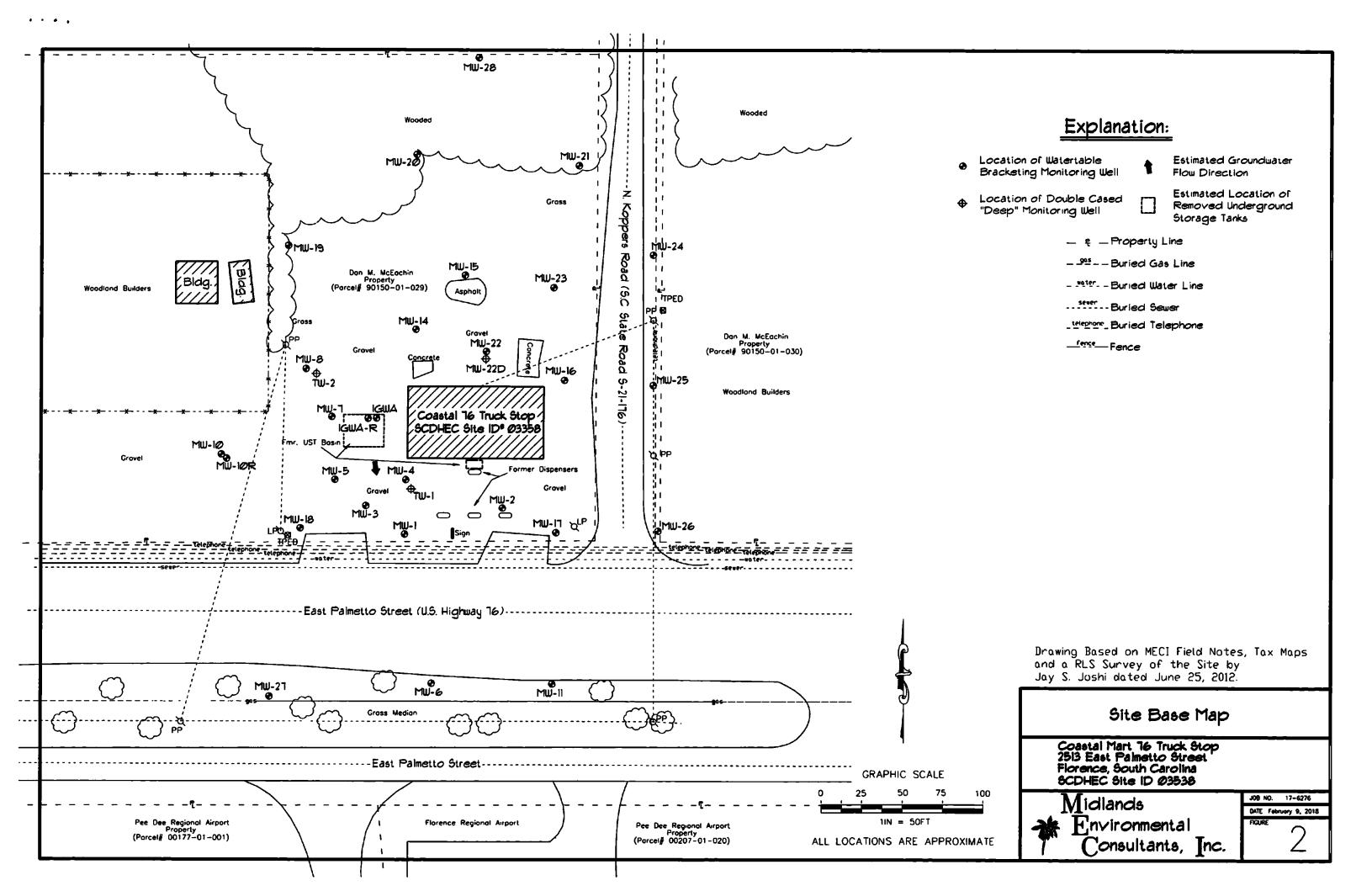
From: Jeff L. Coleman (Contractor Project Manage Contractor: Midlands Environmental Consultants, Inc. UST Contractor Certification Number: 009							
Facility Name: Coastal Truck Stop 76 UST Permit #: 03538							
Facility Address: 2513 East Palmetto Street, Florence, SC 29506	_						
Responsible Party: Dan McEachin Phone: 803-651-8835	_						
RP Address: 1007 Wentworth Drive, Florence, SC 29501	_						
Property Owner (if different): SAA	_						
Property Owner Address: SAA Common I I I I I I I I I I I I I I I I I I I	_						
Current Use of Property: Construction Site							
Scope of Work (Please check all that apply)							
☐ IGWA ☐ Tier II ☐ Groundwater Sampling ☐ GAC							
☐ Tier I ☐ Monitoring Well Installation ☐ Other							
Analyses (Please check all that apply)							
Groundwater/Surface Water:							
☑ BTEXNMDCA (8260B) ☐ Lead ☐ BOD ☐ Methane							
☑ Oxygenates (8260B) ☐ 8 RCRA Metals ☐ Nitrate ☐ Ethanol							
☑ EDB (8011) ☐ TPH ☐ Sulfate ☐ Dissolved Iron							
□ PAH (8270D) □ pH □ Other	_						
Drinking Water Supply Wells:							
BTEXNMDCA (524.2)							
Oxygenates & Ethanol (8260B) RCRA Metals (200.8) Soil:							
	_						
☐ BTEXNM ☐ Lead ☐ RCRA Metals ☐ TPH-DRO (3550B/8015B) ☐ Grain Siz ☐ PAH ☐ Oil & Grease (9071) ☐ TPH-GRO (5030B/8015B) ☐ TOC	₽						
Air.							
BTEXN							
Sample Collection /Estimate the number of samples of seal matrix that are supported to the samples of							
Sample Collection (Estimate the number of samples of each matrix that are expected to be collected.) Soil Water Supply Wells Air 2 Field Black	-1-						
Soil Water Supply Wells Air 2 Field Blain Surface Water 2 Duplicate 2 Trip Blain Soil 2 Priest Blain 2 Duplicate 2 Trip Blain 2 2 Trip Blain 2 2 Trip Blain 2							
Curios vale Tup Bian	<u> </u>						
Field Screening Methodology							
Estimate number and total completed depth for each point, and include their proposed locations on the attached map.							
# of shallow points proposed: Estimated Footage: feet per point							
# of deep points proposed: feet per point							
Field Screening Methodology:	_						
Permanent Monitoring Wells							
Estimate number and total completed depth for each well, and include their proposed locations on the attached map.							
# of shallow wells: 2 feet per point	# of shallow wells: 2 Estimated Footage: 20' feet per point						
# of deep wells: feet per point	 it						
# of recovery wells: feet per point	ıt						
Comments, if warranted:							
	_						
ICC 0853 (000046)	_						

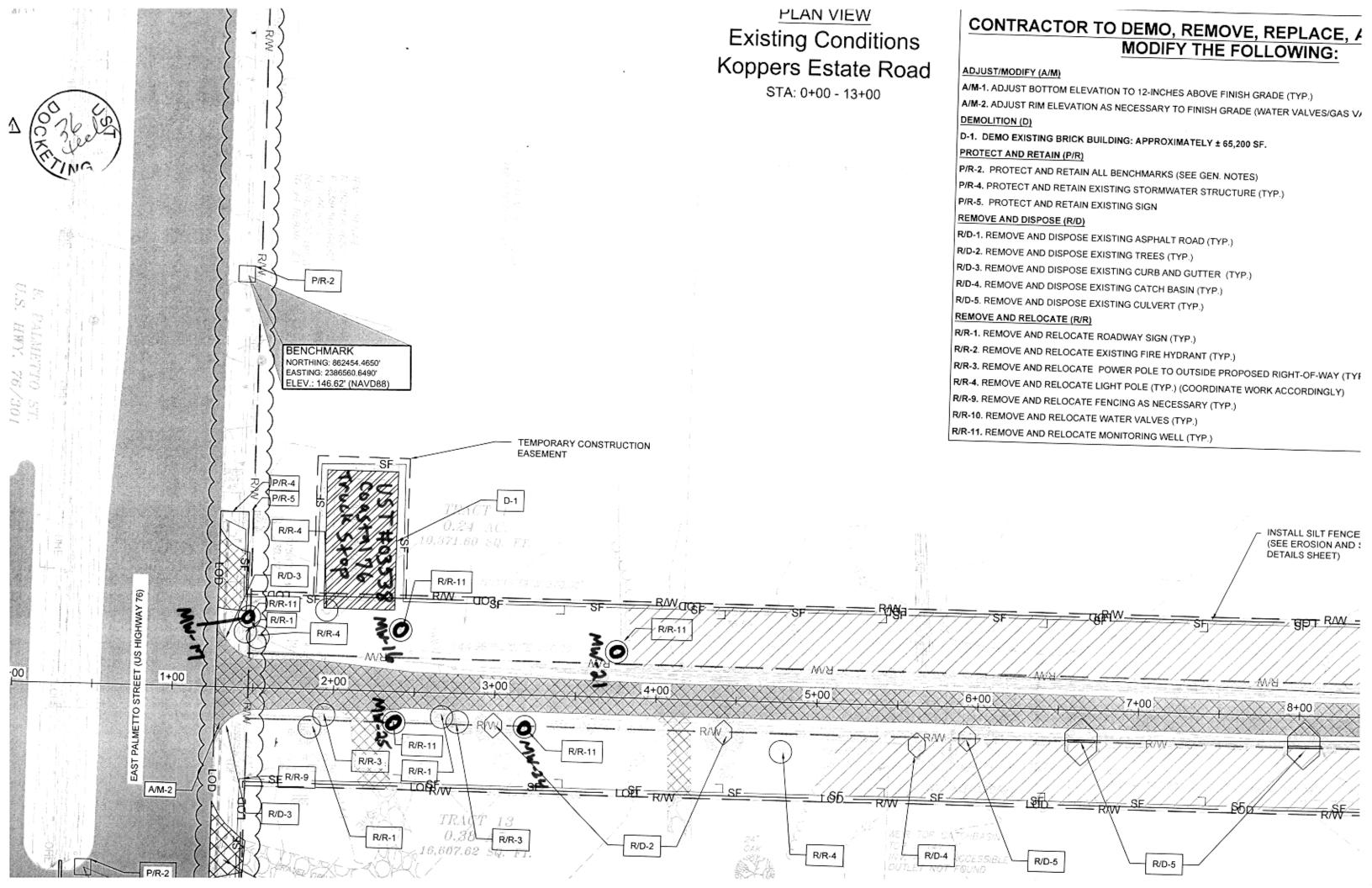
UST Permit #: 03536	Facil	lity Name: <u>0</u>	coastal Truck Stop 76		
Implementation Sched Field Work Start-Up: 22				ion: 3/9/2018	
Report Submittal: 4/9/201				to Property Owners: 2	
Aquifer Characterization Pump Test: Slug MECI proposes conducted slug	Test: ☑ (Check one	•	e explanation below for	r choice)	
Investigation Derived					
Soil: Drilling Fluids:	To	ons allons	Purge Water: 200.0 Free-Phase Product:		Gallons Gallons
event, etcDuring recent site visits, monitoring wells MW-5, MW-1: -Due to projected road widening MW-25 and MW-26, then propositions.	oring wells MW-10/MW-10/mwered a large fill pile to be 5, MW-23 and MW-25 were along Koppers Road and erly abandon these wells. Ing MW-19 and MW-20 to be	to be aband R, MW-14, MW- used for a futur e located , howe historical analy During abando above grade va	oned/repaired, well pace 16, MW-21, MW-22, MW-22D e road widening project along over were found to be heavily of tical data, MECI recommends nement activities, MECI also uits. Following replacement/re	is/boits/caps to replace, and MW-28 were unable to be k Kopper's Road.	cated. These wells 21, MW-23, MW-24 d MW-28, repeiring
Compliance With Annu	al Contractor Quali	My Assuran	ce Plan (ACOAP)		
Yes Laboratory as indic Name of Laborato SCDHEC Certifica	cated in ACQAP? (Ye ry: tion Number:	es/No)			
Yes Well Driller as indic Name of Well Drill	ler:	es/No)	If no, indicate driller in	formation below.	
SCLLR Certification	in Number	· ·			
None Other variations from	m ACQAP. Please o	describe bel	ow.		
•					
Attachments 1. Attach a copy of	the relevant portion	of the USG	S topographic map sho	wing the site location.	
must include the North Arrow Location of prope Location of buildi Previous soil san Previous monitor Proposed soil bo	following: certy lines ings spling locations ing well locations ring locations	Proposed m Legend with Streets or high Location of a Location of a	conitoring well locations facility name and addr ghways (indicate name all present and former A all potential receptors	ess, UST permit number s and numbers)	•
3. Assessment Con	nponent Cost Agreer	ment, SCDH	IEC Form D-3664		

ASSESSMENT COMPONENT COST AGREEMENT SOUTH CAROLINA

Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 16, 2016


UST Permit #: 03538	Cost A	greement #:	Proposal	-	
ITEM	QUANTITY	UNIT	UNIT PRICE		TOTAL
1. Plan Preparation	1			1	•
A1. Site-specific Work Plan	1	each	\$150.00		\$150.00
B1. Tax Map		each	\$70.00	;	\$0.00
C1. Tier II or Comp. Plan /QAPP Appendix B		each	\$250.00	Ĺ	\$0.00
2. A1. Receptor Survey *	1	each	\$551.00	·	\$551.00
3. Survey (500 ft x 500 ft)					
A1. Comprehensive Survey		each	\$1,040.00	ļ. '	\$0.00
B. Subsurface Geophysical Survey				i	
1B. < 10 meters below grade		each	\$1,300.00	-	\$0.00
2B. > 10 meters below grade		each	\$2,310.00	ŀ	\$0.00
C1. Geophysical UST or Drum Survey		each	\$910.00	Ŀ	\$0.00
4. Mob/Demob		· ————		٠.	
A1. Equipment	1 1	each	\$1,020.00	١.	\$1,020.00
B1. Personnel	4	each	\$423.00		\$1,692.00
C1. Adverse Terrain Vehicle		each	\$500.00		\$0.00
5. A1. Soil Borings (hand auger)*		foot	\$5.00		\$0.00
6. Soil Borings (requiring equipment, push tec					-
Field Screening (including water ssample, s	soil sample, soil ga s				
AA. Standard		per foot	\$15.00		\$0.00
C1. Fractured Rock		per foot	\$20.20		\$0.00
7. A1. Soil Leachability Model		each	\$60.00	•	\$0.00
8. Abandonment (per foot)*					
A1. 2º diameter or less	123	per foot	\$3.10		\$381.30
B1. Greater than 2" to 6" diameter		per foot	\$4.50		\$0.00
C1. Dug/Bored well (up to 6 feet diameter)		per foot	\$15.00		\$0.00
9. Well installation (per foot)*					
A1. Water Table (hand augered)		per foot	\$10.60		\$0.00
B1. Water Table (drill rig)	40	per foot	\$38.00	٠.	\$1,520.00
CC. Telescoping		per foot	\$50.00		\$0.00
DD. Rock Drilling		per foot	\$58.00		\$0.00
E1. 2" Rock Coring		per foot	\$30.90		\$0.00
G1. Rock Multi-sampling ports/screens		per foot	\$33.40	- 1	\$0.00
HH. Recovery Well (4" diameter)	!	per foot	\$45.00		\$0.00
II. Pushed Pre-packed screen (1.25" dia)		per foot	\$15.00		\$0.00
J1. Rotosonic (2º diameter)		per foot	\$44.00	- 1	\$0.00
K. Re-develop Existing Well	10-4h 45 141-4	per foot	\$11.00	_]	\$0.00
10. Groundwater Sample Collection / Gauge D				A.	* * * * * * * * * * * * * * * * * * * *
A1. Groundwater Purge	2	per well/receptor	\$60.00		\$120.00
B1. Air or Vapors		per receptor	\$12.00		\$0.00
C1. Water Supply	_,	per well/receptor	\$22.00		\$0.00
D1. Groundwater No Purge or Duplicate	24	per well/receptor	\$28.00	۱٠٠	\$672.00
E1. Gauge Well only		per well	\$7.00		\$0.00
F1. Sample Below Product		per well	\$12.00	•	\$0.00
G1. Passive Diffusion Bag		each	\$26.00]	\$0.00
H1. Field Blank	2	each	\$24.60		\$49.20


Page 2


11. Laboratordoy Analyses-Groundwester A2. BTEXNMH-Choyg's+12. Dev Eth Method 82608 (All of item A.) per sample \$13.80 \$3.00 per sample \$13.80 per sample \$13.80 per sample \$3.60 \$3.00 \$	Idd Labourton Australia Grand		•	•	— —-	rayez 1
AA1. Lead, Filtered Der sample \$13.30 \$3.00 \$3.00 C2 Trimethal, Butyl, and Isopropyl Benzenes D1 PAH's \$36.40 \$30.00 \$30.00 E1. Lead D1 PAH's \$36.40 \$30.00 E1. Lead D1 PAH's \$36.20 \$30.00 E1. Lead D1 PAH's D1 PAH's D1 PAH's D1 PAH's \$36.20 \$30.00 E1. Lead D1 PAH's D1 PAH's D1 PAH's \$36.20 \$30.00 E1. Lead D1 PAH's D1 PAH's D1 PAH's \$36.20 \$30.00 E1. Lead D1 PAH's D1 PAH's D1 PAH's \$36.20 \$30.00 E1. Lead D1 PAH's E1. Lead	11. Laboratory Analyses-Groundwater A2. RTEYNM+Over's+1.2 DCA+Eth/8260R\	i an	nos comple	6422.00		62 000 00
B2 Rush EPA Method 8260B (All of item A.)		30				
C2 Trimetha, Butyl, and Isopropyl Benzenes per sample \$36.40 \$30.00 PAITS E1. Lead per sample \$40.00 \$30.00 F1. EDB by EPA Method 8011 Rush per sample \$45.20 \$1.255.60 G1. 8 RCRA Metals per sample per sample \$62.00 \$30.00 II. PH per sample \$62.00 \$30.00 II. PH per sample \$52.00 \$30.00 PP. Ethanol per sample \$51.405 \$30.00 PP. Ethanol per sample \$124.05 \$30.00 PP. Ethanol per sample \$11.75 \$30.00 PP. Ethanol per sample \$100.00 \$30.00 PP. Ethanol per sample \$100.00 \$30.00 PP. Ethanol per sample \$100.00 \$30.00 PP. Ethanol per sample \$40.00 \$30.00 PP. Ethanol per sample \$34.00 \$30.00 PP. Ethanol per sample \$30.00 \$30.00 PP. Ethanol per sample \$40.00 \$30.00 PP. Ethanol per sample \$30.00 \$30.00 PP. Ethanol per sample \$30.00 \$30.00 PP. Ethanol per sample \$30.00 \$30.00 PP. Ethanol per sample \$40.00 \$30.00 PP. Ethanol per sample \$30.00 \$30.0	The state of the s					
D1 PAITs		ŀ		•		
E1. Lead F1: EDB by EPA 8011 F1: EDB by EPA Method 8011 Rush G1: 8 RCRA Metals H1. TPH (9070) II. pH J1. BOD PP. Ethanol J1. BOD PP. Ethanol J1. BOD PP. Ethanol J1. BOD PP. Ethanol J1. Analyses-Drinking Water L. STEXMM-12 DCA (624.2) M. FOXYGENATES & ETHANOL (82608) M. EDB (504.1) O. RCRA METALS (200.8) D. RESS Soll Q1. BTEX + Naphth. R1. PAH's S1. 8 RCRA Metals D1. TPH-DRO (3550C/8015C) W1. TPH-DRO (3550C/8015C) W1. TPH-DRO (3550C/8015C) W1. TPH-DRO (3550C/8015C) W1. TPH-DRO (3550C/8015C) PP. Sample PER sample		- 1				
F1 EDB by EPA 8011 28		i i	1 '			
FF1_EDB by EPA Method 8011 Rush Der sample \$68.20 \$0.00 G1.8 RCRA Metals Der sample \$3.40 \$0.00 H1. TPH (9070) Der sample \$41.00 \$0.00 H1. TPH (9070) Der sample \$52.00 \$0.00 Der sample \$52.00 \$0.00 Der sample \$52.00 \$0.00 Der sample \$52.00 \$0.00 Der sample \$14.80 \$0.00 T1. Analyses-Drinking Water L. BTEXHM+1,2 DCA (624.2) Der sample \$14.80 \$0.00 T1. Analyses-Brinking Water L. BTEXHM+1,2 DCA (624.2) Der sample \$14.80 \$0.00 \$1.00 T1. Analyses-Stein \$1.00 \$1.00 \$1.00 T1. Analyses-Stein \$1.00 \$1.00 T1. Analyses-Far \$1.00 \$1.		20		1		
G.1. 8 RCRA Metals		20			ŀ	• •
Hit. TPH (9070)		ļ				
II. pH		İ				•
J.I. BOD			4 '			
P.P. Ethanol Per sample \$14.80 \$0.00 11. Analyses-Drinking Water L. BTEXNM+1,2 DCA (624.2) Per sample \$124.05 \$0.00 MFDR (504.1) Per sample \$19.175 \$0.00 NEDR (504.1) Per sample \$79.50 \$0.00 NEDR (504.1) Per sample \$64.00 \$0.00 NEDR (505.00.15C) Per sample \$64.04 \$0.00 NEDR (505.00.15C) Per sample \$40.00 \$0.00 NEDR (505.00.15C) Per sample \$35.98 \$0.00 NEDR (505.00.15C) Per sample \$35.98 \$0.00 NEDR (505.00.15C) Per sample \$35.98 \$0.00 NEDR (505.00.15C) Per sample \$30.80 \$0.00 NEDR (505.00.15C) Per sample \$30.00 \$0.00 NEDR (505.00.15C) PER (505.00.15C)				· · · · · · · · · · · · · · · · · · ·		
11. Analyses-Drinking Water				The state of the s	H	
L. BTEXNM-12 DCA (524.2)			per sample	\$14.80		\$0.00
M. 7-OXYGENATES & ETHANOL (82608) Per sample \$79.50 \$9.00 \$79.50 \$100.00 \$1.00		1		4404.05		***
N. EDB (504.1)			1" "			
D. RCRA METALS (200.8) per sample \$100.00 \$0.00 11. Analyses-Soll per sample \$64.00 \$0.00 R1. PAH's per sample \$64.04 \$0.00 R1. PAH's per sample \$64.00 \$0.00 R1. PAH's per sample \$56.40 \$0.00 V1. TPH- GRO (5030B/8015C) per sample \$35.96 \$0.00 V1. TPH- GRO (5030B/8015C) per sample \$30.60 \$0.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$0.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$30.00 \$30.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$30.00 \$30.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$30.00 \$30.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$30.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$30.00 V1. TPH- GRO (5030B/8015C) per sample \$30.00 \$30.00 V2. Aquifer Characterization per sample \$30.00 \$30.00 V2. Ter Language Malayana per sample \$40.00 \$40.00 V2. Ter Language Malayana per sample \$40.00			, , , , , , , , , , , , , , , , , , ,		Н	
11. Analyses-Soll						
Q1. BTEX + Naphth.	U. RCRA METALS (200.8)		per sample	\$100.00	ĮĮ	\$0.00
R1. PAH's S1. 8 RCRA Metals U1. TPH-DRO (3550C/8015C) Per sample P		1		.	1	***
S1.8 RCRA Metals		ŀ	1 ' ' 1	•	H	
U1. TPH-DRO (3550C/8015C) V1. TPH- GRO (5030R/8015C) W1. Grain size/hydrometer W1. Total Organic Carbon W1. Analyses-Air W1. BTEX * Naphthalene W1. BTEX * Naphthalene W1. Analyses-Free Phase Product W1. BTEX * Naphthalene W1. Analyses-Air W1. BTEX * Naphthalene W1. BTEX * Naphtha		ļ		• • • • •	H	
V1. TPH- GRO (5030B/8015C) per sample per sample per sample \$104,00 \$0,00 V1. Grain size/hydrometer per sample \$104,00 \$0,00 X1. Total Organic Carbon per sample \$30,60 \$0,00 11. Analyses-Air per sample \$216,00 \$0,00 Y1. BTEX + Naphthalene per sample \$357,00 \$0,00 11. Analyses-Free Phase Product per sample \$357,00 \$0,00 12. Aquifer Characterization per hour \$23,00 \$0,00 A1. Pumping Test* per hour \$191,00 \$573,00 B1. Slug Test* per test \$191,00 \$573,00 C1. Fractured Rock per test \$100,00 \$0,00 13. A1. Free Product Recovery Rate Test* each \$380,00 \$0,00 14. Fate/ Transport Modeling each \$100,00 \$0,00 A1. Mathematical Model each \$100,00 \$0,00 15. Risk Evaluation each \$300,00 \$0,00 15. Tier II Risk Evaluation each \$300,00 \$0,00 16. A1. Subsequent Survey* each \$260,00 \$0,00 17. Disposal (gallons or tons)* 200 gallon \$0.56 \$112,00 AA. Wastewater 200 gallon \$0.50 \$0,00 BB. Free Product gallon \$0.50 \$0,00 C1. Soil Treatment/Disposal ton \$0.00 \$0,00 \$0.00 D1.				-		
W1. Grain size/hydrometer						
X1. Total Organic Carbon per sample \$30.60 \$0.00 11. Analyses-Air Y1. BTEX + Naphthalene per sample \$216.00 \$0.00 12. Analyses-Free Phase Product Z1. Hydrocarbon Fuel Identification per sample \$357.00 \$0.00 12. Aquifer Characterization per hour \$23.00 \$0.00 13. Analyses-Free Phase Product per hour \$23.00 \$0.00 14. Factured Rock per test \$191.00 \$573.00 15. Analyses-Free Product Recovery Rate Test each \$38.00 \$0.00 16. Analyses-Free Product Recovery Rate Test each \$100.00 \$0.00 17. Rise Product Recovery Rate Test each \$100.00 \$0.00 18. Analyses-Free Product Recovery Rate Test each \$100.00 \$0.00 19. Rise Evaluation each \$100.00 \$0.00 19. Rise Evaluation each \$100.00 \$0.00 19. Tier II Risk Evaluation each \$100.00 \$0.00 19. Tier II Risk Evaluation each \$260.00 \$0.00 19. Tier II Risk Evaluation each \$260.00 \$0.00 19. Disposal (gallons or tons)* A. Wastewater 200 gallon \$0.56 \$112.00 19. BB. Free Product gallon \$0.56 \$0.00 19. Dilling fluids gallon \$0.42 \$0.00 19. Dilling fluids gallon \$0.42 \$0.00 19. Dilling fluids \$0.00 \$0.00 19. Miscellaneous (attach receipts) each \$0.00 \$0.00 19. GWA (Use DHEC 3665 form) standard \$0.00		l		· ·	F	
11. Analyses-Air	•			•		
Y1. BTEX + Naphthalene per sample \$216.00 \$0.00 11. Analyses-Free Phase Product 21. Hydrocarbon Fuel Identification per sample \$357.00 \$0.00 12. Aquifer Characterization per hour \$23.00 \$0.00 A1. Pumping Test* per hour \$23.00 \$573.00 C1. Fractured Rock per test \$191.00 \$573.00 C1. Fractured Rock per test \$100.00 \$0.00 13. A1. Free Product Recovery Rate Test* each \$38.00 \$0.00 14. Fater Transport Modeling each \$100.00 \$0.00 15. Computer Model each \$100.00 \$0.00 15. Risk Evaluation each \$300.00 \$0.00 15. Risk Evaluation each \$300.00 \$0.00 16. A1. Subsequent Survey* each \$100.00 \$0.00 17. Disposal (gallons or tons)* 200 gallon \$0.56 \$112.00 AA. Wastewater 200 gallon \$0.56 \$112.00 BB. Free Product gallon \$0.00			per sample	\$30.60		\$0.00
11. Analyses-Free Phase Product	•		<u> </u>			
Z1. Hydrocarbon Fuel Identification			per sample	\$216.00	_	\$0.00
12. Aquifer Characterization		i		***	1	
A1. Pumping Test* B1. Slug Test* C1. Fractured Rock C1. Fractured Rock C3. per test \$191.00 per test \$100.00 \$0.00 13. A1. Free Product Recovery Rate Test* each \$38.00 C4. Fate/Transport Modeling A1. Mathematical Model B1. Computer Model B1. Computer Model B1. Computer Model B1. Tier I Risk Evaluation A. Tier I Risk Evaluation B1. Tier II Risk Evaluation B1. Tier II Risk Evaluation B2. Tier II Risk Evaluation B3. Subsequent Survey* B3. Free Product B3. Free Product C1. Soil Treatment/Disposal D1. Drilling fluids B3. Miscellaneous (attach receipts) each S0.00 S0.			per sample	\$357.00		\$0.00
B1. Slug Test* 3 per test \$191.00 \$573.00	•	1			$ \cdot $	
C1. Fractured Rock				*		•
13. A1. Free Product Recovery Rate Test*		3				•
14. Fate/Transport Modeling	C1. Fractured Rock				_	
A1. Mathematical Model each \$100.00 \$0.00 B1. Computer Model each \$100.00 \$0.00 15. Risk Evaluation A. Tier I Risk Evaluation each \$100.00 \$0.00 B1. Tier II Risk Evaluation each \$100.00 \$0.00 16. A1. Subsequent Survey* each \$260.00 \$0.00 17. Disposal (gallons or tons)* AA. Wastewater 200 gallon \$0.56 \$112.00 BB. Free Product gallon \$0.50 \$0.00 C1. Soil Treatment/Disposal ton \$60.00 \$0.00 D1. Drilling fluids gallon \$0.42 \$0.00 18. Miscellaneous (attach receipts) each \$0.00 \$0.00 each \$0.00 \$0.00 20. Tier I Assessment (Use DHEC 3665 form) standard \$0.00 21. IGWA (Use DHEC 3666 form) standard \$0.00	13. Al. Free Product Recovery Rate Test		each	\$38.00		\$0.00
B1. Computer Model					-	
15. Risk Evaluation		ľ			- 1	
A. Tier I Risk Evaluation B1. Tier II Risk Evaluation each \$100.00 \$0.00 16. A1. Subsequent Survey* each \$260.00 17. Disposal (gallons or tons)* AA. Wastewater \$200 gallon \$0.56 BB. Free Product \$200 gallon \$0.50 C1. Soil Treatment/Disposal ton \$60.00 D1. Drilling fluids \$200 gallon \$0.42 18. Miscellaneous (attach receipts) each \$0.00 each \$0.00 each \$0.00 20. Tier I Assessment (Use DHEC 3665 form) standard \$0.00			each	\$100.00	\perp	\$0.00
B1. Tier II Risk Evaluation			.	****		
16. A1. Subsequent Survey* each \$260.00 \$0.00 17. Disposal (gallons or tons)*			* * * * * * * * * * * * * * * * * * * *	•	İ	,
17. Disposal (gallons or tons)* AA. Wastewater BB. Free Product C1. Soil Treatment/Disposal D1. Drilling fluids 18. Miscellaneous (attach receipts) each each each \$0.00 \$0.00						
AA. Wastewater BB. Free Product C1. Soil Treatment/Disposal D1. Drilling fluids 18. Miscellaneous (attach receipts) each each each s0.00 \$0.00		<u> </u>	each	\$260.00	[\$0.00
BB. Free Product C1. Soil Treatment/Disposal D1. Drilling fluids 18. Miscellaneous (attach receipts) each each each s0.00 each each \$0.00 \$0.00			J		-1	
C1. Soil Treatment/Disposal ton \$60.00 \$0.00 D1. Drilling fluids gallon \$0.42 \$0.00		200		,		
D1. Drilling fluids 18. Miscellaneous (attach receipts) each \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 each \$0.00 \$0.00 20. Tier I Assessment (Use DHEC 3665 form) 21. IGWA (Use DHEC 3666 form) standard \$0.00			1 •		-	•
18. Miscellaneous (attach receipts) each \$0.00 \$0.00 each \$0.00 \$0.00 each \$0.00 \$0.00 20. Tier I Assessment (Use DHEC 3665 form) standard \$0.00 21. IGWA (Use DHEC 3666 form) standard \$0.00					1	
each \$0.00			gallon	\$0.42	1	\$0.00
each \$0.00 \$0.00	10. miscellaneous (attach receipts)			Ţ	T	
each \$0.00 \$0.00		1			1	•
20. Tier i Assessment (Use DHEC 3665 form) standard \$0.00 21. IGWA (Use DHEC 3666 form) standard \$0.00						
21. IGWA (Use DHEC 3666 form) standard \$0.00	00 9			\$0.00		
OO Compating A.C., Also Shipp Code (floor	
22. Corrective Action (Use DHEC 3667 form) PFP Bid \$0.00	(11111111111111111111111111111111111111					\$0.00
	22. Corrective Action (Use DHEC 3667 form)		PFP Bid		Ţ	\$0.00

23. Aggressive Fluid & Vapor Recovery (AFVR)		T .		1	
A1. 8-hour Event*	1	each	\$1,375.00	ŀ	\$0.00
AA. 24-hour Event*		each	\$3,825.00	1.	\$0.00
A3. 48-hour Event*		each	\$6,265.00	Ι΄	\$0.00
A4. 96-hour Event*		each	\$12,567.50	ŀ	\$0.00
C1. Off-gas Treatment 8 hour		per event	\$122.50	٠.	\$0.00
C2. Off-gas Treatment 24 hour		per event	\$241.50		\$0.00
C3. Off-gas Treatment 48 hour		per event	\$327.00	ŀ.	\$0.00
C4. Off-gas Treatment 96 hour		per event	\$780.00	ŀ	\$0.00
D. Site Reconnaissance		each	\$203.25	-	\$0.00
E1. Additional Hook-ups		each	\$25.75	[\$0.00
F1. Effluent Disposal	İ	gallon	\$0.44	1:	\$0.00
G. AFVR Mobilization/Demobilization		each	\$391.50	ļ ·	\$0.00
24. Granulated Activated Carbon (GAC) filter system i	nstallation	& service:		1	
A1. New GAC System Installation*	1	each	\$1,900.00	F	\$0.00
BB. Refurbished GAC Sys. Install*		each	\$900.00		\$0.00
C1. Filter replacement/removal*		each	\$350.00	٠, ٠	\$0.00
DD. GAC System removal, cleaning, & refurbishment*		each	\$275.00	۔ ا	\$0.00
E1. GAC System housing*		each	\$250.00		\$0.00
F. In-line particulate filter		each	\$150.00	ŀ	\$0.00
G1. Additional piping & fittings		foot	\$1.50		\$0.00
25. Well Repair				Ī	
A1. Additional Copies of the Report Delivered		each	\$50.00		\$0.00
B1. Repair 2x2 MW pad*		each	\$50.00	ļ	\$0.00
C1. Repair 4x4 MW pad*		each	\$88.00	ŀ	\$0.00
D1. Repair well vault*		each	\$118.00	ŀ	\$0.00
F1. Replace well cover bolts		each	\$2.60	:	\$0.00
G. Replace locking well cap & lock		each	\$15.00	٠÷.	\$0.00
H1. Replace/Repair stick-up*		each	\$ 134.00		\$0.00
II. Convert Flush-mount to Stick-up*	2	each	\$150.00		\$300.00
J1. Convert Stick-up to Flush-mount*		each	\$130.00		\$0.00
K1. Replace missing/illegible well ID plate		each	\$12.00		\$0.00
Report Prep & Project Management	12%	percent	\$12,066.10		\$1,447.93
TOTAL				٠,٠	\$13,514.03

*The appropriate mobilization cost can be added to complete these tasks, as necessary

DAN MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501

MAR 0 9 2018

Re: Monitoring Well Installation and Directive

Coastal 76 Truck Stop, 2513 E Palmetto St, Florence, SC UST Permit # 03538; CA #56063; MWA-26903 Release reported September 27, 1995 Site-Specific Work Plan and cost proposal received February 13, 2018

Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed and approved the referenced Site-Specific Work Plan (SSWP) submitted by Midlands Environmental Consultants, Inc. All work should be conducted in accordance with the most recent revision of the UST Quality Assurance Program Plan (QAPP), Midlands Environmental's approved SSWP and Annual Contractor Quality Assurance Plan (ACQAP), and in compliance with all applicable regulations. A copy of the current revision of the UST QAPP is available at http://www.scdhec.gov/Environment/LW/UST/ReleaseAssessmentClean-up/QualityAssurance/

The assessment should begin immediately upon receipt of this letter. A monitoring well approval has been enclosed for the monitoring well installation. Cost agreement #56063 has been approved for the amount shown on the enclosed cost agreement form. Please note the following changes to the cost agreement and SSWP:

 Item 25 B1 and D1 – Two Well Pad and Vault repairs have been added to the cost agreement for MW-5 and MW-15.

The Contractor must provide the UST Project Manager with a Project Status Report on a weekly basis via e-mail or notify the UST Project Manager via email 4 days prior to initiation of any site rehabilitation activities. If there are any changes or conflicts with the date(s) of site activities, the UST Project Manager must be contacted within 24 hours of those changes.

The Assessment report, contractor checklist (QAPP Appendix K), and invoice should be submitted to the Division within ninety(90) days of the date of this correspondence. The report submitted at the completion of these activities should include the required information outlined in the UST QAPP.

Midlands Environmental Consultants, Inc., can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. By law, the SUPERB Account cannot compensate any costs that are not pre-approved. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

Please note that Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that no costs will be allowed unless prior approval from the Division is obtained. If for any reason additional tasks will be completed, these additional tasks and the associated cost must be pre-approved by the Division for the cost to be paid. The Division reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, the Division reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work.

Please note that in accordance with R.61-92, Subpart H, Section 280.114, you are required to notify the Division by certified mail within ten (10) days of commencing a voluntary or involuntary proceeding in bankruptcy. State law also requires that an owner/operator or guarantor that files for bankruptcy protection must immediately submit appropriate forms documenting that entity's ability to demonstrate financial responsibility.

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by an DHEC-certified site rehabilitation contractor as required by R.61-98.

The Division grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All investigation-derived waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety (90) days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern (CoC) concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the project manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

On all correspondence regarding this site, please reference UST Permit # 03538. Should you have any questions regarding this correspondence, please feel free to contact me at (803) 898-0592, fax me at (803) 898-0673, or e-mail me at patterkc@dhec.sc.gov.

Sincerely,

Kyle Patterson, Hydrogeologist

Assessment & Unregulated Petroleum Section Underground Storage Tank Management Division

Bureau of Land and Waste Management

enc: Approved Cost Agreement (ACA)

Monitoring Well Approval (MWA)

cc: Midlands Environmental Consultants, Inc, PO Box 854, Lexington, SC, 29071 (w/enc.)

Technical file (with enc.)

Monitoring Well Approval

Approval is hereby granted to: Midlands Environmental

(on behalf of): Dan McEachin

Facility: Coastal 75 Truck Stop, 2513 E Palmetto St., Florence, SC

UST Permit Number: 03538 **County:** Florence

This approval is for the installation of two shallow monitoring wells. The monitoring wells are to be installed in the approved locations. Monitoring wells are to be installed following the South Carolina Well Standards, R.61-71, and the applicable guidance documents.

Please note that R.61-71 requires the following:

- 1. All wells shall be drilled, constructed, and abandoned by a South Carolina certified well driller per R.61-71.D.1.
- 2. All monitoring wells shall be labeled as required by R.61-71.H.2.c.
- 3. A Water Well Record Form or other form provided or approved by the Division shall be completed and submitted to the Division within 30 days after well completion or abandonment unless another schedule has been approved by the Division. The form should contain the "as-built" construction details and all other information required by R.61-71.H.1.f
- 4. All analytical data and water levels obtained from each monitoring well shall be submitted to the Division within 30 days of receipt of laboratory results unless another schedule has been approved by the Division as required by R.61-71.H.1.d.
- 5. If any of the information provided to the Division changes, notification to Kyle Patterson the project manager (tel: (803) 898-0592 or e-mail: patterkc@scdhec.sc.gov) shall be provided a minimum of twenty-four (24) hours prior to well construction as required by R.61-71.H.1.a.
- 6. All temporary monitoring wells shall be abandoned within 5 days of borehole completion using appropriate methods as required by R.61-71.H.4.c. All other wells shall be properly developed per R.61-71.H.2.d.
- 7. Division approval is required prior to abandonment of all monitoring wells as required by R.61-71.H.1.a.

This approval is pursuant to the provisions of Section 44-55-40 of the 1976 South Carolina Code of Laws and R.61-71 of the South Carolina Well Standards and Regulations, dated May 27, 2016. A copy of this approval should be on the site during well installation.

Date of Issuance: March 1, 2017 Approval #: UMW-26903

Kyle Patterson, Hydrogeologist Assessment & Unregulated Petro

Assessment & Unregulated Petroleum Section Underground Storage Tank Management Division

Bureau of Land and Waste Management

www.scdhec.gov

Approved Cost Agreement

56063

Facility: 03538 COASTAL 76 TRUCK STOP

PATTERKC PO Number:

Task / Description Categories	Item Description	Qty / Pct	<u>Unit Price</u>	Amount
01 PLAN				•
	A1 SITE SPECIFIC WORK PLAN	1.0000	\$150.000	150.00
04 MOB/DEMOB				
	A1 EQUIPMENT	1.0000	\$1,020.000	1,020.00
	B1 PERSONNEL	4.0000	\$423.000	1,692.00
08 ABANDONMENT				
	A1 ABANDONMENT 2" DIA OR LESS	123.0000	\$3.100	381.30
09 WELL INSTALLATION				
	B1 WATER TABLE (DRILL RIG)	40.0000	\$38.000	1,520.00
10 SAMPLE COLLECTION				•
	A1 GROUNDWATER (PURGE)	2.0000	\$60.000	120.00
	D1 GROUNDWATER NO PURGE/DUPLICATE	24.0000	\$28.000	672.00
	H1 FIELD BLANK	2.0000	\$24.600	49.20
11 ANALYSES		- - -		
GW GROUNDWATER	A2 BTEXNM+OXYGS+1,2-DCA+ETH-8260B	30.0000	\$122.000	3,660.00
	F1 EDB BY 8011	28.0000	\$45,200	1.265.60
12 AQUIFER CHARACTERIZATION				
	B1 SLUG TEST	3.0000	\$191.000	573.00
17 DISPOSAL				** .
	AA WASTEWATER	200.0000	\$0.560	112.00
19 RPT/PROJECT MNGT & COORDINATIO				
	PRT REPORT PREPARATION	0.1200	\$11,811.100	1,417.33
25 WELL REPAIR				
	B1 REPAIR 2X2 MONITORING WELL PAD	2.0000	\$50.000	100.00
	D1 REPLACEWELL VAULT	2.0000	\$118.000	236.00
	J1 CONVERT STICKUP TO FLUSH-MOUNT	2.0000	\$130.000	260.00

Total Amount 13,228.43

Document Receipt Information

Hard Copy	СР СР	Email Email	
Date Received	· (01717	OIG	
Permit Number	0353	2018 B	_
Project Manager	kyle Pat	terson	
Name of Contractor	ME	CI	
UST Certification Numb	per Add Ition	al Assessme	— nt kennyt
Docket Number	58 Te	ch	— m 14.bor 1
Scanned			

ADDITIONAL ASSESSMENT REPORT

Coastal 76 Truck Stop 2513 E. Palmetto Street Florence, South Carolina SCDHEC SITE ID 03538 CA # 56063

Prepared By:

Midlands
Environmental
Consultants, Inc.

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

April 30, 2018

MECI Project No. 18-6276

April 30, 2018

Mr. Kyle Patterson, Hydrogeologist
Assessment Section
Underground Storage Tank Management Division
Bureau of Land and Waste Management
South Carolina Department of Health
and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

Subject:

Additional Assessment Report

Coastal 76 Truck Stop 2513 E. Palmetto Street Florence, South Carolina

SCDHEC Site ID# 03538, CA # 56063

MECI Project Number 18-6276

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Patterson,

On behalf of Mr. Dan McEachin, Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Additional Assessment Report for the referenced site. This report describes assessment activities conducted at the site and results of those activities in general accordance with South Carolina Department of Health and Environmental Control (SCDHEC) guidelines, including adherence to the UST Division Programmatic Quality Assurance Program Plan (QAPP).

Midlands Environmental appreciates the opportunity to offer our professional environmental services to you on this project. Please feel free to contact us at 803-808-2043 if you have any immediate questions or comments.

Sincerely,

Midlands Environmental Consultants, Inc.

Senior Scientist

Bryan T. Shane, P.G. Principal Geologist

TABLE OF CONTENTS

1.0 INTRODUCTION	
1.1 PROJECT INFORMATION	
2.0 SURROUNDING PROPERTY USAGE	
3.0 AREA GEOLOGY AND HYDROGEOLOGY	
3.1 LOCAL SUBSURFACE CONDITIONS	3
4.0 FIELD EXPLORATION	
4.1 WELL INSTALLATION	2
4.2 MONITORING WELL ABANDONMENT	4
4.3 MONITORING WELL REPAIR	5
4.4 SITE SURVEY	5
4.5 SAMPLING AND CHEMICAL ANALYSES	5
4.6 INFLOW PERMEABILITY TESTS	
5.0 TEST RESULTS AND EVALUATION	8
5.1 GROUNDWATER ANALYTICAL RESULTS	8
5.2 AQUIFER EVALUATION	9
5.2.1 Hydraulic Conductivity	9
5.2.2 Horizontal Hydraulic Gradient	9
5.2.3 Effective Porosity	9
5.2.4 Groundwater Flow Velocity	
6.0 ASSESSMENT SUMMARY & RECOMMENDATIONS	10
7.0 QUALIFICATIONS OF REPORT	11

TABLE OF CONTENTS (cont.)

TABLES:

**Table 1 - SOIL COC CONCENTRATION DATA

Table 2 – POTENTIOMETRIC DATA

Table 3 – GROUNDWATER COC CONCENTRATION DATA

Table 4 – AQUIFER CHARACTERISTICS **Table 5 – SITE CONCEPTUAL MODEL

FIGURES:

Figure 1 – TOPOGRAPHIC MAP

Figure 2 - SITE BASE MAP

**Figure 3 – SOIL COC SITE MAP

Figure 4 – GROUNDWATER COC SITE MAP (BENZENE ISOPLETH)

Figure 4A - GROUNDWATER COC SITE MAP (NAPHTHALENE ISOPLETH)

Figure 4B – GROUNDWATER COC SITE MAP (EDB ISOPLETH)
Figure 4C – GROUNDWATER COC SITE MAP (OXYGENATES)

Figure 5 – POTENTIOMETRIC DATA SITE MAP (GROUNDWATER CONTOUR)

**Figure 6A – GEOLOGIC CROSS SECTION A-A'
**Figure 6B – GEOLOGIC CROSS SECTION B-B'

**APPENDIX A - SITE SURVEY

APPENDIX B - SAMPLING LOGS, LABORATORY DATA SHEETS AND CHAIN OF CUSTODY FORMS

**APPENDIX C – TAX MAP DATA

**APPENDIX D - SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS

APPENDIX E - WELL LOGS & 1903 FORMS

APPENDIX F - AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G - DISPOSAL MANIFESTS

**APPENDIX H – LOCAL ZONING REGULATIONS

**APPENDIX I - FATE & TRANSPORT MODELING

**APPENDIX J - ACCESS AGREEMENTS

APPENDIX K - DATA VERIFICATION CHECKLIST

NOTE: ITEMS LISTED WITH AN ** BESIDE IT WERE NOT NEEDED AS A PART OF THIS SCOPE OF WORK

1.0 INTRODUCTION

A. Owner/Operator Information Facility Name: Coastal 76 Truck Stop UST Permit #: 03538 Facility Address: 2513 E. Palmetto Street Name: Dan McEachin Address: 1007 Wentworth Drive Telephone #: Contact: Dan McEachin (803) 651-8835 **Property Owner Information** Name Elizabeth E. McEachin Tax Map #: Florence Co. Tax Map #: 90089-01-006 Address 1007 Wentworth Drive Telephone # Contact: Dan McEachin (803) 651-8835 C. Contractor Information Name: Midlands Environmental Consultants, Inc. Certification #: Address: P. O. Box 854, Lexington, SC 29071 Telephone #: (803) 808-2043 D. SCDHEC Certified Well Driller Name: Environmental Drilling & Probing Services, LLC. Driller: Jacob Kiker Certification #: B 2200 Address: 17538 Greenhill Road, Charlotte, NC 28278 Telephone #: (704) 607-7529 E. SCDHEC Certified Laboratory Name: Pace Analytical Services, LLC Certification #: 99006001 Address: 9800 Kincey Ave. Suite 100, Huntersville, NC 28078 Telephone #: (704) 875-9092

1.1 PROJECT INFORMATION

The subject site (Costal 76 Truck Stop) is located at 2513 East Palmetto Street, Florence, Florence County, South Carolina. The subject site formally maintained four underground storage tanks (UST's), including 1-2,000 gallon gasoline UST, 1-3,000 gallon gasoline UST, 1-1,000 gallon gasoline UST, and 1-2,000 gallon diesel UST. These UST's were abandoned by removal from ground in August of 1995. A release of petroleum product was reported to The South Carolina Department of Health and Environmental Control in September of 1995 and confirmed this release in August of 1997. The subject site is currently rated a Class 3BA.

Prior to commencement of the field activities described in this document, a Site Specific Work Plan (SSWP) was completed by MECI personnel, submitted to SCDHEC and approved by the SCDHEC project manager.

The above project information is based on MECI field notes and SCDHEC files.

2.0 SURROUNDING PROPERTY USAGE

The subject site is located inside the city limits of Florence, Florence County, South Carolina. East Palmetto Street (U.S. Highway 76) forms the southern border of the site, beyond which is the Florence County Regional Airport. North Koppers Road (SC State Rd. S-21-176) forms the eastern border of the site, beyond which are commercial properties. Commercial properties border the site to the west. North of the site is wooded and undeveloped.

Identified potential receptors at the referenced site include one water supply well. The following table identifies water supply well and the physical address of their locations:

Water Supply Well Number	Well Owner	Florence County Tax Map Number:	Notes:	Well Status
WSW-1	Ken-Co Homes of Florence, LLC.	90150-01-031	2623 East Palmetto Street/700' Feet East	Active/Sampled

This water supply well (WSW-1) is located approximately 330 feet east of the subject site.

3.0 AREA GEOLOGY AND HYDROGEOLOGY

The project site is located in the Atlantic Coastal Plain Physiographic Province. The mean elevation of the property as depicted on the local USGS quadrangle (Florence East) appears to be approximately 45 meters above sea level. The soils in this province are generally interbedded silts, sands and clays that have been deposited during successive advances and retreats of the ocean over the past several million years. This interbedding can cause perched water and makes hydrogeological interpretation difficult.

In this geologic setting, the uppermost aquifer is the surficial aquifer of sands with lenses and layers of clays and silts. Water occupies the interstices between the formation particles and is in hydrostatic balance with the atmosphere at the water table surface.

Local precipitation is the source of freshwater recharge to the Coastal Plain formations. Groundwater recharge varies considerably over the region and is attributed to the differences in precipitation and to the variability in the infiltration rates.

Coastal Plain formations generally dip toward the Atlantic Ocean. Consequently, regional groundwater movement is to the southeast. On a regional scale, hydraulic gradients are relatively low.

Locally, in the surficial aquifer, groundwater discharges into streams, lakes or springs where the groundwater table intersects lows occupied by these water bodies. The apparent direction (based on the current hydraulic gradient) of groundwater flow from the release is to the east towards drainage features associated with Canal Branch.

3.1 LOCAL SUBSURFACE CONDITIONS

Coastal plain sediments were encountered during previous drilling activities conducted at the site. The soils encountered in our borings generally consisted of clayey fine grained sands. Test Boring Records, which depict the materials encountered in each boring, are located in Appendix E.

On March 29 and April 4, 2018, stabilized groundwater levels were measured in the monitoring wells. Depth to groundwater ranged from 9.18 to 11.84 feet below top of casing in the wells measured. The groundwater measurements are summarized in tabular form in Table 2 and on Figure 5. Groundwater levels may fluctuate several feet with seasonal and rainfall variations and with change in the water level of adjacent drainage features. Normally, the highest groundwater levels occur in late winter and spring. The lowest levels occur in late summer and fall.

The above descriptions provide a general summary of the subsurface conditions encountered. The attached Test Boring Records (Appendix E) contain detailed information recorded from the newly installed well. The Test Boring Records represent our interpretation of the field logs based on examination of the field samples. The lines designating the interfaces between various strata represent approximate boundaries, and the transition between strata may be gradational.

4.0 FIELD EXPLORATION

Field exploration conducted at the site included:

- Construction of one groundwater monitoring wells;
- abandonment of five monitoring wells;
- repair of five monitoring wells:
- subsequent survey of the site;
- comprehensive sampling of the entire monitoring well network and nearby receptor;
- chemical analyses of groundwater samples; and,
- completion of three inflow permeability test.

The monitoring well locations were selected based on SCDHEC instruction, property access, existing site conditions, and drilling accessibility.

4.1 WELL INSTALLATION

On March 29, 2018, one 2-inch diameter watertable bracketing monitoring wells was installed at the subject site to replace monitoring wells which had previously been unable to be located. This well (03538-MW10RR) was installed by Environmental Drilling & Probing Services, LLC. of Charlotte, North Carolina (S.C. Drilling Certification: Mr. Jacob Kiker #B 2200), utilizing a track-mounted drilling rig. Monitoring well 03538-MW10RR was installed using 7.5-inch outer diameter hollow-stem augers and utilizes a 10' foot screen.

The following table presents new well installation details:

Well Number	Screened Interval (ft)	Total Depth (ft)
03538-MW10RR	7.0-17.0	16.68'

Representative portions of soil samples were screened with a Photo Ionization Detector (PID) and classified by MECI personnel. Test boring records showing soil descriptions and screening result are attached in Appendix E.

Drill cuttings were containerized and transported on March 30, 2018 to Waste Management/Richland County Landfill, Elgin, SC by MECI personnel. A total of 0.38 tons was disposed of in this manner. A disposal manifest for these soils is attached at the end of this report.

On March 29, 2018, the newly installed well was developed by purging until it was determined to be functioning properly and turbidity was reduced. The well was developed utilizing a Mini-Monsoon well pump. The drummed purge water was treated by MECI personnel using a granular activated carbon drum. A total of 15.00 gallons of purge/development water was disposed of in this manner. Well development logs are presented in Appendix E and a disposal manifest for the treated development water is presented in Appendix G.

4.2 MONITORING WELL ABANDONMENT

On March 29, 2018, monitoring wells 03538-MW17, 03538-MW23, 03538-MW24, 03538-MW25 and 03538-MW26 were abandoned at the subject site due to future road widening activities which would have resulted in their destruction. The well abandonment was conducted according to South Carolina Well Standards and Regulations R.61-71.H. The well abandonment was conducted under the direction of Mr. Jacob Kiker (SC Driller's License #B2200) of Environmental Drilling and Probing Services (EDPS) of Charlotte, North Carolina. The following table presents the well identification number, surface covering, well diameter, and total well depth:

Well Number	Surface Covering	Well Diameter (inches)	Total Depth (Feet
03538-MW17	Dirt/Grass	2.0	21.00'
03538-MW23	Dirt/Grass	2.0	11.61'
03538-MW24	Dirt/Grass	2.0	18.42'
03538-MW25	Dirt/Grass	2.0	18.29'
03538-MW26	Dirt/Grass	2.0	20.00°
Total Footage of Abandoned Wells			89.32

The monitoring wells were abandoned with portland bentonite slurry utilizing tremie pipe. A total of 89.32' feet of 2"-inch monitoring wells were abandoned by the methods described above. Following abandonment, the well vault and pad were removed from the ground and the void filled. Please find the attached SCDHEC 1903 Water Well Records in Appendix E.

4.3 MONITORING WELL REPAIR

On March 30, 2018, the pad and vault of monitoring wells 03538-MW05 and 03538-MW15 were replaced and monitoring wells 03538-MW19, 03538-MW20 and 03538-MW28 were converted from flush-mount vaulted wells to above-grade vaulted wells. These monitoring well repairs were conducted under the direction of Mr. Jacob Kiker (SC Driller's License #B2200) of Environmental Drilling and Probing Services (EDPS) of Charlotte, North Carolina. During the repair, the casing of 03538-MW19, 03538-MW20 and 03538-MW28 was changed to better meet the existing grade of the well location. Based on these changes in casing elevation, 03538-MW19, 03538-MW20 and 03538-MW28 were resurveyed.

4.4 SITE SURVEY

Following the well installation and necessary repairs, a subsequent survey was conducted by MECI personnel, utilizing a fiberglass rod, level, and tape to determine the horizontal and vertical position of monitoring wells 03538-MW10RR, 03538-MW19, 03538-MW20 and 03538-MW28. A top of casing (TOC) elevation of 145.68' for 03538-MW11 and a TOC elevation of 145.79' for 03538-MW18 were used as benchmarks for surveying purposes. Elevations were based on information obtained from SCDHEC files.

The following table presents site survey results:

Well Number	Top of Casing (TOC) Elevation
03538-MW10RR	144.36'
03538-MW19	148.42'
03538-MW20	148.46'
03538-MW28	147.16°

4.5 SAMPLING AND CHEMICAL ANALYSES

On March 29, 2018 and April 4, 2018, MECI personnel collected groundwater samples from twenty-five (25) monitoring wells and one (1) water supply well at the subject site. During sampling activities, monitoring wells 03538-MW14, 03538-MW16, 03538-MW21, 03538-MW22 and 03538-MW22D were unable to be located because they have either been destroyed or covered by a large pile of fill dirt which will be used for future road construction activities. As directed by SCDHEC, only newly installed monitoring wells and wells with depth to water outside of the screened interval were to be purged prior to sample collection. During sampling activities, five (5) monitoring wells were purged prior to sample collection.

On April 13, 2018, MECI received analytical results from the April 4, 2018 water supply well sampling event. Results indicated low levels of petroleum impact to WSW-1. After consultation with SCDHEC project manager, Mr. Kyle Patterson, it was determined that confirmation sampling of WSW-1 was necessary. On April 18, 2018, MECI mobilized to the site and collected confirmation samples from WSW-1.

Prior to sampling, MECI personnel utilized an electronic water level indicator for water level measurements and an oil/water interface probe for free phase petroleum product level measurements.

Purging was completed by bailing at least five well volumes of water from the well, until pH, conductivity, dissolved oxygen and turbidity stabilized, or all water was evacuated from the well, whichever occurred first. Sampling/purging was completed utilizing a prepackaged, clear, disposable polyethylene bailer and nylon rope. A new set of nitrile gloves were worn at each monitoring well, and at all time samples were handled. Field measurements of pH, conductivity, dissolved oxygen, water temperature, and turbidity were obtained before well sampling process. MECI utilized YSI Pro20 meter for DO (mg/L) and temperature readings (°C), YSI Pro1030 meter for pH and conductivity (uS) readings and a MicroTPI turbidimeter for turbidity readings (NTU). The attached Field Data Information Sheets presents the results of the field measurements obtained. The wells were sampled in accordance with SCDHEC's most recent revision of the Quality Assurance Program Plan for the Underground Storage Tank Management Division and MECI's most recent revision of Standard Operating Procedures.

Groundwater samples obtained were sent to Pace Analytical Services, LLC of Huntersville, NC (SCDHEC Laboratory Certification #99006001) for analysis.

The following sampling matrix contains well development and requested analyses for each well:

	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260-B)	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB
Sample ID	Pu	NoI	Gaug	Low-Flow	Not Sz	Not L	BTEX, Na MT (EPA Meth	El (EPA Me	1,2 1 (EPA Meth	8 Oxyg (EPA Meth	Total (EPA Met	BTEX, Naphthalen MTBE, 1,2 DCA (EPA Method 524.	EDB (EPA Method 504.1)
									Ana	alyte Sam	pled		
IGWA		X					X	X	X	Х			
IGWA R		X					X	Х	Х	X			
MW-1		X					X	Х	Х	X			
MW-2		X					Х	Х	X	X			
MW-3		Х					X	X	X	X			
MW-4		X					X	Х	X	X			T
MW-5		X					X	Х	Х	X			
MW-6		X					Х	Х	Х	X			
MW-7		X					X	X	Х	X			
MW-8		X					X	X	Х	X			
MW-9						X							
MW-10				Ţ		Х							
MW-10R						X							
MW-10RR	X						Х	X	Х	X			
MW-11		X					Х	Х	Х	Х			
MW-14						X							
MW-15		X					Х	X	X	Х			
MW-16						Х							
MW-17	Х						X	X	X	X			
MW-18		X					X	X	Х	Х			-

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether

1,2 DCA = 1,2 Dicloroethane

 $EDB = Ethylene\ Dibromide$

Confirmation Sampling

Sample ID	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260-B)	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									Ana	lyte Sam	pled		
MW-19		X					X	X	X	X			
MW-20		X					X	X	X	Х			
MW-21						X							
MW-22						X							
MW-22D				1		X							
MW-23		X					X	X	Х	Х			
MW-24		Х					X	Х	Х	X			
MW-25		Х					X	Х	Х	Х			
MW-26		Х					X	Х	Х	X			
MW-27		X					Х	Х	х	X		-	
MW-28	X						X	Х	х	X			†
TW-1	X						X	X	X	Х			
TW-2	Х						Х	Х	X	X			
DUP-1(MW-17)		X					Х	Х	Х	Х			
DUP-1(IGWA)		X					Х	Х	х	X			
Field Blank 3/29							Х	X	x	Х			
Field Blank 4/4							X	X	X	X			
Trip Blank 3/29							X		X	X			
Trip Blank 4/4							X		х	X			
WSW-1						7				Х		X	X
WSW-1*												Х	
DUP (WSW-1)		Х			\neg					х		X	X
DUP (WSW-1)*		х			+							X	
Field Blank 4/4										Х		X	X
Field Blank 4/18					$\neg \uparrow$							X	
Trip Blank 4/4										Х		X	
Trip Blank 4/18			_	_	_	_			-			X	

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dicloroethane

EDB = Ethylene Dibromide

* = Confirmation Sampling

The results of the laboratory analyses are summarized in Table 3 and presented in Appendix B.

Purge water produced by the purging process was treated on-site utilizing a granular activated carbon unit. A total of 26.00 gallons of purge water was disposed of in this manner. A disposal manifest for the referenced purge water is presented in Appendix G.

4.6 INFLOW PERMEABILITY TESTS

Inflow permeability tests were performed on monitoring wells 03538-MW04, 03538-MW08 and 03538-TW01 on April 4, 2018 to estimate the hydraulic conductivity of the formation materials exposed to the well screen at each location. Inflow test methodology and calculations are included in Appendix F.

5.0 TEST RESULTS AND EVALUATION

The following sections discuss groundwater test results for the subject site.

5.1 GROUNDWATER ANALYTICAL RESULTS

As discussed in section 4.5, groundwater samples obtained from the monitoring well network were analyzed for dissolved phase petroleum constituents. During sampling activities, monitoring wells 03538-MW14, 03538-MW16, 03538-MW21, 03538-MW22 and 03538-MW22D were unable to be located because they have either been destroyed or covered by a large pile of fill dirt which will be used for future road construction activities. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-1. Of the twenty-five monitoring wells sampled, eight monitoring wells (IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4, MW-5 and MW-17) detected petroleum constituents above Risked Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL/SCAL (ug/l)	Wells Above RBSL
Benzene	5	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4, MW-5 & MW-17
Toluene	1,000	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4 & MW-17
Ethylbenzene	700	IGWA-R, MW-1, MW-2, MW-3, MW-5 & MW-17
Total Xylenes	10,000	MW-1 & MW-3
Naphthalene	25	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4, MW-5 & MW-17
MTBE	40	MW-2 & MW-17
1,2 DCA	5	None
EDB	0.05	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4 & MW-17
Lead	15	Not Analyzed
TAA	240	MW-2, MW-4 & MW-17
TAME	128	None
ETBA	NE	RBSL Not Established
TBA	1,400	None
TBF	NE	RBSL Not Established
DIPE	150	None
Ethanol	10,000	None
ETBE	47	None

In addition, the analytical results also detected petroleum constituents above the laboratory method detection limit or "J" values in monitoring wells MW-7, MW-10 and the original and confirmation samples collected water supply well WSW-1, however these results did not exceed the establish RBSL's. The results of the analyses for each monitoring well and specific parameters are listed on Table 3 and provided in Appendix B.

5.2 AQUIFER EVALUATION

As discussed in section 4.6, inflow permeability tests were performed in monitoring wells 03538-MW04, 03538-MW08 and 03538-TW01 on April 4, 2018 to estimate the hydraulic conductivity of the formation materials exposed to the well screen at each location. Inflow test methodology and calculations are included in Appendix F.

5.2.1 Hydraulic Conductivity

Hydraulic conductivity is defined as the ability of the aquifer material to conduct water under a hydraulic gradient. As discussed in section 4.6, three slug tests were performed on monitoring wells 03538-MW04, 03538-MW08 and 03538-TW01 to determine the *in-situ* hydraulic conductivity of the aquifer and were evaluated using the NAVFAC method for the aquifer. The average hydraulic conductivity values were determined to be 3.45×10^{-4} cm/sec in the monitoring wells which bracket the watertable and 1.79×10^{-4} cm/sec in the "deep" zone.

The test results are as follows:

Well Number	Type of Material Exposed to Screened Interval	Hydraulic Conductivity (K) (cm/sec)
03538-MW04	Fine SAND	1.81 x 10 ⁻⁴
03538-MW08	Fine SAND	5.08 x 10 ⁻⁴
03538-TW01	Fine SAND	1.79 x 10 ⁻⁴

Notes: Field tests were reduced and the hydraulic conductivities computed using

Techniques described in NAVFAC Soil Mechanics Design Manual 7.1, May, 1982,

MW-4/MW-8 Condition A

TW-1 Condition C.

5.2.2 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient is determined by dividing the difference in groundwater elevations at two locations by the horizontal distance between those locations along the direction of groundwater flow. The horizontal hydraulic gradient in the "shallow" watertable bracketing zone was determined to be approximately 1.43 x 10⁻³ feet/feet between groundwater monitoring wells 03538-MW02/03538-MW8 and it was determined to be approximately 3.37 x 10⁻³ feet/feet in the "deep" zone between groundwater monitoring wells 03538-TW01/03538-TW02.

5.2.3 Effective Porosity

Fetter (1980) defines effective porosity as "The amount of interconnected pore space through which fluids can pass, expressed as a percent of bulk volume. Part of the total porosity will be occupied by static fluid being help to the mineral surface by surface tension, so effective porosity will be less than total porosity". Effective porosity can be estimated using the results of a tracer test. Although this is potentially the most accurate method, time and monetary constraints can be prohibitive, therefore the most common technique is to use an accepted literature value for the types of materials making up the aquifer matrix.

An effective porosity value of 0.20 was estimated for the wells which were screened in an fine sandy formation. Effective porosity values were estimated based on published values of effective porosity (After Walton, 1988 and Domenico and Schwartz, 1999).

5.2.4 Groundwater Flow Velocity

In addition to hydraulic gradients (i), the rates of groundwater movement (v) are a function of hydraulic conductivity (k) and effective porosity (ne), as indicated by the equation v = ki/ne. Based on those parameters, the average lateral groundwater movement in the sands at the site can be expected to be approximately 2.55 feet per year in the "shallow zone" and 3.12 feet per year in the "deep zone". The rate of migration of the dissolved organic constituent(s), however, may be substantially slower than groundwater itself, due to retardation (Freeze and Cherry, 1979, pp. 402-408) and intrinsic aerobic biodegredation (Bucheck et. al., 1993). The hydraulic gradient and groundwater velocity calculations are provided on Table 4 and in Appendix F.

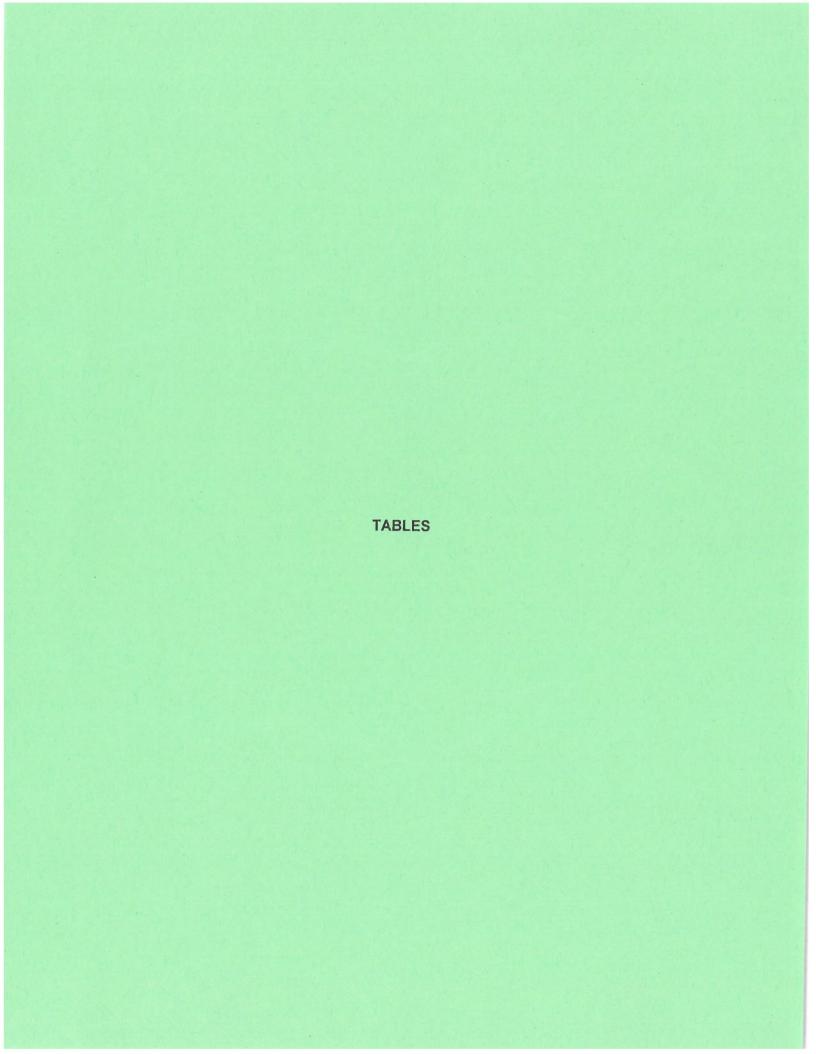
6.0 ASSESSMENT SUMMARY & RECOMMENDATIONS

Based on the results of our assessment activities, it appears that impact to the surficial aquifer has occurred due to a release of petroleum hydrocarbons. The highest concentrations of dissolved phase contaminants are located in the area south of the former UST's. Groundwater appears to be moving in a easterly direction towards drainage features associated with the Canal Branch; however this flow direction changes overtime and flow is generally redial to semi-radial.

During sampling activities, monitoring wells 03538-MW14, 03538-MW16, 03538-MW21, 03538-MW22 and 03538-MW22D were unable to be located. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-1. Of the twenty-five monitoring wells sampled, eight monitoring wells (IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4, MW-5 and MW-17) detected petroleum constituents above Risked Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL/SCAL (ug/l)	Wells Above RBSL
Benzene	5	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4, MW-5 & MW-17
Toluene	1,000	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4 & MW-17
Ethylbenzene	700	IGWA-R, MW-1, MW-2, MW-3, MW-5 & MW-17
Total Xylenes	10,000	MW-1 & MW-3
Naphthalene	25	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4, MW-5 & MW-17
MTBE	40	MW-2 & MW-17
1,2 DCA	5	None
EDB	0.05	IGWA, IGWA-R, MW-1, MW-2, MW-3, MW-4 & MW-17
Lead	15	Not Analyzed
TAA	240	MW-2, MW-4 & MW-17
TAME	128	None
ETBA	NE	RBSL Not Established
TBA	1,400	None
TBF	NE	RBSL Not Established
DIPE	150	None
Ethanol	10,000	None
ETBE	47	None

In addition, the analytical results also detected petroleum constituents above the laboratory method detection limit or "J" values in monitoring wells MW-7, MW-10 and the original and confirmation samples collected water supply well WSW-1, however these results did not exceed the establish RBSL's. The results of the analyses for each monitoring well and specific parameters are listed on Table 3 and provided in Appendix B.


Figure 4 depicts graphically the concentrations of Benzene in the monitoring wells which bracket the watertable at the site. Figure 4A depicts graphically the concentrations of Naphthalene in the monitoring wells which bracket the watertable at the subject site. Figure 4B depicts graphically the concentrations of EDB in the monitoring wells which bracket the watertable at the subject site. Figure 4C presents the 8-Oxygenates in the groundwater at the subject site.

Currently, the contaminant plume appears to be defined in relation to risk based screening levels (RBSL's); however the abandonment of several monitoring wells along the eastern cooridor of the contaminant plume may hinder monitoring the site in the future. Since the April 4, 2017 groundwater sampling event, significant increases of CoC's in monitoring wells MW-2 and MW-17 have occurred. With the exception of these increases observed in monitoring wells MW-2 and MW-17, CoC concentrations from the remainder of the monitoring wells have generally remained constant. Overall, the contaminant plume appears to be stable and migration does not appear to have taken place.

Based on the analytical results obtained from WSW-1, it may be advantageous to install a granular activated carbon (GAC) vessel on WSW-1. MECI also recommends installing several groundwater wells beyond the projected future road path along North Koppers Road (East of original positions of MW-25 and MW-26) and a series of groundwater recovery wells in the vicinity of monitoring wells which exhibit elevated CoC concentrations. Following the proposed well installation, a series of extended Aggressive Fluid Vapor Recovery (AFVR) events should be conducted at the subject site to reduce elevated dissolved CoC concentrations. Following the proposed AFVR events, additional groundwater sampling events should be conducted to continue to monitor the contaminant plume and nearby receptors until Site Specific Target Levels (SSTL's) have been achieved.

7.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in hydrogeological assessment and waste management projects of this type. Our evaluation of site conditions has been based on our understanding of the site, project information provided to us, and data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpretation of subsurface data between borings. Contents of this report are intended for the sole use of Mr. Dan McEachin, MECI and SCDHEC under mutually agreed upon terms and conditions. If other parties wish to rely on this report please contact MECI prior to their use of this information so that a mutual understanding and agreement of the terms and conditions of our services can be established.

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwa Elevatio
	9/29/1999]	NA	NA	0.21	145.19	NA
	2/20/2012		-	DRY	(*)	145.19	DRY
	6/26/2012		-	NM	-	145.19	NM
101414	12/3/2012		-	11.98	-	145.19	133.21
IGWA	12/13/2014	TD: 16.74	(12)	12.15	-	145.19	133.04
	8/31/2015		-	13.78	141	145.19	131.41
	6/1/2016		_	4.61	- 1	145.19	140.58
	4/4/2017		-	8.48	_	145.19	136.71
	4/4/2018		(-)	11.10	-	145.19	134.09
	9/29/1999		-	14.10	-	145.14	131.04
	2/20/2012		- 1	NM	_	145.14	NM
	6/26/2012		_	14.10	_	145.14	131.04
	12/3/2012		-	11.93	-	145.14	133.21
IGWA-R	12/13/2014	11-21	_	12.10	_	145.14	133.04
	8/31/2015		_	NM		145.14	NM
	6/1/2016		_	4.49		145.14	140.65
	4/4/2017		_	8.52		145.14	136.62
	4/4/2018			11.09		145.14	
	9/29/1999			13.31	 	145.14	134.05
	2/20/2012			DRY	1		132.56
	6/26/2012*		14.69		- 0.00	145.87	DRY
	12/2/2012		14.09	14.71	0.02	145.87	131.18
MW-1	12/13/2014	TD: 17.80		12.54		145.87	133.33
	8/31/2015	15. 17.00	_	12.75	53	145.87	133.12
			-	12.31	-	145.87	133.56
	6/1/2016		-	5.16	-	145.87	140.71
	4/4/2017		-	9.24	-	145.87	136.63
	4/4/2018			11.62	(10)	145.87	134.25
	9/29/1999		-	13.63	-	145.19	131.56
	2/20/2012		-	DRY	-	145.19	DRY
	6/26/2012		-	14.04	-	145.19	131.15
	12/2/2012			12.34	-	145.19	132.85
MW-2	12/13/2012	TD: 18.30	-	12.36	-	145.19	132.83
	8/31/2015		- 1	12.17	-	145.19	133.02
	6/1/2016		-	4.57	-	145.19	140.62
	4/4/2017		141	7.95	9 2 8	145.19	137.24
	4/4/2018		13-2	11.00	_	145.19	134.19
	9/29/1999		_	13.13		145.51	132.38
	2/20/2012*		17.80	18.20	0.40	145.51	127.65
	6/26/2012*		14.18	14.19	0.01	145.51	131.33
	12/2/2012		(#)	12.67	0.01	145.51	132.84
MW-3	12/13/2014	TD:18.20	_	12.39			
	8/31/2015		_	12.39	-	145.51	133.12
	6/1/2016		_		-	145.51	133.45
	4/4/2017		1700 1000	4.68	200 194	145.51	140.83
	4/4/2018		-	8.73	-	145.51	136.78
			-	11.30		145.51	134.21
	9/29/1999		47.55	12.91	-	145.56	132.65
	2/20/2012*		17.56	17.58	0.02	145.56	128.00
	6/26/2012		-	14.35	•	145.56	131.21
MANA A	12/2/2013	TD:40.05	-	12.26	-	145.56	133.30
MW-4	12/13/2012	TD:18.35	-	12.43	- 1	145.56	133.13
	8/31/2015	1	~	12.24	9	145.56	133.32
	6/1/2016			NL	=	145.56	NL
	4/4/2017		-	8.86	_	145.56	136.70
	4/4/2018	<u> </u>		11.27	_	145.56	134.29
	9/29/1999		=	12.54	-	145.11	NA
	2/20/2012		*	17.05	14	145.11	128.06
	6/26/2012		<u>=</u>	13.90	_	145.11	
	12/3/2014		_	NL NL	=		131.21
ИW-5	12/13/2014	8.29-18.29	9	NL NL	-	145.11	NL
	8/31/2015		5)		60 1 5 7000	145.11	NL
	6/1/2016		-	NL 4.35	-	145.11	NL
	,		-	4.35	-	145.11	140.76
	4/4/2017		-	8.45	-	145.11	136.66
:	4/4/2018		~	10.34	_	145.11	134.77

Well Number	Sample Date	Screened Interval	Depth to	Depth to	Product	Well-head	Groundwa
Humber	9/29/1999	interval	Product (feet)	Water (feet)	Thickness (feet)	Elevation	Elevation
	2/20/2012		-	13.04	15)	146.04	133.00
	6/26/2012		-	DRY	-	146.04	DRY
			-	14.65	-	146.04	131.39
MW-6	12/2/2013	0 20 40 20	<u>-</u>	12.67	-	146.04	133.37
10104-0	12/13/2012	8.29-18.29	5.	12.91	(-)	146.04	133.13
	8/31/2015		2	12.54	-	146.04	133.50
	6/1/2016		- 1	5.13	-	146.04	140.91
	4/4/2017		-	9.60	-	146.04	136.44
	4/4/2018		(00)	11.84	-	146.04	134.20
	9/29/1999		12	NA		144.61	NA
	2/20/2012		-	16.54	143	144.61	128.07
	6/26/2012		- 1	13.45	_	144.61	131.16
	12/3/2012		-	11,20	(2))	144.61	133.41
MW-7	12/13/2014	8.38-18.38	-	11.47		144.61	133.14
	8/31/2015			11.15		144.61	
	6/1/2016		_	3.97		144.61	133.46
	4/4/2017			NL	- 1		140.64
	4/4/2018			10.40	5	144.61	NL
	9/29/1999				-	144.61	134.21
	2/20/2012		-	11.54	-	143.78	132.24
MW-8			-	15.59	-	143.78	128.19
	6/26/2012		-	12.62	-	143.78	131.16
	12/3/2012	0.20.40.20	-	10.43	-	143.78	133.35
	12/13/2014	8.29-18.29		10.61		143.78	133.17
	8/31/2015		-	10.32	-	143.78	133.46
	6/1/2016			3.08	-	143.78	140.70
	4/4/2017		-	6.93	-	143.78	136.85
	4/4/2018		-	9,41		143.78	134.37
	9/29/1999		-	12.08	-	NA	NA
	2/20/2012		-	NŁ	_	NL	NL
	6/26/2012		-	NL		NL	NL
	12/3/2012		=	NL	32	NL	NL
MW-9	12/13/2014	8.33-18.33		NL	-	NL I	NL
	8/31/2015		_	NL NL		NL NL	NL
	6/1/2016		_	NL NL	2-16	NL NL	
	4/4/2017		8	NL NL	-		NL
	4/4/2018			NL NL		NL	NL
	9/29/1999					NL	NL_
	2/20/2012		-	NA 15.05	-	143.84	NA
	6/26/2012		-	15.65	-	143.84	128.19
	1	,	-	12.41	-	143.84	131.43
MW-10	12/3/2012	TD: 18.25	-	NL	-	143.84	NL
10100-10	12/13/2014	10. 16.25	-	NL	-	143.84	NL
	8/31/2015	Ì	-	NL	-	143.84	NL
	6/1/2016	1	-	NL	-	143.84	NL
	4/4/2017		12	NL	a l	143.84	NL
-	4/4/2018		-	NL		143.84	NL
	12/3/2014		-	10.50	-	143.81	133.31
	12/13/2014			10.62	2	143.81	133.19
MW-10R	8/31/2015	TD:11 61	100	10.29	-	143.81	133.52
*****	6/1/2016	TD:11.61	-	NL	_	143.81	NL
	4/4/2017		_	NL	_	143.81	
	4/4/2018		2	NL_	_	143.81	NL
IW-10RR	4/4/2018	7.00-17.00	-	9.91			NL 124.45
	9/29/1999					144.36	134.45
	2/20/2012		-	12.75	-	145.68	132.93
	6/26/2012		-	17.85	-	145.68	127.83
	1 1			14.39	5.	145.68	131.29
MW-11	12/3/2014	0 42 40 42	Ψ.	12.64	-	145.68	133.04
IVI V V - 1	12/13/2014	8.42-18.42	-	12.70	-	145.68	132.98
	8/31/2015		-	13.69	-	145.68	131.99
	6/1/2016	ļ	-	5.36	¥	145.68	140.32
	4/4/2017		12	9.38	-	145.68	136.30
	4/4/2018		_ [11.62	_	145.68	134.06

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwa Elevation
	9/29/1999		- !	11.87	-	144.36	132.49
	2/20/2012		*	16.35	-	144.36	128.01
	6/26/2012		-	NL	(*)	144.36	NL
NAVA (4 4	12/3/2012		-	NL	-	144.36	NL
MW-14	12/13/2014	8.29-18.29	-	11.39	-	144.36	132.97
	8/31/2015		2	13.11	-5	144.36	131.25
	6/1/2016		-	3.43		144.36	140.93
	4/4/2017		-	7.25	-	144.36	137.11
	4/4/2018			NL	-	144.36	NL
	6/26/2012		(5)	12.78	(5.)	143.54	130.76
	12/3/2014		-	10.46	-	143.54	133.08
MW-15	12/13/2014	40.00	- 1	10.62	-	143.54	132.92
IVIVV-15	8/31/2015	10-20	- 1	12.32	-	143.54	131.22
	6/1/2016		1.00	3.00	*	143.54	140.54
	4/4/2017		-	8.06	- [143.54	135.48
	4/4/2018			10.37	-	143.54	133.17
	6/26/2012		-	13.43	-	144.33	130.90
	12/3/2014		-	11.18	-	144.33	133.15
MW-16	12/13/2014	44.04	(7.)	11.42	*	144.33	132.91
101.00-10	8/31/2015	11-21	-	14.48		144.33	129.85
	6/1/2016		-	NL	-	144.33	NL
	4/4/2017		-	7.51	-	144.33	136.82
	3/29/2018		7	NLNL	-	144.33	NLNL
	6/26/2012		-	13.96	5	145.08	131.12
MW-17	12/3/2014		-	11.92	-	145.08	133.16
	12/13/2014	44.04	-	12.10	-	145.08	132.98
	8/31/2015	11-21	-	11.72	12	145.08	133.36
	6/1/2016			4.54	-	145.08	140.54
	4/4/2017	1	-	8.46	-	145.08	136.62
	3/29/2018		-	10.69		145.08	134.39
	6/26/2012		-	14.44	-	145.79	131.35
	12/3/2014		=1	12.42	1 - 1	145.79	133.37
MW-18	12/13/2014	44.24	-	12.60	-	145.79	133.19
IVI VV- I O	8/31/2015	11-21	-	12.28	-	145.79	133.51
	6/1/2016		-	4.93	-	145.79	140.86
	4/4/2017		-	9.11	-	145.79	136.68
	4/4/2018			11.45	-	145.79	134.34
	12/3/2014		(C=)	9.79	-	143.67	133.88
	12/13/2014		-	10.66	-	143.67	133.01
MW-19	8/31/2015	2.12-12.12	-	10.74	(7.0	143.67	132.93
	6/1/2016		-	3.13	-	143.67	140.54
	4/4/2017		-	6.68	-	143.67	136.99
	4/4/2018			14.85		148.42	133.57
	12/3/2014		-	10.97	7.7	143.93	132.96
	12/13/2014		-	11.17	-	143.93	132.76
MW-20	8/31/2015	4.50-14.50	-	11.80	Η.	143.93	132.13
	6/1/2016		-	NL	-]	143.93	NL
	4/4/2017			NL	~	143.93	NL
	4/4/2018		-	14.26		148.46	134.20
	12/3/2014		-	10.38	-	143.25	132.87
	12/13/2014		-	10.60	-	143.25	132.65
MW-21	8/31/2015	2.75-12.75	-	10.91	<u> </u>	143.25	132.34
	6/1/2016		ē	2.63	*	143.25	140.62
	4/4/2017	1	-	6.34	-	143.25	136.91
	3/29/2018			NL	-	143.25	NL
	12/3/2014	İ	2	9.92	1.57	145.03	135.11
ļ	12/13/2014		-	12.16	1141	145.03	132.87
ИW-22	8/31/2015	5.09-15.09	-	11.53	-	145.03	133.50
	6/1/2016		-	4.31	-	145.03	140.72
	4/4/2017		-	7.54	-	145.03	137.49
	4/4/2018		=	NL	12	145.03	NL

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwat Elevation
	12/3/2014		-	13.83	-	144.89	131.06
	12/13/2014			13.82	-	144.89	131.07
MW-22D	8/31/2015	39.23-44.23	14	13.78	-	144.89	131.11
	6/1/2016	39.23-44.23	-	6.32	-	144.89	138.57
	4/4/2017		- 1	10.26	-	144.89	134.63
	4/4/2018		-	NL	-	144.89	NL
	12/3/2014		1929	11.90	-	143.63	131.73
	12/13/2014		- !	10.77	_	143.63	132.86
MW-23	8/31/2015	1.61-11.61	-	15.00	-	143.63	128.63
10.00 25	6/1/2016	1.01-11.01	-	3.22	_	143.63	140.41
	4/4/2017		-	6.79		143.63	136.84
	3/29/2018		_	9.62	_	143.63	134.01
	12/3/2014		-	10.81		143.78	132.97
	12/13/2014		-	11.03	_	143.78	132.75
MW-24	8/31/2015	0.40.40.40	-	DRY		143.78	DRY
10100-24	6/1/2016	8.42-18.42	_	3.30		143.78	140.48
	4/4/2017		_	6.60		143.78	137.18
	3/29/2018		_	9.39		143.78	137.10
	12/3/2014		_	10.66		144.04	133.38
	12/13/2014		_	11.08		144.04	132.96
****	8/31/2015		- 100	DRY		144.04	
MW-25	6/1/2016	8.29-18.29	_	3.40	-	144.04	DRY
	4/4/2017			7.32	-		140.64
	3/29/2018			10.05	-	144.04	136.72
	12/3/2014			11.84	(18.	144.04	133.99
	12/13/2014		-	12.09	-	144.96	133.12
	8/31/2015			14.27	-	144.96	132.87
MW-26	6/1/2016	10-20	-	4.51	1970 2020	144.96	130.69
	4/4/2017		-	8.34		144.96	140.45
	3/29/2018				-	144.96	136.62
	12/3/2014			10.66 11.37		144.96	134.30
	12/13/2014		5965		•	144.77	133.40
	8/31/2015			11.50	154	144.77	133.27
MW-27	6/1/2016	11-21	5.57	14.31	~	144.77	130.46
	4/4/2017		-	3.96	-	144.77	140.81
	4/4/2018		-	8.32	-	144.77	136.45
	12/3/2014			11.27	-	144.77	133.50
	12/13/2014		-	9.97	-	142.71	132.74
	8/31/2015		-	10.10	-	142.71	132.61
MW-28		11-21	-	10.59	-	142.71	132.12
	6/1/2016 4/4/2017		11 1 .1	NL	-	142.71	NL
			-	NL		142.71	NL
	4/4/2018			13.08	-	147.16	134.08
	9/29/1999		-	12.79	-	145.77	132.98
	2/20/2012		-	17.75	2	145.77	128.02
	6/26/2012		12.1	14.65	*	145.77	131.12
TW-1	12/3/2014	24.20	-	NL	-	145.77	NL
. vv-1	12/13/2014	31-36	-	12.69	-	145.77	133.08
	8/31/2015	1	-	12.26	m.	145.77	133.51
	6/1/2016			NL	=	145.77	NL
	4/4/2017		-	9.24	-	145.77	136.53
-	4/4/2018		<u> </u>	11.53		145.77	134.24
	6/26/2012			13.95	#2	143.98	130.03
	12/3/2014		¥	10.79	-	143.98	133.19
*****	12/13/2014		-	11.93	-	143.98	132.05
TW-2	8/31/2015	31-36	-	11.63	-	143.98	132.35
	6/1/2016	ľ	-	3.35	-	143.98	140.63
	4/4/2017		2	7.21	-	143.98	136.77
	4/4/2018	1		10.05			•

Notes:

Well Head elevations obtained from SCDHEC Files.
 Groundwater depths were measured from the top of the PVC riser pipe.
 Groundwater elavtions corrected for the presence of free product using a specific gravity of 0.85.

^{4.} NL = Not Located
5. NA = Information not available
6. DRY = Well Gauged DRY
7. Monitoring wells MW-17, MW-24 , MW-25, and MW-26 were abandoned on 3/29/18.

TABLE 3
GROUNDWATER COC CONCENTRATION DATA
COASTAL 76 TRUCK STOP
FLORENCE, SOUTH CAROLINA
MECI PROJECT NUMBER 18-6276
SCDHEC ID NUMBER 03538

	1		1	1	· · · · · · · · · · · · · · · · · · ·													UNIBER 03538
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
Well Number	Sample Date	(μ g/l)	(μ g/l)	(μg/l)	(μ g/l)	(μ g/l)	(μ g/l)	(μ g/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μ g/l)	(μg/l)	(μg/l)	(μg/l)
		RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL
		5	1,000	700	10,000	25	40	5	0.05	0.015	240	128	NE	1,400	NE	150	10,000	47
	09/29/99	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
	02/20/12	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	06/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
IGWA	12/03/14 12/13/14	1,300 NS	6,000	630	11,000	310.0	<40	<15	2.0	65	790J	<20	<100	<670	<100	<40	<3300	<20
IOWA	08/31/15	1,730	NS 7,710	NS 933	NS 44.500	NS 566	NS 1100	NS 1100	NS	NS	NS 2740	NS	NS 10,000	NS -0.000	NS -1.000	NS 1100	NS	NS 1000
	06/01/16	976	6,630	646	11,500 8,210	197J	<100 <200	<100 <200	0.26 0.28	NT NT	2,740 <4,000	<200 <400	<2,000 <4,000	<2,000 <4,000	<1,000 <2,000	<100 <200	<4,000 <8,000	<200 <400
	04/04/17	533	4,630	895	9,090	358	<125	<125	0.28	NT	<2,500	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/04/18	532	2,990	306	8,440	337	<200	<200	0.84	NT	<4.000	<400	<4.000	<4.000	<2.000	<200	<8,000	<400
<u> </u>	06/26/12	130	790	180	980	160	<25	<25	0.71	9.0J	NT	NT	NT	NT	NT	NT NT	NT	NT
	12/03/14	2,000	9,400	1,800	7,000	530	<40	<15	3.2	51	<2,500	<20	<2,500	<670	<100	<40	<3,300	<250
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
IGWA-R	08/31/15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NL	NL	NL	NL	NL	NL	NL	NL
	06/01/16	405	3,450	1,590	5,790	426	<125	<125	0.39	NT	<2,500	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/04/17	906	6,540	2,260	8,480	623	<250	<250	0.93	NT	<5,000	<500	<5,000	<5,000	<2,500	<250	<10,000	<500
	04/04/18	932	6,290	2,300	8,170	590	<250	<250	0.74	NT	<5,000	<500	<5,000	<5,000	<2,500	<250	<10,000	<500
	09/29/99 02/20/12	19,900 DRY	26,000	2,040	12,080	592	7,400	NT	111	609	NT	NT	NT	NT	NT	NT	NT	NT
	06/26/12	PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD
	12/03/14	17,000	27,000	1,500	15,000	820	250J	<74	210	630	8,800J	<100	<500	<3,400	<500	<200	<17,000	<100
MW-1	12/13/14	NS	NS	NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	4,300	7,020	976	5,230	332	288	21.6J	6.2	NT	4,220	<100	<1,000	<1,000	<500	<50.0	<2,000	<100
	06/01/16	14,100	18,100	1,240	18,100	1,130	<1,000	<1,000	10.2	NT	<20,000	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000
	04/04/17	13,900	25,400	1,070	15,700	1,000	<1,000	<1,000	20.2	NT	<20,000	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000
	04/04/18	11,000	18,100	1,010	17,200	1,210	<1,000	<1,000	156	NT	<20,000	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000
	09/29/99	18,500	28,300	3,360	15,270	670	19,500	NT	ND	403	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	06/26/12	9,800	17,000	1,300	11,000	370	1,100	240J	65	390	NT	NT	NT	NT 1070	NT	NT	NT	NT
MW-2	12/03/14 12/13/14	4,800 NS	8,200 NS	940	4,500 NS	260	250	<15	28	150	4,200	<20	<100	<670	<100	<40	<3,300	<20
	08/31/15	4,760	7,890	NS 996	5,870	NS 355	NS 317	NS 21.9	NS 8.4	NS NT	NS 4,600	NS <50.0	NS <500	NS 420J	NS <250	NS <25.0	NS <1,000	NS <50.0
	06/01/16	2,870	3,760	364	2,500	139	281	<125	10.9	NT	2,680	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
Í	04/04/17	270	21.3	39.9	49.0	23.6	36.6	<10.0	0.13	NT	259	<20.0	<200	<200	<100	<10.0	<400	<20.0
	04/04/18	4,070	5,900	943	4,400	165J	332	<250	22.2	NT	4.630J	<500	<5,000	<5.000	<2.500	<250	<10,000	<500
	09/29/99	6,800	16,900	2,380	14,020	570	31.5	NT	81.1	116	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
	06/26/12	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
MW-3	12/03/14	2,000	10,000	1,600	11,000	780	<40	<15	3.2	100	2,200	<20	<100	<670	<100	<40	<3,300	<20
IVIVV~3	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15 06/01/16	4,220 1,620	7,460	972	5,810	375	312	19.9J	6.6	NT	5,120	<50.0	<500	431J	<250	<25.0	<1,000	<50.0
	04/04/17	1,580	11,200 10,900	2,020 1,810	13,000 12,000	996 810	<500 <500	<500 <500	0.91 0. 9 7	NT NT	<10,000 <10,000	<1,000 <1,000	<10,000 <10,000	<10,000 <10,000	<5,000 <5,000	<500 <500	<20,000	<1,000
	04/04/18	1,490	9,660	1.910	11,700	884	<500	<500 <500	1.3	NT	<10,000	<1,000	<10,000	<10,000	<5,000	<500 <500	<20,000 <20,000	<1,000 <1,000
	09/29/99	19,300	34,300	4,630	21,500	800	4,530	NT	ND ND	113	NT	NT	NT	NT NT	NT	NT	NT	NT
	02/20/12	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
	06/26/12	8,500	22,000	21,000	17,000	1,100	<500	<500	14	440	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	3,600	9,100	810	10,000	710	<80	<29	2.20	110	2,800J	<40	<200	<1,300	<200	<80	<6,600	<40
MW-4	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	4,390	7,900	953	5,940	366	301	19.6J	6.9	NT	5,100	<50.0	<500	439J	<250	<25.0	<1,000	<50.0
	06/01/16	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL -	NL	NL	NL	NL	NL	NL	NL
	04/04/17	2,210	3,800	703	5,130	363	<125	<125	1.6	NT	2,760	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/04/18 09/29/99	1,870 1,590	4,230 7,410	503	4,600	342	<125	<125	1.0	NT	3,230	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	02/20/12	640	5,100	1,850 990	10,320 5,800	560 210	13.1	NT 12	11.9	43	NT	NT co. 20	NT	NT <6.7	NT c1.0	NT <0.40	NT	NT CO 20
Ì	06/26/12	810	7,400	1,500	10,000	770	<5.0 <200	1 2 <200	0.45 0.86	670 31	<6.7 NT	<0.20 NT	<1.0 NT	NT	<1.0 NT	<0.40 NT	<33 NT	<0.20 NT
	12/03/14	NL	7,400 NL	NL	10,000 NL	NL	NL V	×200 NL	0.86 NL	NL	NL ×	NL NL	NL NL	NL NL	NL NL	NL NL	NI NL	NI NL
MW-5	12/13/14	NL	NL NL	NL NL	NL NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL NL	NL NL
	08/31/15	NL	NL	NL	NL NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL	NL	NL NL	NL NL	NL NL
İ	06/01/16	20.4	88.8	93	147	47.2	<5.0	<5.0	< 0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	101	424	1,020	2,940	427	<50.0	<50.0	<0.020	NT	<1,000	<100	<1,000	<1,000	<500	<50.0	<2,000	<100
	04/04/18	196	684	1,130	2,520	299	<50.0	<50.0	<0.020	NT	<1,000	<100	<1,000	<1,000	<500	<50.0	<2,000	<100

GROUNDWATER COC CONCENTRATION DATA COASTAL 76 TRUCK STOP FLORENCE, SOUTH CAROLINA MECI PROJECT NUMBER 18-6276 SCDHEC ID NUMBER 03538

March Marc																			JIMIDEK 03930
## APPL PARSE PARS			Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
Model Mode	Well Number	Comple Date	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)
Second Color	Well Number	Sample Date									RBSL	RBSL	RBSL	RBSL	RBSL		RBSL	RBSL	RBSL
Money March Marc														NE	1,400	NE	150	10,000	47
COCCOLD COCCOLD COCCOLD COCC		09/29/99							NT		23	NT	NT	NT	NT	NT	NT	NT	NT
March Marc]			1 7									DRY	DRY	DRY	DRY	DRY	DRY	DRY
Mode Colored						!			<5.0	<0.019	9.7J	NT	NT	NT	NT	NT		NT	NT
100 100	İ	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020							<0.40	<33	<0.20
COUNTY	MW-6					NS	NS											NS	NS
Curant																		<200	<10.0
1909/19 46					I													<200	<10.0 <10.0
1989/1989 NO \$446																		<200 <200	<10.0
Control Cont																		NT	NT
002512 390 3,000 1,1700 7,000 100 1,000 -200 -200 -200 25 NT NT NT NT NT NT NT NT NT NT NT NT NT																		<33	<0.20
1792114																		NT	NT
Mary 17973974 1.55 1.6																		<1,700	<10
080115	MW-7														NS	NS	NS	NS	NS
060116											NT	647	<50.0	<500	<500	<250	<25.0	<1,000	<50.0
	1	06/01/16	<5.0						<5.0	<0.020	NT	<100	<10.0				<5.0	<200	<10.0
0929999	1	04/04/17	NL	NL	NL	NL	NL	NL	NL	n NL								NL	NL
					5.3													<200	<10.0
												1						NT	NT -0.20
1020144 40,13					1							1						<33 NT	<0.20 NT
MY-8							1											<33	<0.20
083115	M/VV/-8																	NS	NS
0801116 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$6.0	10100-0																	<200	<10.0
OMDHIT <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0 <5 0														1			<5.0	<200	<10.0
DAIGH-18 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50																<50.0	<5.0	<200	<10.0
06/28/99	İ												<10.0	<100	<100	<50.0	<5.0	<200	<10.0
		09/29/99	ND		ND			ND	NT	ND	12	NT	NT	NT				NT	NT
12/03/14 NIL		02/20/12	NL		NL	NL		NL		NL								NL	NL
MW-9					NL													NL	NL
OB33115 NIL					1													NL	NL NL
0600116	MVV-9																	NL NL	NL NL
0409417																		NL NL	NL NL
04/04/18																		NL NL	NL NL
09/29/99 ND 4.09 2.83 7.43 ND 14.15 NT ND 13 NT NT NT NT NT NT NT N	İ																	NL NL	NL
02/20/12 <0.20															NT	NT		NT	NT
06/26/12 45,0 45,																<1.0	<0.40	<33	<0.20
MW-10 12/13/14 NL												NT	NT	NT	NT			NT	NT
08/31/15		12/03/14	NL	NL.	NL	NL	NL	NŁ	NL	NL	NL	NL						NL	NL
06/01/16 NL NL NL NL NL NL NL NL NL NL NL NL NL	MW-10	12/13/14	NL ,	NL	NL	NL	NL	NL	NL	NL		1						NL	NL
04/04/17 NL NL NL NL NL NL NL N																		NL	NL
04/04/18 NL NL NL NL NL NL NL N																		NL NL	NL NL
12/03/14	ĺ	1																NL NL	NL NL
MW-10R														1177				<33	<0.20
MW-10R																		NS	NS
MW-10R 06/01/16		1																<200	<10.0
04/04/17	MW-10R											1						NL	NL
MW-10RR MU-10RR														NL	NL	NL	NL.	NL	NL
MW-10RR 04/04/18 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0																		NL	NL
02/20/12	MW-10RR	04/04/18	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	0.028							<5.0	<200	<10.0
MW-11 12/13/14 NS													1					NT	NT
MW-11 12/13/14 NS NS NS NS NS NS NS NS NS NS NS NS NS						II.												DRY	DRY
MW-11 12/13/14 NS NS NS NS NS NS NS NS NS NS NS NS NS													1					NT	NT
08/31/15 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.	88307.44				l 1												1	<33 NS	<0.20 NS
06/01/16 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	IVIVV-17																	<200	<10.0
0.0 0.0 0.0 0.0		I I																<200	<10.0
י סיים וי אינוי וי סיים וי אינוי וי סיים וי אינוי וי סיים וי אינוי וי סיים וי אינוי וייים וייים וי אינוי וייים ויים ויים ויים וייים																		<200	<10.0
																	<5.0	<200	<10.0

TABLE 3 GROUNDWATER COC CONCENTRATION DATA COASTAL 76 TRUCK STOP FLORENCE, SOUTH CAROLINA MECI PROJECT NUMBER 18-6276 SCDHEC ID NUMBER 03538

Well Number		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA			Ethanol	
Well Number			1			•				(μg/l)	(μg/I)	(μg/l)	(μg/l)	(μg/l)	TBF (μg/l)	DIPE (μg/l)	(μg/l)	ETBE (μg/l)
	Sample Date	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL.	RBSL	RBSL
		5	1,000	700	10,000	25	40	5	0.05	0.015	240	128	NE	1,400	NE	150	10,000	47
	09/29/99	591	1,350	640	2,123	8.4	8.68	NT 40	ND 0.24	16 5.2	NT 630	NT <0.20	NT 1.1J	NT 9.5J	NT <1.0	NT <10	NT <33	NT <0.20
	02/20/12 06/26/12	530 13	3,100 16	1,500 73	4,400 49	260 46	<0.40 <5.0	10 <5.0	0.21 <0.019	3.0J	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NL	NL	NL	NL	NL.	NL	NL	NL
MW-14	12/12/14	2.8	2.0	5.3	4.9	<5.0	<5.0	<5.0	<0.019	NT	7.9	<1.0	<0.20	<6.7	<1.0 <50.0	<0.40 <5.0	<33 <200	<0.20 <10.0
	08/31/15 06/01/16	3.4J <5.0	<5.0 <5.0	10.9 <5.0	<10.0 <5.0	8.4 <5.0	<5.0 <5.0	<5.0 <5.0	<0.019 <0.019	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
	04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	NL	NL	NL	NL	NL	NL	NL	NL	NL.	NL	NL	NL	NL.	NL	NL	NL	NL NI
	06/26/12	92	280	140	380	1.3	<25	<5.0	0.05	8.6J	NT	NT <0.20	NT <1.0	NT <6.7	NT <1.0	NT <0.40	NT <33	NT <0.20
	12/03/14 12/13/14	<0.13 NS	<0.33 NS	<0.33 NS	<0.33 NS	<0.40 NS	<0.40 NS	<0.15 NS	<0.020 NS	<1.9 NS	<6.7 NS	<0.20 NS	NS	NS	NS	NS	NS	NS
MW-15	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200 <200	<10.0 <10.0
	04/04/17 04/04/18	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
	06/26/12	<5.0 180	<5.0 580	<5.0 83	<5.0 380	<5.0 39	<5.0 5.4J	<25	0.59	16	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	1.3	0.62J	<0.33	0.68J	<0.40	1.1	<0.15	0.031	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
MW-16	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS 10,000	NS	NS 678	NS <10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
INIAA-10	08/31/15 06/01/16	759 NL	138 NL	286 NL	211 NL	70.1 NL	10.5 NL	1.8J NL	<0.020 NL	NT NL	NL	NL	NL NL	NL NL	NL NL	NL	NL	NL NL
· ·	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL NE	NL NT	NL NT	NL NT	NL NT	NL NT	NL NT	NL NT
1	06/26/12 12/03/14	880 230	1,500 600	1,500 1,000	5,700 5,000	980 340	20J <20	<100 <7.4	2.8 0.7	35 31	NT <340	NT <10	NT <50	NT <340	NT <50	<20	<1700	<10
,	12/03/14	NS	NS	NS I	9,000 NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-17	08/31/15	5,020	8,730	1,200	6,430	391	331	20.5J	9.5	NT	4,930	<50.0	<500	421J	<250	<25.0	<1,000	<50.0
ļ	06/01/16	2,680	5,400	1,780	5,890	506	<200	<200 <5.0	4.7 0.11	NT NT	<4,000 96.7J	<10 <10.0	<4,000 <100	<100 <100	<50.0 <50.0	<200 <5.0	<8,000 <200	<400 <10.0
ŀ	04/04/17 03/29/18	91.4 1,720	11.9 2.700	17.3 1,020	131 5,830	22.8 449	<5.0 81.5J	<125	5.1	NT	3,590	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	06/26/12	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	11	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	<0.13	<0.33	0.40J	80	21	<0.40	<0.15	<0.019	<1.9	<6.7	<0.20 NS	<1.0 NS	12J NS	<1.0 NS	<0.40 N S	<33 NS	<0.20 NS
MW-18	12/13/14 08/31/15	NS 2,720	NS 14,500	NS 2,050	NS 14,700	NS 2,450	NS <1,000	NS <1,000	NS 4.3	NS NT	NS 25,200	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
1	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/18 12/03/14	<5.0	<5.0 <0.33	<5.0 <0.33	<5.0 <0.33	<5.0 <0.40	<5.0 <0.40	<5.0 <0.15	<0.019 <0.020	NT <1.9	<100 <6.7	<10.0 <0.20	<100 <1.0	<100 <6.7	<50.0 <1.0	<0.40	<33	<0.20
1	12/03/14	<0.13 NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
10.00	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/17 04/04/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS 10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
MW-20	08/31/15 06/01/16	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<0.019 NL	NT NL	<100 NL	<10.0 NL	NL	NL	NL	NL.	NL	NL NL
	04/04/17	NL	NL	NL NL	NL	NL	NL I	NL	NL.	NL	NL	NL	NL	NL	NL.	NL	NL	NL
	04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100 <6.7	<50.0 <1.0	<5.0 <0.40	<200 <33	<10.0 <0.20
	12/03/14 12/13/14	<0.13 NS	<0.33 NS	<0.33 NS	<0.33 NS	<0.40 NS	<0.40 NS	<0.15 NS	<0.020 NS	6.9J NS	<6.7 NS	<0.20 NS	<1.0 NS	NS	NS NS	NS	NS	NS
B83A/ O4	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-21	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200 <200	<10.0
	04/04/17 04/04/18	<5.0 NL	<5.0 NL	<5.0 NL	<10.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<0.020 NL	NT NL	<100 NL	<10.0 NL	<100 NL	<100 NL	<50.0 NL	<5.0 NL	NL NL	<10.0 NL
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	2J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
MW-22	08/31/15 06/01/16	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<0.019 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
İ	04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL NL	NL .	NL 10.42	NL -00	NL NL
T	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	3.4J	<6.7	<0.20	<1.0 NS	<6.7 NS	<1.0 NS	<0.40 NS	<33 NS	<0.20 NS
	12/13/14 08/31/15	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <0.019	NS NT	NS <100	NS <10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-22D	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100 NL	<50.0 NL	<5.0 NL	<200 NL	<10.0 NL
	04/04/18 12/03/14	NL <0.13	NL <0.33	NL <0.33	NL <0.33	NL <0.40	NL <0.40	NL <0.15	NL <0.020	NL 43	NL <6.7	NL <0.20	NL <1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
MW-23	08/31/15	<5.0	16.4	<5.0	<5.0	4.2J	<5.0	<5.0	<0.023	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT NT	<100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/17 03/29/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0	<100	<100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	2J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS DBV	NS DBV	NS DRV	NS DRY	NS DRY	NS DRY
MW-24	08/31/15 06/01/16	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <0.020	NS NT	DRY <100	DRY <10.0	DRY <100	DRY <100	DRY <50.0	<5.0	<200	<10.0
	04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
L	03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0

GROUNDWATER COC CONCENTRATION DATA COASTAL 76 TRUCK STOP FLORENCE, SOUTH CAROLINA MECI PROJECT NUMBER 18-6276 SCDHEC ID NUMBER 03538

Mary Mary														γ 				JODITEO ID IV	
West West		Daniella di Susan		. [· ·										ETBE (ug/l)
1	Well Number	Sample Date								T									
1300 1																			
		12/03/14			-				<0.15	+									
March Marc																			
2000 200	MW-25	1																	
1985 1985														<100	<100	<50.0			
March 1985		03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0												
March Marc																			
Cashe Cash	1414/00															<50.0	<5.0	<200	<10.0
CORN	MVV-26		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020									
1969																			
Mary Mary																		<33	<0.20
98.97 300 400											NS		NS	NS					
Subsect Subs	MW-27																		
Case Case																			
Marie 1 20014	_														<100		<5.0	<200	
Mary 1.00			<0.13	< 0.33			<0.40												
March Marc																			
CASACT M. N. M. M. M. M. M. M.	MW-28				1												NL	NL	NL
CALCAPT 42.5 42.6									NL	NL .	NL	NL	NL	NL	NL	NL	NL		
1220712 43.0		04/04/18	<5.0																
1820/12							- 1												
THE 1-200714 N. N. N. N. N. N. N. N. N. N. N. N. N.										1	3.4J	NT	NT	NT	NT	NT	NT	NT	NT
1987175		12/03/14	NL	NL	NL	NL	NL												
SOUTH SOUT	TW-1																		
May May																		NL	NL
Post Post											NT								
1323/14 -0.13 -0.23 -0.23 -0.23 -0.24 -0.25 -0																			
TW2 1273714																		<33	<0.20
000116											NS								
040417	TW-2																		
March Marc																			
\(\begin{array}{c c c c c c c c c c c c c c c c c c c													<10.0	<100	<100	<50.0	<5.0	<200	<10.0
### 1,000	WSW-1																		
MWH Duc. 1209314 4,000 9,000 820 830 8300 640 440 45 2.9 130 2,000 420 470 470 470 43,000 420 420 420 420 420 420 420 420 420																·			
MW7 Dus. 883115 1,970 7,580 877 12,000 478 < \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \) \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdo <50 \] \$\cdot <50 \] \$\cdo <50 \] \$\cdo <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\cdot <50 \] \$\	MW-4 Dup.											2,800	<20	<100					
	IGWA Dup.				792														
	2-2. (IGWA-R)													<2,500	<2,500	<1,250	<125		
P_1(BWW_1)	JP.1(IGWA)	04/04/17	528	4,590	901	9,120	350	<125	<125	0.49		<2,500				<1,250			
	P-2. (IGWA-R)																		
			,	'		, i				****						<2,000	<200	<8,000	<400
120214	JP(WSW-1)	04/04/18	<0.50	<0.50	<0.50	<0.50	<0.50	2.1	<0.50	<0.021	NT	<100	<10.0	<100					
120314	JP(WSW-1)																		
12/12/14 40.13 40.33 40.33 40.33 40.33 40.33 40.33 40.33 40.40 40.15 40.20 NT 46.7 41.0 40.0 4															<6.7		<0.40	<33	<0.20
Field Blank 08/01/16 45.0									<0.15	<0.020	NT	<6.7	<0.20	<1.0					
Fig. Blank O4/04/17 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 <																			
03/29/18	ield Blank																		
OA/OA/18 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,																<50.0	<5.0	<200	<10.0
04/18/18	1	04/04/18	<5.0		<5.0		<5.0	<5.0	<5.0	<0.019									
12/03/14 <0.13 <0.33 <0.33 <0.33 <0.33 <0.40 <0.40 <0.15 NT NT <6.7 <0.20 <1.0 <6.7 <1.0 <0.40 <33 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20																			
12/03/14	+																	<33	
12/03/14 <0.13 <0.33 <0.33 <0.33 <0.33 <0.40 <0.40 <0.15 NT NT <6.7 <0.20 <1.0 <6.7 <1.0 <0.40 <33 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	1									NT	NT		<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
08/31/15		12/03/14	<0.13	< 0.33	<0.33	<0.33	<0.40	<0.40	<0.15										
rip Blank 06/01/16																			
04/04/17	rip Blank															<50.0	<5.0	<200	<10.0
04/04/18		04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	NT	NT	<100	<10.0						
04/04/18 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 NT NT <100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.																			
04/04/10																			

1. BDL = Below Practical Quantitative Limits

2. ug/l = micrograms per liter

3. mg/l = milligrams per liter

4. MTBE = Methyl-Tertiary-Butyl Ether

5. See Appendix for Laboratory Detection Limits 6. NL = Not Located

7. DRY = Well was Dry at the time of Sampling

8. NT = Not Tested.

9. EDB = Ethylene Dibromide

10. 1,2 DCA = 1,2-Dichloroethane

11. PROD = Free Phase Petroleum Product

12. * = Sample collected beneath Product

14. "J" values report concentrations above the method

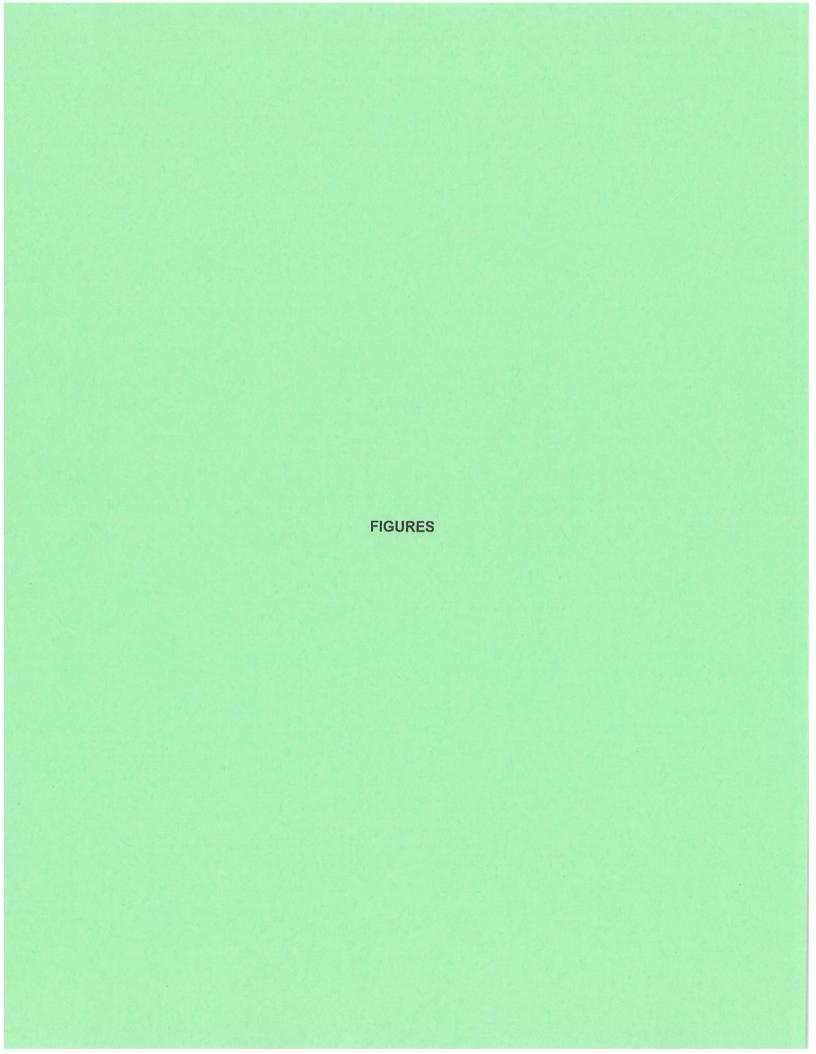
detection limits (MDL) and below actual reporting limit (RL). 15. B = Detected in Method Blank

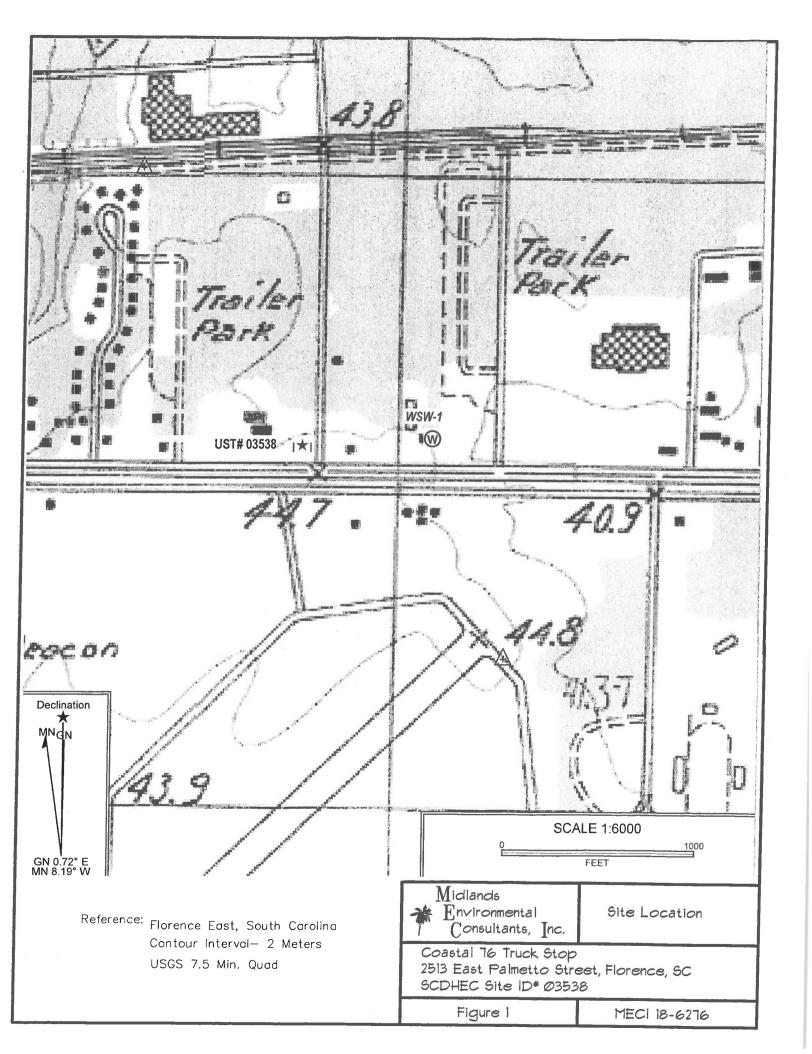
16. S = MS/MSD Failure

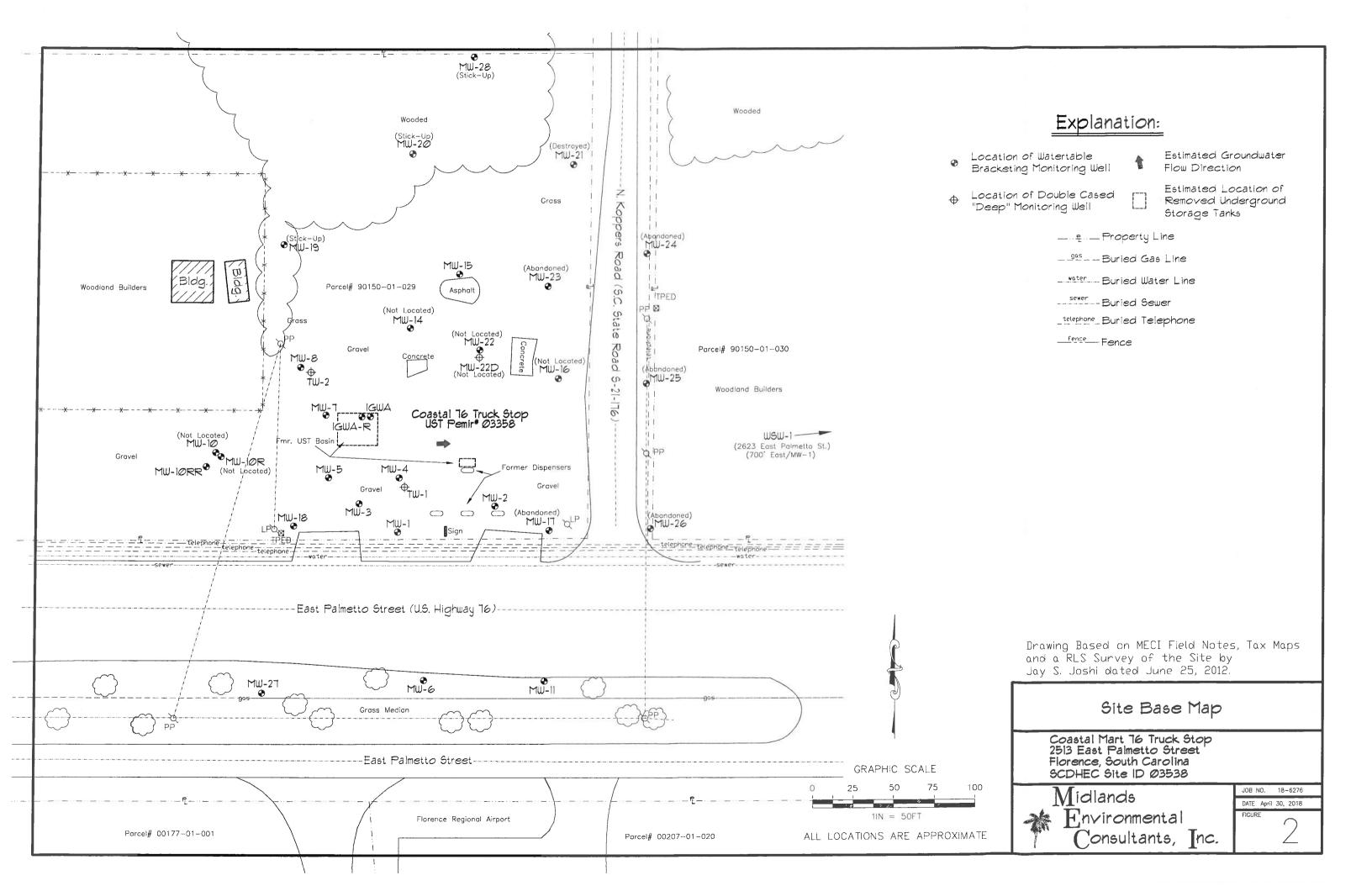
17. P = The RPD between the two columns exceeds 40%.

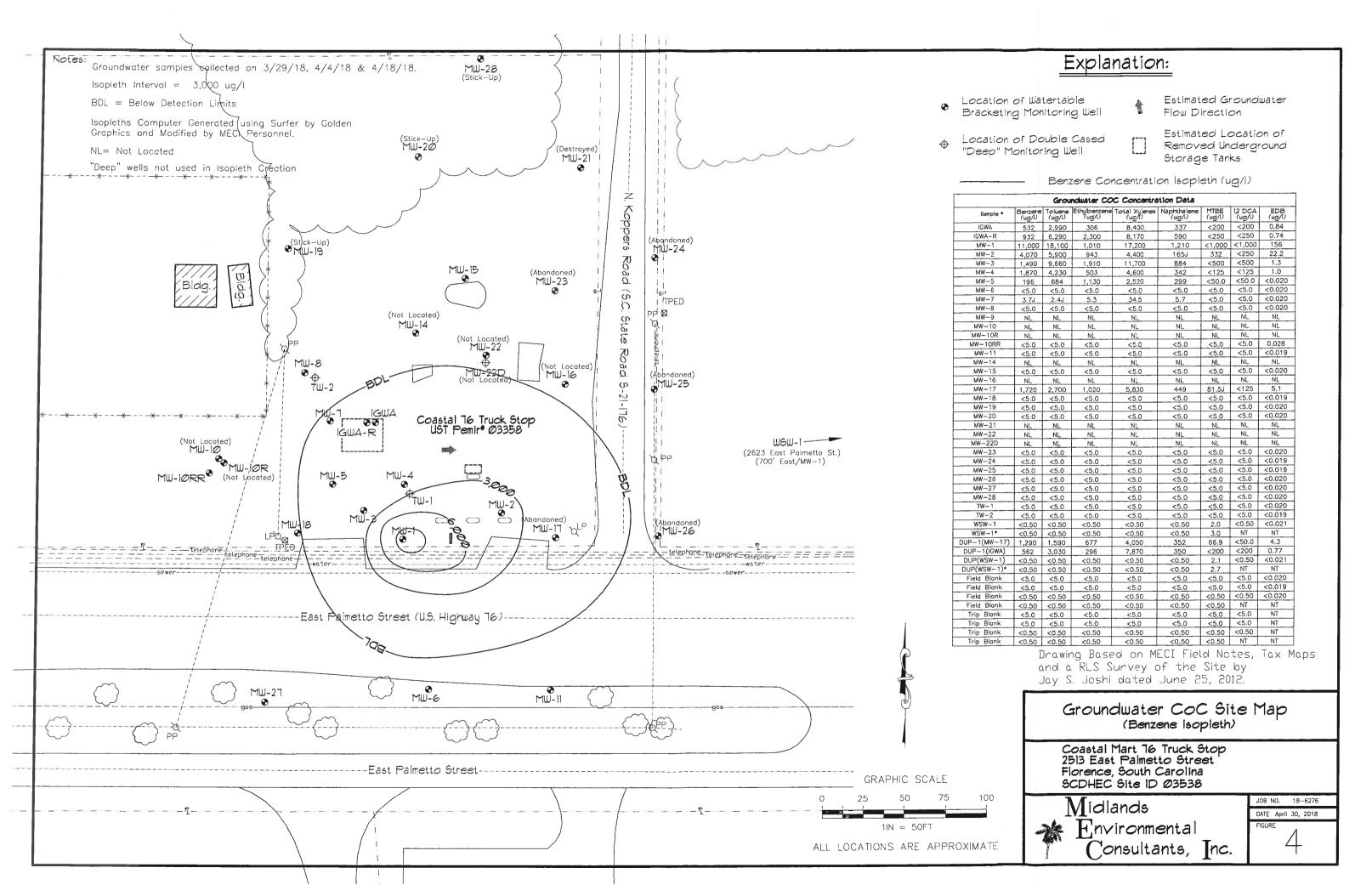
18. DIPE = Diisopropyl Ether
19. ETBE = Ethyl ter-butyl Ether
20. TAA = tert-Amyl Alcohol

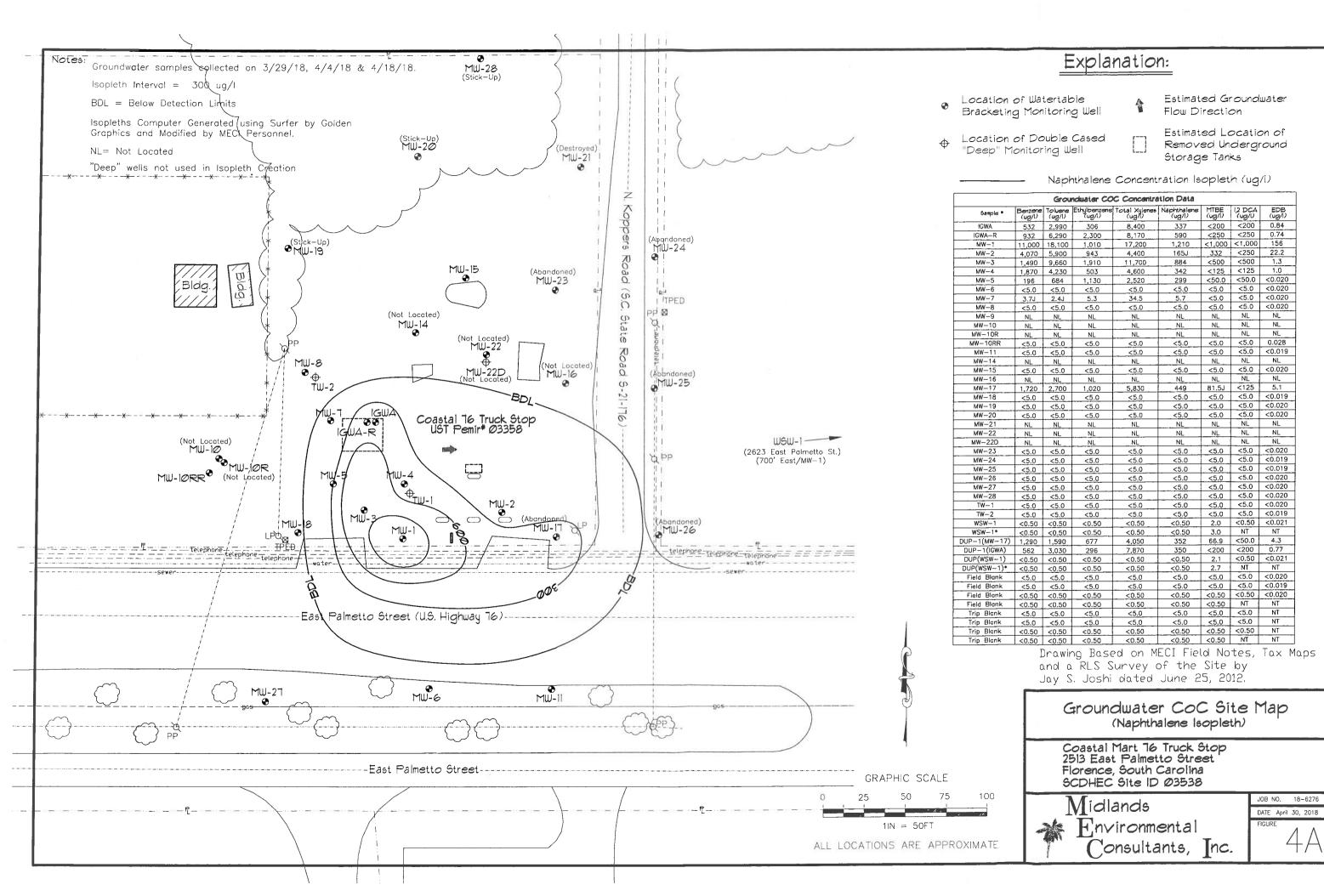
21. TAME = tert-Amyl Methyl Ether
22. TBA = tert-Butyl Alcohol
23. TBF = tert-Butyl Formate

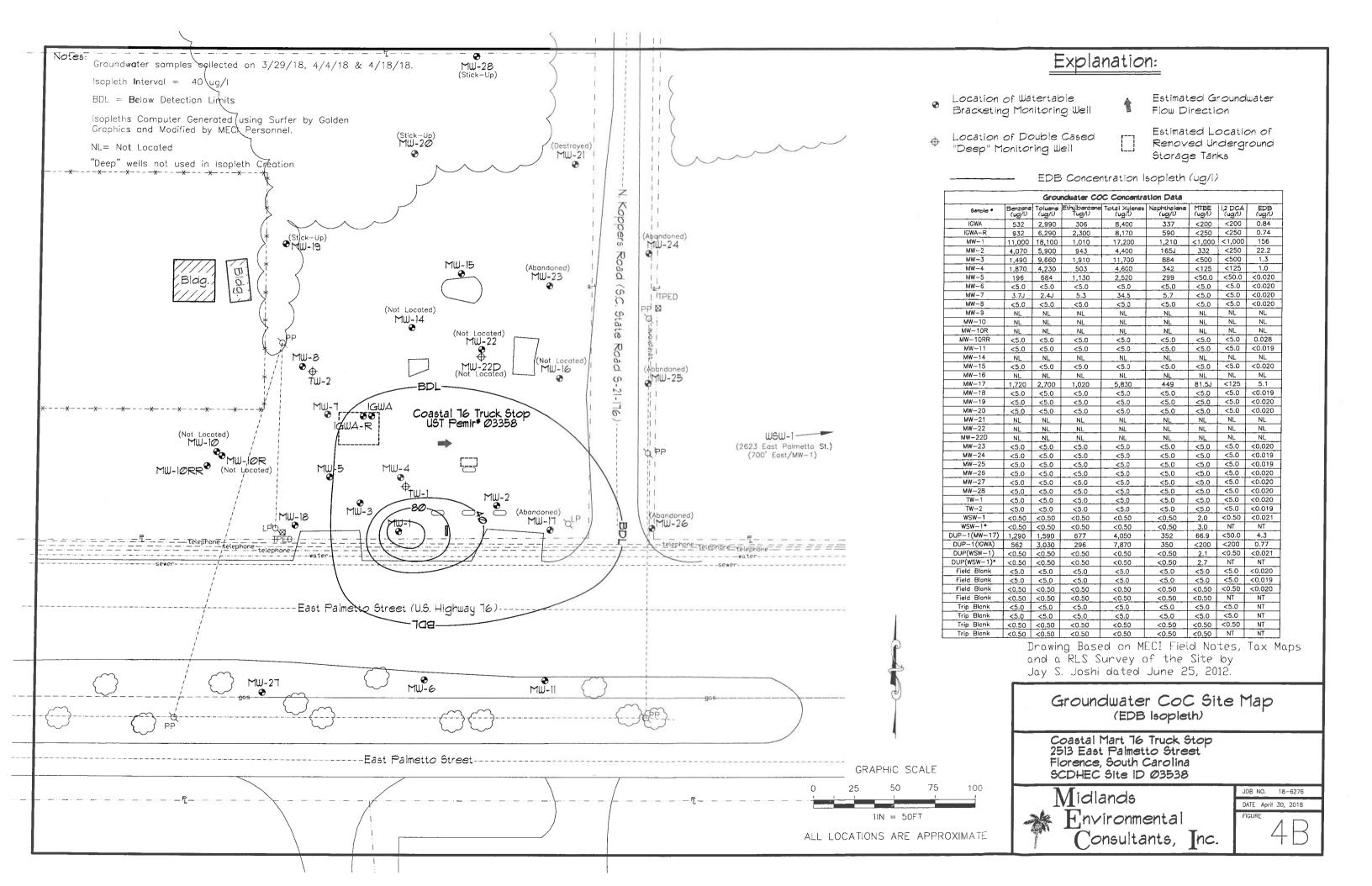

24. ETBA = 3,3-Dimethyl-1-Butanol 25. ABD. = Well Has been Abandoned

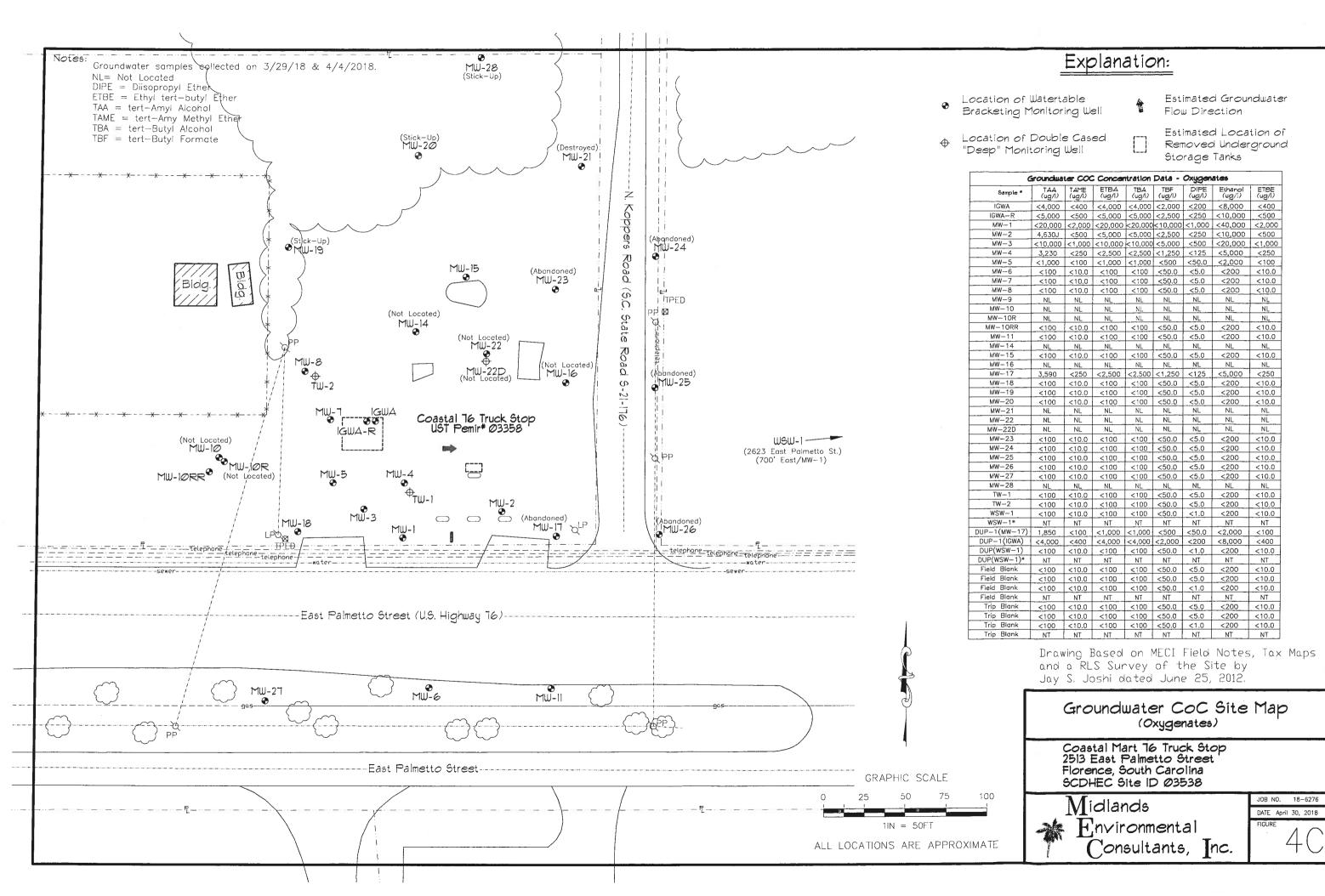

TABLE 4 AQUIFER CHARACTERISTICS APRIL 4, 2018, SLUG TEST EVENT COASTAL 76 TRUCK STOP FLORENCE, SOUTH CAROLINA MECI PROJECT NUMBER 18-6276 SCDHEC SITE ID NUMBER 03538

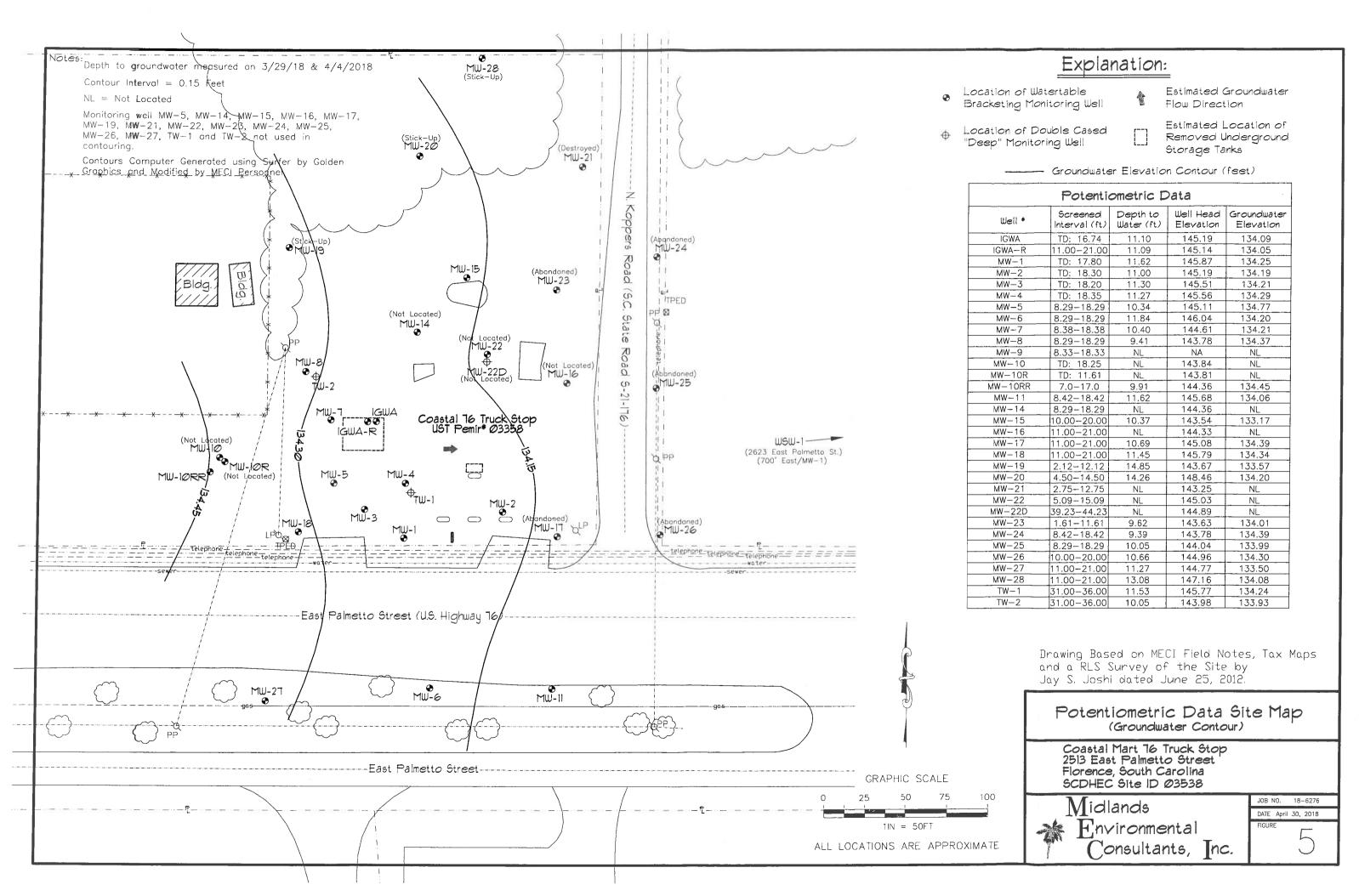

VELOCITY CALCULATION	Hydraulic Conductivity (K) (centimeters/second)	Hydraulic Conductivity (K) (feet/day)	Hydraulic Conductivity (K) (feet/year)	Hydraulic Gradient (i) (unitless)	Effective Porosity (ne) (unitless)	Groundwater Velocity (V) (feet/day)	Groundwater Velocity (V) (feet/year)	Groundwater Velocity (V) (meters/second)
MW-4	1.81E-04	5.13E-01	1.87E+02	1.43E-03	0.20	3.66E-03	1.34	1.29E-08
MW-8	5.08E-04	1.44E+00	5.26E+02	1.43E-03	0.20	1.03E-02	3.75	3.63E-08
TW-1	1.79E-04	5.07E-01	1.85E+02	3.37E-03	0.20	8.55E-03	3.12	3.02E-08
Mathematical Mean	2.89E-04	8.20E-01	2.99E+02	2.08E-03	0.20	7.50E-03	2.74	2.65E-08


Notes:


- 1. Groundwater velocity derived from the equation V = Ki/n.
- 2. An effective porosity value of 0.20 was estimated for the shallow and deep wells screened in Fine SAND and was estimated based on published values of effective porosity for Fine SAND (After Walton, 1988 and Domenico and Schwartz, 1999) which ranged from 0.10 to 0.30 with an arithmetic mean of 0.20)
- 3. Hydraulic gradient for the shallow aquifer was calculated based on groundwater elevations from and distances between monitoring wells MW-2/MW-8.
- 4. Hydraulic gradient for the deep aquifer was calculated based on groundwater elevations from and distances between monitoring wells TW-1/TW-2.







APPENDIX A:

SITE SURVEY (Not Applicable)

APPENDIX B: SAMPLING LOGS, LABORATORY DATA SHEETS, & CHAIN-OF-CUSTODY FORMS

Midlands Monitoring Well Purge Environmental 8,50 Consultants, **And Sampling Data** Field Personnel: Calibration Data for: Job Name: (oasta Calibration Successful Yes or No (Please Circle) Sampling Date(s): Job Number: No Conductivity: Sampling Case#: Dissolved Oxygen: No TES No Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well No. Purge Sample pH(i) cond(i) Temp. DO Turbidity Volume Depth to (feet): Time Well Depth Water Height (°C) **Gallons Purged** (mg/l) (NTU) product Initial H₂O final H₂0 (feet) *(feet) Notes **calc. actual 1st 0 ocarea 2nd 11-71 3rd 4th Sampling MW-17 ,00 2nd 10.31 9.97 10.6 3rd 0.94 4th 70. 6.8 5th Sampling 15-MM 1st acap 2,75. 3rd Vest C. DU 4th 5th Sampling 10:48 5.96 initial 80.0 10. 45.96 MW-23 2nd 9.62 11.61 Sampling *= (Depth of Well) - (Depth to Water = Water Height

**= One Well Volume x 5 = Gallons Purged (calculated)

One Well Volume =x.047 for 1" wells * x .163 for 2" wells, or * x .66 for 4" wells, 1.469 for 6" wells

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

4 1			1
Sampling Case#	Ph/Conductance SN	DO SN	
Case #1	15H101448		Turbidity
Case #2	15E101481		201301183
Case #3		14H103098	201301174
Case #3	17E100512		201510251
		112100400	1201310251

Midlar	nds						Moni	4				·			
Envir	onment Sultants	al					TATOW	ltori	ng W	ell]	Purge				
Cons	oultants Λ	175					An	d Sa	mplii	ng D)ata				
Field Personnel:		JT				lob No	Coasta	7/				hratian D-1			
Sampling Date(s):	3/7	1/18	3					46)	-	Calibration	on Successi	a for: ul2(Yes or i Yes)	I. (5)	
Sampling Case#:	1 -	>				Job Numbe	L. 16.	276	,		pH:	/ الم		No (Please C No	Circle)
Campling Case#:										-	Conducti Dissolved	VIIV:	Yes	No	
Well No.	Purge	Sample	pH(i)	i nomel(i)				-	_		Turbidity:	Conductivity	Yes Calibrated Ev	No	y QA Manager
	Volume	Time	J.,	cond(i)	Temp.	DO	Turbidity		Depth to (fee	t):	Well Donth	Water Height			y QA Manager
	Initial	10:15	6.38	55.3	18.0	(mg/l) 4,42	(NTU)	product	Initial H ₂ O		o (feet)	water Height *(feet)		s Purged	Notes
125-MM	1st 2nd				1000	TOTAL	29.14					(leat)	**calc.	actual	Notes
1 110	3rd	+	-						9.39		8.42				No
	4th	 									18.42	_			10
	5th	-	 								10.12			_	Page No
	Sampling			 								51			IVO 1
	Initial	10:25	5.69	62.0	18.7	477	618								Odon
MW-25	1st			0.0	10. /	166/	51.32	٠.,			8.29				
1.W ()	2nd 3rd						 		0.05		0.61				106
	4th								100		18.25	-		_	Parge
	5th										10.61				1.41
	Sampling			-		-									110
	initial	0:450	5.51	517	19 2	4.78	/200								Odor
MW-26	101	-		15/62	11.2	ti 18	1913				10 2				0.01
100 60	2nd 3rd							ĺ	10.66		10-20				No
1	4th							1	000			_			Purge
	5th							1				-			
	Sampling								.			1	_		No
	Initial														Oder
Dupl	1st	MW	1-17	010	1/4										
1 1 m	2nd 3rd	1 1 2	0 1/	100	10										
	· 4th			<u> </u>									Φ.		1
	5th										-	-			
	Sampling							1							
*= (Depth of Well) - (Depth One Well Volume => 047.6	to Water = V	Nater Height													
One Well Volume =x.047 fo	or 1" wells * x	.163 for 2" w	ells, or * x .66	6 for 4" wells,	1.469 for 6" v	**= One Well !	/olume x 5 = G	alions Pur	ged (calcul	lated)	 			-	
		Casing	Gallons	-,	*	10113			_ ,	uj	-	Case #1	Ph/Conductance SN	DO SN	Turbidity
	F	1"	0.047									Case #2	15H101448 15E101481	17E101302 14H103098	201301183
		2" 4"	0.163 0.653								L.	Case #3	17E100512		201301174 201510251

Monitoring Well Purge And Sampling Data And Sampli	Midlar	nds						Mon	itori	og W	all D)				
Sampling Case(s): Job Nomber: 17 6 2 76 Alloration Date for Calibration Date for Calibration Date for Calibration Successful Zucas of No (Please Circle) Alloration Successful Zucas of No (Please Circle) All	Con	cultant.	al T.					A	1 C	ng vv	en P	urge				
Sampling Cata(s) S	Field Personnel	D	75					An	d Sai	mpli	ng D	ata				
Well No. Purge Sample pH(I) cond(I) Temp. DO Turbidlty September Calibrated Events Months by QA Manager Turbidlty Conductivity Calibrated Events Months by QA Manager Months Month		TH)			_	Job Name					Calil	oration Date	for		
Well No. Purge Sample pH(I) cond(I) Temp. DO Turbidlty September Calibrated Events Months by QA Manager Turbidlty Conductivity Calibrated Events Months by QA Manager Months Month	Sampling Date(s):	3/2	7/12	5						}	_	Calibratio	n Successfu	112 Yes or N	lo (Planes o	·
Well No. Purge Sample pH(I) cond(I) Temp. DO Turbidlty September Calibrated Events Months by QA Manager Turbidlty Conductivity Calibrated Events Months by QA Manager Months Month	Sampling Co	17				_ J	ob Number	16	2 16)		ph:		Yes	No	ircie)
Purpose Sample Obt Cond(i) Temp. DO Turbidity Depinte (rest) Dotto Purpose Purpose Dotto Purpose Purpose Dotto Purpose Purpo	Sampling Case#:										-	Dissolved	VILY:	Yac		Manage
Mark First	Well No.	Purge	Samula			-						Turbidity:	Conductivity	Calibrate d	No	_
Ministal		_		pH(i)	cond(i)	1 1	DO	Turbidity		Donth to #s-		J		Cambrated Eve	ery 3 Months by	y QA Manager
1st 1st		Initial		A A I		(°C)	(mg/l)					Well Depth			s Purged	T
2nd 3rd 4th 4th 5th 5th 7th 7th 4th 7th 4th 7th 7th 4th 7th 7th 4th 7th 7th 4th 7th 7th 7th 4th 7th 7th 7th 7th 7th 7th 7th 7th 7th 7	Blanks	1st	Fpl	Ban	11-15	50				1	miai rigo	(reet)	*(feet)	**calc.	1	Notes
4h	Dranks	2nd	1610	KIMI	10	1.0.5					ĺ		1			
## Aft		3rd	Tall	Bian	1	1.01							i			j
Sampling		4th	44.4	- VIIII	10	127]							
Miltal		5th			 			-	1						1	
fst		Sampling							ļ				9.			ļ
2nd		Initial													1	
3rd		<u> </u>														
## 4th								ļ	}							
Sth												1	1		[
Sampling]]	
Initial										ŀ						
1st]	1			
3rd																
## 4th ## 5th ##		2nd														
6th Sampling Initial		3rd														
Sampling Initial Initi		4th								ì						}
Initial		5th								ĺ	,		<u> </u>			Í
1st		Sampling								İ			1			
2nd 3rd 4th 4th 5th		initial									ļ			İ		
3rd 4th 5th 5th 5th 5ampling	₩ 1/821															
4th 5th 5th Sampling Case# Ph/Conductance SN Do SN Turbidity Well Volume = x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells Casing Gallons 1" 0.047 2" 0.163 4" 0.653	90								}		1					
Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Case# Ph/Conductance SN Do SN Turbleflty Sampling Case# Sampling Case# Sampling Case# Ph/Conductance SN Do SN Turbleflty Sampling Case# Sampling Case# Ph/Conductance SN Do SN Turbleflty Sampling Case# Sampling Case# 15H101448 17E101302 201301183 17E100512 17E103488 201510251 201301174 20130117	ļ								İ		1					1
Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Case Sam	,								1							
Depth of Well) - (Depth to Water = Water Height **= One Well Volume x 5 = Galions Purged (calculated) Sampling Case# Ph/Conductance SN Do SN Turbidity Case #1 15H101448 17E101302 201301183 1" 0.047 2" 0.163 4" 0.653	}								- 1	-						
Casing Gallons 1" 0.047 2" 0.163 4" 0.653 Case #3 17E100512 17E103488 201510251	Donth - 6144 m								}		1	1				1
Casing Gallons 1" 0.047 2" 0.163 4" 0.653 Case #1 15H101448 17E101302 201301183 10 15E101481 14H103098 201301174 10 17E100512 17E103488 201510251	e Well Volume =x.047	th to Water = \ for 1" wells * x	Nater Height :.163 for 2" w	/ells, or * x .66	for 4" wells	** 1.469 for 6" ···-	= One Well V	/olume x 5 = G	allons Pu	ged (calc	lated)					
Case #1 15H101448 17E101302 201301183 1" 0.047 2" 0.163 4" 0.653 Case #2 15E101481 14H103098 201301174 Case #3 17E100512 17E103488 201510251		F			wons,	os rot p. Me	HIS			See fouldt	nateu)	-		Ph/Conductance SN	DO SN	Touchton
2" 0.163 4" 0.653 Case #3 17E100512 17E103488 201510251		· -											Case #1	15H101448	17E101302	201301183
4 0.653			2"	0.163										17E100512	14H103098	201301174
		-		0.653											171103468	201510251

IVI idlands
Environmental
Consultants, Inc.
Field Personnel: BG, JF

4/4/18

Sampling Date(s):

Sampling Case#:

Monitoring Well Purge And Sampling Data

_
Job Name: Lan

astal 76 Truck Stop Job Number: 18 · 62 76

Calibration Data for :

Calibration Successful? (Please Circle) Conductivity: No

Tit Tit		Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO (mg/l)	Turbidity		Depth to (fe	et):	Turbialty:	Conductivity	Yes Calibrated Eve	TY 3 Months I	oy QA Manager
2nd			11:13	7.28	110.6			(NTU)	product	initial H ₂ O	final H ₂ 0	(feet)	*(feet)		Purged	Mad
MW 3 4th		2nd		 				20.31	-	1			(1001)	rcalc.	actual	Notes
Sampling Sampling Initial 1/:35 6.05 161:3 20.1. 40.06 76.11 August 2 Ath Sampling Sampling Assume Sampling Assume 100 Server Assume 11.27 Assume 11.27 Assume 11.27	. 1	3rd		-	+			 	{							
Sampling Initial 1/:35 6.05 161:3 20.1. 4.06 76.11 Initial 1/:35 6.05 161:3 20.1. 4.06 76.11 Initial 1/:20 6.00 156.6 70.11	MW	4th							1	1162	1	17:17.80	-	_		Nopany
Sampling Sampling 1/35 6.05 161.3 20.1 14.06 76.11 MW-2 2nd 3rd 4th 5th 5th 2nd 11.30 Assume 100 5treen MW-3 4th 5th		5th						-	†	11.00		Assume				adar
Initial 11:35 6.05 161:3 20.1 41.06 76.11 MW-2 4th Sampling Initial 11:20 6.00 156.6 70.4 4.46 11:03 MW-3 4th Sampling Initial 11:08 5.56 191.7 19.6 76.63 15.04 MW-4 4th Sampling III.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume 11.27 Assume		Sampling									!	10'				
1st 20		Initial	11:35	6.5	1.66							screen	22			
## 2		1st		0.03	161.3	20.1	4.06	76.11								
MW-2 4th Sth Sampling Initial 11:20 6.00 156.6 20.4 4.46 11.03 2nd 3rd 4th Sampling Initial 11:08 5.56 191.7 19.6 2.63 15.04 MW-4 3rd 2nd 3rd Initial 11:08 5.56 191.7 19.6 2.63 15.04 MW-4 3rd Sampling Initial 11:08 5.56 191.7 19.6 2.63 15.04 MW-4 3rd Sampling Sampling Sampling		2nd			 				·							
Sth Sampling Sampling Sampli	. 7	3rd			 						٠.	78:10 1-	-			
Sth Sampling Sampling Sampli	MW= -	4th			 							13.18.50	ĺ			Nopune
Initial 11:20 6.00 156.6 70.4 4.46 11.03 2nd 3rd 4th 5th 11:08 5.56 191.7 19.6 7.63 15.04 MM 3rd 2nd 2nd 11:08 5.56 191.7 19.6 7.63 15.04 MM 4th 5th 5th Sampling III-27 Assame III-27 Assame III-27 Assame	,									11.00	.	Accume				
Initial 11:20 6.00 156.6 20.4 4.46 11.03 2nd 3rd 4th 5th Sampling Initial 11:08 5.56 191.7 19.6 2.63 15.04 MW 3 Assure 10 Since 11.30 1		Sampling								[1	(0'				edo(
1st 2nd 3rd 3rd 4th 5th 11:08 5.56 191.7 19.6 7.63 15.04 11.30 Assume 10 Screen 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35 Assume 70:18.35	_	Initial	11:20	6.00	151					1	1		1			
2nd 3rd 4th 5th Sampling Initial 11:08 5.56 191.7 19.6 2.63 15.04 2nd 2nd 3rd 4th 11.30 TD:18.20 Assume 10 screen TD:18.35 TD:18.35 No para Assume TD:18.35	-	1st			130.6	20.4	4.46	11.03								
MW 4 th	_	2nd			-				ł							
Sampling Initial 11:08 5.56 191.7 19.6 2.63 15.04 2nd 3rd 4th 5th Sampling Sampling	7	3rd										->:40	1	1		Nolane
Sampling 10 10 10 10 10 10 10 1	MW'5	4th							ł		1	1	1			240
Sampling Sampling Some		5th							-	11.30			_			0
Initial 11:08 5.56 191.7 19.6 2.63 15.04 2nd 3rd 4th 5th Sampling		Sampling							1	}	1		1			
1st 2.63 /5.04 2nd 3rd 4th 70:18.35 5th Sampling	_	Initial	1:08	5.66	101 7	1.5		3 30 3								
2nd 3rd 4th 5th Sampling	-	1st		7.70	791. (14.6	2.63	15.04				8			-	
Sampling	, -									1	İ					
Sampling Assume	MW-4												1	}		
Sampling Assume										11 27	7	D: 18.35				Nopune
Sampling S(i) h 2									- '	1-21	Δ	Care	-			1 8
										1	- 1	10'		=		Slight adu
th of Well) - (Depth to Water = Water Height "*= One Well Volume x 5 = Gallons Purged (calculated)	h of Well) - (Depth t	Water = W	ater Height						1	- 1	1	screen	1			7 17

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

MW's 14, 22,422D were not located during sampling activities. All other wells not sampled were abandoned on 3/29/18.

		_	1
Sampling Case#	Ph/Conductance SN		
Case #1	15H101448	400 SN	Turbidity
Case #2	15E101481	4 41 14 -	201301183
Case #3	10K 101895	000 15	201301174
		100101407	201510251

Midlands Environmental Consultants, Inc. Field Personnel: BG, JF

Monitoring Well Purge And Sampling Data Job Name: Cansh 1 76 Truck Stop Call pH:

	Sampling Date(s):	4/4/18	Job Nan	ne: Cansh 176 Truck Stop	Calibration
	Sampling Case#:	_ 2	Job Numb	er: 18.62.76	pH: Please Circle)
	Well No.	Purge Sample pur		_	Dissolved Overen
ŀ		Volume Time	lemp. DO	Turbidity Post (Turbidity: Conductivity Calibrated Every 3 Months by OA M.
1		10:40 5.67	(mg/l)	(NTU) product lais to (reet):	Well Depth Water Height

Malla	T							~		_	Conduct	ivity;	W 0.0	No	
Well No.	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO		T		1	DISSONA	d Over	(es) (es) (Yes)	No No	by QA Manage
	Initial	10:40	615		(°C)	(mg/l)	Turbidity	-	Depth to (fe	eet):	Walle		Cambrated	every 3 Months	by QA Manage
	1st	10,50	5.67	171.6	19.3	2.06	(NTU)	product	initial H ₂ C	final H ₂ 0	1	Lange Heigh	t Gall	ons Purged	
	2nd	 	-			2.06	14.25				(feet)	*(feet)	**calc.		Notes
6	3rd		-			-					1			actual	
MWS	4th		+			-	-	1	1.	1	8.29-	,a			
•	5th		-						10.34	1 1	1		_		No pura
	Sampling						-		1		18.29				
	Initial	9:00	-			-		. 3 /		1	1		-		0000
	1st	7	7.37	72.5	19.9	4.52				1					
	2nd					1.32	64.11								
	3rd													+	
da	4th									·				1	
MMP	5th								11.84	2	8.29-	[_		
	Sampling								.,,		18.29				Ladon
	Initial	0:05						ļ		-		- 1			No o dos
ſ	1st	0.05	5.84	140.2	8.0	2.74					1			/00 g ab	
	2nd					2.14	46.30								1
1	3rd													-	
MW.7	4th		·					- 1	- 1	1	8.38-	1			
MW.	5th							10	0.40		18.38		_		1120
	Sampling									. }	18.38			-	Noodol
		:59	21					. 1	- 1	- 1]	Noodol
Γ	1st	. 31	7.60	74.1	8.3	3.20			ĺ	.	1	ŀ			
	2nd						18.51								
	3rd								-						
MW8	4th							9.41	9	3.29-			1		
MA	5th									8.27		_	1 -	Ala Ci	
	Sampling									'					No punge
								1:	1						≥٥٥ دىر
Vell Volume =x.047 for	vvater = Wat	er Height							1	- 1					
	X	3 for 2" well	s, or * x .66 fe	or 4" wells	**=	One Well Vol	ume x 5 = Gall							1	
				···viia. I 4	ON THE CO O		하나의 사고를 (Call								
pth of Well) - (Depth to /ell Volume ≈x.047 for	C	asing	allons	-,,	wells	S	- NO - Gan	ons Purge	ed (calculat	ted)		mpling Case# Ph		1	

0.047 0.163 0.653 1.469

Sampling Case#	Ph/Conductance SN		
Case #1	15H101448		Fuchton
Case #2	155101448	12G102878	Turbidity 20120
Case #3	15E101481	4.41.14.00	201301183
	10K 101895	00004	201301174
		101407	201510251

Midlands Environmental Consultants, Inc. Field Personnel:

Sampling Date(s):

Sampling Case#:

Monitoring Well Purge

And Sampling Data

BG, JF 4/4/18

Job Name: Coash 176 Truck Stop Job Number: 18.6276

Calibration Data for:
Calibration Successful? (Teo or No (Please Circle)

							18.	621	2		PH: Conduct	i	(GE)	r No (Please	Circle)
Well No.	Purg Volun			cond(n -						DISSONA	d O	(es)	140	
	Initial	THE RESERVE AND DESCRIPTION OF THE PERSON NAMED IN		- Jones	i) Temp		Turbidit	у	Da-II :	-	· dibidity	Conductivity	Calibrated F	Very 3 Months	by QA Manager
	1st	10:45		123.2	18.4	(mg/l)	(NTU)		Depth to (eet): O final H ₂ 0	Well Depti	Water Heigh		T MONUS	by QA Manager
	2nd	10:47	0.14	128.6		5.91	10.06		11/2	O final H ₂ 0	(leet)	*(feet)	Gallo **calc.	ons Purged	Ned
	3rd	10:48	0.)		17.8	5.32	24.41	_		1	7-17		Jaic.	actual	Notes
MW-10 RP	4th		6.47	132.6	17.6	5.04		1	9.91		TD:		1.10	1	
, .				+			249.4	4	1.11		16.68	6.77	7.10	do	
	Sampling	11.00	6.40	133.2				1				0. , ,		3.50	Purged mentions
	1st	9:03	6.16	36.3	17.5	5.19	33,26	-	1			"	5.52	3.50	Core.
	2nd			30.3	19.1	3.87	22.44	 	-	-			7.5		installed we
	3rd	-	-		+	-		1		1					
MW-11	4th					-]							
Mas	5th		-						1162		8.42-		_	1	
	Sampling								110		18.42	-] —	No old
	Initial	4:50	6.21	40.			1			1				7	No 010/
	1st		0.2	81.3	19.7	5.37	18.89			_		**			1
	2nd 3rd			-			10.07								2
MW-15	4th	-						l	1		1				
MW	5th	 							10.37	1					
	Sampling				i			1	10.31	. //	10-20			_	No purge
	Initial	10:34	5.84						.		1		_		Noodor
	1st	-	7.84	63.2	19.4	4.31			_	.,		ŀ			
	2nd						10.11				- 1			1	
.8	3rd							.	-						
MW18	4th 5th							1.	1.45				1		
	Sampling			-				- 1	1.45	[7]	1-21		_	1	Na Aura
								1				_		_	No odd
ell Volume =x,047 for	r 1" wells * x	Vater Height											_	1	No odd
oth of Well) - (Depth ell Volume =x.047 for	FDom	101 2" W	elis, or * x .66	for 4" wells, 1	** .469 for 6"	= One Well Vo	lume x 5 = Ga	llone D.							
		Casing	Gallons		WE	ns	- 30	ons Purg	ed (calculat	ed)					
	-		0.047					(8)			San	opling Case# Ph/C	onductance Su		15

0.047 2" 0.163 0.653 1.469

Sampling Case#	Ph/Cond.		- 15
Case #1	Ph/Conductance SN 15H101448	DO SN	
Case #2	155101448	12G102878	Turbidity
Case #3	15E101481	7.41.14.00	201301183
	10K 101895	000	201301174
		1.107	201510251

Midlands Environmental Consultants, Inc. Field Personnel:

Monitoring Well Purge And Sampling Data

BG, JF

Sampling Date(s): 4/4/18

Job Name: Coast 176 Truck Stop

Calibration Data for:
Calibration Successful? Cepor No (Please Circle)

Job Number: 18 · 62 76 Sampling Case#: Conductivity: Dissolved Oxygen: No

Well No.	Purge	Sample	pH(!)							-	UISSOL	Ictivity: ved Oxyger	res	No No	
	Volume	Time		cond(i)	Temp.	DO	Turbidity			7.	urbid	ity: Conduct	vity Calibrated	No Every 3 M	s by QA Manage
		9.16	5.93	76.1	(°C)	(mg/l)	(NTU)		Depth to (fe	eet):	Well De	pth Water He		Every 3 Month	s by QA Manage
	1st 2nd			10.1	19.6	4.04	32.64	produc	Initial H ₂ C	final H ₂ 0	(feet)		ישיינן Ga	llons Purgod	
	3rd				-			1	11100		2.12-	(1661)	**calc.	actual	Note
19	4th							1	14.85	1	12.12				
MW-19	5th					-		1	Eu. 4.05		مرسطار وا				
	Sampling								10.00	1_					Nobrad
		9:22					3, 4		10.80		1211-2	_			Noode
	1st	1.22	6.14	58.7	19.9	2							_	-	
	2nd		-		1	3.22	54.08				-			,	
	3rd						-		14.26	ĺ					
MH.20	4th					-			S.u. 4.0	*.				- 1	
<i>[</i> *****	5th								10.26		4.50 -				
	Sampling										14.50				No Dogo
	Initial	1.04	6.37	7.6				1							No odo
	1st		3.2.	36.8	19.1	4.03	16.22			1					-
	2nd							- 1	T				1		
.27	3rd							1	- 1	- 1					
MW.27	4th							1.		1			-44-	į	1
	Sampling							- 1	1.27		11-21				maprile
								- 1							ما ما ما ما ما
t			1.45 6	6.1	2.44				- 1						7 0 40
	2nd	39 6		4	7.2	4.81	25.43			-		14			
,	3rd				1.6	4.26	157.8		3,08						1
MW'28	4th							5.	1. 3.90				1.93		
W	5th							-			1-21	11.82	1.17	1	Marena
	Sampling 4	1.45 €	n n n		-			19	.18	- 11	1-21			_	Noches
epth of Well) - (Depth Vell Volume =x.047 for	to Water = Was		93 6	7.7 19	.0 11				1		1			1 7 2	Nobol
epth of Well) - (Depth Vell Volume =x.047 for	1" wells * x .16	er Height 3 for 2" wall.			19	.06 2	9.16						9.63	dne 2.50	
		- wells	s, or " x .66 for	4" wells, 1.46	**= 9 for 6" wells	One Well Vol	ume x 5 = Galio	ons Puras	44.				7.63	2.50	
	C	asing G	allons		· 11-0113	•		i urge	u (calculate	ed)	Г	Samultan			
		1"	0.047					\$5				Case #4	Ph/Conductance SN	00.00	

0.047 2" 0.163 0.653 1.469

		1	
Sampling Case#	Dh/D-		
Case #1	Ph/Conductance SN	DO SN	
	15H101448	1204000	Turbidity
Case #2	15E101481	120102878	201301183
Case #3	10K 101895		201301174
	10/(101895	O O D A A	2013011/4
	,	31407	401510251
		101407	201510251

IVI idlands Environmental Consultants, Inc. Field Personnel:

Monitoring Well Purge And Sampling Data

BG, JF

Job Name: Caash 176 Truck Stop Job Number: 18.6276

Sampling Date(s): 4/4/18 Sampling Case#:

Calibration Data for :
Calibration Successful? Yes or No (Please Circle)

100				_		J (tdf)	Der: 18.	6276	2		pH: Condu	ictivity;		or No (Pleas	e Circle)
Well No.	Purge Volume	Sample Time	pH(i)	cond(i) Tem		7				DISSOL	ved O	(les	IVO	
	The second second second	0: 5 d	7.01		(°C	.	Turbidit	У	Depth to (f	ent).	1	.y. Conducti	vity Calibrated	Every 3 Month	s by QA Manage
	1st		6.28	126.7	18.	in this will	10101	produc	t initial H	O final H	Well De	//6/	And Cal	lons Purged	- Manage
	2nd			-			44.06	-			0 (feet)	*(feet)	**calc.	actual	Note
IGWA .	3rd 4th			_	-			-	1					actual	
+0	5th			_	-			1	11.10		TD: 16.7	7.4			odol
	Sampling				-				,,,,	1	Assume	' '			9 440
	Initial (0	:20								1	10' Scree				
	1st	. 20	6.08	208.7	18.3	2.24		-			scree	^			
	2nd 3rd			·			16.20	-			-	-			Dup.
1.2	4th				 			-		.		=			
IGWA. R	5th				-	-		1	11.09		11-21				1
	Sampling	-				-		1	11.00	. 11					No Dung
ļ	Initial //:	5	5.54			-	-							7 -	No puny
	1st	-	5.21	42.5	19.9	5.27	16.00								odor
}	2nd			48.6	19.3	5.01	156.1					-			
TW-1	3rd 4th		-				730.1	- 1	1	1					-
-	5th				·					- 1	31-36		3.99		
	Sampling //: 2	,				-		- 1	1/.53	- 1	31-36	24.47		do	
	Initial 9:5			51.2	19.0	4.88			.			- (. ('		dry 6.0	No odal
-	1st 9:50	10	. 0	40.2	19.0	5.95	34.05			.			19.94	6.0	
7.	2nd		10	48.7	18.4	5.66	11.21					il	1 6 1 1		
TW-2	3rd 4th		-				38.92			1					
	5th								0.05				4.23		
	Sampling 10:13	20 /						1,		.	31-36	25.95	•	done	No odol
epth of Weli) - (Depth to Vell Volume =x.047 for	o Water = Water L	0.	26	56.4 /	8.1	5.32			- 1					ar ge	No odol
epth of Well) - (Depth t Vell Volume =x.047 for	1" wells * x .163 fo	eight r 2" welle	Dr. t		-	1.76	27.33		- 1		1		21.15	5.50	
	C		⊶ × .56 f	or 4" wells, 1.	469 for 6" w	···= One Well Vo	plume x 5 = Gal	lons Puras	od (00'			7.			
	Casir 1"	19 6	Illons 047						· ucaiculat	ed)	Ī	Sampling Case#			

0.047 0.163 0.653 1.469

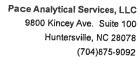
Sampling Case# Ph/Conductance SN DO SN Turbidity Case #1 15H101448 12G102878 201301183 Case #2 15E101481 14H103098 201301174 Case #3 10K 101895 08B101407 20150051			1	ł
Case #2 15E101481 14H103098 201301174 Case #3 10K 101895 000000000000000000000000000000000000	Sampling Case#	Ph/Conductor		
Case #3 10K 101895 104H103098 201301174		15H101449		Tueblett
10K 101895 103098 201301174		15E101481	12G102878	201301192
088101407 20154005	Case #3	10K 101895	000	201301174
12019102511			088101407	201510251

Midlands	
Environmental	
Consultants, Inc.	
Sampling Date(s): 4/1/18	

|Sampling Case#:

Monitoring Well Purge Job Number: 18-6276 Cali PH:

Calibration Data for :
Calibration Successful? Year No (Please Circle)


Conductivity:

	Initial				(°C)	DO (mg/l)	Turbidity (NTU)		Depth to (fe	et):	Well Dent	h Water Height	Evillated EA	NO No ery 3 Months by	QA Manag
Dupit Blanks	1st 2nd	Dup-1	(I GWA	P 10:2	4			product	Initial H ₂ O	final H ₂ 0	(feet)	*(feet)	Gallon **calc.	s Purged	Note
12.0	3rd	Digiz					-			1				actual	11018
Blanks	4th					-				}		1 1			
10 %	5th	F.8.0	11:160				 							1	1
	Sampling	- 3.6	11.40		3@11:0	2		:				F		}	1
	Initial			-					1			1		1	
	1st											1			
1	2nd										-				
ļ	3rd		-					1	- 1			42			
,	4th							1	ſ.	`.		1			
}	5th							1		. 1					
	Sampling							- 1		1		<u> </u>		1	
	Initial							1					I		
	1st									- 1	.	1	1	1	
NSW-1	2nd	672	Palmetto											1	
10.2m	3rd	N. 2 F.	raimetto	51. 0	14:00				- 1		- 1				
L	4th				11.00						1		[
	5th		Dup@1	4:61								1		- 1	
	Sampling	-	20					1	- 1	1	- 1	-			
	Initial		F3.0	14:15	TR	@ 14:15			-		{				
	1st					14:15	A SECTION					ŀ			
	2nd														
	3rd							.		-					
	4th									1	1	1		T	
ys [5th									- 1		1	1		
	2000									.				1	
oth of Well) - (Depth to	Sampling	, -													

Casing	Gallons
1"	0.047
2"	0.163
6"	0.653
6	1.469

		ł	1
Sampling Case# Case #1 Case #2 Case #3	Ph/Conductance SN 15H101448 15E101481 10K 101895	12G102878 14H103098	Turbidity 201301183 201301174 201510251

Midla ** Env	anas Ironmenta	Inc.					Mon	itorii	ıg W	ell 1	Purge				
Field Personnel:	nsultants,	Inc.					An	d Sai	mpli	ng D)ata				1
Sampling Date(s):	4-1	18-18			-	Job Name:	Coasi	9/76			Cal	ibration Dat	a for :	_	
Sampling Case#:						Job Number:				_	Conduct	ivitv [.]	Yes or I	No (Please (No No	Circle)
Well No.	Purge Volume	Sample	pH(i)	cond(i)	Temp.	Do	fication	T			Turbidity	d Oxygen: Conductivity	Yes Calibrated Ev		y QA Manager
WSW-1	Initial	Time	7	0	(°C)	(mg/l)	Turbidity (NTU)		initial H ₂ C		Well Depti	Water Heigh		s Purged	Notes
	2nd 3rd	2623	E. Paln Scotbin	10HO ST.	Florence	,						(1003)	caic.	actual	- Hotes
		@ 11:45	1 *			Well 15	right	behind	offi	e 6	ulding.				. 54
	Sampling Initial											53			læ.
DUP	1st 2nd	11:45													
i	3rd 4th														
	5th Sampling														
FB	Initial 1st														
	2nd 3rd	11:50													
	4th 5th													· 	
	Sampling Initial											122			
TB		11:50													
	4th) >=
Depth of Well) - (Depth	Sampling											1949		i	
Well Volume =x.047 fc	or 1" wells * x	rater Height .163 for 2" wei	ils, or * x .66	for 4" wells, 1	.469 for 6" we	= One Well Vo	olume x 5 = G	allons Purg	ed (calcu	ated)		Samul			
		Casing 1" 2" 4"	0.047 0.163 0.653							•	-	Case #1 Case #2	15H101448 15E101481 10K 101895	DO SN 12G102878 14H103098 08B101407	Turbidity 201301183 201301174

April 06, 2018

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on March 30, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Trey Carter

trey.carter@pacelabs.com

The Ct

(704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92379011001	MW-17	Water	03/29/18 10:42	03/30/18 11:36
92379011002	MW-23	Water	03/29/18 10:48	03/30/18 11:36
92379011003	MW-24	Water	03/29/18 10:15	03/30/18 11:36
92379011004	MW-25	Water	03/29/18 10:25	03/30/18 11:36
92379011005	MW-26	Water	03/29/18 10:30	03/30/18 11:36
92379011006	DUP1	Water	03/29/18 10:44	03/30/18 11:36
92379011007	FIELD BLANK	Water	03/29/18 10:52	03/30/18 11:36
92379011008	TRIP BLANK	Water	03/29/18 10:54	03/30/18 11:36

SAMPLE ANALYTE COUNT

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92379011001	MW-17	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
92379011002	MW-23	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379011003	MW-24	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379011004	MW-25	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379011005	MW-26	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379011006	DUP1	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379011007	FIELD BLANK	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379011008	TRIP BLANK	EPA 8260	GAW	20	PASI-C

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Eab ID.	92379011001	Collected:	03/29/18	8 10:42	Received: 03	/30/18 11:36 N	fatrix: Water	
		Report						
Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011			
5.1	ug/L	0.19	0.19	10	04/04/18 10:34	04/05/18 08:14	106-93-4	
0	%	60-140		10	04/04/18 10:34	04/05/18 08:14	301-79-56	S4
Analytical I	Method: EPA 8	260						
3590	ug/L	2500	1920	25		04/06/18 03:45	75-85-4	
ND	ug/L	250	85.0					
1720	ug/L	125						
ND	ug/L	2500						
ND	ug/L	2500						
ND	ug/L	1250						
ND	ug/L	125	45.0					
ND	ug/L	125						
ND	ug/L	5000						
1020	ug/L	125						
ND	•							
81.5J	-							
449	ug/L	125						
2700	ug/L	125						
5830	ug/L	125						
3770	-	250						
2050	ug/L	125	40.0	25				
103	%	70-130		25		04/06/48 00:45	400.00.4	
·								
	Analytical 5.1 0 Analytical 3590 ND 1720 ND ND ND ND ND ND ND ND ND 449 2700 5830 3770	Analytical Method: EPA 8 5.1 ug/L 0 % Analytical Method: EPA 8 3590 ug/L ND ug/L 1720 ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L AD u	Results Units Limit Analytical Method: EPA 8011 Prepara 5.1 ug/L 0.19 0 % 60-140 Analytical Method: EPA 8260 2500 3590 ug/L 2500 ND ug/L 250 1720 ug/L 125 ND ug/L 2500 ND ug/L 2500 ND ug/L 1250 ND ug/L 125 ND ug/L 125 ND ug/L 125 ND ug/L 125 ND ug/L 125 ND ug/L 125 ND ug/L 125 ND ug/L 125 ND ug/L 125 449 ug/L 125 5830 ug/L 125 3770 ug/L 250 2050 ug/L 125 103 <td< td=""><td>Results Units Limit MDL Analytical Method: EPA 8011 Preparation Method 5.1 ug/L 0.19 0.19 0 % 60-140 Analytical Method: EPA 8260 3590 ug/L 2500 1920 ND ug/L 250 85.0 1720 ug/L 125 42.5 ND ug/L 2500 802 ND ug/L 2500 802 ND ug/L 2500 1440 ND ug/L 1250 182 ND ug/L 125 45.0 ND ug/L 125 42.5 ND ug/L 125 40.0 ND ug/L 125 40.0 ND ug/L 125 40.0 81.5J ug/L 125 40.0 2700 ug/L 125 40.0 5830 ug/L 125 40.0 <td>Results Units Limit MDL DF Analytical Method: EPA 8011 Preparation Method: EPA 5.1 ug/L 0.19 0.19 10 0 % 60-140 10 Analytical Method: EPA 8260 40.19 10 3590 ug/L 2500 1920 25 ND ug/L 250 85.0 25 ND ug/L 250 85.0 25 ND ug/L 125 42.5 25 ND ug/L 2500 802 25 ND ug/L 2500 1440 25 ND ug/L 1250 182 25 ND ug/L 125 45.0 25 ND ug/L 125 42.5 25 ND ug/L 125 40.0 25 ND ug/L 125 40.0 25 ND ug/L 125 40.0</td><td> Results</td><td> Results</td><td>Results Units Report Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 8011 Preparation Method: EPA 8011 5.1 ug/L 0.19 0.19 10 04/04/18 10:34 04/05/18 08:14 106-93-4 0 % 60-140 10 04/04/18 10:34 04/05/18 08:14 301-79-56 Analytical Method: EPA 8260 3590 ug/L 2500 1920 25 04/06/18 03:45 75-85-4 ND ug/L 2500 85.0 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 762-75-4 </td></td></td<>	Results Units Limit MDL Analytical Method: EPA 8011 Preparation Method 5.1 ug/L 0.19 0.19 0 % 60-140 Analytical Method: EPA 8260 3590 ug/L 2500 1920 ND ug/L 250 85.0 1720 ug/L 125 42.5 ND ug/L 2500 802 ND ug/L 2500 802 ND ug/L 2500 1440 ND ug/L 1250 182 ND ug/L 125 45.0 ND ug/L 125 42.5 ND ug/L 125 40.0 ND ug/L 125 40.0 ND ug/L 125 40.0 81.5J ug/L 125 40.0 2700 ug/L 125 40.0 5830 ug/L 125 40.0 <td>Results Units Limit MDL DF Analytical Method: EPA 8011 Preparation Method: EPA 5.1 ug/L 0.19 0.19 10 0 % 60-140 10 Analytical Method: EPA 8260 40.19 10 3590 ug/L 2500 1920 25 ND ug/L 250 85.0 25 ND ug/L 250 85.0 25 ND ug/L 125 42.5 25 ND ug/L 2500 802 25 ND ug/L 2500 1440 25 ND ug/L 1250 182 25 ND ug/L 125 45.0 25 ND ug/L 125 42.5 25 ND ug/L 125 40.0 25 ND ug/L 125 40.0 25 ND ug/L 125 40.0</td> <td> Results</td> <td> Results</td> <td>Results Units Report Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 8011 Preparation Method: EPA 8011 5.1 ug/L 0.19 0.19 10 04/04/18 10:34 04/05/18 08:14 106-93-4 0 % 60-140 10 04/04/18 10:34 04/05/18 08:14 301-79-56 Analytical Method: EPA 8260 3590 ug/L 2500 1920 25 04/06/18 03:45 75-85-4 ND ug/L 2500 85.0 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 762-75-4 </td>	Results Units Limit MDL DF Analytical Method: EPA 8011 Preparation Method: EPA 5.1 ug/L 0.19 0.19 10 0 % 60-140 10 Analytical Method: EPA 8260 40.19 10 3590 ug/L 2500 1920 25 ND ug/L 250 85.0 25 ND ug/L 250 85.0 25 ND ug/L 125 42.5 25 ND ug/L 2500 802 25 ND ug/L 2500 1440 25 ND ug/L 1250 182 25 ND ug/L 125 45.0 25 ND ug/L 125 42.5 25 ND ug/L 125 40.0 25 ND ug/L 125 40.0 25 ND ug/L 125 40.0	Results	Results	Results Units Report Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 8011 Preparation Method: EPA 8011 5.1 ug/L 0.19 0.19 10 04/04/18 10:34 04/05/18 08:14 106-93-4 0 % 60-140 10 04/04/18 10:34 04/05/18 08:14 301-79-56 Analytical Method: EPA 8260 3590 ug/L 2500 1920 25 04/06/18 03:45 75-85-4 ND ug/L 2500 85.0 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 994-05-8 1720 ug/L 125 42.5 25 04/06/18 03:45 762-75-4

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Sample: MW-23	Lab ID:	92379011002	Collected:	03/29/1	B 10:48	Received: 03	/30/18 11:36 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/02/18 15:39	04/03/18 09:58	106-93-4	
1-Chloro-2-bromopropane (S)	125	%	60-140		1	04/02/18 15:39	04/03/18 09:58	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/01/18 12:23	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/01/18 12:23		
Benzene	ND	ug/L	5.0	1.7	1		04/01/18 12:23		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/01/18 12:23		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/01/18 12:23		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/01/18 12:23		L2
,2-Dichloroethane	ND	ug/L	5.0	1.8	1 :		04/01/18 12:23		L2
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/01/18 12:23		
Ethanol	ND	ug/L	200	131	1			64-17-5	
thylbenzene	ND	ug/L	5.0	1.6	1		04/01/18 12:23		
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/01/18 12:23		
lethyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/01/18 12:23		
laphthalene	ND	ug/L	5.0	2.0	1		04/01/18 12:23		
oluene	ND	ug/L	5.0	1.6	1		04/01/18 12:23		
ylene (Total)	ND	ug/L	5.0	5.0	1		04/01/18 12:23		
&p-Xylene	ND	ug/L	10.0	3.1	1		04/01/18 12:23		
-Xylene	ND	ug/L	5.0	1.6	1		04/01/18 12:23		
urrogates		ŭ			•		0 110 12.23	JJ-47-U	
Bromofluorobenzene (S)	98	%	70-130		1		04/01/18 12:23	460-00-4	
2-Dichloroethane-d4 (S)	103	%	70-130		1		04/01/18 12:23		
oluene-d8 (S)	103	%	70-130		1		04/01/18 12:23		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Sample: MW-24	Lab ID:	92379011003	Collected	: 03/29/1	8 10:15	Received: 03	/30/18 11:36 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.019	1	04/02/18 15:39	04/03/18 10:16	106-93-4	
1-Chloro-2-bromopropane (S)	147	%	60-140		1	04/02/18 15:39	04/03/18 10:16	301-79-56	S3
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/01/18 12:39	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/01/18 12:39		
Benzene	ND	ug/L	5.0	1.7	1		04/01/18 12:39		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/01/18 12:39		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/01/18 12:39		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/01/18 12:39		L2
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/01/18 12:39		LZ
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/01/18 12:39		
Ethanol	ND	ug/L	200	131	1			64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/01/18 12:39		
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/01/18 12:39		
fethyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/01/18 12:39		
laphthalene	ND	ug/L	5.0	2.0	1		04/01/18 12:39		
oluene	ND	ug/L	5.0	1.6	1			108-88-3	
ylene (Total)	ND	ug/L	5.0	5.0	1		04/01/18 12:39	_	
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/01/18 12:39		
-Xylene	ND	ug/L	5.0	1.6	1		04/01/18 12:39		
urrogates									
Bromofluorobenzene (S)	99	%	70-130		1		04/01/18 12:39	460-00-4	
2-Dichloroethane-d4 (S)	102	%	70-130		1		04/01/18 12:39		
oluene-d8 (S)	102	%	70-130		1		04/01/18 12:39		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Sample: MW-25	Lab ID:	92379011004	Collected:	03/29/18	3 10:25	Received: 03	/30/18 11:36 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.019	1	04/02/18 15:39	04/03/18 10:34	106-93-4	
1-Chloro-2-bromopropane (S)	131	%	60-140		1	04/02/18 15:39	04/03/18 10:34	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/01/18 12:55	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/01/18 12:55		
Benzene	ND	ug/L	5.0	1.7	1		04/01/18 12:55		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/01/18 12:55		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/01/18 12:55		
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/01/18 12:55		L2
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/01/18 12:55		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/01/18 12:55		
Ethanol	ND	ug/L	200	131	1		04/01/18 12:55		
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/01/18 12:55		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/01/18 12:55		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/01/18 12:55		
laphthalene	ND	ug/L	5.0	2.0	1		04/01/18 12:55		
oluene	ND	ug/L	5.0	1.6	1		04/01/18 12:55		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/01/18 12:55		
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/01/18 12:55		
-Xylene	ND	ug/L	5.0	1.6	1		04/01/18 12:55		
Gurrogates		-			•		0 0 10 12.00	30-41-0	
-Bromofluorobenzene (S)	97	%	70-130		1		04/01/18 12:55	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1			17060-07-0	
oluene-d8 (S)	102	%	70-130		1		04/01/18 12:55		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

Date: 04/06/2018 03:39 PM

92379011

Sample: MW-26	Lab ID:	92379011005	Collected:	03/29/18	10:30	Received: 03	/30/18 11:36	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	d: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/02/18 15:39	04/03/18 10:53	3 106-93-4	
1-Chloro-2-bromopropane (S)	151	%	60-140		1	04/02/18 15:39	04/03/18 10:53	301-79-56	S3
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/01/18 13:11	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/01/18 13:11		
Benzene	ND	ug/L	5.0	1.7	1		04/01/18 13:11		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/01/18 13:11		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/01/18 13:11		
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/01/18 13:11		L2
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/01/18 13:11		LZ
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/01/18 13:11		
Ethanol	ND	ug/L	200	131	1		04/01/18 13:11		
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/01/18 13:11	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/01/18 13:11		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/01/18 13:11		
Naphthalene	ND	ug/L	5.0	2.0	1		04/01/18 13:11		
Toluene	ND	ug/L	5.0	1.6	1		04/01/18 13:11		
(yiene (Total)	ND	ug/L	5.0	5.0	1		04/01/18 13:11	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/01/18 13:11		
-Xylene	ND	ug/L	5.0	1.6	1		04/01/18 13:11		
Surrogates		-					0-701/10 13.11	30-47-0	
-Bromofluorobenzene (S)	98	%	70-130		1		04/01/18 13:11	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/01/18 13:11	17060-07-0	
oluene-d8 (S)	102	%	70-130		1			2037-26-5	

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

Date: 04/06/2018 03:39 PM

92379011

Sample: DUP1	Lab ID:	92379011006	Collected	03/29/1	8 10:44	Received: 03	/30/18 11:36 N	Aatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	4.3	ug/L	0.20	0.20	10	04/04/18 10:34	04/05/18 08:32	? 106-93-4	
1-Chloro-2-bromopropane (S)	0	%	60-140		10	04/04/18 10:34	04/05/18 08:32	301-79-56	S4
8260 MSV	Analytical	Method: EPA 82	260						
ert-Amyl Alcohol	1850	ug/L	1000	768	10		04/05/18 17:57	75.95.4	
ert-Amylmethyl ether	ND	ug/L	100	34.0	10		04/05/18 17:57		
Benzene	1290	ug/L	50.0	17.0	10		04/05/18 17:57		
3,3-Dimethyl-1-Butanol	ND	ug/L	1000	321	10		04/05/18 17:57		
ert-Butyl Alcohol	ND	ug/L	1000	577	10		04/05/18 17:57		
ert-Butyl Formate	ND	ug/L	500	73.0	10		04/05/18 17:57		
,2-Dichloroethane	ND	ug/L	50.0	18.0	10		04/05/18 17:57		
Diisopropyl ether	ND	ug/L	50.0	17.0	10		04/05/18 17:57		
thanol	ND	ug/L	2000	1310	10		04/05/18 17:57		
thylbenzene	677	ug/L	50.0	16.0	10		04/05/18 17:57		
thyl-tert-butyl ether	ND	ug/L	100	36.0	10		04/05/18 17:57		
lethyl-tert-butyl ether	66.9	ug/L	50.0	17.0	10		04/05/18 17:57		
aphthalene	352	ug/L	50.0	20.0	10		04/05/18 17:57		
oluene	1590	ug/L	50.0	16.0	10		04/05/18 17:57		
ylene (Total)	4050	ug/L	50.0	50.0	10				
&p-Xylene	2600	ug/L	100	31.0	10		04/05/18 17:57 04/05/18 17:57		
Xylene	1450	ug/L	50.0	16.0	10				
urrogates			22.0		10		04/05/18 17:57	95-47-6	
Bromofluorobenzene (S)	98	%	70-130		10		04/05/18 17:57	460.00.4	
2-Dichloroethane-d4 (S)	98	%	70-130		10		04/05/18 17:57		
luene-d8 (S)	99	%	70-130		10		04/05/18 17:57		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Sample: FIELD BLANK	Lab ID:	92379011007	Collected	: 03/29/18	10:52	Received: 03	/30/18 11:36 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Metho	d: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/02/18 15:40	04/03/18 11:29	106-93-4	
1-Chioro-2-bromopropane (S)	128	%	60-140		1	04/02/18 15:40	04/03/18 11:29	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/01/18 04:51	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/01/18 04:51		
Benzene	ND	ug/L	5.0	1.7	1		04/01/18 04:51		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/01/18 04:51		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/01/18 04:51		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/01/18 04:51		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/01/18 04:51		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/01/18 04:51		
thanol	ND	ug/L	200	131	1		04/01/18 04:51		
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/01/18 04:51		
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/01/18 04:51		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/01/18 04:51		
laphthalene	ND	ug/L	5.0	2.0	1		04/01/18 04:51		
oluene	ND	ug/L	5.0	1.6	1		04/01/18 04:51		
ylene (Total)	ND	ug/L	5.0	5.0	1				
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/01/18 04:51	,	
-Xylene	ND	ug/L	5.0	1.6	1		04/01/18 04:51		
urrogates		-			•		0770111007.51	30-47-D	
-Bromofluorobenzene (S)	98	%	70-130		1		04/01/18 04:51	460-00-4	
2-Dichloroethane-d4 (S)	101	%	70-130		1		04/01/18 04:51		
oluene-d8 (S)	100	%	70-130		1		04/01/18 04:51		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

Date: 04/06/2018 03:39 PM

92379011

Sample: TRIP BLANK	Lab ID:	92379011008	Collected	: 03/29/1	8 10:54	Received: 03	3/30/18 11:36	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/01/18 05:0	7 75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/01/18 05:0		
Benzene	ND	ug/L	5.0	1.7	1		04/01/18 05:0		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/01/18 05:0		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/01/18 05:0		
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/01/18 05:0		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/01/18 05:0		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/01/18 05:0		
Ethanol	ND	ug/L	200	131	1		04/01/18 05:0		
Ethylbenzene	ND	ug/L	5.0	1,6	1		04/01/18 05:07		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/01/18 05:07		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/01/18 05:07		
Naphthalene	ND	ug/L	5.0	2.0	1		04/01/18 05:07		
Toluene	ND	ug/L	5.0	1.6	1		04/01/18 05:07		
Xylene (Total)	ND	ug/L	5.0	5.0	1		04/01/18 05:07		
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/01/18 05:07		
o-Xylene	ND	ug/L	5.0	1.6	1		04/01/18 05:07		
Surrogates							04/01/10 05:0/	93-47-0	
l-Bromofluorobenzene (S)	98	%	70-130		1		04/01/18 05:07	460-00-4	
l,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/01/18 05:07		
Toluene-d8 (S)	101	%	70-130		1		04/01/18 05:07		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

QC Batch:

404378

Analysis Method:

EPA 8260

QC Batch Method:

Date: 04/06/2018 03:39 PM

EPA 8260

Analysis Description:

8260 MSV SC

Associated Lab Samples:

92379011007, 92379011008

METHOD BLANK: 2243453

Matrix: Water

Associated Lab Samples: 92379011007, 92379011008

	020/30/100/, 923/30/1006					
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	03/31/18 22:24	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	03/31/18 22:24	
Benzene	ug/L	ND	5.0	1.7	03/31/18 22:24	
Diisopropyl ether	ug/L	ND	5.0	1.7	03/31/18 22:24	
Ethanol	ug/L	ND	200	131	03/31/18 22:24	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	03/31/18 22:24	
Ethylbenzene	ug/L	ND	5.0	1.6	03/31/18 22:24	
m&p-Xylene	ug/L	ND	10.0	3.1	03/31/18 22:24	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	03/31/18 22:24	
Naphthalene	ug/L	ND	5.0	2.0	03/31/18 22:24	
o-Xylene	ug/L	ND	5.0	1.6	03/31/18 22:24	
ert-Amyl Alcohol	ug/L	ND	100	76.8	03/31/18 22:24	
ert-Amylmethyl ether	ug/L	ND	10.0	3.4	03/31/18 22:24	
ert-Butyl Alcohol	ug/L	ND	100	57.7	03/31/18 22:24	
ert-Butyl Formate	ug/L	ND	50.0	7.3	03/31/18 22:24	
oluene	ug/L	ND	5.0	1.6	03/31/18 22:24	
(ylene (Total)	ug/L	ND	5.0	5.0	03/31/18 22:24	
,2-Dichloroethane-d4 (S)	%	99	70-130		03/31/18 22:24	
-Bromofluorobenzene (S)	%	98	70-130		03/31/18 22:24	
oluene-d8 (S)	%	102	70-130		03/31/18 22:24	

LABORATORY CONTROL SAMPLE:	2243454					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	49.9	100	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	974	97	70-130	
Benzene	ug/L	50	51.2	102	70-130	
Diisopropyl ether	ug/L	50	46.4	93	70-130	
Ethanol	ug/L	2000	1510	76	70-130	
Ethyl-tert-butyl ether	ug/L	100	92.4	92	70-130	
Ethylbenzene	ug/L	50	50.3	101	70-130	
ո&p-Xylene	ug/L	100	103	103	70-130	
Methyl-tert-butyl ether	ug/L	50	46.0	92	70-130	
Naphthalene	ug/L	50	49.1	98	70-130	
o-Xylene	ug/L	50	51.5	103	70-130	
ert-Amyl Alcohol	ug/L	1000	958	96	70-130	
ert-Amylmethyl ether	ug/L	100	98.9	99	70-130	
ert-Butyl Alcohol	ug/L	500	500	100	70-130	
ert-Butyl Formate	ug/L	400	355	89	70-130	
oluene	ug/L	50	49.6	99	70-130	

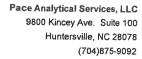
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011


LABORATORY CONTROL SAMPLE:	2243454					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Xylene (Total)	ug/L	150	154	103	70-130	
1,2-Dichloroethane-d4 (S)	%			97	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	2243456						
Parameter	Units	92379071002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	22.5	113	70-130	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	410	102	70-130	
Benzene	ug/L	2.1J	20	25.7	118	70-130	
Diisopropyl ether	ug/L	ND	20	20.9	103	70-130	
Ethanol	ug/L	ND	800	816	102	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	41.0	103	70-130	
Ethylbenzene	ug/L	ND	20	24.1	115	70-130	
n&p-Xylene	ug/L	ND	40	47.6	119	70-130	
Methyl-tert-butyl ether	ug/L	ND	20	20.7	104	70-130	
Naphthalene	ug/L	ND	20	21.6	107	70-130	
p-Xylene	ug/L	ND	20	23.1	115	70-130	
ert-Amyl Alcohol	ug/L	ND	400	426	107	70-130	
ert-Amylmethyl ether	ug/L	ND	40	43.5	109	70-130	
ert-Butyl Alcohol	ug/L	ND	200	273	137	70-130 M1	
ert-Butyl Formate	ug/L	ND	160	ND	3	70-130 M1,	DE
oluene	ug/L	ND	20	22.6	113	70-130 MT,	-5
(ylene (Tota!)	ug/L	ND	60	70.7	118	70-130	
,2-Dichloroethane-d4 (S)	%		•	70.7	102	70-130	
-Bromofluorobenzene (S)	%				99	70-130 70-130	
oluene-d8 (S)	%				100	70-130 70-130	

SAMPLE DUPLICATE: 2243455						
Parameter	Units	92379071001 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30)
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	1
Methyl-tert-butyl ether	ug/L	ND	ND		30	ı
Naphthalene	ug/L	ND	ND		30	
p-Xylene	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Date: 04/06/2018 03:39 PM

SAMPLE DUPLICATE: 2243455						
Parameter	Units	92379071001 Result	Dup Result	RPD	Max RPD	Qualifiers
tert-Amylmethyl ether	ug/L	ND	ND		30	<u> </u>
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	104	106	2	00	,
4-Bromofluorobenzene (S)	%	98	98	ō		
Toluene-d8 (S)	%	102	101	1		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

QC Batch:

404383

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV SC

Associated Lab Samples:

92379011002, 92379011003, 92379011004, 92379011005

METHOD BLANK: 2243477

Matrix: Water

Associated Lab Samples: 92379011002, 92379011003, 92379011004, 92379011005

Parameter	Units	Blank Result	Reporting Limit	MDL	A	
1,2-Dichloroethane					Analyzed	Qualifiers
	ug/L	ND	5.0	1.8	04/01/18 09:42	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/01/18 09:42	
Benzene	ug/L	ND	5.0	1.7	04/01/18 09:42	,
Diisopropyl ether	ug/L	ND	5.0	1.7	04/01/18 09:42	
Ethanol	ug/L	ND	200	131	04/01/18 09:42	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/01/18 09:42	
Ethylbenzene	ug/L	ND	5.0	1.6	04/01/18 09:42	
m&p-Xylene	ug/L	ND	10.0	3.1	04/01/18 09:42	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/01/18 09:42	
Naphthalene	ug/L	ND	5.0	2.0	04/01/18 09:42	
o-Xylene	ug/L	ND	5.0	1.6		
tert-Amyl Alcohol	ug/L	ND	100		04/01/18 09:42	
tert-Amylmethyl ether	ug/L	ND		76.8	04/01/18 09:42	
tert-Butyl Alcohol	ug/L	ND	10.0	3.4	04/01/18 09:42	
tert-Butyl Formate	-		100	57.7	04/01/18 09:42	
Toluene	ug/L	ND	50.0	7.3	04/01/18 09:42	
Xylene (Total)	ug/L	ND	5.0	1.6	04/01/18 09:42	
	ug/L	ND	5.0	5.0	04/01/18 09:42	
1,2-Dichloroethane-d4 (S)	%	100	70-130		04/01/18 09:42	
4-Bromofluorobenzene (S)	%	98	70-130		04/01/18 09:42	
Toluene-d8 (S)	%	101	70-130		04/01/18 09:42	

LABORATORY CONTROL SAMPLE:	2243478					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	51.5	103	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	975	97	70-130	
Benzene	ug/L	50	52.8	106	70-130	
Diisopropyl ether	ug/L	50	48.2	96	70-130	
Ethanol	ug/L	2000	1820	91	70-130	
Ethyl-tert-butyl ether	ug/L	100	95.4	95	70-130	
Ethylbenzene	ug/L	50	51.8	104	70-130	
m&p-Xylene	ug/L	100	106	106	70-130	
Methyl-tert-butyl ether	ug/L	50	47.8	96	70-130	
Naphthalene	ug/L	50	49.0	98	70-130	
o-Xylene	ug/L	50	53.0	106	70-130	
tert-Amyl Alcohol	ug/L	1000	963	96	70-130	
tert-Amylmethyl ether	ug/L	100	101	101	70-130	
tert-Butyl Alcohol	ug/L	500	538	108	70-130	
tert-Butyl Formate	ug/L	400	271	68	70-130 L2)
Toluene	ug/L	50	50.8	102	70-130	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

100

70-130

Project:

COASTAL 76 TRUCK STOP 17-6276

%

Pace Project No.: 92379011

LABORATORY CONTROL SAMPLE: 2243478 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Xylene (Total) ug/L 150 159 106 70-130 1,2-Dichloroethane-d4 (S) % 100 70-130 4-Bromofluorobenzene (S) % 100 70-130 Toluene-d8 (S)

MATRIX SPIKE SAMPLE:	2243480						
Parameter	Units	92378814024 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits (Qualifiers
1,2-Dichloroethane	ug/L	ND	20	22.5	112	70-130	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	396	99	70-130	
Benzene	ug/L	ND	20	23.4	117	70-130	
Diisopropyl ether	ug/L	ND	20	20.8	104	70-130	
Ethanol	ug/L	ND	800	803	100	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	42.9	107	70-130	
Ethylbenzene	ug/L	ND	20	22.5	113	70-130	
m&p-Xylene	ug/L	ND	40	46.0	115	70-130	
Methyl-tert-butyl ether	ug/L	ND	20	20.8	104	70-130	
Naphthalene	ug/L	ND	20	20.0	100	70-130	
o-Xylene	ug/L	ND	20	22.4	112	70-130	
tert-Amyl Alcohol	ug/L	ND	400	418	105	70-130 70-130	
tert-Amylmethyl ether	ug/L	ND	40	44.8	112	70-130 70-130	
tert-Butyl Alcohol	ug/L	ND	200	276	138	·	
ert-Butyl Formate	ug/L	ND	160	ND	4	70-130 M1	
Toluene	ug/L	ND	20	22.3	111	70-130 M0,F	'5
Kylene (Total)	ug/L	ND	60	68.4		70-130	
,2-Dichloroethane-d4 (S)	%	110	00	00.4	114	70-130	
4-Bromofluorobenzene (S)	%				104	70-130	
Toluene-d8 (S)	%				99	70-130	
	/0				100	70-130	

SAMPLE DUPLICATE: 2243479						
Parameter	Units	92378814023 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND -		3	<u> </u>
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		3(
Benzene	ug/L	ND	ND		30	_
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xylene	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 9

Date: 04/06/2018 03:39 PM

92379011

Parameter	Units	92378814023 Result	Dup Result	DDD	Max	
- Cramotor			Result	RPD	RPD	Qualifiers
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	103	101	3	00	
4-Bromofluorobenzene (S)	%	98	98	0		
Toluene-d8 (S)	%	103	99	4		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Date: 04/06/2018 03:39 PM

QC Batch:

404911

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

Associated Lab Samples: 92379011006

8260 MSV SC

METHOD BLANK: 2246290

11006

Matrix: Water

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/05/18 09:10	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/05/18 09:10	
Benzene	ug/L	ND	5.0	1.7	04/05/18 09:10	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/05/18 09:10	
Ethanol	ug/L	ND	200	131	04/05/18 09:10	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/05/18 09:10	
Ethylbenzene	ug/L	ND	5.0	1.6	04/05/18 09:10	
m&p-Xylene	ug/L	ND	10.0	3.1	04/05/18 09:10	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/05/18 09:10	
Naphthalene	ug/L	ND	5.0	2.0	04/05/18 09:10	
o-Xylene	ug/L	ND	5.0	1.6	04/05/18 09:10	
tert-Amyl Alcohol	ug/L	ND	100	76.8	04/05/18 09:10	
tert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/05/18 09:10	
ert-Butyl Alcoholi	ug/L	ND	100	57.7	04/05/18 09:10	
ert-Butyl Formate	ug/L	ND	50.0	7.3	04/05/18 09:10	
Toluene	ug/L	ND	5.0	1.6	04/05/18 09:10	
(Yotal)	ug/L	ND	5.0	5.0	04/05/18 09:10	
1,2-Dichloroethane-d4 (S)	%	102	70-130		04/05/18 09:10	
4-Bromofluorobenzene (S)	%	105	70-130		04/05/18 09:10	
Toluene-d8 (S)	%	107	70-130		04/05/18 09:10	

LABORATORY CONTROL SAMPLE:	2246291					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	52.5	105	70-130	
,3-Dimethyl-1-Butanol	ug/L	1000	865	86	70-130 1	1σ
enzene	ug/L	50	54.8	110	70-130	. 5
sopropyl ether	ug/L	50	56.4	113	70-130	
nanol	ug/L	2000	1910	95	70-130	
yl-tert-butyl ether	ug/L	100	109	109	70-130	
ylbenzene	ug/L	50	50.4	101	70-130	
p-Xylene	ug/L	100	101	101	70-130	
hyl-tert-butyl ether	ug/L	50	55.5	111	70-130	
phthalene	ug/L	50	54.0	108	70-130	
ylene	ug/L	50	52.2	104	70-130	
Amyl Alcohol	ug/L	1000	910	91	70-130 1	q
Amylmethyl ether	ug/L	100	109	109	70-130	•
-Butyl Alcohol	ug/L	500	537	107	70-130	
-Butyl Formate	ug/L	400	309	77	70-130 1	α
uene	ug/L	50	49.9	100	70-130	0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Xylene (Total) 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S)	ug/L % % %	150	153	102 101 100 97	70-130 70-130 70-130 70-130	
MATRIX SPIKE SAMPLE:	2246293					
Description		9237901000	3 Spike	MS	MS	% Rec

MATRIX SPIKE SAMPLE:	2246293						
Parameter	Units	92379010003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	21.6	108	70-130	N
3,3-Dimethyl-1-Butanol	ug/L	ND	400	427	107	70-130	
Benzene	ug/L	ND	20	24.9	125	70-130	
Diisopropyl ether	ug/L	ND	20	21.4	107	70-130	
Ethanol	ug/L	ND	800	838	105	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	42.5	106	70-130	
Ethylbenzene	ug/L	ND	20	25.0	125	70-130 70-130	
m&p-Xylene	ug/L	ND	40	51.4	128	70-130	
Methyl-tert-butyl ether	ug/L	ND	20	21.8	109	70-130 70-130	
Naphthalene	ug/L	ND	20	24.0	120	70-130 70-130	
o-Xylene	ug/L	ND	20	26.1	131		4
tert-Amyl Alcohol	ug/L	ND	400	434	109	70-130 M	ı
tert-Amylmethyl ether	ug/L	ND	40	45.1	113	70-130	
tert-Butyl Alcohol	ug/L	ND	200	279		70-130	•
tert-Butyl Formate	ug/L	ND	160	ND	140	70-130 M	
Toluene	ug/L	ND	20	23.4	0	70-130 M1	
Xylene (Totai)	ug/L	ND	60		117	70-130	
1,2-Dichloroethane-d4 (S)	%	ND	60	77.5	129	70-130 MS	5
4-Bromofluorobenzene (S)	%				98	70-130	
Toluene-d8 (S)	%				101	70-130	
10,001,000	70				95	70-130	

Danagatan		92379010002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		3(0
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	_
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30)
Naphthalene	ug/L	ND	ND		30)
o-Xylene	ug/L	ND	ND		30	}
tert-Amyl Alcohol	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

		92379010002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	104	106	2	00	
4-Bromofluorobenzene (S)	%	105	107	2		
Toluene-d8 (S)	%	103	101	3		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

QC Batch:

405085

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Associated Lab Samples:

Analysis Description:

8260 MSV SC

METHOD BLANK: 2247131

Matrix: Water

Associated Lab Samples: 92379011001

92379011001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/05/18 20:12	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/05/18 20:12	
Benzene	ug/L	ND	5.0	1.7	04/05/18 20:12	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/05/18 20:12	
Ethanol	ug/L	ND	200	131	04/05/18 20:12	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/05/18 20:12	
Ethylbenzene	ug/L	ND	5.0	1.6	04/05/18 20:12	
m&p-Xylene	ug/L	ND	10.0	3.1	04/05/18 20:12	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/05/18 20:12	
Naphthalene	ug/L	ND	5.0	2.0	04/05/18 20:12	
o-Xylene	ug/L	ND	5.0	1.6	04/05/18 20:12	
tert-Amyl Alcohol	ug/L	ND	100	76.8	04/05/18 20:12	
tert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/05/18 20:12	
tert-Butyl Alcohol	ug/L	ND	100	57.7	04/05/18 20:12	
tert-Butyl Formate	ug/L	ND	50.0	7.3	04/05/18 20:12	
Toluene	ug/L	ND	5.0	1.6	04/05/18 20:12	
Xylene (Total)	ug/L	ND	5.0	5.0	04/05/18 20:12	
1,2-Dichloroethane-d4 (S)	%	100	70-130		04/05/18 20:12	
1-Bromofluorobenzene (S)	%	105	70-130		04/05/18 20:12	
Гoluene-d8 (S)	%	99	70-130		04/05/18 20:12	

LABORATORY CONTROL SAMPLE:	2247132					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
1,2-Dichloroethane	ug/L	50	49.8	100	70-130	_
3,3-Dimethyl-1-Butanol	ug/L	1000	1110	111	70-130 1g	
Benzene	ug/L	50	54.7	109	70-130	
Diisopropyl ether	ug/L	50	55.2	110	70-130	
Ethanoi	ug/L	2000	1990	99	70-130	
Ethyl-tert-butyl ether	ug/L	100	106	106	70-130	
Ethylbenzene	ug/L	50	54.6	109	70-130	
m&p-Xylene	ug/L	100	108	108	70-130	
Methyl-tert-butyl ether	ug/L	50	54.6	109	70-130	
Naphthalene	ug/L	50	59.3	119	70-130	
o-Xylene	ug/L	50	56.7	113	70-130	
ert-Amyl Alcohol	ug/L	1000	1070	107	70-130 1g	
ert-Amylmethyl ether	ug/L	100	114	114	70-130	
ert-Butyl Alcohol	ug/L	500	554	111	70-130	
ert-Butyl Formate	ug/L	400	394	98	70-130 1g	
l'oluene	ug/L	50	52.0	104	70-130	

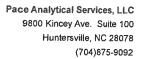
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011


LABORATORY CONTROL SAMPLE:	2247132	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
(ylene (Total)	ug/L	150	165	110	70-130	
I,2-Dichloroethane-d4 (S)	%			99	70-130	
-Bromofluorobenzene (S)	%			99	70-130	
oluene-d8 (S)	%			94	70-130	

MATRIX SPIKE SAMPLE:	2247133						
Parameter	Units	92379071025 Result	Spike Conc.	MS	MS	% Rec	
				Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	200	223	112	70-130	
3,3-Dimethyl-1-Butanol	ug/L	ND	4000	4050	101	70-130	
Benzene	ug/L	145	200	398	127	70-130	
Diisopropyl ether	ug/L	ND	200	235	118	70-130	
Ethanol	ug/L	ND	8000	8250	103	70-130	
Ethyl-tert-butyl ether	ug/L	ND	400	430	108	70-130	
Ethylbenzene	ug/L	894	200	1130	120	70-130	
m&p-Xylene	ug/L	1640	400	2090	111	70-130	
Methyl-tert-butyl ether	ug/L	ND	200	222	111	70-130	
Naphthalene	ug/L	429	200	667	119	70-130	
o-Xylene	ug/L	1360	200	1570	107	70-130	
tert-Amyl Alcohol	ug/L	ND	4000	4400	110	70-130	
tert-Amylmethyl ether	ug/L	ND	400	449	112	70-130	
ert-Butyl Alcohol	ug/L	ND	2000	2400	120	70-130	
ert-Butyl Formate	ug/L	ND	1600	931	58	70-130 M1	
Toluene	ug/L	54.0	200	289	117	70-130 W	
(ylene (Total)	ug/L	3000	600	3660	110	70-130	
,2-Dichloroethane-d4 (S)	%				94	70-130	
I-Bromofluorobenzene (S)	%				100	70-130 70-130	
Toluene-d8 (S)	%				96	70-130 70-130	

SAMPLE DUPLICATE: 2247134						
Parameter	Units	92379071029 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dichloroethane	ug/L	10.5J	10.3J		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	384	390	1	30	
Diisopropyl ether	ug/L	64.6	68.8	6	30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	908	931	3	30	
m&p-Xylene	ug/L	1650	1680	2	30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	196	206	5	30	
-Xylene	ug/L	563	569	1	30	
ert-Amyl Alcohol	ug/L	875	920	5	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

		92379071029	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	85.4	89.1	4	30	
Xylene (Total)	ug/L	2210	2250	1	30	
1,2-Dichloroethane-d4 (S)	%	101	100	0		
4-Bromofluorobenzene (S)	%	98	98	0		
Toluene-d8 (S)	%	98	100	1		

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

QC Batch:

404435

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Associated Lab Samples:

92379011002, 92379011003, 92379011004, 92379011005, 92379011007

METHOD BLANK: 2243658

Date: 04/06/2018 03:39 PM

Matrix: Water

Associated Lab Samples: 92379011002, 92379011003, 92379011004, 92379011005, 92379011007

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND 124	0.020 60-140	0.020	04/03/18 09:03 04/03/18 09:03	

LABORATORY CONTROL SAMPLE &	LCSD: 2243659		2:	243660						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	.24	0.29	0.31	119 135	123 140	60-140 60-140	5	20	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 22436	61		2243662							
Parameter	Units	92379068001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND	.25	.25	0.27	0.27	110 138	110 132	60-140 60-140	0	20	

SAMPLE DUPLICATE: 2243663						
Parameter	Units	92379071003 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND 137	ND 120	14	20	

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

QC Batch:

404748

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Associated Lab Samples:

92379011001, 92379011006

Matrix: Water

METHOD BLANK: 2245261 Associated Lab Samples:

92379011001, 92379011006

Blank Result Reporting Limit

MDL

Analyzed

Qualifiers

1.2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)

Parameter

Units ug/L %

Units

ug/L

%

92379150001

Units

ug/L

%

Result

ND 135

0.020 60-140

LCSD

0.28

0.020 04/04/18 12:35

04/04/18 12:35

LABORATORY CONTROL SAMPLE & LCSD:

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

2245262 Spike

2245263 LCS Result .24

MSD

0.29

LCS LCSD Result % Rec % Rec

121

127

% Rec Limits

60-140

60-140

Max **RPD**

RPD Qualifiers 7 20

Parameter

Parameter

2245264

ND

2245265

125

% Rec

Max

1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane

1,2-Dibromoethane (EDB)

1-Chloro-2-bromopropane (S)

1,2-Dibromoethane (EDB)

1-Chloro-2-bromopropane (S)

Parameter

Units ug/L %

Spike Spike Conc. Conc.

.24

Conc.

MS

MS Result .24 0.29

MSD MS Result % Rec 0.30 119

112

119

% Rec Limits 123 60-140

130

MSD

RPD RPD

Qual 20

SAMPLE DUPLICATE:

2245266

92379150003 Result

ND

117

Dup Result ND

125

RPD

6

Qualifiers

60-140

20

Max

RPD

Date: 04/06/2018 03:39 PM

QUALIFIERS

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.:

92379011

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

1g	Initial calibration evaluation met acceptance criteria. Compound did not meet additional accuracy assessment for percent error.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
MS	Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
P5	The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
S3	Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.
S4	Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

COASTAL 76 TRUCK STOP 17-6276

Pace Project No.: 92379011

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92379011001	MW-17	EPA 8011	404748	EPA 8011	404791
92379011002 92379011003 92379011004 92379011005	MW-23 MW-24 MW-25 MW-26	EPA 8011 EPA 8011 EPA 8011 EPA 8011	404435 404435 404435 404435	EPA 8011 EPA 8011 EPA 8011 EPA 8011	404511 404511 404511 404511
92379011006	DUP1 FIELD BLANK	EPA 8011	404748	EPA 8011	404791
92379011001	MW-17	EPA 8011 EPA 8260	404435 405085	EPA 8011	404511
92379011002 92379011003 92379011004 92379011005	MW-23 MW-24 MW-25 MW-26	EPA 8260 EPA 8260 EPA 8260 EPA 8260	404383 404383 404383 404383		
2379011006	DUP1	EPA 8260	404911		
2379011007 2379011008	FIELD BLANK TRIP BLANK	EPA 8260 EPA 8260	404378 404378		

		1	2	dinal st	Sample	Docur	ment Name n Upon Re	e:	CIID)	Document Revised: February 7, 2018			
		1/-	Pace Analy	rucai		Docu	ment No.:		-011		Page 1 of 2 Issuing Authori		
	Laborate	Tere roadie	ing sampl	1	1.	F-CAR-C	S-033-Rev	.06		Ра	ce Carolinas Quali		
	2000181	Ashevi		Eden	Greenw	ood [] ,	Hunte	ersville		Raleigh [Mechanicsville[
	Sample Upon R	Condition Receipt	Client	Name:				Pro	ject#_	#O	:9237	9011	
	Courler:	ercial	Fed			SPS ther:	.[Client		237901			
•	Custody Seal	Present?	□Yes	□N6 S	eals Intact?	Y _€	_ es /2	No	4			57 101	
		60								Date/Initla	s Person Examining	Contents: 3-50-18	
	acking Mate		Bubble \	Wrap Z	Bubble Bags		one 🔲	Other			Biological Tissu	a France?	
T	hermometer	r: IR Gun ID: _9	92T036		Туре	of ice:	☑Wet	Blue	□Nor		Yes No]N/A	
c	ooler Temp	_		- Committee Serv			*			ic	-		
	ooler Temp (Correction Fac	ter: Add/Subi	tract (°C)	+0.1		Temps	hould be a	bove freezing to 6	م	
			4		1.50				∐S:	emples out	of temp criteria. San	ples on ice, cooling process	
U:	SDA Regulati	ed Soil	N/A, water	sample)					has I	egun		7	
Ui	Yes _	Ne Instanta	quarantine zo	one within the U	nited States: C	A, NY, ar	SC (check r	naps)?	Old sam including	g Hawall and	te from a foreign sou I Puerto Rico)? 🔲 ye	s Pina	
	Chain of C	ustody Pres	ant?		-/			-		Co	mments/Discrepa	ncy:	
					Yes	No.	□N/A	1.					
			n Hold Time		ØYes	□No	□N/A	2.					
			ysis (<72 hr.) ne Requester		□Yes	_DNo	□N/A	3.					
-]		ie Requester	17	□Yes	₽ No	□N/A	4.					
	Sufficient V				Wes	No	□N/A	5.					
		ntainers Use Intainers Us			Z Yes	- No	□N/A	6.					
	Containers				Yes	No	□N/A	-					
			ples Field FII	torod?	Yes	□No		7.					
	Sample Labe	els Match C	OC?	relegi	☐ Yes	No □No	□N/A	8.	·				
8	-Includes	Date/Time/	/ID/Analysis	Matrice 36	41	Шив	□N/A	9.					
	Headspace in			Matrix: A									
ľ	Trip Blank Pr	esent?	(>5-6mm)?		☐ Yes ☐ Yes	□No	□N/A	10.					
	Trip Blank Cu	istody Seals	Present?			_/	□N/A	11.	:				
					Yes	No	□N/A						
_	MMENTS/SAI	MPLE DISCRI	EPANCY								Field Date Requ	lired? Yes No	
CLIEN	IT NOTIFICATI	ION/RESOLU	ITION					Lot IC	of split (containers	•		
_						•							
Pers	on contacte	rd:	· · · · · · · · · · · · · · · · · · ·				Date/Tim	e:					
Pro	oject Manag	er SCURF R	Review:	TC							74		
Pro	oject Manag	er SRF Revi	iew:	TC			:		Uali	ح	130/18		

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project W0#:92379011

Due Date: 04/06/18

CLIENT: 92-MIDLAND

	_	-		-																									
	item#:	BPAU-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2504 (pH < 2) (CI-)	8P3N-250 mL plastic HNO3 (pH < 2)	BP42-125 ml Plastic ZN Acetate & NaOH (>9)	8P4C-125 ml Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 ml Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A[DG3A]-250 mt Amber NH4Ci (N/A)[Cl-)	DG9H-40 mt VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
L	1	1						V	V										+		-	1	S	8	1		4	>	ă
ŀ	2	V						V						1	1	1	6		\dashv	\dashv	\dashv	+	+	-	1	+	+	+	-
		T					1	1	1		1	1		1	1				1	\dashv	\dashv		\dashv	+	X	+	+	+	\dashv
4			1			7	1	1	1	+		1		1	1	1		-	+	\dashv	+	\dashv	+	-	X	1	-	1	-
5		1	\dashv			1	1	1	1	\dashv		1	-	1	X	7	6		+	+	+	_	+	1	X	7	_	4	_
6	1	\uparrow	+		-	1	1	1	7	\dashv		+	-	X	X	7	0	+	+	-	_		_		1	1		_	
7	1	1	+	\dashv	+	7	1	X	7	+	+	4	-	X	X	1	0	4			\perp				1	1		\perp	
8	+	+	+	+		X	X	1	4	-	1	1		1	Ť,	1	0								1				
9	+	4	+	\dashv	-	X	X	1,	1	\perp		1		1	1	1	0								1	T			7
10	1	4	-	+	1	1	1,	1	1			1		1	1	1	3								1			T	7
11		1	_	4		1,	1	1	1	\perp		1				1	4							1	T		+	†	1
12		1	_	1		1	1	1	1					1	1	T									1		+	+	1
12						1	1	1						1	1	1					1	1					+	-	-
																									1	V		1	J

		pH Ac	ijustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

er there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers,

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacolabs.com	The Cha	ein-of-Custody is a LEGAL DOCUMENT. All relevant fi	Request Document elds must be completed accurately.	1 of 31
Company:	Section B Required Project Information:	Section C Invoice Information:		Page: of B
PICL	Report To: B. Shave	Attention:		2000000
	Сору То:	Company Name:		2228988
Email To: Scripton 5029077.		Address:	REGULATORY AG	
JULINECTOR F	Purchase Order No.:	Pace Quote:		GROUND WATER DRINKING WATER
Phone: 805-7043 507885-7048 P	Project Name: OSTA 76 TVCL.	Reference: Page Project		RCRA OTHER
Requested Due Date/TAT:	Project Number: 7-67	Manager:	Site Location <	SC Flanence
			STATE:	
Section D Matrix Coo Required Client Information MATRIX / Co	odos e Q		Requested Analysis Filtered (Y	/N)
Drinking Water	COLLECTED DW WT 88 0 0 COMBONIE	Preservatives	A A	
Water Waste Water	CODE OF COLLECTED DW WT 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2	
SAMPLE ID Product Soit/Solid	P P START ENDING	GRAB N	1898	2
(A-Z, 0-9 / (-) Wipe	WP U			
Sample IDS MUST BE UNIQUE Tissue	AR TS OT 11 L	CONTAINERS CONTAINERS SSERVED 4 4 6 6 7 1001	10000 Test	orine
* Soler	3	ONT Serve		99
置	MATRIX SAMPLE TIME DATE	SAMPLE TEMP # OF CONTAIL Unpreserved H-2SO4 HNO3 HCI NaOH Na2S-203 Methanol Other	all live in the li	dual dual
1 MW-16	DATE TIME DATE	AMERITA HOLD WORTH HOLD WAS AMERITA OUT HOLD WAS NOT HOLD	₹ ₩ 3	Receipt No./ Lab I.D.
2 Mat-17	WIG Stale	10.42 6 6		No Sample
3 NW- 21	1/4/0	3/0.45 6 6	XX XX	Slight Odor 00/
4 MW 33	WT G 3/29/8	10:48 6 6	Manager and Control of the Control o	No Samelo
5 MW-24		10:15 17 17	XXXX	No Oder coz
6 (M) - 3		10:25		No Odor 003
7 MW 26		10:30		No Oder Coy
9 Field Blank		10:44		Mo Oder 005
10 John Blank		0.52 6 6		Slight Odor cor
11	NIG SCIB	10:54 2 2	\(\frac{1}{2} \f	FB 907
12			1997	13 008
ADDITIONAL COMMENTS	DE INC.			
	RELINQUISHED BY AFFIXIATION		BY / AFFILIATION DATE TIME	SAMOUS
	760-13	3/20/16 6.12	11111	OAMFLE COMDITIONS
	a como Pale +	Daniel III		
	9	19/	Ove HU 330+ 1131	625 YN Y
ORIG	GINAL SAMPLER NAME AN	ND SIGNATURE		
Orne		e of SAMPLED.		oler (100)
			1 1	Temp in * Temp in * Custody saled Coo saled Coo saled Coo saled Coo (Y/N)
*Important Note: By signing this form you are accepting Pa	Pace's NET 30 day payment terms and agreeing to late charges	Went Wen	DATE Signed 3/74/18	Temp in °C Received on Ice (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)
	a possession distinction of the control of the cont	or 1:5% per month for any invoices hot paid within 30 days:	· · · · · · · · · · · · · · · · · · ·	F-ALL-Q-020rev.07, 15-May-2007

May 01, 2018

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on April 06, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Trey Carter

trey.carter@pacelabs.com

The Ct

(704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92379942001	MVV-1	Water	04/04/18 11:13	04/06/18 13:46
92379942002	MW-2	Water	04/04/18 11:35	04/06/18 13:46
92379942003	MW-3	Water	04/04/18 11:20	04/06/18 13:46
92379942004	MW-4	Water	04/04/18 11:08	04/06/18 13:46
92379942005	MW-5	Water	04/04/18 10:40	04/06/18 13:46
92379942006	MW-6	Water	04/04/18 09:00	04/06/18 13:46
92379942007	MW-7	Water	04/04/18 10:05	04/06/18 13:46
92379942008	MW-8	Water	04/04/18 09:59	04/06/18 13:46
92379942009	MW-10RR	Water	04/04/18 11:00	04/06/18 13:46
92379942010	MW-11	Water	04/04/18 09:08	04/06/18 13:46
92379942011	MW-15	Water	04/04/18 09:50	04/06/18 13:46
92379942012	MW-18	Water	04/04/18 10:34	04/06/18 13:46
92379942013	MW-19	Water	04/04/18 09:16	04/06/18 13:46
92379942014	MW-20	Water	04/04/18 09:22	04/06/18 13:46
92379942015	MW-27	Water	04/04/18 09:04	04/06/18 13:46
92379942016	MW-28	Water	04/04/18 09:45	04/06/18 13:46
92379942017	IGWA	Water	04/04/18 10:24	04/06/18 13:46
92379942018	IGWA-R	Water	04/04/18 10:20	04/06/18 13:46
2379942019	TW-1	Water	04/04/18 11:21	04/06/18 13:46
2379942020	TW-2	Water	04/04/18 10:13	04/06/18 13:46
2379942021	DUP-1	Water	04/04/18 10:24	04/06/18 13:46
2379942022	ТВ	Water	04/04/18 11:42	04/06/18 13:46
2379942023	FB	Water	04/04/18 11:40	04/06/18 13:46

SAMPLE ANALYTE COUNT

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92379942001	MW-1	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
92379942002	MW-2	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
92379942003	MW-3	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
32379942004	MW-4	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942005	MW-5	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942006	MW-6	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942007	MW-7	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942008	MW-8	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942009	MW-10RR	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942010	MW-11	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942011	MW-15	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942012	MW-18	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942013	MW-19	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942014	MW-20	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942015	MW-27	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942016	MW-28	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942017	IGWA	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
379942018	IGWA-R	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
79942019	TW-1	EPA 8011	SEM	2	PASI-C

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260	GAW	20	PASI-C
92379942020	TW-2	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
92379942021	DUP-1	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C
2379942022	TB	EPA 8260	GAW	20	PASI-C
2379942023	FB	EPA 8011	SEM	2	PASI-C
		EPA 8260	GAW	20	PASI-C

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-1	Lab ID:	92379942001	Collected	: 04/04/1	8 11:13	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	156	ug/L	3.9	3.9	200	04/30/18 14:00	05/01/18 12:03	106-93-4	H2
1-Chloro-2-bromopropane (S)	0	%	60-140		200	04/30/18 14:00	05/01/18 12:03	301-79-56	S4
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	20000	15400	200		04/10/18 13:52	75-85-4	
tert-Amylmethyl ether	ND	ug/L	2000	680	200		04/10/18 13:52		
Benzene	11000	ug/L	1000	340	200		04/10/18 13:52		
3,3-Dimethyl-1-Butanol	ND	ug/L	20000	6420	200		04/10/18 13:52		
ert-Butyl Alcohol	ND	ug/L	20000	11500	200		04/10/18 13:52		
ert-Butyl Formate	ND	ug/L	10000	1460	200		04/10/18 13:52	762-75-4	М1
1,2-Dichloroethane	ND	ug/L	1000	360	200		04/10/18 13:52	107-06-2	
Diisopropyl ether	ND	ug/L	1000	340	200		04/10/18 13:52	108-20-3	
Ethanol	ND	ug/L	40000	26200	200		04/10/18 13:52	64-17-5	
Ethylbenzene	1010	ug/L	1000	320	200		04/10/18 13:52		
Ethyl-tert-butyl ether	ND	ug/L	2000	720	200		04/10/18 13:52	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1000	340	200		04/10/18 13:52		
laphthalene	1210	ug/L	1000	400	200		04/10/18 13:52	91-20-3	
oluene	18100	ug/L	1000	320	200		04/10/18 13:52	108-88-3	M1
(ylene (Total)	17200	ug/L	1000	1000	200		04/10/18 13:52	1330-20-7	
n&p-Xylene	10700	ug/L	2000	620	200		04/10/18 13:52	179601-23-1	
-Xylene	6480	ug/L	1000	320	200		04/10/18 13:52		
Surrogates									
-Bromofluorobenzene (S)	98	%	70-130		200		04/10/18 13:52		
,2-Dichloroethane-d4 (S)	97	%	70-130		200		04/10/18 13:52	17060-07-0	
oluene-d8 (S)	106	%	70-130		200		04/10/18 13:52	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-2	Lab ID:	92379942002	Collected:	04/04/1	8 11:35	Received: 04	/06/18 13:46 M	latrix: Water	_
			Report						
Parameters	Results	Units	Limit	MDL	_DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	22.2	ug/L	0.50	0.50	25	04/09/18 14:47	04/10/18 08:37	106-93-4	
1-Chloro-2-bromopropane (S)	0	%	60-140		25	04/09/18 14:47	04/10/18 08:37	301-79-56	S4
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	4630J	ug/L	5000	3840	50		04/12/18 17:58	75-85-4	
tert-Amylmethyl ether	ND	ug/L	500	170	50		04/12/18 17:58		
3en zene	4070	ug/L	250	85.0	50		04/12/18 17:58		
3,3-Dimethyl-1-Butanol	ND	ug/L	5000	1600	50		04/12/18 17:58		
ert-Butyl Alcohol	ND	ug/L	5000	2880	50		04/12/18 17:58		
ert-Butyl Formate	ND	ug/L	2500	365	50		04/12/18 17:58		L1
,2-Dichloroethane	ND	ug/L	250	90.0	50		04/12/18 17:58		
Diisopropyl ether	ND	ug/L	250	85.0	50		04/12/18 17:58		
Ethanol	ND	ug/L	10000	6550	50		04/12/18 17:58		
Ethylbenzene	943	ug/L	250	80.0	50		04/12/18 17:58		
thyl-tert-butyl ether	ND	ug/L	500	180	50		04/12/18 17:58		
flethyl-tert-butyl ether	332	ug/L	250	85.0	50		04/12/18 17:58		
laphthalene	165J	ug/L	250	100	50		04/12/18 17:58		
oluene	5900	ug/L	250	80.0	50		04/12/18 17:58		
ylene (Total)	4400	ug/L	250	250	50		04/12/18 17:58		
n&p-Xylene	2700	ug/L	500	155	50		04/12/18 17:58		
-Xylene	1700	ug/L	250	80.0	50		04/12/18 17:58		
urrogates								•	
-Bromofluorobenzene (S)	103	%	70-130		50		04/12/18 17:58	460-00-4	
,2-Dichloroethane-d4 (S)	105	%	70-130		50		04/12/18 17:58		
oluene-d8 (S)	104	%	70-130		50		04/12/18 17:58		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-3	Lab ID:	92379942003	Collected	: 04/04/1	8 11:20	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	1.3	ug/L	0.097	0.097	5	04/09/18 14:48	04/10/18 08:56	106-93-4	
1-Chloro-2-bromopropane (S)	136	%	60-140		5	04/09/18 14:48	04/10/18 08:56	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	10000	7680	100		04/10/18 13:16	75-85-4	
tert-Amylmethyl ether	ND	ug/L	1000	340	100		04/10/18 13:16		
Benzene	1490	ug/L	500	170	100		04/10/18 13:16		
3,3-Dimethyl-1-Butanol	ND	ug/L	10000	3210	100		04/10/18 13:16		
tert-Butyl Alcohol	ND	ug/L	10000	5770	100		04/10/18 13:16		
tert-Butyl Formate	ND	ug/L	5000	730	100		04/10/18 13:16		
1,2-Dichloroethane	ND	ug/L	500	180	100		04/10/18 13:16		
Diisopropyl ether	ND	ug/L	500	170	100		04/10/18 13:16		
Ethanol	ND	ug/L	20000	13100	100		04/10/18 13:16		
Ethylbenzene	1910	ug/L	500	160	100		04/10/18 13:16		
Ethyl-tert-butyl ether	ND	ug/L	1000	360	100		04/10/18 13:16	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	500	170	100		04/10/18 13:16		
Naphthalene	884	ug/L	500	200	100		04/10/18 13:16		
Toluene	9660	ug/L	500	160	100		04/10/18 13:16		
(ylene (Total)	11700	ug/L	500	500	100		04/10/18 13:16		
n&p-Xylene	7900	ug/L	1000	310	100		04/10/18 13:16		
o-Xylene Surrogates	3830	ug/L	500	160	100		04/10/18 13:16		
I-Bromofluorobenzene (S)	99	%	70-130		100		04/40/40 40:40	400 00 4	
,2-Dichloroethane-d4 (S)	101	% %	70-130		100		04/10/18 13:16		
foluene-d8 (S)	104	%	70-130				04/10/18 13:16		
olderie de (e)	104	70	10-130		100		04/10/18 13:16	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-4	Lab ID:	92379942004	Collected	: 04/04/1	8 11:08	Received: 04	/06/18 13:46 N	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	1.0	ug/L	0.022	0.022	1	04/09/18 14:49	04/10/18 00:48	3 106-93-4	
1-Chloro-2-bromopropane (S)	90	%	60-140		1	04/09/18 14:49	04/10/18 00:48	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	3230	ug/L	2500	1920	25		04/10/18 12:58	75-85-4	
tert-Amylmethyl ether	ND	ug/L	250	85.0	25		04/10/18 12:58		
Benzene	1870	ug/L	125	42.5	25		04/10/18 12:58		
3,3-Dimethyl-1-Butanol	ND	ug/L	2500	802	25		04/10/18 12:58		
ert-Butyl Alcohol	ND	ug/L	2500	1440	25		04/10/18 12:58		
ert-Butyl Formate	ND	ug/L	1250	182	25		04/10/18 12:58		
1,2-Dichloroethane	ND	ug/L	125	45.0	25		04/10/18 12:58		
Diisopropyl ether	ND	ug/L	125	42.5	25		04/10/18 12:58		
Ethanol	ND	ug/L	5000	3280	25		04/10/18 12:58		
Ethylbenzene	503	ug/L	125	40.0	25		04/10/18 12:58		
Ethyl-tert-butyl ether	ND	ug/L	250	90.0	25		04/10/18 12:58		
Methyl-tert-butyl ether	ND	ug/L	125	42.5	25		04/10/18 12:58		
laphthalene	342	ug/L	125	50.0	25		04/10/18 12:58		
oluene	4230	ug/L	125	40.0	25		04/10/18 12:58		
ylene (Total)	4600	ug/L	125	125	25		04/10/18 12:58		
n&p-Xylene	2560	ug/L	250	77.5	25		04/10/18 12:58		
-Xylene	2040	ug/L	125	40.0	25		04/10/18 12:58		
urrogates		•		-				55 47 6	
-Bromofluorobenzene (S)	99	%	70-130		25		04/10/18 12:58	460-00-4	
,2-Dichloroethane-d4 (S)	101	%	70-130		25		04/10/18 12:58		
oluene-d8 (S)	104	%	70-130		25		04/10/18 12:58		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-5	Lab ID:	92379942005	Collected	: 04/04/1	8 10:40	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:49	04/10/18 01:42	106-93-4	
1-Chloro-2-bromopropane (S)	116	%	60-140		1	04/09/18 14:49	04/10/18 01:42	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	1000	768	10		04/10/18 12:41	75-85-4	
tert-Amylmethyl ether	ND	ug/L	100	34.0	10				
Benzene	196	ug/L	50.0	17.0	10		04/10/18 12:41		
3,3-Dimethyl-1-Butanol	ND	ug/L	1000	321	10		04/10/18 12:41		
ert-Butyl Alcohol	ND	ug/L	1000	577	10		04/10/18 12:41		
ert-Butyl Formate	ND	ug/L	500	73.0	10		04/10/18 12:41		
1,2-Dichloroethane	ND	ug/L	50.0	18.0	10		04/10/18 12:41		
Diisopropyl ether	ND	ug/L	50.0	17.0	10		04/10/18 12:41		
Ethanol	ND	ug/L	2000	1310	10		04/10/18 12:41	-	
Ethylbenzene	1130	ug/L	50.0	16.0	10		04/10/18 12:41		
Ethyl-tert-butyl ether	ND	ug/L	100	36.0	10		04/10/18 12:41	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	50.0	17.0	10		04/10/18 12:41		
laphthalene	299	ug/L	50.0	20.0	10		04/10/18 12:41	91-20-3	
oluene	684	ug/L	50.0	16.0	10		04/10/18 12:41	108-88-3	
(ylene (Total)	2520	ug/L	50.0	50.0	10		04/10/18 12:41	1330-20-7	
n&p-Xylene	1710	ug/L	100	31.0	10		04/10/18 12:41	179601-23-1	
-Xylene	811	ug/L	50.0	16.0	10		04/10/18 12:41		
urrogates									
-Bromofluorobenzene (S)	98	%	70-130		10		04/10/18 12:41	460-00-4	
,2-Dichloroethane-d4 (S)	101	%	70-130		10		04/10/18 12:41	17060-07-0	
oluene-d8 (S)	105	%	70-130		10		04/10/18 12:41	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-6	Lab ID:	92379942006	Collected	: 04/04/1	8 09:00	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:49	04/10/18 02:00	106-93-4	
1-Chloro-2-bromopropane (S)	110	%	60-140		1	04/09/18 14:49	04/10/18 02:00	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/09/18 22:57	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/09/18 22:57		
Benzene	ND	ug/L	5.0	1.7	1		04/09/18 22:57		
3,3-Dimethyi-1-Butanol	ND	ug/L	100	32.1	1		04/09/18 22:57		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/09/18 22:57		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/09/18 22:57	762-75-4	
,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/09/18 22:57		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/09/18 22:57		
Ethanol	ND	ug/L	200	131	1			64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/09/18 22:57		
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/09/18 22:57		
lethyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/09/18 22:57		
laphthalene	ND	ug/L	5.0	2.0	1		04/09/18 22:57		
oluene	ND	ug/L	5.0	1.6	1		04/09/18 22:57		
ylene (Total)	ND	ug/L	5.0	5.0	1		04/09/18 22:57		LS
1&p-Xylene	ND	ug/L	10.0	3.1	1			179601-23-1	
-Xylene	ND	ug/L	5.0	1.6	1		04/09/18 22:57		L1
urrogates								·· •	
-Bromofluorobenzene (S)	107	%	70-130		1		04/09/18 22:57	460-00-4	
,2-Dichloroethane-d4 (S)	101	%	70-130		1		04/09/18 22:57		
oluene-d8 (S)	104	%	70-130		1		04/09/18 22:57		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-7	Lab ID:	92379942007	Collected	: 04/04/1	8 10:05	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit .	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:49	04/10/18 02:18	106-93-4	
1-Chloro-2-bromopropane (S)	119	%	60-140		1	04/09/18 14:49	04/10/18 02:18	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/09/18 23:14	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/09/18 23:14		
Benzene	3.7J	ug/L	5.0	1.7	1		04/09/18 23:14		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/09/18 23:14	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/09/18 23:14	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/09/18 23:14	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/09/18 23:14		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/09/18 23:14	108-20-3	
Ethanol	ND	ug/L	200	131	1		04/09/18 23:14		L2
Ethylbenzene	5.3	ug/L	5.0	1.6	1		04/09/18 23:14	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/09/18 23:14		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/09/18 23:14	1634-04-4	
Vaphthalene	5.7	ug/L	5.0	2.0	1		04/09/18 23:14	91-20-3	
Toluene	2.4J	ug/L	5.0	1.6	1		04/09/18 23:14	108-88-3	
(Yolene (Total)	34.5	ug/L	5.0	5.0	1		04/09/18 23:14		
n&p-Xylene	16.2	ug/L	10.0	3.1	1		04/09/18 23:14		
o-Xylene Surrogates	18.3	ug/L	5.0	1.6	1		04/09/18 23:14		
l-Bromofluorobenzene (S)	106	%	70-130		1		04/00/40 00:44	400.00.4	
,2-Dichloroethane-d4 (S)	101	%	70-130		141		04/09/18 23:14		
foluene-d8 (S)	100	% %			1		04/09/18 23:14		
olderic-du (d)	100	70	70-130		T		04/09/18 23:14	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-8	Lab ID:	92379942008	Collecte	d: 04/04/1	8 09:59	Received: 04	/06/18 13:46 N	latrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qı	ıal
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepai	ration Methe	od: EPA	8011				
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:50	04/10/18 02:36	106-93-4		
1-Chloro-2-bromopropane (S)	126	%	60-140		1	04/09/18 14:50	04/10/18 02:36	301-79-56		
8260 MSV	Analytical	Method: EPA 8	260							
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/09/18 23:31	75-85-4		
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/09/18 23:31			
Benzene	ND	ug/L	5.0	1.7	1		04/09/18 23:31			
3,3-Dimethyl-1-Butanol	ND	ug/L.	100	32.1	1		04/09/18 23:31			
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/09/18 23:31			
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/09/18 23:31			
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/09/18 23:31			
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/09/18 23:31			
Ethanol	ND	ug/L	200	131	1		04/09/18 23:31		L2	
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/09/18 23:31			
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/09/18 23:31			
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/09/18 23:31			
Naphthalene	ND	ug/L	5.0	2.0	1		04/09/18 23:31			
Toluene	ND	ug/L	5.0	1.6	1					
Xylene (Total)	ND	ug/L	5.0	5.0	1		04/09/18 23:31		LS	
m&p-Xylene	ND	ug/L	10.0	3.1	1					
o-Xylene	ND	ug/L	5.0	1.6	1		04/09/18 23:31		L1	
Surrogates										
4-Bromofluorobenzene (S)	107	%	70-130		1		04/09/18 23:31	460-00-4		
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		04/09/18 23:31			
Toluene-d8 (S)	103	%	70-130		1		04/09/18 23:31	2037-26-5		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-10RR	Lab ID:	92379942009	Collected	: 04/04/1	8 11:00	Received: 04	/06/18 13:46 M	atrix: Water	0
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Metho	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	0.028	ug/L	0.020	0.020	1	04/09/18 14:50	04/10/18 02:54	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140		1	04/09/18 14:50	04/10/18 02:54	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/09/18 23:48	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/09/18 23:48		
Benzene	ND	ug/L	5.0	1.7	1		04/09/18 23:48		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/09/18 23:48		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/09/18 23:48		
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/09/18 23:48		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/09/18 23:48		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/09/18 23:48		
Ethanol	ND	ug/L	200	131	1		04/09/18 23:48		L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/09/18 23:48		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/09/18 23:48		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/09/18 23:48		
Naphthalene	ND	ug/L	5.0	2.0	1		04/09/18 23:48		
Toluene	ND	ug/L	5.0	1.6	1		04/09/18 23:48		
Kylene (Total)	ND	ug/L	5.0	5.0	1		04/09/18 23:48		LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/09/18 23:48		LO
o-Xylene	ND	ug/L	5.0	1.6	1		04/09/18 23:48		L1
Surrogates		-						·· ·	
I-Bromofluorobenzene (S)	112	%	70-130		1		04/09/18 23:48	460-00-4	
,2-Dichloroethane-d4 (S)	106	%	70-130		1		04/09/18 23:48	17060-07-0	
oluene-d8 (S)	103	%	70-130		1		04/09/18 23:48	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-11	Lab ID:	92379942010	Collected:	04/04/1	8 09:08	Received: 04	/06/18 13:46 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.019	1	04/09/18 14:50	04/10/18 03:12	106-93-4	
1-Chloro-2-bromopropane (S)	108	%	60-140		1	04/09/18 14:50	04/10/18 03:12	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 00:05	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 00:05	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 00:05	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 00:05		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 00:05	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 00:05	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 00:05	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:05	108-20-3	
Ethanol	ND	ug/L	200	131	1		04/10/18 00:05	64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 00:05	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 00:05	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:05	1634-04-4	
Vaphthalene	ND	ug/L	5.0	2.0	1		04/10/18 00:05	91-20-3	
Toluene	ND	ug/L	5.0	1.6	1		04/10/18 00:05	108-88-3	
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 00:05	1330-20-7	LS
n&p-Xylene	ND	ug/L	10.0	3.1	1				
o-Xylene Surrogates	ND	ug/L	5.0	1.6	1		04/10/18 00:05	95-47-6	L1
l-Bromofluorobenzene (S)	109	%	70-130		1		04/10/18 00:05	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1			17060-07-0	
oluene-d8 (S)	101	%	70-130		1		04/10/18 00:05		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-15	Lab ID:	92379942011	Collected:	04/04/1	8 09:50	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:50	04/10/18 03:30	106-93-4	
1-Chloro-2-bromopropane (S)	103	%	60-140		1	04/09/18 14:50	04/10/18 03:30	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 00:22	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 00:22		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 00:22	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 00:22		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 00:22		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 00:22	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 00:22		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:22		
Ethanol	ND	ug/L	200	131	1		04/10/18 00:22		L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 00:22	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 00:22		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:22	1634-04-4	
laphthalene	ND	ug/L	5.0	2.0	1		04/10/18 00:22		
oluene	ND	ug/L	5.0	1.6	1		04/10/18 00:22	_	
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 00:22		LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 00:22		
-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 00:22		L1
Surrogates									•
-Bromofluorobenzene (S)	107	%	70-130		1		04/10/18 00:22	460-00-4	
,2-Dichloroethane-d4 (S)	104	%	70-130		1		04/10/18 00:22	17060-07-0	
oluene-d8 (S)	103	%	70-130		1		04/10/18 00:22	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-18	Lab ID:	92379942012	Collected	1: 04/04/18	10:34	Received: 04	/06/18 13:46 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Metho	d: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.019	1	04/09/18 14:50	04/10/18 04:06	106-93-4	
1-Chloro-2-bromopropane (S)	96	%	60-140		1	04/09/18 14:50	04/10/18 04:06	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 00:39	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 00:39		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 00:39		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 00:39		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 00:39		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 00:39		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 00:39		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:39		
Ethanol	ND	ug/L	200	131	1				L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 00:39		LZ
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 00:39		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:39		
laphthalene	ND	ug/L	5.0	2.0	1		04/10/18 00:39		
oluene	ND	ug/L	5.0	1.6	1		04/10/18 00:39		
ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 00:39		LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 00:39		LO
-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 00:39		L1
urrogates		-					, ,		_ '
-Bromofluorobenzene (S)	108	%	70-130		1		04/10/18 00:39	460-00-4	
,2-Dichloroethane-d4 (S)	103	%	70-130		1		04/10/18 00:39		
oluene-d8 (S)	104	%	70-130		1		04/10/18 00:39		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-19	Lab ID:	92379942013	Collected	: 04/04/1	8 09:16	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:50	04/10/18 04:24	106-93-4	
1-Chloro-2-bromopropane (S)	99	%	60-140		1	04/09/18 14:50	04/10/18 04:24	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 00:56	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 00:56		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 00:56		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 00:56		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 00:56		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 00:56	762-75-4	
,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 00:56	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:56	108-20-3	
thanol	ND	ug/L	200	131	1		04/10/18 00:56	64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 00:56	100-41-4	
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 00:56	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 00:56	1634-04-4	
laphthalene	ND	ug/L	5.0	2.0	1		04/10/18 00:56	91-20-3	
oluene	ND	ug/L	5.0	1.6	1		04/10/18 00:56	108-88-3	
ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 00:56	1330-20-7	LS
a&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 00:56	179601-23-1	
-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 00:56	95-47-6	L1
urrogates									
-Bromofluorobenzene (S)	108	%	70-130		1		04/10/18 00:56		
,2-Dichloroethane-d4 (S)	101	%	70-130		1		04/10/18 00:56	17060-07-0	
oluene-d8 (S)	102	%	70-130		1		04/10/18 00:56	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-20	Lab ID:	92379942014	Collected	04/04/1	8 09:22	Received: 04	/06/18 13:46 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011		- -	
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:51	04/10/18 04:42	106-93-4	
1-Chloro-2-bromopropane (S)	100	%	60-140		1	04/09/18 14:51	04/10/18 04:42	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 01:14	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 01:14		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 01:14		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 01:14		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 01:14		
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 01:14		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 01:14		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 01:14		
Ethanol	ND	ug/L	200	131	1		04/10/18 01:14		L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 01:14		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 01:14		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 01:14		
Naphthalene	ND	ug/L	5.0	2.0	1		04/10/18 01:14		
l'oluene	ND	ug/L	5.0	1.6	1		04/10/18 01:14	108-88-3	
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 01:14		LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 01:14		
-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 01:14		L1
Surrogates		-							
-Bromofluorobenzene (S)	106	%	70-130		1		04/10/18 01:14	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/10/18 01:14		
oluene-d8 (S)	101	%	70-130		1		04/10/18 01:14	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

Date: 05/01/2018 01:03 PM

92379942

Sample: MW-27	Lab ID:	92379942015	Collected	: 04/04/18	8 09:04	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Metho	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:51	04/10/18 05:00	106-93-4	
1-Chloro-2-bromopropane (S)	114	%	60-140		1	04/09/18 14:51	04/10/18 05:00	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 01:31	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 01:31	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 01:31		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 01:31		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 01:31		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 01:31	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 01:31	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 01:31	108-20-3	
Ethanol	ND	ug/L	200	131	1		04/10/18 01:31	64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 01:31	100-41-4	
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 01:31		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 01:31	1634-04-4	
laphthalene	ND	ug/L	5.0	2.0	1		04/10/18 01:31	91-20-3	
oluene	ND	ug/L	5.0	1.6	1		04/10/18 01:31	108-88-3	
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 01:31	1330-20-7	LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 01:31	179601-23-1	
-Xylene <i>urrogates</i>	ND	ug/L	5.0	1.6	1		04/10/18 01:31	95-47-6	L1
-Bromofluorobenzene (S)	109	%	70-130		1		04/10/18 01:31	460-00-4	
,2-Dichloroethane-d4 (S)	103	%	70-130		1		04/10/18 01:31		
oluene-d8 (S)	101	%	70-130		1		04/10/18 01:31		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: MW-28	Lab ID:	92379942016	Collected	: 04/04/1	8 09:45	Received: 04	/06/18 13:46 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Metho	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:51	04/10/18 05:18	106-93-4	
1-Chloro-2-bromopropane (S)	100	%	60-140		1	04/09/18 14:51	04/10/18 05:18	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 01:48	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 01:48		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 01:48		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 01:48		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 01:48	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 01:48		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 01:48	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 01:48	108-20-3	
Ethanol	ND	ug/L	200	131	1		04/10/18 01:48	64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 01:48	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 01:48		
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 01:48		
Naphthalene	ND	ug/L	5.0	2.0	1		04/10/18 01:48	91-20-3	
Toluene	ND	ug/L	5.0	1.6	1		04/10/18 01:48		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 01:48		LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 01:48		
p-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 01:48		L1
Surrogates							_		
-Bromofluorobenzene (S)	111	%	70-130		1		04/10/18 01:48	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/10/18 01:48	17060-07-0	
oluene-d8 (S)	104	%	70-130		1		04/10/18 01:48	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

Date: 05/01/2018 01:03 PM

92379942

Sample: IGWA	Lab ID:	92379942017	Collected	1: 04/04/1	8 10:24	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	0.84	ug/L	0.019	0.019	1	04/09/18 14:51	04/10/18 05:36	106-93-4	
1-Chloro-2-bromopropane (S)	119	%	60-140		1	04/09/18 14:51	04/10/18 05:36	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/l_	4000	3070	40		04/10/18 12:23	75-85-4	
tert-Amylmethyl ether	ND	ug/L	400	136	40		04/10/18 12:23	994-05-8	
Benzene	532	ug/L	200	68.0	40		04/10/18 12:23	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	4000	1280	40		04/10/18 12:23	624-95-3	
tert-Butyl Alcohol	ND	ug/L	4000	2310	40		04/10/18 12:23		
tert-Butyl Formate	ND	ug/L	2000	292	40		04/10/18 12:23	762-75-4	
1,2-Dichloroethane	ND	ug/L	200	72.0	40		04/10/18 12:23		
Diisopropyl ether	ND	ug/L	200	68.0	40		04/10/18 12:23	108-20-3	
Ethanol	ND	ug/L	8000	5240	40		04/10/18 12:23	64-17-5	
Ethylbenzene	306	ug/L	200	64.0	40		04/10/18 12:23	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	400	144	40		04/10/18 12:23		
Methyl-tert-butyl ether	ND	ug/L	200	68.0	40		04/10/18 12:23	1634-04-4	
Naphthalene	337	ug/L	200	80.0	40		04/10/18 12:23	91-20-3	
Toluene	2990	ug/L	200	64.0	40		04/10/18 12:23	108-88-3	
(ylene (Total)	8440	ug/L	200	200	40		04/10/18 12:23		
n&p-Xylene	4380	ug/L	400	124	40		04/10/18 12:23		
o-Xylene	4060	ug/L	200	64.0	40		04/10/18 12:23		
Surrogates									
-Bromofluorobenzene (S)	98	%	70-130		40		04/10/18 12:23	460-00-4	
,2-Dichloroethane-d4 (S)	100	%	70-130		40		04/10/18 12:23		
oluene-d8 (S)	103	%	70-130		40		04/10/18 12:23	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: IGWA-R	Lab ID:	92379942018	Collected	: 04/04/1	8 10:20	Received: 04	/06/18 13:46 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	0.74	ug/L	0.020	0.020	1	04/09/18 14:51	04/10/18 05:54	106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/09/18 14:51	04/10/18 05:54	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	5000	3840	50		04/10/18 12:05	75-85-4	
tert-Amylmethyl ether	ND	ug/L	500	170	50		04/10/18 12:05		
Benzene	932	ug/L	250	85.0	50		04/10/18 12:05		
3,3-Dimethyl-1-Butanol	ND	ug/L	5000	1600	50		04/10/18 12:05		
ert-Butyl Alcohol	ND	ug/L	5000	2880	50		04/10/18 12:05		
ert-Butyl Formate	ND	ug/L	2500	365	50		04/10/18 12:05		
1,2-Dichloroethane	ND	ug/L	250	90.0	50		04/10/18 12:05		
Diisopropyl ether	ND	ug/L	250	85.0	50		04/10/18 12:05		
Ethanol	ND	ug/L	10000	6550	50		04/10/18 12:05		
Ethylbenzene	2300	ug/L	250	80.0	50		04/10/18 12:05	100-41-4	
thyl-tert-butyl ether	ND	ug/L	500	180	50		04/10/18 12:05		
Methyl-tert-butyl ether	ND	ug/L	250	85.0	50		04/10/18 12:05		
laphthalene	590	ug/L	250	100	50		04/10/18 12:05	91-20-3	
oluene	6290	ug/L	250	80.0	50		04/10/18 12:05		
ylene (Total)	8170	ug/L	250	250	50		04/10/18 12:05		
n&p-Xylene	5910	ug/L	500	155	50		04/10/18 12:05		
-Xylene	2270	ug/L	250	80.0	50		04/10/18 12:05		
urrogates		-						•	
-Bromofluorobenzene (S)	97	%	70-130		50		04/10/18 12:05	460-00-4	
,2-Dichloroethane-d4 (S)	97	%	70-130		50		04/10/18 12:05		
oluene-d8 (S)	104	%	70-130		50		04/10/18 12:05		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

Date: 05/01/2018 01:03 PM

92379942

Sample: TW-1	Lab ID:	92379942019	Collecte	d: 04/04/18	8 11:21	Received: 04	/06/18 13:46 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	\ 8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/09/18 14:51	04/10/18 06:12	106-93-4	
1-Chloro-2-bromopropane (S)	82	%	60-140		1	04/09/18 14:51	04/10/18 06:12	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 02:05	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 02:05	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 02:05	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 02:05	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 02:05	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 02:05	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 02:05	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 02:05	108-20-3	
Ethanol	ND	ug/L	200	131	1		04/10/18 02:05	64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 02:05	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 02:05	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 02:05	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.0	1		04/10/18 02:05	91-20-3	
Toluene	ND	ug/L	5.0	1.6	1		04/10/18 02:05	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 02:05	1330-20-7	LS
m&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 02:05	179601-23-1	
o-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 02:05	95-47-6	L1
Surrogates									
1-Bromofluorobenzene (S)	107	%	70-130		1		04/10/18 02:05	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130		1		04/10/18 02:05	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		04/10/18 02:05	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: TW-2	Lab ID:	92379942020	Collected	d: 04/04/1	3 10:13	Received: 04	/06/18 13:46 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.019	1	04/09/18 14:51	04/10/18 06:30	106-93-4	
1-Chloro-2-bromopropane (S)	85	%	60-140		1	04/09/18 14:51	04/10/18 06:30	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 02:22	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 02:22		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 02:22	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 02:22		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 02:22		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 02:22		
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 02:22		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 02:22	108-20-3	
Ethanol	ND	ug/L	200	131	1		04/10/18 02:22	64-17-5	L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 02:22	100-41-4	
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 02:22		
flethyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 02:22	1634-04-4	
laphthalene	ND	ug/L	5.0	2.0	1		04/10/18 02:22	91-20-3	
oluene	ND	ug/L	5.0	1.6	1		04/10/18 02:22	108-88-3	
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 02:22	1330-20-7	LS
n&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 02:22	179601-23-1	
-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 02:22	95-47-6	L1
Surrogates									
-Bromofluorobenzene (S)	112	%	70-130		1		04/10/18 02:22	460-00-4	
,2-Dichloroethane-d4 (S)	104	%	70-130		1		04/10/18 02:22	17060-07-0	
oluene-d8 (S)	101	%	70-130		1		04/10/18 02:22	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: DUP-1	Lab ID:	92379942021	Collected	04/04/1	8 10:24	Received: 04/	06/18 13:46 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
1,2-Dibromoethane (EDB) Surrogates	0.77	ug/L	0.019	0.019	1	04/09/18 14:52	04/10/18 06:48	106-93-4	
1-Chloro-2-bromopropane (S)	119	%	60-140		1	04/09/18 14:52	04/10/18 06:48	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	4000	3070	40		04/12/18 18:15	75-85-4	
tert-Amylmethyl ether	ND	ug/L	400	136	40		04/12/18 18:15		
Benzene	562	ug/L	200	68.0	40		04/12/18 18:15		
3,3-Dimethyl-1-Butanol	ND	ug/L	4000	1280	40		04/12/18 18:15		
tert-Butyl Alcohol	ND	ug/L	4000	2310	40		04/12/18 18:15		
tert-Butyl Formate	ND	ug/L	2000	292	40		04/12/18 18:15		L1
1,2-Dichloroethane	ND	ug/L	200	72.0	40		04/12/18 18:15		
Diisopropyl ether	ND	ug/L	200	68.0	40		04/12/18 18:15		
Ethanol	ND	ug/L	8000	5240	40		04/12/18 18:15		
Ethylbenzene	296	ug/L	200	64.0	40		04/12/18 18:15		
Ethyl-tert-butyl ether	ND	ug/L	400	144	40		04/12/18 18:15		
Methyl-tert-butyl ether	ND	ug/L	200	68.0	40		04/12/18 18:15		
Naphthalene	350	ug/L	200	80.0	40		04/12/18 18:15		
Toluene	3030	ug/L	200	64.0	40		04/12/18 18:15		
Kylene (Total)	7870	ug/L	200	200	40		04/12/18 18:15		
m&p-Xylene	4130	ug/L	400	124	40		04/12/18 18:15		
p-Xylene	3740	ug/L	200	64.0	40		04/12/18 18:15		
Surrogates							19		
-Bromofluorobenzene (S)	100	%	70-130		40		04/12/18 18:15	460-00-4	
,2-Dichloroethane-d4 (S)	105	%	70-130		40		04/12/18 18:15	17060-07-0	
oluene-d8 (S)	105	%	70-130		40		04/12/18 18:15	2037-26-5	

Page 26 of 53

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: TB	Lab ID:	92379942022	Collecte	d: 04/04/1	8 11:42	Received: 0	4/06/18 13:46 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/10/18 02:39	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/10/18 02:39		
Benzene	ND	ug/L	5.0	1.7	1		04/10/18 02:39		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/10/18 02:39		
tert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/10/18 02:39		
tert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/10/18 02:39	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/10/18 02:39		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/10/18 02:39		
Ethanol	ND	ug/L	200	131	1		04/10/18 02:39		L2
Ethylbenzene	ND	ug/L	5.0	1.6	1		04/10/18 02:39	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/10/18 02:39	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/10/18 02:39	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.0	1		04/10/18 02:39	91-20-3	
Toluene	ND	ug/L	5.0	1.6	1		04/10/18 02:39	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		04/10/18 02:39	1330-20-7	LS
m&p-Xylene	ND	ug/L	10.0	3.1	1		04/10/18 02:39	179601-23-1	
o-Xylene	ND	ug/L	5.0	1.6	1		04/10/18 02:39	95-47-6	L1
Surrogates									
1-Bromofluorobenzene (S)	107	%	70-130		1		04/10/18 02:39	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/10/18 02:39	17060-07-0	
foluene-d8 (S)	103	%	70-130		1		04/10/18 02:39	2037-26-5	

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Sample: FB	Lab ID:	92379942023	Collected	04/04/18	8 11:40	Received: 04	/06/18 13:46 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011	57		
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.019	1	04/09/18 14:40	04/09/18 17:50	106-93-4	
1-Chloro-2-bromopropane (S)	104	%	60-140		1	04/09/18 14:40	04/09/18 17:50	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260						
tert-Amyl Alcohol	ND	ug/L	100	76.8	1		04/11/18 07:06	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.4	1		04/11/18 07:06		
Benzene	ND	ug/L	5.0	1.7	1		04/11/18 07:06		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	32.1	1		04/11/18 07:06		
ert-Butyl Alcohol	ND	ug/L	100	57.7	1		04/11/18 07:06		
ert-Butyl Formate	ND	ug/L	50.0	7.3	1		04/11/18 07:06		L2
,2-Dichloroethane	ND	ug/L	5.0	1.8	1		04/11/18 07:06		
Diisopropyl ether	ND	ug/L	5.0	1.7	1		04/11/18 07:06	108-20-3	
thanol	ND	ug/L	200	131	1		04/11/18 07:06		
thylbenzene	ND	ug/L	5.0	1.6	1		04/11/18 07:06	–	
thyl-tert-butyl ether	ND	ug/L	10.0	3.6	1		04/11/18 07:06		
lethyl-tert-butyl ether	ND	ug/L	5.0	1.7	1		04/11/18 07:06		
aphthalene	ND	ug/L	5.0	2.0	1		04/11/18 07:06		
oluene	ND	ug/L	5.0	1.6	1		04/11/18 07:06		
ylene (Total)	ND	ug/L	5.0	5.0	1			1330-20-7	
a&p-Xylene	ND	ug/L	10.0	3.1	1			179601-23-1	
Xylene	ND	ug/L	5.0	1.6	1		04/11/18 07:06		
urrogates								11 0	
Bromofluorobenzene (S)	102	%	70-130		1		04/11/18 07:06	460-00-4	
2-Dichloroethane-d4 (S)	99	%	70-130		1		04/11/18 07:06	17060-07-0	
oluene-d8 (S)	105	%	70-130		1		04/11/18 07:06		

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405561

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV SC

Associated Lab Samples:

92379942006, 92379942008, 92379942009, 92379942010, 92379942011, 92379942012, 92379942013,

92379942014, 92379942015, 92379942016, 92379942019, 92379942020, 92379942022

METHOD BLANK: 2249860

Matrix: Water

Associated Lab Samples:

92379942006, 92379942008, 92379942009, 92379942010, 92379942011, 92379942012, 92379942013,

92379942014, 92379942015, 92379942016, 92379942019, 92379942020, 92379942022

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/09/18 22:23	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/09/18 22:23	
Benzene	ug/L	ND	5.0	1.7	04/09/18 22:23	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/09/18 22:23	
Ethanol	ug/L	ND	200	131	04/09/18 22:23	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/09/18 22:23	
Ethylbenzene	ug/L	ND	5.0	1.6	04/09/18 22:23	
m&p-Xylene	ug/L	ND	10.0	3.1	04/09/18 22:23	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/09/18 22:23	
Naphthalene	ug/L	ND	5.0	2.0	04/09/18 22:23	
o-Xylene	ug/L	ND	5.0	1.6	04/09/18 22:23	
tert-Amyl Alcohol	ug/L	ND	100	76.8	04/09/18 22:23	
tert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/09/18 22:23	
tert-Butyl Alcohol	ug/L	ND	100	57.7	04/09/18 22:23	
tert-Butyl Formate	ug/L	ND	50.0	7.3	04/09/18 22:23	
Toluene	ug/L	ND	5.0	1.6	04/09/18 22:23	
Xylene (Total)	ug/L	ND	5.0	5.0	04/09/18 22:23	
1,2-Dichloroethane-d4 (S)	%	100	70-130		04/09/18 22:23	
4-Bromofluorobenzene (S)	%	110	70-130		04/09/18 22:23	
Toluene-d8 (S)	%	103	70-130		04/09/18 22:23	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	55.7	111	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	879	88	70-130 1	a
Benzene	ug/L	50	61.3	123	70-130	•
Diisopropyl ether	ug/L	50	63.3	127	70-130	
Ethanol	ug/L	2000	1330	66	70-130 L	2
Ethyl-tert-butyl ether	ug/L	100	117	117	70-130	
Ethylbenzene	ug/L	50	63.6	127	70-130	
m&p-Xylene	ug/L	100	127	127	70-130	
Methyl-tert-butyl ether	ug/L	50	54.4	109	70-130	
Naphthalene	ug/L	50	59.0	118	70-130	
o-Xylene	ug/L	50	65.6	131	70-130 L ⁻	1
tert-Amyl Alcohol	ug/L	1000	872	87	70-130 1	1
tert-Amylmethyl ether	ug/L	100	123	123	70-130	-
tert-Butyl Alcohol	ug/L	500	444	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

COASTAL 76 TRUCK STOP 18-6276

2249861

Pace Project No.:

92379942

LABORATORY CONTROL SAMPLE:

	Spike LCS LCS % Rec		% Pec				
Parameter	Units	•	tesult	% Rec	Limits	Qualifiers	
tert-Butyl Formate	ug/L	400	390	97	70-130 10	1	
Toluene	ug/L	50	60.3	121	70-130 Tg	3	
Xylene (Total)	ug/L	150	192	128	70-130 LS	3	
1,2-Dichloroethane-d4 (S)	%			86	70-130		
4-Bromofluorobenzene (S)	%			100	70-130		
Toluene-d8 (S)	%			96	70-130		
MATRIX SPIKE SAMPLE:	2249863						
		92379942012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	NE	20	20.1	100	70-130	
3,3-Dimethyl-1-Butanol	ug/L	NE		424	106	70-130	
Benzene	ug/L	NE	20	21.7	109	70-130	
Diisopropyl ether	ug/L	NE		20.8	104	70-130	
Ethanol	ug/L	NE		786	98	70-130	
Ethyl-tert-butyl ether	ug/L	ND		38.5	96	70-130	
Ethylbenzene	ug/L	ND		23.2	116	70-130	
m&p-Xylene	ug/L	ND	40	47.4	118	70-130	
Methyl-tert-butyl ether	ug/L	ND	20	19.1	95	70-130	
Naphthalene	ug/L	ND	20	23.4	117	70-130	
o-Xylene	ug/L	ND	20	24.3	121	70-130	
tert-Amyl Alcohol	ug/L	ND	400	418	105	70-130	
tert-Amylmethyl ether	ug/L	ND		41.2	103	70-130	
tert-Butyl Alcohol	ug/L	ND	200	216	108	70-130	
tert-Butyl Formate	ug/L	ND	160	114	71	70-130	
Toluene	ug/L	ND	20	21.1	105	70-130	
Kylene (Total)	ug/L	ND		71.7	119	70-130	
1,2-Dichloroethane-d4 (S)	%				99	70-130	
4-Bromofluorobenzene (S)	%				98	70-130	
Toluene-d8 (S)	%				97	70-130	
SAMPLE DUPLICATE: 2249862							
_		92379942011	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
,2-Dichloroethane	ug/L	ND	ND		30		
,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	1	
lenzene		NID.					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

30

30

30

30

30

30

30

30

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

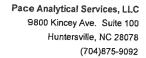
REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Benzene

Ethanol

Diisopropyl ether


Ethylbenzene

m&p-Xylene

Naphthalene

Ethyl-tert-butyl ether

Methyl-tert-butyl ether

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

Parameter	Units	92379942011 Result	Dup Result	RPD	Max RPD	Qualifiers
o-Xylene	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Totai)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	104	100	4	00	
4-Bromofluorobenzene (S)	%	107	101	6		
Toluene-d8 (S)	%	103	103	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Page 31 of 53

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405562

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV SC

Associated Lab Samples:

92379942007

METHOD BLANK: 2249864

Matrix: Water

Associated Lab Samples: 92379942007

Associated Lab Samples: 923	79942007					
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/09/18 22:40	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/09/18 22:40	
Benzene	ug/L	ND	5.0	1.7	04/09/18 22:40	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/09/18 22:40	
Ethanol	ug/L	ND	200	131	04/09/18 22:40	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/09/18 22:40	
Ethylbenzene	ug/L	ND	5.0	1.6	04/09/18 22:40	
m&p-Xylene	ug/L	ND	10.0	3.1	04/09/18 22:40	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/09/18 22:40	
Naphthalene	ug/L	ND	5.0	2.0	04/09/18 22:40	
o-Xylene	ug/L	ND	5.0	1.6	04/09/18 22:40	
tert-Amyl Alcohol	ug/L	ND	100	76.8	04/09/18 22:40	
tert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/09/18 22:40	
tert-Butyl Alcohol	ug/L	ND	100	57.7	04/09/18 22:40	
ert-Butyl Formate	ug/L	ND	50.0	7.3	04/09/18 22:40	
Toluene	ug/L	ND	5.0	1.6	04/09/18 22:40	
Xylene (Total)	ug/L	ND	5.0	5.0	04/09/18 22:40	
1,2-Dichloroethane-d4 (S)	%	100	70-130		04/09/18 22:40	
4-Bromofluorobenzene (S)	%	106	70-130		04/09/18 22:40	
Toluene-d8 (S)	%	103	70-130		04/09/18 22:40	

LABORATORY CONTROL SAMPLE:	2249865					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	56.0	112	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	839	84	70-130 1	α
Benzene	ug/L	50	60.7	121	70-130	5
Diisopropyl ether	ug/L	50	62.4	125	70-130	
Ethanol	ug/L	2000	1130	57	70-130 L	2
Ethyl-tert-butyl ether	ug/L	100	117	117	70-130	_
Ethylbenzene	ug/L	50	61.6	123	70-130	
m&p-Xylene	ug/L	100	126	126	70-130	
Methyl-tert-butyl ether	ug/L	50	58.2	116	70-130	
Naphthalene	ug/L	50	57.0	114	70-130	
o-Xylene	ug/L	50	65.1	130	70-130	
tert-Amyl Alcohol	ug/L	1000	835	83	70-130 10	1
tert-Amylmethyl ether	ug/L	100	121	121	70-130	,
tert-Butyl Alcohol	ug/L	500	419	84	70-130	
tert-Butyl Formate	ug/L	400	400	100	70-130 1g	1
Toluene	ug/L	50	58.5	117	70-130	,

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

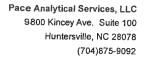
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

LABORATORY CONTROL SAMPLE:	2249865	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Xylene (Total)	ug/L	150	191	127	70-130	
1,2-Dichloroethane-d4 (S)	%			88	70-130	
4-Bromofluorobenzene (S)	%			102	70-130	
Toluene-d8 (S)	%			95	70-130	


MATRIX SPIKE SAMPLE:	2249867						
Parameter	Units	92379950010 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	19.9	98	70-130	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	459	115	70-130	
Benzene	ug/L	ND	20	24.7	114	70-130	
Diisopropyl ether	ug/L	ND	20	21.4	107	70-130	
Ethanol	ug/L	ND	800	829	104	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	39.9	100	70-130	
Ethylbenzene	ug/L	ND	20	23.6	118	70-130	
m&p-Xylene	ug/L	ND	40	48.4	121	70-130	
Methyl-tert-butyl ether	ug/L	ND	20	20.6	103	70-130	
Naphthalene	ug/L	ND	20	25.1	123	70-130	
o-Xylene	ug/L	ND	20	24.9	125	70-130	
ert-Amyl Alcohol	ug/L	ND	400	462	116	70-130	
ert-Amylmethyl ether	ug/L	ND	40	42.3	106	70-130	
ert-Butyl Alcohol	ug/L	ND	200	236	118	70-130	
ert-Butyl Formate	ug/L	ND	160	106	66	70-130 Ps	;
Toluene	ug/L	ND	20	21.4	107	70-130 1 3	,
(ylene (Total)	ug/L	ND	60	73.3	122	70-130 70-130	
,2-Dichloroethane-d4 (S)	%				99	70-130	
-Bromofluorobenzene (S)	%				98	70-130	
oluene-d8 (S)	%				96	70-130	

_		92379950009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	12.4	15.2	21	30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
n&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	9.2	12.8	32	30 E	06
-Xylene	ug/L	ND	ND		30	•
ert-Amyl Alcohol	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

SAMPLE DUPLICATE: 2249866						
Parameter	Units	92379950009 Result	Dup Result	RPD	Max RPD	Qualifiers
tert-Amylmethyl ether	ug/L	ND -	ND -		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30)
Toluene	ug/L	ND	ND		30)
Xylene (Total)	ug/L	ND	ND		30)
1,2-Dichloroethane-d4 (S)	%	104	103	1		
4-Bromofluorobenzene (S)	%	108	100	8		
Toluene-d8 (S)	%	96	98	2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405636

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV SC

Associated Lab Samples:

92379942001, 92379942003, 92379942004, 92379942005, 92379942017, 92379942018

METHOD BLANK: 2250232

Matrix: Water

Date: 05/01/2018 01:03 PM

Associated Lab Samples: 92379942001, 92379942003, 92379942004, 92379942005, 92379942017, 92379942018

		Dia-l	ъ			
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/10/18 10:23	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/10/18 10:23	
Benzene	ug/L	ND	5.0	1.7	04/10/18 10:23	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/10/18 10:23	
Ethanol	ug/L	ND	200	131	04/10/18 10:23	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/10/18 10:23	
Ethylbenzene	ug/L	ND	5.0	1.6	04/10/18 10:23	
m&p-Xylene	ug/L	ND	10.0	3.1	04/10/18 10:23	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/10/18 10:23	
Naphthalene	ug/L	ND	5.0	2.0	04/10/18 10:23	
o-Xylene	ug/L	ND	5.0	1.6	04/10/18 10:23	
ert-Amyl Alcohol	ug/L	ND	100	76.8	04/10/18 10:23	
ert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/10/18 10:23	
ert-Butyl Alcohol	ug/L	ND	100	57.7	04/10/18 10:23	
ert-Butyl Formate	ug/L	ND	50.0	7.3	04/10/18 10:23	
l'oluene	ug/L	ND	5.0	1.6	04/10/18 10:23	
(ylene (Total)	ug/L	ND	5.0	5.0	04/10/18 10:23	
,2-Dichloroethane-d4 (S)	%	93	70-130		04/10/18 10:23	
-Bromofluorobenzene (S)	%	98	70-130		04/10/18 10:23	
oluene-d8 (S)	%	103	70-130		04/10/18 10:23	

LABORATORY CONTROL SAMPLE:	2250233					
Davamatas	11.26.	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	42.9	86	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	951	95	70-130	
Benzene	ug/L	50	50.1	100	70-130	
Diisopropyl ether	ug/L	50	48.8	98	70-130	
Ethanol	ug/L	2000	1830	92	70-130	
Ethyl-tert-butyl ether	ug/L	100	92.8	93	70-130	
Ethylbenzene	ug/L	50	48.7	97	70-130	
m&p-Xylene	ug/L	100	96.7	97	70-130	
Methyl-tert-butyl ether	ug/L	50	48.0	96	70-130	
Naphthalene	ug/L	50	52.2	104	70-130	
o-Xylene	ug/L	50	50.9	102	70-130	
tert-Amyl Alcohol	ug/L	1000	9 87	99	70-130	
tert-Amylmethyl ether	ug/L	100	106	106	70-130	
tert-Butyl Alcohol	ug/L	500	413	83	70-130	
tert-Butyl Formate	ug/L	400	466	117	70-130	
Toluene	ug/L	50	46.6	93	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

Date: 05/01/2018 01:03 PM

92379942

LABORATORY CONTROL SAMPLE:	2250233					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Xylene (Total)	ug/L	150	148	98	70-130	
1,2-Dichloroethane-d4 (S)	%			85	70-130	
4-Bromofluorobenzene (S)	%			95	70-130	
Toluene-d8 (S)	%			94	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 22502	34		2250235							
		92379942001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dichloroethane	ug/L	ND	4000	4000	4370	4250	107	104	70-130	3	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	80000	80000	71700	78200	90	98	70-130	9	30	
Benzene	ug/L	11000	4000	4000	15800	15500	121	112	70-130	2	30	
Diisopropyl ether	ug/L	ND	4000	4000	4370	4410	109	110	70-130	1	30	
Ethanol	ug/L	ND	160000	160000	162000	160000	101	100	70-130	1	30	
Ethyl-tert-butyl ether	ug/L	ND	8000	8000	8490	8440	106	105	70-130	1	30	
Ethylbenzene	ug/L	1010	4000	4000	5560	5500	114	112	70-130	1	30	
m&p-Xylene	ug/L	10700	8000	8000	19200	18900	107	103	70-130	2	30	
Methyl-tert-butyl ether	ug/L	ND	4000	4000	4550	4560	109	109	70-130	0	30	
Naphthalene	ug/L	1210	4000	4000	5400	5680	105	112	70-130	5	30	
o-Xylene	ug/L	6480	4000	4000	10800	10700	108	105	70-130	1	30	
ert-Amyl Alcohol	ug/L	ND	80000	80000	89900	99000	99	110	70-130	10	30	
ert-Amylmethyl ether	ug/L	ND	8000	8000	9160	9110	115	114	70-130	1	30	
ert-Butyl Alcohol	ug/L	ND	40000	40000	34100	37300	85	93	70-130	9	30	
ert-Butyl Formate	ug/L	ND	32000	32000	44200	43800	138	137	70-130	1	30 N	11
oluene	ug/L	18100	4000	4000	20100	20000	52	48	70-130	1	30 N	
ylene (Total)	ug/L	17200	12000	12000	30000	29600	107	103	70-130	2	30	
,2-Dichloroethane-d4 (S)	%						97	95	70-130			
-Bromofluorobenzene (S)	%						98	98	70-130			
oluene-d8 (S)	%						98	95	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405717

EPA 8260

Analysis Method:

EPA 8260

QC Batch Method:

Analysis Description:

8260 MSV SC

Associated Lab Samples: 92379942023

METHOD BLANK: 2250720

Matrix: Water

Associated Lah Sa

Deremeter	11.9.	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/11/18 05:42	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/11/18 05:42	
Benzene	ug/L	ND	5.0	1.7	04/11/18 05:42	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/11/18 05:42	
Ethanol	ug/L	ND	200	131	04/11/18 05:42	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/11/18 05:42	
Ethylbenzene	ug/L	ND	5.0	1.6	04/11/18 05:42	
m&p-Xylene	ug/L	ND	10.0	3.1	04/11/18 05:42	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/11/18 05:42	
Naphthalene	ug/L	ND	5.0	2.0	04/11/18 05:42	
o-Xylene	ug/L	ND	5.0	1.6	04/11/18 05:42	
ert-Amyl Alcohol	ug/L	ND	100	76.8	04/11/18 05:42	
ert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/11/18 05:42	
ert-Butyl Alcohol	ug/L	ND	100	57.7	04/11/18 05:42	
ert-Butyl Formate	ug/L	ND	50.0	7.3	04/11/18 05:42	
Toluene	ug/L	ND	5.0	1.6	04/11/18 05:42	
(ylene (Total)	ug/L	ND	5.0	5.0	04/11/18 05:42	
,2-Dichloroethane-d4 (S)	%	97	70-130		04/11/18 05:42	
-Bromofluorobenzene (S)	%	103	70-130		04/11/18 05:42	
oluene-d8 (S)	%	105	70-130		04/11/18 05:42	

LABORATORY CONTROL SAMPLE:	2250721					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	46.7	93	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	956	96	70-130	1g
Benzene	ug/L	50	53.4	107	70-130	Ü
Diisopropyl ether	ug/L	50	52.9	106	70-130	
Ethanol	ug/L	2000	1690	85	70-130	
Ethyl-tert-butyl ether	ug/L	100	99.5	100	70-130	
Ethylbenzene	ug/L	50	54.5	109	70-130	
m&p-Xylene	ug/L	100	110	110	70-130	
Methyl-tert-butyl ether	ug/L	50	50.2	100	70-130	
Naphthalene	ug/L	50	59.0	118	70-130	
o-Xylene	ug/L	50	56.7	113	70-130	
tert-Amyl Alcohol	ug/L	1000	895	90	70-130 1	la
tert-Amylmethyl ether	ug/L	100	107	107	70-130	ū
tert-Butyl Alcohol	ug/L	500	514	103	70-130	
tert-Butyl Formate	ug/L	400	257	64	70-130 1	q.L2
Toluene	ug/L	50	49.8	100	70-130	J.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

LABORATORY CONTROL SAMPLE: Parameter	2250721 Units	•	CS sult	LCS % Rec	% Rec Limits	Qualifiers	
Xylene (Total) 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S)	ug/L % % %	150	166	111 90 97 95	70-130 70-130 70-130 70-130		
MATRIX SPIKE SAMPLE:	2252175						
Parameter	Units	92379947014 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	18.9	94	70-130	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	453	113		
Benzene	ug/L	ND	20	22.3	112		
Diisopropyl ether	ug/L	ND	20	19.6	98	70-130	
Ethanol	ug/L	ND	800	741	93	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	37.2	93	70-130	
Ethylbenzene	ug/L	ND	20	22.3	112	70-130	
m&p-Xylene	ug/L	ND	40	45.4	113	70-130	
Methyl-tert-butyl ether	ug/L	ND	20	18.7	93	70-130	
Naphthalene	ug/L	ND	20	24.5	120	70-130	
o-Xylene	ug/L	ND	20	23.1	115	70-130	
ert-Amyl Alcohol	ug/L	ND	400	406	101	70-130	
ert-Amylmethyl ether	ug/L	ND	40	40.6	101	70-130	
ert-Butyl Alcohol	ug/L	ND	200	180	90	70-130	
ert-Butyl Formate	ug/L	ND	160	152	95	70-130	
oluene	ug/L	ND	20	20.8	104	70-130	
(ylene (Total)	ug/L	ND	60	68.4	114	70-130	
,2-Dichloroethane-d4 (S)	%				90	70-130	
-Bromofluorobenzene (S)	%				96	70-130	
oluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 2252174						
Parameter	Units	92379947013 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30)
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	l
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xylene	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

30

3

2

0

QUALITY CONTROL DATA

Project:

Xylene (Total)

Toluene-d8 (S)

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

COASTAL 76 TRUCK STOP 18-6276

ug/L

%

%

%

Pace Project No.:

92379942

SAMPLE DUPLICATE: 2252174						
Parameter	Units	92379947013 Result	Dup Result	RPD	Max RPD	Qualifiers
tert-Amylmethyl ether	ug/L	ND	ND		30)
tert-Butyl Alcohol	ug/L	ND	ND	30		
tert-Butyl Formate	ug/L	ND	ND		30)
Toluene	ug/L	ND	ND		30)

ND

101

101

103

ND

97

99

102

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

QC Batch:

406009

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV SC

Associated Lab Samples: 92379942002, 92379942021

METHOD BLANK: 2252338

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:	92379942002, 92379942021					
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	1.8	04/12/18 12:37	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	32.1	04/12/18 12:37	
Benzene	ug/L	ND	5.0	1.7	04/12/18 12:37	
Diisopropyl ether	ug/L	ND	5.0	1.7	04/12/18 12:37	
Ethanol	ug/L	ND	200	131	04/12/18 12:37	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.6	04/12/18 12:37	
Ethylbenzene	ug/L	ND	5.0	1.6	04/12/18 12:37	
m&p-Xylene	ug/L	ND	10.0	3.1	04/12/18 12:37	
Methyl-tert-butyl ether	ug/L	ND	5.0	1.7	04/12/18 12:37	
Naphthalene	ug/L	ND	5.0	2.0	04/12/18 12:37	
o-Xylene	ug/L	ND	5.0	1.6	04/12/18 12:37	
tert-Amyl Alcohol	ug/L	ND	100	76.8	04/12/18 12:37	
tert-Amylmethyl ether	ug/L	ND	10.0	3.4	04/12/18 12:37	
tert-Butyl Alcohol	ug/L	ND	100	57.7	04/12/18 12:37	
tert-Butyl Formate	ug/L	ND	50.0	7.3	04/12/18 12:37	
Toluene	ug/L	ND	5.0	1.6	04/12/18 12:37	
Xylene (Total)	ug/L	ND	5.0	5.0	04/12/18 12:37	
1,2-Dichloroethane-d4 (S)	%	103	70-130	0.5	04/12/18 12:37	
4-Bromofluorobenzene (S)	%	109	70-130		04/12/18 12:37	
Toluene-d8 (S)	%	107	70-130		04/12/18 12:37	

LABORATORY CONTROL SAMPLE:	2252339					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	52.6	105	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	856	86	70-130	
Benzene	ug/L	50	56.3	113	70-130	
Diisopropyl ether	ug/L	50	56.0	112	70-130	
Ethanoi	ug/L	2000	2040	102	70-130	
Ethyl-tert-butyl ether	ug/L	100	110	110	70-130	
Ethylbenzene	ug/L	50	52.4	105	70-130	
m&p-Xylene	ug/L	100	105	105	70-130	
Methyl-tert-butyl ether	ug/L	50	59.4	119	70-130	
Naphthalene	ug/L	50	55.3	111	70-130	
o-Xylene	ug/L	50	53.3	107	70-130	
tert-Amyl Alcohol	ug/L	1000	1040	104	70-130	
tert-Amylmethyl ether	ug/L	100	119	119	70-130	
tert-Butyl Alcohol	ug/L	500	452	90	70-130	
tert-Butyl Formate	ug/L	400	567	142	70-130 L1	
Toluene	ug/L	50	50.2	100	70-130	

Results presented on this page are in the units Indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.: 92379942

LABORATORY CONTROL SAMPLE:	2252339						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Xylene (Total)	ug/L	150	158	105	70-130		
1,2-Dichloroethane-d4 (S)	%			102	70-130		
4-Bromofluorobenzene (S)	%			103	70-130		
Toluene-d8 (S)	%			98	70-130		

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	ATE: 22523	40		2252341							
	g	2379733002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dichloroethane	ug/L	ND	400	400	456	406	113	100	70-130	12	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	8000	8000	5710	5040	71	63	70-130	13		M1
Benzene	ug/L	1230	400	400	1710	1630	120	100	70-130	5	30	IVII
Diisopropyl ether	ug/L	ND	400	400	446	382	112	96	70-130	15	30	
Ethanol	ug/L	ND	16000	16000	15800	13800	99	86	70-130	14	30	
Ethyl-tert-butyl ether	ug/L	ND	800	800	880	768	110	96	70-130	14	30	
Ethylbenzene	ug/L	1820	400	400	2280	2160	116	86	70-130	5	30	
m&p-Xylene	ug/L	2290	800	800	3150	2960	107	83	70-130	6	30	
Methyl-tert-butyl ether	ug/L	ND	400	400	454	389	114	97	70-130	16	30	
Naphthalene	ug/L	573	400	400	1020	940	111	92	70-130	8	30	
o-Xylene	ug/L	735	400	400	1200	1110	117	95	70-130	8	30	
ert-Amyl Alcohol	ug/L	ND	8000	8000	7930	6820	99	85	70-130	15	30	
ert-Amylmethyl ether	ug/L	ND	800	800	970	825	121	103	70-130	16	30	
ert-Butyl Alcohol	ug/L	ND	4000	4000	3450	2930	86	73	70-130	16	30	
ert-Butyl Formate	ug/L	ND	3200	3200	4230	3590	132	112	70-130	16	30 1	MΩ
Toluene	ug/L	2080	400	400	2390	2260	77	43	70-130	6	30 1	
(ylene (Total)	ug/L	3030	1200	1200	4350	4070	111	87	70-130	7	30	VI 1
,2-Dichloroethane-d4 (S)	%						104	101	70-130	•		
-Bromofluorobenzene (S)	%						104	103	70-130			
oluene-d8 (S)	%						96	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405467

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

Matrix: Water

GCS 8011 EDB DBCP

Associated Lab Samples:

92379942002, 92379942003

METHOD BLANK: 2249118 Associated Lab Samples:

Parameter

Parameter

92379942002, 92379942003

Blank

Result

Spike

Conc.

.25

Reporting Limit

MDL

0.020

Analyzed

Qualifiers

1.2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S) Units ug/L %

Units

ug/L

%

Result

%

ND 117

Result

0.28

.24

0.020 60-140

Result

0.29

04/09/18 15:34

04/09/18 15:34

LABORATORY CONTROL SAMPLE & LCSD:

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

2249119

2249120 LCS LCSD

LCS LCSD % Rec % Rec

114

109

MSD

Result

0.17

% Rec Limits

60-140

60-140

RPD

2

Max RPD Qualifiers

1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)

2249121

ND

2249122

71

71

20

Parameter 1,2-Dibromoethane (EDB)

MS 92379733026 Spike MSD Spike MS

MS

114

109

MSD % Rec % Rec

71

Max RPD RPD

1-Chloro-2-bromopropane

ug/L %

Units

Conc. Conc. .24

Result 0.17 % Rec

0

Limits 71 60-140

60-140

Qual 20 0

SAMPLE DUPLICATE:

1-Chloro-2-bromopropane (S)

2240122

OAWITEL DOFFICATE. 2249123		92379733029
Parameter	Units	Result
1,2-Dibromoethane (EDB)	ug/L	ND

Dup Result

101

RPD ND

99

Max **RPD** 20

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405469

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Associated Lab Samples:

92379942004, 92379942005, 92379942006, 92379942007, 92379942008, 92379942009, 92379942010, 92379942011, 92379942012, 92379942013, 92379942014, 92379942015, 92379942016, 92379942017,

92379942018, 92379942019, 92379942020, 92379942021

METHOD BLANK: 2249128

Matrix: Water

Associated Lab Samples:

Date: 05/01/2018 01:03 PM

92379942004, 92379942005, 92379942006, 92379942007, 92379942008, 92379942009, 92379942010, 92379942011, 92379942012, 92379942013, 92379942014, 92379942015, 92379942016, 92379942017,

92379942018, 92379942019, 92379942020, 92379942021

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers 1,2-Dibromoethane (EDB) ug/L ND 0.020 0.020 04/09/18 23:54 1-Chloro-2-bromopropane (S) % 144 60-140 04/09/18 23:54 S3

LABORATORY CONTROL SAMPLE & LCSD: 2249129 2249130 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits RPD RPD Qualifiers 1,2-Dibromoethane (EDB) ug/L .25 0.26 0.25 105 103 60-140 20 1-Chloro-2-bromopropane (S) % 103 104 60-140

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2249131 2249132 MS MSD 92379942004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 1,2-Dibromoethane (EDB) ug/L 1.0 .25 .25 1.3 1.3 92 106 60-140 3 20 1-Chloro-2-bromopropane % 111 105 60-140 (S)

SAMPLE DUPLICATE: 2249133 92379942011 Dun Max Parameter Units Result Result RPD RPD Qualifiers 1.2-Dibromoethane (EDB) ND ug/L ND 20 1-Chloro-2-bromopropane (S) 103 % 76 29

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

405471

Analysis Method:

EPA 8011

QC Batch Method: EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Associated Lab Samples:

92379942023

METHOD BLANK: 2249141

92379942023

Matrix: Water

Associated Lab Samples:

Parameter Units 1,2-Dibromoethane (EDB) ug/L

Units

ug/L

%

Reporting Limit 0.020

MDL Analyzed 0.020

Qualifiers

1-Chloro-2-bromopropane (S)

%

%

92379947008

Result

ND 133 60-140

04/09/18 16:07 04/09/18 16:07

LABORATORY CONTROL SAMPLE & LCSD: 2249142 2249143 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits RPD RPD 1,2-Dibromoethane (EDB) ug/L .25 0.26 0.30 105 126 60-140 15 20

MSD

Spike

Conc.

Blank

Result

1-Chloro-2-bromopropane (S)

Parameter

2249144

0.10

MS

Spike

Conc.

.24

2249145

MS MSD Result

105

MS MSD % Rec

60-140

% Rec Max Limits RPD RPD

1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Result .24 0.32

% Rec 0.32 91

155

129

89 60-140 152 60-140

2 SO

Qualifiers

Qual

SAMPLE DUPLICATE: 2249146

Parameter	Units	92379947018 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND 98	ND 107	9	20	0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

QC Batch:

408687

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Associated Lab Samples:

92379942001

METHOD BLANK: 2267490

Matrix: Water

Associated Lab Samples: 92379942001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	0.020	0.020	04/30/18 14:14	
1-Chloro-2-bromopropane (S)	%	110	60-140		04/30/18 14:14	

LABORATORY CONTROL SAMPLE & LC	CSD: 2267491		2:	267492						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	.24	0.25	0.26	101 102	105 104	60-140 60-140	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 05/01/2018 01:03 PM

1g	Initial calibration evaluation met acceptance criteria. Compound did not meet additional accuracy assessment for percent error
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H2	Extraction or preparation conducted outside EPA method holding time.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
LS	Analyte recovery in the laboratory control sample (LCS) was outside QC limits for one or more of the constituent analytes used in the calculated result.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
P5	The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
S0	Surrogate recovery outside laboratory control limits.
S3	Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.
S4	Surrogate recovery not evaluated against control limits due to sample dilution.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

92379942

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92379942001	MW-1	EPA 8011	408687	EPA 8011	408691
92379942002	MW-2	EPA 8011	405467	EPA 8011	405529
92379942003	MW-3	EPA 8011	405467	EPA 8011	405529
92379942004	MW-4	EPA 8011	405469	EPA 8011	405531
92379942005	MVV-5	EPA 8011	405469	EPA 8011	405531
92379942006	MW-6	EPA 8011	405469	EPA 8011	405531
92379942007	MW-7	EPA 8011	405469	EPA 8011	405531
92379942008	MW-8	EPA 8011	405469	EPA 8011	405531
92379942009	MW-10RR	EPA 8011	405469	EPA 8011	405531
92379942010	MW-11	EPA 8011	405469	EPA 8011	405531
92379942011	MW-15	EPA 8011	405469	EPA 8011	405531
92379942012	MW-18	EPA 8011	405469	EPA 8011	
92379942013	MW-19	EPA 8011	405469	EPA 8011	405531
92379942014	MW-20	EPA 8011	405469	EPA 8011	405531
2379942015	MW-27	EPA 8011	405469	EPA 8011	405531
2379942016	MW-28	EPA 8011	405469		405531
2379942017	IGWA	EPA 8011	405469	EPA 8011	405531
2379942018	IGWA-R	EPA 8011	405469	EPA 8011	405531
2379942019	TW-1	EPA 8011	405469	EPA 8011	405531
2379942020	TW-2	EPA 8011	405469	EPA 8011	405531
2379942021	DUP-1	EPA 8011	405469	EPA 8011 EPA 8011	405531 405531
2379942023	FB	EPA 8011	405471	EPA 8011	405531
2379942001	MW-1	EPA 8260	405636	217,0011	403530
2379942002	MW-2	EPA 8260	406009		
2379942003	MW-3	EPA 8260	405636		
2379942004	MW-4	EPA 8260	405636		
2379942005	MW-5	EPA 8260			
2379942006	MW-6		405636		
2379942007	MW-7	EPA 8260	405561		
		EPA 8260	405562		
2379942008	MW-8	EPA 8260	405561		
2379942009	MW-10RR	EPA 8260	405561		
2379942010	MW-11	EPA 8260	405561		
2379942011	MW-15	EPA 8260	405561		
2379942012	MW-18	EPA 8260	405561		
2379942013	MW-19	EPA 8260	405561		
379942014	MW-20	EPA 8260	405561		
379942015	MW-27	EPA 8260	405561		
379942016	MW-28	EPA 8260	405561		
379942017	IGWA	EPA 8260	405636		
379942018	IGWA-R	EPA 8260	405636		
379942019	TW-1	EPA 8260	405561		
379942020	TW-2	EPA 8260	405561		

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

COASTAL 76 TRUCK STOP 18-6276

Pace Project No.:

Date: 05/01/2018 01:03 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92379942022	ТВ	EPA 8260	405561		
92379942023	FB	EPA 8260	405717		

	2)		Sample Co	Documen		nt/SCLIR)	Docum	nent Revised: Februa Page 1 of 2	ry 7, 2018
	Pac	ce Analyi	tical"	Sumple vo	Docume		pilacon		Issuing Authority	:
				F-I		33-Rev.06		Pa	ce Carolinas Quality	
Labo	ratory receiving	z sampl	es:						-	
	Asheville	_	Eden	Greenwoo	od 🗌	Н	untersvil	e	Raleigh	Mechanicsville[
	nple Condition oon Receipt	Client	Name:				Projec		92379	942
Courie	er: immercial	Fed		UPS USP			lient g	2379942		
Custody	y Seal Present?	∐Yes	(No	Seals Intact?	∐Yes		0	Date/Inition	als Person Examining C	ontents: 16 4
Packing	Material:	Bubble	Wrap	Bubble Bags	Non	еП	Other		Biological Tissue	Frozen?
Thermo			_	Type of			Blue	None	Yes No	
	Temp (°C): 2	7	-1	Factor: Add/Subtra	ict (°C)	+0.1		17.	above freezing to 6° It of temp criteria. Sam	C ples on ice, cooling process
Did samp	egulated Soll () o ples originate in a qu es No			e United States: CA	, NY, or S(C (check ma	aps)? Did	samples origir uding Hawali a	nate from a foreign sou and Puerto Rico)?	s No
							-		Comments/Discrepar	icy:
Cha	ain of Custody Prese	nt?		Yes	No	□n/a	1.			
San	mples Arrived within	Hold Tim	e?	Yes	•. □No	□N/A	2.			
	ort Hold Time Analys			□Yes	, ENO	□N/A	3.	18		
Rus	sh Turn Around Time	e Request	ed?	□Yes	□H6	□n/a	4.			
Suf	ficient Volume?			Ves	□No	□N/A	5.			
	rect Containers User	d?		Die Die	□No	□N/A	6.			
1	Pace Containers Use			Dres	□No	□N/A			., .	
Cor	ntainers Intact?			Ves	□No	□N/A	7.			
Dist	solved analysis: Sam	ples Field	Filtered?	☐Yes	□No	ÐN/A	8.	A 1		
San	nple Labels Match Co	OC?		□Yes	- DNo	□N/A	9.	10 de	wed to	neon
	Includes Date/Time/	/ID/Analys	is Matrix:	WI	***************************************		87	Imp	les	
Hea	dspace in VOA Vials	(>5-6mm)?	□Yes	DNO	□N/A	10.			
Trip	Blank Present?			_Dres	□No	□n/a	11.	•		
Trip	Blank Custody Seals	Present?		Yes	-HNO	□n/A				
COMM	IENTS/SAMPLE DISCR	EPANCY							Field Data Red	quired? Yes No
							Lot ID of	split contain	ners:	
CLIENTN	IOTIFICATION/RESOLI	UTION								
					14.1					

Date/Time: __

Person contacted:

Project Manager SCURF Review:

Project Manager SRF Review:

Page 49 of 53

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project # WO#: 92379942

PM: RWC

Due Date: 04/13/18

CLIENT: 92-MIDLAND

lteini	8P4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	8P4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 ml. Plastic ZN Acetate. & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1. liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																6												
																6				_ =				\bigvee				
3								V								0												
4													V	J		/2										\neg		
5						1		1			1		7	7	1	(2)			\top		1			7	1			
6.					V	1	7	1			1		7	1	1	6					\dashv	\exists		1	1			
7					1	7	1	1	\top		1		7	1	1	7	7	1	\top	\dashv		\dashv		1	1	\dashv	+	\dashv
8	1				7	7	1	1	\dashv	\rightarrow	7	1	1	1	1	6	\dashv			\dashv	\top	\dashv	1	1	1	\dashv	\dashv	\exists
9	1			\forall	7	1	1	1	\top	1	1	1	1	1	1			\dagger	1		\top	\dashv		1	1	+		
10	1	\top			1	1	1	1	1		1	1	1	1		2	1	\top	-	+	+		1	1	1		+	\dashv
11	1	\dashv	\forall		1	1	1	1	\top	1	1		1	1		7	1		\dashv	\top	-	\forall	1	1	1	+	\dashv	\dashv
12	7		1		1	1	1	1		\uparrow	1	1	1	1			\dashv	+			+	+	+	1	1	+	+	

pH Adjustment Log for Preserved Samples											
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #					
·											
						W. W.					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project /

MO#: 92379942

PM: RWC

Due Date: 04/13/18

CLIENT: 92-MIDLAND

1		BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CJ-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 viats per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
2		1		+		1	λ					1		1			6												
3	1	1	+	+	_	X	X	X	A			Y		1	1		6								7	1			
4		1	_			Y		V	7			7		1	7		6								1				
		1				1	7	1	1				_	V	V										V	V			
5						1	1	1	V						1		0					1			1	1		\top	
6															1	1	0	\top	\top	\top			1		1	1		_	-
7	1				T				1					1	1	1	0	1				+	+	+	1	1	+	\dagger	\dashv
8	1				1	1	1	1	1	1	1	1	1	1	1	1	7	+	+	+		+	+	+	1	+	+	+	\dashv
9						1	1	1			1	1	1	1	1	1		+	+	+	+	\vdash	+	+	1	+	+	-	-
10	1				1	1	1	1	1	\top	1	1		1	1	1	0	+	+	+	-	+	\dashv	-	X	+	+	+	\dashv
11	/				1	X	1	1	1	+	+		+	1	1	1	7	+	+	+	+	+	-	+	X	+	+	-	-
12	/					X	1	1	1	+	1	1	+	X	1	+	7	+	+	+	+	-	+	+	X	+	+	+	-
						7	1	7	7			7		1	1	7			\perp						1)	V			

		pH Ad	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Dut of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

www.pacelabs.com																														52 (
Section A Required Client Information:	Section B Required F	Project	t Infor	mation:						ion C													P	age:	-/	ġ	of	2		Page
Company: MECI	Report To:	73	<	hano				-	Atten		ormati	on;						************	\neg						- 1	701	101	4 5	Ìs.	
Address: 231 Dooky Rd.	Copy To:		•	- Cocité				\dashv	Comp	pany N	Jame'														£	<u> </u>	291	<u>. 1</u> <	<i>)</i> 	
Lexination Sciences	 							_											R	EGU	LATO	RY A	GENO	CY						
Lexington, SC 29073 Email To: The precinet	Purchase C	Order I	Vo :						Addre										1	jŅ	PDES	F	GRO	UND) WAT	ER :	DRI	NKING	WATER	3
Phone: Fax:	Purchase C	mo: de	· · · · ·	1 600	1225	13 1		!	Pace (Refere	nco:										U	ST	1	RCR.	Α		-	OTH	IER _		
Phone: 803-808-2043 Fax: 803-808-20-18 Requested Due Date/TAT:	Project Nam	20	25	tal"	76 Tru	ck St	0,0		Pace F Manag	Project jer:	100 M		6	art	ter	<i>y</i>		···	1	Site L	ocatio	n	at Walter	_						
	Project Nun	nber:		8-6z	76			7	Pace F	rofila i	#:										STATE	1	5	a minuser		Fle	renc	e		
													···				Red	queste	d Ar				Y/N)		7					
Section D Matrix C Required Client Information MATRIX /	Codes	eft	<u>a</u>		0011			Т								N/A				Ť				T	1					
Drinking Water	er DW	(see valid codes to left)	(G=GRAB C=COMP)		COLL	ECTED		,		<u> </u>	Pr	esen	vative	es	,	X				_										
Water Waste Water		000	0	СОМРО		COMPO	OSITE F	2																	П					-
Product Soil/Solid	P SL	se val	GRAE	STAF	₹Т	END/C	RAB E										50	38	-						(Z					
SAMPLE ID Oil Wipe Air	OL WP		5			 	OSITE SIRAB.	3	RS							#	\$2603	\$ 2003 X	8011						S)					
Sample IDs MUST BE UNIQUE Tissue	AR TS	MATRIX CODE	PE	*			TOWN		# OF CONTAINERS	g						Test			"			\perp			l j					
Other	OT	X	SAMPLE TYPE						Ñ	Unpreserved				g g		Analysis	BTEXALM	71 I							힏	* سا ب	> 70	vH.		
TEM#		ATA	AMP				TIME		OF C	bre	HNO,	_	공	Methanol	ē	nal	377		700						dua	100	3799	1		
1 MW-1				DATE	TIME	DATE		5	#±	ភ :	로 로		g g	₹ S	Other	¥	Br.	10	il						Residual Chlorine (Y/N)		e Proje			n
		WT	6			4/4/18	12.00	1	6			6					XX	(\times)								dor		e € /	Lap I.	U.
2 MW-Z 3 MW-3		+	+				11:35	4	1								1	1	1					+		dor		00	2	
4 MW-4		₩	+				11:20	4				Ш										11		\top		dor		80		
5 MW-5		+	+			├ -	11:08	4	1	Ш		Ш															o dor		04	
6 MW-6		+	+				10:40	+			_	Ш		\perp												do	. 40.		c5	
7 MW-7		+	+			-	9:00	+		-	_	111												\Box	7	Vo a	for		06	
8 Mw-8		+	+				10:05	+		-	+-	Ш	_	-									T			1		8	-	
9 MW-IORR		+	+				11:00	+		-	-	-	+	+										П					6 8	
10 MW-11		H	#				-	╬	H	+	+-	\mathbb{H}	+	4											П		-	0		
11 MW-15		V	V			V	9:50	╁	1	+	-	Ш	_			L								П					0/0	
12 NW-18			G			 ~ ~ 	10:34	_	V	-	+	M	+	\perp			VV	V	¥							V		0		
ADDITIONAL COMMENTS				SHED BY	AFFILIATI		DATE	+	6	ME	+	6					X/X	(1/2)								VO 0	dor	01	2	
	1-2	18	17	1//	/		4/1/100	1			-		1	1-		_	_	ATION		ļ.,	ATE		ME			SAMI	PLE CON			***************************************
	1	$\frac{1}{\sqrt{N}}$	1	1 2	}		7010	1	5=0		+.	7	1	N	m2	-	Yac	مين		4-1	318	8	46							
And the state of t	1	-	ihu	is (المالي ا		10012		15	40		W	02	41	7	()	4	-11	اند	1-1	.10		41	12	-	1/			-	
		, ,	1								`				 u					-	i LO		74	15	4	-	/	4	/ _	
																				-		-		-	+			1	(
OF	RIGINIAL				SAMPLE	R NAME A	ND SIGNATUI	ξE																_						
O,	······	_					ne of SAMPLER		1,	77														9	:	5 2	y		laci	
							RE of SAMPLER	-		Or	400	- (50,	inai		_	DATE	Signed		1 1				Temp in		Received on Ice (Y/N)	ustod ed Co		les in	
Important Note: By signing this form you are accept	ing Pace's NET	T 30 da	у рауп	nent terms a	nd agreeine t	o late char	e of 1 fer)_					(MM/D	D/YY):	4/	4/1	8			100		& 일	Custody Sealed Cooler		Samples Intact (Y/N)	
					or second t	- min enen Ag	1.5% per mon	sti le	ar any i	invoice	s por	paid wi	Ihin 30	days.					,					F-A	LL-Q-(J20rev.(07, 15-M	ay-200	7	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytica www.pacelabs.com	7 1						The Ch	ain-of-Custo	ly is	a LEG	SAL (DOCUM	ENT.	. All re	levani	fields	must	be co	nplete	od accura	ent Itely.							
ection A equired Client Information: ompany:		Section Required	Proje	ect Info	ormation:					Sec	tion	С											Pag	IB.	~~~			
NIETT		Report To): j	3 (Shar							formatic	n:										raç	le.	2	of	L	
ddress 231 Dooley	24.	Сору То:	Page 1	-	2man	Le					ition:														20	20	1110	
	0022	+								Com	pany	Name:								DECL	477				44	25.	113)
	4013	Purchase	Order	No.						Addre	ess:									REGUI								
one: Fax: Sol Sol Sol Sol Sol Sol Sol Sol Sol Sol	-	Project Na	01001	140.:	4600	4225	13			Pace (_	N.F	DES	1	GROU	ND W	ATER		RINKING	WATER
quested Due Date/TAT:	-808-2048	Projectiva	ine	00.3	ta17	6 T/40	L 5-6	0		Pace F	Projec	#:	_							New US			RCRA			F 0	THER _	
		Project Nu	mber:	18	3-67	276				Pace F	ger: Profile	#:	Ca	1	200				\dashv	Site Lo	cation		5<				ence	
Section D Required Client Information	Matrix (Codes														I	Re	ques	ted A	nalysi				_		114	ence	
Cheri Information	MATRIX /	CODE	o left)	MP)		COLL	ECTED							-		7		1		viialy Si	riiter	ed (1	/N)	_				
	Drinking Water	WT	(see valid codes to left)	C=COMP)					Z		-	Pre	serva	tives		A/N												
	Waste Water Product	P WW	alid c	AB (COMP	OSITE	COMP.		ST C															_				
SAMPLE ID	Soll/Solid Oil	SL OL	(see.)	(G=GRAB				SIVAB	COLLECTION								<u>1</u>	日日						10				
(A-Z, 0-9 / ,-) Sample IDs MUST BE UNIC	Wipe Air	WP	133	9					AT CC	CONTAINERS						=	82608	82608	Roll					Residual Chlorine (Y/N)				
Combie IDS MOS L RE ONIC	JE Tissue Other	TS OT	CODE	TYPE					A di	A	0					es	00	00	0					e.				
		01	×	H.					É	Į,	Ze				_	S	7							Plo				
			MATRIX	SAMPLE					SAMPLE TEMP	2	es c	5 5	I	o လို	aug	اچّ	33	5 4			11			0				
MW-	18				DATE	TIME	DATE	TIME	SAN	# OF	틧	HNO ₃	들을	la ₂ S	E E	Analysis Test	STEXUM	1 7	EDB					ign	92	379	94.	2
MW			NI	6				9:16	+	6			3	2.		-			_					Re	Pa	ce Proi	ect No /	Lab I.D.
			1	1				9:22	\dashv	-	+		2	-	-	2	XX	X	<						No	dor	1 3	Lab I.D.
Mw-								9:04	+	+	+	++		-	- -		111	111	Щ						1		19	
MW.								9:45	+	+	+	++	H-I	-	+	-	\coprod	\coprod						11			015	
LGW/								10:24	十	++	+				4-4	-	Ш		1		IT			\top	Noo	-	016	
I.GWI								10:20	+	+	-		+	-	$\downarrow \downarrow$		Ш							1	odor			
7W-1								11:21	+	+	+	+ + +	-		\sqcup							+-		1	0do/		17	
7w-									- -		+		-											++			018	
Dup 1								10:13	+		+	+4			\sqcup							+-	-	╁┼		odor		
F.B.		V	1	V				10:24		7	+	N						П			-	-		╂╼╂	No		020	
		1	76	-				11:40	1	6	\perp	6				V	W	V				+	-	╁			021	
			-					11:42	6	Z	+	2				1	(×	X		 		-		\vdash		07		
ADDITIONAL COMM	ENTS	R	ELING	QUISH	ED BY-CA	FILIATIO	M		1										+	-		+-1	- -			02	2.	
		Z	1	1/	11	()		DATE		TIME	Ξ .		P	ACCEP	TED E	BY / A	FFILIA	TION		DAT			_					
		1-4	X.	<u> </u>	- 19 8	X		1/6/18	18	7=4	6	0			W		-		-			TIME			SAM	PLE CON	DITIONS	
		1	1	Ned	رسيانان	Par	ال	4-6-14	TV	24	1.	T.	1/	10	AAAS	77	#	200		4-601	8	84	0					
								VUVO	+,	37	17		X	2	va	K	H	VL	-4	1-6-	8	34		7	(7		1	-
			4	-					_				1			•					4	-7	7210	-4-		-/	4	X
		1							L								-		-		+-		-					
	ORI	GINAL			s	AMPLER	NAME AN	D SIGNATUR	E																		1/	
						PF	RINT Name	of SAMPLER	:	12													U		5	ā	+	5
Umportant No. 19										OV	40	e G	urn	2/									Temp in °C	1:	Ice (Y/N)	Custody Sealed Coole (Y/N)	. :	(Y/N)
*Important Note: By signing thi	form you are accepting	Pace's NET 30	0 day p	paymen	it terms and	agreeing to b	ale charges -	(A.FO				-		Chairman.		DA (M	ATE S	gnod	41	4/18				1 3	lce (Cust	1 4	S N
								1 1.5% Der mont	h for -	and to de	Carrier Contract	-				- (34		/-	_ <i>\ I II</i> "	17/0			1 -	1 0	۱ د	ai ai	1 6	=

April 12, 2018

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: COASTAL 76 TRUCK WSW 18-6276

Pace Project No.: 92379943

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on April 06, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Trey Carter

trey.carter@pacelabs.com

They Ch

(704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

92379943

Ormond Beach Certification IDs

8 East Tower Circle. Ormond Beach, FL 32174

Alabama Certification #: 41320

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity

Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity

Louisiana Environmental Certificate #: 05007

Maryland Certification: #346 Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Nebraska Certification: NE-OS-28-14

Nevada Certification: FL NELAC Reciprocity

New Hampshire Certification #: 2958

New Jersey Certification #: FL022

New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710

Oklahoma Certification #: D9947

Pennsylvania Certification #: 68-00547

Puerto Rico Certification #: FL01264

South Carolina Certification: #96042001

Tennessee Certification #: TN02974

Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

Wyoming Certification: FL NELAC Reciprocity

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627

Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92379943001	WSW-1	Water	04/04/18 14:00	04/06/18 13:46
92379943002	WSW-DUP	Water	04/04/18 14:01	04/06/18 13:46
92379943003	WSW-FIELD BLANK	Water	04/04/18 14:15	04/06/18 13:46
92379943004	WSW-TRIP BLANK	Water	04/04/18 14:15	04/06/18 13:46

SAMPLE ANALYTE COUNT

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92379943001	WSW-1	EPA 504.1	SEM	2	PASI-C
		EPA 524.2	JLR	10	PASI-O
		EPA 8260	GAW	11	PASI-C
92379943002	WSW-DUP	EPA 504.1	SEM	2	PASI-C
		EPA 524.2	JLR	10	PASI-O
		EPA 8260	GAW	11	PASI-C
2379943003	WSW-FIELD BLANK	EPA 504.1	SEM	2	PASI-C
		EPA 524.2	JLR	10	PASI-O
		EPA 8260	GAW	11	PASI-C
2379943004	WSW-TRIP BLANK	EPA 524.2	JLR	10	PASI-O
		EPA 8260	GAW	11	PASI-C

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

Date: 04/12/2018 03:36 PM

Sample: WSW-1	Lab ID:	92379943001	Collecte	ed: 04/04/1	8 14:00	Received: 04	/06/18 13:46 N	//atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prep	aration Meth	nod: EP/	A 504.1			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/10/18 11:54	04/11/18 07:47	106-93-4	
1-Chloro-2-bromopropane (S)	102	%	70-130		1	04/10/18 11:54	04/11/18 07:47	301-79-56	
524.2 MSV	Analytical	Method: EPA 5	24.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:29	71-43-2	
1,2-Dichloroethane	ND	mg/L	0.00050	0.00025	1		04/11/18 16:29		
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:29		
Methyl-tert-butyl ether	0.0020	mg/L	0.00050	0.00025	1		04/11/18 16:29		
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:29		
Toluene Toluene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:29		
(ylene (Total) Surrogates	ND	mg/L	0.00050	0.00025	1		04/11/18 16:29		
-Bromofluorobenzene (S)	110	%	70-130		1		04/44/40 40:00	100.00.1	
oluene-d8 (S)	106	%	70-130		1		04/11/18 16:29		
,2-Dichloroethane-d4 (S)	115	%	70-130		1		04/11/18 16:29 04/11/18 16:29		
260 MSV Low Level SC	Analytical N	Method: EPA 82	260						
ert-Amyl Alcohol	ND	ug/L	100	50.0	1		04/09/18 16:08	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	0.10	1		04/09/18 16:08		
,3-Dimethyl-1-Butanol	ND	ug/L	100	50.0	1		04/09/18 16:08		
ert-Butyl Alcohoi	ND	ug/L	100	3.6	1		04/09/18 16:08		
ert-Butyl Formate	ND	ug/L	50.0	1.9	1		04/09/18 16:08		
iisopropyl ether	ND	ug/L	1.0	0.12	1		04/09/18 16:08		
thanol	ND	ug/L	200	131	1		04/09/18 16:08		
thyl-tert-butyl ether urrogates	ND	ug/L	10.0	0.070	1		04/09/18 16:08		
Bromofluorobenzene (S)	109	%	70-130		1		04/09/18 16:08	460.00.4	
2-Dichloroethane-d4 (S)	103	%	70-130		1		04/09/18 16:08		
oluene-d8 (S)	103	%	70-130		1		04/09/18 16:08		

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

Date: 04/12/2018 03:36 PM

Sample: WSW-DUP	Lab ID:	92379943002	Collected	: 04/04/1	8 14:01	Received: 04	I/06/18 13:46 N	/latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepar	ation Meth	nod: EP/	A 504.1			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	0.021	1	04/10/18 11:54	04/11/18 08:06	6 106-93-4	
1-Chloro-2-bromopropane (S)	101	%	70-130		1	04/10/18 11:54	04/11/18 08:06	301-79-56	
524.2 MSV	Analytical	Method: EPA 5	24.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:53	71-43-2	
1,2-Dichloroethane	ND	mg/L	0.00050	0.00025	1		04/11/18 16:53	=	
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:53		
Methyl-tert-butyl ether	0.0021	mg/L	0.00050	0.00025	1		04/11/18 16:53		
Naphthalene	ND	mg/L		0.00025	1		04/11/18 16:53		
Toluene	ND	mg/L	0.00050	0.00025	1		04/11/18 16:53		
Xylene (Total) S <i>urrogate</i> s	ND	mg/L	0.00050	0.00025	1		04/11/18 16:53		
4-Bromofluorobenzene (S)	109	%	70-130		1		04/11/18 16:53	460-00-4	
Toluene-d8 (S)	102	%	70-130		1		04/11/18 16:53		
1,2-Dichloroethane-d4 (S)	117	%	70-130		1		04/11/18 16:53		
3260 MSV Low Level SC	Analytical I	Method: EPA 82	260						
ert-Amyl Alcohol	ND	ug/L	100	50.0	1		04/09/18 16:25	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	0.10	1		04/09/18 16:25		
,3-Dimethyl-1-Butanol	ND	ug/L	100	50.0	1		04/09/18 16:25		
ert-Butyl Alcohol	ND	ug/L	100	3.6	1		04/09/18 16:25		
ert-Butyl Formate	ND	ug/L	50.0	1.9	1		04/09/18 16:25		
iisopropyl ether	ND	ug/L	1.0	0.12	1		04/09/18 16:25		
thanol	ND	ug/L	200	131	1		04/09/18 16:25		
thyl-tert-butyl ether currogates	ND	ug/L	10.0	0.070	1		04/09/18 16:25		
-Bromofluorobenzene (S)	110	%	70-130		1		04/09/18 16:25	460.00.4	
,2-Dichloroethane-d4 (S)	105	%	70-130		1		04/09/18 16:25		
oluene-d8 (S)	103	%	70-130		1		04/09/18 16:25		
• ,		<i>y</i> -			•		0-10-01 10 10.25	2037-20-3	

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

Date: 04/12/2018 03:36 PM

Sample: WSW-FIELD BLANK	Lab ID:	92379943003	Collecte	d: 04/04/1	8 14:15	Received: 04	/06/18 13:46 N	1atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prep	aration Meth	nod: EP/	A 504.1			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.020	1	04/10/18 11:54	04/11/18 08:25	106-93-4	
1-Chloro-2-bromopropane (S)	106	%	70-130		1	04/10/18 11:54	04/11/18 08:25	301-79-56	
524.2 MSV	Analytical	Method: EPA 5	24.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18	71-43-2	
1,2-Dichloroethane	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18		
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18		
Methyl-tert-butyl ether	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18		
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18		
Toluene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18		
Xylene (Total) S <i>urrogates</i>	ND	mg/L	0.00050	0.00025	1		04/11/18 17:18		
1-Bromofluorobenzene (S)	109	%	70-130		1		04/11/18 17:18	460-00-4	
Toluene-d8 (S)	105	%	70-130		1		04/11/18 17:18		
1,2-Dichloroethane-d4 (S)	115	%	70-130		1		04/11/18 17:18		
3260 MSV Low Level SC	Analytical	Method: EPA 82	260						
ert-Amyl Alcohol	ND	ug/L	100	50.0	1		04/09/18 11:42	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	0.10	1		04/09/18 11:42		
,3-Dimethyl-1-Butanol	ND	ug/L	100	50.0	1		04/09/18 11:42		
ert-Butyl Alcohol	ND	ug/L	100	3.6	1		04/09/18 11:42		
ert-Butyl Formate	ND	ug/L	50.0	1.9	1		04/09/18 11:42		
Diisopropyl ether	ND	ug/L	1.0	0.12	1		04/09/18 11:42		
thanol	ND	ug/L	200	131	1		04/09/18 11:42		
ithyl-tert-butyl ether t urrogates	ND	ug/L	10.0	0.070	1		04/09/18 11:42		
-Bromofluorobenzene (S)	105	%	70-130		1		04/09/18 11:42	460-00-4	
2-Dichloroethane-d4 (S)	102	%	70-130		1		04/09/18 11:42		
oluene-d8 (S)	103	%	70-130		1		04/09/18 11:42		

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

Date: 04/12/2018 03:36 PM

Sample: WSW-TRIP BLANK	Lab ID:	92379943004	Collecte	ed: 04/04/1	8 14:15	Received: 0	4/06/18 13:46 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Quai
524.2 MSV	Analytical	Method: EPA 5	524.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44	71-43-2	
1,2-Dichloroethane	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44		
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44		
Methyl-tert-butyl ether	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44		
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44		
Toluene	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44		
Xylene (Total)	ND	mg/L	0.00050	0.00025	1		04/11/18 17:44		
Surrogates		J		0.00020	•		04/11/10/17,44	1330-20-7	
4-Bromofluorobenzene (S)	108	%	70-130		1		04/11/18 17:44	460-00-4	
Toluene-d8 (S)	106	%	70-130		1		04/11/18 17:44		
1,2-Dichloroethane-d4 (S)	118	%	70-130		1		04/11/18 17:44		
3260 MSV Low Level SC	Analytical I	/lethod: EPA 82	260						
ert-Amyl Alcohol	ND	ug/L	100	50.0	1		04/09/18 11:59	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	0.10	1		04/09/18 11:59	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	50.0	1		04/09/18 11:59	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	3.6	1		04/09/18 11:59	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	1.9	1		04/09/18 11:59	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.12	1		04/09/18 11:59	108-20-3	
thanol	ND	ug/L	200	131	1			64-17-5	
thyl-tert-butyl ether	ND	ug/L	10.0	0.070	1		04/09/18 11:59		
-Bromofluorobenzene (S)	106	%	70-130		1		04/09/18 11:59	460-00-4	
,2-Dichloroethane-d4 (S)	104	%	70-130		1		04/09/18 11:59	17060-07-0	
oluene-d8 (S)	102	%	70-130		1			2037-26-5	

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

92379943

QC Batch:

439327

Analysis Method:

EPA 524.2

QC Batch Method:

EPA 524.2

Analysis Description:

524.2 MSV

Associated Lab Samples:

92379943001, 92379943002, 92379943003, 92379943004

METHOD BLANK: 2384745

Matrix: Water

Date: 04/12/2018 03:36 PM

Associated Lab Samples: 92379943001, 92379943002, 92379943003, 92379943004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
Benzene	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
Ethylbenzene	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
Methyl-tert-butyl ether	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
Naphthalene	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
Toluene	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
Xylene (Total)	mg/L	ND	0.00050	0.00025	04/11/18 15:40	
1,2-Dichloroethane-d4 (S)	%	112	70-130		04/11/18 15:40	
4-Bromofluorobenzene (S)	%	108	70-130		04/11/18 15:40	
Toluene-d8 (S)	%	106	70-130		04/11/18 15:40	

LABORATORY CONTROL SAMPL	E & LCSD: 2384746		23	384747						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
1,2-Dichloroethane	mg/L	.04	0.036	0.036		89	70-130	2	40	Qualificia
Benzene	mg/L	.04	0.038	0.039		97	70-130	2	40	
Ethylbenzene	mg/L	.04	0.049	0.049	122	122	70-130	0	40	
Methyl-tert-butyl ether	mg/L	.04	0.037	0.039	93	99	70-130	6	40	
Naphthalene	mg/L	.04	0.041	0.042	103	106	70-130	3	40	
Toluene	mg/L	.04	0.044	0.044	109	111	70-130	1	40	
Xylene (Total)	mg/L	.12	0.15	0.15	125	124	70-130	1	40	
1,2-Dichloroethane-d4 (S)	%				96	93	70-130			
4-Bromofluorobenzene (S)	%				130	129	70-130			
Toluene-d8 (S)	%				104	102	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

92379943

QC Batch:

405481

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV Low Level SC

Associated Lab Samples:

92379943001, 92379943002, 92379943003, 92379943004

METHOD BLANK: 2249197

Matrix: Water

Associated Lab Samples:

92379943001, 92379943002, 92379943003, 92379943004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	50.0	04/09/18 10:52	
Diisopropyl ether	ug/L	ND	1.0	0.12	04/09/18 10:52	
Ethanol	ug/L	ND	200	131	04/09/18 10:52	
Ethyl-tert-butyl ether	ug/L	ND	10.0	0.070	04/09/18 10:52	
tert-Amyl Alcohol	ug/L	ND	100	50.0	04/09/18 10:52	
tert-Amylmethyl ether	ug/L	ND	10.0	0.10	04/09/18 10:52	
tert-Butyl Alcohol	ug/L	ND	100	3.6	04/09/18 10:52	
tert-Butyl Formate	ug/L	ND	50.0	1.9	04/09/18 10:52	
1,2-Dichloroethane-d4 (S)	%	101	70-130		04/09/18 10:52	
4-Bromofluorobenzene (S)	%	105	70-130		04/09/18 10:52	
Toluene-d8 (S)	%	101	70-130		04/09/18 10:52	

ABORATORY CONTROL SAMPLE:	2249198					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3-Dimethyl-1-Butanol	ug/L	1000	1090	109	70-130	1g
sopropyl ether	ug/L	50	59.6	119	70-130	
nanol	ug/L	2000	2030	102	70-130	
nyl-tert-butyl ether	ug/L	100	111	111	70-130	
-Amyl Alcohol	ug/L	1000	1090	109	70-130	1g
-Amylmethyl ether	ug/L	100	117	117	70-130	
Butyl Alcohol	ug/L	500	555	111	70-130	
·Butyl Formate	ug/L	400	441	110	70-130	1g
Dichloroethane-d4 (S)	%			91	70-130	•
romofluorobenzene (S)	%			99	70-130	
iene-d8 (S)	%			93	70-130	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 22491	99		2249200							
			MS	MSD								
	9	2379176024	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
3,3-Dimethyl-1-Butanol	ug/L	ND	2000	2000	1720	1600	86	80	70-130	7	30	
Diisopropyl ether	ug/L	ND	100	100	101	74.7	101	75	70-130	30	30	
Ethanol	ug/L	ND	4000	4000	3730	3100	93	77	70-130	19	30	
Ethyl-tert-butyl ether	ug/L	ND	200	200	184	145	92	72	70-130	24	30	
tert-Amyl Alcohol	ug/L	ND	2000	2000	1750	1610	87	80	70-130	8	30	
tert-Amylmethyl ether	ug/L	ND	200	200	185	150	93	75	70-130	21	30	
tert-Butyl Alcohol	ug/L	ND	1000	1000	856	747	86	75	70-130	14	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

92379943

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 22491	99		2249200							
Parameter	Units	92379176024 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
tert-Butyl Formate 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S)	ug/L % % %	ND	800	800	641	525	80 98 104 96	66 97 102 96	70-130 70-130 70-130 70-130	20	30	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

04/10/18 16:43

QUALITY CONTROL DATA

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

92379943

QC Batch:

405614

Analysis Method:

EPA 504.1

QC Batch Method:

Date: 04/12/2018 03:36 PM

EPA 504.1

Analysis Description:

GCS 504 EDB DBCP

Associated Lab Samples:

92379943001, 92379943002, 92379943003

METHOD BLANK: 2250065

Matrix: Water

Associated Lab Samples: 92379943001, 92379943002, 92379943003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	(
1,2-Dibromoethane (EDB)	ug/L	ND	0.019	0.019	04/10/18 16:43	
1-Chloro-2-bromopropane (S)	%	105	70-130		04/10/18 16:43	

LABORATORY CONTROL SAMPLE &	LCSD: 2250066		2:	250067						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	.25	0.25	0.25	101	101	70-130	4	20	
1-Chloro-2-bromopropane (S)	%				102	100	70-130			

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 22500	68		2250069							
Parameter	Units	92379921001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND	.25	.25	0.31	0.32	123 126	130 131	65-135 70-130	5	20	 S0

SAMPLE DUPLICATE: 2250070		92379981002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	0.15	0.14	4	20	
1-Chloro-2-bromopropane (S)	%	115	117	2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.:

92379943

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C

Pace Analytical Services - Charlotte

PASI-O

Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

Date: 04/12/2018 03:36 PM

1g

Initial calibration evaluation met acceptance criteria. Compound did not meet additional accuracy assessment for percent

M1

Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

S0

Surrogate recovery outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Date: 04/12/2018 03:36 PM

COASTAL 76 TRUCK WSW 18-6276

Pace Project No.: 92379943

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92379943001	WSW-1	EPA 504.1	405614	EPA 504.1	405649
92379943002	WSW-DUP	EPA 504.1	405614	EPA 504.1	405649
92379943003	WSW-FIELD BLANK	EPA 504.1	405614	EPA 504.1	405649
92379943001	WSW-1	EPA 524.2	439327		
92379943002	WSW-DUP	EPA 524.2	439327		
92379943003	WSW-FIELD BLANK	EPA 524.2	439327		
2379943004	WSW-TRIP BLANK	EPA 524.2	439327		
2379943001	WSW-1	EPA 8260	405481		
2379943002	WSW-DUP	EPA 8260	405481		
2379943003	WSW-FIELD BLANK	EPA 8260	405481		
2379943004	WSW-TRIP BLANK	EPA 8260	405481		

Document Name: Document Revised: February 7, 2018 Sample Condition Upon Receipt(SCUR) ace Analytical " Page 1 of 2 Document No.: Issuing Authority: F-CAR-CS-033-Rev.06 Pace Carolinas Quality Office Laboratory receiving samples: Asheville | Greenwood Huntersville Z Raleigh Mechanicsville ___ Sample Condition **Client Name: Upon Receipt** Project #: Courier: Fed Ex TUPS USPS Client Commercial Other: **Custody Seal Present?** ☐ Yes Seals Intact? Yes .DNO Date/Initials Person Examining Content Packing Material: Bubble Wrap Bubble Bags None Other Biological Tissue Frozen? Thermometer: Yes No NA Type of ice: Wet Blue □ IR Gun ID: 92T036 None Cooler Temp (°C): Correction Factor: Add/Subtract (*C) Temp should be above freezing to 6°C Cooler Temp Corrected (°C): Samples out of temp criteria. Samples on ice, cooling process has begun USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States: CA, NY, or SC (check maps)? Did samples originate from a foreign source (internationally. Yes No including Hawall and Puerto Rico)? Yes Comments/Discrepancy: Chain of Custody Present? No □N/A 1. Samples Arrived within Hold Time? Ves □No □N/A 2. Short Hold Time Analysis (<72 hr.)? No Yes 3. □N/A **Rush Turn Around Time Requested?** ☐ Yes -No □N/A 4. Sufficient Volume? □No □N/A S. Correct Containers Used? No □N/A 6. -Pace Containers Used? □No □N/A Containers Intact? Yes No □N/A 7. Dissolved analysis: Samples Field Filtered? □N/A 8. Sample Labels Match COC? - El Yes No □N/A 9. -Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>S-6mm)? Yes No □N/A 10. Trip Blank Present? Ves No □N/A 11. **Trip Blank Custody Seals Present?** ☐Yes INO □N/A COMMENTS/SAMPLE DISCREPANCY Fleid Data Required? Yes No

CLIENT NOTIFICATION/RESOLUTION	Lot ID of split containers:
Person contacted:	Date/Time:
Project Manager SCURF Review:	Date: 4/6/18
Project Manager SRF Review:	Date: 4/6/18

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Page 1 of 2 Issuing Authority:

Document No.: F-CAR-CS-033-Rev.06 Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

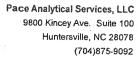
**Bottom half of box is to list number of bottle

Project #

Document Revised: February 7, 2018

Due Date: 04/17/18

CLIENT: 92-MIDLAND


ļ	BP4U-125 mt Plastic Unpreserved (N/A) (rt.)	BP3U-250 mL Plastic Unpreserved (N/A)	8P2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2504 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2504 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 ml. Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																6		3										
3																6		3										
1			_					\sum			1		1			6		3						1				
4							1	7					V			6												
5								V			1		V	V											1			
6	7						V						1	V	V									1	1			
7							V				V		T	T	V						T			1	1		1	
8					V	V	V				V			1	T			\top	\top		1	\top		T	1	\dashv		
9					J	J	V	V			1		1	7	1				\top		1	1		1	1	+	1	
10					V	1	1	V			1			1	1	1	1			1			\uparrow	1	1		+	
11					1	1	1	1			1			1	1		1	1			+	1	1	1	1	\top	+	\dashv
12	V				V	V		V					1	1	V								1	1	1		1	

	pH Adjustment Log for Preserved Samples												
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#							

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

n en haroisis coll					2
Section A	Section B		· ·		Φ
Required Client Information:	Required Project Information:		Section C		Page: of to
Company: MECT	Report To: B. Share		Invoice Information: Attention:		
Address:	Copy To:		Attention:		2229114
231 Dooley Rd.			Company Name:		Same Law Com I when what halfs
Lexington, SC 29073 Email To: TLC@ Mecinet Phone:			Address:	REGULATORY AGE	INCY
JUCP Mecines	Purchase Order No.: 4 600422			NPDES G	ROUND WATER DRINKING WATER
Phone: 8-3-808-2043 Fax: 803-808-2048	Project Name: 6	513	Pace Quote Reference:	UST RI	
Requested Due Date/TAT:	Coastal 76	Truck Stoo	Pace Project 7- Carter		CRA OTHER
	Project Name: Coasta 1767 Project Number: 18-627		Pace Profile #:	Site Location	
		·		STATE:	SC Florence
Section D Matrix C	oder I I I			Requested Analysis Filtered (Y/I	N)
Required Client Information MATRIX	CODE S CO	LLECTED	Preservatives >		
Drinking Wat Water	er DW 8 0		Preservatives >		
Waste Water	WT B 3 COMPOSITE	COMPOSITE D			
Product Soil/Solid	COORE ON PROPERTY OF START	END/GRAB O		4	
SAMPLE ID Oil	COORE (%) of COMPOSITE START SL 89 0 OL SS)	COMPOSITE END/GRAB.	g	2.722	Residual Chlorine (Y/N)
Sample IDa Milot pt	76 W	ATC			
Othor	AR BB BB BB BB BB BB BB BB BB BB BB BB BB	TEMP	₹ B B E	5 2 3	l light
*	OT S E	TE	N N N N N N N N N N N N N N N N N N N	6 84 M	
# EN SAIGH	MATRIX CODI SE SAMPLE TYPE				
	DATE TIME	SAMPLE TIME &	# OF CONTAIL Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	Siekhalder Oxys 826 Eb3 Sou	12379943
1 WSW-1	BW C				Pace Project No./ Lab I.D.
2 WSW-Dup. 3 WSW-Field Blank	>W G	1/1/16 //4/00	9 6 3	< x x	1-1
3 WSW- Field 21- L	VT G	14:01		ek x	
4 1.454. 750.81.4	W1 (5)	14:15	9 6 3	LXX	
4 WSW-TOP Blank	WT G	4/4/18 14:15		XXT HILL	LDL'S De 3
		177			LDL'S COY
6					
7					
8					
9					
10				 	
				+++++++	
11			▔┼┼┼┼┼┼┼┼┼	++++	
12			╼┼┼┼┼┼┼┼┼		
ADDITIONAL COMMENTS	RELINQUISHED BX / AFFILIA	TION			
	1 2/1/ A	1 7	TIME ACCEPTED BY / AI	FFILIATION DATE TIME	
	1/20. 1/	4/6/18	7115	A	SAMPLE CONDITIONS
- Income and the second	I tohnor PACE	L 3 122	376 4 notion	Para 46-18 841	0
	I was the	4614	341. 1921	Pan Her 4-6-18 1346	
	V 1			101-1240	8 1 2 70 0
24. 10.	CAMPI	ED NAME AND COLUMN			
OR	IGINAL SAMPLI	ER NAME AND SIGNATURE			
		PRINT Name of SAMPLER:	Bryce Game		ract Solo Solo
		SIGNATURE of SAMPLER:		ATE CITY	Received on Ice (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)
*Important Note: By signing this form you are accepting	Pace's NET 30 day navment to a		D	ATE Signed 4/4/18	mple (3 (2)
	and agreeing	to late charges of 1.5% per month fo	any Invoices not paid within 30 days.	110	Sar S. L.
					F-ALL-Q-020rev.07, 15-May-2007

April 26, 2018

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: COASTAL 76 TUCK STOP 18-0276

Pace Project No.: 92381576

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on April 19, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Trey Carter

trey.carter@pacelabs.com

They Cot


(704)875-9092

Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

92381576

Ormand Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174

Alabama Certification #: 41320 Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity
Louisiana Environmental Certificate #: 05007

Maryland Certification: #346

Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236 Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14

Nevada Certification: FL NELAC Reciprocity

New Hampshire Certification #: 2958 New Jersey Certification #: FL022

New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710

Oklahoma Certification #: D9947

Pennsylvania Certification #: 68-00547

Puerto Rico Certification #: FL01264

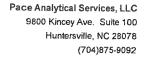
South Carolina Certification: #96042001

Tennessee Certification #: TN02974

Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165


Wyoming Certification: FL NELAC Reciprocity

West Virginia Certification #: 9962C

Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

92381576

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92381576001	WSW-1	Water	04/18/18 11:45	04/19/18 13:08
92381576002	DUP	Water	04/18/18 11:45	04/19/18 13:08
92381576003	FIELD BLANK	Water	04/18/18 11:50	04/19/18 13:08
92381576004	TRIP BLANK	Water	04/18/18 11:50	04/19/18 13:08

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

92381576

Lab ID	Sample ID	Method		Analysts	Analytes Reported	Laboratory
92381576001	WSW-1	EPA 524.2	12	JLR	9	PASI-O
92381576002	DUP	EPA 524.2		JLR	9	PASI-O
92381576003	FIELD BLANK	EPA 524.2		JLR	9	PASI-O
92381576004	TRIP BLANK	EPA 524.2		JLR	9	PASI-O

REPORT OF LABORATORY ANALYSIS

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

Date: 04/26/2018 05:24 PM

Sample: WSW-1	Lab ID: 92381576001		Collected: 04/18/18 11:45			Received: 04/19/18 13:08 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA 5	524.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:27	71_43_2	
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:27		
Methyl-tert-butyl ether	0.0030	mg/L	0.00050	0.00025	1		04/24/18 12:27		
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:27		
Toluene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:27	0. =0 0	
Xylene (Total) S <i>urrogates</i>	ND	mg/L	0.00050	0.00025	1		04/24/18 12:27	.00 00 0	
4-Bromofluorobenzene (S)	107	%	70-130		1		04/24/18 12:27	460-00-4	
Toluene-d8 (S)	98	%	70-130		1		04/24/18 12:27	2037-26-5	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		04/24/18 12:27	17060-07-0	

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.: 92381576

Date: 04/26/2018 05:24 PM

Sample: DUP	Lab ID:	Collected: 04/18/18 11:45		Received: 04/19/18 13:08 Matrix: Water					
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA 5	24.2				 · ·		-
Benzene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:52	71 42 2	
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:52		
Methyl-tert-butyl ether	0.0027	mg/L	0.00050	0.00025	1		04/24/18 12:52		
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:52		
Toluene	ND	mg/L	0.00050	0.00025	1		04/24/18 12:52		
Xylene (Total) S <i>urrogates</i>	ND	mg/L	0.00050	0.00025	1		04/24/18 12:52		
1-Bromofluorobenzene (S)	106	%	70-130		1		04/24/18 12:52	460-00-4	
Toluene-d8 (S)	99	%	70-130		1		04/24/18 12:52		
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		04/24/18 12:52		

ANALYTICAL RESULTS

Project:

Date: 04/26/2018 05:24 PM

COASTAL 76 TUCK STOP 18-0276

Pace Project No.: 92381576

Sample: FIELD BLANK	Lab ID:	92381576003	Collecte	ed: 04/18/18	8 11:50	Received: 0	4/19/18 13:08 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA 5	24.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/23/18 16:39	71-43-2	
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/23/18 16:39		
Methyl-tert-butyl ether	ND	mg/L	0.00050	0.00025	1		04/23/18 16:39		L1
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/23/18 16:39		
Toluene	ND	mg/L	0.00050	0.00025	1		04/23/18 16:39	108-88-3	
Xylene (Total) Surrogates	ND	mg/L	0.00050	0.00025	1		04/23/18 16:39		
4-Bromofluorobenzene (S)	91	%	70-130		1		04/23/18 16:39	460-00-4	
Toluene-d8 (S)	101	%	70-130		1		04/23/18 16:39	2037-26-5	
1,2-Dichloroethane-d4 (S)	117	%	70-130		1		04/23/18 16:39	17060-07-0	

ANALYTICAL RESULTS

Project:

Date: 04/26/2018 05:24 PM

COASTAL 76 TUCK STOP 18-0276

Pace Project No.: 92381576

Sample: TRIP BLANK	Lab ID:	92381576004	Collecte	ed: 04/18/18	8 11:50	Received: 0	4/19/18 13:08 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV	Analytical	Method: EPA 5	24.2						
Benzene	ND	mg/L	0.00050	0.00025	1		04/23/18 17:04	71-43-2	
Ethylbenzene	ND	mg/L	0.00050	0.00025	1		04/23/18 17:04		
Methyl-tert-butyl ether	ND	mg/L	0.00050	0.00025	1		04/23/18 17:04		L1
Naphthalene	ND	mg/L	0.00050	0.00025	1		04/23/18 17:04		
Toluene	ND	mg/L	0.00050	0.00025	1		04/23/18 17:04		
Xylene (Total) <i>Surrogates</i>	ND	mg/L	0.00050	0.00025	1		04/23/18 17:04		
4-Bromofluorobenzene (S)	89	%	70-130		1		04/23/18 17:04	460-00-4	
Toluene-d8 (S)	102	%	70-130		1		04/23/18 17:04		
1,2-Dichloroethane-d4 (S)	117	%	70-130		1		04/23/18 17:04		

QUALITY CONTROL DATA

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

92381576

QC Batch:

442123

Analysis Method:

EPA 524.2

QC Batch Method:

Date: 04/26/2018 05:24 PM

EPA 524.2

Analysis Description:

524.2 MSV

Associated Lab Samples:

92381576003, 92381576004

METHOD BLANK: 2399379

Matrix: Water

Associated Lab Samples: 92381576003, 92381576004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Benzene	mg/L	ND	0.00050	0.00025	04/23/18 11:39	
Ethylbenzene	mg/L	ND	0.00050	0.00025	04/23/18 11:39	
Methyl-tert-butyl ether	mg/L	ND	0.00050	0.00025	04/23/18 11:39	
Naphthalene	mg/L	ND	0.00050	0.00025	04/23/18 11:39	
Toluene	mg/L	ND	0.00050	0.00025	04/23/18 11:39	
Xylene (Total)	mg/L	ND	0.00050	0.00025	04/23/18 11:39	
1,2-Dichloroethane-d4 (S)	%	110	70-130		04/23/18 11:39	
4-Bromofluorobenzene (S)	%	91	70-130		04/23/18 11:39	
Toluene-d8 (S)	%	101	70-130		04/23/18 11:39	

LABORATORY CONTROL SAMPL	E & LCSD: 2399380		23	399381						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
Benzene	mg/L	.02	0.018	0.018	89	88	70-130	2	40	
Ethylbenzene	mg/L	.02	0.017	0.018	87	89	70-130	2	40	
Methyl-tert-butyl ether	mg/L	.02	0.022	0.030	112	152	70-130	30	40 !	1
Naphthalene	mg/L	.02	0.015	0.016	75	79	70-130	5	40	- '
Toluene	mg/L	.02	0.016	0.016	80	80	70-130	1	40	
Kylene (Total)	mg/L	.06	0.053	0.055	89	91	70-130	3	40	
1,2-Dichloroethane-d4 (S)	%				104	99	70-130	·	70	
1-Bromofluorobenzene (S)	%				103	102	70-130			
Toluene-d8 (S)	%				103	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

92381576

QC Batch:

Date: 04/26/2018 05:24 PM

442395

Analysis Method:

EPA 524.2

QC Batch Method:

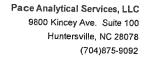
EPA 524.2

Analysis Description:

524.2 MSV

Associated Lab Samples: 92381576001, 92381576002

METHOD BLANK: 2400516


Matrix: Water

Associated Lab Samples: 92381576001, 92381576002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Benzene	mg/L	ND	0.00050	0.00025	04/24/18 12:03	
Ethylbenzene	mg/L	ND	0.00050	0.00025	04/24/18 12:03	
Methyl-tert-butyl ether	mg/L	ND	0.00050	0.00025	04/24/18 12:03	
Naphthalene	mg/L	ND	0.00050	0.00025	04/24/18 12:03	
Toluene	mg/L	ND	0.00050	0.00025	04/24/18 12:03	
Xylene (Total)	mg/L	ND	0.00050	0.00025	04/24/18 12:03	
1,2-Dichloroethane-d4 (S)	%	99	70-130		04/24/18 12:03	
4-Bromofluorobenzene (S)	%	105	70-130		04/24/18 12:03	
Toluene-d8 (S)	%	98	70-130		04/24/18 12:03	

LABORATORY CONTROL SAMPL	E & LCSD: 2400517		24	100518						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
Benzene	mg/L	.02	0.017	0.017	86	86	70-130	1	40	
Ethylbenzene	mg/L	.02	0.018	0.018	89	89	70-130	0	40	
Methyl-tert-butyl ether	mg/L	.02	0.019	0.020	95	98	70-130	3	40	
Naphthalene	mg/L	.02	0.018	0.019	92	95	70-130	3	40	
Toluene	mg/L	.02	0.018	0.018	91	90	70-130	1	40	
Xylene (Total)	mg/L	.06	0.054	0.054	89	90	70-130	0	40	
1,2-Dichloroethane-d4 (S)	%				94	96	70-130	v	40	
4-Bromofluorobenzene (S)	%				103	105	70-130			
Toluene-d8 (S)	%				98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

92381576

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-O

Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

Date: 04/26/2018 05:24 PM

Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

COASTAL 76 TUCK STOP 18-0276

Pace Project No.:

Date: 04/26/2018 05:24 PM

92381576

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92381576001 92381576002	WSW-1 DUP	EPA 524.2 EPA 524.2	442395 442395		
92381576003 92381576004	FIELD BLANK TRIP BLANK	EPA 524.2 EPA 524.2	442123 442123		

87	Document Name		Document Revised: February 7, 2018
Pace Analytical"	Sample Condition Upon Rec Document No.:	elpt(SCUR)	Page 1 of 2
	F-CAR-CS-033-Rev.	06	Issuing Authority: Pace Carolinas Quality Office
Laboratory receiving samples:			
Asheville Eden	Greenwood	Huntersville	
Sample Condition Client Name: Upon Receipt		Project #:	WO#:92381576
Courler: Fed Ex Description of the Commercial Prace	UPS USPS [Client	
Custody Seal Present? Yes No	Seals Intact? Yes	No	92381570
Section server to the section of the			Date/Initials Person Examining Contents:
Packing Material: Bubble Wrap Thermometer: 92T036	Bubble Bags None Type of Ice: Wet	Other ☑Blue ☑No	Biological Tissue Frozen? Yes No N/A
. —	actor: Add/Subtract (°C) +0.1		
Cooler Temp Corrected (°C):	**************************************		should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling proce begun
USDA Regulated Soll (N/A, water sample) Did samples originate in a quarantine zone within the Ves No	United States: CA, NY, or SC (check n	naps)? Did san	nples originate from a foreign source (internationally, ng Hawall and Puerto Rico)? Yes \tag{No}
			Comments/Discrepancy:
Chain of Custody Present?	DYES NO N/A	1.	
Samples Arrived within Hold Time?	□Ves □No □N/A	2.	
Short Hold Time Analysis (<72 hr.)?	□Yes □No □N/A	3.	
Rush Turn Around Time Requested?	□Yes ØÑo □N/A	4.	
Sufficient Volume?	Yes ONO ON/A	5.	
Correct Containers Used?	Ves ONO ON/A	6.	
-Pace Containers Used?	Dives ONO ON/A	0.	
Containers Intact?	□Yes □No □N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes □No □N/A	8. 1	- 1
Sample Labels Match COC?	Yes No N/A	9. //0	dates the on
-Includes Date/Time/ID/Analysis Matrix:	WT	Sam	ples
Headspace in VOA Vials (>5-6mm)?	Yes, No NA	10.	
Trip Blank Present?	Yes No N/A	11.	
Trip Blank Custody Seals Present?	Yes No IN/A		
COMMENTS/SAMPLE DISCREPANCY			Field Data Required? Yes No
		Lat ID of sal	it containers:
LIENT NOTIFICATION/RESOLUTION	•		
Person contacted:	Date/Tii		
Project Manager SCURF Review:			ate: 4/19/18
Project Manager SRF Review: TC	i		4/19/10

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#: 92381576

PM: RWC

Due Date: 04/30/18

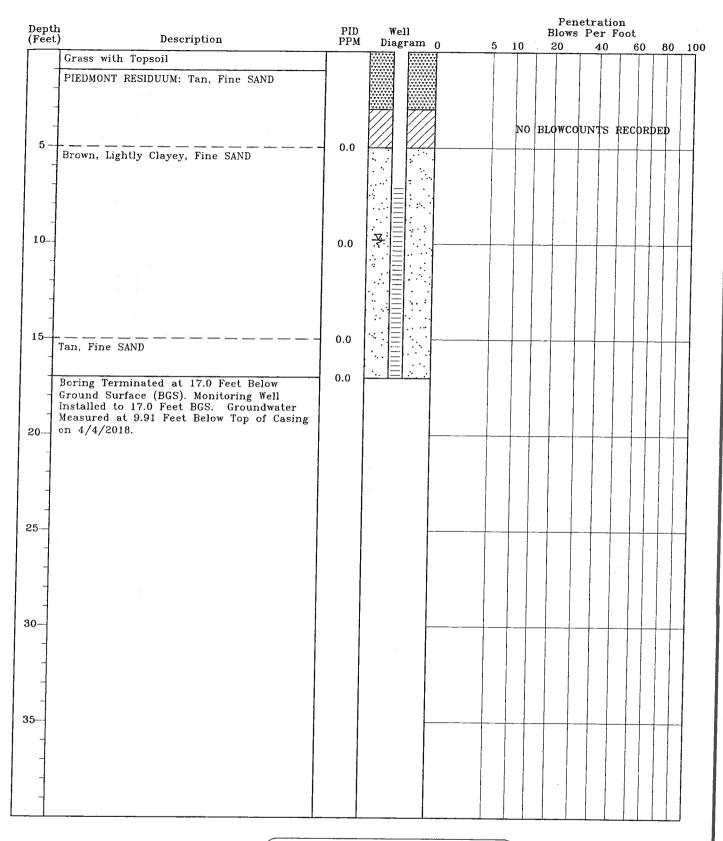
CLIENT: 92-MIDLAND

(tem#	8P4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4\$-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 ml Plastic 2N Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 ml Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4C! (N/A)(CI-)	DG9H-40 mL VOA HC! (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAR (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																3												
,2																3												
3																3												
4																3												
5							V																					
6							V	V						V														
7											V			V	V									V				
8					V	V						Ì			V									V				
9	7				7	7	J	1					V	7										J				
10	7				1	1	7	1			J			1										J	V			
11	7				1		7						7															
12	V				V	7	V	J			V		V	V	V									1	V			

pH Adjustment Log for Preserved Samples									
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.


Red	ction A quired Client Information:	Section Required		ect Info	rmation:						ction (P	Page:		1	of		/	Page 18	
Cor	mpany: MECI	Report To			Shane			-			oice Inf	orma	ation:	-										F							<u>α</u>	-
Add	dress: 231 Doolfy Rd	Сору То:		<i>V</i> ··	Juli-					1_		A.I.								L							19	20	158	3		
7	exposon, St 29073										npany i	nam	1e:							R	EGU	LATO	RY A	GEN	CY				-	-		***************************************
Em:	ail To: TICO	Purchase	Orde	r No.:							ross:									T	N	PDES	77.00	GRO	DUND) WA	TER T		DRINKIN	IG WA	TER	2
Pho	all To: JUE MECI NET One: 7808-2043 Fax:	Project N									Quote rence:									1 r	VU	ST	-	RCR			r-		OTHER		, , ,	
	Quested Due Date/TAT:		(00	44 TE	Truck	& Stop	7		Paco Mana	Projec	t .	7-	(4	rte	1					Site L	ocatio			-		· -					_
L	,	Project N	umber	18	-6276	;			-		Profile	#:	-	<u> </u>						-		STATE	1	S	SC		1	-10	rene	ce		
Γ										-					-		Г	Rec	queste	dΑr				CVAN		_	<u> </u>					-
	Section D Matrix C Required Client Information MATRIX /	odes	8	G G					T	T	T	•					=		1	<u> </u>	laiys	IS THE	Teu	(17/4)		-						
	Drinking Wate	er DW	(see valid codes to left)	(G=GRAB C=COMP)	 	COLL	ECTED				<u></u>	F	rese	vati	ves		N/A															
	Water Waste Water	WT	code	3	СОМР	OSITE	СОМР	OSITE	COLLECTION				Ì	11															-			-
	Product Soll/Solid	P SI	e va	3RAE	STAI	RT	END/G		l E									3								2						
	SAMPLE ID OII Wipe	OL WP AR TS OT		(6=0	<u> </u>	1		1	18	RS								115								Residual Chlorine (Y/N)						
	(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue	AR	CODE	m		1			PAT	N N							Test	1		1						rine						
7#	Other	OT	Š	1					TEMP	Į Ž	Nec				_		S	3							Į	윉						
ITEM#			MATRIX	SAMPLE TYPE				İ	띪	8	ese	3	_m	ᆵ	တို့ နိ	2 2	aty	X								ual (075	20		,	,	
				-L.	DATE	TIME.	DATE	TIME	SAMPLE	# OF CONTAINERS	1	425	HC:	일	Va ₂ S	Other	Analysis	BTEKN								sid	923 Pac	, D	1 15	> 7	6	
1	WSW-1		DW	G			4-18-18			3			7				-		++	+-	+	-	\perp			œ	Pac	e Pr	oject N	lo./ La	b I.D.	
2	DUP		ON	9			1	11:45	1	3		+	-		+	+		/	++	+	+		-	_	-	Ш		DL		α		_
3	Field Blank		DW	9			1 1	11:50	-	3		+	V		+	+		4	++	+-	-		-	_		Ш		D4	***************************************	0	2	
4	Trip Blank		UV	G			4-18-18		-	3		+	V		+	╂┤		1	-	+-	+		+		_		L			00		
5	,						1.0		 	┝	++	+	-	\vdash	+	+		-	+		-						Ll	71		Co	4	_
6									-	\vdash	++	+	-	\vdash	+	+		-		+	+		\perp		-							
7		,					1				++	+	+	\vdash	-	+				-												
8								 	-	-	++	\dashv	+-	\vdash	+	+				+	$ \cdot $				\perp							
9								 	-		++	-		\vdash	-	+				_						Ш						
10									-	├─	+-	-	-	\vdash	- -	+			++	+	11					Ш						
11									-	-	+	+	-	\vdash		+	F	-	++	4						Ш						
12									-	-	++	\dashv	-	-		\dashv	1			┿	\sqcup		\sqcup			Ш						
	ADDITIONAL COMMENTS		REL	INQU	SHED BY /	AFFILIATI	ON	DATE		-	TIME	+																				
			-	70	- 166							-	*	ν,	ACCE	PIED	BY /	AFFILI	ATION		D	ATE	1	IME			SAM	PLE (CONDITI	ONS		7
			/ 9	(NO	2	70		4-18-18			5:40	4	V	bo	MU	المرابا		100	سدخ		144	9/8	1	11				T				
			Ja.	13	bluit	Tue	- 1	1-174:		130	09		*	The state of the s	())	4.	17	70	14	11	4	100	-7	718	10	0	1	1	N	77		-
_		1 0	/	1								-	~	プ		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-6	a.e.	1		1/1	7:18	1/	20	10	4	7	+-	/_	\nearrow		4
												\dagger									-		-		-			+				
	OF	RIGINA				SAMPLE	R NAME A	ND SIGNA	TUR	L E								-							-							
	Or	Аунгли	\ <u>L</u>		N		PRINT Nan				Tin	77	1=	1.1.											١	ا د	N (2	>	ealed Cooler (Y/N)	To the state of th	(N/V)	
					ŀ						Toda							DATE	Claves							u diuai	Received on Ice (Y/N)	rstod	X N	loe Ir	Y/N)	1
	"Important Note: By signing this figure				Į		SIGNATUR	C OI SAMP	LEK:	7	1	- ,	1					MMIE	Signed		4-11	4-18			غ ا	ž.	Rec	O	eali	GE,	<u>.</u>	-

APPENDIX C:

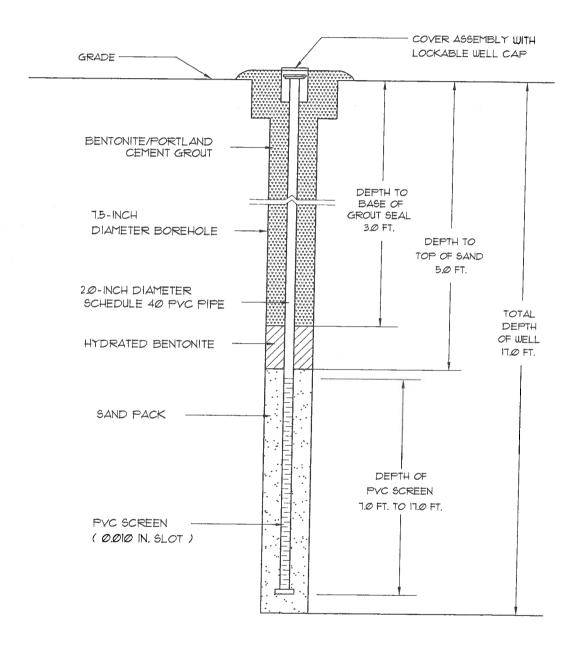
TAX MAP (Not Applicable)

APPENDIX D:
SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
(Not Applicable)

APPENDIX E: WELL COMPLETION LOGS & 1903 FORMS

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID# 03538
MECI Project Number 18-6276

Boring Number:	03538-MWIØRR	
Date Drilled:	3/29/2018	-
Drilled By:	EDPS, LLC.	
Logged By:	B. Garner	


Prepared By:

Midlands
Environmental
Consultants, Inc.

231 Dooley Road Lexington, South Carolina 29013 (803) 808-2043 fax: 808-2048

MONITORING WELL INSTALLATION RECORD

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 18-6276

Well Number:	Ø3538-MWIØRR
Date Drilled:	3/29/2018
Drilled By:	EDPS, LLC.
Driller: J. Kiker	S.C. I.D.#: B2200
Logged By:	B. Garner

231 Dooley Road Lexington, South Carolina 29073 (803) 808-2043 fax: 808-2048

PROMOTE PROTECT PROSPER				1-1700, (003) 030-4300	
1. WELL OWNER INFORMATION: Name: SCDHEC			7. PERMIT NUMBER:	UMW-26837	
(last)	(1	first)	8. USE:		
Address: 2600 Bull Street			1 _	Public Supply Process	
City: O. 1. 1:					
City: Columbia State:	SC Zip:	29201-1708	☐ Test Well		
Telephone: Work:	Home:		9. WELL DEPTH (completed)		t
2. LOCATION OF WELL:	COUNTY Flor	ranga	~- 		
Name: Coatal 76 Truck Stop		ience	17.0 ft.	Date Completed: 3/29/2018	
Street Address: 2513 E Palmet			10. CASING: ☑ Threaded ☐ Welded		
City p	to Street		Diam.:		
City: Florence	Zip: 29506	-3899	Type: PVC Galvanized		. ft.
Latituda			☐ Steel ☐ Other	Weight lb	./ft.
Latitude: Longitu	ide:		2.0 in to 7.0 ft doubt	Drive Shoe? ☐ Yes ☐ No	
3. PUBLIC SYSTEM NAME:	DIDLIC EVET	EM AUMOED			
03538	MW-1		Type: Schedule 40 PVC	Diam · 2 Inch	
		· · · · · · · · · · · · · · · · · · ·	Slot/Gauge: 0.010	Length: 10.0	
4. ABANDONMENT: Yes	⊴ No		Set Between: 2.0 ft. and 17	.0 ft. NOTE: MULTIPLE SCREENS	
Crouted Danth, form			ft. and		
Grouted Depth: from	_ ft. to		Sieve Analysis 🛛 Yes (please encl	ose) 🗌 No	
Formation Description	*Thickness of	Depth to Bottom of	12. STATIC WATER LEVEL 9.91	ft. below land surface after 24 ho	urs
- Official Description	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.		
Grass with Topsoil		0.5	A CONTRACTOR OF THE CONTRACTOR	hrs. PumpingG.P.M.	
Grass with Topson	0.5	0.3	Pumping Test: Yes (please enclos	se) 🗆 No	
Tan, SAND	4.5	5.0	Yield:		
Tail, BAND	4.3	3.0	14. WATER QUALITY		
Brown, Clayey SAND*	10.0	15.0	Chemical Analysis ☐ Yes ☐ No	Bacterial Analysis	
Brown, Orayey Britis	10.0	15.0	Please enclose lab results.	, = = = = = = = = = = = = = = = = = = =	
Tan, SAND*	2.0	17.0	15. ARTIFICIAL FILTER (filter pack) 🗹 Ye	es 🗍 No	
	-		Installed from 17.0	ft. to 5.0	ft.
			Effective size 1.43	Uniformity Coefficient 1.30	
			16. WELL GROUTED? ☑ Yes ☐ No		
			☐ Neat Cement ☐ Bentonite ☑ Be	entonite/Cement	
			Depth: From 3.0	ft. to <u>0.0</u> f	t.
			17. NEAREST SOURCE OF POSSIBLE COI	NTAMINATION: ft. direction	
			Туре		
			Well Disinfected ☐ Yes ☐ No Type:	Amount:	_
			18. PUMP: Date installed:		\dashv
		i	Mfr. Name:	Model No.:	
				th of drop pipe ft. Capacity gpm	-
	1	- 1		(shallow) Turbine	
	-		☐ Jet (deep) ☐ Red	ciprocating	1
			19. WELL DRILLER: Jacob Kiker	CERT. NO.: 2200	-
			Address: (Print)	Level: A B C D (circle one)	.
			17538 Greenhill Road	(
the disease Mark C. D. C. T.			Charlotte, NC 28278		
*Indicate Water Bearing Zones		-	Telephone No.: 704-607-7529	Fax No.: 803-548-2233	
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION	ON: This well was drilled under	
5. REMARKS:			my direction and this report is true to the	best of my knowledge and belief.	
		1	God-12	?//	
MW-10RR			JAROUN L. Su		
-Bentonite Seal from 5.0'-3.0'		1	Signed:	Date: 4/17/2018	
			Well Driller	Date:	
6. TYPE: ☐ Mud Rotary ☐ Jetted	□ во	ored	If D Level Driller, provide supervising drill	er's name:	
☐ Dug ☐ Air Rot	ary 🗆 Dr	riven	2010. Dimoi, provide supervising drill	srandille.	
☐ Cable tool ☑ Other-	Auger	- 1			
· · · · · · · · · · · · · · · · · · ·					- 1

Well Development Data Verification Form dhec Underground Storage Tank Management Division Facility Name: Coastal 76 Truck Stop Site ID#: 14472 Date: 3/29/2018 Drilling Company: EDPS, LLC Driller: Jacob Kiker Field Personnel: Jacob Kiker/Bryce Garner Driller Certification Number: B 2200 Weather Conditions: Sunny Temp. (°F): 70 Well Development Method Surge Block: Submersible Pump: Air Lifting: **Bailing can be combined with any of the above methods, but not utilized alone for development **Quality Assurance** pH Meter: Conductivity Meter: Temperature Meter: Turbiditiy Meter: Serial no. 15E101481 Serial no. 15E101481 Serial no. 14H103098 Serial No. 201301174 pH = 4.0Standard **NTU 0.0** X pH-7.0 NTU 1.0 X pH-10.0 X NTU10.0 **Drilling Method** Hollow Stem Augers: X Solid Flight Augers: Direct Push: Air Rotary: Mud Rotary: Sonic: Monitoring Well ID#: MW-10RR Well Casing Diameter (in): 2 Borehole Diameter (in): 7.5 Depth to Ground Water (DGW): 10.45 ft. Screen Length (ft): 10 Slot Size (in): 0.010 Total Well Depth (TWD): 16.68 ft. Screen Interval: 7.0 ft. to 17.0 ft. Length of Water Column (TWD-DGW): 6.23 ft. Type of Drilling Fluid Used: N/A Total Gallons of Water Removed: 15.00 gals. Drilling Fluids Recovered: N/A Time: 14:18 14:25 14:34 14:42 14:51 pH(s.u)*: 6.35 6.42 6.38 6.40 6.39 Specific Conductivity (mmhos/cm): 158.7 140.5 142.6 135.9 137.8 Water Temperature (°C)*: 20.0 18.7 18.1 18.0 18.0 Turbidity (NTU)*: 564.80 258.7 112.40 54.74 9.81 Cloudy/ Cloudy/ Clear/ Clear/ No Clear/ Physical Characteristics (color/odor): No Odor No Odor No Odor Odor No Odor Depth to Water (ft from TOC): 10.45 12.98 15.41 14.54 11.63 Cumulative Gallons Removed: 0.00 3.00 7.00 12.00 15.00 *Development is completed once groundwater turbidity is ≤10 NTU and all parameters are ± 10% **Detailed Description of Well Development Process:**

The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and
operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete
after 15.0 gallons were removed.

Book I Till Driller Signature:

Date: 4/17/2018

PROMOTE PROTECT PROSPER	2000	Duli Street, Columbia, SC	29201-1708; (803) 898-4300
1. WELL OWNER INFORMATION:		7. PERMIT NUMBER:	IDAW 26927
Name: SCDHEC	(5:A)		UMW-26837
Address: 2600 Bull Street	(first)	8. USE:	
2000 Bull Street		Residential	☐ Public Supply ☐ Process
City: Columbia State: S	SC Zip: 29201-170		☐ Air Conditioning ☐ Emergency
71-1		Test Well	
Telephone: Work: 2. LOCATION OF WELL:	Home:	9. WELL DEPTH (completed)	
	COUNTY: Florence	21.0 ft.	Date Completed: 3/29/2018
Name: Coatal 76 Truck Stop Street Address: 2513 E Palmette	G.	10. CASING: ☑ Threaded □	
City: Florence	o Street Zip: 29506-3899	Diam.:	
- Tiorchee	29506-3899	☐ Steel ☐ Oth	er Weight lb ffr
Latitude: Longitud	de:	in. to	ft. depth Drive Shoe? Tyes TNo
		2.0 in. to 11.0	ft. depth
	PUBLIC SYSTEM NUMBE	R: 11. SCREEN:	2.71.
03538	MW-17	Type: Schedule 40 PVC Slot/Gauge: 0.010	Diam.: 2 Inch
4. ABANDONMENT:	J No	Set Between: 11.0 ft	21.0
0.110	0.00	ft	and ALLU ft. NOTE: MULTIPLE SCREENS and Land ft. USE SECOND SHEET
Grouted Depth: from 21.00	ft. to <u>0.00</u> ft	Sieve Analysis 🗌 Yes (plea	ase enclose) 🗌 No
Formation Description	*Thickness Depth to	I 12. STATIC WATER LEVEL	ft. below land surface after 24 hours
	Stratum Stratum	13. PUMPING LEVEL Below Land	Surface.
Well Abandoned by Environmental		ft. after _	hrs. Pumping G.P.M.
		Pumping Test: Yes (pleas	
Drilling and Probing Services		Yield:	
		14. WATER QUALITY	The Probability of The The
(EDPS) via Tremie Pipe with		Chemical Analysis Yes Please enclose lab results.	□No Bacterial Analysis □ Yes □ No
approximately 4.00 C-11 C		15. ARTIFICIAL FILTER (filter pack	N. E. Ver. E. N.
approximately 4.00 Gallons of			ft. to ft.
Portland-Bentonite Cement		Effective size	Uniformity Coefficient
		16. WELL GROUTED? [7] Yes	
Slurry.		☐ Neat Cement ☐ Bentonite	☑ Bentonite/Cement ☐ Other
		Depth: From 21.0	ft. to <u>0.0</u> ft.
		17. NEAREST SOURCE OF POSSI	BLE CONTAMINATION: ft direction
		Type	_
			Type: Amount:
		18. PUMP: Date installed:	Not installed
		Mfr. Name: H.P Volts	Model No.: ft. Capacity gpm
		TYPE: Submersible	Length of drop pipe π. Capacity gpm ☐ Jet (shallow) ☐ Turbine
<u>-</u>		☐ Jet (deep)	☐ Reciprocating ☐ Centrifugal
i		19. WELL DRILLER: Jacob Kike	CERT. NO.: 2200
		Address: (Print)	Level: A B C D (circle one)
		17538 Greenhill Road	-
Indicate Water Bearing Zones		Charlotte. NC 28278 Telephone No.: 704-607-7529	Fox No 902 549 0022
			Fax No.: 803-548-2233 TIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			rue to the best of my knowledge and belief.
. REMARKS:		01	I OTA
		Stroll J	Lister
		Signed:	Date: 4/17/2018
		Well Driller	Date.
TYPE: Mud Rotary	☐ Bored	If D Level Driller, provide supervis	sing driller's name:
☐ Dug ☐ Air Rota	•		
☐ Cable tool ☐ Other-A	ruger		

PROMOTE PROTECT PROSPER		1, 100, (000) 000 4000
1. WELL OWNER INFORMATION: Name: SCDHEC		7. PERMIT NUMBER: UMW-26837
(last)	(first)	o lier.
Address: 2600 Bull Street		8. USE:
		Residential Public Supply Process
City: Columbia State:	SC Zip: 29201-1708	
		☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:	9. WELL DEPTH (completed) Date Started: 3/29/2018
2. LOCATION OF WELL:	COUNTY: Florence	ft. Date Completed: 3/29/2018
Name: Coatal 76 Truck Stop		10. CASING: ☑ Threaded ☐ Welded
Street Address: 2513 E Palme	tto Street	Diam.: Height: Above /Below
City: Florence	Zip: 29506-3899	Type: 🗹 PVC 🗌 Galvanized Surfaceft.
		☐ Steel ☐ Other Weight — lb./ft.
Latitude: Longii	lude:	in. to ${1.61}$ ft. depth Drive Shoe? \square Yes \square No
		in. to 1.01 ft. depth
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTEM NUMBER	11. SCREEN:
03538	MW-23	Type: Schedule 40 PVC Diam.: 2 Inch
4. ABANDONMENT:	□ No	Slot/Gauge: 0.010 Length: 10.0
		Set Between: 1.61 ft. and 11.61 ft. NOTE: MULTIPLE SCREENS
Grouted Depth: from 11.61	ft. to <u>0.0</u> ft.	ft. andft. USE SECOND SHEET
	*Thickness Depth to	Clove / Marysis
Formation Description	of Bottom of	
	Stratum Stratum	13. PUMPING LEVEL Below Land Surface.
Well Abandoned by Environment	ral	ft. after hrs. Pumping G.P.M.
		Pumping Test: Yes (please enclose) No
Drilling and Probing Services		Yield:
		14. WATER QUALITY
(EDPS) via Tremie Pipe with		Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
		Please enclose lab results.
approximately 2.00 Gallons of		15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
		Installed from ft. to ft.
Portland-Bentonite Cement		Effective size Uniformity Coefficient
		16. WELL GROUTED? ☑ Yes ☐ No
Slurry.		□ Neat Cement □ Bentonite □ Bentonite/Cement □ Other
		Depth: From <u>11.61</u> ft. to <u>0.0</u> ft.
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
		Type
		Well Disinfected ☐ Yes ☐ No Type: Amount:
		18. PUMP: Date installed: Not installed
		Mfr. Name: Model No.:
		H.P Volts Length of drop pipe ft. Capacity gpm
		TYPE: Submersible Jet (shallow) Turbine
		☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
		Address: (Print) Level: A B C D (circle one)
		17538 Greenhill Road
*Indicate Water Bearing Zones		Charlotte. NC 28278
Traid: 20ding 201100		Telephone No.: 704-607-7529 Fax No.: 803-548-2233 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)		my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:		
		Gust I Till
		Signed:
		Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted		If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air R	· ·	
☐ Cable tool ☐ Other	-Auger	

PROMOTE PROTECT PROSPER		5 Edit CiteCt, Coldinala, CO 20201-1700, (003) 698-4300
1. WELL OWNER INFORMATION:		7. PERMIT NUMBER: UMW-26837
Name: SCDHEC (last)	(first)	OWW-2083 /
Address: 2600 Bull Street	(IIISt)	8. USE:
2000 Bull Street		Residential Public Supply Process
City: Columbia State: SO	C Zip: 29201-1	708 ☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Tolombonos Mindu		
Telephone: Work: 2. LOCATION OF WELL: C	Home:	
	COUNTY: Florence	18.42 ft. Date Completed: 3/29/2018
Name: Coatal 76 Truck Stop Street Address: 2513 E Palmetto	C.	10. CASING: ☑ Threaded ☐ Welded
City: Florence	Zin' accessor	Diam.: Height: Above /Below Type: PVC Galvanized Surfaceft.
riotence	Zip: 29506-3899	Steel Other Weightlb./ft.
Latitude: Longitude	e:	
		2.0 in. to 8.42 ft. depth
3. PUBLIC SYSTEM NAME: PL	UBLIC SYSTEM NUME	ER: 11. SCREEN:
03538	MW-24	Type: Schedule 40 PVC Diam.: 2 Inch
4. ABANDONMENT: ☑ Yes □	No	Slot/Gauge: 0.010 Length: 10.0 Set Between: 8.42 ft. and 18.42 ft. NOTE: MULTIPLE SCREENS
Grouted Depth: from 18.42	ft. to <u>0.0</u>	ft. Sieve Analysis Sieve Analysis No
	*Thickness Depth	to 12 STATIC WATER LEVEL # the law load a wife on the OA has
Formation Description	of Bottom Stratum Stratu	01
***************************************		ft. after hrs. Pumping G.P.M.
Well Abandoned by Environmental		Pumping Test: Yes (please enclose) No
Drilling and Probing Services		Yield:
Brilling and I rooming Services		14. WATER QUALITY
(EDPS) via Tremie Pipe with		Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
		Please enclose lab results.
approximately 4.00 Gallons of		15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
		Installed from ft. to ft.
Portland-Bentonite Cement		Effective size Uniformity Coefficient
21		16. WELL GROUTED? ☑ Yes ☐ No
Slurry.		□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other Depth: From 18.42 ft. to 0.0 ft.
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft, direction Type
		Well Disinfected ☐ Yes ☐ No Type: Amount:
		18. PUMP: Date installed: Not installed
		Mfr. Name: Model No.:
		H.P Volts Length of drop pipe ft. Capacity gpm
		TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine
		☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
		Address: (Print) Level: A B C D (circle one)
		17538 Greenhill Road Charlotte, NC 28278
ndicate Water Bearing Zones		Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Upo a 2nd about 15 mandad)	1	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed) REMARKS:		my direction and this report is true to the best of my knowledge and belief.
, NEWARRS:		12-1- 1 9/M
		MOUNT LANGE
		Signed:
		Well Driller
TYPE: Mud Rotary Jetted	☐ Bored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotar ☐ Cable tool ☐ Other-A	•	
	ugei	1.

4 WELL OWNER WITTER			, 100, (000) 000 1000
1. WELL OWNER INFORMATION: Name: SCDHEC			7. PERMIT NUMBER: UMW-26837
(last)	/fi	rst)	ON W-2003 /
Address: 2600 Bull Street	\ **	,	8. USE:
			Residential Public Supply Process
City: Columbia State: S	C Zip: 2	9201-1708	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:			- Tropiacement
2. LOCATION OF WELL:	Home:		
Name: Coatal 76 Truck Stop	CONTT. FIOR	ence	18.29 ft. Date Completed: 3/29/2018
Street Address: 2513 E Palmetto	Ctun at		10. CASING: ☑ Threaded ☐ Welded Diam.: Height: Above / Below
City: Florence	Zip: 20506	2000	Diam.:
- Tiorence	Zip: 29506-	3899	Steel Other Weight
Latitude: Longitud	e:		
			2.0 in. to 8.29 ft. depth Drive Shoe? \square Yes \square No
	UBLIC SYSTE	M NUMBER:	11. SCREEN:
03538	MW-2:	5	Type: Schedule 40 PVC Diam.: 2 Inch
4. ABANDONMENT: Yes	No		Slot/Gauge: 0.010 Length: 10.0 Set Between: 8.29 ft. and 18.29 ft. NOTE: MULTIPLE SCREENS
			Set Between: 8.29 ft. and 18.29 ft. NOTE: MULTIPLE SCREENS ft. and ft. USE SECOND SHEET
Grouted Depth: from 18.29	ft. to <u>0.0</u>	ft.	Sieve Analysis Yes (please enclose) No
Formation Description	*Thickness	Depth to	12. STATIC WATER LEVEL ft. below land surface after 24 hours
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
Wall Abandanad by Engineers at 1		Ottatani	ft. after hrs. PumpingG.P.M.
Well Abandoned by Environmental			Pumping Test: ☐ Yes (please enclose) ☐ No
Drilling and Probing Services			Yield:
			14. WATER QUALITY
(EDPS) via Tremie Pipe with			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
approximately 4.00 Gallons of		1	15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
D 1 1 D 1 1 0			Installed from ft. to ft.
Portland-Bentonite Cement			Effective size Uniformity Coefficient
Slurry.			16. WELL GROUTED? ☑ Yes ☐ No
Siurry.			
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type direction
		ı	Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed Mfr. Name: Not installed
j	1		Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
·			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
			Address: (Print) Level: A B C D (circle one)
			17538 Greenhill Road Charlotte. NC 28278
ndicate Water Bearing Zones			Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
REMARKS:			my direction and this report is true to the best of my knowledge and belief.
NEWANIO.			God Lill
			Signed:
			Well Driller
TYPE: Mud Rotary Jetted	□ Bo		If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotai☐ Cable tool ☐ Other-A	•	ven	
_ Collet-A			

PROMOTE PROTECT PROSPER		2000 D	5dir otreet, Coldinata, 3C 29201-1706, (803) 696-4300
1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: SCDHEC	10		UMW-26837
Address: 2600 Bull Street	(firs	t)	8. USE:
2000 Bull Street			☐ Residential ☐ Public Supply ☐ Process
City: Columbia State: S	C Zip: 29.	201-1708	
			☐ Test Well
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 3/29/2018
2. LOCATION OF WELL:	COUNTY: Florer	nce	20.00 ft. Date Completed: 3/29/2018
Name: Coatal 76 Truck Stop	_		10. CASING: ☑ Threaded ☐ Welded
Street Address: 2513 E Palmetto	Street		Diam.: Height: Above /Befow
City: Florence	Zip: 29506-31	899	Type: ☑ PVC ☐ Galvanized Surfaceft, ☐ Steel ☐ Other Weight
Latitude: Longitud	۵.		in, toft, depth Drive Shoe? \[\text{Ves} \text{No}
Longitud	c .		2.0 in. to 10.00 ft. depth
3. PUBLIC SYSTEM NAME: P	UBLIC SYSTEM	NUMBER:	11. SCREEN:
03538	MW-26		Type: Schedule 40 PVC Diam.: 2 Inch
4. ABANDONMENT:	No		Slot/Gauge: 0.010 Length: 10.0
			Set Between: 10.00 ft. and 20.00 ft. NOTE: MULTIPLE SCREENS
Grouted Depth: from 20.00	ft. to <u>0.0</u>	ft.	ft. andft. USE SECOND SHEET Sieve Analysis
	*Thickness	Depth to	12. STATIC WATER LEVEL ft. below land surface after 24 hours
Formation Description		Bottom of	13. PUMPING LEVEL Below Land Surface
****	Stratum	Stratum	13. POWPING LEVEL Below Land Surface. ft. after hrs. Pumping G.P.M.
Well Abandoned by Environmental			Pumping Test: Yes (please enclose) No
Drilling and Drahing Samina			Yield:
Drilling and Probing Services			14. WATER QUALITY
(EDPS) via Tremie Pipe with			Chemical Analysis □ Yes □ No Bacterial Analysis □ Yes □ No
			Please enclose lab results.
approximately 4.00 Gallons of			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from ft. to ft.
Portland-Bentonite Cement		- 1	Effective size Uniformity Coefficient
Slurry.			16. WELL GROUTED? ☑ Yes ☐ No
Siury.			
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft, direction Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed [
	1		Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
	1	- 1	TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
	-		Address: (Print) Level: A (B) C D (circle one)
	}		17538 Greenhill Road
Indicate Water Bearing Zones			Charlotte, NC 28278 Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Upo a Onda)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
. REMARKS:			O A- I QIM
		- 1	Jacob Lille
			Signed:
			Well Driller
TYPE: Mud Rotary Jetted	☐ Bore		If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotai	•	en	
☐ Cable tool ☐ Other-A	uger		

APPENDIX F: AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

Summary of Slug Test Underground Storage Tank Management Division

Site Data						
SITE ID #: 03538	*	(COUNTY:	Florence		
FACILITY NAME: Coasta	al 76 Truck S	itop [Date Performe	d: <u>4/4/20</u> 18		
SLUG DATA						
See Appendix F Table			- igure		for a list of all o	lata measurements.
(water level logs, Water Level Recovery Data was			riate).	A Township A		87
(Hermit Data Log			Lavel Indicator	Manually with	Water Level Indica	ator
Complete the following table for COMPLETE A SI	each well tes	sted.		,	,	
Slug Test Conducted in well(s) n	number		MW-4	MW-8		
Time Performed (military)			11:45	12:30		
Static Water Level (feet)			11.29	9.41		
nitial Rise/Drawdown in well (+/-	-feet)		1.600	1.460		
2adius of wall againg (tact)			0.083	0.083		
				0.33		
Radius of well casing (feet) Effective Radius of Well (feet)	10 43	133	0.33			
	ess (feet)		0.33 7.06 10	8.88		
Effective Radius of Well (feet) Static Saturated Aquifer Thicknes Length of Well Screen (feet)		4	7.06 10	8.88 10		for calculations
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Calculations	Table		7.06 10	8.88		for calculations
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Calculations See Appendix F	Table	NA.	7:06 10 Figure	8.88		for calculations ck as Appropriate).
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Calculations See Appendix F The method for aquifer calculation	Table	NA se	7:06 10 Figure	8.88		
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations Lee Appendix F The method for aquifer calculation the aquifer is confi	Table ons was fined E-03ft./ft.	NA se	7:06 10 Figure	8.88		
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations Lee AppendixF The method for aquifer calculation The aquifer is confict co	Table ons was ined E-03ft./ft. (NA se	7:06 10 Figure	8.88		
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation The aquifer is conficted conficted in Well were as ug Test Conducted in Well(s) nunickness of Aquifer (feet)	Table ons was ined E-03ft./ft. (NA se	7:06 10 Figure AVFAC emi-confined	8.88 10		ck as Appropriate).
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation The aquifer is conficted conficted and conficted conficted alculated values by well were as a sug Test Conducted in Well(s) nunickness of Aquifer (feet) Tydraulic Conductivity (cm/sec)	Table ons was ined E-03ft./ft. (NA se	Figure AVFAC emi-confined MW-4 7.06 1.81E-04	8.88 10		ck as Appropriate). Mathematical Mea
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation The aquifer is conficted in the conficted part of conducted in Well(s) numbers of Aquifer (feet) Tydraulic Conductivity (cm/sec) Tydraulic Conductivity (ft/day)	Table ons was ined E-03ft./ft. (s follows: umber	NA se	7:06 10 Figure AVFAC emi-confined MW-4 7:06 1:81E-04 5:13E-01	X MW-8 8.88 5.08E-04 1.44E+00		ck as Appropriate). Mathematical Mea N/A
Effective Radius of Well (feet) Static Saturated Aquifer Thickness. Ength of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation he aquifer is confinity confinity confinity and the set of	Table ons was ined E-03ft./ft. (s follows: umber	NA se	7.06 Figure AVFAC emi-confined MW-4 7.06 1.81E-04 5.13E-01 1.87E+02	MW-8 8.88 5.08E-04 1.44E+00 5.26E+02		ck as Appropriate). Mathematical Mea N/A 3.45E-04
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation The aquifer is confict confi	Table ons was fined E-03ft./ft. one s follows: umber	NA ser	7:06 10 Figure AVFAC emi-confined MW-4 7:06 1:81E-04 5:13E-01 1:87E+02 20%	X MW-8 8.88 5.08E-04 1.44E+00 5.26E+02 20%		Mathematical Mea N/A 3.45E-04 9.77E-01 3.56E+02 20%
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation The aquifer is confinity confinity confines and the second confinity confines of Aquifer (feet) The conductivity (confinity confinity conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year) The conductivity (feet/year)	Table ons was fined E-03ft./ft. one s follows: umber	NA ser	7:06 10 Figure AVFAC emi-confined MW-4 7:06 1:81E-04 5:13E-01 1:87E+02 20% Fine SAND	X MW-8 8.88 5.08E-04 1.44E+00 5.26E+02 20% Fine SAND		Mathematical Mea N/A 3.45E-04 9.77E-01 3.56E+02
Effective Radius of Well (feet) Static Saturated Aquifer Thickness Length of Well Screen (feet) Ealculations See Appendix F The method for aquifer calculation The aquifer is confict confi	Table ons was fined E-03ft./ft. one s follows: umber	NA ser	7:06 10 Figure AVFAC emi-confined MW-4 7:06 1:81E-04 5:13E-01 1:87E+02 20%	X MW-8 8.88 5.08E-04 1.44E+00 5.26E+02 20%		Mathematical Mea N/A 3.45E-04 9.77E-01 3.56E+02 20%

Inflow for Condition A Well MW-4.xls

Inflow Permeability Calculation

Coastal 76 Truck Stop

				,		Test Pe	rformed:	4/4	/2018
			-MW04	Type	II (Unca	ased Well)		
Static:	11.29	ft		*Enter	Values in S	Shaded Area	s Only		
Time (min) Depth	delta H	Ht/Ho	Information	n from d	lata and p	lot of Ht/H	o vs tin	ne
0.08	12.89	1.60	1.00			iameter:		in	
0.16	12.52	1.23	0.77	Total	l Depth	of Well:	18.35	ft	
0.25	12.32	1.03	0.64	S	tand Pip	e Area:	44.18	in^2	
0.33	12.17	0.88	0.55]			0.31	ft^2	
0.42	12.02	0.73	0.46	Coordi	nates fro	m Graph	for Slope	Calc:	
0.50	11.88	0.59	0.37			/Ho:	0.20		
0.58	11.80	0.51	0.32		t1:		1.00	min	
0.67	11.74	0.45	0.28		H2	2/Ho:	0.16		
0.75	11.68	0.39	0.24		t2:		1.83	min	
0.83	11.65	0.36	0.23					•	
0.92	11.63	0.34	0.21						
1.00	11.61	0.32	0.20		H1:	0.32	H2:	:	0.26
1.08	11.60	0.31	0.19		t1:	1.00	t2:	:	1.83
1.16	11.59	0.30	0.19	Radius	S	R:	3.75	in	
1.25	11.58	0.29	0.18	Radius	S	R:	0.31	ft	
1.33	11.57	0.28	0.18	Depth		D:	7.06	ft	
1.42	11.57	0.28	0.18						
1.50	11.56	0.27	0.17						
1.58	11.55	0.26	0.16						
1.67	11.54	0.25	0.16						
1.75	11.54	0.25	0.16						
1.83	11.54	0.25	0.16						
1.92	11.53	0.24	0.15						
2.00	11.53	0.24	0.15						
2.08	11.53	0.24	0.15						
2.16	11.52	0.23	0.14						
2.25	11.52	0.23	0.14			R/D:	0.044		
2.33	11.51	0.22	0.14			D/R:	22.59		
2.42	11.50	0.21	0.13						

Shape Factor Determination Value:

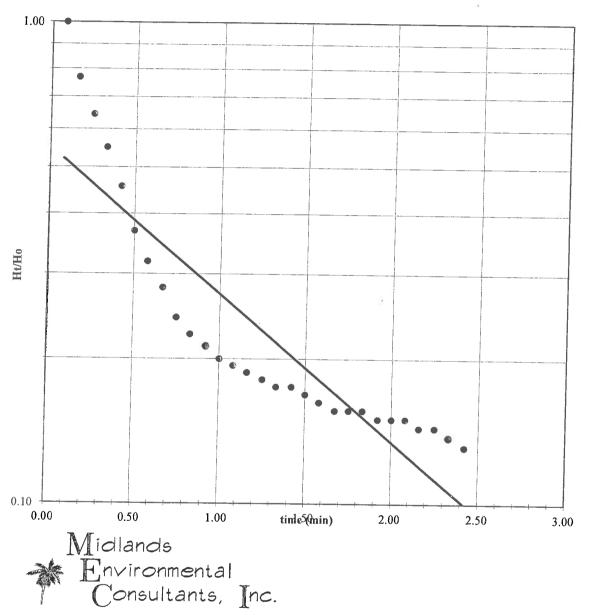
0.959207 *

Figure 13 of Reference [1] to obtain the shape factor.

Shape Factor

S: 0.6

Coeff. of Permeability (K):


3.56E-04 ft/min

5.12E-01 ft/day

1.81E-04 cm/sec

^{*}This value is used in conjunction with

Ref [1]: Naval Fac. Engr. Command, Design Manual 7.01, soil Mechanics, Condition A.

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

Inflow for Condition A Well MW-8.xls

Test Performed:

4/4/2018

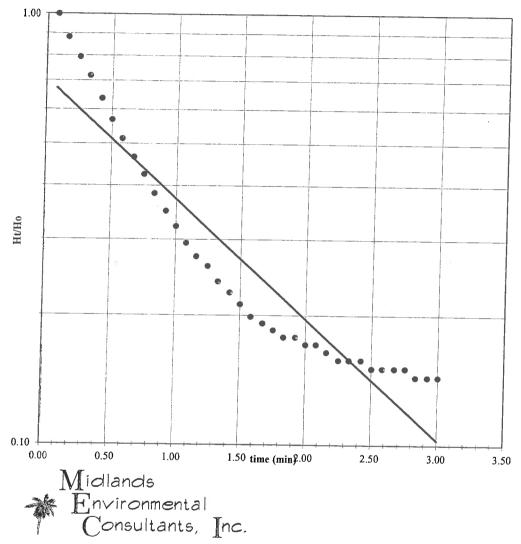
Inflow Permeability Calculation

Coastal 76 Truck Stop

			3-MW08	Type II (U	ncased Wel	1)	
Static:	9.41	ft			in Shaded Area		
Time (min)	Depth	delta H	Ht/Ho	Information from	n data and p	olot of Ht/Ho	vs time
0.08	10.87	1.46	1.00		Diameter:		in
0.16	10.70	1.29	0.88	Total Dep	th of Well:		ft
0.25	10.57	1.16	0.79		Pipe Area:		in^2
0.33	10.46	1.05	0.72		•		ft^2
0.42	10.34	0.93	0.64	Coordinates	from Graph	for Slope Ca	
0.50	10.24	0.83	0.57		H1/Ho:	0.32	
0.58	10.16	0.75	0.51		t1:	1,00 r	nin
0.67	10.09	0.68	0.47		H2/Ho:	0.18	
0.75	10.03	0.62	0.42		t2:	1.75 r	nin
0.83	9.97	0.56	0.38			***********	
0.92	9.92	0.51	0.35				
1.00	9.88	0.47	0.32	H1:	0.47	H2:	0.26
1.08	9.84	0.43	0.29	tl:	1.00	t2:	1.75
1.16	9.81	0.40	0.27	Radius	R:	3.75 ii	
1.25	9.79	0.38	0.26	Radius	R:	0.31 fi	
1.33	9.76	0.35	0.24	Depth	D:	8.88 fi	
1,42	9.74	0.33	0.23	-			
1.50	9.72	0.31	0.21				
1.58	9.70	0.29	0.20				
1.67	9.69	0.28	0.19				
1.75	9.68	0.27	0.18				
1.83	9.67	0.26	0.18				
1,92	9.67	0.26	0.18				
2.00	9.66	0.25	0.17				
2.08	9.66	0.25	0.17				
2.16	9.65	0.24	0.16				
2.25	9.64	0.23	0.16		R/D:	0.035	
2.33	9.64	0.23	0.16		D/R:	28.42	
2.42	9.64	0.23	0.16				
2.50	9.63	0.22	0.15				
2.58	9.63	0.22	0.15				
2.67	9.63	0.22	0.15				
2.75	9.63	0.22	0.15				
2.83	9.62	0.21	0.14				
2.92	9.62	0.21	0.14				
3.00	9.62	0.21	0.14				

Shape Factor Determination Value: 0.958896 *

Figure 13 of Reference [1] to obtain the shape factor.


Shape Factor

S: 0.6

Coeff. of Permeability (K): 9.99E-04 ft/min 1.44E+00 ft/day 5.08E-04 cm/sec

^{*}This value is used in conjunction with

Ref [1]: Naval Fac. Engr. Command, Design Manual 7.01, soil Mechanics, Condition A.

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 Fax: 808-2048

Summary of Slug Test Underground Storage Tank Management Division

SITE ID#:	03538		COUNTY:	Florence		
FACILITY NAME:	Coastal 76 Trucl	k Stop	Date Performe	d: 4/4/2018		
SLUG DATA						
See Appendix F			Figure		for a list of all	I data measurements
(water I) Water Level Recovery	level logs, etc.)(Con		opropriate).			
			ومهموالمسالمينا المناد	Manually with	Water Level Indi	icator
Hermit) Complete the following	Data Logger, Manu	Jally With vv	ater Level indicator	, etc.)(List Metn	od)	
	g table for each well LETE A SECOND S		ODE TUAN EQUID	TO A DE TO		
OOWII L	LETE A SECOND 5	HEET IF IVE	OKE THAN FOUR	WELLS ARE IE	ESTED	
Slug Test Conducted in	n well(s) number		TW-1			
Time Performed (milita			11:30			
Static Water Level (fee	- /		11.53			
Initial Rise/Drawdown i			2.040			
Radius of well casing (t	feet)		0.083			
Effective Radius of We	ll (feet)					
			0.33			
Static Saturated Aquife	er Thickness (feet)		0.33 24.47			
Static Saturated Aquife	er Thickness (feet)					
	er Thickness (feet)		24.47			
Static Saturated Aquife Length of Well Screen	er Thickness (feet)		24.47			
Static Saturated Aquife	er Thickness (feet)	4	24.47			
Static Saturated Aquife Length of Well Screen	er Thickness (feet) (feet)	4	24.47 .5			for calculations
Static Saturated Aquife Length of Well Screen Calculations See AppendixF	er Thickness (feet) (feet) Table	4	24.47 .5			for calculations
Static Saturated Aquife Length of Well Screen (Calculations	er Thickness (feet) (feet) Table	4	24.47 .5			for calculations
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer	r Thickness (feet) (feet) Table calculations was		24.47 .5 Figure			
Static Saturated Aquife Length of Well Screen Calculations See AppendixF	r Thickness (feet) (feet) Table calculations was	4 X	24.47 5 Figure			for calculations heck as Appropriate)
Static Saturated Aquife Length of Well Screen Calculations See AppendixF The method for aquifer The aquifer is	Tablecalculations wasconfined	Х	24.47 5 Figure NAVFAC unconfined			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer	Tablecalculations wasconfined	Х	24.47 5 Figure NAVFAC unconfined			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is hydraulic gradient of calculated values by we	Table calculations was confined 3.37E-03 ft./	Х	24.47 5 Figure NAVFAC unconfined			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is hydraulic gradient of calculated values by well ug Test Conducted in	Table	Х	24.47 5 Figure NAVFAC unconfined			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is hydraulic gradient of Calculated values by we lug Test Conducted in hickness of Aquifer (fee	Table	Х	24.47 5 Figure NAVFAC unconfined			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is hydraulic gradient of calculated values by we lug Test Conducted in hickness of Aquifer (fee ydraulic Conductivity (decaydraulic Conductivi	Table	Х	Figure NAVFAC unconfined			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is A hydraulic gradient of Calculated values by we lug Test Conducted in hickness of Aquifer (fee ydraulic Conductivity (fydraul	Table	Х	TW-1 24.47 24.47 25 TW-1 24.47 1.79E-04 5.07E-01			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is	Table	Х	TW-1 24.47 TW-1 24.47 1.79E-04 5.07E-01 1.85E+02			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is A hydraulic gradient of Calculated values by wellug Test Conducted in hickness of Aquifer (fee ydraulic Conductivity (fydraulic Conductivity (fydraulic Conductivity (ffective Porosity (%)	Table	Х	TW-1 24.47 TW-1 24.47 1.79E-04 5.07E-01 1.85E+02 20%			
Static Saturated Aquife Length of Well Screen of Calculations See Appendix F The method for aquifer The aquifer is	Table	Х	TW-1 24.47 1.79E-04 5.07E-01 1.85E+02 20% Fine SAND			
Static Saturated Aquife Length of Well Screen Calculations See Appendix F The method for aquifer The aquifer is A hydraulic gradient of Calculated values by wellug Test Conducted in hickness of Aquifer (fee ydraulic Conductivity (fydraulic Conductivity (fydraulic Conductivity (ffective Porosity (%)	Table	Х	TW-1 24.47 TW-1 24.47 1.79E-04 5.07E-01 1.85E+02 20%			

Inflow Permeability Calculation

Coastal 76 Truck Stop

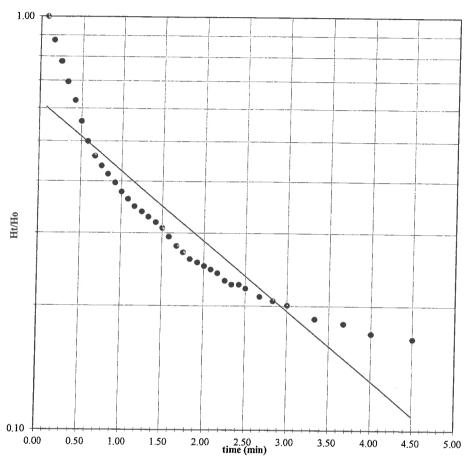
Test Performed:

4/4/2018

03538-TW01

Static:	- :	:	Ì	1	5	3	Ė	ft

*Enter	Values	in	Shaded	Areas	Only
--------	--------	----	--------	-------	------


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e
0.08 13.57 2.04 1.00 Diameter of Intake: 6 in Length of Intake (L): 7 ft 0.16 13.32 1.79 0.88 Length of Intake (L): 7 ft 0.25 13.12 1.59 0.78 Diameter of Standpipe: 2 in *Formation Data Taken From SCDHEC Files 0.42 12.81 1.28 0.63 Coordinates from Graph for Slope Calc: ** 0.50 12.67 1.14 0.56 ** H ₁ /H ₀ : 0.27 0.58 12.55 1.02 0.50 t ₁ : 1.75 min ** 0.67 12.47 0.94 0.46 H ₂ /H ₀ : 0.21 0.75 12.42 0.89 0.44 t ₂ : 2.83 min	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0,33 12,95 1.42 0.70 * Formation Data Taken From SCDHEC Files 0.42 12.81 1.28 0.63 Coordinates from Graph for Slope Calc: 0.50 12.67 1.14 0.56 H ₁ /H _o : 0.27 0.58 12.55 1.02 0.50 t ₁ : 1.75 min 0.67 12.47 0.94 0.46 H ₂ /H _o : 0.21 0.75 12.42 0.89 0.44 t ₂ : 2.83 min	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.67 12.47 0.94 0.46 0.75 12.42 0.89 0.44 t ₂ : 2.83 min	
0.75 12.42 0.89 0.44 t ₂ : 2.83 min	
2	
1.05 A 6A 55 Pt 12 A 2 A 50 Pt 1 A 5	
0.83 0.85 0.42	
0.92 0.34 0.81 0.40	
	0.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.83
1.16 12.24 0.71 0.35 Intake Radius: 4.00 in	
1.25 12.22 0.69 0.34 Intake Radius (rint): 0.33 ft	
1.33 12.20 0.67 0.33 Standpipe Radius: 1.00 in	
1.42 12.18 0.65 0.32 Standpipe Radius (rsp): 0.083 ft	
1.50 1.50 1.2.16 0.63 0.31	
1.58 12.13 0.60 0.29	
1.67 12.10 0.57 0.28	
12.08 0.55 0.27	
1.83 1.2,06 0.53 0.26	
(1.92 1.05 0.52 0.25 0.25 0.25 0.25 0.25 0.25 0	
2:00 12:04 0.51 0.25	
2.08 12.03 0.50 0.25	
2.16 12.02 0.49 0.24	
2.25 12.00 0.47 0.23	
2:33 11:99 0.46 0.23	
2.42 11.99 0.46 0.23	
2.50 11.98 0.45 0.22	
2.67 0.43 0.21	
2.83 011.95 0.42 0.21	
3,00 11,94 0.41 0.20	
3.33 0.11,91 0.38 0.19	
3.67 11,90 0.37 0.18	
4.00 11,88 0.35 0.17	
4.50 11.87 0.34 0.17	

Calc1=	0.000496	(rsp ²)/2L
Calc2=	3.044522	ln(L/rint)
Calc3=	0.251314	$ln(H_1/H_2)$
Calc4=	1.08	(t_2-t_1)

K=Calc1*Calc2*(Calc3/Calc4)

Coeff. of Permeability (K): 0.000351 ft/min 5.06E-01 ft/day 1.79E-04 cm/sec

Naval Fac. Engr. Command, Design Manuel 7.01, Soil Mechanics: Condition C

Midlands
Finvironmental
Consultants, Inc.

APPENDIX G:
DISPOSAL MANIFEST

Re: Treatment of Purge Water
Coastal Truck Stop 76
Florence, South Carolina
SCDHEC Site ID Number 03538
MECI Project Number 18-6276

To Whom It May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDHEC must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 30 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

15.00 gallons were treated on March 29, 2018, during well development at the referenced site.

8.50 gallons were treated on March 29, 2018, during groundwater sampling at the referenced site.

17.50 gallons were treated on April 4, 2018, during groundwater sampling at the referenced site.

A total of 41.0 gallons were treated at the subject site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Staff Hydrogeologist

Richland County LF 1047 Highway Church Road Elgin, SC, 29045 Ph: (803) 788-3054

Original Ticket# 1592319

Customer Name MIDLANDSENVIRON MIDLANDS ENVI Carrier MIDLANDSENVIRON MIDLANDS ENVIRONMENT Ticket Date 03/30/2018 Vehicle# 1 Volume

Payment Type Credit Account

Container

Manual Ticket#

Driver

Hauling Ticket# Route

Check#

State Waste Code

Billing # 0000469

Gen EPA ID

Manifest

Destination

PO Profile

VA2718 (SOIL FROM UST ASSESSMENT)

Generator

126-MIDLANDSENVIRONMENTAL MIDLANDS ENVIRONMENTAL

In Out	Time 03/30/2018 03/30/2018		Scale Inbound #2 Outbound	ScaleMaster KENNY1 KENNY1	Gross Tare Net	16900 lb 9300 lb 7600 lb
	00,00,0010	1115710	Darboand	LATTIAL T	Mer	7600 10
					Tons	2 80

Comments

Product	LD%	Qty	MOU	Rate	Fee	Amount	Origin
1 SOIL-Cont. 9 2 FUEL-Fuel Su 3 EVF-P-Standa 4 RCR-P-Regula	urcharg 100 ard Env 100	3.80	Tons % % %				32-LEXINGT 32-LEXINGT 32-LEXINGT 32-LEXINGT

Total Fees Total Ticket

403WM

SPECIAL WASTE MANIFEST

	•
WASTE ID NUMBER	
VA2718	
122/20	Richland Landfill
EXPIRATION DATE	1047 Highway Church Road
1	Elgin, SC 29045
November 17, 2019	Charles Words Div. 1900 Trees
	Special Waste Phone: 803-744-3345 Fax: 866-904-7194
Prepare	
GENERATOR OF WASTE: MIDIAN	
MIDIAN	NDS ENV, CONSULTANTS, INC VARIOUS
USTOMER: MIDLANDS ENV. CONSULTAI	ACCOUNT NUMBER: NTS, INC. 820-469
OCATION OF WASTE:	22,210. 620-403
ITY: Lexington COUNTY	: Lexinatan
IONIE NY NO	Jest of the second seco
IONE NUMBER: 803-808-2043	CONTACT:
X NUMBER: 803-808-2048	LYNN SHANE
NERATOR'S SIGNATURE	DATE: 3/30/18
7	
	V V
NSPORTER OF WASTE: MECT	
3/30/18	TRUCK NUMBER:
ER'S SIGNATURE	
SIGNATURE OF CO.	
**** TO BE COMPLETED BY RICHLAN	ND LANDFILL*****
SAL SITE: RICHLAND LANDFILL ELGI	N, SC
PTION OF WASTE, SOIL FROM HOW ASSESSED	Waste Class: SOIL
PTION OF WASTE: SOIL FROM UST ASSESSMENT	Γ
NUMBER: 1592319	TONNAGE:
	ZOMAGE.
ED BY:	<u> </u>

10% Lucas Property 10% Coastal Mart 76% 80% Stanco/Hamon Oil APPENDIX H:
LOCAL ZONING REGULATIONS
(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:
ACCESS AGREEMENTS
(Not Applicable)

APPENDIX K:
DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		<u> </u>
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?	X		
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	Х		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		<u> </u>
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			Х
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?	X		
17	Has the method of well development been detailed?	X		
18	Has justification been provided for the locations of the monitoring wells?	X		
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figure 5)	Х		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	Х		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
	Does the report include a brief discussion of the aquifer evaluation and results?	Х		
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format? (Table 1)			X
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the <u>current</u> and historical laboratory data been provided in tabular format? (Table 3)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)	Х		
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)			Х
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figures 4, 4A, 4B, 4C)	Х		
40	Has the site potentiometric map been provided? (Figure 5)	Х		
41	Have the geologic cross-sections been provided? (Figure 6)			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	Х		
45	Is the laboratory performing the analyses properly certified?	Х		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix D)			X
48	Have the well completion logs and SCDHEC Form 1903 been provided? (Appendix E)	Х		·
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)	X		
50	Have the disposal manifests been provided? (Appendix G)	Х		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
33	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	Х		

July 31, 2019

Ms. Sedona Edgar, Hydrogeologist
Assessment & Unregulated Petroleum Section
Underground Storage Tank Management Division
Bureau of Land and Waste Management
South Carolina Department of Health
and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan

Coastal Truck Stop 76 Florence, South Carolina

SCDHEC Site ID Number 03538 MECI Project Number 19-7012

Certified Site Rehabilitation Contractor UCC-0009

Dear Ms. Edgar,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site.

If you have any question or comments please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Kyle V. Pudrley Project Biologist

Senior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Ms. Sedona Edgar		(SC	DHEC Project Manager)
From: Jeff L. Coleman		(Con	ntractor Project Manager)
Contractor: Midlands Environmental Consultan	nts, Inc. UST Contra	actor Certification Number: 009	
Facility Name: Coastal Truck Stop 76		UST Permit #:	03538
Facility Address: 2513 East Palmetto Street, F	Florence, SC 29506	· · · · · · · · · · · · · · · · · · ·	···
Responsible Party: Dan McEachin		Phone: <u>803-65</u>	1-8835
RP Address: 1007 Wentworth Drive, Florence,	, SC 29501		
Property Owner (if different): SAA			
Property Owner Address: SAA Current Use of Property: Construction Site			
Scope of Work (Please check all that ap ☐ IGWA ☐ Tier II	pply)	C Occupation Committee	
l =	/ell Installation	✓ Groundwater Sampling✓ Other	☐ GAC
	— — — — — — — — — — — — — — — — — — —	U Other	
Analyses (Please check all that apply)			
Groundwater/Surface Water: ☑ BTEXNMDCA (8260B) [□ BOD	□ Mathana
✓ Oxygenates (8260B)	L Lead ■ 8 RCRA Metals	☐ BOD ☐ Nitrate	☐ Methane ☐ Ethanol
☑ EDB (8011)		☐ Nitrate	☐ Dissolved Iron
☐ PAH (8270D)	pH	Other	Dissolved Holl
Drinking Water Supply Wells:	P		· · · · · · · · · · · · · · · · · · ·
☐ BTEXNMDCA (524.2)	Mecury (200.8 245.	.1 or 245.2)	1)
Oxygenates & Ethanol (8260B)	RCRA Metals (200.8	,	•,
Soil:	_	,	
☐ BTEXNM ☐ Lead ☐ RCRA	A Metals	☐ TPH-DRO (3550B/8015B)	☐ Grain Size
	Grease (9071)	☐ TPH-GRO (5030B/8015B)	☐ TOC
Air:			
BTEXN			
Sample Collection (Estimate the number			llected.)
Soil	Water Supply Wel		2 Field Blank
Monitoring Wells	Surface Water	2 Duplicate	2 Trip Blank
Field Screening Methodology			
Estimate number and total completed dep	nth for each point, and	include their proposed locations	on the attached man
# of shallow points proposed:			
# of deep points proposed:			
Field Screening Methodology:			
Permanent Monitoring Wells			
•	nth for each wall, and is	naluda thair neannach leastians a	
Estimate number and total completed dep # of shallow wells:			•
# of deep wells:		Footage:	
# of recovery wells:	Estimated	Footage:	feet per point
Comments, if warranted:			

UST Permit #: 03538 Facility Name: Coastal Truck Sto	p 76
Implementation Schedule (Number of calendar days from approval Field Work Start-Up: 7/31/2019 Field Work Start-Up: 4 of Copie	·
Aquifer Characterization Pump Test: Slug Test: (Check one and provide explanatio	n below for choice)
Investigation Derived Waste Disposal Soil: Tons Purge Wate	er: 200.0 Gallons
	e Product: Gallons
Additional Details For This Scope of Work For example, list wells to be sampled, wells to be abandoned/repaire event, etc. -During the most recent site visits, monitoring wells MW-14, MW-16, MW-21, MW-22, MW-2 destroyed or covered a large fill pile to be used for a future road widening project along Kc -Monitoring wells MW-17, MW-23, MW-24, MW-25, and MW-26 have been previously aba -All located monitoring wells will be purged prior to sampling and analyzed for BTEXNM, D	22D were unable to be located. These wells may have been opper's Road. andoned.
Compliance With Annual Contractor Quality Assurance Plan (AC	COAPI
Yes Laboratory as indicated in ACQAP? (Yes/No) If no, indi Name of Laboratory: SCDHEC Certification Number: Name of Laboratory Director:	cate laboratory information below.
	ate driller information below.
None Other variations from ACQAP. Please describe below.	
Attachments 1. Attach a copy of the relevant portion of the USGS topograph	ic map showing the site location.
Location of buildings Previous soil sampling locations Previous monitoring well locations Proposed soil boring locations Streets or highways (indication of all present a Location of all potential proposed soil boring locations	ell locations le and address, UST permit number, and bar scale licate names and numbers) Indigen former ASTs and USTs receptors
Assessment Component Cost Agreement, SCDHEC Form D	-3004

ASSESSMENT COMPONENT COST AGREEMENT **SOUTH CAROLINA**

Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account June 15, 2017

\$24.60

\$91.00

\$24.60

\$0.00

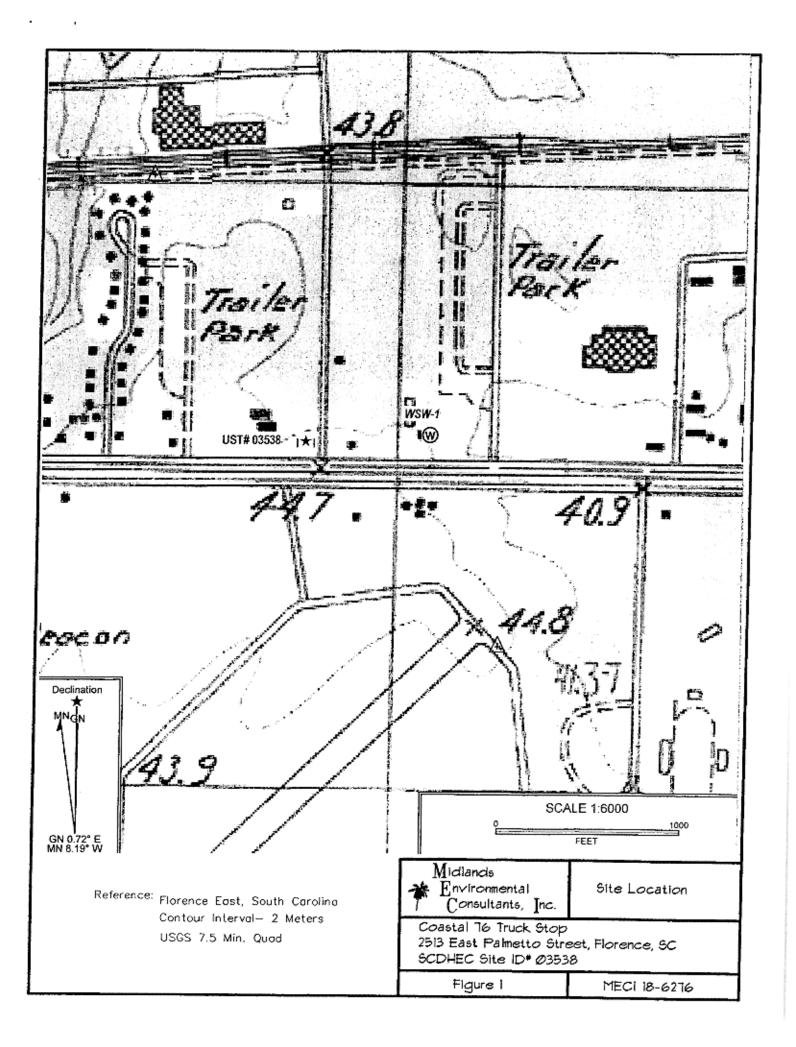
Facility Name:

H1. Field Blank

I. Groundwater (low flow purge)

Coastal Truck Stop 76 UST Permit #: 03538 Cost Agreement #: Proposal ITEM QUANTITY UNIT **UNIT PRICE** TOTAL 1. Plan Preparation A1. Site-specific Work Plan 1 \$150.00 each \$150.00 B1. Tax Map \$70.00 each \$0.00 C1. Tier II or Comp. Plan /QAPP Appendix B each \$250.00 \$0.00 2. A1. Receptor Survey * \$551.00 each \$0.00 3. Survey (500 ft x 500 ft) A1. Comprehensive Survey each \$1.040.00 \$0.00 B. Subsurface Geophysical Survey 1B. < 10 meters below grade \$1,300.00 each \$0.00 2B. > 10 meters below grade each \$2,310.00 \$0.00 C1. Geophysical UST or Drum Survey each \$910.00 \$0.00 4. Mob/Demob A1. Equipment each \$1.020.00 \$0.00 **B1.** Personnel 3 each \$423.00 \$1,269.00 C1. Adverse Terrain Vehicle each \$500.00 \$0.00 5. A1. Soil Borings (hand auger)* foot \$5.00 \$0.00 6. Soil Borings (requiring equipment, push technology, etc)* or Field Screening (including water ssample, soil sample, soil gas sample, etc.)* AA. Standard \$15.00 per foot \$0.00 C1. Fractured Rock \$20.20 per foot \$0.00 7. A1. Soil Leachability Model \$60.00 each \$0.00 8. Abandonment (per foot)* A1. 2" diameter or less per foot \$3.10 \$0.00 B1. Greater than 2" to 6" diameter per foot \$4.50 \$0.00 C1. Dug/Bored well (up to 6 feet diameter) \$15.00 per foot \$0.00 9. Well Installation (per foot)* A1. Water Table (hand augered) \$10.60 per foot \$0.00 B1. Water Table (drill rig) \$38.00 per foot \$0.00 CC. Telescoping per foot \$50.00 \$0.00 DD. Rock Drilling \$58.00 \$0.00 per foot E1. 2" Rock Coring per foot \$30.90 \$0.00 G1. Rock Multi-sampling ports/screens \$33.40 per foot \$0.00 HH. Recovery Well (4" diameter) \$45.00 per foot \$0.00 II. Pushed Pre-packed screen (1.25* dia) per foot \$15.00 \$0.00 J1. Rotosonic (2" diameter) \$44.00 per foot \$0.00 K. Re-develop Existing Well \$11.00 per foot \$0.00 10. Groundwater Sample Collection / Gauge Depth to Water or Product * A1. Groundwater Purge 21 per well/receptor \$60.00 \$1,260.00 B1. Air or Vapors \$12.00 per receptor \$0.00 C1. Water Supply \$22.00 per well/receptor \$0.00 D1. Groundwater No Purge or Duplicate 2 per well/receptor \$28.00 \$56.00 E1. Gauge Well only \$7.00 per well \$0.00 F1. Sample Below Product per well \$12.00 \$0.00 G1. Passive Diffusion Bag each \$26.00 \$0.00

1


each


per well/receptor

11. Laboratory Analyses-Groundwater				
A2. BTEXNM+Oxyg's+1,2 DCA+Eth(8260B)	25	per sample	\$122.00	\$3,050.00
AA1. Lead, Filtered		per sample	\$13.80	\$0.00
B2. Rush EPA Method 8260B (All of item A.)		per sample	\$153.60	\$0.00
C2. Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$36.40	\$0.00
D1. PAH's		per sample	\$60.60	\$0.00
E1. Lead		per sample	\$16.00	\$0.00
F1. EDB by EPA 8011	24	per sample	\$45.20	\$1,084.80
FF1. EDB by EPA Method 8011 Rush		per sample	\$68.20	\$0.00
G1. 8 RCRA Metals		per sample	\$63.40	\$0.00
H1. TPH (9070)		per sample	\$41.00	\$0.00
II. pH		per sample	\$5.20	\$0.00
J1. BOD		per sample	\$20.00	\$0.00
PP. Ethanol		per sample	\$14.80	\$0.00
11. Analyses-Drinking Water		per sample	\$14.00	Ψ0.00
L. BTEXNM+1,2 DCA (524.2)		per sample	\$124.05	\$0.00
M. 7-OXYGENATES & ETHANOL (8260B)		per sample	\$91.75	\$0.00
N. EDB (504.1)		per sample	\$79.50	\$0.00
O. RCRA METALS (200.8)			\$100.00	\$0.00
11. Analyses-Soil		per sample	\$100.00	φυ.υυ
Q1. BTEX + Naphth.		per sample	\$64.00	\$0.00
R1. PAH's		' '	\$64.04	\$0.00
S1. 8 RCRA Metals		per sample	\$56.40	\$0.00 \$0.00
		per sample	\$40.00	\$0.00 \$0.00
U1. TPH-DRO (5550C/8015C)		per sample	\$35.96	\$0.00 \$0.00
V1. TPH- GRO (5030B/8015C)		per sample		
W1. Grain size/hydrometer		per sample	\$104.00	\$0.00
X1. Total Organic Carbon 11. Analyses-Air	 	per sample	\$30.60	\$0.00
·			6246.00	60.00
Y1. BTEX + Naphthalene 11. Analyses-Free Phase Product		per sample	\$216.00	\$0.00
•			6257.00	\$0.00
Z1. Hydrocarbon Fuel Identification 12. Aquifer Characterization		per sample	\$357.00	\$0.00
			600 00	\$0.00
A1. Pumping Test*		per hour	\$23.00	\$0.00
B1. Slug Test*		per test	\$191.00	\$0.00
C1. Fractured Rock	AND DRIVE WATER CO.	per test	\$100.00	\$0.00
13. A1. Free Product Recovery Rate Test*		each	\$38.00	\$0.00
14. Fate/Transport Modeling	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			***
A1. Mathematical Model	10727	each	\$100.00	\$0.00
B1. Computer Model	<u> </u>	each	\$100.00	\$0.00
15. Risk Evaluation	•	/		***
A. Tier I Risk Evaluation	Sugar A	each	\$300.00	\$0.00
B1. Tier II Risk Evaluation		each	\$100.00	\$0.00
16. A1. Subsequent Survey*		each	\$260.00	\$0.00
17. Disposal (gallons or tons)*				
AA. Wastewater	200	gallon 	\$0.56	\$112.00
BB. Free Product		gallon	\$0.50	\$0.00
C1. Soil Treatment/Disposal		ton	\$60.00	\$0.00
D1. Drilling fluids		gallon	\$0.42	\$0.00
18. Miscellaneous (attach receipts)				
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
20. Tier I Assessment (Use DHEC 3665 form)		standard	## # T	\$0.00
21. IGWA (Use DHEC 3666 form)		standard		\$0.00
22. Corrective Action (Use DHEC 3667 form)		PFP Bid		\$0.00

23. Aggressive Fluid & Vapor Recovery (AFVR)					
A1. 8-hour Event*		each	\$1,375.00		\$0.00
AA. 24-hour Event*		each	\$3,825.00		\$0.00
A3. 48-hour Event*		each	\$6,265.00	7.7	\$0.00
A4. 96-hour Event*		each	\$12,567.50		\$0.00
C1. Off-gas Treatment 8 hour		per event	\$122.50		\$0.00
C2. Off-gas Treatment 24 hour		per event	\$241.50		\$0.00
C3. Off-gas Treatment 48 hour		per event	\$327.00		\$0.00
C4. Off-gas Treatment 96 hour		per event	\$780.00		\$0.00
D. Site Reconnaissance		each	\$203.25		\$0.00
E1. Additional Hook-ups		each	\$25.75		\$0.00
F1. Effluent Disposal		gallon	\$0.44		\$0.00
G. AFVR Mobilization/Demobilization		each	\$391.50		\$0.00
24. Granulated Activated Carbon (GAC) filter system installat	ion & service:				
A1. New GAC System Installation*		each	\$1,900.00	1000	\$0.00
BB. Refurbished GAC Sys. Install*		each	\$900.00		\$0.00
C1. Filter replacement/removal*		each	\$350.00		\$0.00
DD. GAC System removal, cleaning, & refurbishment*		each	\$275.00		\$0.00
E1. GAC System housing*		each	\$250.00		\$0.00
F. In-line particulate filter		each	\$150.00		\$0.00
G1. Additional piping & fittings		foot	\$1.50		\$0.00
25. Well Repair		*			
A1. Additional Copies of the Report Delivered		each	\$50.00		\$0.00
B1. Repair 2x2 MW pad*		each	\$50.00		\$0.00
C1. Repair 4x4 MW pad*		each	\$88.00	4.	\$0.00
D1. Repair well vault*		\ each	\$118.00	7	\$0.00
F1. Replace well cover bolts	11111	each	\$2.60	**	\$0.00
G. Replace locking well cap & lock	*.0	/ each	\$15.00	gr.	\$0.00
H1. Replace/Repair stick-up*		each	\$134.00	2	\$0.00
II. Convert Flush-mount to Stick-up*		each	\$150.00		\$0.00
J1. Convert Stick-up to Flush-mount*		each	\$130.00		\$0.00
K1. Replace missing/illegible well ID plate		each	\$12.00		\$0.00
Report Prep & Project Management	12%	percent	\$7,006.40		\$840.77
TOTAL					\$7,847.17

DHEC 2495 6-2017 *The appropriate mobilization cost can be added to complete these tasks, as necessary

August 29, 2019

Ms. Sedona Edgar, Hydrogeologist
Assessment & Unregulated Petroleum Section
Underground Storage Tank Management Division
Bureau of Land and Waste Management
South Carolina Department of Health
and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan Revision #1

Coastal Truck Stop 76 Florence, South Carolina

SCDHEC Site ID Number 03538 MECI Project Number 19-7034

Certified Site Rehabilitation Contractor UCC-0009

Dear Ms. Edgar,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site.

On August 19, 2019, MECI personnel performed a site visit to the subject site to evaluate conditions, locate monitoring wells/potential receptors, and identify potential problems for future assessment activities.

If you have any question or comments please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Kyle V. Pudney Project Biologist

Sénior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Ms. Sedona Edgar	(SCDH	EC Project Manager)
From: Jeff L. Coleman	(Contrac	ctor Project Manager)
Contractor: Midlands Environmental Consultants, Inc.	UST Contractor Certification Number: 009	
Facility Name: Coastal Truck Stop 76	UST Permit #: 035	38
Facility Address: 2513 East Palmetto Street, Florence, SC	29506	
Responsible Party: Dan McEachin	Phone: 803-651-88	35
RP Address: 1007 Wentworth Drive, Florence, SC 29501		
Property Owner (if different): SAA		
Property Owner Address: SAA	ANTONIO PER I	1000 mm
Current Use of Property: Construction Site		
Scope of Work (Please check all that apply)		
☐ IGWA ☐ Tier II	☑ Groundwater Sampling	∐ GAC
☐ Tier I ☐ Monitoring Well Installat	tion Other	
Analyses (Please check all that apply)		
Groundwater/Surface Water:	_	_
☑ BTEXNMDCA (8260B) ☐ Lead	□ BOD □	Methane
	A Metals	Ethanol
☑ EDB (8011) ☐ TPH	☐ Sulfate L	Dissolved Iron
PAH (8270D) Drinking Water Supply Walley	Other	
Drinking Water Supply Wells: ☑ BTEXNMDCA (524.2) ☐ Mecury	(200.8 245.1 or 245.2)	
- · · · - ·	Metals (200.8)	
Soil:	World (200.0)	
☐ BTEXNM ☐ Lead ☐ RCRA Metals	☐ TPH-DRO (3550B/8015B)	☐ Grain Size
☐ PAH ☐ Oil & Grease (9	·	TOC
Air:		
BTEXN		
Sample Collection (Estimate the number of sample	les of each matrix that are expected to be collect	ted.)
·	r Supply WellsAir	2 Field Blank
Monitoring Wells Surf	face Water3 Duplicate	3 Trip Blank
Field Screening Methodology		41
Estimate number and total completed depth for each total completed depth for each total complete depth for each total completed depth for each total comple		
# of shallow points proposed: # of deep points proposed:		
Field Screening Methodology:		roct por point
Permanent Monitoring Wells		
Estimate number and total completed depth for eac		•
	Estimated Footage: 18 Feet (Screened 8-18)	feet per point
# of deep wells: 2	00 5 - 1 (0 1 5 00)	feet per point
# of recovery wells: 4 Comments, if warranted:	Estimated rootage: 201 est (Octeened 0-20)	feet per point
Any existing wells that are located during assessment a	ctivities and determined to be functioning properly w	ill not be replaced.
	The state of the s	

UST Permit #: 03538 Fa	cility Name:	Coastal Truck Stop 76	
• • • • • • • • • • • • • • • • • • • •	alendar days	Field Work Completion: 9/29/2019	
Report Submittal: 10/29/2019		# of Copies Provided to Property Owners: 2	
Aquifer Characterization Pump Test: ☐ Slug Test: ☐ (Check o	one and provi	de explanation below for choice)	
Investigation Derived Waste Disposal Soil: 10.0	Tons	Purge Water: 800.0	_ Gallons
	Gallons	Free-Phase Product:	Gallons
event, etc. -During the most recent site visits, monitoring we not located. Please find the attached map with period of the installation, the newly installed we will conduct a comprehensive sampling enables will be purged prior.	Ils to be abandalis IGWA, IGWA proposed location d MW-26 have be ells will be propovent after well in to sampling and	perly developed and a subsequent survey performed.	
SCDHEC Certification Number: Name of Laboratory Director: Yes Well Driller as indicated in ACQAP?	(Yes/No)	If no, indicate driller information below.	
Name of Well Driller: SCLLR Certification Number:			
None Other variations from ACQAP. Pleas	se describe b	elow.	
Attachments 1. Attach a copy of the relevant porti	ion of the US	GS topographic map showing the site location.	
must include the following: North Arrow Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well locations Proposed soil boring locations	Proposed Legend wi Streets or Location of Location of	monitoring well locations th facility name and address, UST permit number, and be highways (indicate names and numbers) of all present and former ASTs and USTs of all potential receptors	
3. Assessment Component Cost Agr	reement, SCL	UNEC FORM D-3004	

I. Groundwater (low flow purge)

ASSESSMENT COMPONENT COST AGREEMENT SOUTH CAROLINA

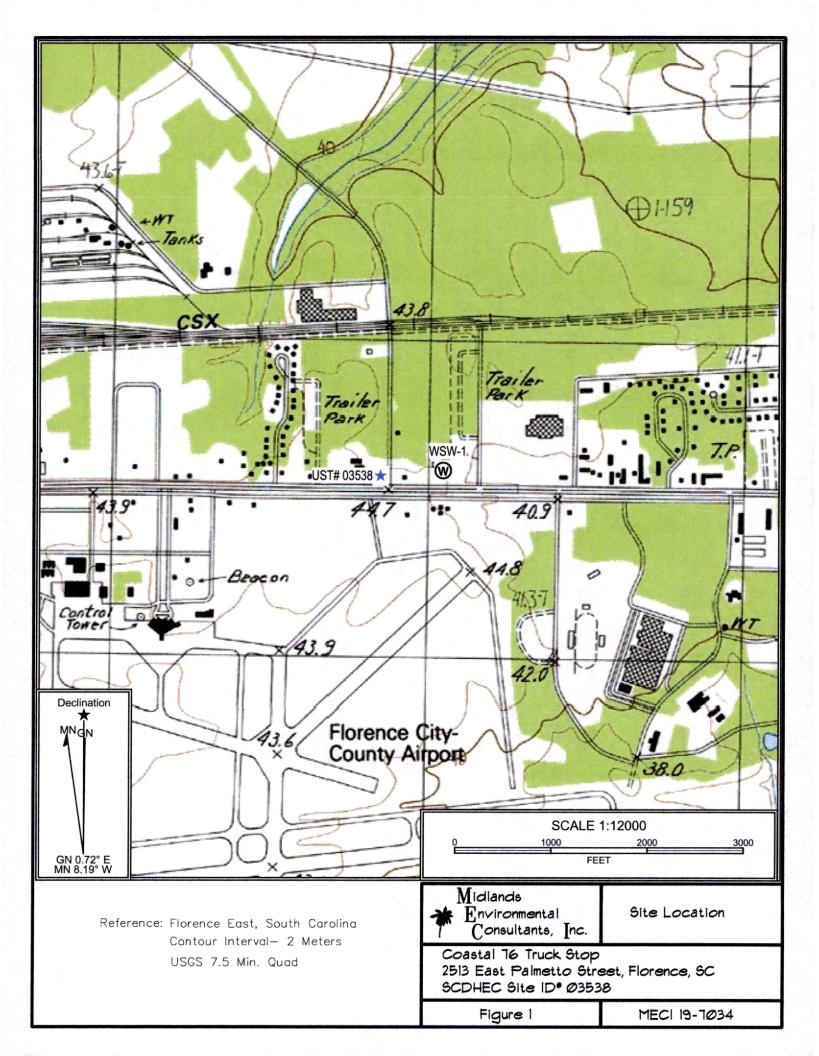
Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account

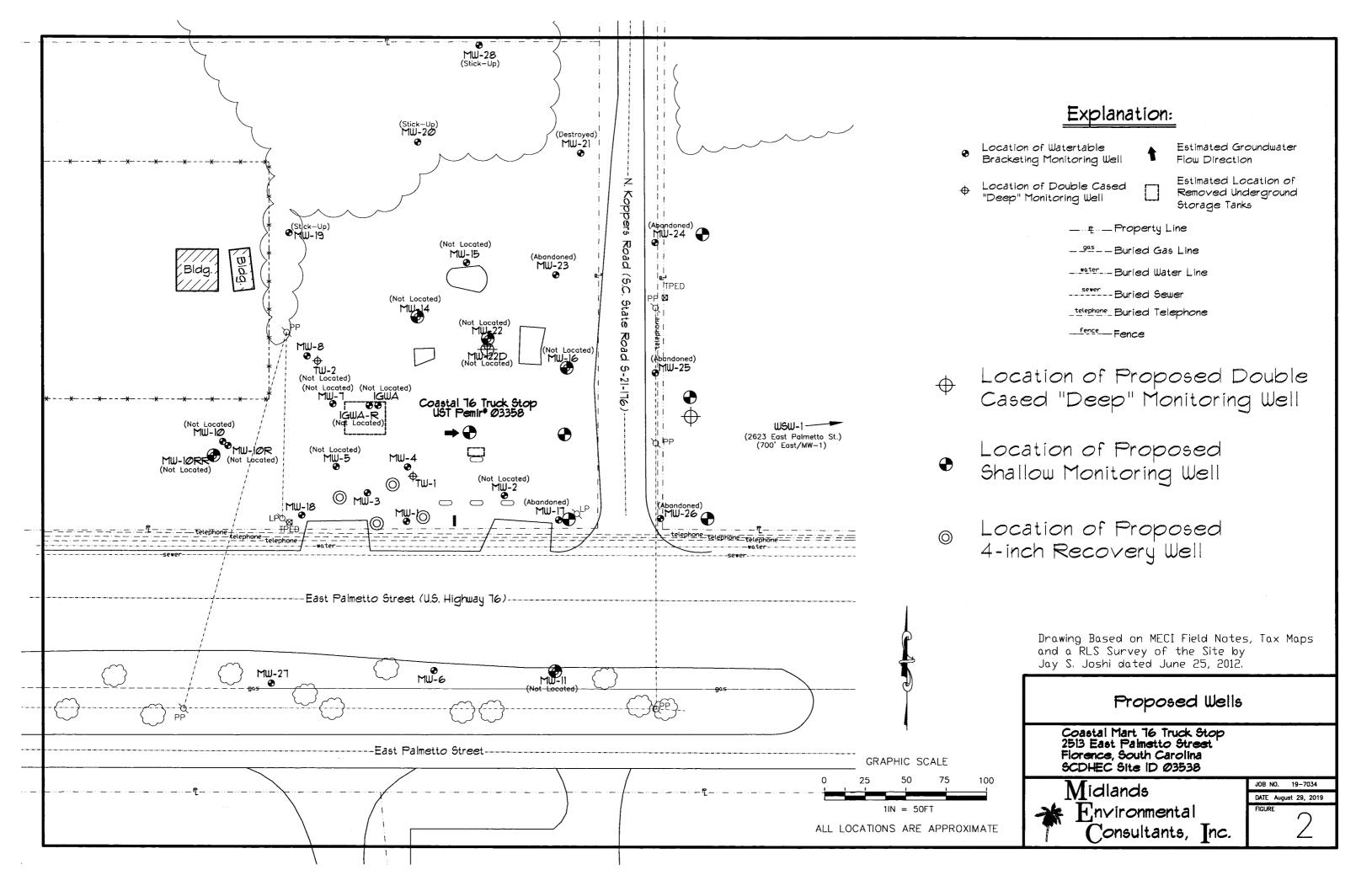
June 15, 2017

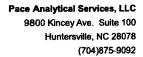
\$91.00

\$0.00

per well/receptor


Healthy People. Healthy Communities.


Facility Name: Coastal Truck Stop 76 UST Permit #: 03538 Cost Agreement #: Proposal TOTAL ITEM QUANTITY UNIT UNIT PRICE 1. Plan Preparation \$150.00 \$150.00 A1. Site-specific Work Plan 1 each \$70.00 \$0.00 B1. Tax Map each C1. Tier II or Comp. Plan /QAPP Appendix B \$250.00 \$0.00 each \$0.00 2. A1. Receptor Survey \$551.00 each 3. Survey (500 ft x 500 ft) A1. Comprehensive Survey each \$1.040.00 \$0.00 B. Subsurface Geophysical Survey \$1,300.00 \$0.00 1B. < 10 meters below grade each \$2,310.00 \$0.00 2B. > 10 meters below grade each \$910.00 \$0.00 C1. Geophysical UST or Drum Survey each Mob/Demob \$1,020.00 \$1.020.00 A1. Equipment 1 each B1. Personnel 5 each \$423.00 \$2,115.00 \$500.00 \$0.00 C1. Adverse Terrain Vehicle each 5. A1. Soil Borings (hand auger) \$5.00 \$0.00 foot 6. Soil Borings (requiring equipment, push technology, etc)* or Field Screening (including water ssample, soil sample, soil gas sample, etc.)* \$15.00 \$0.00 AA. Standard per foot \$20.20 \$0.00 C1. Fractured Rock per foot 7. A1. Soil Leachability Model \$60.00 \$0.00 each 8. Abandonment (per foot)* \$0.00 A1. 2" diameter or less per foot \$3.10 B1. Greater than 2" to 6" diameter per foot \$4.50 \$0.00 \$0.00 \$15.00 C1. Dug/Bored well (up to 6 feet diameter) per foot 9. Well Installation (per foot)* A1. Water Table (hand augered) per foot \$10.60 \$0.00 \$7,524.00 \$38.00 B1. Water Table (drill rig) 198 per foot \$4,500.00 90 \$50.00 CC. Telescoping per foot DD. Rock Drilling per foot \$58.00 \$0.00 \$30.90 \$0.00 E1. 2" Rock Coring per foot \$0.00 \$33.40 G1. Rock Multi-sampling ports/screens per foot HH. Recovery Well (4" diameter) 80 \$45.00 \$3,600.00 per foot II. Pushed Pre-packed screen (1.25" dia) \$15.00 \$0.00 per foot J1. Rotosonic (2" diameter) \$44.00 \$0.00 per foot K. Re-develop Existing Well \$11.00 \$0.00 per foot 10. Groundwater Sample Collection / Gauge Depth to Water or Product * \$60.00 \$1,680,00 A1. Groundwater Purge 28 per well/receptor \$12.00 \$0.00 B1. Air or Vapors per receptor \$22.00 C1. Water Supply 1 per well/receptor \$22.00 D1. Groundwater No Purge or Duplicate 3 per well/receptor \$28.00 \$84.00 E1. Gauge Well only per well \$7.00 \$0.00 F1. Sample Below Product \$12.00 \$0.00 per well G1. Passive Diffusion Bag \$26.00 \$0.00 each 2 \$24.60 \$49.20 H1. Field Blank each


· _ · _ · _ ·					
11. Laboratory Analyses-Groundwater					
A2. BTEXNM+Oxyg's+1,2 DCA+Eth(8260B)	33	per sample	\$122.00		\$4,026.00
AA1. Lead, Filtered		per sample	\$13.80	6	\$0.00
B2. Rush EPA Method 8260B (All of item A.)		per sample	\$153.60		\$0.00
C2. Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$36.40		\$0.00
D1. PAH's	,	per sample	\$60.60		\$0.00
E1. Lead		per sample	\$16.00		\$0.00
F1. EDB by EPA 8011	31	per sample	\$45.20		\$1,401.20
FF1. EDB by EPA Method 8011 Rush		per sample	\$68.20		\$0.00
G1. 8 RCRA Metals		per sample	\$63.40		\$0.00
H1. TPH (9070)		per sample	\$41.00	6	\$0.00
II. pH		per sample	\$5.20		\$0.00
J1. BOD		per sample	\$20.00		\$0.00
PP. Ethanol		per sample	\$14.80		\$0.00
11. Analyses-Drinking Water	İ			100	
L. BTEXNM+1,2 DCA (524.2)	4	per sample	\$124.05		\$496.20
M. 7-OXYGENATES & ETHANOL (8260B)	4	per sample	\$91.75	\$	\$367.00
N. EDB (504.1)	3	per sample	\$79.50		\$238.50
O. RCRA METALS (200.8)		per sample	\$100.00	6	\$0.00
11. Analyses-Soil					
Q1. BTEX + Naphth.		per sample	\$64.00	4.	\$0.00
R1. PAH's		per sample	\$64.04		\$0.00
S1. 8 RCRA Metals		per sample	\$56.40		\$0.00
U1. TPH-DRO (3550C/8015C)		per sample	\$40.00	2	\$0.00
V1. TPH- GRO (5030B/8015C)	•	per sample	\$35.96		\$0.00
W1. Grain size/hydrometer		per sample	\$104.00		\$0.00
X1. Total Organic Carbon		per sample	\$30.60	10	\$0.00
11. Analyses-Air					
Y1. BTEX + Naphthalene		per sample	\$216.00	N.	\$0.00
11. Analyses-Free Phase Product				*	
Z1. Hydrocarbon Fuel Identification		per sample	\$357.00	* :	\$0.00
12. Aquifer Characterization				76	
A1. Pumping Test*		per hour	\$23.00		\$0.00
B1. Slug Test*		per test	\$191.00		\$0.00
C1. Fractured Rock		per test	\$100.00		\$0.00
13. A1. Free Product Recovery Rate Test*		each		35	\$0.00
14. Fate/Transport Modeling			· · · · · · · · · · · · · · · · · · ·	Ţ.	
A1. Mathematical Model	İ	each	\$100.00		\$0.00
B1. Computer Model		each	\$100.00		\$0.00
15. Risk Evaluation					·
A. Tier I Risk Evaluation		each	\$300.00		\$0.00
B1. Tier II Risk Evaluation		each	\$100.00		\$0.00
16. A1. Subsequent Survey*	1	each	\$260.00	9:	\$260.00
17. Disposal (gallons or tons)*			, , , , , , , , , , , , , , , , , , , ,		<u> </u>
AA. Wastewater	800	gallon	\$0.56	2	\$448.00
BB. Free Product		gallon	\$0.50		\$0.00
C1. Soil Treatment/Disposal	10	ton	\$60.00		\$600.00
D1. Drilling fluids		gallon	\$0.42	1	\$0.00
18. Miscellaneous (attach receipts)		3	70		4
, , , , , , , , , , , , , , , , , , , ,		each	\$0.00		\$0.00
		each	\$0.00		\$0.00
		each	\$0.00		\$0.00
20. Tier I Assessment (Use DHEC 3665 form)		standard	Ψ0.00		\$0.00
21. IGWA (Use DHEC 3666 form)	-	standard			\$0.00
22. Corrective Action (Use DHEC 3667 form)					
22. CONTECUTE ACTION (USE DITEC 3007 TOTAL)	<u> </u>	PFP Bid	_) i	\$0.00

23. Aggressive Fluid & Vapor Recovery (AFVR)				ů.	
A1. 8-hour Event*		each	\$1,375.00		\$0.00
AA. 24-hour Event*		each	\$3,825.00		\$0.00
A3. 48-hour Event*		each	\$6,265.00		\$0.00
A4. 96-hour Event*		each	\$12,567.50		\$0.00
C1. Off-gas Treatment 8 hour		per event	\$122.50		\$0.00
C2. Off-gas Treatment 24 hour		per event	\$241.50		\$0.00
C3. Off-gas Treatment 48 hour		per event	\$327.00		\$0.00
C4. Off-gas Treatment 96 hour		per event	\$780.00		\$0.00
D. Site Reconnaissance		each	\$203.25	10	\$0.00
E1. Additional Hook-ups	l	each	\$25.75		\$0.00
F1. Effluent Disposal		gallon	\$0.44		\$0.00
G. AFVR Mobilization/Demobilization	1	each	\$391.50		\$0.00
24. Granulated Activated Carbon (GAC) filter system installation &	service:				
A1. New GAC System Installation*	1	each	\$1,900.00		\$0.00
BB. Refurbished GAC Sys. Install*		each	\$900.00		\$0.00
C1. Filter replacement/removal*		each	\$350.00	16	\$0.00
DD. GAC System removal, cleaning, & refurbishment*		each	\$275.00		\$0.00
E1. GAC System housing*		each	\$250.00		\$0.00
F. In-line particulate filter		each	\$150.00		\$0.00
G1. Additional piping & fittings		foot	\$1.50		\$0.00
25. Well Repair				M	
A1. Additional Copies of the Report Delivered	- 1	each	\$50.00	, di-	\$0.00
B1. Repair 2x2 MW pad*		each	\$50.00		\$0.00
C1. Repair 4x4 MW pad*	1	each	\$88.00	90	\$0.00
D1. Repair well vault*		each	\$118.00		\$0.00
F1. Replace well cover bolts	1	each	\$2.60		\$0.00
G. Replace locking well cap & lock	1	each	\$15.00		\$0.00
H1. Replace/Repair stick-up*	1	each	\$134.00		\$0.00
II. Convert Flush-mount to Stick-up*		each	\$150.00		\$0.00
J1. Convert Stick-up to Flush-mount*		each	\$130.00	del	\$0.00
K1. Replace missing/illegible well ID plate		each	\$12.00		\$0.00
	12%	percent	\$28,581.10		\$3,429.73
TOTAL					\$32,010.83

DHEC 2495 6-2017 *The appropriate mobilization cost can be added to complete these tasks, as necessary

August 23, 2019

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental James Coolman, MECI Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

92441825

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

92441825

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92441825001	WSW-1	Water	08/14/19 11:45	08/16/19 15:53
92441825002	WSW-FB	Water	08/14/19 11:49	08/16/19 15:53
92441825003	WSW-DUP	Water	08/14/19 11:45	08/16/19 15:53
92441825004	WSW-TB	Water	08/14/19 11:49	08/16/19 15:53

SAMPLE ANALYTE COUNT

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

92441825

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92441825001	WSW-1	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C
92441825002	WSW-FB	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C
92441825003	WSW-DUP	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C
92441825004	WSW-TB	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Sample: WSW-1	Lab ID:	92441825001	Collecte	d: 08/14/1	9 11:45	Received: 0	B/16/19 15:53 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
Benzene	ND	ug/L	0.50	0.092	1		08/22/19 19:36	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/22/19 19:36	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/22/19 19:36	100-41-4	
Methyl-tert-butyl ether	1.1	ug/L	0.50	0.084	1		08/22/19 19:36	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/22/19 19:36	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/22/19 19:36	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/22/19 19:36	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/22/19 19:36	95-47-6	
Surrogates		Ţ.							
1,2-Dichlorobenzene-d4 (S)	95	%	70-130		1		08/22/19 19:36	2199-69-1	
4-Bromofluorobenzene (S)	92	%	70-130		1		08/22/19 19:36	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 08:28	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 08:28	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 08:28	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 08:28	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 08:28	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 08:28	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 08:28	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 08:28	637-92-3	
Surrogates		-							
4-Bromofluorobenzene (S)	98	%	70-130		1		08/22/19 08:28	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		08/22/19 08:28	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/22/19 08:28	2037-26-5	

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Sample: WSW-FB	Lab ID:	92441825002	Collecte	d: 08/14/19	11:49	Received: 08	3/16/19 15:53 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
Benzene	ND	ug/L	0.50	0.092	1		08/22/19 15:38	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/22/19 15:38	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/22/19 15:38	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.084	1		08/22/19 15:38	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/22/19 15:38	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/22/19 15:38	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/22/19 15:38	179601-23-1	
p-Xylene	ND	ug/L	0.50	0.11	1		08/22/19 15:38	95-47-6	
Surrogates		-							
1,2-Dichlorobenzene-d4 (S)	95	%	70-130		1		08/22/19 15:38	2199-69-1	
4-Bromofluorobenzene (S)	95	%	70-130		1		08/22/19 15:38	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 05:11	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 05:11	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 05:11	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 05:11	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 05:11	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 05:11	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 05:11	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 05:11	637-92-3	
Surrogates 4-Bromofluorobenzene (S)	98	%	70-130		1		08/22/19 05:11	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/22/19 05:11	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/22/19 05:11	2037-26-5	

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Sample: WSW-DUP	Lab ID:	92441825003	Collecte	d: 08/14/1	9 11:45	Received: 08	3/16/19 15:53 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV SC List	Analytical	Method: EPA 5	524.2						
Benzene	ND	ug/L	0.50	0.092	1		08/23/19 07:28	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/23/19 07:28	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/23/19 07:28	100-41-4	
Methyl-tert-butyl ether	3.0	ug/L	0.50	0.084	1		08/23/19 07:28	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/23/19 07:28	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/23/19 07:28	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/23/19 07:28	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/23/19 07:28	95-47-6	
Surrogates		_							
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		08/23/19 07:28	2199-69-1	
4-Bromofluorobenzene (S)	97	%	70-130		1		08/23/19 07:28	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 08:46	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 08:46	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 08:46	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 08:46	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 08:46	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 08:46	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 08:46	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 08:46	637-92-3	
Surrogates		_							
4-Bromofluorobenzene (S)	97	%	70-130		1		08/22/19 08:46	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		08/22/19 08:46	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		08/22/19 08:46	2037-26-5	

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

Date: 08/23/2019 12:04 PM

92441825

Sample: WSW-TB	Lab ID:	92441825004	Collecte	d: 08/14/19	11:49	Received: 0	8/16/19 15:53 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
Benzene	ND	ug/L	0.50	0.092	1		08/22/19 13:53	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/22/19 13:53	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/22/19 13:53	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.084	1		08/22/19 13:53	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/22/19 13:53	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/22/19 13:53	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/22/19 13:53	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/22/19 13:53	95-47-6	
Surrogates									
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		08/22/19 13:53	2199-69-1	
4-Bromofluorobenzene (S)	94	%	70-130		1		08/22/19 13:53	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 05:29	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 05:29	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 05:29	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 05:29	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 05:29	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 05:29	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 05:29	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 05:29	637-92-3	
Surrogates									
4-Bromofluorobenzene (S)	99	%	70-130		1		08/22/19 05:29	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/22/19 05:29	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/22/19 05:29	2037-26-5	

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

92441825

QC Batch:

493809

Analysis Method:

EPA 524.2

QC Batch Method:

EPA 524.2

Analysis Description:

524.2 MSV

Associated Lab Samples:

92441825001, 92441825002, 92441825004

METHOD BLANK: 2661421

Matrix: Water

Date: 08/23/2019 12:04 PM

Associated Lab Samples: 92441825001, 92441825002, 92441825004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	0.17	08/22/19 10:48	
Benzene	ug/L	ND	0.50	0.092	08/22/19 10:48	
Ethylbenzene	ug/L	ND	0.50	0.082	08/22/19 10:48	
m&p-Xylene	ug/L	ND	0.50	0.15	08/22/19 10:48	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.084	08/22/19 10:48	
Naphthalene	ug/L	ND	0.50	0.062	08/22/19 10:48	
o-Xylene	ug/L	ND	0.50	0.11	08/22/19 10:48	
Toluene	ug/L	ND	0.50	0.11	08/22/19 10:48	
1,2-Dichlorobenzene-d4 (S)	%	96	70-130		08/22/19 10:48	
4-Bromofluorobenzene (S)	%	96	70-130		08/22/19 10:48	

LABORATORY CONTROL SAMPLE:	2661422					
Da como do c	11-4-	Spike	LCS	LCS	% Rec	O!!\$
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	20.3	102	70-130	
Benzene	ug/L	20	20.0	100	70-130	
Ethylbenzene	ug/L	20	20.2	101	70-130	
m&p-Xylene	ug/L	40	40.5	101	70-130	
Methyl-tert-butyl ether	ug/L	20	20.0	100	70-130	
laphthalene	ug/L	20	17.4	87	70-130	
>-Xylene	ug/L	20	20.8	104	70-130	
Toluene	ug/L	20	20.1	101	70-130	
I,2-Dichlorobenzene-d4 (S)	%			102	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

QC Batch Method:

92441825

QC Batch:

493957

EPA 524.2

Analysis Method:

EPA 524.2

Analysis Description:

524.2 MSV

Associated Lab Samples: 92441825003

METHOD BLANK: 2662270

Date: 08/23/2019 12:04 PM

Associated Lab Samples: 92441825003

Matrix: Water

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	0.17	08/22/19 22:40	
Benzene	ug/L	ND	0.50	0.092	08/22/19 22:40	
Ethylbenzene	ug/L	ND	0.50	0.082	08/22/19 22:40	
m&p-Xylene	ug/L	ND	0.50	0.15	08/22/19 22:40	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.084	08/22/19 22:40	
Naphthalene	ug/L	ND	0.50	0.062	08/22/19 22:40	
o-Xylene	ug/L	ND	0.50	0.11	08/22/19 22:40	
Toluene	ug/L	ND	0.50	0.11	08/22/19 22:40	
1,2-Dichlorobenzene-d4 (S)	%	97	70-130		08/22/19 22:40	
4-Bromofluorobenzene (S)	%	95	70-130		08/22/19 22:40	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	22.8	114	70-130	
Benzene	ug/L	20	24.0	120	70-130	
Ethylbenzene	ug/L	20	22.4	112	70-130	
m&p-Xylene	ug/L	40	44.7	112	70-130	
Methyl-tert-butyl ether	ug/L	20	22.8	114	70-130	
Naphthalene	ug/L	20	19.1	95	70-130	
o-Xylene	ug/L	20	23.0	115	70-130	
Toluene	ug/L	20	21.9	110	70-130	
1,2-Dichlorobenzene-d4 (S)	%			103	70-130	
4-Bromofluorobenzene (S)	%			104	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

92441825

QC Batch:

493664

Analysis Method:

EPA 8260B

QC Batch Method:

EPA 8260B

Analysis Description:

8260 MSV Low Level SC

Associated Lab Samples:

92441825001, 92441825002, 92441825003, 92441825004

METHOD BLANK: 2660538

Matrix: Water

Associated Lab Samples:

Date: 08/23/2019 12:04 PM

92441825001, 92441825002, 92441825003, 92441825004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	62.0	08/22/19 04:35	
Diisopropyl ether	ug/L	ND	1.0	0.22	08/22/19 04:35	
Ethanol	ug/L	ND	200	98.8	08/22/19 04:35	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.7	08/22/19 04:35	
tert-Amyl Alcohol	ug/L	ND	100	53.9	08/22/19 04:35	
tert-Amylmethyl ether	ug/L	ND	10.0	3.5	08/22/19 04:35	
tert-Butyl Alcohol	ug/L	ND	100	27.3	08/22/19 04:35	
tert-Butyl Formate	ug/L	ND	50.0	24.7	08/22/19 04:35	
1,2-Dichloroethane-d4 (S)	%	98	70-130		08/22/19 04:35	
4-Bromofluorobenzene (S)	%	99	70-130		08/22/19 04:35	
Toluene-d8 (S)	%	101	70-130		08/22/19 04:35	

ABORATORY CONTROL SAMPLE:	2660539					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	1000	1130	113	70-130	
Diisopropyl ether	ug/L	50	51.0	102	70-130	
thanol	ug/L	2000	2150	107	70-130	
thyl-tert-butyl ether	ug/L	100	98.9	99	70-130	
rt-Amyl Alcohol	ug/L	1000	1050	105	70-130	
t-Amylmethyl ether	ug/L	100	104	104	70-130	
t-Butyl Alcohol	ug/L	500	553	111	70-130	
t-Butyl Formate	ug/L	400	430	108	70-130	
2-Dichloroethane-d4 (S)	%			96	70-130	
Bromofluorobenzene (S)	%			100	70-130	
luene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	2660541						
		92441833008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	400	531	133	70-130	
Diisopropyl ether	ug/L	ND	20	20.1	100	70-130	
Ethanol	ug/L	ND	800	934	117	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	36.4	91	70-130	
tert-Amyl Alcohol	ug/L	ND	400	483	121	70-130	
tert-Amylmethyl ether	ug/L	ND	40	42.0	105	70-130	
tert-Butyl Alcohol	ug/L	ND	200	273	137	70-13 0	
tert-Butyl Formate	ug/L	ND	160	80.5	50	70-130 F	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

MATRIX SPIKE SAMPLE:	2660541						
		92441833008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane-d4 (S)	<u></u> %				92	70-130	1
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				100	70-130	

		92441833007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	i
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	96	98			
4-Bromofluorobenzene (S)	%	97	103			
Toluene-d8 (S)	%	99	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100

> Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

92441825

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C

Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 08/23/2019 12:04 PM

P5

The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Coastal 76 Truck Stop 03538/19

Pace Project No.:

Date: 08/23/2019 12:04 PM

92441825

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92441825001	WSW-1	EPA 524.2	493809		
92441825002	WSW-FB	EPA 524.2	493809		
92441825003	WSW-DUP	EPA 524.2	493957		
92441825004	WSW-TB	EPA 524.2	493809		
92441825001	WSW-1	EPA 8260B	493664		
92441825002	WSW-FB	EPA 8260B	493664		
92441825003	WSW-DUP	EPA 8260B	493664		
92441825004	WSW-TB	EPA 8260B	493664		

Pace Analytical	Pace Analytical Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields											ONLY-					441 	825			Page 15 of 16
Company: MECI				formation:					1			ALL	5 92				8 1 1 8 1 8 1 8				age
Address: Dooley Rd. Le	instant x	SC 290	12						3	13	Containe	r Prese	vative i	уре **			Lab Projec	t Manager:		-	
8. Duane	3 -			1100	meci.	net	- 4		** PI	reserva	ative Types: (1) nitric a	id, (2) su	Ifuric aci	ld, (3) hy	ydrochlo	oric acid, (4) se	odium hydroxide	, (5) zinc ac	etate,	
Copy To:			Site Colle	ction info//	Address:	140 St			(C) a	mmon	ium hydroxide	2, (D) TSP	, (U) Unp	um thios reserved	ulfate, (i, (O) Ot	(9) hexar ther		ic acid, (B) amm	onium sulfa	te,	
Customer Project Name/Number:	. 10.		Ctata.	Carmeric	ity: Ti	me Zone Co	ollected:	1 11.04		F	П	Analy	ses	T	Т	T	Lab Profile	/Line: mple Receip	t Checkl	ist:	
Coastal 76 Truck Phone: Email:	Site/Facility II	D#: 19-	7034	Floren C		ce Monitor	ring?	(SEI	288								Custod	y Seals Pres y Signatures tor Signatus	s Presen	t Y'N I	AA
Collected By (print): Collected By (signature):	Purchase Ord Quote #:		50		DW PWS	2.18.3			200								Correct Suffic	Intact Bottles Lent Volume		AND	NA NA
2/ hereafor	Turnaround D	Date Requir	ed:		Immediately Packed on Ice: [] Yes [] No				3								USDA R	Received of Readspace Accepulated Sol	cceptabl	YNI	AA AA
Sample Disposal: [] Dispose as appropriate [] Return [] Archive:	[] 2 Day	ame Day [] 3 Day Expedite Cha	[] 4 Day	[] 5 Day	I I Yes	red (if appl			1, 1,2-De	N							Cl Stri	pH Acceptab	Present	YNN	rÁ.
 Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (OI 	x below): Drinl L), Wipe (WP),	king Water Air (AR), Ti	(DW), Gro ssue (TS),	und Water Bioassay (B)	(GW), Wasi , Vapor (V)	tewater (W , Other (OT	w),)		EXMA								Lead Ad	Present etate Strip	os:	YNN	λί
Customer Sample ID	Comp / Coll				Compo	osite End	Res	# of Ctns	BTE	37.0							LAB USE Lab San	ONLY:		H10	25
W34-1	Dw	Cerat		Time		Time		6	X	X					-	+	40	L	0/1-	T	00
wsu-FB			1	11:49				li	1	1							LD				002
wsh-Dap				11:45													Li				003
USW-TB			4	11:49				*	¥	4							LD				084
													1								
											_										
Customer Remarks / Special Conditi	ons / Possible	Hazards:	Type of le	e Used:	Wet I	Blue Dr	y No	one		SHO	RT HOLDS P	RESENT	(<72 ho	urs): '	YN	N/A		ab Sample Te	mperature	Info:	
SV-TB not L	abeled wat ble			Material Use		10.8			f	Lab	Tracking #:		23	51	13	37		Temp Blank Therm ID#:	18	LATUM	<u></u>
-all other v	iles lat	seled	Radchem	sample(s) s	creened (<	500 cpm):	Y N	NA		100	oles received		llent	Courie	7.	Pace Co	ourier	Cooler 1 Te Cooler 1 Th Cooler 1 Co	erm Corr.	Factor:	oC
telinquished by/Company! (Signatur	lyllyn 8		Received by/Company: (Signature						Date/Time:		3 1	M1 able #:	TJL LAB	USE O	NLY	Comments:					
telinguished by/Company: (Signatur		Date 8	Date/Time: Received by/Company: (Signature)					Date/Time: Template:				Trip Blank Received: X' N NA HCL MeOH TSP Other									
Relinquished by/Company: (Signatur	re)	Date	/Time:		ture) Date/Time: PM:					Non Conformance(s): Page: 1											

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#: 92441825

PM: AMB

Due Date: 08/27/19

CLIENT: 92-MIDLAND

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	8P4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A[DG3A]-250 ml. Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mt. VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DGSF-40 mL VOA HBPO4 (N/A)	VOAK (6 vials per kit)-503S kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1					1	1	1	1			1					C					is .			7	7			
2	1				1	1	1	1			1					6								7	7			
3					1	1	1	1			1		1		1	6								7	7			- 1-
4	1		·		1	1	1	1			1		1	1	/	6								7	7	9.4		
5	/				1	/	/	1			1		1	1	1									1				
6	/				/	1	1	1			1		1	1	1							107-1						
7	/		Ė		1	/	/	/			1	-	K	1	1						To a			1	1			
8	/				/	/	/	/			1		1	1	1									1				
9	/		\vdash		1	/	/	/			1	T	1	1	1									1				
10	7				1	/	/	1	<u> </u>		1		/	1	1									1	1			
11	/				/	/	/	/	1		1		1	1	1				9					1	1			
12	1			-	/	/	/	1		10.0	1		1	1	1									1	1			

		pH Ad	Justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	364					
	No.		And the second second		The second of the second	
			the complete a copy of			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

MR PETER REINHART SCDOT PO BOX 191 COLUMBIA, SC 29202-0191 OCT 1 5 2019

Re: Replacement of Destroyed Monitoring Wells – QAPP Addendum

Coastal 76 Truck Stop, 2513 E Palmetto St., Florence, SC

UST Permit #03538

Release Reported September 27, 1995

Florence County

Dear Mr. Reinhart:

The Underground Storage Tank (UST) Management Division has been informed that several monitoring wells have been destroyed as a result of the road widening of North Kippers Road (SC State Road S-21-176), off of East Palmetto Street/Highway 76. Funds from the State Underground Petroleum Environmental Response Bank (SUPERB) Account originally paid for these wells; therefore, replacement costs cannot be paid from the Account.

To determine what future assessment activities will be required, the replacement of monitoring wells MW-16, MW-17, MW-21, MW-23, MW-24, MW-25, and MW-26, as outlined in the UST Quality Assurance Program Plan (QAPP) is necessary. The monitoring well installation should be conducted in accordance with the UST Quality Assurance Program Plan and must be conducted in compliance with all applicable regulations. A copy of SCDHEC QAPP for the Underground Storage Tank Division is available at http://www.scdhec.gov/Environment/LW/UST/ReleaseAssessmentClean-up/QualityAssurance/

Please have your contractor complete and submit the Site-Specific QAPP Contractor addendum (QAPPA) or the Site-Specific Work Plan (SSWP) if your contractor has an approved Annual Contractor Quality Assurance Plan (ACQAP) within thirty days of the date of this letter. Please note that technical preapproval from the Department must be issued before work begins.

On all correspondence regarding this site, please reference UST Permit #03538. Should you have any questions regarding this correspondence, please feel free to contact me at (803) 898-0592. I can also be reached by email at edgarsk@dhec.sc.gov.

Sincerely,

Sedona Edgar, Hydrogeologist

Assessment & Non-Permitted Petroleum Section

UST Management Division

Bureau of Land & Waste Management

Sedona Edegeri

cc: Dan McEachin, 1007 Wentworth Dr., Florence, SC 29501

Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071

Technical File

FFB 1 3 2020

MR TIM HUNTER SCDOT **PO BOX 191** COLUMBIA SC 29202-0191

Re:

Replacement of Destroyed Monitoring Wells - QAPP Addendum

Coastal 76 Truck Stop, 2513 E Palmetto St., Florence, SC UST Permit #03538

Release Reported September 27, 1995

Florence County

Dear Mr. Hunter:

The Underground Storage Tank (UST) Management Division has been informed that several monitoring wells have been destroyed as a result of the road widening of North Kippers Road (SC State Road S-21-176), off of East Palmetto Street/Highway 76. Funds from the State Underground Petroleum Environmental Response Bank (SUPERB) Account originally paid for these wells; therefore, replacement costs cannot be paid from the Account.

To determine what future assessment activities will be required, the replacement of monitoring wells MW-16, MW-17, MW-21, MW-23, MW-24, MW-25, and MW-26, as outlined in the UST Quality Assurance Program Plan (OAPP) is necessary. The monitoring well installation should be conducted in accordance with the UST Quality Assurance Program Plan and must be conducted in compliance with all applicable regulations. A copy of SCDHEC QAPP for the Underground Storage Tank Division is available at http://www.scdhec.gov/Environment/LW/UST/ReleaseAssessmentClean-up/QualityAssurance/

Please have your contractor complete and submit the Site-Specific QAPP Contractor addendum (QAPPA) or the Site-Specific Work Plan (SSWP) if your contractor has an approved Annual Contractor Quality Assurance Plan (ACQAP) within thirty days of the date of this letter. Please note that technical preapproval from the Department must be issued before work begins.

On all correspondence regarding this site, please reference UST Permit #03538. Should you have any questions regarding this correspondence, please feel free to contact me at (803) 898-0592. I can also be reached by email at edgarsk@dhec.sc.gov.

Sincerely,

Sedona Edgar, Hydrogeologist

Assessment & Non-Permitted Petroleum Section

UST Management Division

Bureau of Land & Waste Management

cc:

Dan McEachin, 1007 Wentworth Dr., Florence, SC 29501

Technical File

DAN MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501

JUN 1 6 2020

Re:

Notice to Proceed with Groundwater Sampling Coastal 76 Truck Stop, 2513 E Palmetto St., Florence, SC UST Permit # 03538, CA # 60121, UMW-27695 Release reported September 27, 1995 SSWP Received August 30, 2019 Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed and approved the referenced Site-Specific Work Plan (SSWP) submitted by Midlands Environmental Consultants, Incorporated. All work should be conducted in accordance with the most recent revision of the UST Quality Assurance Program Plan (OAPP), Midlands Environmental Consultants' approved SSWP and Annual Contractor Quality Assurance Plan (ACQAP), and in compliance with all applicable regulations. A copy of the current revision of the UST QAPP is available at http://www.scdhec.gov/Environment/LW/UST/ReleaseAssessmentClean-up/QualityAssurance/

The assessment should begin immediately upon receipt of this letter, after the well installation. Cost agreement #60121 has been approved for the amount shown on the enclosed cost agreement form. A monitoring well installation approval form is also enclosed. Please note the following changes to the cost agreement and SSWP:

- Per correspondence, only the groundwater sampling portion of the SSWP is approved. Replacing and installing monitoring/recovery wells is on hold.
- Please sample WSW-1; if the property owner wants to abandon the well, that will be done as another scope of work.

The Contractor must provide the UST Project Manager with a Project Status Report on a weekly basis via e-mail or notify the UST Project Manager via email 4 days prior to initiation of any site rehabilitation activities. If there are any changes or conflicts with the date(s) of site activities, the UST Project Manager must be contacted within 24 hours of those changes.

The Monitoring report, contractor checklist (QAPP Appendix K), and invoice should be submitted to the Division within sixty (60) days of the date of this correspondence. The report submitted at the completion of these activities should include the required information outlined in the UST OAPP.

Midlands Environmental Consultants can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. By law, the SUPERB Account cannot compensate any costs that are not pre-approved. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

Please note that Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute states that no costs will be allowed unless prior approval from the Division is obtained. If for any reason additional tasks will be completed, these additional tasks and the associated cost must be pre-approved by the Division for the cost to be paid. The Division reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, the Division reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work.

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a DHEC-certified site rehabilitation contractor as required by R.61-98.

The Division grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All investigation-derived waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety (90) days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern (CoC) concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the project manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

On all correspondence regarding this site, please reference UST Permit #03538. If there are any questions concerning this project, please contact me at (803) 898-0592 or by email at edgarsk@dhec.sc.gov.

Sincerely,

Sedona Edgar, Hydrogeologist

Assessment & Non-Permitted Petroleum Section

UST Management Division

Bureau of Land and Waste Management

enc:

Approved Cost Agreement

cc:

Midlands Environmental Consultants Inc., PO Box 854, Lexington SC 29071 (w/enc)

Technical file (w/enc)

Approved Cost Agreement

60121

Facility: 03538 COASTAL 76 TRUCK STOP

EDGARSK

PO Number: 82942

Task / Description Categories	Item Description	Qty / Pct	Unit Price	<u>Amount</u>
01 PLAN				
	A1 SITE SPECIFIC WORK PLAN	1.0000	\$150.000	150.00
04 MOB/DEMOB	:			
	B1 PERSONNEL	3.0000	\$423.000	1,269.00
10 SAMPLE COLLECTION				
	A1 GROUNDWATER (PURGE)	24.0000	\$60.000	1,440.00
	C1 WATER SUPPLY `	2.0000	\$22.000	44.00
	D1 GROUNDWATER NO PURGE/DUPLICATE	3.0000	\$28.000	84.00
	H1 FIELD BLANK	1.0000	\$24.600	24.60
11 ANALYSES				
GW GROUNDWATER	A2 BTEXNM+OXYGS+1,2-DCA+ETH-8260B	30.0000	\$122,000	3,660.00
	F1 EDB BY 8011	28.0000	\$45.200	1,265.60
WATER DRINKING WAT	ER L BTEXNM+1,2 DCA (524.2)	8.0000	\$124.050	992.40
	M 7-OXYGENATES & ETHANOL (8260B)	8.0000	\$91.750	734.00
	N EDB (504.1)	6.0000	\$79.500	477.00
17 DISPOSAL				
	AA WASTEWATER	100.0000	\$0.560	56.00
19 RPT/PROJECT MNGT & COORDINATIO				
	PRT REPORT PREPARATION	0.1200	\$10,196.600	1,223.59
		Total Am	ount	11,420.19

Document Receipt Information

Hard Copy	Съ	Email
Date Received	111/20	
Permit Number	3538	
	edona E	dgar
Name of Contractor	MECI	
UST Certification Number	er	
Docket Number		
Scanned		•
GW5 3 CM	remical:	Analysis
Regor.	t	

GROUND WATER SAMPLING AND CHEMICAL ANALYSIS REPORT

Coastal 76 Truck Stop 2513 E. Palmetto Street Florence, South Carolina SCDHEC SITE ID 03538 CA # 60121

Prepared By:

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

July 22, 2020

MECI Project No. 19-7034

Bryon T. Shane, P.G. Principal Geologist

Ms. Sedona Edgar, Hydrogeologist **Assessment Section** Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

Ground Water Sampling and Chemical Analysis Report Subject:

> Coastal 76 Truck Stop 2513 E. Palmetto Street Florence, South Carolina

SCDHEC Site ID# 03538, CA # 60121

MECI Project Number 19-7034

Certified Site Rehabilitation Contractor UCC-0009

Dear Ms. Edgar,

On behalf of Mr. Dan McEachin, Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Ground Water Sampling and Chemical Analysis Report for the referenced site. This report describes assessment activities conducted at the site and results of those activities in general accordance with South Carolina Department of Health and Environmental Control (SCDHEC) guidelines, including adherence to the UST Division Programmatic Quality Assurance Program Plan (QAPP).

Midlands Environmental appreciates the opportunity to offer our professional environmental services to you on this project. Please feel free to contact us at 803-808-2043 if you have any immediate questions or comments.

Sincerely,

Midlands Environmental Consultants, Inc.

Senior Scientist

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 PROJECT INFORMATION	1
2.0 SURROUNDING PROPERTY USAGE	2
3.0 AREA GEOLOGY AND HYDROGEOLOGY	2
3.1 LOCAL SUBSURFACE CONDITIONS	3
4.0 FIELD EXPLORATION	3
4.1 SAMPLING AND CHEMICAL ANALYSES	
5.0 TEST RESULTS AND EVALUATION	6
5.1 GROUNDWATER ANALYTICAL RESULTS	6
6.0 ASSESSMENT SUMMARY & RECOMMENDATIONS	7
7.0 QUALIFICATIONS OF REPORT	8

TABLE OF CONTENTS (cont.)

TABLES: **Table 1 – SOIL COC CONCENTRATION DATA

Table 2 – POTENTIOMETRIC DATA

Table 3 – GROUNDWATER COC CONCENTRATION DATA

**Table 4 – AQUIFER CHARACTERISTICS **Table 5 – SITE CONCEPTUAL MODEL

FIGURES: Figure 1 – TOPOGRAPHIC MAP

Figure 2 – SITE BASE MAP

**Figure 3 – SOIL COC SITE MAP

Figure 4 – GROUNDWATER COC SITE MAP (BENZENE ISOPLETH)

Figure 4A – GROUNDWATER COC SITE MAP (NAPHTHALENE ISOPLETH)

Figure 4B – GROUNDWATER COC SITE MAP (EDB ISOPLETH) Figure 4C – GROUNDWATER COC SITE MAP (OXYGENATES)

Figure 5 – POTENTIOMETRIC DATA SITE MAP (GROUNDWATER CONTOUR)

**Figure 6A – GEOLOGIC CROSS SECTION A-A'
**Figure 6B – GEOLOGIC CROSS SECTION B-B'

**APPENDIX A – SITE SURVEY

APPENDIX B - SAMPLING LOGS, LABORATORY DATA SHEETS AND CHAIN OF CUSTODY FORMS

- **APPENDIX C TAX MAP DATA
- **APPENDIX D SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
- **APPENDIX E WELL LOGS & 1903 FORMS
- **APPENDIX F AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G - DISPOSAL MANIFESTS

- **APPENDIX H LOCAL ZONING REGULATIONS
- **APPENDIX I FATE & TRANSPORT MODELING
- **APPENDIX J ACCESS AGREEMENTS

APPENDIX K – DATA VERIFICATION CHECKLIST

NOTE: ITEMS LISTED WITH AN ** BESIDE IT WERE NOT NEEDED AS A PART OF THIS SCOPE OF WORK

1.0 INTRODUCTION

A. Owner/Operator Information

Facility Name: Coastal 76 Truck Stop UST Permit #: 03538

Facility Address: 2513 E. Palmetto Street

Name: Dan McEachin

Address: 1007 Wentworth Drive

Telephone #: Contact: Dan McEachin (803) 651-8835

B. **Property Owner Information**

Name Elizabeth E. McEachin

Tax Map #: Florence Co. Tax Map #: 90089-01-006

Address 1007 Wentworth Drive

Telephone # Contact: Dan McEachin (803) 651-8835

C. Contractor Information

Name: Midlands Environmental Consultants, Inc.

Certification #: 9

Address: P. O. Box 854, Lexington, SC 29071

Telephone #: (803) 808-2043

D. SCDHEC Certified Well Driller

Certification #:

Name: N/A

Driller: N/A

Address: N/A

Telephone #: N/A

E. SCDHEC Certified Laboratory

Name: Pace Analytical Services, LLC

N/A

Certification #: 99006001

Address: 9800 Kincey Ave. Suite 100, Huntersville, NC 28078

Telephone #: (704) 875-9092

1.1 PROJECT INFORMATION

The subject site (Costal 76 Truck Stop) is located at 2513 East Palmetto Street, Florence, Florence County, South Carolina. The following table represents Underground Storage Tanks (UST'S) which are associated with the subject site.

Tank#	Capacity/Product	In Use/Abandoned	Tank Status
1	2,000 Gallon Gasoline	Abandoned	Removed (9/1995)
2	3,000 Gallon Gasoline	Abandoned	Removed (9/1995)
3	1,000 Gallon Gasoline	Abandoned	Removed (9/1995)
4	1,000 Gallon Diesel	Abandoned	Removed (9/1995)

The South Carolina Department of Health and Environmental Control (SCDHEC) reported a release of petroleum product on September of 1995 and confirmed this release in August of 1997. The subject site is currently rated a Class 2BB.

The above project information is based on MECI field notes and SCDHEC files.

2.0 SURROUNDING PROPERTY USAGE

The subject site is located inside the city limits of Florence, Florence County, South Carolina. East Palmetto Street (U.S. Highway 76) forms the southern border of the site, beyond which is the Florence County Regional Airport. North Koppers Road (SC State Rd. S-21-176) forms the eastern border of the site, beyond which are commercial properties. Commercial properties border the site to the west. North of the site is wooded and undeveloped.

Identified potential receptors at the referenced site include one water supply well. The following table identifies water supply well and the physical address of their locations:

Water Supply Well Number	Well Owner	Florence County Tax Map Number:	Notes:	Well Status
WSW-1	Ken-Co Homes of Florence, LLC.	90150-01-031	2623 East Palmetto Street/700' Feet East	Active/Sampled

This water supply well (WSW-1) is located approximately 330 feet east of the subject site.

3.0 AREA GEOLOGY AND HYDROGEOLOGY

The mean elevation of the property as depicted on the local USGS quadrangle (Florence, SC) appears to be between 45 meters feet above sea level. The site is located in the Coastal Plain Physiographic Province, which is generally comprised of Upper Cretaceous to present aged, wedge shaped formations that begin at the "Fall Line" and dip towards the Atlantic Ocean with ground surface elevations typically less than 300 feet. The sedimentary soils of these formations consist of unconsolidated sand, clay, gravel, marl, cemented sands, and limestone that were deposited unconformably over Mesozoic/Paleozoic age basement rock consisting of granite, schist, and gneiss similar to the rocks of the Piedmont Physiographic Province. The thickness of the Coastal Plain sediments varies from zero at the "Fall Line" to more than 4,000 feet at the southern tip of South Carolina near Hilton Head Island.

The Coastal Plain province was formed during Quaternary, Tertiary, and late Cretaceous geologic periods and can be divided generally into three subunits: Upper Coastal Plain, Middle Coastal Plain, and Lower Coastal Plain. The Lower Coastal Plain comprises approximately one-half of the entire Atlantic Coastal Plain of South Carolina and is separated from the middle coastal plain by the Surry Scarp, a seaward facing scarp with a toe elevation of 90 to 100 feet. The Middle Coastal Plain and the Upper Coastal Plain each compose approximately one fourth of the Coastal Plain area and are separated by the Orangeburg Scarp, a seaward facing scarp with a toe elevation of 250 to 270 feet.

The Lower Coastal Plain is typically identified as the area east of the Surry Scarp below elevation 100 feet, with a vertical stratigraphic sequence overlying the basement rock consisting of unconsolidated Cretaceous, Tertiary, and Quaternary sedimentary deposits. The surface deposits of the Lower Coastal Plain were formed during the Quaternary period which was characterized by the formation of the Carolina Bays and scarps throughout the east coast

due to sea level rise and fall, the formation of the barrier islands, and the formation of flood plains from major rivers. Preceding the Quaternary period, limestone was deposited in the Lower Coastal Plain.

The Middle Coastal Plain is typically identified as the area between the Orangeburg Scarp and the Surry Scarp and falls between elevation 100 feet and 270 feet. The vertical stratigraphic sequence overlying the basement rock consists of unconsolidated Cretaceous and Tertiary sedimentary deposits formed as a result of scouring from the regressive cycles of the Ocean as it retreated. During the Eocene epoch of the Tertiary period, limestone was deposited in the Middle Coastal Plain.

The Upper Coastal Plain is typically identified as the area between the "Fall Line" and the Orangeburg Scarp and falls between elevations 270 feet and 300 feet. The Upper Coastal Plain was formed during the Tertiary and late Cretaceous periods and is marked by the formation of the Sandhills dunes as a result of fluvial deposits over the Coastal Plain consisting of marine sediments, limestone, and sand.

3.1 LOCAL SUBSURFACE CONDITIONS

Locally, in the surficial aquifer, groundwater discharges into streams, lakes or springs where the groundwater table intersects lows occupied by these water bodies. The apparent direction (based on the current hydraulic gradient) of groundwater flow from the release is to the east towards drainage features associated with Canal Branch.

Coastal plain sediments were encountered during previous drilling activities conducted at the site. The soils encountered in our borings generally consisted of clayey fine-grained sands. According to Newell et al. (In Review), the site is located within the Bear Bluff Formation. The Bear Bluff Formation is a Pliocene aged secondary unit which generally consists of gray to cream fossiliferous, coarse-grained calcareous sand and sandy limestone. Unconformably the Bear Bluff Formation overlies the Peedee Formation and is underlain by the Canepatch, Conway and Waccamaw Formations.

On June 29, 2020, stabilized groundwater levels were measured in the monitoring wells. Depth to groundwater ranged from 2.12 to 6.80 feet below top of casing in the wells measured. The groundwater measurements are summarized in tabular form in Table 2 and on Figure 5. Groundwater levels may fluctuate several feet with seasonal and rainfall variations and with change in the water level of adjacent drainage features. Normally, the highest groundwater levels occur in late winter and spring. The lowest levels occur in late summer and fall.

4.0 FIELD EXPLORATION

Field exploration conducted at the site included

- comprehensive sampling of the entire monitoring well network and nearby receptor; and
- chemical analyses of groundwater samples.

4.1 SAMPLING AND CHEMICAL ANALYSES

On June 29, 2020, MECI personnel collected groundwater samples from sixteen (16) monitoring wells and one (1) water supply well at the subject site. During sampling activities, there were

seventeen monitoring wells that were unable to be sampled. Monitoring wells IGWA, MW-2, MW-5, MW-9, MW-10, MW-10R, MW-10RR, MW-14, MW-15, MW-16, MW-21, and MW-22 were not located. Monitoring wells MW-17, MW-23, MW-24, MW-25, and MW-26 were abandoned in March of 2018. As directed by SCDHEC, all monitoring wells were to be purged prior to sample collection. During sampling activities, sixteen (16) monitoring wells were purged prior to sample collection. On August 14, 2019, MECI personnel collected a follow-up sample to the April 18, 2018 sample of WSW-1 to confirm the presence of MTBE in the water supply well.

Prior to sampling, MECI personnel utilized an electronic water level indicator for water level measurements and an oil/water interface probe for free phase petroleum product level measurements. Purging was completed by bailing at least five well volumes of water from the well, until pH, conductivity, dissolved oxygen and turbidity stabilized, or all water was evacuated from the well, whichever occurred first. Sampling/purging was completed utilizing a prepackaged, clear, disposable polyethylene bailer and nylon rope. A new set of nitrile gloves were worn at each monitoring well, and at all time samples were handled. Field measurements of pH, conductivity, dissolved oxygen, water temperature, and turbidity were obtained before well sampling process. MECI utilized YSI Pro20 meter for DO (mg/L) and temperature readings (°C), YSI Pro1030 meter for pH and conductivity (uS) readings and a MicroTPI turbidimeter for turbidity readings (NTU). The attached Field Data Information Sheets presents the results of the field measurements obtained. The wells were sampled in accordance with SCDHEC's most recent revision of the Quality Assurance Program Plan for the Underground Storage Tank Management Division and MECI's most recent revision of Standard Operating Procedures.

Groundwater samples obtained were sent to Pace Analytical Services, LLC of Huntersville, NC (SCDHEC Laboratory Certification #99006001) for analysis.

The following sampling matrix contains well development and requested analyses for each well:

Sample ID	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260-B)	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									Ana	alyte Sam	pled		
03538-IGWA						X							
03538-IGWAR	X						X	X	X	X			
03538-MW01	X						X	X	X	X			
03535-MW02						X							
03538-MW03	X						X	X	X	X			
03538-MW04	X						X	X	X	X			
03538-MW05						X							

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dicloroethane EDB = Ethylene Dibromide

Sample ID	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260-B)	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
Sample 1D									Ana	lyte Sam	nled		
03538-MW06	X						X	X	X	X			
03538-MW07	X						X	X	X	X			
03538-MW08	X						X	X	X	X			
03538-MW09						X							
03538-MW10						X							
03538-MW10R						X							
03538-MW10RR						X							
03538-MW11	X						X	X	X	X			
03538-MW14						X							
03538-MW15						X							
03538-MW16						X							
03538-MW17						X							
03538-MW18	X						X	X	X	X			
03538-MW19	X						X	X	X	X			
03538-MW20	X						X	X	X	X			
03538-MW21						X							
03538-MW22						X							
03538-MW22D	X						X	X	X	X			
03538-MW23							X						
03538-MW24							X						
03538-MW25							X						
03538-MW26							X						
03538-MW27	X						X	X	X	X			
03538-MW28	X						X	X	X	X			
03538-TW01	X						X	X	X	X			
03538-TW02	X						X	X	X	X			
03538-WSW01 8/19										X		X	
03538-WSW01										X		X	X
03535-DUP (WSW01 8/19)										X		X	
03538-DUP (MW01)							X	X	X	X			
03538-DUP (WSW01)										X		X	X
03538-WSW FIELD BLANK 8/19										X		X	

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether

1,2 DCA = 1,2 Dicloroethane

EDB = Ethylene Dibromide

Sample ID	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260-B)	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
									Ana	ılyte Sam	pled		
03538- FIELD BLANK							X	X	X	X			
03538-WSW FIELD BLANK										X		X	X
03538- WSW TRIP BLANK 8/19										X		X	
03538- TRIP BLANK										X		X	
03538-WSW TRIP BLANK										X		X	

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes MTBE=Methyl tertiary butyl ether

1,2 DCA = 1,2 Dicloroethane EDB = Ethylene Dibromide

The results of the laboratory analyses are summarized in Table 3 and presented in Appendix B.

Purge water produced by the purging process was treated on-site utilizing a granular activated carbon unit. A total of 310.75 gallons of purge water was disposed of in this manner. A disposal manifest for the referenced purge water is presented in Appendix G.

5.0 TEST RESULTS AND EVALUATION

The following sections discuss groundwater test results for the subject site.

5.1 GROUNDWATER ANALYTICAL RESULTS

As discussed in section 4.1, groundwater samples obtained from the monitoring well network were analyzed for dissolved phase petroleum constituents. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-4. Of the sixteen monitoring wells sampled, five monitoring wells (IGWA-R, MW-1, MW-3, MW-4, and TW-2) detected petroleum constituents above Risked Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL/SCAL (ug/l)	Wells Above RBSL
Benzene	5	IGWA-R, MW-1, MW-3, & MW-4
Toluene	1,000	MW-3, & MW-4
Ethylbenzene	700	MW-3, & MW-4
Total Xylenes	10,000	None
Naphthalene	25	IGWA-R, MW-1, MW-3, & MW-4
MTBE	40	None
1,2 DCA	5	None
EDB	0.05	MW-1, MW-3, MW-4, & TW-2
Lead	15	Not Analyzed
TAA	240	None
TAME	128	None
ETBA	NE	RBSL Not Established
TBA	1,400	None
TBF	NE	RBSL Not Established
DIPE	150	None
Ethanol	10,000	None
ETBE	47	None

In addition, the analytical results also detected petroleum constituents above the laboratory method detection limit or "J" values in water supply well WSW-1, however this did not exceed the establish RBSL's. The results of the analyses for each monitoring well and specific parameters are listed on Table 3 and provided in Appendix B.

6.0 ASSESSMENT SUMMARY & RECOMMENDATIONS

Based on the results of our assessment activities, it appears that impact to the surficial aquifer has occurred due to a release of petroleum hydrocarbons. The highest concentrations of dissolved phase contaminants are located in the area south of the former UST's. Groundwater appears to be moving in an easterly direction towards drainage features associated with the Canal Branch; however, this flow direction changes overtime and flow is generally redial to semi-radial.

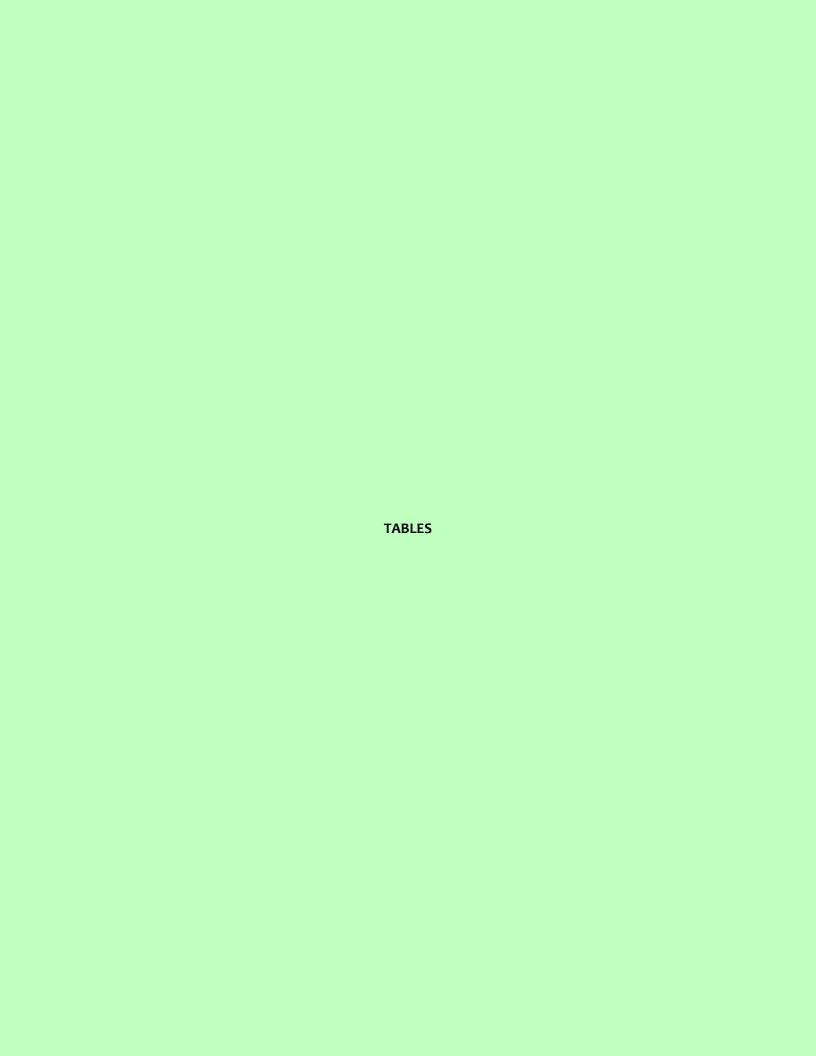
As discussed in section 4.1, groundwater samples obtained from the monitoring well network were analyzed for dissolved phase petroleum constituents. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW-4. Of the sixteen monitoring wells sampled, five monitoring wells (IGWA-R, MW-1, MW-3, MW-4, and TW-2) detected petroleum constituents above Risked Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL/SCAL (ug/l)	Wells Above RBSL
Benzene	5	IGWA-R, MW-1, MW-2, MW-3, & MW-4
Toluene	1,000	MW-3 & MW-4
Ethylbenzene	700	MW-3 & MW-4
Total Xylenes	10,000	None
Naphthalene	25	IGWAR, MW-1, MW-3, & MW-4
MTBE	40	None
1,2 DCA	5	None
EDB	0.05	MW-1, MW-3, MW-4 & TW-2
Lead	15	Not Analyzed
TAA	240	None
TAME	128	None
ETBA	NE	RBSL Not Established
TBA	1,400	None
TBF	NE	RBSL Not Established
DIPE	150	None
Ethanol	10,000	None
ETBE	47	None

In addition, the analytical results also detected petroleum constituents above the laboratory method detection limit or "J" values in water supply well WSW-1, however this did not exceed the establish RBSL's. The results of the analyses for each monitoring well and specific parameters are listed on Table 3 and provided in Appendix B.

Figure 4 depicts graphically the concentrations of Benzene in the monitoring wells at the site. Figure 4A depicts graphically the concentrations of Naphthalene in the monitoring wells at the subject site. Figure 4B depicts graphically the concentrations of EDB in the monitoring wells at the subject site. Figure 4C presents the 8-Oxygenates in the groundwater at the subject site.

Due to the many monitoring wells either destroyed or abandoned the plume emanating from the site does not appear to be fully defined. MECI recommends additional assessment activities be performed at the site to better define the contamination plume. Recommended activities include:


- WSW-1 should either be abandoned or fitted with a granular carbon filtration system;
- Replace the monitoring wells as followed: MW-2, MW-5, MW-7, MW-10RR, MW-15, MW-16, MW-17, MW-22, MW-24, MW-25, and MW-26.;
- Add Additional wells as followed: a shallow monitoring well northeast of MW-4 between MW-4 and MW-25, add a monitoring well directly east of MW-11, a deep monitoring well paired with MW-25, and add a series of six recovery wells in the areas of highest CoC concentrations.;
- Perform a series of Aggressive Fluid Vapor Recovery (AFVR) following the completion of the recovery wells.;
- Comprehensive ground water sampling event following the AFVR's.

7.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in hydrogeological assessment and waste management projects of this type. Our evaluation of site conditions has been based on our understanding of the site, project information provided to us, and data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpretation of subsurface data between borings. Contents of

this report are intended for the sole use of Mr. Dan McEachin, MECI and SCDHEC under mutually agreed upon terms and conditions. If other parties wish to rely on this report please contact MECI prior to their use of this information so that a mutual understanding and agreement of the terms and conditions of our services can be established.

-oOo-

Well	Sample	Screened	Depth to	Depth to	Product	Well-head	Groundwater									
Number	Date	Interval	Product (feet)	Water (feet)	Thickness (feet)	Elevation	Elevation									
	9/29/1999		NA	NA	0.21	145.19	NA									
	2/20/2012		-	DRY	-	145.19	DRY									
	6/26/2012		-	NM	-	145.19	NM									
	12/3/2012		-	11.98	-	145.19	133.21									
IGWA	12/13/2014	TD: 16.74	-	12.15	-	145.19	133.04									
	8/31/2015		-	13.78	-	145.19	131.41									
	6/1/2016		-	4.61	-	145.19	140.58									
	4/4/2017		-	8.48	-	145.19	136.71									
	4/4/2018		-	11.10	-	145.19	134.09									
	6/29/2020		_	NL	_	145.19	NL									
	9/29/1999		_	14.10	_	145.14	131.04									
	2/20/2012		_	NM	_	145.14	NM									
	6/26/2012		_	14.10	_	145.14	131.04									
	12/3/2012			11.93		145.14	133.21									
	12/13/2014	11-21		12.10		145.14	133.04									
IGWA-R			11-21	-	NM	-	145.14	NM								
	8/31/2015		-		-											
	6/1/2016		-	4.49	-	145.14	140.65									
	4/4/2017		-	8.52	-	145.14	136.62									
	4/4/2018		-	11.09	-	145.14	134.05									
	6/29/2020		-	3.62	-	145.14	141.52									
	9/29/1999		-	13.31	-	145.87	132.56									
	2/20/2012		-	DRY	-	145.87	DRY									
	6/26/2012*		14.69	14.71	0.02	145.87	131.18									
	12/2/2012		_	12.54	_	145.87	133.33									
	12/13/2014		_	12.75	_	145.87	133.12									
MW-1	8/31/2015	TD: 17.80	_	12.31	_	145.87	133.56									
	6/1/2016			5.16		145.87	140.71									
			-		-											
	4/4/2017		-	9.24	-	145.87	136.63									
	4/4/2018		-	11.62	-	145.87	134.25									
	6/29/2020		-	4.31	-	145.87	141.56									
	9/29/1999		-	13.63	-	145.19	131.56									
	2/20/2012		-	DRY	-	145.19	DRY									
	6/26/2012		-	14.04	-	145.19	131.15									
	12/2/2012		-	12.34	-	145.19	132.85									
NAVA / O	12/13/2012	TD: 40.00	-	12.36	-	145.19	132.83									
MW-2	8/31/2015	TD: 18.30	_	12.17	-	145.19	133.02									
	6/1/2016		_	4.57	_	145.19	140.62									
	4/4/2017		_	7.95	_	145.19	137.24									
	4/4/2018		_	11.00	_	145.19	134.19									
			-		_											
	6/29/2020		-	NL 40.40		145.19	NL 420.20									
	9/29/1999		-	13.13	-	145.51	132.38									
	2/20/2012*		17.80	18.20	0.40	145.51	127.65									
	6/26/2012*		14.18	14.19	0.01	145.51	131.33									
	12/2/2012		-	12.67	-	145.51	132.84									
MW-3	12/13/2014	TD:18.20	-	12.39	-	145.51	133.12									
14144-0	8/31/2015	10.10.20	-	12.06	-	145.51	133.45									
	6/1/2016		-	4.68	-	145.51	140.83									
	4/4/2017		-	8.73	_	145.51	136.78									
	4/4/2018		_	11.30	_	145.51	134.21									
	6/29/2020		_	3.88	_	145.51	141.63									
	9/29/1999		-	12.91	-	145.56	132.65									
	2/20/2012*															
			17.56	17.58	0.02	145.56	128.00									
	6/26/2012		-	14.35	-	145.56	131.21									
	12/2/2013		-	12.26	-	145.56	133.30									
MW-4	12/13/2012	TD:18.35	-	12.43	-	145.56	133.13									
	8/31/2015		-	12.24	-	145.56	133.32									
	6/1/2016		-	NL	-	145.56	NL									
	4/4/2017		-	8.86	-	145.56	136.70									
	4/4/2018		-	11.27	_	145.56	134.29									
	6/29/2020		-	3.94	_	145.56	141.62									
	9/29/1999		-	12.54	_	145.11	NA									
	2/20/2012		_	17.05	_	145.11	128.06									
					-											
	6/26/2012		-	13.90	-	145.11	131.21									
	40/0/0044											-	NL	-	145.11	NL
	12/3/2014				-											
MW-5	12/13/2014	8.29-18.29	-	NL NI	-	145.11	NL									
MW-5	12/13/2014 8/31/2015	8.29-18.29	-	NL	-	145.11	NL									
MW-5	12/13/2014	8.29-18.29	- -		- - -											
MW-5	12/13/2014 8/31/2015	8.29-18.29	- - -	NL	- - -	145.11	NL									
MW-5	12/13/2014 8/31/2015 6/1/2016	8.29-18.29	- - - -	NL 4.35	- - - -	145.11 145.11	NL 140.76									

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwater Elevation
	9/29/1999		- ` '	13.04	-	146.04	133.00
	2/20/2012		-	DRY	-	146.04	DRY
	6/26/2012		-	14.65	-	146.04	131.39
	12/2/2013		-	12.67	-	146.04	133.37
MW-6	12/13/2012	8.29-18.29	-	12.91	-	146.04	133.13
10100-0	8/31/2015	0.29-10.29	-	12.54	-	146.04	133.50
	6/1/2016		-	5.13	-	146.04	140.91
	4/4/2017		-	9.60	-	146.04	136.44
	4/4/2018		-	11.84	-	146.04	134.20
	6/29/2020		-	4.46	-	146.04	141.58
	9/29/1999		-	NA	-	144.61	NA
	2/20/2012		-	16.54	-	144.61	128.07
	6/26/2012	8.38-18.38	-	13.45	-	144.61	131.16
	12/3/2012		-	11.20	-	144.61	133.41
MW-7	12/13/2014		-	11.47	-	144.61	133.14
	8/31/2015		-	11.15	-	144.61	133.46
	6/1/2016		-	3.97	-	144.61	140.64
	4/4/2017		-	NL	-	144.61	NL
	4/4/2018		-	10.40	-	144.61	134.21
	6/29/2020		-	3.00	-	144.61	141.61
	9/29/1999		-	11.54	-	143.78	132.24
	2/20/2012		-	15.59	-	143.78	128.19
	6/26/2012		-	12.62	-	143.78	131.16
	12/3/2012		-	10.43	-	143.78	133.35
MW-8	12/13/2014	8.29-18.29	-	10.61	-	143.78	133.17
	8/31/2015		-	10.32	-	143.78	133.46
	6/1/2016		-	3.08	-	143.78	140.70
	4/4/2017		-	6.93	-	143.78	136.85
	4/4/2018		-	9.41	-	143.78	134.37
	6/29/2020		-	2.18	-	143.78	141.60
	9/29/1999		-	12.08	-	NA	NA
	2/20/2012		-	NL	-	NL 	NL
	6/26/2012		-	NL NI	-	NL NI	NL
	12/3/2012		-	NL NI	-	NL NI	NL NI
MW-9	12/13/2014	8.33-18.33	-	NL NI	-	NL NI	NL NI
	8/31/2015		-	NL NL	-	NL NL	NL NL
	6/1/2016		-	NL NL	-	NL NL	NL NL
	4/4/2017 4/4/2018		-	NL NL	-	NL NL	NL NL
			-	NL NL	-	NL NL	NL NL
	6/29/2020 9/29/1999		-	NA NA	-	143.84	NA NA
	2/20/2012		_	15.65	-	143.84	128.19
	6/26/2012		-	12.41	-	143.84	131.43
	12/3/2012		-	NL	-	143.84	NL
MW-10		TD: 18.25	_	NL	-		NL
10100-10	12/13/2014 8/31/2015	15. 10.25	-	NL NL	-	143.84 143.84	NL NL
	6/1/2016			NL NL		143.84	NL NL
	4/4/2017		_	NL NL	_	143.84	NL
	4/4/2017		_	NL NL		143.84	NL NL
	12/3/2014		_	10.50	-	143.81	133.31
	12/13/2014		_	10.62	_	143.81	133.19
	8/31/2015		_	10.29	_	143.81	133.52
MW-10R	6/1/2016	TD:11.61	_	NL	_	143.81	NL
	4/4/2017		_	NL NL	_	143.81	NL
	4/4/2017		_	NL	_	143.81	NL
	4/4/2018		-	9.91	-	144.36	134.45
MW-10RR	6/29/2020	7.00-17.00	-	DESTROYED	-	144.36	DESTROYED
	9/29/1999		-	12.75	_	145.68	132.93
	2/20/2012		_	17.85	_	145.68	127.83
	6/26/2012		_	14.39	_	145.68	131.29
	12/3/2014		_	12.64	_	145.68	133.04
	12/13/2014		_	12.70	_	145.68	132.98
MW-11	8/31/2015	8.42-18.42	_	13.69	_	145.68	131.99
	6/1/2016		_	5.36	_	145.68	140.32
	4/4/2017		_	9.38		145.68	136.30
	4/4/2017			11.62	_	145.68	134.06

Well	Sample	Screened	Depth to	Depth to	Product	Well-head	Groundwater
Number	Date	Interval	Product (feet)	Water (feet)	Thickness (feet)	Elevation	Elevation
	9/29/1999		-	11.87	-	144.36	132.49
	2/20/2012		-	16.35	-	144.36	128.01
	6/26/2012		-	NL 	-	144.36	NL
	12/3/2012		-	NL	-	144.36	NL
MW-14	12/13/2014	8.29-18.29	-	11.39	-	144.36	132.97
	8/31/2015		-	13.11	-	144.36	131.25
	6/1/2016		-	3.43	-	144.36	140.93
	4/4/2017		-	7.25	-	144.36	137.11
	4/4/2018		-	NL 	-	144.36	NL
	6/29/2020		-	NL 10.70	-	144.36	NL
	6/26/2012		-	12.78	-	143.54	130.76
	12/3/2014		-	10.46	-	143.54	133.08
	12/13/2014		-	10.62	-	143.54	132.92
MW-15	8/31/2015	10-20	-	12.32	-	143.54	131.22
	6/1/2016		-	3.00	-	143.54	140.54
	4/4/2017		-	8.06	-	143.54	135.48
	4/4/2018		-	10.37	-	143.54	133.17
	6/29/2020		-	NL	-	143.54	NL
	6/26/2012		-	13.43	-	144.33	130.90
	12/3/2014		-	11.18	-	144.33	133.15
	12/13/2014		-	11.42	-	144.33	132.91
MW-16	8/31/2015	11-21	-	14.48	-	144.33	129.85
	6/1/2016		-	NL	-	144.33	NL 100.00
	4/4/2017		-	7.51	-	144.33	136.82
	3/29/2018		-	NL 	-	144.33	NL
	6/29/2020		-	NL	-	144.33	NL
	6/26/2012		-	13.96	-	145.08	131.12
	12/3/2014		-	11.92	-	145.08	133.16
	12/13/2014		-	12.10	-	145.08	132.98
MW-17	8/31/2015	11-21	-	11.72	-	145.08	133.36
	6/1/2016		-	4.54	-	145.08	140.54
	4/4/2017		-	8.46	-	145.08	136.62
	3/29/2018		-	10.69	-	145.08	134.39
	6/29/2020		-	ABANDONED	-	145.08	ABANDONED
	6/26/2012		-	14.44	-	145.79	131.35
	12/3/2014		-	12.42	-	145.79	133.37
	12/13/2014		-	12.60	-	145.79	133.19
MW-18	8/31/2015	11-21	-	12.28	-	145.79	133.51
	6/1/2016		-	4.93	-	145.79	140.86
	4/4/2017		-	9.11	-	145.79	136.68
	4/4/2018		-	11.45	-	145.79	134.34
	6/29/2020		-	4.11	-	145.79	141.68
	12/3/2014		-	9.79	-	143.67	133.88
	12/13/2014		-	10.66	-	143.67	133.01
100/40	8/31/2015	0.40.40.40	-	10.74	-	143.67	132.93
MW-19	6/1/2016	2.12-12.12	-	3.13	-	143.67	140.54
	4/4/2017		-	6.68	-	143.67	136.99
	4/4/2018		-	14.85	-	148.42	133.57
	6/29/2020		-	6.11	-	148.42	142.31
	12/3/2014		-	10.97	-	143.93	132.96
	12/13/2014		-	11.17	-	143.93	132.76
MANA / OO	8/31/2015	4 50 44 50	-	11.80	-	143.93	132.13
MW-20	6/1/2016	4.50-14.50	-	NL NI	-	143.93	NL
	4/4/2017		-	NL	-	143.93	NL
	4/4/2018		-	14.26	-	148.46	134.20
	6/29/2020		-	7.00	-	148.46	141.46
	12/3/2014		-	10.38	-	143.25	132.87
	12/13/2014		-	10.60	-	143.25	132.65
1 MAY 2 /	8/31/2015	0.75 /0.75	-	10.91	-	143.25	132.34
MW-21	6/1/2016	2.75-12.75	-	2.63	-	143.25	140.62
	4/4/2017		-	6.34	-	143.25	136.91
	3/29/2018		-	NL	-	143.25	NL
	6/29/2020		-	NL	-	143.25	NL
	12/3/2014		-	9.92	-	145.03	135.11
	12/13/2014		-	12.16	-	145.03	132.87
	8/31/2015		-	11.53	-	145.03	133.50
MW-22	6/1/2016	5.09-15.09	-	4.31	-	145.03	140.72
	4/4/2017		-	7.54	-	145.03	137.49
	4/4/2018		-	NL	-	145.03	NL
	6/29/2020		-	NL	-	145.03	NL

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwate Elevation
Number	12/3/2014	micryur	-	13.83	-	144.89	131.06
	12/13/2014		_	13.82	_	144.89	131.07
	8/31/2015		_	13.78	_	144.89	131.11
MW-22D	6/1/2016	39.23-44.23	_	6.32	_	144.89	138.57
	4/4/2017			10.26	_	144.89	134.63
	4/4/2018			NL	_	144.89	NL
	6/29/2020		_	6.80	_	144.89	138.09
			-	11.90	_	143.63	131.73
	12/3/2014 12/13/2014		-	10.77	-	143.63	131.73
			-		-	143.63	
MW-23	8/31/2015	1.61-11.61	-	15.00 3.22	-		128.63 140.41
10100-23	6/1/2016	1.01-11.01	-		-	143.63	
	4/4/2017		-	6.79	-	143.63	136.84
	3/29/2018		-	9.62	-	143.63	134.01
	6/29/2020		-	ABANDONED	-	143.63	ABANDONE
	12/3/2014		-	10.81	-	143.78	132.97
	12/13/2014		-	11.03	-	143.78	132.75
	8/31/2015	0.40.40.40	-	DRY	-	143.78	DRY
MW-24	6/1/2016	8.42-18.42	-	3.30	-	143.78	140.48
	4/4/2017		-	6.60	-	143.78	137.18
	3/29/2018		-	9.39	-	143.78	134.39
	6/29/2020		-	ABANDONED	-	143.79	ABANDONI
	12/3/2014		-	10.66	-	144.04	133.38
	12/13/2014		-	11.08	-	144.04	132.96
	8/31/2015		-	DRY	-	144.04	DRY
MW-25	6/1/2016	8.29-18.29	-	3.40	-	144.04	140.64
	4/4/2017		-	7.32	-	144.04	136.72
	3/29/2018		-	10.05	-	144.04	133.99
	6/29/2020		-	ABANDONED	-	144.04	ABANDONI
	12/3/2014		-	11.84	-	144.96	133.12
	12/13/2014		_	12.09	-	144.96	132.87
	8/31/2015		_	14.27	-	144.96	130.69
MW-26	6/1/2016	10-20	_	4.51	-	144.96	140.45
	4/4/2017		_	8.34	_	144.96	136.62
	3/29/2018		_	10.66	_	144.96	134.30
	6/29/2020			ABANDONED	_	144.96	ABANDONI
	12/3/2014		_	11.37	_	144.77	133.40
	12/13/2014			11.50		144.77	133.27
	8/31/2015		_	14.31	-	144.77	130.46
MW-27	6/1/2016	11-21	_	3.96	_	144.77	140.81
10100-27	4/4/2017	11-21	-	8.32	-	144.77	136.45
			-		-		
	4/4/2018		-	11.27	-	144.77	133.50
	6/29/2020		-	3.10	-	144.77	141.67
	12/3/2014		-	9.97	-	142.71	132.74
	12/13/2014		-	10.10	-	142.71	132.61
MAY 00	8/31/2015	44.04	-	10.59	-	142.71	132.12
MW-28	6/1/2016	11-21	-	NL	-	142.71	NL
	4/4/2017		-	NL	-	142.71	NL
	4/4/2018		-	13.08	-	147.16	134.08
	6/29/2020		-	5.80	-	147.16	141.36
	9/29/1999		-	12.79	-	145.77	132.98
	2/20/2012		-	17.75	-	145.77	128.02
	6/26/2012		-	14.65	-	145.77	131.12
	12/3/2014		-	NL	-	145.77	NL
TW-1	12/13/2014	31-36	-	12.69	-	145.77	133.08
1 VV-1	8/31/2015	31-30	-	12.26	-	145.77	133.51
	6/1/2016		-	NL	_	145.77	NL
	4/4/2017		-	9.24	_	145.77	136.53
	4/4/2018		-	11.53	_	145.77	134.24
	6/29/2020		_	4.22	_	145.77	141.55
	6/26/2012		-	13.95	-	143.98	130.03
	12/3/2014			10.79	_	143.98	133.19
	12/13/2014			11.93		143.98	132.05
			_		[
TW-2	8/31/2015	31-36	-	11.63	-	143.98	132.35
	6/1/2016		-	3.35	-	143.98	140.63
	4/4/2017		-	7.21	-	143.98	136.77
	4/4/2018 6/29/2020		-	10.05	-	143.98	133.93
			1	2.21	1 - 1	143.98	141.77

Well Head elevations obtained from SCDHEC Files.
 Groundwater depths were measured from the top of the PVC riser pipe.
 "Groundwater elavitions corrected for the presence of free product using a specific gravity of 0.85.

^{4.} NL = Not Located
5. NA = Information not available
6. DRY = Well Gauged DRY
7. Monitoring wells MW-17, MW-24, MW-25, and MW-26 were abandoned on 3/29/18.

																S	SCDHEC ID NU	JMBER 03538
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
Well Number	Sample Date	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 0.015	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	09/29/99	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
	02/20/12	DRY NS	DRY NS	DRY	DRY NS	DRY NS	DRY NS	DRY	DRY NS	DRY NS	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	06/26/12 12/03/14	1,300	6,000	NS 630	11,000	310.0	NS <40	NS <15	2.0	65	NS 790J	NS <20	NS <100	NS <670	NS <100	NS <40	NS <3300	NS <20
IGWA	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15 06/01/16	1,730 976	7,710 6,630	933 646	11,500 8,210	566 197J	<100 <200	<100 <200	0.26 0.28	NT NT	2,740 <4,000	<200 <400	<2,000 <4,000	<2,000 <4,000	<1,000 <2,000	<100 <200	<4,000 <8,000	<200 <400
	04/04/17	533	4,630	895	9,090	358	<125	<125	0.51	NT	<2,500	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/04/18 06/29/20	532 NL	2,990 NL	306 NL	8,440 NL	337 NL	<200 NL	<200 NL	0.84 NL	NT NL	<4,000 NL	<400 NL	<4,000 NL	<4,000	<2,000 NL	<200 NL	<8,000 NL	<400
	06/26/12	130	790	180	980	160	<25	<25	0.71	9.0J	NT NT	NT NT	NT NT	NL NT	NT NT	NT NT	NT	NL NT
	12/03/14	2,000	9,400	1,800	7,000	530	<40	<15	3.2	51	<2,500	<20	<2,500	<670	<100	<40	<3,300	<250
	12/13/14 08/31/15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NL	NS NL	NS NL	NS NL	NS NL	NS NL	NS NL	NS NL
IGWA-R	06/01/16	405	3,450	1,590	5,790	426	<125	<125	0.39	NT	<2,500	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/04/17 04/04/18	906 932	6,540 6,290	2,260 2,300	8,480 8,170	623 590	<250 <250	<250 <250	0.93 0.74	NT NT	<5,000 <5,000	<500 <500	<5,000 <5,000	<5,000 <5,000	<2,500 <2,500	<250 <250	<10,000 <10,000	<500 <500
	06/29/20	115	422	68.5	707	37.7	<20.0	<20.0	0.03	NT	<400	<40.0	<400	<400	<200	<20.0	<800	<40.0
	09/29/99 02/20/12	19,900 DRY	26,000 DRY	2,040 DRY	12,080 DRY	592 DRY	7,400 DRY	NT DRY	111 DRY	609 DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY
	06/26/12	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
	12/03/14	17,000	27,000	1,500	15,000	820	250J	<74	210	630	8,800J	<100	<500	<3,400	<500	<200	<17,000	<100
MW-1	12/13/14 08/31/15	NS 4,300	NS 7,020	NS 976	NS 5,230	NS 332	NS 288	NS 21.6J	NS 6.2	NS NT	NS 4,220	NS <100	NS <1,000	NS <1,000	NS <500	NS <50.0	NS <2,000	NS <100
	06/01/16	14,100	18,100	1,240	18,100	1,130	<1,000	<1,000	10.2	NT	<20,000	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000
	04/04/17 04/04/18	13,900 11,000	25,400 18,100	1,070 1,010	15,700 17,200	1,000 1,210	<1,000 <1,000	<1,000 <1,000	20.2 156	NT NT	<20,000 <20,000	<2,000 <2,000	<20,000 <20,000	<20,000 <20,000	<10,000 <10,000	<1,000 <1,000	<40,000 <40,000	<2,000 <2,000
	06/29/20	90.8	308	10.6J	313	40.1	<12.5	<12.5	0.077	NT	<250	<25.0	<250	<250	<125	<12.5	<500	<25.0
	09/29/99 02/20/12	18,500 DRY	28,300	3,360 DRY	15,270	670	19,500	NT DRY	ND DBV	403 DRY	NT	NT	NT	NT	NT	NT	NT	NT
	06/26/12	9,800	DRY 17,000	1,300	DRY 11,000	DRY 370	DRY 1,100	240J	DRY 65	390	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT
	12/03/14	4,800	8,200	940	4,500	260	250	<15	28	150	4,200	<20	<100	<670	<100	<40	<3,300	<20
MW-2	12/13/14 08/31/15	NS 4,760	NS 7,890	NS 996	NS 5,870	NS 355	NS 317	NS 21.9	NS 8.4	NS NT	NS 4,600	NS <50.0	NS <500	NS 420J	NS <250	NS <25.0	NS <1,000	NS <50.0
	06/01/16	2,870	3,760	364	2,500	139	281	<125	10.9	NT	2,680	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/04/17 04/04/18	270 4,070	21.3 5,900	39.9 943	49.0 4,400	23.6 165J	36.6 332	<10.0 <250	0.13 22.2	NT NT	259 4,630J	<20.0 <500	<200 <5,000	<200 <5,000	<100 <2,500	<10.0 <250	<400 <10,000	<20.0 <500
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL NL	4,0303 NL	NL	NL	NL	NL	NL	NL	NL
	09/29/99 02/20/12	6,800 PROD	16,900 PROD	2,380 PROD	14,020 PROD	570 PROD	31.5 PROD	NT PROD	81.1 PROD	116 PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD
	06/26/12	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD
	12/03/14	2,000	10,000	1,600	11,000	780	<40	<15	3.2	100	2,200	<20	<100	<670	<100	<40	<3,300	<20
MW-3	12/13/14 08/31/15	NS 4,220	NS 7,460	NS 972	NS 5,810	NS 375	NS 312	NS 19.9J	NS 6.6	NS NT	NS 5,120	NS <50.0	NS <500	NS 431J	NS <250	NS <25.0	NS <1,000	NS <50.0
	06/01/16	1,620	11,200	2,020	13,000	996	<500	<500	0.91	NT	<10,000	<1,000	<10,000	<10,000	<5,000	<500	<20,000	<1,000
	04/04/17 04/04/18	1,580 1,490	10,900 9,660	1,810 1,910	12,000 11,700	810 884	<500 <500	<500 <500	0.97 1.3	NT NT	<10,000 <10,000	<1,000 <1,000	<10,000 <10,000	<10,000 <10,000	<5,000 <5,000	<500 <500	<20,000 <20,000	<1,000 <1,000
	06/29/20	450	2,560	792	5,310	435	<125	<125	0.21	NT	<2,500	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	09/29/99 02/20/12	19,300 PROD	34,300 PROD	4,630 PROD	21,500 PROD	800 PROD	4,530 PROD	NT PROD	ND PROD	113 PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT PROD
	06/26/12	8,500	22,000	21,000	17,000	1,100	<500	<500	14	440	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14 12/13/14	3,600 NS	9,100 NS	810 NS	10,000 NS	710 NS	<80 NS	<29 NS	2.20 NS	110 NS	2,800J	<40	<200	<1,300	<200	<80 NS	<6,600	<40 NS
MW-4	08/31/15	4,390	7,900	953	5,940	366	301	19.6J	6.9	NT	NS 5,100	NS <50.0	NS <500	NS 439J	NS <250	<25.0	NS <1,000	<50.0
	06/01/16	NL	NL	NL	NL	NL	NL 105	NL 105	NL	NL	NL	NL	NL 0.500	NL 0.500	NL 11.050	NL	NL	NL
	04/04/17 04/04/18	2,210 1,870	3,800 4,230	703 503	5,130 4,600	363 342	<125 <125	<125 <125	1.6 1.0	NT NT	2,760 3,230	<250 <250	<2,500 <2,500	<2,500 <2,500	<1,250 <1,250	<125 <125	<5,000 <5,000	<250 <250
	06/29/20	1,070	4,030	744	4,200	304	<200	<200	1.6	NT	<4,000	<400	<4,000	<4,000	<2,000	<200	<8,000	<400
	09/29/99 02/20/12	1,590 640	7,410 5,100	1,850 990	10,320 5,800	560 210	13.1 <5.0	NT 12	11.9 0.45	43 670	NT <6.7	NT <0.20	NT <1.0	NT <6.7	NT <1.0	NT <0.40	NT <33	NT <0.20
	06/26/12	810	7,400	1,500	10,000	770	<200	<200	0.86	31	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14 12/13/14	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
MW-5	08/31/15	NL NL	NL	NL NL	NL NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL
	06/01/16	20.4	88.8	93	147	47.2	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17 04/04/18	101 196	424 684	1,020 1,130	2,940 2,520	427 299	<50.0 <50.0	<50.0 <50.0	<0.020 <0.020	NT NT	<1,000 <1,000	<100 <100	<1,000 <1,000	<1,000 <1,000	<500 <500	<50.0 <50.0	<2,000 <2,000	<100 <100
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL	ŇL	NL	NL	NL	NL	NL	ŇL	NL
	09/29/99 02/20/12	ND DRY	5 DRY	5.72 DRY	25.93 DRY	7.8 DRY	ND DRY	NT DRY	ND DRY	23 DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT DRY
	06/26/12	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	9.7J	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	2.3J	180 NS	<0.20	<1.0	8.9 NS	<1.0	<0.40	<33	<0.20
MW-6	12/13/14 08/31/15	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <0.019	NS NT	NS <100	NS <10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17 04/04/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	06/29/20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0

.

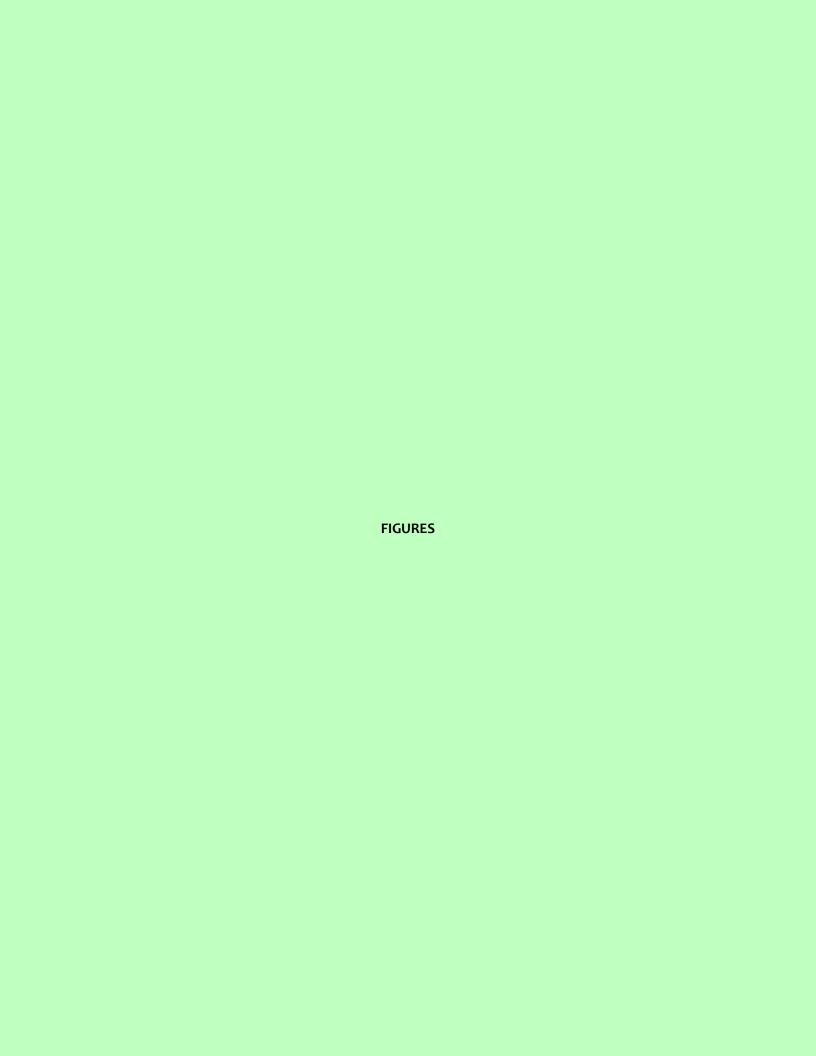
	SCD												CDHEC ID NU	MBER 03538				
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
Well Number	Sample Date	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)
		RBSL 5	RBSL 1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05	RBSL 0.015	RBSL 240	RBSL 128	RBSL NE	RBSL 1,400	RBSL NE	RBSL 150	RBSL 10,000	RBSL 47
	09/29/99	ND	5,440	1,750	7,350	530	979	NT	ND	25	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12 06/26/12	180 390	870 3,000	740 1,700	2,500	210	<5.0 <200	4.1J	<0.020 <0.063	280 25	140 NT	<0.20 NT	2.5J NT	8.9J NT	<1.0 NT	<0.40 NT	<33 NT	<0.20 NT
	12/03/14	210	740	1,700	7,500 3,700	600 270	<200 <20	<200 <7.4	<0.003	8.1J	<340	<50	<50	<340	<50	<20	<1,700	<10
MW-7	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15 06/01/16	180 <5.0	475 <5.0	1,090 <5.0	2,320 <5.0	283 2.1J	<25.0 <5.0	<25.0 <5.0	<0.019 <0.020	NT NT	647 <100	<50.0 <10.0	<500 <100	<500 <100	<250 <50.0	<25.0 <5.0	<1,000 <200	<50.0 <10.0
	04/04/17	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	04/04/18 06/26/20	3.7J <5.0	2.4J <5.0	5.3 <5.0	34.5 <5.0	5.7 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	09/29/99	ND	65.1	1,110	5,690	410	ND	NT	ND	16	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12	<0.20	<1.7 <5.0	<1.7	3.4J	4.1J 20	<0.40	<0.30	<0.019	140	72J	<0.20	<1.0	18J	<1.0	<0.40	<33	<0.20
	06/26/12 12/03/14	<5.0 <0.13	<0.33	6.9 <0.33	29 <0.33	<0.40	<5.0 <0.40	<5.0 <0.15	<0.021 <0.020	20 31	NT <6.7	NT <1.0	NT <1.0	NT <6.7	NT <1.0	NT <0.40	NT <33	NT <0.20
MW-8	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15 06/01/16	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18 06/29/20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	09/29/99	ND	ND	ND	1.46	ND	ND	NT	ND	12	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12 06/26/12	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	12/03/14	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
MW-9	12/13/14	NL NI	NL NI	NL	NL	NL	NL	NL NI	NL NI	NL	NL	NL	NL	NL NI	NL NI	NL	NL NI	NL NII
	08/31/15 06/01/16	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	04/04/17	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	04/04/18 06/29/20	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL NL	NL NI	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	09/29/99	ND	4.09	2.63	7.43	ND	14.15	NT	ND	13	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12 06/26/12	<0.20 <5.0	<1.7 <5.0	<1.7 <5.0	<1.7 <5.0	<1.7 <5.0	<0.40 <5.0	<0.30 <5.0	<0.023 <0.019	2.9 11	<6.7 NT	<0.20 NT	<1.0 NT	<6.7 NT	<1.0 NT	<0.40 NT	<33 NT	<0.20 NT
	12/03/14	NL	NL	NL	NL	NL NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
MW-10	12/13/14 08/31/15	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	06/01/16	NL	NL	NL NL	NL NL	NL NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL NL	NL	NL NL
	04/04/17 04/04/18	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	06/29/20	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	12/03/14	<0.13	<0.33 NS	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	28	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14 08/31/15	NS <5.0	<5.0	NS <5.0	NS <10.0	NS <5.0	NS <5.0	NS <5.0	NS <0.019	NS NT	NS <100	NS <10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
MW-10R	06/01/16	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL NI	NL
	04/04/17 04/04/18	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
	06/29/20	NL	NL	NL .	NL	NL .	NL	NL .	NL	NL	NL	NL 110.0	NL	NL 1100	NL 50.0	NL 15.0	NL	NL 110.0
MW-10RR	04/04/18 06/29/20	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	0.028 NL	NT NL	<100 NL	<10.0 NL	<100 NL	<100 NL	<50.0 NL	<5.0 NL	<200 NL	<10.0 NL
	09/29/99	10.1	1.63	19.90	11.18	15.2	ND	NT	ND	120	NT	NT	NT	NT	NT	NT	NT	NT
	02/20/12 06/26/12	DRY <5.0	DRY <5.0	DRY <5.0	DRY <5.0	DRY <5.0	DRY <5.0	DRY <5.0	DRY <0.020	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT
	12/03/14	<0.13	< 0.33	< 0.33	<0.33	<0.40	<0.40	<0.15	<0.020	NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
MW-11	12/13/14 08/31/15	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <0.020	NS NT	NS <100	NS <10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17 04/04/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.019	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	06/29/20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	09/29/99 02/20/12	591 530	1,350 3,100	640 1,500	2,123 4,400	8.4 260	8.68 < 0.40	NT 10	ND 0.21	16 5.2	NT 630	NT <0.20	NT 1.1J	NT 9.5J	NT <1.0	NT <10	NT <33	NT <0.20
	06/26/12	13	16	73	49	46	<5.0	<5.0	<0.019	3.0J	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	NS	NS	NS 5.2	NS	NS 15.0	NS 15.0	NS 15.0	NS 10.010	NS	NL	NL	NL <0.20	NL	NL	NL co.40	NL <33	NL 50.20
MW-14	12/12/14 08/31/15	2.8 3.4J	2.0 <5.0	5.3 10.9	4.9 <10.0	<5.0 8.4	<5.0 <5.0	<5.0 <5.0	<0.019 <0.019	NT NT	7.9 <100	<1.0 <10.0	<0.20 <100	<6.7 <100	<1.0 <50.0	<0.40 <5.0	<200	<0.20 <10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17 04/04/18	<5.0 NL	<5.0 NL	<5.0 NL	<10.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<0.020 NL	NT NL	<100 NL	<10.0 NL	<100 NL	<100 NL	<50.0 NL	<5.0 NL	<200 NL	<10.0 NL
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	06/26/12 12/03/14	92 <0.13	280 < 0.33	140 <0.33	380 < 0.33	1.3 <0.40	<25 <0.40	<5.0 <0.15	0.05 < 0.020	8.6J <1.9	NT <6.7	NT <0.20	NT <1.0	NT <6.7	NT <1.0	NT <0.40	NT <33	NT <0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-15	08/31/15 06/01/16	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.019 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/17	<5.0	<5.0 <5.0	<5.0 <5.0	<10.0	<5.0	<5.0	<5.0 <5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL

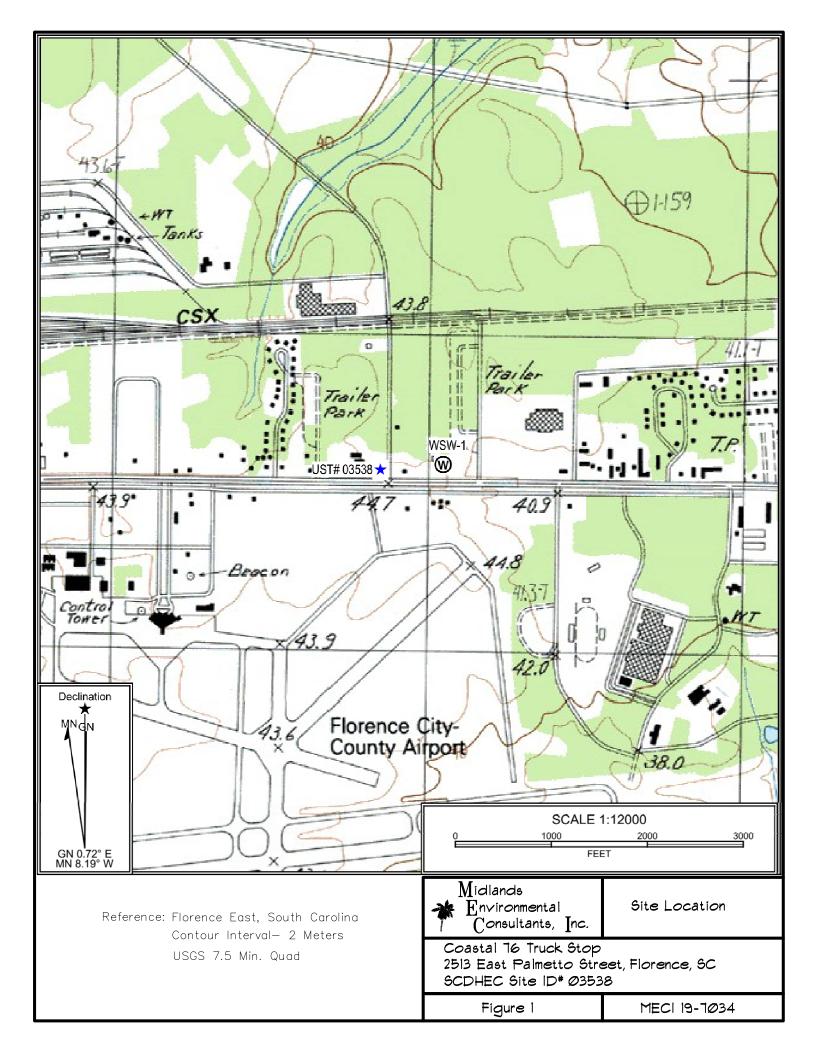
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
Well Number	Sample Date	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL
	00/00/40	5	1,000	700	10,000	25	40	5	0.05	0.015	240	128	NE	1,400	NE	150	10,000	47
	06/26/12 12/03/14	180 1.3	580 0.62J	83 <0.33	380 0.68J	39 <0.40	5.4J 1.1	<25 <0.15	0.59 0.031	16 <1.9	NT <6.7	NT <0.20	NT <1.0	NT <6.7	NT <1.0	NT <0.40	NT <33	NT <0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	759	138	286	211	70.1	10.5	1.8J	<0.020	NT	678	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-16	06/01/16	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	06/26/12	880	1,500	1,500	5,700	980	20J	<100	2.8	35	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	230	600	1,000	5,000	340	<20	<7.4	0.7	31	<340	<10	<50	<340	<50	<20	<1700	<10
100/47	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	5,020	8,730	1,200	6,430	391	331	20.5J	9.5	NT	4,930	<50.0	<500	421J	<250	<25.0	<1,000	<50.0
MW-17	06/01/16	2,680	5,400	1,780	5,890	506	<200	<200	4.7	NT	<4,000	<10	<4,000	<100	<50.0	<200	<8,000	<400
	04/04/17	91.4	11.9	17.3	131	22.8	<5.0	<5.0	0.11	NT	96.7J	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	1,720	2,700	1,020	5,830	449	81.5J	<125	5.1	NT	3,590	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	06/29/20	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
	06/26/12	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	11	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14	<0.13	<0.33	0.40J	80	21	<0.40	<0.15	<0.019	<1.9	<6.7	<0.20	<1.0	12J	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-18	08/31/15	2,720	14,500	2,050	14,700	2,450	<1,000	<1,000	4.3	NT	25,200	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<0.33	< 0.33	<0.33	<0.40	<0.40	<0.15	<0.020	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-19	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-20	06/01/16 04/04/17	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL	NL
	04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	NL <10.0	NL <100	NL <100	NL <50.0	NL <5.0	NL <200	NL <10.0
	06/29/20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	6.9J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-21	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	2J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	<0.13	< 0.33	< 0.33	< 0.33	<0.40	<0.40	<0.15	<0.020	NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
MW-22	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	06/29/20	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	3.4J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-22D	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
WWW ZZB	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	06/29/20	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	43	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
A #14/ 00	08/31/15	<5.0	16.4	<5.0	<5.0	4.2J	<5.0	<5.0	<0.023	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-23	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
	12/03/14	<0.13	< 0.33	< 0.33	< 0.33	<0.40	<0.40	<0.15	<0.020	2J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	NS	NS	NS	NS	NS	NS	NS	NS	NS	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
MW-24	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	3.1J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/15	NS	NS	NS	NS	NS	NS	NS	NS	NS	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
MW-25	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.021	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED

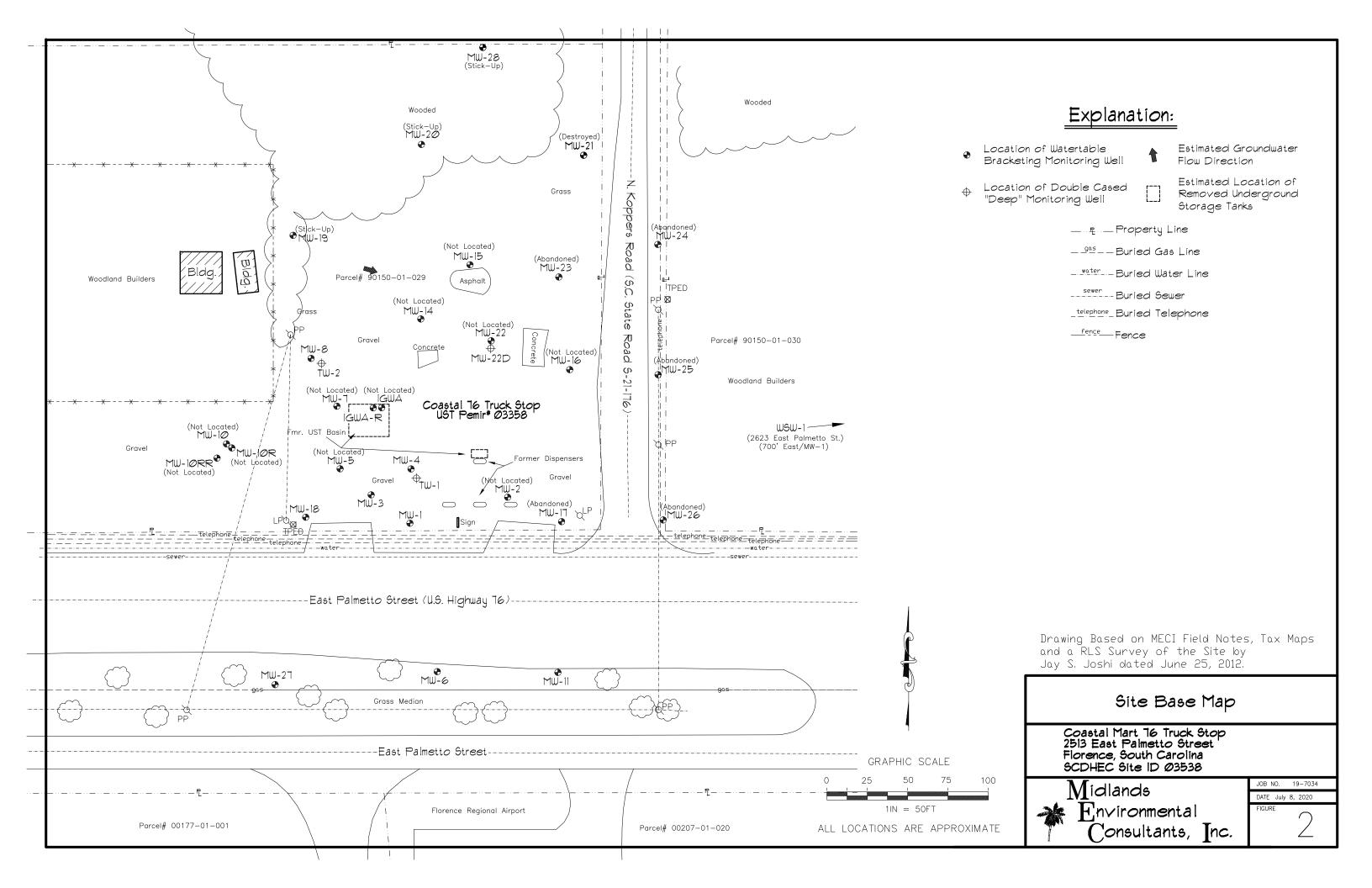
SCDHEC ID NUM											UMBER 03538							
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
Well Number	Sample Date	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL
		5	1,000	700	10,000	25	40	5	0.05	0.015	240	128	NE	1,400	NE	150	10,000	47
	12/03/14 12/13/14	<0.13 NS	<0.33 NS	<0.33 NS	<0.33 NS	<0.40 NS	<0.40 NS	<0.15 NS	<0.020 NS	3.3J NS	<6.7 NS	<0.20 NS	<1.0 NS	<6.7 NS	<1.0 NS	<0.40 NS	<33 NS	<0.20 NS
	08/31/15	<5.0	<5.0	<5.0	<10.0	4.0J	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
MW-26	06/01/16 04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20 12/03/14	NL <0.13	NL <0.33	NL <0.33	NL <0.33	NL <0.40	NL <0.40	NL <0.15	NL <0.019	NL <1.9	NL <6.7	NL <0.20	NL <1.0	NL <6.7	NL <1.0	NL <0.40	NL <33	NL <0.20
	12/13/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-27	08/31/15 06/01/16	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18 06/29/20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.019	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	3.3J	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/13/14 08/31/15	NS <5.0	NS <5.0	NS <5.0	NS <10.0	NS 4.2J	NS <5.0	NS <5.0	NS <0.020	NS NT	NS <100	NS <10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
MW-28	06/01/16	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
	04/04/17 04/04/18	NL <5.0	NL <5.0	NL <5.0	NL <5.0	NL <5.0	NL <5.0	NL <5.0	NL <0.020	NL NT	NL <100	NL <10.0	NL <100	NL <100	NL <50.0	NL <5.0	NL <200	NL <10.0
	06/29/20	<5.0 89.6	<5.0 289	<5.0	<5.0 377	<5.0 5	<5.0 15	<5.0 NT	<0.020 ND	NT 7	<100	<10.0	<100	<100	<50.0	<5.0 NT	<200 NT	<10.0 NT
	09/29/99 02/20/12	<0.20	<1.7	91.5 <1.7	<1.7	2.6J	< 0.40	<0.30	<0.019	13	NT <6.7	NT <0.20	NT <1.0	NT <6.7	NT <1.0	<0.40	<33	<0.20
	06/26/12 12/03/14	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<0.020 NL	3.4J NL	NT NL	NT NL	NT NL	NT NL	NT NL	NT NL	NT NL	NT NL
TW-1	12/13/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.020	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
1 44-1	08/31/15 06/01/16	564 NL	4,820 NL	1,430 NL	7,990 NL	525 NL	<100 NL	<100 NL	0.13 NL	NT NL	<2,000 NL	<200 NL	<2,000 NL	<2,000 NL	<1,000 NL	<100 NL	<4,000 NL	<200 NL
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18 06/29/20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	06/26/12	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.020	11	NT	NT	NT	NT	NT	NT	NT	NT
	12/03/14 12/13/14	<0.13 NS	<0.33 NS	<0.33 NS	<0.33 NS	<0.40 NS	<0.40 NS	<0.15 NS	<0.020 NS	<1.9 NS	<6.7 NS	<0.20 NS	<1.0 NS	<6.7 NS	<1.0 NS	<0.40 NS	<33 NS	<0.20 NS
TW-2	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/01/16 04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20 04/04/18	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 2.0	<5.0 <0.50	0.068 < 0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <1.0	<200 <200	<10.0 <10.0
WSW-1	04/18/18	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	3.0 1.1	NT <0.50	NT	NT NT	NT <100	NT <10.0	NT <100	NT <100	NT <50.0	NT <1.0	NT <200	NT <10.0
	08/14/19 06/29/20	<0.50	<0.50	<0.50	<0.50	<0.50	1.1 5.4	<0.50	NT <0.020	NT NT	<100	<10.0	<100	<100	<50.0 <50.0	<1.0	<200 <200	<10.0
MW-3 Dup. MW-4 Dup.	12/02/14 12/03/14	2,000 4,000	11,000 9,600	1,700 820	10,000 9,500	750 640	<40 <40	<15 <15	3.2 2.0	100 130	1,900J 2,800	<20 <20	<100 <100	<670 <670	<100 <100	<40 <40	<3,300 <3,300	<20 <20
IGWA Dup.	08/31/15	1,670	7,540	792	10,200	588	<100	<100	0.81	NT	1,410	<50.0	<500	<500	<250	<25.0	<1,000	<50.0
MW-7 Dup. DUP.1(IGWA)	08/31/15 06/01/16	1,970 1,150	7,550 7,730	877 724	12,000 8,970	478 193J	<25.0 <250	<25.0 <250	0.86 0.27	NT NT	2,810 <5,000	<200 <500	<2,000 <5,000	<2,000 <5,000	<1,000 <2,500	<100 <250	<4,000 <10,000	<200 <500
DUP-2. (IGWA-R) DUP.1(IGWA)	06/01/16 04/04/17	434 528	3,670 4,590	1,710 901	6,300 9,120	471 350	<125 <125	<125 <125	0.50 0.49	NT NT	<2,500 <2,500	<250 <250	<2,500 <2,500	<2,500 <2,500	<1,250 <1,250	<125 <125	<5,000 <5,000	<250 <250
DUP-2. (IGWA-R)	04/04/17	898	7,100	2,100	6,690	658	<250	<250	0.70	NT	<5,000	<500	<5,000	<5,000	<2,500	<250	<10,000	<500
DUP-1(MW-17) DUP-1(IGWA)	03/29/18 04/04/18	1,290 562	1,590 3,030	677 296	4,050 7,870	352 350	66.9 <200	<50.0 <200	4.3 0.77	NT NT	1,850 <4,000	<100 <400	<1,000 <4,000	<1,000 <4,000	<500 <2,000	<50.0 <200	<2,000 <8,000	<100 <400
DUP(WSW-1)	04/04/18	<0.50	< 0.50	<0.50	< 0.50	<0.50	2.1	<0.50	<0.021	NT	<100	<10.0	<100	<100	<50.0	<1.0	<200	<10.0
DUP(WSW-1) DUP(WSW-1)	04/18/18 08/14/19	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	2.7 3.0	NT <0.50	NT NT	NT NT	NT <100	NT <10.0	NT <100	NT <100	NT <50.0	NT <1.0	NT <200	NT <10.0
DUP(MW-1)	06/29/20	80.2	281	8.7J	286	32.3	<10.0	<10.0	<0.020	NT	<200	<20.0	<200	<200	<100	<10.0	<400	<20.0
DUP(WSW-1)	06/29/20 12/02/14	<0.50 <0.13	<0.50 <0.33	<0.50 <0.33	<0.50 <0.33	<0.50 <0.40	4.2 <0.40	<0.50 <0.15	<0.019 <0.020	NT <1.9	<100 <6.7	<10.0 <0.20	<100 <1.0	<100 <6.7	<50.0 <1.0	<1.0 <0.40	<200 <33	<10.0 <0.20
	12/03/14	<0.13	< 0.33	<0.33	<0.33	<0.40	< 0.40	<0.15	<0.020	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/12/14 08/31/15	<0.13 <5.0	<0.33 <5.0	<0.33 <5.0	<0.33 <10.0	<0.40 <5.0	<0.40 <5.0	<0.15 <5.0	<0.020 <0.019	NT NT	<6.7 <100	<0.20 <10.0	<1.0 <100	<6.7 <100	<1.0 <50.0	<0.40 <5.0	<33 <200	<0.20 <10.0
	06/01/16 04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 168J	<10.0 <10.0
Field Blank	03/29/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200	<10.0
	04/04/18 04/04/18	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<5.0 <0.50	<0.019 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <1.0	<200 <200	<10.0 <10.0
	04/18/18	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	08/14/19 06/29/20	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	NT <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<1.0 <5.0	<200 <200	<10.0 <10.0
	06/29/20	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.019	NT	<100	<10.0	<100	<100	<50.0	<1.0	<200	<10.0
	12/03/14 12/03/14	<0.13 <0.13	<0.33 <0.33	<0.33 <0.33	<0.33 <0.33	<0.40 <0.40	<0.40 <0.40	<0.15 <0.15	NT NT	NT NT	<6.7 <6.7	<0.20 <0.20	<1.0 <1.0	<6.7 <6.7	<1.0 <1.0	<0.40 <0.40	<33 <33	<0.20 <0.20
	12/03/14	<0.13	< 0.33	< 0.33	< 0.33	<0.40	<0.40	<0.15	NT	NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
	12/12/14 08/31/15	<0.13 <5.0	<0.33 <5.0	<0.33 <5.0	<0.33 <10.0	<0.40 <5.0	<0.40 <5.0	<0.15 <5.0	NT NT	NT NT	<6.7 <100	<0.20 <10.0	<1.0 <100	<6.7 <100	<1.0 <50.0	<0.40 <5.0	<33 <200	<0.20 <10.0
	06/01/16	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	NT	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
Trip Blank	04/04/17 03/29/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	NT NT	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	04/04/18 04/04/18	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NT	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 NT	NT NT	NT NT	<100 NT	<10.0 NT	<100 NT	<100 NT	<50.0 NT	<1.0 NT	<200 NT	<10.0 NT
	08/14/19 06/29/20	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	NT NT	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<1.0 <5.0	<200 <200	<10.0 <10.0
	06/29/20	<0.50	<5.0 <0.50	<0.50	<0.50	<0.50	<5.0 <0.50	<0.50	NT NT	NT NT	<100	<10.0 <10.0	<100	<100	<50.0 <50.0	<5.0 <1.0	<200 <200	<10.0
	BDL = Below Practic ug/l = micrograms per				 DRY = Well was Dr NT = Not Tested. 	y at the time of Sampling			Total BTEX Calculations oncentrations above the			 DIPE = Diisoprop ETBE = Ethyl ter- 			24. ETBA = 3,3-Dimeti 25. ABD. = Well Has b			
	ug/l = micrograms per liter mg/l = milligrams per liter				EDB = Ethylene Dil	oromide			DL) and below actual rep			20. TAA = tert-Amyl A			_3.7.05 WOII 1 Id3 D			

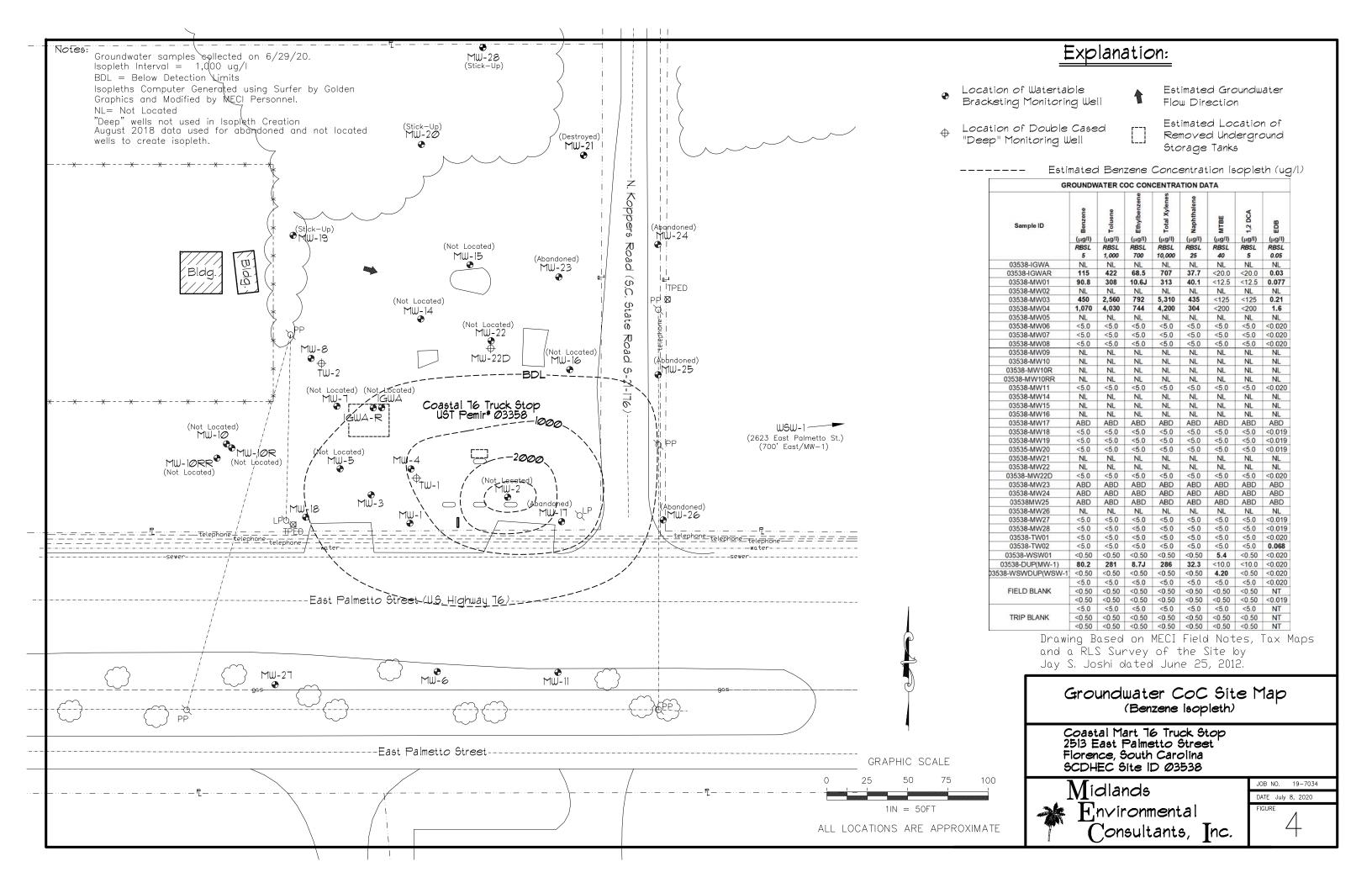
06/29/20 <0.50

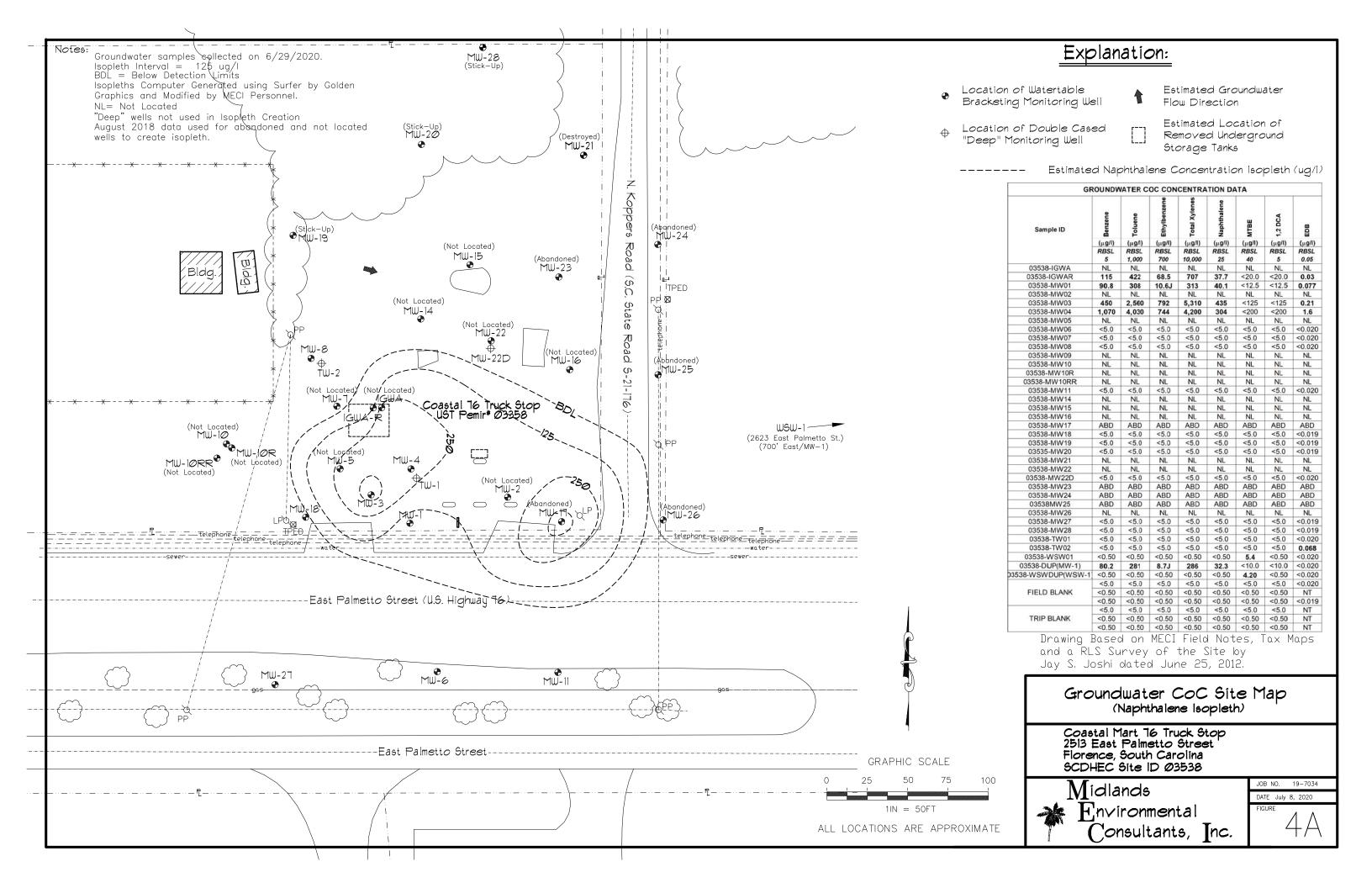
1. BDL = Below Practical Quantitative Limits
2. ug/l = micrograms per liter
3. mg/l = milligrams per liter
4. MTBE = Methyl-Tertiary-Butyl Ether
5. See Appendix for Laboratory Detection Limits 6. NL = Not Located

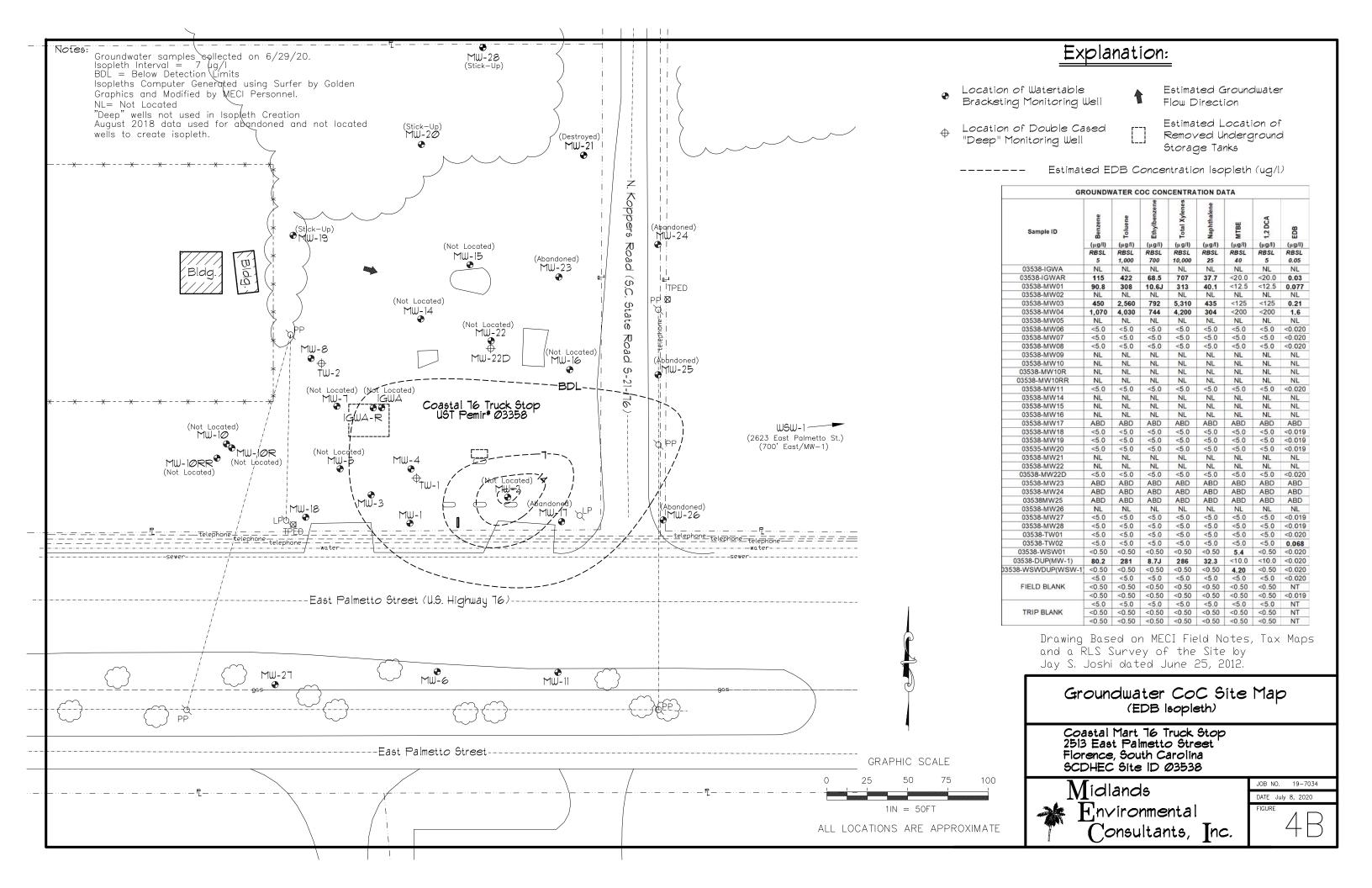

<0.50 <0.50

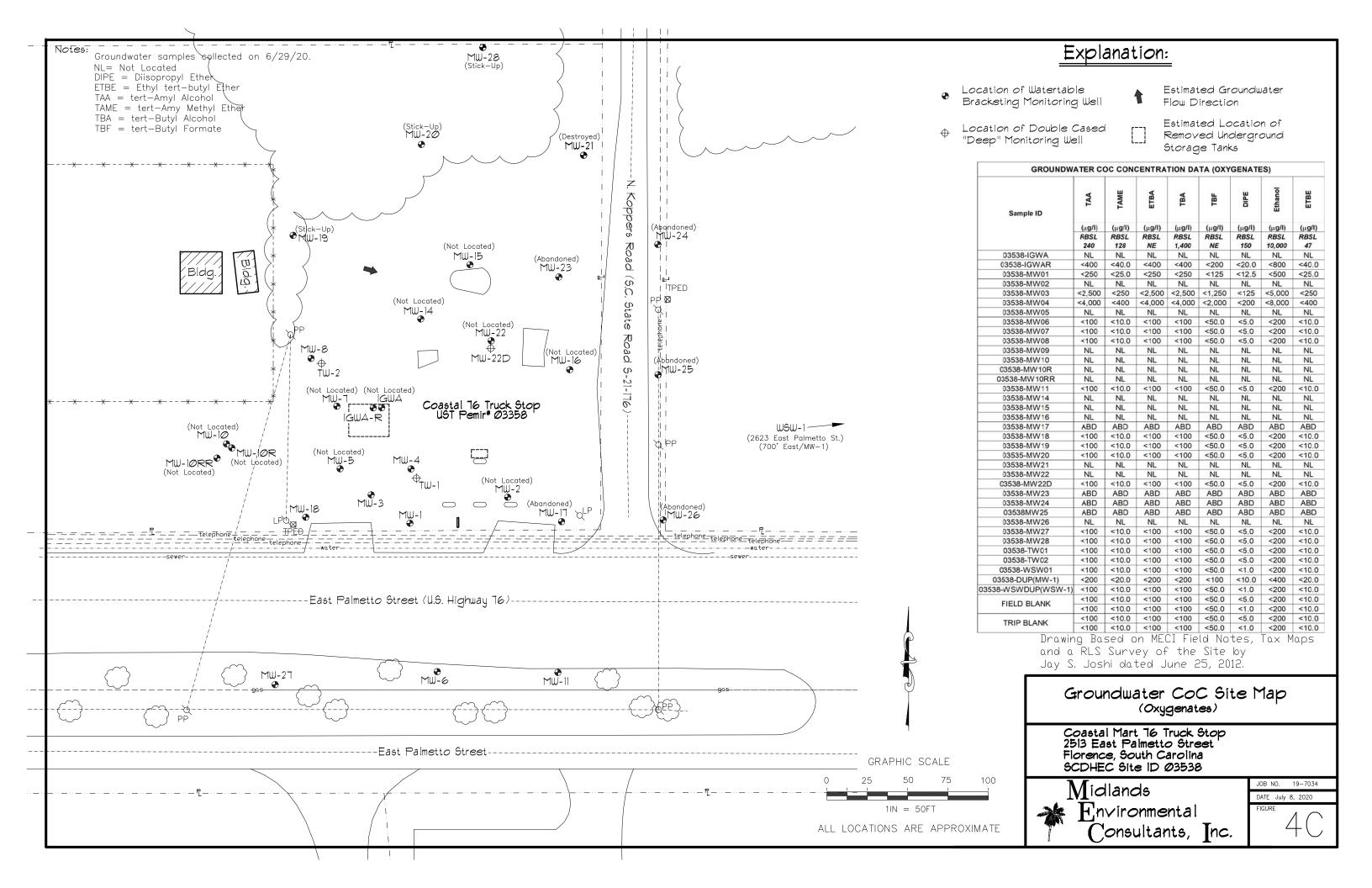

7. DRY = Well was Dry at the time of Sampling
8. NT = Not Tested.
9. EDB = Ethylene Dibromide
10. 1,2 DCA = 1,2-Dichloroethane
11. PROD = Free Phase Petroleum Product
12. * = Sample collected beneath Product

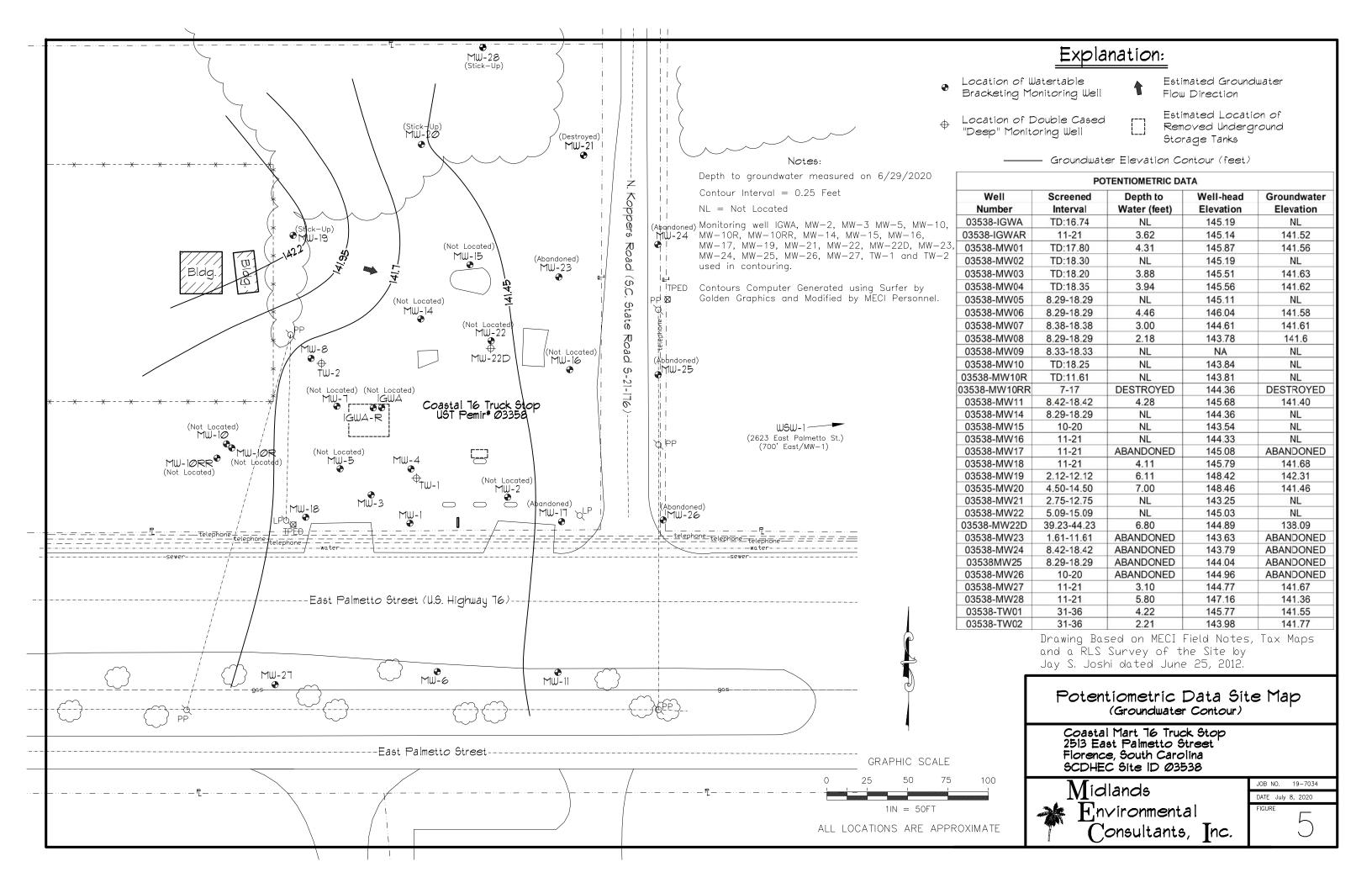

40.50
 NT
 NT
 13. "J" Values used in Total BTEX Calculations
 14. "J" values report concentrations above the method detection limits (MDL) and below actual reporting limit (RL).
 15. B = Detected in Method Blank
 16. S = MS/MSD Failure
 17. P = The RPD between the two columns exceeds 40%.


<10.0 <10</p>
18. DIPE = Diisopropyl Ether
19. ETBE = Ethyl ter-butyl Ether
20. TAA = tert-Amyl Alcohol
21. TAME = tert-Amyl Methyl Ether


22. TBA = ter-Butyl Alcohol 23. TBF = tert-Butyl Formate







APPENDIX A:

SITE SURVEY (Not Applicable)

APPENDIX B: SAMPLING LOGS, LABORATORY DATA SHEETS, & CHAIN-OF-CUSTODY FORMS

Midla Finvi Cor	Communication	Jnc.					Moni	torin	g W	ell P	urge				
Field Personnel:	CP.5	DKT	DC				All	d San	<u>ıplir</u>	ig D	ata				
pampang Date(s):	6/29	120	KG			Job Name:	Coasta	176			Calil	oration Dat	a for:	lo (Please Ci	
Sampling Case#:						Job Number	49 19-	1059			Conductiv	/ih//:	Yes		rcie)
Well No.	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO	Turbidity				Dissolved	Ovvoen		No No ery 3 Months by	- QA Managa-
	Initial	Time			(°C)	(mg/l)	(NTU)		pth to (feet nitial H ₂ O		Asen Debth	Water Height		s Purged	
ToulA	1st	- II							modi ngO	final H ₂ 0	(feet)	*(feet)	**calc.	actual	Notes
TOWIT	2nd 3rd			MIT											
	4th			TVOV	OX	ALP/	V)								
	5th					01 (1								3
	Sampling							1							
	initial	14:00	5.77.	167.1	24 (
IGWA-R	1st	4:03	3,67	151.9	25 3	6,01	67,19								
toma V	2nd 3rd	4:06	366-6	144.3	742	1.36	90.25	1			M		297		
}	4th	4:17	2.65	143.7	7401	1.86	151.3	1	3,62		11)	17.38	2.83	NCC 30	Olor
ľ	5th	4:15	5.60	140.	360	1.84	10.0	1	,,,,			.		14.25	
	Sampling	1137	2.00	135.9	13,9	1.83	76.11				21		14.16		
	Initial	11:20	a. ()	110.1	24.1								rie		
MM-1	1st	1220	150	101,9	200	219	60,21				7 00				
1110 1	2nd 3rd	1027	6, (8	96.5	23.9	2.09	86.94				TO:		270		01
	4th	1-23	0-17	44	23,8	2.06	174.2	Ú	31	ļ	17.80	13.49	2.20		Edor
	5th	11:30	6.17	87.4	13.7	7.01	16110		0	-		12.7			Dal
	Sampling		QHQ.	011	3.6	686	69.01				.]		10.99	/ /	1 vap (
X 12X	- Initial												w. [·
MINI->	2nd														
1 / 00/	3rd			1		n I									8
_	4th			Nor	1000	uea									
1	5th											}			
(D. 11)	Sampling														
(Depth of Well) - (Depti e Well Volume =x.047 fo	i to Water = v	Vater Height													
le Well Volume =x.047 fo	∽ i wells "x	.163 for 2" We	ells, or * x .66	for 4" wells,	1.469 for 6" v	**= One Well \ vells	/olume x 5 = G	allons Purg	ed (calcu	lated)					
	C	Casing	Gallons		•						<u> </u>	Case #1	Ph/Conductance SN 15H101448	DO SN	Turbidity
	}	1"	0.047 0.163									Case #2	15E101481	12G102878 14H103098	201301183
		6"	0.653								Ĺ	Case #3	10K 101895		201301174 201510251

Midlands **Monitoring Well Purge** Environmental Consultants, Inc. And Sampling Data Field Personnel: Calibration Data for Sampling Date(s): Calibration Successful? Yes or No (Please Circle) Sampling Case#: Conductivity: No Yes Dissolved Oxygen: Yes No Well No. Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Purge Sample pH(i) cond(i) Temp. Volume DO Turbidity Time Depth to (feet): Well Depth Water Height (°C) Initial (mg/l) (NTU) Gallons Purged product Initial H₂O final H₂O *(feet) Notes 2nd 3rd 3.88 4th Ð 6th Sampling 0 1st 2nd TI): No 3rd 3.94 4th 5th Sampling Initial 1st 2nd O MEDI 8.29 3rd 4th 5th Sampling Initial ist MW-6 2nd 8.29 3rd 4.46 4th Sampling *= (Depth of Well) - (Depth to Water = Water Height One Well Volume =x.047 for 1" wells *x.163 for 2" wells, or *x.66 for 4" wells, 1.469 for 6" wells **= One Well Volume x 5 = Gallons Purged (calculated)

Casing	Gallons
1"	0.047
2"	0.163
4"	0.653
6"	1.469

			1
Sampling Case#	Ph/Conductance SM		
Case #1	A Sanductance SM	DO SN	Total Co.
	15H101448	12G102878	Turbidity
Case #2	15E101481	120102878	201301183
Case #3	1001461		201301174
Case #3	10K 101895	0.0	2013011/4
		000101407	201510251

Midle Env	ironmenta insultants, CP, 5	Inc					Moni	toring W	ell F	Purge				
ield Personnel:	CP.5	DET	OC.				And	l Sampli	ng D	ata				
Sampling Date(s):	6/29	1/20	K C		-	Job Name	: Coasta	176	_	<u>Cali</u> Calibratio	bration Dat	a for	lo (Please Ci	
ampling Case#:	_'3		,		-	Job Numbe	r: 49 19 -	7034	-	OUNTAGE	VIIV.	Yes	lo (Please Ci No No	rcie) -
Well No.	Purge Volume	Sample Time	pH(i)	cond(i)	Temp.	DO	Turbidity			urbidity:	Oxygen: Conductivity	Yes Calibrated Eve	No Pry 3 Months by	- - QA Manago
	initial	14:00	6.09	I CO ((°C)	(mg/l)	(NTU)	Depth to (fe	et): Inál H ₂ 0	- asen nebtu	Water Heigh		s Purged	- manage
N1:	ist	14:03	6.06	150.1	73.4	7,30	67.19	Product Milital H ₂ C	final H ₂ C	(feet)	*(feet)	**caic.	actual	Notes
MW-7	2nd	14:06	6.05	1247	73,4	0,63	98.32			9.75		20		IA I
	3rd 4th	14:09	6.04	130.7	73.0	2.17	136.2	3.00		8.38	15 70	2.51		No
	5th	14:12	100	176.9	22.9	714	17215				15.38		12.75	Odo.
	Sampling	14:12	5.97	170.5	22.5	217	80.01			18.38		17.53	1600	
	Initial	10:15	097	2100			70.0	Ì	1			1602		
	1st		9,83	187.9	77.9	1.34	71.01		 					1
MW-8	2nd	15:01	5,81	107.9	22.7	(.31	965		-	8.29		- (0		A .
/ 100 0	3rd	10:24	5.78	101.0	22,05	1,50	11-15	9 (5)	}	0.01	1/ (1	2.63	}	16
	4th	(0:27	5,74	96.2	77.1	1.23	1650	2.18		-	16.11		13.25	· .
	5th	10:30	5.71	91.4	72.3	1.20	151.1			18.29			15.00	Odos
	Sampling				000	1018	87.01			10.01		13.13		
	1st													
D-1.W	2nd													
P-WN	3rd		A				 							
-	4th			vor 6	00/	ap								
	· 5th													
	Sampling													
	Initial					· .								
AL 1	1st		A		Α		-			T				
$M = 10^{\circ}$	2nd 3rd			or	O Ca,	20								
-	4th		-											
	5th									1.				
	Sampling													
(Depth of Well) - (Dep e Well Volume =x,047	oth to Water = \	Water Height												
e Well Volume =x.047	· · · · wells * x	.163 for 2" W	'ells, or * x .66	for 4" wells,	1.469 for 6" v	""≃ One Well veils	Volume x 5 = G	allons Purged (calc	ulated)	F		· · ·		
		Casing	Gallons		•			-	,	}	Sampling Case# Case #1	Ph/Conductance SN	DO SN	Turbidity
	-	1"	0.047								Case #2	15H101448 15E101481	12G102878	201301183
	1	4"	0.163 0.653							Į	Case #3	10K 101895	14/11/03/098	201301174 201510251

6"

1.469

Midla Finyi		1					Moni	towin	~ XX/	77 70					
Cor	orillerita	T ₁₀ -					Moni	TOLIII	g w	ell P	urge				
Field Personnel:	CP, 5	Inc.	PC-				And	San	<u>ıplir</u>	ng D	ata				
Sampling Date(s):	6/29	/20			-		Coasta				Calibratio	pration Dat	a for:	No (Please Ci	
Sampling Case#:	_'3		141		-	Job Number	49 19-	7034	<u> </u>		Conductiv	zitv:	V	No (Please Ci No No	rcle)
Well No.	Purge Volume	Sample	pH(i)	cond(i)	Temp.	DO					Turbidity:	Oxygen: Conductivity		No Pery 3 Months by	
	Initial	Time			(°C)	(mg/l)	Turbidity (NTU)	1	pth to (fee		_ well Depth	Water Height			wanager
A /	1st	151					1110)	product	Initial H ₂ O	final H ₂ 0	(feet)	*(feet)	**calc.	s Purged	Notes
Mut-lor	2nd			M ((Î				tio.			actual	+
1 100 1012	3rd			1/10	C/E	CATE	X				TO:				
	4th				·	-					11161				
	6th Sampling												· · · · · · · · · · · · · · · · · · ·	-	1
	Initial						-								
	1st														
MILLENO	2nd			1	-	1 1									
MW-lork	3rd			100	r Lex	atol					7.00				
'	4th				N.	1000	0				-				
}	5th				-VC	roge	-				17.00			-	
	Sampling										1 (, 30				
}	Initial 1st	10:15	5.71	115.1	25.76	7.15	71.04								1
N. A. VI	2nd	18-10	2,67	10913	29.0	2,06	97.7%				0110				
MW-11	3rd	10:21	264	104,9	24.8	2.04	1159		, _		8.42		7 29	(1.75	116
	4th	10:23	5.54	101:0	24.7	1.01	157.2		28			081. KL	C-20	11.70	VY O
<u> </u>	·· 5th	10:25	5.51	94.1	24.6	1.94	199.7		1.00		18.4Z	TILT	11.0	11111	() don
	Sampling				- C4, T	1195	90,46				10.10		1157		O WEV
E 000	Initial 1st		0										11100		
MA. L	2nd		1 1			A					<i>?</i>				
MM-14	3rd		1	- 1	A						8.79				*
' '' '	4th		' V O V		Cal	CU		}			_	}			1
	5th										18,29	}			
	Sampling										1010				
(Depth of Well) - (Dept	h to Water = V	Nater Height													
ne Well Volume =x,047	or 1" wells * x	.163 for 2" w	ells, or * x .6	of for 4" wells,	1.469 for 6" v	**= One Well weils	Volume x 5 = 6	allons Pur	jed (calci	llated					
		Casing	Gallons					•	,		-	Sampling Case# Case #1	Ph/Conductance SN	DO SN	Turbidity
	F	1"	0.047									Case #2	15H101448 15E101481	12G102878 14H103098	201301183
		4"	0.163 0.653								L	Case #3	10K 101895	14/11/03/098	201301174
		6"	1.469	64 SEE											

M ial ϵ	ands													
Fnv	ironmout.						Moni	itoring W	ell P	urgo				_
1 (Co	insultants,	Inc.					And	d Samplin	na D	urge				
Field Personnel:	C1,3	rK2	RG				/ (ng D					
Sampling Date(s):	6/29	/20			-	Job Name:	Coasta	1/6		<u>Calibratio</u>	bration Dat	a for:		
Sampling Co	10	120			_	Job Number	9 19.	7034	-	pH:	n Successi	a for Ves or N	o (Please C	ircle)
Sampling Case#:			690					1007	-	Conducti	vity:		No No	_
Well No.	Purge	Sample	pH(i)							Turbidity:	Conductivity	Yes Calibrated Eve		_
	Volume	Time	pri(t)	cond(i)	Temp.	DO	Turbidity	Depth to (fee	00:	Well David		Calibrated Eve	ry 3 Months by	/ QA Manager
	Initial					(mg/i)	(NTU)	product initial H ₂ O		(feet)	Water Height		s Purged	Notes
AN4 1 10	2nd			AIF	1						(1001)	**calc.	actual	IAOfez
MW-15	3rd			1 8	- 10					10				
	4th			1001	. (0	cones	X			_~	Į			
	5th					+				70]		1	95
	Sampling													
	1st													
MW-16	2nd			1.1										
1 100 10	3rd			MA	V-	Ecal	91							
	4th 5th			IVE		100	001			-				
	Sampling									121				
	Initiai													
	1st		A	n n										
MW-17	2nd 3rd		AV	11/2	Λ Λ	1				11				
	4th		///	19110	100/6	24				111				
	· 5th									_	}			
	Sampling									21.	}			
	Initial	11:40	10.0	130.	24.3	2.54	67/80.							
M. n. 107	2nd	11.75	9.95	117.4	24.1		67.44 90.30							
1,1M-12	3rd	11:49	5.87	107.6	24.0	4.50	136.7	16.10		11		2.75		No
	4th	11:57	5,84	105.7	23.8	733	74.3	4.11		_	6.89	C ()	14	100
	5th Sampling	11:53	5.81	104.2	23.1	2,27	147,9	'		15	10.01	1075	51	Oder
(Depth of Well) - (Dep							1021					13-11		_
ne Well Volume ≂x.047	for 1" wells * x	Water Height : .163 for 2" w	elis, gr*v e	E for 4th		**= One Well	Volume v 5 – 6	Seller 's				V		
	F			o for 4" wells,	1.469 for 6"	wells	- AIMINIG X 2 = (Gallons Purged (calc	ulated)		Sampling Case#	Ph/Conductance SN		
			Gallons 0.047							}	Case #1 Case #2	15H101448	12G102878	Turbidity 201301183
	F	2" 4"	0.163 0.653							Į	Case #3	15E101481 10K 101895	14H103098	201301174
		6"	1.469	27									300101407	201510251

Midla Env	iranman.	T					Moni	toring W	ell P	urge				
Field Personnel:	CP 5	Inc.	DC.				And	l Samplir	g D	ata				
Sampling Date(s):	6/29	120	KO		-		Coasta	176		Calli	pration Data	for:		
Sampling Case#:	13		(9.1			Job Number:	19-	7034		Conductiv	zitv:	Yes	o (Please Cii No No	cle)
Well No.	Purge Volume	Sample	pH(i)	cond(i)	Temp.	DO	Total Late			Turbidity:	Oxygen: Conductivity	Yes Calibrated Eve	No ry 3 Months by	QA Managor
	Initial	Time	6.42	142.2	(°C)	(mg/l)	Turbidity (NTU)	Depth to (feet product initial H ₂ O		Well Depth (feet)	Water Height		Purged	Notes
MW-19	2nd 3rd 4th	10:06 10:06	6.79	131,9	23,9 23,7 73,6	24.00 44.00 74.00	196.2	3.62		2.12	951	1.55	actual 8,00	Wo Office
	Sampling Initial	10:10 10:00	6.25	118.3	73,4 Z40	3.02	109:4	7.49		12.12	V- / 1	7.75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MW-20	2nd 3rd 4th 5th	10:06 10:06 10:06	6.15	475.1 42.9 40.1 39.0	23,7 73.6 73.4 73.3 72.9	2.91 2.54 2.79 2.76	90.41 125.9 199.0 115.4	7.00		4.5	11.50	187	9.50	No
15-WM	Sampling Initial 1st 2nd			1/0	25, 2	475	70.07	7.00		2.75		7,0/		
	3rd 4th 5th Sampling		<u> </u>	20110	gea					17.75				
15-MN	Initial 1st 2nd 3rd		Ne	FI	Ora	ed				5.09				
(Depth of Well) - (Depth of Well Volume = V 04	4th 5th Sampling oth to Water =	Water Hali							ĺ	15.09				
e Well Volume =x.047	for 1" wells *	Casing	Gallons	6 for 4" wells,	1.469 for 6"	**= One Well wells	Volume x 5 = 0	Sallons Purged (calc	ilated)		Sampling Case# Case #1 Case #2	Ph/Conductance SN 15H101448 15E101481	DO SN 12G102878 14H103098	Turbidity 201301183

1.469

Midla	ands						N/I							
T.nv	íronmenta	1					Moni	toring W	ell P	urge				
Field Personnel:	nsultants,	Inc.	. ^ ~				And	d Samplin	lg D	ata				1
Sampling Date(s):	nsultants,	120	, KG		-		<u>Coasta</u>	176		<u>Calib</u> Calibratio	pration Dat	a for: ui2 Yes or N	•	
Sampling Case#:	_'3		(8)		-	Job Number	: 49 19-	7034	•	COHOLICIN	/ity:	Yes	lo (Piease C No No	ircle)
Well No.	Purge Volume	Sample	pH(i)	cond(i)	Temp.	DO	Turbidity			Turbidity:	Conductivity	Yes) Calibrated Eve		y QA Manager
	Initial 1st	14:06 14:06	5.31	107.3	(°c)	(mg/l)	(NTU)	Depth to (fee product initial H ₂ O		_ well Depth	Water Height		s Purged	Notes
MW-22D	2nd 3rd	142 2	5,26	98.2	73.3 73.2	1.19	96.37			39.23			actual	16
	4th 5th	14:25	5.22	90. i 87. 3	72.9	1.14	140.1	6.30		~ \(()) \(\)	37.43	6.10 30.51	30.75	Ago
	Sampling initial		0.1	53.5	W	1010	170			44.65		30.51		
MW-23	1st 2nd			1						1.61				
11/1/1/23	3rd 4th			A Da	nder	ed				-				
	5th Sampling Initial									11.61				
N. 1 - 7V-	1st			Ø.	Ň.	Δ.				905				
I'M-LT	3rd 4th			Allow	don	20				0.46				
	5th Sampling									18,42				
N. 1-7	Initial 1st			1	1	1								#1
IM, CD	2nd 3rd 4th			A Day	OBOT.	Pa				8.29				8
	5th Sampling									18.29				
(Depth of Well) - (Dep e Well Volume =x.047		Water Height	vells, or * x .6	56 for 4" wall-	1 480 4 0"	**= One Weil	Volume x 5 = 0	Salions Purged (calc						
		Casing 1"	Gallons 0.047 0.163	Wells,	1.409 for 6"	Wells			ulated)	Ē	Case #1	Ph/Conductance SN 15H101448 15E101481	00 SN 12G102878 14H103098	Turbidity 201301183
		4" 6"	0.163 0.653 1.469	(*)						L	Case #3	10K 101895		201301174 201510251

Midla Finvi Col	rommer -	Inc.	00				Moni And	torin l San	g W	ell P	urge ata				
Sampling Date(s):	6/29	120	KO			Job Name:	Coasta	176			Calibration	bration Dat	a for:		
Sampling Case#:	12	120				Job Number:	49 19-	7030	Ĺ	-	pH;	on Successf	a for: ul? Yes or N	lo (Please C No	ircle)
Well No.	Purge Volume	Sample	pH(i)	cond(i)	Temp.	DO					Dissolved	VIIIY;	Yes Yes Calibrated Eve	No	_
	Initial	Time			(°C)	(mg/l)	Turbidity (NTU)		initial H ₂ O		Well Depth	Water Height		s Purged	<u> </u>
111176	1st 2nd	- 10		ſ		A .				The regular	(feet)	*(feet)	**calc.	actual	Notes
MN-16	3rd		Wo-	- 1	OXO	Tell					10				
	4th 6th				<u> </u>	1109					50			j	2
	Sampling			-							20				25
	Initial 1st	10:35	6.15	71.2	22.9	3.01	75.19						*		
MIN-77	2nd	14:01	6.09	68,3	77.8	3.94	98,02				7:		200		ME
	3rd 4th	10:44	6.04	60.7	27.6	2.86	163.0		3/10][1000	672	14.75	OVO
	5th Sampling	10:50	5,99	57.1	77.4	7.87	110.3	1			21	17.90	IN PO	166	Odun
	Initial	0200	5.81	9/ 3	22	0.0.)	11.42						14.59		
1111 70	1st 2nd	10103	5 79	96.3	73.3	231	(2.17	<	80						
11M-CD	3rd	0:06	2.75 S	90,9	73.7	2.17	118.3		368		11	061	3.08		No Oder
	4th 5th	10:12	इ.६५	03.6	23.0	7.10	142.4	2	202	i		18.88		15,50	Odar
	Sampling	11/11/	7.68	81.0	72.5	199	86.14				21		15.39		
8 127	Initial 1st	1:10		99.4	21.9	1.96	42.07,						1710		
W-/	2nd	11:15	5,46	16,7	71.7	1,80	60.24				31		77		
	3rd 4th	11:29	< 177 P	10.3	21.6	1.76	96,10	4	22.		51	31.78	Silb	20	Wo
	5th	11:30	2/40	34.2	21.4	174	32.5				36	7140	~ 90	16	Mar
(Depth of Well) - (Depth of Well Volume = v 047	Sampling	Natos					10.14		1				5.10		ONDA
te Well Volume =x.047	for 1" wells * x	.163 for 2" w	elis, or * x .66	for 4" wells.	1,469 for 8" v	*= One Well \	/olume x 5 = G	allons Pur	red (calc	Ilated	-				
		Casing	Gallons			10119		;	a - a footief	ialed)	ŀ	case.#1	Ph/Conductance SN 15H101448	DO SN	Turbidity
	-	1" 2" 4"	0.047 0.163								[Case #2 Case #3	15E101481 10K 101895	1411103098	201301183
		6"	0.653 1.469	(4) (2) 15(4) 5(08B101407	201510251

Midl	ands						70.00								
香 Linv	/ironmenta	al					Moni	torir	g W	ell P	Hrgo				
I Co	onsultants,	Inc.					An	d Sar	nnli	on D	urge				
Field Personnel:	C1,0	TK2	, R(-				/ 1		Thill	ת או	<u>ata</u>				
Sampling Date(s):	6/29	1/20			~	Job Name		- ·)		Calibrati	bration Dat	a for:		
	10	1/20			_	Job Number	9 19	-7030	ſ	-	pH;	ouccess!	UP Yes or N	o (Please C	ircle)
Sampling Case#:			15					100		-	Collabori	\/It\/* /	17	140	-
Well No.	Purge				-						Dissolved) ()YV/don:		No No	Anna
	Volume	Sample Time	pH(i)	cond(i)	Temp.	DO	Turbidity				Turbidity.	Conductivity	Calibrated Eve	ry 3 Months by	QA Manager
	Initial	10:20	6.19	17211	(°C)	(mg/l)	(NTU)		epth to (fee initial H ₂ O		Taken nebth	Water Height		Purged	
4.0	1st	10:42	6.13	123.4	24.0	1.24	42.01		milital H ₂ O	final H ₂ 0	(feet)	*(feet)	**calc.	actual	Notes
TW-Z	2nd	11,32	6.08	(16.7	72.5	1.70	15:00				31		C 51		11
	3rd 4th	10756	6,04	110,9	226	1152	107.1		2.21		171	727d	5.01		No
	5th	10:44	0.01	107.3	23.5	1,70	67.34				~	55.[]		7777C	Odor
	Sampling	10150	2.77	106.	23,4	119	50.96				36	•	2754	20.17	Value
	Initial										100		1101		
n.	1at		un	1.1Mi	-1										
Vuo	2nd			1 10	-				ļ						
1	3rd 4th								-						
	5th														
	Sampling		-												
	Initial														
D	1st														
Blacks	2nd		FB	173	SOM										
7000110)	3rd 4th				12111										
	- 5th		1 10	DIE	O				}		,				
	Sampling														
18 172	- Initial							_							1
	1st														
,	2nd 3rd														9
	4th														
	5th								}			}			
	Sampling			-]							
(Depth of Well) - (Depth of Well Volume =x.047	oth to Water = 1 for 1" wells *)	Water Height × .163 for 2" v	vells, or * x .60	6 for 4" wells	1 469 for ell	**= One Well	Volume x 5 ≈ (Sallons Pur	ned (cal-	alaha . **					
	ſ	Casing	The second second	······································	יים זסו פטריי	velis			Aen (Calci	ulated)		Sampling Case#	Ph/Conductance SN	DO SN	
		1"	Gallons 0.047								}	Case #1 Case #2	15H101448 15E101481	12G102878	201301183
		2" 4"	0.163 0.653									Case #3	10K 101895	1411103098	201301174
		6"	1.469											35701407	201510251

Midla Env							Mon	itorii	10 W	ell D	NI WC -				
TCo	nsultants.	Inc					A	10	TA VV	CII L	urge				
Field Personnel:	onsultants,	OVT	00				An	u Sai	mpli	ng D	ata				
	5110	IND)	KO			Joh Name	: Coasta	170	_		Call	المستعدد المستعدد			
Sampling Date(s):	6/29	120								_	Calibratio	bration Dat	a for :	_	
Sampline Co "	10	1				Job Numbe	r: 49 19.	-703	Cf.		pH;	ouccess!	Ves or I	No (Please C	ircle)
Sampling Case#:							-	100	T	-	Conducti	Vitv.	Yes	140	_ ′
Well No.	Description										Dissolved	Oxygen:	V	No No	
	Purge Volume	Sample	pH(i)	cond(i)	Temp.	DO	7				rurolalty:	Conductivity	Calibrated Ev	No ery 3 Months b	
<u> </u>	Initial	Time			(°C)	(mg/l)	Turbidity	1	Depth to (fee		Well Depth	Water Heigh			Z QA Manager
	1st		A Fra			(mgn)	(NTU)	product	initial H ₂ O	final H ₂ 0	(feet)	*(feet)		s Purged	N=4=
WSWS	2nd		WSV	V ~	Samo	102	(1)	0		6.0		(1001)	**calc.	actual	Notes
MM	3rd					CA	from s	PIGO	<u></u> €n	well					
	4th				(a)	17:1	5 PM	U				1			İ
	5th					+	2110					{			
	Sampling					†	+			-				7	
	initial														
	1st											ļ			Ì
2512	2nd													 	
Out	3rd		-(1)	1	7.	15 1) A A		j	1		Ì			
	4th		(0)	VV		121	1					ļ	1		
3.4	5th						· ·			Ì		ļ			
	Sampling						+			ļ				7	
	initial														
~()	1st														
105W 51.10% 5	2nd		301	F	0 1	10	+								
	3rd		W >	00		17	 								
5/10/05	4th														1
Sant L->	· 5th		- N2	XVI	5 45	(00)									
	Sampling			-	7				}					7	
	Initial						 								
	1st														
40	2nd						 								
	3rd														*
	4th														
	5th]	
	Sampling								İ			ĺ			
		Vater Height			, 1.469 for 6" t			1	1						1

August 23, 2019

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

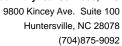
Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental James Coolman, MECI Mr. Kyle Pudney, Midlands Environmental

(704)875-9092

9800 Kincey Ave. Suite 100 Huntersville, NC 28078

CERTIFICATIONS

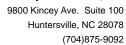

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



SAMPLE SUMMARY

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92441825001	WSW-1	Water	08/14/19 11:45	08/16/19 15:53
92441825002	WSW-FB	Water	08/14/19 11:49	08/16/19 15:53
92441825003	WSW-DUP	Water	08/14/19 11:45	08/16/19 15:53
92441825004	WSW-TB	Water	08/14/19 11:49	08/16/19 15:53

SAMPLE ANALYTE COUNT

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92441825001	WSW-1	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C
92441825002	WSW-FB	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C
92441825003	WSW-DUP	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C
92441825004	WSW-TB	EPA 524.2	SAS	10	PASI-C
		EPA 8260B	SAS	11	PASI-C

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Sample: WSW-1	Lab ID:	92441825001	Collected	d: 08/14/19	11:45	Received: 08	B/16/19 15:53 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA 5	524.2						
Benzene	ND	ug/L	0.50	0.092	1		08/22/19 19:36	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/22/19 19:36	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/22/19 19:36	100-41-4	
Methyl-tert-butyl ether	1.1	ug/L	0.50	0.084	1		08/22/19 19:36	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/22/19 19:36	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/22/19 19:36	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/22/19 19:36	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/22/19 19:36	95-47-6	
Surrogates									
1,2-Dichlorobenzene-d4 (S)	95	%	70-130		1		08/22/19 19:36	2199-69-1	
4-Bromofluorobenzene (S)	92	%	70-130		1		08/22/19 19:36	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	3260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 08:28	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 08:28	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 08:28	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 08:28	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 08:28	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 08:28	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 08:28	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 08:28	637-92-3	
Surrogates									
4-Bromofluorobenzene (S)	98	%	70-130		1		08/22/19 08:28	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		08/22/19 08:28	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/22/19 08:28	2037-26-5	

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

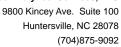
Sample: WSW-FB	Lab ID:	92441825002	Collected	d: 08/14/19	11:49	Received: 08	3/16/19 15:53 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
Benzene	ND	ug/L	0.50	0.092	1		08/22/19 15:38	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/22/19 15:38	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/22/19 15:38	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.084	1		08/22/19 15:38	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/22/19 15:38	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/22/19 15:38	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/22/19 15:38	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/22/19 15:38	95-47-6	
Surrogates		•							
1,2-Dichlorobenzene-d4 (S)	95	%	70-130		1		08/22/19 15:38	2199-69-1	
4-Bromofluorobenzene (S)	95	%	70-130		1		08/22/19 15:38	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 05:11	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 05:11	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 05:11	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 05:11	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 05:11	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 05:11	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 05:11	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 05:11	637-92-3	
Surrogates									
4-Bromofluorobenzene (S)	98	%	70-130		1		08/22/19 05:11	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/22/19 05:11	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/22/19 05:11	2037-26-5	

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Sample: WSW-DUP	Lab ID:	92441825003	Collected	d: 08/14/19	11:45	Received: 08	3/16/19 15:53 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
Benzene	ND	ug/L	0.50	0.092	1		08/23/19 07:28	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/23/19 07:28	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/23/19 07:28	100-41-4	
Methyl-tert-butyl ether	3.0	ug/L	0.50	0.084	1		08/23/19 07:28	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/23/19 07:28	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/23/19 07:28	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/23/19 07:28	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/23/19 07:28	95-47-6	
Surrogates									
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		08/23/19 07:28	2199-69-1	
4-Bromofluorobenzene (S)	97	%	70-130		1		08/23/19 07:28	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 08:46	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 08:46	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 08:46	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 08:46	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 08:46	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 08:46	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 08:46	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 08:46	637-92-3	
Surrogates									
4-Bromofluorobenzene (S)	97	%	70-130		1		08/22/19 08:46	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		08/22/19 08:46	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		08/22/19 08:46	2037-26-5	



Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Sample: WSW-TB	Lab ID:	92441825004	Collecte	d: 08/14/19	11:49	Received: 08	3/16/19 15:53 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
Benzene	ND	ug/L	0.50	0.092	1		08/22/19 13:53	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.17	1		08/22/19 13:53	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.082	1		08/22/19 13:53	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.084	1		08/22/19 13:53	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.062	1		08/22/19 13:53	91-20-3	
Toluene	ND	ug/L	0.50	0.11	1		08/22/19 13:53	108-88-3	
m&p-Xylene	ND	ug/L	0.50	0.15	1		08/22/19 13:53	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.11	1		08/22/19 13:53	95-47-6	
Surrogates									
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		08/22/19 13:53	2199-69-1	
4-Bromofluorobenzene (S)	94	%	70-130		1		08/22/19 13:53	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260B						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		08/22/19 05:29	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		08/22/19 05:29	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		08/22/19 05:29	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		08/22/19 05:29	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		08/22/19 05:29	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		08/22/19 05:29	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		08/22/19 05:29	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		08/22/19 05:29	637-92-3	
Surrogates									
4-Bromofluorobenzene (S)	99	%	70-130		1		08/22/19 05:29	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/22/19 05:29	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/22/19 05:29	2037-26-5	

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

QC Batch: 493809 Analysis Method: EPA 524.2
QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Associated Lab Samples: 92441825001, 92441825002, 92441825004

METHOD BLANK: 2661421 Matrix: Water

Associated Lab Samples: 92441825001, 92441825002, 92441825004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	0.17	08/22/19 10:48	
Benzene	ug/L	ND	0.50	0.092	08/22/19 10:48	
Ethylbenzene	ug/L	ND	0.50	0.082	08/22/19 10:48	
m&p-Xylene	ug/L	ND	0.50	0.15	08/22/19 10:48	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.084	08/22/19 10:48	
Naphthalene	ug/L	ND	0.50	0.062	08/22/19 10:48	
o-Xylene	ug/L	ND	0.50	0.11	08/22/19 10:48	
Toluene	ug/L	ND	0.50	0.11	08/22/19 10:48	
1,2-Dichlorobenzene-d4 (S)	%	96	70-130		08/22/19 10:48	
4-Bromofluorobenzene (S)	%	96	70-130		08/22/19 10:48	

LABORATORY CONTROL SAMPLE:	2661422					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	20.3	102	70-130	
Benzene	ug/L	20	20.0	100	70-130	
Ethylbenzene	ug/L	20	20.2	101	70-130	
m&p-Xylene	ug/L	40	40.5	101	70-130	
Methyl-tert-butyl ether	ug/L	20	20.0	100	70-130	
Naphthalene	ug/L	20	17.4	87	70-130	
o-Xylene	ug/L	20	20.8	104	70-130	
Toluene	ug/L	20	20.1	101	70-130	
1,2-Dichlorobenzene-d4 (S)	%			102	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 Truck Stop 03538/19

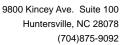
Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

QC Batch: 493957 Analysis Method: EPA 524.2

QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

Associated Lab Samples: 92441825003


METHOD BLANK: 2662270 Matrix: Water

Associated Lab Samples: 92441825003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	0.50	0.17	08/22/19 22:40	
Benzene	ug/L	ND	0.50	0.092	08/22/19 22:40	
Ethylbenzene	ug/L	ND	0.50	0.082	08/22/19 22:40	
m&p-Xylene	ug/L	ND	0.50	0.15	08/22/19 22:40	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.084	08/22/19 22:40	
Naphthalene	ug/L	ND	0.50	0.062	08/22/19 22:40	
o-Xylene	ug/L	ND	0.50	0.11	08/22/19 22:40	
Toluene	ug/L	ND	0.50	0.11	08/22/19 22:40	
1,2-Dichlorobenzene-d4 (S)	%	97	70-130		08/22/19 22:40	
4-Bromofluorobenzene (S)	%	95	70-130		08/22/19 22:40	

LABORATORY CONTROL SAMPLE:	2662271					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	22.8	114	70-130	
Benzene	ug/L	20	24.0	120	70-130	
Ethylbenzene	ug/L	20	22.4	112	70-130	
m&p-Xylene	ug/L	40	44.7	112	70-130	
Methyl-tert-butyl ether	ug/L	20	22.8	114	70-130	
Naphthalene	ug/L	20	19.1	95	70-130	
o-Xylene	ug/L	20	23.0	115	70-130	
Toluene	ug/L	20	21.9	110	70-130	
1,2-Dichlorobenzene-d4 (S)	%			103	70-130	
4-Bromofluorobenzene (S)	%			104	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

QC Batch: 493664 Analysis Method: EPA 8260B

QC Batch Method: **EPA 8260B** Analysis Description: 8260 MSV Low Level SC

Associated Lab Samples: 92441825001, 92441825002, 92441825003, 92441825004

METHOD BLANK: 2660538 Matrix: Water

Associated Lab Samples: 92441825001, 92441825002, 92441825003, 92441825004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND -	100	62.0	08/22/19 04:35	
Diisopropyl ether	ug/L	ND	1.0	0.22	08/22/19 04:35	
Ethanol	ug/L	ND	200	98.8	08/22/19 04:35	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.7	08/22/19 04:35	
tert-Amyl Alcohol	ug/L	ND	100	53.9	08/22/19 04:35	
tert-Amylmethyl ether	ug/L	ND	10.0	3.5	08/22/19 04:35	
tert-Butyl Alcohol	ug/L	ND	100	27.3	08/22/19 04:35	
tert-Butyl Formate	ug/L	ND	50.0	24.7	08/22/19 04:35	
1,2-Dichloroethane-d4 (S)	%	98	70-130		08/22/19 04:35	
4-Bromofluorobenzene (S)	%	99	70-130		08/22/19 04:35	
Toluene-d8 (S)	%	101	70-130		08/22/19 04:35	

LABORATORY CONTROL SAMPLE	E: 2660539	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	1000	1130	113	70-130	
Diisopropyl ether	ug/L	50	51.0	102	70-130	
Ethanol	ug/L	2000	2150	107	70-130	
Ethyl-tert-butyl ether	ug/L	100	98.9	99	70-130	
tert-Amyl Alcohol	ug/L	1000	1050	105	70-130	
tert-Amylmethyl ether	ug/L	100	104	104	70-130	
tert-Butyl Alcohol	ug/L	500	553	111	70-130	
tert-Butyl Formate	ug/L	400	430	108	70-130	
1,2-Dichloroethane-d4 (S)	%			96	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	2660541						
		92441833008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	 ug/L	ND	400	531	133	70-130	
Diisopropyl ether	ug/L	ND	20	20.1	100	70-130	
Ethanol	ug/L	ND	800	934	117	70-130	
Ethyl-tert-butyl ether	ug/L	ND	40	36.4	91	70-130	
tert-Amyl Alcohol	ug/L	ND	400	483	121	70-130	
tert-Amylmethyl ether	ug/L	ND	40	42.0	105	70-130	
tert-Butyl Alcohol	ug/L	ND	200	273	137	70-130	
tert-Butyl Formate	ug/L	ND	160	80.5	50	70-130 P	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

MATRIX SPIKE SAMPLE:	2660541						
		92441833008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane-d4 (S)	<u></u> %				92	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 2660540						
		92441833007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	96	98			
4-Bromofluorobenzene (S)	%	97	103			
Toluene-d8 (S)	%	99	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 08/23/2019 12:04 PM

P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Coastal 76 Truck Stop 03538/19

Pace Project No.: 92441825

Date: 08/23/2019 12:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92441825001	WSW-1	EPA 524.2	493809		,
92441825002	WSW-FB	EPA 524.2	493809		
92441825003	WSW-DUP	EPA 524.2	493957		
92441825004	WSW-TB	EPA 524.2	493809		
92441825001	WSW-1	EPA 8260B	493664		
92441825002	WSW-FB	EPA 8260B	493664		
92441825003	WSW-DUP	EPA 8260B	493664		
92441825004	WSW-TB	EPA 8260B	493664		

Trip Blank Received: W N NA HCL MeOH TSP Other Non Conformance(s): Page: 1 YES / NO of: 1	Template: Prelogin: PM: PB:		Received by/Company: (Signature)	1835	Date	any: (Signature)	Relinquished by/Company: (Signature)
	S/ 10 1553 Table #:		Paived by/Company: (Signature)	Ste/Time: Re	Date	Dany: (Signature)	Relinguished by/Company: (Signature)
	Date/Time: MTJL LAB USE ONLY		Received by/Company: (Signature)		Date	any: (Signature)	Relinquished by/Company: (Signature)
Cooler 1 Therm Corr. Factor:	Samples received via: FEDEX UPS Client Courier Pace Courier	NA Sam	Y	Radchem sample(s) screened (<500 cpm):	1250100	67847	
Therm ID#: 18 10 TO 47 Cooler 1 Temp Upon Receipt: 1 oC	Lab Tracking #: 2351137	Lab	bass	Packing Material Used: [3,66]	940		- 6
Lab Sample Temperature Info:	SHORT HOLDS PRESENT (<72 hours): Y N/A	SHC	Wet Blue Dry None	Type of Ice Used: W	ossible Hazards:	pecial Conditions / Po	Customer Remarks / Special Conditions / Possible Hazards:
u 7.							
上のこ		4	· Control of the cont	8 h:11	6	6.00	1 353
Dr.	Proc.			Skill		B	wsh.Dr
	5013			Sh: 11)	00	WS-FB
LDL (00)		X		(6)	w Grat	0	W35-1
(2014700	93	B		Date Time			
/ Comments	Lal	the of the contract of the con	Composite End Res #	Collected (or Composite Start)	Comp / Matrix * Grab	Ma	Customer Sample ID
rips:	Le	XN/	V), Wastewater (WW), apor (V), Other (OT)	watrix codes (insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)): Drinking Water (WP), Air (AR), Ti	id (SL), Oil (OL), Wipe	Product (P), Soil/So
	рн	N,	Analysis:	ges Apply) A	(Expedite Charges Apply)		[] Hold:
	C1	1,2	[]Yes []No	[] Next Day [] [] 4 Day [] 5 Day	[] Same Day		[] Dispose as appropriate [] Return [] Archive:
Samples in Holding Time X N NA	Sa	DO	Field Filtered (if applicable):			Rush:	Sample Disposal:
- Headspace Acceptable Y N	Voan Voan	A	ately I		Turnaround Date Required:		Collected By (signature):
N N	SCO	82	DW PWS ID #: DW Location Code:	0 0	Purchase Order #: Quote #:		Kyle Jacobs
Custody Signatures Present Y N NA Collector Signature Present Y N NA Bottles Intact	CC	24, BU	Compliance Monitoring?	5	UST-03538	Site/F	Email:
к . Қ	Cu	2		Floren C		1	Coasta 176
Lab Profile/Line:	Analyses Lab F		Time Zone Collected:	State: County/City:		ne/Number:	Customer Project Name/Number:
ascorbic acid, (B) ammonium sultate,	(c) ammonium hydroxide, (d) TSP, (U) Unpreserved, (0) Other	(C) ammor	1				Сору То:
d, (4) sodium hydroxide, (5) zinc acetate,	Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate,	** Preserv	toci. net	Email To:		٩	Report To:
Lab Project Manager:	Container Preservative 1ype *** Lab F	~		2	on, 3C 2907	Rd, Lexinston	Address: Dooley Rd
	ALL S 92441825			Billing Information:			MECI
			Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	is a LEGAL DOCUMENT -	Chain-of-Custody	ny nom	, 2007
of 16	LAB USE ONLY- Aff WCF - CF-		CHAIN-OF-CUSTODY Analytical Request Document	STODY Analytica	HAIN-OF-CU	9	Page Analytical
	IIn#: 92441825						

Pace Carolinas Quality Office Issuing Authority:

F-CAR-CS-033-Rev.06 Document No.:

Face Analytical

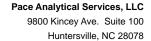
Page 16 of 16

Due Date: 08/27/19 Project # WO#: 92441825

CLIENT: 92-MIDLAND

BMA : MY

verified and within the acceptance range for preservation *Check mark top half of box if pH and/or dechlorination is


Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

				$\overline{\ }$	T		T		•				7	1			V										\	75
		\dashv	1	1			1						7	7	7		7			1	7						1	11
		-	1	()				\dashv		-1		_	1	1	1		1			1	1	1	1					10
		\dashv	1	1	\dashv	\dashv	\dashv						1	7	7		7		• .	7	1						1	.6
		-	4	1			-						1	1	1	-	7			7	1	1	7				1	
		_	4	4	_		_	_			-		4	1	1		7		-	7			/					8
			\angle	/					-						/	-					7	7	7				7	L
													4							1		-				_	+	9
	8		/											/	/					7						_	1	5
			1						٠			9	7	1					·	7								b
			1								-	9										7	7					E
-				1								9					/	•										7
			/									2	1	/	1		1											τ
0	5	A	BP		SP	şp	٤	6	DG	VG	VG	DG	AG	AG	AGI	AG3	AGI	AG1	WG	BP4	BP4;	BP3I	BP45	8P1	8P2L	. 8P31	BP4L	ltem#
39U-4(GU-20	30U-10	3A-25		21-250	ST-125	GK (3 v	AK (6)	DG9P-40 mL VOA H3PO4 (N/A)	VG9U-40 mt VOA Unp (N/A)	VG9T-40 mt VOA Na2S2O3 (N/A)	DG9H-40 mL VOA HCI (N/A)	SAIDG	15-250	AG1S-1 liter Amber H2SO4 (pH < 2)	IU-250	AG1H-1 liter Amber HCl (pH < 2)	U-1 lit	-Wic	C-125	Z-125 r	BP3N-250 mL plastic HNO3 (pH < 2)	-125 r	J-1 lite	J-500 .	J-250 i	J-125 r	4
mL A	mL Sc)0 mL /	0 mLP		mLS	mL St	ials pe	vials p	mL VO	int vo	שר אסי	mL VO	3A)-25	mL An	er Amt	mL Ar	er Ami	er Amt	е-то	mL Pla	nL Plas	mL pla	nL Plas	r Plast	mL Pla	nL Pla	nL Plas	
mber I	intilla	mber	lastic (terile F	erile P	r kit)	er kit)-	A Hap	A Unp	Na2S	A HCI	0 mt A	hber H	er H2	nber L	jer HC	er Un	thed	stic Na	tlc ZN	stic HN	tic H2	lc Unp	tic Ur	tic Ur	tic Ur	
Unpres	tion via	Unpre	NHZ)2		Plastic	lastic (VPH/G	5035 1	04 (N/	(A/A)	203 (1	(N/A)	mber	2504 (SO4 (p	Jnpres	(pH <	preser	Glass j	d) HO	Aceta	103 (p	504 (p	reserv	prese	prese	prese	
erved	VSGU-20 mL Scintillation vials (N/A)	servec	504 (9		SP2T-250 mL Sterile Plastic (N/A - lab)	SPST-125 mL Sterile Plastic (N/A - lab)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	Ž		(A)		NH4CI	AG35-250 mL Amber H2SO4 (pH < 2)	H < 2)	erved	2)	ved (N	ar Uni	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	e & z	H < 2)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP1U-1 liter Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP3U-250 mL Plastic Unpreserved (N/A)	ved ()	
DG9U-40 mL Amber Unpreserved vials (N/A)	A	AGOU-100 mL Amber Unpreserved vials (N/A)	BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)		- lab)	lab)	N/A)	2					AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)			AG3U-250 mL Amber Unpreserved (N/A) (CI-)		AG1U-1 liter Amber Unpreserved (N/A) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved) (ci-)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)		(C -)	2	A	×A)	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	
N/A		N/A											5			5		1	èd		ě						エ	

# 301	eniterrosses to terro-A		justment Log for Prese	מי וול	N. 100 - 100	
	evizevaeved for an and a second babbs	Time preservation adjusted	Date preservation adjusted	pH upon receipt	Svitevisesiq to aqvT	Ol əlqme
	,					

Out of hold, incorrect preservative, out of temp, incorrect containers. Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR

(704)875-9092

July 10, 2020

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: Coastal 76 19-7034

Pace Project No.: 92484607

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on July 02, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Angela Baioni angela.baioni@pacelabs.com

Daw Color

(704)075 0000

(704)875-9092 Project Manager

Sara Coble for

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

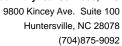
CERTIFICATIONS

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



SAMPLE SUMMARY

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92484607001	IGWA-R	Water	06/29/20 14:15	07/02/20 08:15
92484607002	MW-1	Water	06/29/20 11:30	07/02/20 08:15
92484607003	MW-3	Water	06/29/20 11:15	07/02/20 08:15
92484607004	MW-4	Water	06/29/20 10:55	07/02/20 08:15
92484607005	MW-6	Water	06/29/20 10:45	07/02/20 08:15
92484607006	MW-7	Water	06/29/20 14:15	07/02/20 08:15
92484607007	MW-8	Water	06/29/20 10:30	07/02/20 08:15
92484607008	MW-11	Water	06/29/20 10:25	07/02/20 08:15
92484607009	MW-18	Water	06/29/20 11:55	07/02/20 08:15
92484607010	MW-19	Water	06/29/20 10:10	07/02/20 08:15
92484607011	MW-20	Water	06/29/20 10:10	07/02/20 08:15
92484607012	MW-22D	Water	06/29/20 14:30	07/02/20 08:15
92484607013	MW-27	Water	06/29/20 10:50	07/02/20 08:15
92484607014	MW-28	Water	06/29/20 10:15	07/02/20 08:15
92484607015	TW-1	Water	06/29/20 11:30	07/02/20 08:15
92484607016	TW-2	Water	06/29/20 10:30	07/02/20 08:15
92484607017	DUP-1	Water	06/29/20 11:30	07/02/20 08:15
92484607018	FB	Water	06/29/20 12:15	07/02/20 08:15
92484607019	ТВ	Water	06/29/20 08:00	07/02/20 08:15

SAMPLE ANALYTE COUNT

Project: Coastal 76 19-7034

Pace Project No.: 92484607

92484607001	IGWA-R	EPA 8011			
		=:::=::	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607002	MW-1	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607003	MW-3	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607004	MW-4	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607005	MW-6	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607006	MW-7	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607007	MW-8	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607008	MW-11	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607009	MW-18	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607010	MW-19	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607011	MW-20	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607012	MW-22D	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607013	MW-27	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607014	MW-28	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607015	TW-1	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607016	TW-2	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
2484607017	DUP-1	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	SAS	20	PASI-C
2484607018	FB	EPA 8011	JMS1	2	PASI-C
		EPA 8260D	GAW	20	PASI-C
92484607019	тв	EPA 8260D	GAW	20	PASI-C

SAMPLE ANALYTE COUNT

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Analytes Lab ID Sample ID Method Reported **Analysts** Laboratory

PASI-C = Pace Analytical Services - Charlotte

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: IGWA-R	Lab ID:	9248460700°	Collected	d: 06/29/20	14:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	0.030	ug/L	0.020	0.011	1	07/08/20 08:17	07/08/20 21:22	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	84	%	60-140		1	07/08/20 08:17	07/08/20 21:22	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	400	262	4		07/08/20 20:05	75-85-4	
tert-Amylmethyl ether	ND	ug/L	40.0	12.2	4		07/08/20 20:05	994-05-8	
Benzene	115	ug/L	20.0	7.0	4		07/08/20 20:05	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	400	216	4		07/08/20 20:05	624-95-3	
tert-Butyl Alcohol	ND	ug/L	400	364	4		07/08/20 20:05	75-65-0	
tert-Butyl Formate	ND	ug/L	200	96.4	4		07/08/20 20:05	762-75-4	
1,2-Dichloroethane	ND	ug/L	20.0	8.2	4		07/08/20 20:05	107-06-2	
Diisopropyl ether	ND	ug/L	20.0	14.0	4		07/08/20 20:05	108-20-3	
Ethanol	ND	ug/L	800	576	4		07/08/20 20:05	64-17-5	
Ethylbenzene	68.5	ug/L	20.0	7.4	4		07/08/20 20:05	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	40.0	33.8	4		07/08/20 20:05	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	20.0	12.4	4		07/08/20 20:05	1634-04-4	
Naphthalene	37.7	ug/L	20.0	8.4	4		07/08/20 20:05	91-20-3	
Toluene	422	ug/L	20.0	8.0	4		07/08/20 20:05	108-88-3	
Xylene (Total)	707	ug/L	20.0	20.0	4		07/08/20 20:05	1330-20-7	
m&p-Xylene	416	ug/L	40.0	16.4	4		07/08/20 20:05	179601-23-1	
o-Xylene	291	ug/L	20.0	8.2	4		07/08/20 20:05	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	102	%	70-130		4		07/08/20 20:05	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		4		07/08/20 20:05	17060-07-0	
Toluene-d8 (S)	99	%	70-130		4		07/08/20 20:05	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-1	Lab ID:	92484607002	Collected	d: 06/29/20	11:30	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	0.077	ug/L	0.020	0.011	1	07/08/20 08:17	07/08/20 21:33	106-93-4	
1-Chloro-2-bromopropane (S)	86	%	60-140		1	07/08/20 08:17	07/08/20 21:33	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	lytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	250	164	2.5		07/08/20 18:53	75-85-4	
tert-Amylmethyl ether	ND	ug/L	25.0	7.6	2.5		07/08/20 18:53	994-05-8	
Benzene	90.8	ug/L	12.5	4.4	2.5		07/08/20 18:53	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	250	135	2.5		07/08/20 18:53	624-95-3	
ert-Butyl Alcohol	ND	ug/L	250	228	2.5		07/08/20 18:53	75-65-0	
tert-Butyl Formate	ND	ug/L	125	60.2	2.5		07/08/20 18:53	762-75-4	
1,2-Dichloroethane	ND	ug/L	12.5	5.2	2.5		07/08/20 18:53	107-06-2	
Diisopropyl ether	ND	ug/L	12.5	8.7	2.5		07/08/20 18:53	108-20-3	
Ethanol	ND	ug/L	500	360	2.5		07/08/20 18:53	64-17-5	
Ethylbenzene	10.6J	ug/L	12.5	4.6	2.5		07/08/20 18:53	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	25.0	21.2	2.5		07/08/20 18:53	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	12.5	7.8	2.5		07/08/20 18:53	1634-04-4	
Naphthalene	40.1	ug/L	12.5	5.2	2.5		07/08/20 18:53	91-20-3	
Toluene	308	ug/L	12.5	5.0	2.5		07/08/20 18:53	108-88-3	
Xylene (Total)	313	ug/L	12.5	12.5	2.5		07/08/20 18:53	1330-20-7	
n&p-Xylene	122	ug/L	25.0	10.3	2.5		07/08/20 18:53	179601-23-1	
o-Xylene	191	ug/L	12.5	5.1	2.5		07/08/20 18:53	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		2.5		07/08/20 18:53	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		2.5		07/08/20 18:53	17060-07-0	
Toluene-d8 (S)	101	%	70-130		2.5		07/08/20 18:53	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-3	Lab ID:	92484607003	Collected	d: 06/29/20	11:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	\ 8011			
	Pace Anal	ytical Services	s - Charlotte						
1,2-Dibromoethane (EDB)	0.21	ug/L	0.020	0.011	1	07/08/20 08:17	07/08/20 21:45	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	90	%	60-140		1	07/08/20 08:17	07/08/20 21:45	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Services	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	2500	1640	25		07/08/20 21:34	75-85-4	
tert-Amylmethyl ether	ND	ug/L	250	76.0	25		07/08/20 21:34	994-05-8	
Benzene	450	ug/L	125	43.5	25		07/08/20 21:34	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	2500	1350	25		07/08/20 21:34	624-95-3	
tert-Butyl Alcohol	ND	ug/L	2500	2280	25		07/08/20 21:34	75-65-0	
tert-Butyl Formate	ND	ug/L	1250	602	25		07/08/20 21:34	762-75-4	
1,2-Dichloroethane	ND	ug/L	125	51.5	25		07/08/20 21:34	107-06-2	
Diisopropyl ether	ND	ug/L	125	87.2	25		07/08/20 21:34	108-20-3	
Ethanol	ND	ug/L	5000	3600	25		07/08/20 21:34	64-17-5	
Ethylbenzene	792	ug/L	125	46.0	25		07/08/20 21:34	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	250	212	25		07/08/20 21:34	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	125	77.5	25		07/08/20 21:34	1634-04-4	
Naphthalene	435	ug/L	125	52.2	25		07/08/20 21:34	91-20-3	
Toluene	2560	ug/L	125	50.2	25		07/08/20 21:34	108-88-3	
Xylene (Total)	5310	ug/L	125	125	25		07/08/20 21:34	1330-20-7	
m&p-Xylene	3600	ug/L	250	103	25		07/08/20 21:34	179601-23-1	
p-Xylene	1710	ug/L	125	51.0	25		07/08/20 21:34	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	100	%	70-130		25		07/08/20 21:34	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130		25		07/08/20 21:34	17060-07-0	
Toluene-d8 (S)	100	%	70-130		25		07/08/20 21:34	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-4	Lab ID:	9248460700	4 Collected	d: 06/29/20	0 10:55	Received: 07/	02/20 08:15 Ma	atrix: Water	
_			Report						_
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Meth	od: EPA	A 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	1.6	ug/L	0.049	0.028	2.5	07/08/20 08:17	07/09/20 11:07	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	94	%	60-140		2.5	07/08/20 08:17	07/09/20 11:07	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	4000	2620	40		07/08/20 21:16	75-85-4	
tert-Amylmethyl ether	ND	ug/L	400	122	40		07/08/20 21:16	994-05-8	
Benzene	1070	ug/L	200	69.6	40		07/08/20 21:16	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	4000	2160	40		07/08/20 21:16	624-95-3	
tert-Butyl Alcohol	ND	ug/L	4000	3640	40		07/08/20 21:16	75-65-0	
tert-Butyl Formate	ND	ug/L	2000	964	40		07/08/20 21:16	762-75-4	
1,2-Dichloroethane	ND	ug/L	200	82.4	40		07/08/20 21:16	107-06-2	
Diisopropyl ether	ND	ug/L	200	140	40		07/08/20 21:16	108-20-3	
Ethanol	ND	ug/L	8000	5760	40		07/08/20 21:16	64-17-5	
Ethylbenzene	744	ug/L	200	73.6	40		07/08/20 21:16	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	400	338	40		07/08/20 21:16	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	200	124	40		07/08/20 21:16	1634-04-4	
Naphthalene	304	ug/L	200	83.6	40		07/08/20 21:16	91-20-3	
Toluene	4030	ug/L	200	80.4	40		07/08/20 21:16	108-88-3	
Xylene (Total)	4200	ug/L	200	200	40		07/08/20 21:16	1330-20-7	
m&p-Xylene	2680	ug/L	400	164	40		07/08/20 21:16	179601-23-1	
o-Xylene	1520	ug/L	200	81.6	40		07/08/20 21:16	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	101	%	70-130		40		07/08/20 21:16	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		40		07/08/20 21:16	17060-07-0	
Toluene-d8 (S)	100	%	70-130		40		07/08/20 21:16	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-6	Lab ID:	92484607005	Collected	: 06/29/20	10:45	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepara	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/08/20 22:55	106-93-4	
Surrogates		-							
I-Chloro-2-bromopropane (S)	94	%	60-140		1	07/08/20 08:17	07/08/20 22:55	301-79-56	
3260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 19:22	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 19:22	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 19:22	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 19:22	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 19:22	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 19:22	762-75-4	P5
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 19:22	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 19:22	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 19:22	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 19:22	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 19:22	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 19:22	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 19:22	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 19:22	108-88-3	
(Yotal)	ND	ug/L	5.0	5.0	1		07/07/20 19:22	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 19:22	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 19:22	95-47-6	
Surrogates									
I-Bromofluorobenzene (S)	98	%	70-130		1		07/07/20 19:22		
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		07/07/20 19:22		
Toluene-d8 (S)	100	%	70-130		1		07/07/20 19:22	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-7	Lab ID:	92484607006	Collected	d: 06/29/20	14:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Ana	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/08/20 23:19	106-93-4	
1-Chloro-2-bromopropane (S)	92	%	60-140		1	07/08/20 08:17	07/08/20 23:19	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Ana	lytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 18:36	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 18:36	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 18:36	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 18:36	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 18:36	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 18:36	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 18:36	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 18:36	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 18:36	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 18:36	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 18:36	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 18:36	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 18:36	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 18:36	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 18:36	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 18:36	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 18:36	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	105	%	70-130		1		07/07/20 18:36		
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		07/07/20 18:36	17060-07-0	
Toluene-d8 (S)	107	%	70-130		1		07/07/20 18:36	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-8	Lab ID:	92484607007	Collected	d: 06/29/20	10:30	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/08/20 23:54	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	86	%	60-140		1	07/08/20 08:17	07/08/20 23:54	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 19:40	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 19:40	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 19:40	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 19:40	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 19:40	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 19:40	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 19:40	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 19:40	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 19:40	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 19:40	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 19:40	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 19:40	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 19:40	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 19:40	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 19:40	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 19:40	179601-23-1	
p-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 19:40	95-47-6	
Surrogates		J							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 19:40	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/20 19:40	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 19:40	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-11	Lab ID:	92484607008	Collected	d: 06/29/20	10:25	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 00:06	106-93-4	
Surrogates		•							
1-Chloro-2-bromopropane (S)	87	%	60-140		1	07/08/20 08:17	07/09/20 00:06	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 20:16	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 20:16	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 20:16	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 20:16	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 20:16	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 20:16	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 20:16	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 20:16	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 20:16	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 20:16	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 20:16	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 20:16	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 20:16	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 20:16	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 20:16	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 20:16	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 20:16	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	99	%	70-130		1		07/07/20 20:16	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/20 20:16	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		07/07/20 20:16	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-18	Lab ID:	92484607009	Collected	d: 06/29/20	11:55	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.011	1	07/08/20 08:17	07/09/20 00:18	106-93-4	
Surrogates		· ·							
1-Chloro-2-bromopropane (S)	88	%	60-140		1	07/08/20 08:17	07/09/20 00:18	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 20:34	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 20:34	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 20:34	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 20:34	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 20:34	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 20:34	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 20:34	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 20:34	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 20:34	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 20:34	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 20:34	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 20:34	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 20:34	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 20:34	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 20:34	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 20:34	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 20:34	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	96	%	70-130		1		07/07/20 20:34	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/20 20:34	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 20:34	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-19	Lab ID:	92484607010	Collected	l: 06/29/20	10:10	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Service	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.011	1	07/08/20 08:17	07/09/20 00:29	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	87	%	60-140		1	07/08/20 08:17	07/09/20 00:29	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Service	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 23:35	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 23:35	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 23:35	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 23:35	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 23:35	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 23:35	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 23:35	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 23:35	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 23:35	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 23:35	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 23:35	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 23:35	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 23:35	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 23:35	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 23:35	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 23:35	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 23:35	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		1		07/07/20 23:35	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		07/07/20 23:35	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 23:35	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-20	Lab ID:	92484607011	Collected	d: 06/29/20	10:10	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Meth	od: EPA	A 8011			
	Pace Anal	ytical Services	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.011	1	07/08/20 08:17	07/09/20 00:41	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	86	%	60-140		1	07/08/20 08:17	07/09/20 00:41	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Services	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 20:52	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 20:52	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 20:52	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 20:52	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 20:52	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 20:52	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 20:52	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 20:52	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 20:52	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 20:52	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 20:52	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 20:52	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 20:52	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 20:52	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 20:52	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 20:52	179601-23-1	
p-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 20:52	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 20:52	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		07/07/20 20:52	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		07/07/20 20:52	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-22D	Lab ID:	92484607012	Collected	d: 06/29/20	14:30	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 00:53	106-93-4	
1-Chloro-2-bromopropane (S)	86	%	60-140		1	07/08/20 08:17	07/09/20 00:53	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 21:02	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 21:02	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 21:02	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 21:02	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 21:02		
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 21:02	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 21:02	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 21:02	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 21:02	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 21:02	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 21:02	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 21:02	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 21:02	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 21:02	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 21:02	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 21:02	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 21:02	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	104	%	70-130		1		07/07/20 21:02	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130		1		07/07/20 21:02	17060-07-0	
Toluene-d8 (S)	106	%	70-130		1		07/07/20 21:02	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-27	Lab ID:	92484607013	3 Collected	l: 06/29/20	10:50	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA	8011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Services	s - Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.011	1	07/08/20 08:17	07/09/20 01:05	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	87	%	60-140		1	07/08/20 08:17	07/09/20 01:05	301-79-56	
8260 MSV	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Services	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 21:10	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 21:10	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 21:10	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 21:10	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 21:10	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 21:10	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 21:10	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 21:10	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 21:10	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 21:10	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 21:10	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 21:10	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 21:10	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 21:10	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 21:10	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 21:10	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 21:10	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 21:10	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/20 21:10	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 21:10	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: MW-28	Lab ID:	92484607014	Collected	l: 06/29/20	10:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	x 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 01:16	106-93-4	
1-Chloro-2-bromopropane (S)	84	%	60-140		1	07/08/20 08:17	07/09/20 01:16	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 21:28	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 21:28	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 21:28	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 21:28	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 21:28	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 21:28	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 21:28	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 21:28	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 21:28	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 21:28	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 21:28	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 21:28	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 21:28	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 21:28	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 21:28	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 21:28	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 21:28	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 21:28		
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		07/07/20 21:28	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 21:28	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: TW-1	Lab ID:	92484607015	Collected	d: 06/29/20	11:30	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 01:28	106-93-4	
Surrogates		· ·							
1-Chloro-2-bromopropane (S)	87	%	60-140		1	07/08/20 08:17	07/09/20 01:28	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 21:46	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 21:46	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 21:46	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 21:46	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 21:46	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 21:46	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 21:46	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 21:46	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 21:46	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 21:46	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 21:46	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 21:46	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 21:46	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 21:46	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 21:46	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 21:46	179601-23-1	
p-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 21:46	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 21:46	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/20 21:46	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/07/20 21:46	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: TW-2	Lab ID:	92484607016	Collected	d: 06/29/20	10:30	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Meth	od: EPA	A 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	0.068	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 01:51	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	85	%	60-140		1	07/08/20 08:17	07/09/20 01:51	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 23:17	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 23:17	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 23:17	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 23:17	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 23:17	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 23:17	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 23:17	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 23:17	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 23:17	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 23:17	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 23:17	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 23:17	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 23:17	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 23:17	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 23:17	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 23:17	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 23:17	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 23:17	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		07/07/20 23:17	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/07/20 23:17	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: DUP-1	Lab ID:	92484607017	Collected	d: 06/29/20	11:30	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepara	ation Metho	od: EPA	A 8011			
	Pace Analy	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 02:03	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	90	%	60-140		1	07/08/20 08:17	07/09/20 02:03	301-79-56	
8260 MSV	Analytical	Method: EPA	3260D						
	Pace Analy	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	200	131	2		07/09/20 12:50	75-85-4	
tert-Amylmethyl ether	ND	ug/L	20.0	6.1	2		07/09/20 12:50	994-05-8	
Benzene	80.2	ug/L	10.0	3.5	2		07/09/20 12:50	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	200	108	2		07/09/20 12:50	624-95-3	
tert-Butyl Alcohol	ND	ug/L	200	182	2		07/09/20 12:50	75-65-0	
tert-Butyl Formate	ND	ug/L	100	48.2	2		07/09/20 12:50	762-75-4	
1,2-Dichloroethane	ND	ug/L	10.0	4.1	2		07/09/20 12:50	107-06-2	
Diisopropyl ether	ND	ug/L	10.0	7.0	2		07/09/20 12:50	108-20-3	
Ethanol	ND	ug/L	400	288	2		07/09/20 12:50	64-17-5	
Ethylbenzene	8.7J	ug/L	10.0	3.7	2		07/09/20 12:50	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	16.9	2		07/09/20 12:50	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	10.0	6.2	2		07/09/20 12:50	1634-04-4	
Naphthalene	32.3	ug/L	10.0	4.2	2		07/09/20 12:50	91-20-3	
Toluene	281	ug/L	10.0	4.0	2		07/09/20 12:50	108-88-3	
Xylene (Total)	286	ug/L	10.0	10.0	2		07/09/20 12:50	1330-20-7	
m&p-Xylene	109	ug/L	20.0	8.2	2		07/09/20 12:50	179601-23-1	
o-Xylene	177	ug/L	10.0	4.1	2		07/09/20 12:50	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		2		07/09/20 12:50	460-00-4	
1,2-Dichloroethane-d4 (S)	87	%	70-130		2		07/09/20 12:50	17060-07-0	
Toluene-d8 (S)	98	%	70-130		2		07/09/20 12:50	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: FB	Lab ID:	92484607018	Collected	d: 06/29/20	12:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepar	ation Metho	od: EPA	A 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/08/20 08:17	07/09/20 02:15	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	86	%	60-140		1	07/08/20 08:17	07/09/20 02:15	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 19:03	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 19:03	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 19:03	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 19:03	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 19:03	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 19:03	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 19:03	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 19:03	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 19:03	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 19:03	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 19:03	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 19:03	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 19:03	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 19:03	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 19:03	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 19:03	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 19:03	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 19:03	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/20 19:03	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 19:03	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

Sample: TB	Lab ID:	92484607019	Collected	d: 06/29/20	00:80	Received: 07	7/02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		07/07/20 18:45	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		07/07/20 18:45	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		07/07/20 18:45	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		07/07/20 18:45	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		07/07/20 18:45	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		07/07/20 18:45	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		07/07/20 18:45	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		07/07/20 18:45	108-20-3	
Ethanol	ND	ug/L	200	144	1		07/07/20 18:45	64-17-5	
Ethylbenzene	ND	ug/L	5.0	1.8	1		07/07/20 18:45	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		07/07/20 18:45	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		07/07/20 18:45	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		07/07/20 18:45	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		07/07/20 18:45	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		07/07/20 18:45	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	4.1	1		07/07/20 18:45	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		07/07/20 18:45	95-47-6	
Surrogates		_							
4-Bromofluorobenzene (S)	97	%	70-130		1		07/07/20 18:45	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130		1		07/07/20 18:45	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/07/20 18:45	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

QC Batch: 551439 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484607005, 92484607007, 92484607008, 92484607009, 92484607010, 92484607011, 92484607013,

92484607014, 92484607015, 92484607016, 92484607018, 92484607019

METHOD BLANK: 2931200 Matrix: Water

Associated Lab Samples: 92484607005, 92484607007, 92484607008, 92484607009, 92484607010, 92484607011, 92484607013,

92484607014, 92484607015, 92484607016, 92484607018, 92484607019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	07/07/20 17:05	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/07/20 17:05	
Benzene	ug/L	ND	5.0	1.7	07/07/20 17:05	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/07/20 17:05	
Ethanol	ug/L	ND	200	144	07/07/20 17:05	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/07/20 17:05	
Ethylbenzene	ug/L	ND	5.0	1.8	07/07/20 17:05	
m&p-Xylene	ug/L	ND	10.0	4.1	07/07/20 17:05	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/07/20 17:05	
Naphthalene	ug/L	ND	5.0	2.1	07/07/20 17:05	
o-Xylene	ug/L	ND	5.0	2.0	07/07/20 17:05	
tert-Amyl Alcohol	ug/L	ND	100	65.6	07/07/20 17:05	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/07/20 17:05	
tert-Butyl Alcohol	ug/L	ND	100	91.0	07/07/20 17:05	
tert-Butyl Formate	ug/L	ND	50.0	24.1	07/07/20 17:05	
Toluene	ug/L	ND	5.0	2.0	07/07/20 17:05	
Xylene (Total)	ug/L	ND	5.0	5.0	07/07/20 17:05	
1,2-Dichloroethane-d4 (S)	%	99	70-130		07/07/20 17:05	
4-Bromofluorobenzene (S)	%	99	70-130		07/07/20 17:05	
Toluene-d8 (S)	%	100	70-130		07/07/20 17:05	

LABORATORY CONTROL SAMPLE:	2931201					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	46.0	92	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	970	97	70-130	
Benzene	ug/L	50	47.3	95	70-130	
Diisopropyl ether	ug/L	50	44.8	90	70-130	
Ethanol	ug/L	2000	1790	89	70-130	
Ethyl-tert-butyl ether	ug/L	100	93.8	94	70-130	
Ethylbenzene	ug/L	50	49.9	100	70-130	
m&p-Xylene	ug/L	100	100	100	70-130	
Methyl-tert-butyl ether	ug/L	50	46.0	92	70-130	
Naphthalene	ug/L	50	48.7	97	70-130	
o-Xylene	ug/L	50	49.3	99	70-130	
tert-Amyl Alcohol	ug/L	1000	935	94	70-130	
tert-Amylmethyl ether	ug/L	100	96.7	97	70-130	

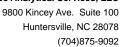
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: Coastal 76 19-7034

Pace Project No.: 92484607

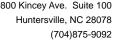

Date: 07/10/2020 03:33 PM

LABORATORY CONTROL SAMPLE:	2931201					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butyl Alcohol	ug/L	500	444	89	70-130	
tert-Butyl Formate	ug/L	400	386	96	70-130	
Toluene	ug/L	50	46.5	93	70-130	
ylene (Total)	ug/L	150	150	100	70-130	
,2-Dichloroethane-d4 (S)	%			93	70-130	
1-Bromofluorobenzene (S)	%			102	70-130	
oluene-d8 (S)	%			97	70-130	

MATRIX SPIKE SAMPLE:	2931202						
		92484607005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	ND	20	20.3	102	70-137	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	402	101	39-157	
Benzene	ug/L	ND	20	20.2	101	70-151	
Diisopropyl ether	ug/L	ND	20	19.7	99	63-144	
Ethanol	ug/L	ND	800	969	121	39-176	
Ethyl-tert-butyl ether	ug/L	ND	40	39.9	100	66-137	
Ethylbenzene	ug/L	ND	20	21.1	105	66-153	
m&p-Xylene	ug/L	ND	40	42.3	106	69-152	
Methyl-tert-butyl ether	ug/L	ND	20	20.1	100	54-156	
Naphthalene	ug/L	ND	20	19.6	98	61-148	
o-Xylene	ug/L	ND	20	20.6	103	70-148	
tert-Amyl Alcohol	ug/L	ND	400	431	108	54-153	
tert-Amylmethyl ether	ug/L	ND	40	40.3	101	69-139	
tert-Butyl Alcohol	ug/L	ND	200	326	163	43-188	
tert-Butyl Formate	ug/L	ND	160	ND	0	10-170 P	5
Toluene	ug/L	ND	20	20.2	101	59-148	
Xylene (Total)	ug/L	ND	60	62.9	105	63-158	
1,2-Dichloroethane-d4 (S)	%				104	70-130	
4-Bromofluorobenzene (S)	%				99	70-130	
Toluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 2931203						
		92484607007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane	ug/L	ND	ND		30	
3,3-Dimethyl-1-Butanol	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethanol	ug/L	ND	ND		30	
Ethyl-tert-butyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

SAMPLE DUPLICATE: 2931203						
		92484607007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Naphthalene	ug/L		ND		30	
o-Xylene	ug/L	ND	ND		30	
tert-Amyl Alcohol	ug/L	ND	ND		30	
tert-Amylmethyl ether	ug/L	ND	ND		30	
tert-Butyl Alcohol	ug/L	ND	ND		30	
tert-Butyl Formate	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	99	99			
4-Bromofluorobenzene (S)	%	97	96			
Toluene-d8 (S)	%	100	100			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

QC Batch: 551440 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484607006, 92484607012

METHOD BLANK: 2931204 Matrix: Water

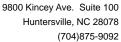
Associated Lab Samples: 92484607006, 92484607012

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
						— Guainioro
1,2-Dichloroethane	ug/L	ND	5.0	2.1	07/07/20 12:32	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/07/20 12:32	
Benzene	ug/L	ND	5.0	1.7	07/07/20 12:32	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/07/20 12:32	
Ethanol	ug/L	ND	200	144	07/07/20 12:32	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/07/20 12:32	
Ethylbenzene	ug/L	ND	5.0	1.8	07/07/20 12:32	
m&p-Xylene	ug/L	ND	10.0	4.1	07/07/20 12:32	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/07/20 12:32	
Naphthalene	ug/L	ND	5.0	2.1	07/07/20 12:32	
o-Xylene	ug/L	ND	5.0	2.0	07/07/20 12:32	
ert-Amyl Alcohol	ug/L	ND	100	65.6	07/07/20 12:32	
ert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/07/20 12:32	
tert-Butyl Alcohol	ug/L	ND	100	91.0	07/07/20 12:32	
ert-Butyl Formate	ug/L	ND	50.0	24.1	07/07/20 12:32	
Toluene	ug/L	ND	5.0	2.0	07/07/20 12:32	
Xylene (Total)	ug/L	ND	5.0	5.0	07/07/20 12:32	
1,2-Dichloroethane-d4 (S)	%	100	70-130		07/07/20 12:32	
1-Bromofluorobenzene (S)	%	104	70-130		07/07/20 12:32	
Toluene-d8 (S)	%	109	70-130		07/07/20 12:32	

LABORATORY CONTROL SAMPLE:	2931205					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	51.7	103	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	990	99	70-130	
Benzene	ug/L	50	48.5	97	70-130	
Diisopropyl ether	ug/L	50	55.2	110	70-130	
Ethanol	ug/L	2000	2150	108	70-130	
Ethyl-tert-butyl ether	ug/L	100	109	109	70-130	
Ethylbenzene	ug/L	50	45.0	90	70-130	
m&p-Xylene	ug/L	100	90.3	90	70-130	
Methyl-tert-butyl ether	ug/L	50	58.2	116	70-130	
Naphthalene	ug/L	50	49.3	99	70-130	
o-Xylene	ug/L	50	45.6	91	70-130	
tert-Amyl Alcohol	ug/L	1000	1040	104	70-130	
tert-Amylmethyl ether	ug/L	100	100	100	70-130	
tert-Butyl Alcohol	ug/L	500	524	105	70-130	
tert-Butyl Formate	ug/L	400	457	114	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034


Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

LABORATORY CONTROL SAMPLE:	2931205					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L	50	46.4	93	70-130	
Xylene (Total)	ug/L	150	136	91	70-130	
1,2-Dichloroethane-d4 (S)	%			106	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2931	206		2931207							
			MS	MSD								
	9	2484613010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	20	20	20.1	20.3	99	100	70-137	1	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	347	383	87	96	39-157	10	30	
Benzene	ug/L	17.4	20	20	40.3	40.8	114	117	70-151	1	30	
Diisopropyl ether	ug/L	ND	20	20	20.2	20.9	98	101	63-144	3	30	
Ethanol	ug/L	ND	800	800	784	793	98	99	39-176	1	30	
Ethyl-tert-butyl ether	ug/L	ND	40	40	37.6	38.6	94	97	66-137	3	30	
Ethylbenzene	ug/L	3.5J	20	20	25.1	25.0	108	108	66-153	0	30	
m&p-Xylene	ug/L	ND	40	40	46.9	47.5	108	110	69-152	1	30	
Methyl-tert-butyl ether	ug/L	3.5J	20	20	25.7	27.1	111	118	54-156	5	30	
Naphthalene	ug/L	6.2	20	20	27.2	29.4	105	116	61-148	8	30	
o-Xylene	ug/L	ND	20	20	22.2	22.1	108	107	70-148	1	30	
tert-Amyl Alcohol	ug/L	ND	400	400	422	480	94	109	54-153	13	30	
tert-Amylmethyl ether	ug/L	ND	40	40	41.0	43.2	99	105	69-139	5	30	
tert-Butyl Alcohol	ug/L	ND	200	200	191	225	95	113	43-188	17	30	
tert-Butyl Formate	ug/L	ND	160	160	47.0J	35.8J	29	22	10-170		30	
Toluene	ug/L	ND	20	20	21.9	22.1	107	107	59-148	1	30	
Xylene (Total)	ug/L	ND	60	60	69.1	69.5	115	116	63-158	1	30	
1,2-Dichloroethane-d4 (S)	%						99	94	70-130			
4-Bromofluorobenzene (S)	%						101	101	70-130			
Toluene-d8 (S)	%						102	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

QC Batch: 551920 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484607001, 92484607002, 92484607003, 92484607004

METHOD BLANK: 2933295 Matrix: Water
Associated Lab Samples: 92484607001, 92484607002, 92484607003, 92484607004

Associated Lab Samples. 924646	007001, 92464607002	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	5.0	2.1	07/08/20 17:05	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	07/08/20 17:05	
Benzene	ug/L	ND	5.0	1.7	07/08/20 17:05	
Diisopropyl ether	ug/L	ND	5.0	3.5	07/08/20 17:05	
Ethanol	ug/L	ND	200	144	07/08/20 17:05	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	07/08/20 17:05	
Ethylbenzene	ug/L	ND	5.0	1.8	07/08/20 17:05	
m&p-Xylene	ug/L	ND	10.0	4.1	07/08/20 17:05	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	07/08/20 17:05	
Naphthalene	ug/L	ND	5.0	2.1	07/08/20 17:05	
o-Xylene	ug/L	ND	5.0	2.0	07/08/20 17:05	
ert-Amyl Alcohol	ug/L	ND	100	65.6	07/08/20 17:05	
ert-Amylmethyl ether	ug/L	ND	10.0	3.0	07/08/20 17:05	
tert-Butyl Alcohol	ug/L	ND	100	91.0	07/08/20 17:05	
ert-Butyl Formate	ug/L	ND	50.0	24.1	07/08/20 17:05	
Toluene	ug/L	ND	5.0	2.0	07/08/20 17:05	
Xylene (Total)	ug/L	ND	5.0	5.0	07/08/20 17:05	
1,2-Dichloroethane-d4 (S)	%	100	70-130		07/08/20 17:05	
4-Bromofluorobenzene (S)	%	101	70-130		07/08/20 17:05	
Toluene-d8 (S)	%	100	70-130		07/08/20 17:05	

LABORATORY CONTROL SAMPLE:	2933296					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	44.9	90	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1040	104	70-130	
Benzene	ug/L	50	45.3	91	70-130	
Diisopropyl ether	ug/L	50	48.1	96	70-130	
Ethanol	ug/L	2000	2150	108	70-130	
Ethyl-tert-butyl ether	ug/L	100	94.4	94	70-130	
Ethylbenzene	ug/L	50	44.7	89	70-130	
m&p-Xylene	ug/L	100	90.3	90	70-130	
Methyl-tert-butyl ether	ug/L	50	47.4	95	70-130	
Naphthalene	ug/L	50	48.9	98	70-130	
o-Xylene	ug/L	50	45.6	91	70-130	
tert-Amyl Alcohol	ug/L	1000	1010	101	70-130	
tert-Amylmethyl ether	ug/L	100	96.5	97	70-130	
tert-Butyl Alcohol	ug/L	500	486	97	70-130	
tert-Butyl Formate	ug/L	400	396	99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

LABORATORY CONTROL SAMPL	E: 2933296					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		44.7	89	70-130	
Xylene (Total)	ug/L	150	136	91	70-130	
1,2-Dichloroethane-d4 (S)	%			105	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX SPIKE DU	3297		2933298								
		MS	MSD								
	92484358003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter Unit	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane ug/	L ND	8000	8000	7910	7880	99	98	70-137	0	30	
3,3-Dimethyl-1-Butanol ug/	L ND	160000	160000	180000	176000	112	110	39-157	2	30	
Benzene ug/	L 24200	8000	8000	31600	32000	92	97	70-151	1	30	
Diisopropyl ether ug/	L ND	8000	8000	8870	8720	102	100	63-144	2	30	
Ethanol ug/	L ND	320000	320000	329000	320000	103	100	39-176	3	30	
Ethyl-tert-butyl ether ug/	L ND	16000	16000	16100	15900	101	99	66-137	2	30	
Ethylbenzene ug/	L 3360	8000	8000	12200	12100	111	109	66-153	1	30	
m&p-Xylene ug/	L 15100	16000	16000	32900	32700	111	110	69-152	1	30	
Methyl-tert-butyl ether ug/	L 4910	8000	8000	12400	12400	94	93	54-156	0	30	
Naphthalene ug/	L 1030J	8000	8000	9750	9380	109	104	61-148	4	30	
o-Xylene ug/	L 6990	8000	8000	16000	15800	112	110	70-148	1	30	
tert-Amyl Alcohol ug/	L ND	160000	160000	172000	169000	108	105	54-153	2	30	
tert-Amylmethyl ether ug/		16000	16000	18200	17900	107	106	69-139	1	30	
tert-Butyl Alcohol ug/	L ND	80000	80000	75400	74400	94	93	43-188	1	30	
tert-Butyl Formate ug/	L ND	64000	64000	66200	64900	103	101	10-170	2	30	
Toluene ug/		8000	8000	62000	62900	64	76	59-148	1	30	
Xylene (Total) ug/	L 22100	24000	24000	48900	48500	112	110	63-158	1	30	
1,2-Dichloroethane-d4 (S) %						96	96	70-130			
4-Bromofluorobenzene (S) %						101	101	70-130			
Toluene-d8 (S) %						99	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

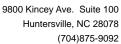
Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

QC Batch: 552144 Analysis Method: EPA 8260D
QC Batch Method: EPA 8260D Analysis Description: 8260 MSV SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484607017


METHOD BLANK: 2934290 Matrix: Water

Associated Lab Samples: 92484607017

1,2-Dichloroethane ug/L ND 5.0 2.1 07/09/20 12:14 3,3-Dimethyl-1-Butanol ug/L ND 100 53.9 07/09/20 12:14 Benzene ug/L ND 5.0 1.7 07/09/20 12:14 Diisopropyl ether ug/L ND 5.0 3.5 07/09/20 12:14 Ethanol ug/L ND 200 144 07/09/20 12:14 Ethyl-tert-butyl ether ug/L ND 10.0 8.5 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 Ethylbenzene ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 <	Parameter Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol ug/L ND 100 53.9 07/09/20 12:14 Benzene ug/L ND 5.0 1.7 07/09/20 12:14 Diisopropyl ether ug/L ND 5.0 3.5 07/09/20 12:14 Ethanol ug/L ND 200 144 07/09/20 12:14 Ethyl-tert-butyl ether ug/L ND 10.0 8.5 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 Ethylbenzene ug/L ND 10.0 4.1 07/09/20 12:14 m&p-Xylene ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 vert-Amyl Alcohol ug/L ND 10.0 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 10.0 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14 <th></th> <th> Result</th> <th></th> <th>IVIDL</th> <th>Analyzeu</th> <th>Qualifiers</th>		Result		IVIDL	Analyzeu	Qualifiers
Benzene ug/L ND 5.0 1.7 07/09/20 12:14 Diisopropyl ether ug/L ND 5.0 3.5 07/09/20 12:14 Ethanol ug/L ND 200 144 07/09/20 12:14 Ethyl-tert-butyl ether ug/L ND 10.0 8.5 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 Ethylbenzene ug/L ND 10.0 4.1 07/09/20 12:14 m&p-Xylene ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 vert-Amyl Alcohol ug/L ND 10.0 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 10.0 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	loroethane ug/L	ND	5.0	2.1	07/09/20 12:14	
Diisopropyl ether ug/L ND 5.0 3.5 07/09/20 12:14 Ethanol ug/L ND 200 144 07/09/20 12:14 Ethyl-tert-butyl ether ug/L ND 10.0 8.5 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 m&p-Xylene ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 o-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 10.0 65.6 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	ethyl-1-Butanol ug/L	ND	100	53.9	07/09/20 12:14	
Ethanol ug/L ND 200 144 07/09/20 12:14 Ethyl-tert-butyl ether ug/L ND 10.0 8.5 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 m&p-Xylene ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 o-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	; ug/L	ND	5.0	1.7	07/09/20 12:14	
Ethyl-tert-butyl ether ug/L ND 10.0 8.5 07/09/20 12:14 Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 m&p-Xylene ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 o-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	pyl ether ug/L	ND	5.0	3.5	07/09/20 12:14	
Ethylbenzene ug/L ND 5.0 1.8 07/09/20 12:14 m&p-Xylene ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 o-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	ug/L	ND	200	144	07/09/20 12:14	
m&p-Xylene ug/L ND 10.0 4.1 07/09/20 12:14 Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 o-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	t-butyl ether ug/L	ND	10.0	8.5	07/09/20 12:14	
Methyl-tert-butyl ether ug/L ND 5.0 3.1 07/09/20 12:14 Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 o-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	izene ug/L	ND	5.0	1.8	07/09/20 12:14	
Naphthalene ug/L ND 5.0 2.1 07/09/20 12:14 vo-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	ene ug/L	ND	10.0	4.1	07/09/20 12:14	
vo-Xylene ug/L ND 5.0 2.0 07/09/20 12:14 tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	ert-butyl ether ug/L	ND	5.0	3.1	07/09/20 12:14	
tert-Amyl Alcohol ug/L ND 100 65.6 07/09/20 12:14 tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	llene ug/L	ND	5.0	2.1	07/09/20 12:14	
tert-Amylmethyl ether ug/L ND 10.0 3.0 07/09/20 12:14 tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	; ug/L	ND	5.0	2.0	07/09/20 12:14	
tert-Butyl Alcohol ug/L ND 100 91.0 07/09/20 12:14 tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	l Alcohol ug/L	ND	100	65.6	07/09/20 12:14	
tert-Butyl Formate ug/L ND 50.0 24.1 07/09/20 12:14	Imethyl ether ug/L	ND	10.0	3.0	07/09/20 12:14	
	l Alcohol ug/L	ND	100	91.0	07/09/20 12:14	
Toluene ug/L ND 5.0 2.0 07/09/20 12:14	I Formate ug/L	ND	50.0	24.1	07/09/20 12:14	
	ug/L	ND	5.0	2.0	07/09/20 12:14	
Xylene (Total) ug/L ND 5.0 5.0 07/09/20 12:14	Total) ug/L	ND	5.0	5.0	07/09/20 12:14	
1,2-Dichloroethane-d4 (S)	loroethane-d4 (S) %	87	70-130		07/09/20 12:14	
4-Bromofluorobenzene (S) % 99 70-130 07/09/20 12:14	ofluorobenzene (S) %	99	70-130		07/09/20 12:14	
Toluene-d8 (S) % 100 70-130 07/09/20 12:14	·d8 (S) %	100	70-130		07/09/20 12:14	

LABORATORY CONTROL SAMPLE:	2934291					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	44.4	89	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1090	109	70-130	
Benzene	ug/L	50	48.6	97	70-130	
Diisopropyl ether	ug/L	50	44.9	90	70-130	
Ethanol	ug/L	2000	1730	86	70-130	
Ethyl-tert-butyl ether	ug/L	100	91.9	92	70-130	
Ethylbenzene	ug/L	50	47.8	96	70-130	
m&p-Xylene	ug/L	100	96.0	96	70-130	
Methyl-tert-butyl ether	ug/L	50	50.0	100	70-130	
Naphthalene	ug/L	50	48.1	96	70-130	
o-Xylene	ug/L	50	49.7	99	70-130	
tert-Amyl Alcohol	ug/L	1000	1090	109	70-130	
tert-Amylmethyl ether	ug/L	100	98.5	98	70-130	
tert-Butyl Alcohol	ug/L	500	480	96	70-130	
tert-Butyl Formate	ug/L	400	392	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

LABORATORY CONTROL SAMPLI	E: 2934291					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		49.7	99	70-130	
Xylene (Total)	ug/L	150	146	97	70-130	
1,2-Dichloroethane-d4 (S)	%			86	70-130	
4-Bromofluorobenzene (S)	%			95	70-130	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2934	292		2934293							
			MS	MSD								
	9	2484358022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	200	200	195	190	98	95	70-137	3	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	4000	4000	4200	4140	105	103	39-157	2	30	
Benzene	ug/L	ND	200	200	214	213	107	106	70-151	1	30	
Diisopropyl ether	ug/L	ND	200	200	207	204	93	92	63-144	1	30	
Ethanol	ug/L	ND	8000	8000	7240	7180	91	90	39-176	1	30	
Ethyl-tert-butyl ether	ug/L	ND	400	400	379	372	95	93	66-137	2	30	
Ethylbenzene	ug/L	ND	200	200	209	207	105	104	66-153	1	30	
m&p-Xylene	ug/L	ND	400	400	418	415	105	104	69-152	1	30	
Methyl-tert-butyl ether	ug/L	659	200	200	930	930	135	135	54-156	0	30	
Naphthalene	ug/L	ND	200	200	179	181	89	90	61-148	1	30	
o-Xylene	ug/L	ND	200	200	213	213	105	105	70-148	0	30	
tert-Amyl Alcohol	ug/L	ND	4000	4000	4380	4410	110	110	54-153	1	30	
tert-Amylmethyl ether	ug/L	ND	400	400	418	413	105	103	69-139	1	30	
tert-Butyl Alcohol	ug/L	ND	2000	2000	2110	2080	105	104	43-188	1	30	
tert-Butyl Formate	ug/L	ND	1600	1600	1340	1300	84	81	10-170	3	30	
Toluene	ug/L	ND	200	200	218	216	109	108	59-148	1	30	
Xylene (Total)	ug/L	ND	600	600	631	628	105	105	63-158	1	30	
1,2-Dichloroethane-d4 (S)	%						86	85	70-130			
4-Bromofluorobenzene (S)	%						97	97	70-130			
Toluene-d8 (S)	%						98	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484607

QC Batch: 551781 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484607001, 92484607002, 92484607003, 92484607004

METHOD BLANK: 2932509 Matrix: Water

Associated Lab Samples: 92484607001, 92484607002, 92484607003, 92484607004

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed 1,2-Dibromoethane (EDB) ND 0.020 0.011 07/08/20 17:03 ug/L 1-Chloro-2-bromopropane (S) % 94 60-140 07/08/20 17:03

LABORATORY CONTROL SAMPLE & LCSD: 2932510 2932511 LCS Spike LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 1.2-Dibromoethane (EDB) 3 ug/L 0.25 0.24 0.24 100 96 60-140 20 1-Chloro-2-bromopropane (S) 96 60-140 % 96

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2932513 2932514 MS MSD 92484599006 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 1,2-Dibromoethane (EDB) ug/L ND 0.24 0.24 0.23 0.23 96 60-140 20 1-Chloro-2-bromopropane 60-140 % 94 93 (S)

SAMPLE DUPLICATE: 2932512

Date: 07/10/2020 03:33 PM

		92484599005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND ND	ND		20	
1-Chloro-2-bromopropane (S)	%	93	94			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484607

Date: 07/10/2020 03:33 PM

QC Batch: 551782 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484607005, 92484607006, 92484607007, 92484607008, 92484607009, 92484607011,

92484607012, 92484607013, 92484607014, 92484607015, 92484607016, 92484607017, 92484607018

METHOD BLANK: 2932515 Matrix: Water

Associated Lab Samples: 92484607005, 92484607006, 92484607007, 92484607008, 92484607009, 92484607010, 92484607011,

92484607012, 92484607013, 92484607014, 92484607015, 92484607016, 92484607017, 92484607018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	0.020	0.011	07/08/20 22:20	
1-Chloro-2-bromopropane (S)	%	88	60-140		07/08/20 22:20	

LABORATORY CONTROL SAMPLE	& LCSD: 2932516		29	932517						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	0.25	0.24	0.24	96	97	60-140	2	20	
1-Chloro-2-bromopropane (S)	%				94	94	60-140			

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2932	519		2932520							
	9	2484607006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND	0.25	0.25	0.22	0.23	90 88	93 91	60-140 60-140	4	20	

SAMPLE DUPLICATE: 2932518						
		92484607005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20)
1-Chloro-2-bromopropane (S)	%	94	95			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Coastal 76 19-7034

Pace Project No.: 92484607

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

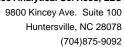
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

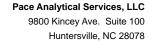
Date: 07/10/2020 03:33 PM

P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Coastal 76 19-7034

Pace Project No.: 92484607


Date: 07/10/2020 03:33 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92484607001	IGWA-R	EPA 8011	 551781	EPA 8011	 551939
2484607002	MW-1	EPA 8011	551781	EPA 8011	551939
2484607003	MW-3	EPA 8011	551781	EPA 8011	551939
2484607004	MW-4	EPA 8011	551781	EPA 8011	551939
2484607005	MW-6	EPA 8011	551782	EPA 8011	551940
2484607006	MW-7	EPA 8011	551782	EPA 8011	551940
2484607007	MW-8	EPA 8011	551782	EPA 8011	551940
2484607008	MW-11	EPA 8011	551782	EPA 8011	551940
2484607009	MW-18	EPA 8011	551782	EPA 8011	551940
2484607010	MW-19	EPA 8011	551782	EPA 8011	551940
2484607011	MW-20	EPA 8011	551782	EPA 8011	551940
2484607012	MW-22D	EPA 8011	551782	EPA 8011	551940
2484607013	MW-27	EPA 8011	551782	EPA 8011	551940
2484607014	MW-28	EPA 8011	551782	EPA 8011	551940
2484607015	TW-1	EPA 8011	551782	EPA 8011	551940
2484607016	TW-2	EPA 8011	551782	EPA 8011	551940
2484607017	DUP-1	EPA 8011	551782	EPA 8011	551940
2484607018	FB	EPA 8011	551782	EPA 8011	551940
2484607001	IGWA-R	EPA 8260D	551920		
2484607002	MW-1	EPA 8260D	551920		
2484607003	MW-3	EPA 8260D	551920		
2484607004	MW-4	EPA 8260D	551920		
2484607005	MW-6	EPA 8260D	551439		
2484607006	MW-7	EPA 8260D	551440		
2484607007	MW-8	EPA 8260D	551439		
2484607008	MW-11	EPA 8260D	551439		
2484607009	MW-18	EPA 8260D	551439		
2484607010	MW-19	EPA 8260D	551439		
2484607011	MW-20	EPA 8260D	551439		
2484607012	MW-22D	EPA 8260D	551440		
2484607013	MW-27	EPA 8260D	551439		
2484607014	MW-28	EPA 8260D	551439		
2484607015	TW-1	EPA 8260D	551439		
2484607016	TW-2	EPA 8260D	551439		
2484607017	DUP-1	EPA 8260D	552144		
2484607018	FB	EPA 8260D	551439		
2484607019	ТВ	EPA 8260D	551439		

YES /_NO Page: of:	PB:	10 m			
Trip.Blank Received: Y N NA ACL MeOH TSP Other	Template: Prelogin:	Received by/Company: (Signature)	1841 O		Relinquished by/Company: (Signature)
E 2	7 JOJO 815 Table #:	Company (Grantura)	Date/Time: Received		Relinguished by/Company: (Signature)
Comments:	m	Received by/Company: (Signature)	Date/Time: Received		Relinquished by/Company: (Signature)
SI: 1	Courier	Y N WA	Radchem sample(s) screened (<500 cpm):		
Temp Blank Received: Y N NA Therm ID#: Y N NA Cooler 1 Temp Ilpan Receipt: 3 Temp	Lab Tracking #: 2429368	Thus	Packing Material Used:	led	MN-7 was sampled
Lab Sample Temperature Info:	SHORT HOLDS PRESENT (<72 hours): Y N N/A	Blue Dry None SH	Type of Ice Used: Wet	ns / Possible Hazards:	Customer Remarks / Special Conditions / Possible Hazards:
10 Oder US		6 X	95	5	10 N - 8
10 Q der DOG		\$ X X	CLL 19/17/9	0 200	200
00	7		54:012/12/12/15	S 100	16
	- No			3	M 1 - 5
~		2 X	62:010:55	GW C	THE T
000		6 ×	51:11 02/152/0	GW G	MINICS
6 SAMO(4					
CA)	X	(X X	6/21/2/11:30	Civil Co	
300		6 X X	S14100 1415	(2 M)	16KA-X
Samole ()					J GWA
1255 ES	ethn 70 and 70 a		Date Time Date		Ś
Sample # / Comments:		Composite End Cl Ctns C	Collected (or Composite Start)	Matrix * Grab	Customer Sample ID
rips:	Lead	stewater (WW), /), Other (OT)	(DW), Ground Water (GW), W. ssue (TS), Bioassay (B), Vapor (below): Drinking Water Wipe (WP), Air (AR), Ti	"Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)
present v N	pH Strike Sulfide	MI	rges Apply) Analysis:	(Expedite Charges Apply)	[] Hold:
ol Chlorine Present Y N	Resident CI Campa	[] Yes [] No	[] Next Day	[] Same Day	opriate [] Return
in Holding Time Y N	USDA Re Samples	[]No	[] Yes	Rush:	Samble Disposal:
K K	Samp VOA -	Immediately Packed on Ice:		Turnaround Date Required:	Collected By (signature)
Correct Bottles Y N NA Sufficient Volume Y N NA	Correct Correct Sufficie	DW PWS ID #: DW Location Code:	DW PWS ID #:	Purchase Order #: Quote #:	Collected By (print):
Signature Present X N	Custo Colli	Compliance Monitoring?	Complia [] Yes	Site/Facility ID#:	
Receipt Checklist:	Lab	[]PT[]MT[]CT [NET	SCI FAIRENCE		Josha 76
Lab Profile/Line:	Analyses Lab Pro				Customer Project Name/Number:
4) sodium hydroxide, (5) zinc acetate, corbic acid, (B) ammonium sulfate,	r reservative types: (1) nitric acid, (2) sultrurc acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Sinet	Site Collection Info/Address:		Copy To:
Lab Project Manager:	Lab Pro		Email To: A	do, of valturas	7
	ALL 92484607			2	Address:
Page		ree an relevent helds	Billing Information:		Company
		ete all relevent fields	Chain-of-Custody is a LEGAL DOCLIMENT - Complete all releases fields	Chain-of-Custody	Pace Analytical
	MO#: 92484607	guest Document	CHAIN-OF-CUSTODY Analytical Request Document	CHAIN-OF-CU	3

Non Conformance(s): Page:	PM:	Date/Time:	ngnature)	neceived by/ company. (a)gradue,				
Trip Blank Received: Y N MA HCL MeOH TSP Other	Template: Prelogin:	Date/Time:	ignature)	Received by/Company: (Signature)	04N 0	Date/Time:	ature)	Relinquished by/Company: (Signature)
10 m	S15 Table #:	7-2-20		5	20	7-2	CI	Relinquished hor Company: (Sign
Comments:	MTJLLA	Date/Time:	ignature)	Received by/Company: (Signature)	51:8	Date/Time:	ature)	Relinquished by/Company: (Signature)
0	Client Courier	Samples received via: FEDEX UPS	N NA	reened (<500 cpm): Y	Radchem sample(s) screened (<500 cpm):			
Therm ID#: To A OC Cooler 1 Temp Upon Receipt: OC	242936	Lab Tracking #:	.d 1	15-bays	rackiig Material Osed:			
Info:	ENT (<72 hours): Y N	SHORT HOLDS PRESENT (<72 hours):	None	Wet Blue Dry	Type of Ice Used:		iditions / Possible	Customer Remarks / Special Conditions / Possible Hazards:
We Oder 03	30	7	E X	1	0000 1000		SW	INVO /
No Sample								20 CE
S								SALAN
Sauch								424-MM
2								MW-23
2000		X	×		924/20143P	0	(GW	022-MM.
See NO					1 1			22-MW
1				The same of the sa				MW-CI
0	ke l	×.	X		01:01 2/12/9	6	GW	MIN CO
700000000000000000000000000000000000000	(G)	×	S X	-	0	(3)	600	MW-19
t12/2/2/	etni	ŧ		Date Time	Date Time	9		
Lab Sample # / Comments:	NOW.	0	Res # of	Composite End	Collected (or Composite Start)	Comp /	Matrix *	Customer Sample ID
Strips:	i i	B8	XM	GW), Wastewater (WW), Vapor (V), Other (OT)	DW), Ground Water (sue (TS), Bioassay (B)	king Water (Air (AR), Tis	(OL), Wipe (WP),	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)
pH Strips: pH Strips: pH Strips: V N NA Sulfide Present V N NA	TI)	01	V12	Analysis:	ges Apply)	(Expedite Charges Apply)	1 1 1	[]Hold:
il Chlorine Present Y N	bein	eku	2 00	[] Yes [] No	[] Next Day	[]Same Day [12 Day	[] Dispose as appropriate [] Return [] Archive:
A Regulated Soils Y N ples in Holding Time Y N	d sai			[]Yes []No			Rich:	Sample Disposed
on Ice YN	130		N.C.	Immediately Packed on Ice:	d:	Date Require	Turnaround Date Required:	Collected By (signature):
(0	7100		458	DW PWS ID #: DW Location Code:		ler#: "	Purchase Order #:	Collected By (print):
	200		376	Compliance Monitoring? [] Yes [] No		7 7	14-703	Phone: Email:
Lab Sample Receipt Checklist: Custody Seals Present/Intact V M NA	Lucr] CT [9/ET B	0	-		1	(pasta 16
Lab Profile/Line:	Analyses	A		tv: Time Zone Collected:	State: County/City:		חפרי	Customer Project Name/Number:
(6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	ric acid, (2) sulfuric acid, (3) hy ilfate, (8) sodium thiosulfate, (9) TSP, (U) Unpreserved, (O) Other	eservative Types: (1) niti ethanol, (7) sodium bisu nmonium hydroxide, (D)	(6) mo (C) an	address:	ction Info/			Copy To:
Lab Project Manager:	Container reservative type	Container			Email To:	1201	Lexington	100/24
	oconyative Type **	Container Pr			i i	25/12		Address:
CLIENT: 92-MIDLAND Page	ALL SHADED A	Þ	licius	Billing Information:	Billing Information:			Company:
PM: AMB Due Date: 07/10/20 3			field:	T Complete all relevent	E PLEGAL DOCUMEN	-of-Custody	Chain	Pace Analytical
WO#:92484607		LAB USE ONI	ment	CHAIN-OF-CUSTODY Analytical Request Document	TODY Analyti	I-OF-CUS	CHAIN	6

3	CHAIN-OF-C	CHAIN-OF-CUSTODY Analytical Reguest Document	LAB USE ONLY- Affix Workon	:92484607
Pace Analytical	Chain-of-Cust	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	PM: AMB	Due Date: 07/10/20 40 0
Company		Billing Information:	ALL SHADEL CLIENT: 9	
Address: Decleg Rd, C	exing by X	22073	Container Preservative Type **	Lab Project Manager:
Report To: b. Shane	C	Email To: JUDIMPC, MPL	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) merhanol (7) sodium hisulfate (8) sodium hisculfate (1) homo (1) h	acid, (4) sodium hydroxide, (5) zinc acetate,
Сору То:			(C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	(A) ascorbic acid, (B) ammonium sulfate,
Customer Project Name/Number:		State: County/City: Time Zone Collected:	Ш	
ds/a/ 16	7	Horence	06	Custody Seals Present/Intact v N-NA
	Sue/Edillity 10.2	Compliance Monitoring?	766	Signatures Present Y N
Collected By (print):	Purchase Order #: Quote #:	DW PWS ID #: DW Location Code:	y8	Sufficient Volume V NA
(signature):	Turnaround Date Required:		91	
Sample Disposal:	Rush:	[] Yes [] No	dan dan dan dan dan dan dan dan dan dan	ted Soils Y N
opriate [] Return	[] Same Day [] 2 Day [] 3 Day	[] Next Day y [] 4 Day [] 5 Day	2 OC	Present Y N
* 2011	(Expedite	(Expedite Charges Apply)	12	pH Strips: Sulfide Present Y N NA
Product (P), Soil/Solid (SL), Oil (OL),	velow): Drinking Wa Wipe (WP), Air (AR)	Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	80	Acetate Strips:
Customer Sample ID	Matrix * Grab	b Composite Start) Composite End Res # of Ctns	TEX 0B	Lab Sample # / Comments:
		Date Time	B	tsonship
				No Sample
				No Paulolo
				No Sauple
	(MO)	(1797)218:75	X	NO SUMPROS
		8/01/0		Sand DUS
MINITIS				3-6
- 01 - DITM				Signal
		A		Nosaloe
	2	CC 11 22 1576	XX	No Chor UA
Customer Remarks / Special Conditions / Possible Hazards:	s / Possible Hazards		SHORT HOLDS PRESENT (<72 hours): Y N N/A	Info
		Packing Material Used:	Lab Tracking #: 2429123	Temp Blank Received: Y N NA Therm ID#:
		Radchem sample(s) screened (<500 cpm): Y N NA	Samples received via: FEDEX UPS Client Courier Page Courier	
Reiniquished by/company: (signature)		Date/Time: Received by/Company: (Signature)	Date/Time: MTJL LAB USE ONLY Table #:	
Relinquished by/Company: (Signature)		Date/Time: Received by/Company: (Signature)	Date/Time: Acctnum:	
Relinquished by/Company, (Signature)		26h(0	Template: Prelogin:	Trip Blank Received: Y N NA HCL MeOH TSP Other
			PB:	Non Conformance(s): Page: YES / NO of:

(704)875-9092

July 13, 2020

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE: Project: Coastal 76 19-7034

Pace Project No.: 92484609

Dear Mr. Shane:

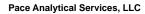
Enclosed are the analytical results for sample(s) received by the laboratory on July 02, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


angela M. Baioni

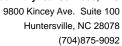
Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092


CERTIFICATIONS

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92484609001	WSW-1	Water	06/29/20 12:15	07/02/20 08:15
92484609002	WSW Dup	Water	06/29/20 12:15	07/02/20 08:15
92484609003	WSW FB	Water	06/29/20 12:15	07/02/20 08:15
92484609004	WSW TB	Water	06/29/20 08:00	07/02/20 08:15

SAMPLE ANALYTE COUNT

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92484609001	WSW-1	EPA 504.1	JMS1	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	GAW	11	PASI-C
92484609002	WSW Dup	EPA 504.1	JMS1	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	GAW	11	PASI-C
92484609003	WSW FB	EPA 504.1	JMS1	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	GAW	11	PASI-C
92484609004	WSW TB	EPA 524.2	LMB	11	PASI-C
		EPA 8260D	GAW	11	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

Sample: WSW-1	Lab ID:	92484609001	Collected	d: 06/29/20	0 12:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
Davanatava	Daguita	Llaita	Report	MDL	DF	Duananad	A salumad	CACNE	0
Parameters	Results _	Units -	Limit	MDL		Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepa	ration Meth	nod: EP	A 504.1			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.011	1	07/09/20 10:05	07/09/20 18:40	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	87	%	70-130		1	07/09/20 10:05	07/09/20 18:40	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.25	1		07/06/20 19:01	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.13	1		07/06/20 19:01	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.26	1		07/06/20 19:01	100-41-4	
Methyl-tert-butyl ether	5.4	ug/L	0.50	0.094	1		07/06/20 19:01	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.31	1		07/06/20 19:01	91-20-3	
Toluene	ND	ug/L	0.50	0.24	1		07/06/20 19:01	108-88-3	
Xylene (Total)	ND	ug/L	0.50	0.25	1		07/06/20 19:01	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.46	1		07/06/20 19:01	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.25	1		07/06/20 19:01	95-47-6	
Surrogates		ū							
1,2-Dichlorobenzene-d4 (S)	102	%	70-130		1		07/06/20 19:01	2199-69-1	
4-Bromofluorobenzene (S)	94	%	70-130		1		07/06/20 19:01	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		07/10/20 02:52	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		07/10/20 02:52	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		07/10/20 02:52	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	27.3	1		07/10/20 02:52	75-65-0	
ert-Butyl Formate	ND	ug/L	50.0	24.7	1		07/10/20 02:52	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		07/10/20 02:52	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		07/10/20 02:52	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		07/10/20 02:52	637-92-3	
Surrogates		3					-		
4-Bromofluorobenzene (S)	95	%	70-130		1		07/10/20 02:52	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		07/10/20 02:52	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/10/20 02:52	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

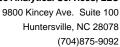
Sample: WSW Dup	Lab ID:	92484609002	Collected:	06/29/20	12:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	A 504.1			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.011	1	07/09/20 10:05	07/09/20 18:51	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	74	%	70-130		1	07/09/20 10:05	07/09/20 18:51	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.25	1		07/06/20 19:27	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.13	1		07/06/20 19:27	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.26	1		07/06/20 19:27	100-41-4	
Methyl-tert-butyl ether	4.2	ug/L	0.50	0.094	1		07/06/20 19:27	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.31	1		07/06/20 19:27	91-20-3	
Toluene	ND	ug/L	0.50	0.24	1		07/06/20 19:27		
Xylene (Total)	ND	ug/L	0.50	0.25	1		07/06/20 19:27	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.46	1		07/06/20 19:27	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.25	1		07/06/20 19:27		
Surrogates		3							
1,2-Dichlorobenzene-d4 (S)	101	%	70-130		1		07/06/20 19:27	2199-69-1	
4-Bromofluorobenzene (S)	91	%	70-130		1		07/06/20 19:27	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		07/10/20 03:10	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		07/10/20 03:10	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		07/10/20 03:10	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	27.3	1		07/10/20 03:10		
ert-Butyl Formate	ND	ug/L	50.0	24.7	1		07/10/20 03:10		P5
Diisopropyl ether	ND	ug/L	1.0	0.22	1		07/10/20 03:10		-
Ethanol	ND	ug/L	200	98.8	1		07/10/20 03:10		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		07/10/20 03:10	-	
Surrogates	110	~9, -	10.0	0.7	•		31713720 00.10	50. 52 0	
4-Bromofluorobenzene (S)	96	%	70-130		1		07/10/20 03:10	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130		1		07/10/20 03:10	17060-07-0	
Toluene-d8 (S)	103	%	70-130		1		07/10/20 03:10		

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

Sample: WSW FB	Lab ID:	92484609003	Collected:	06/29/20	12:15	Received: 07/	02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	A 504.1			
	Pace Ana	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB)	ND	ug/L	0.019	0.011	1	07/09/20 10:05	07/09/20 19:03	106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	133	%	70-130		1	07/09/20 10:05	07/09/20 19:03	301-79-56	S3
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Ana	lytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.25	1		07/06/20 17:16	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.13	1		07/06/20 17:16	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.26	1		07/06/20 17:16	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.094	1		07/06/20 17:16	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.31	1		07/06/20 17:16	91-20-3	
Toluene	ND	ug/L	0.50	0.24	1		07/06/20 17:16		
Xylene (Total)	ND	ug/L	0.50	0.25	1		07/06/20 17:16		
m&p-Xylene	ND	ug/L	1.0	0.46	1		07/06/20 17:16		
o-Xylene	ND	ug/L	0.50	0.25	1		07/06/20 17:16		
Surrogates		~ g/ =	0.00	0.20	•		0.700,200		
1,2-Dichlorobenzene-d4 (S)	99	%	70-130		1		07/06/20 17:16	2199-69-1	
4-Bromofluorobenzene (S)	91	%	70-130		1		07/06/20 17:16	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	•	lytical Services							
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		07/09/20 21:46	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		07/09/20 21:46	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		07/09/20 21:46		
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		07/09/20 21:46		
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		07/09/20 21:46		
Diisopropyl ether	ND	ug/L	1.0	0.22	1		07/09/20 21:46		
Ethanol	ND	ug/L	200	98.8	1		07/09/20 21:46		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		07/09/20 21:46	-	
Surrogates	140	ug/L	10.0	5.7	'		37,03/20 21.40	001-02-0	
4-Bromofluorobenzene (S)	96	%	70-130		1		07/09/20 21:46	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130		1		07/09/20 21:46	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		07/09/20 21:46	2037-26-5	



Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

Sample: WSW TB	Lab ID:	92484609004	Collected	d: 06/29/20	00:80	Received: 07	7/02/20 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
524.2 MSV SC List	Analytical	Method: EPA	524.2						
	Pace Anal	ytical Services	s - Charlotte						
Benzene	ND	ug/L	0.50	0.25	1		07/06/20 17:43	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.13	1		07/06/20 17:43	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.26	1		07/06/20 17:43	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.094	1		07/06/20 17:43	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.31	1		07/06/20 17:43	91-20-3	
Toluene	ND	ug/L	0.50	0.24	1		07/06/20 17:43	108-88-3	
Xylene (Total)	ND	ug/L	0.50	0.25	1		07/06/20 17:43	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	0.46	1		07/06/20 17:43	179601-23-1	
o-Xylene	ND	ug/L	0.50	0.25	1		07/06/20 17:43	95-47-6	
Surrogates		•							
1,2-Dichlorobenzene-d4 (S)	99	%	70-130		1		07/06/20 17:43	2199-69-1	
4-Bromofluorobenzene (S)	89	%	70-130		1		07/06/20 17:43	460-00-4	
8260 MSV Low Level SC	Analytical	Method: EPA	8260D						
	Pace Anal	ytical Services	s - Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	53.9	1		07/09/20 22:04	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.5	1		07/09/20 22:04	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	62.0	1		07/09/20 22:04	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	27.3	1		07/09/20 22:04	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.7	1		07/09/20 22:04	762-75-4	
Diisopropyl ether	ND	ug/L	1.0	0.22	1		07/09/20 22:04	108-20-3	
Ethanol	ND	ug/L	200	98.8	1		07/09/20 22:04	64-17-5	
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.7	1		07/09/20 22:04	637-92-3	
Surrogates									
4-Bromofluorobenzene (S)	98	%	70-130		1		07/09/20 22:04	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/09/20 22:04	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		07/09/20 22:04	2037-26-5	

Project: Coastal 76 19-7034

Pace Project No.: 92484609

4-Bromofluorobenzene (S)

Date: 07/13/2020 05:28 PM

QC Batch: 551356 Analysis Method: EPA 524.2 QC Batch Method: EPA 524.2 Analysis Description: 524.2 MSV

> Laboratory: Pace Analytical Services - Charlotte

> > 94

70-130

Associated Lab Samples: 92484609001, 92484609002, 92484609003, 92484609004

METHOD BLANK: 2930937 Matrix: Water

92484609001, 92484609002, 92484609003, 92484609004 Associated Lab Samples:

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND ND	0.50	0.13	07/06/20 15:32	
Benzene	ug/L	ND	0.50	0.25	07/06/20 15:32	
Ethylbenzene	ug/L	ND	0.50	0.26	07/06/20 15:32	
m&p-Xylene	ug/L	ND	1.0	0.46	07/06/20 15:32	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.094	07/06/20 15:32	
Naphthalene	ug/L	ND	0.50	0.31	07/06/20 15:32	
o-Xylene	ug/L	ND	0.50	0.25	07/06/20 15:32	
Toluene	ug/L	ND	0.50	0.24	07/06/20 15:32	
Xylene (Total)	ug/L	ND	0.50	0.25	07/06/20 15:32	
1,2-Dichlorobenzene-d4 (S)	%	99	70-130		07/06/20 15:32	
4-Bromofluorobenzene (S)	%	91	70-130		07/06/20 15:32	

LABORATORY CONTROL SAMPLE:	2930938					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L		19.7	98	70-130	
Benzene	ug/L	20	19.0	95	70-130	
Ethylbenzene	ug/L	20	19.7	98	70-130	
m&p-Xylene	ug/L	40	39.4	99	70-130	
Methyl-tert-butyl ether	ug/L	20	19.3	97	70-130	
Naphthalene	ug/L	20	19.9	100	70-130	
o-Xylene	ug/L	20	19.7	99	70-130	
Toluene	ug/L	20	19.4	97	70-130	
Xylene (Total)	ug/L	60	59.1	99		
1,2-Dichlorobenzene-d4 (S)	%			102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

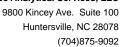
QC Batch: 552246 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484609001, 92484609002, 92484609003, 92484609004

METHOD BLANK: 2934964 Matrix: Water


Associated Lab Samples: 92484609001, 92484609002, 92484609003, 92484609004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	62.0	07/09/20 20:52	
Diisopropyl ether	ug/L	ND	1.0	0.22	07/09/20 20:52	
Ethanol	ug/L	ND	200	98.8	07/09/20 20:52	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.7	07/09/20 20:52	
tert-Amyl Alcohol	ug/L	ND	100	53.9	07/09/20 20:52	
tert-Amylmethyl ether	ug/L	ND	10.0	3.5	07/09/20 20:52	
tert-Butyl Alcohol	ug/L	ND	100	27.3	07/09/20 20:52	
tert-Butyl Formate	ug/L	ND	50.0	24.7	07/09/20 20:52	
1,2-Dichloroethane-d4 (S)	%	100	70-130		07/09/20 20:52	
4-Bromofluorobenzene (S)	%	97	70-130		07/09/20 20:52	
Toluene-d8 (S)	%	104	70-130		07/09/20 20:52	

LABORATORY CONTROL SAMPLE:	2934965					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	1000	1040	104	70-130	
Diisopropyl ether	ug/L	50	49.2	98	70-130	
Ethanol	ug/L	2000	1880	94	70-130	
Ethyl-tert-butyl ether	ug/L	100	101	101	70-130	
tert-Amyl Alcohol	ug/L	1000	1010	101	70-130	
tert-Amylmethyl ether	ug/L	100	104	104	70-130	
tert-Butyl Alcohol	ug/L	500	484	97	70-130	
tert-Butyl Formate	ug/L	400	429	107	70-130	
1,2-Dichloroethane-d4 (S)	%			95	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	LICATE: 2934			2934967							
Parameter	Units	92484609002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
3,3-Dimethyl-1-Butanol	ug/L		400	400	469	510	117	128	39-157	8	30	
Diisopropyl ether	ug/L	ND	20	20	22.1	23.9	111	120	63-144	8	30	
Ethanol	ug/L	ND	800	800	965	1060	121	132	39-176	9	30	
Ethyl-tert-butyl ether	ug/L	ND	40	40	43.6	46.9	109	117	66-137	7	30	
tert-Amyl Alcohol	ug/L	ND	400	400	472	513	118	128	54-153	8	30	
tert-Amylmethyl ether	ug/L	ND	40	40	43.6	46.5	109	116	69-139	7	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2934	966 MS	MSD	2934967							
	9	2484609002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
tert-Butyl Alcohol	ug/L	ND	200	200	314	344	157	172	43-188	9	30	
tert-Butyl Formate	ug/L	ND	160	160	ND	ND	0	0	10-170		30	P5
1,2-Dichloroethane-d4 (S)	%						98	105	70-130			
4-Bromofluorobenzene (S)	%						100	101	70-130			
Toluene-d8 (S)	%						101	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

QC Batch: 552121 Analysis Method: EPA 504.1

QC Batch Method: EPA 504.1 Analysis Description: GCS 504 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92484609001, 92484609002, 92484609003

METHOD BLANK: 2934216 Matrix: Water

Associated Lab Samples: 92484609001, 92484609002, 92484609003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND ND	0.020	0.011	07/09/20 16:30	
1-Chloro-2-bromopropane (S)	%	109	70-130		07/09/20 16:30	

LABORATORY CONTROL SAMPLE &	LCSD: 2934217		29	934218						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	0.25	0.25	0.24	99	97	70-130	2	20	
1-Chloro-2-bromopropane (S)	%				98	98	70-130			

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2934	220		2934221							
	9	2484382002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane	ug/L %	ND	0.25	0.25	0.23	0.24	95 94	97 96	65-135 70-130	2	20	

SAMPLE DUPLICATE: 2934219						
		92484382001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20)
1-Chloro-2-bromopropane (S)	%	94	100			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Coastal 76 19-7034

Pace Project No.: 92484609

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/13/2020 05:28 PM

- P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
- S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Coastal 76 19-7034

Pace Project No.: 92484609

Date: 07/13/2020 05:28 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92484609001	WSW-1	EPA 504.1	 552121	EPA 504.1	552282
92484609002	WSW Dup	EPA 504.1	552121	EPA 504.1	552282
92484609003	WSW FB	EPA 504.1	552121	EPA 504.1	552282
92484609001	WSW-1	EPA 524.2	551356		
92484609002	WSW Dup	EPA 524.2	551356		
92484609003	WSW FB	EPA 524.2	551356		
92484609004	WSW TB	EPA 524.2	551356		
92484609001	WSW-1	EPA 8260D	552246		
92484609002	WSW Dup	EPA 8260D	552246		
92484609003	WSW FB	EPA 8260D	552246		
92484609004	WSW TB	EPA 8260D	552246		

Relinquished by/Cohapany: (Signature)	Relinquished by/Company: (Signature)	weindurshed by/ company: Signature)		E I	Customer Remarks / Special Conditions / Possible Hazards:					WZW TI	Wyw CR	WY WENT	WSW -		Customer Sample ID	" Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	* Martin Code (Insert in Partin	[] Dispose as appropriate [] Return [] Archive:	Sample Disposal:	Collected By (signature):	Collected By (print):		Dastal 16	Customer Project Name/Number:	Сору То:	Report To: S Skulp	Address: Dooley Rd, CEX	Company:	Pace Analytical	2
	Date/	N			າs / Possible Hazards:					0			5		Matrix * Grab	wipe (WP), Air (AR), Tis	(Expedite Charges Apply)	[] Same Day [] 2 Day [] 3 Day	Rush:	Turnaround Date Required:	Purchase Order #: Quote #:	Site/Facility ID #:	5.			(8082 John (m)		Chain-of-Custody	CHAIN-OF-CU
Date/Time: 1990	Time:	120 8:15	Radchem sample(s) screened (<500 cpm):	Packing Material Used:	Type of Ice Used:		-			0000 of 110 h	1	CIO	512121219	Date Time	Collected (or Composite Start)	(DW), Ground Water (G ssue (TS), Bioassay (B), \	irges Apply)	Day []5 Day				7	7	State: County/City:	Site Collection Info/Address:	Email To: > 1		Billing Information:	is a LEGAL DOCUMENT	STODY Analytic
Received by/Company: (Signature)	Received by/Company: (Signature)	Received by/Company: (Signature)	~	Sant	Wet Blue Dry N									Date Time	Composite End Cl	W), Wastewater (WW), Vapor (V), Other (OT)	Alialysis.	[]Yes []No	Field Filtered (if applicable):	ately Pa	DW PWS ID #: DW Location Code:	Compliance Monitoring? [] Yes [] No	6	/: Time Zone Collected:	(Jan. 1 100 -			Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	CHAIN-OF-CUSTODY Analytical Request Document
Re)		N NA Sample	Lab Tra	None SHORT					6 X X		6	2 ×	BC	Ctns of	XW 158	M 520	121	3	45	24:	2	I JUÉT		(b) methanol, (C) ammonium	** Preservative			S	
Date/Time: PM: PB:		Date/Time: 7-108/5 17	Samples received via: FEDEX UPS Client	SA SE	SHORT HOLDS PRESENT (<72 hours):						X	×	×		EV	57		1.1		1				Analyses	hydroxide, (D) TSP, (U) Unpro	e Types: (1) nitric acid, (2) sulf	Container Preservative Type **	ALL 9248		LAB USE ONLY- A
Prelogin: PM: PB:	Acctnum:	Table #:	Courier Pace Courier	2429367	Irs): Y N N/A	914			30 1						T A		10.71	50.0	77 10		2 70 0			Lak	m thiosulfate, (9) hexane, (a	uric acid, (3) hydrochloric a		2484609		WO#: 92484609
Non Conformance(s): YES / NO	Trip Blank Received:	Comments:		Temp Blank Received: Y no Therm ID#: Cooler 1 Temp Upon Receipt:	Lab Sample Temperature Info:					7	本でいる	STON	SIG	-	Lab Sample # / Comments:	Lab use only:	de Prese	cceptal	Samples in Holding Time Residual Chlorine Present	VOA - Headspace Acceptable USDA Regulated Soils	Correct Bottles Sufficient Volume	Custody Signatures Present Collector Signature Present Bottles Intact	Lab Sample Receipt Checklist:	Lab Profile/Line:	(b) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	* Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate,	Lab Project Manager:			34609
SP Other	/ed: Y N NAA		0	Jon Receipt: SOC				2, 235		W	(203	12	(20)	10°1/2 ME	cs.		AN'N Y	K	ĸķ.	ble V N	N N N	2 2 2	Intact Y N NA		n sulfate,	inc acetate,		Pag	ge 15	of 15

APPENDIX C:

TAX MAP (Not Applicable)

APPENDIX D:

SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS

APPENDIX E:

WELL COMPLETION LOGS & 1903 FORMS

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G:

DISPOSAL MANIFEST

Re: Treatment of Purge Water Coastal Truck Stop 76 Florence, South Carolina SCDHEC Site ID Number 03538 MECI Project Number 19-7034

To Whom It May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- 3. Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- 7. Any and all recommendations and conditions (even on a site by site basis) issued by the SCDHEC must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 30 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

SCDHEC July 22, 2020 Page 2

A total of 310.75 gallons were treated on June 29, 2020, during groundwater sampling at the referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Veff L. Coleman Senior Scientist APPENDIX H:
LOCAL ZONING REGULATIONS
(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

APPENDIX J:
ACCESS AGREEMENTS
(Not Applicable)

APPENDIX K: DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that installed borings/monitoring wells provided?	X		
6	Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X		
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?	X		
17	Has the method of well development been detailed?	X		
18	Has justification been provided for the locations of the monitoring wells?	X		
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figure 5)	X		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
26	Does the report include a brief discussion of the aquifer evaluation and results?	X		
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format? (Table 1)			X
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the <u>current</u> and historical laboratory data been provided in tabular format? (Table 3)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)	X		
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)			X
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figures 4, 4A, 4B, 4C)	X		
40	Has the site potentiometric map been provided? (Figure 5)	X		
41	Have the geologic cross-sections been provided? (Figure 6)			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	X		
45	Is the laboratory performing the analyses properly certified?	X		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix D)			X
48	Have the well completion logs and SCDHEC Form 1903 been provided? (Appendix E)	X		
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)	X		
50	Have the disposal manifests been provided? (Appendix G)	X		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
53	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
54	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	X		

DAN MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501 DEC 0 9 2020

Re: Site-Specific Work Plan Request for Additional Assessment

Coastal 76 Truck Stop, 2513 E Palmetto St., Florence, SC UST Permit #03538
Release reported September 27, 1995
Monitoring Report received August 11, 2020
Florence County

Dear Mr. McEachin:

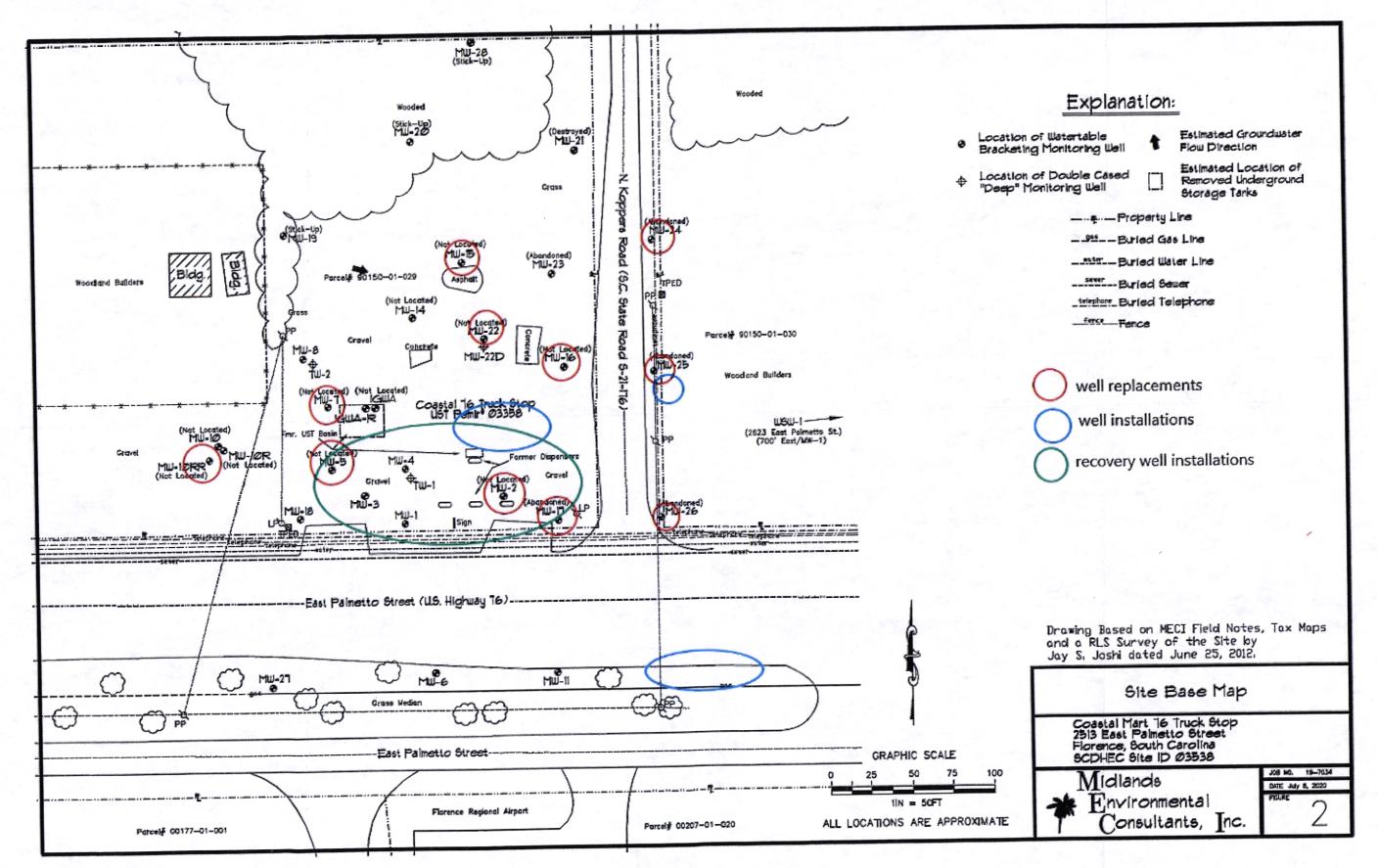
The Underground Storage Tank Management (UST Division) of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed the referenced report submitted by your contractor. The report documents petroleum chemicals in the soil and groundwater above Risk-Based Screening Levels (RBSLs).

To determine what risk the referenced release may pose to human health and the environment, in accordance with Section 280.65 of the South Carolina Underground Storage Tank Control Regulations R.61-92, implementation of additional assessment is necessary. The assessment must be conducted in accordance with the most recent revision of the UST Quality Assurance Program Plan (QAPP), your contractor's Annual Contractor Quality Assurance Plan (ACQAP), and in compliance with all applicable regulations. A copy of the UST QAPP is available at SCDHEC.gov/Environment/Land-Waste/Underground-Storage-Tanks/Release-Assessment-Clean/Quality-Assurance.

- Please replace the following monitoring wells: MW-2, MW-5, MW-7, MW-10RR, MW-15, MW-16, MW-17, MW-22, MW-24, MW-25, and MW-26.
- Please install new wells in the following locations: approximately two wells northeast of MW-4 between MW-4 and MW-25, one well east of MW-11, and one deep well paired with MW-25.
- Please also install approximately 6 recovery wells in the locations with the highest CoC concentrations.
- Please sample the existing and newly installed wells for BTEXNM, the 8 oxygenates, and EDB.
 Groundwater samples should be collected from all monitoring wells associated with this release
 along with all water supply wells and surface waters within a 1,000 foot radius of the site or 500
 feet from the leading edge of the plume. Monitoring wells should be installed in the following
 locations.

Your contractor must complete the Site Specific Work Plan and submit it within 30 days from the date of this letter. A cost proposal is not required unless your contractor thinks the monitoring well footage will exceed 75 feet, sampling the IGWA monitoring well, a water supply well or surface water body is within 500 feet of the facility, or a municipal water supply well is within 1,000 feet of the facility. Please note that approval from DHEC must be issued before work begins.

On all correspondence concerning this site, please reference the above listed UST Permit number. If there are any questions concerning this project, feel free to contact me by phone at (803) 898-0592 by fax at (803)-898-0673, or by e-mail at edgarsk@dhec.sc.gov.


Sincerely,

Sedona Edgar, Hydrogeologist

Assessment & Non-Permitted Petroleum Section Underground Storage Tank Management Division Bureau of Land and Waste Management

enc: Map with proposed locations

cc: Midlands Environmental Consultants Inc., PO Box 854, Lexington, SC 29071 (w/ enc)

January 5, 2021

Ms. Sedona Edgar, Hydrogeologist
Assessment & Non-Permitted Petroleum Section
Underground Storage Tank Management Division
Bureau of Land and Waste Management
South Carolina Department of Health
and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

 ${f R}$ ECEIVE ${f D}$

JAN 05 2021

SC Department of Health & Environmental Control

Subject:

Site-Specific Work Plan

Coastal 76 Truck Stop Florence, South Carolina

SCDHEC Site ID Number 03538 MECI Project Number 20-7518

Certified Site Rehabilitation Contractor UCC-0009

Dear Ms. Edgar,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site.

MECI personnel performed a site visit to the subject site on December 28, 2020 to evaluate site conditions, locate monitoring wells and identify potential problems for future sampling activities.

If you have any question or comments please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Kyle V. Pudney Project Biologist

Senior Scientist

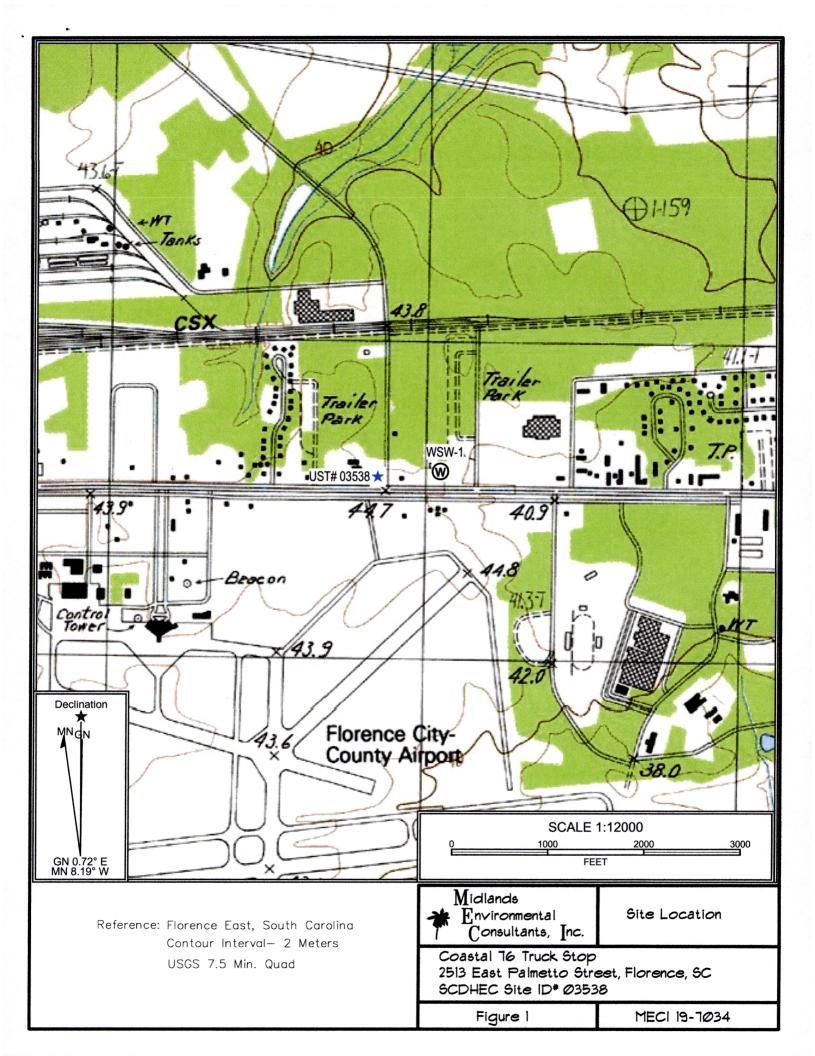
Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

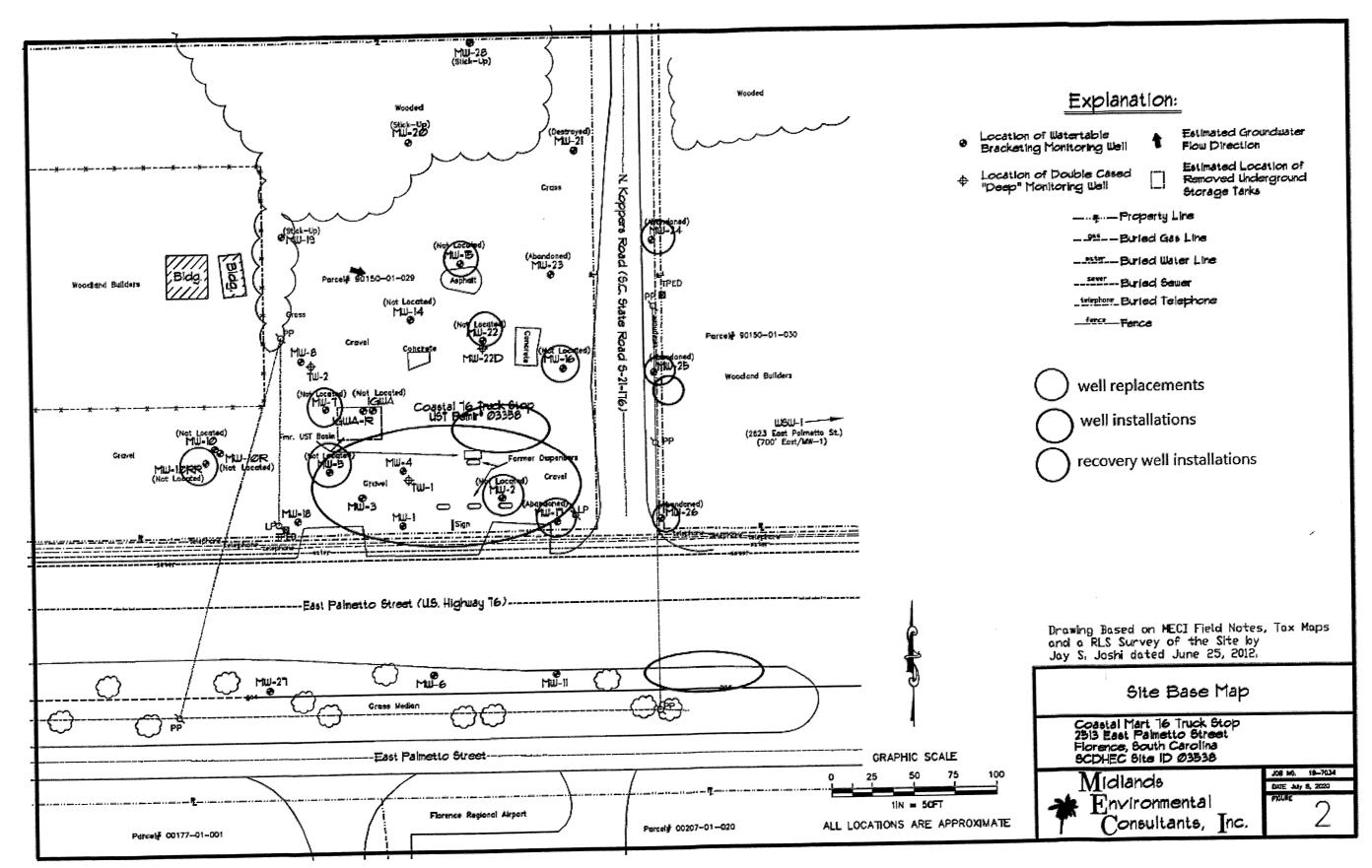
To: Ms. Sedona Edgar From: Jeff L. Coleman	(SCDHEC Project Manager)
	(Contractor Project Manager) JST Contractor Certification Number: 009
Facility Name: Coastal Truck Stop 76 Facility Address: 2513 East Palmetto Street, Florence, SC 2 Responsible Party: Dan McEachin RP Address: 1007 Wentworth Drive, Florence, SC 29501 Property Owner (if different): SAA Property Owner Address: SAA Current Use of Property: Construction Site	UST Permit #: 03538
Scope of Work (Please check all that apply) IGWA Tier II Tier I Monitoring Well Installation	☑ Groundwater Sampling ☐ GAC on ☐ Other
<u> </u>	Sulfate Dissolved Iron Other 200.8 245.1 or 245.2)
Sample Collection (Estimate the number of sample Soil 1 Water 3 Monitoring Wells Surface	
# of shallow wells: 14 # of deep wells: 1	well, and include their proposed locations on the attached map. Estimated Footage: 15' (10 foot screen) feet per point Estimated Footage: 36' (5 foot screen) feet per point Estimated Footage: 17' (15 foot screen) feet per point

UST Permit #: 03538	Fac	cility Name: _	Coastal 76 Truck Stop	
Implementation Sche Field Work Start-Up: 1 Report Submittal: 3/5/2	/5/2021	alendar days	F: 1134 1 0 1 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3: 0
Aquifer Characteriza Pump Test: ☐ Slu		ne and provid	le explanation below for choice)	
Investigation Derived Soil: 10.0	•	Tons	Purge Water: 500.0	Gallons
Drilling Fluids:	(Gallons	Free-Phase Product:	Gallons
event, etcMECI will install the replacem -Following well installation, th -MECI will conduct a compret -All located monitoring wells well as the second control of the second	to be sampled, wells nent and additional wells re e newly installed wells will nensive sampling event after vill be purged prior to samp	s to be aband equested by SCDH be properly deve er well installation oling and analyze	loped and a subsequent survey performed.	ace, details of AFVR
Name of Laborat SCDHEC Certific	licated in ACQAP? ('cory: cation Number: ory Director: licated in ACQAP? ('riller:	Yes/No)	If no, indicate laboratory information belo	DW.
None Other variations f		e describe be	low.	
Attachments	of the relevant portion	n of the LISG	S topographic map showing the site location	
2. Prepare a site I must include th North Arrow Location of pro Location of buil Previous soil sa Previous monitor Proposed soil but the same and th	pase map. This map e following: perty lines dings ampling locations oring well locations	Proposed m Legend with Streets or hi Location of Location of	curately scaled, but does not need to be sun nonitoring well locations of facility name and address, UST permit nun ghways (indicate names and numbers) all present and former ASTs and USTs all potential receptors	veyed. The map

ASSESSMENT COMPONENT COST AGREEMENT SOUTH CAROLINA

Department of Health and Environmental Control
Underground Storage Tank Management Division
State Underground Petroleum Environmental Response Bank Account
January 1, 2020


Facility Name: Coastal 76 Truck Stop


UST Permit #: 03538 Cost Agreement #: Proposal ITEM QUANTITY UNIT UNIT PRICE TOTAL A. Plan Preparation 1. Site-specific Work Plan 1 \$160.05 \$160.05 each 2. Tax Map \$74.69 \$0.00 each 3. Tier II or Comp. Plan /QAPP Appendix B \$250.00 \$0.00 each B. Receptor Survey \$587.92 \$0.00 each C. Survey (500 ft x 500 ft) 1. Comprehensive Survey each \$1,109.68 \$0.00 Subsurface Geophysical Survey 2. < 10 meters below grade each \$1,387.10 \$0.00 3. > 10 meters below grade \$2,464.77 each \$0.00 4. Geophysical UST or Drum Survey \$970.97 each \$0.00 D. Mob/Demob 1. Equipment 1 each \$1,088.34 \$1,088.34 2. Personnel 6 \$451.34 \$2,708.04 each 3. Adverse Terrain Vehicle each \$533.50 \$0.00 E.. Soil Borings (hand auger) \$5.34 \$0.00 foot F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including water ssample, soil sample, soil gas sample, etc.)* 1. Standard \$16.01 \$0.00 per foot 2. Fractured Rock \$21.55 \$0.00 per foot G. Soil Leachability Model \$64.02 each \$0.00 H. Abandonment (per foot)* 1. 2" diameter or less \$3.31 \$0.00 per foot 2. Greater than 2" to 6" diameter per foot \$4.80 \$0.00 3. Dug/Bored well (up to 6 feet diameter) per foot \$16.00 \$0.00 . Well Installation (per foot) 1. Water Table (hand augered) per foot \$11.31 \$0.00 2. Water Table (drill rig) 2" Diameter 210 \$40.55 \$8,515.50 per foot Telescoping 36 \$53.35 per foot \$1,920.60 4. Rock Drilling per foot \$61.89 \$0.00 5. 2" Rock Coring \$32.97 \$0.00 per foot 6. Rock Multi-sampling ports/screens \$35.64 \$0.00 per foot 7. Recovery Well (4" diameter) 102 per foot \$48.02 \$4,898.04 8. Pushed Pre-packed screen (1.25" dia) per foot \$16.01 \$0.00 9. Rotosonic (2" diameter) per foot \$46.95 \$0.00 10. Re-develop Existing Well \$11.74 per foot \$0.00 J. Groundwater Sample Collection / Gauge Depth to Water or Product * 1. Groundwater Purge 37 per well \$64.02 \$2,368.74 2. Air or Vapors \$12.80 \$0.00 sample 3. Water Supply Sample or Duplicate 2 \$23.47 \$46.94 sample 4. Groundwater No Purge or Duplicate or Grab sample \$29.88 \$59.76 5. Gauge Well only \$7.47 \$0.00 sample 6. Sample Below Product \$12.80 sample \$0.00 7. Passive Diffusion Bag \$27.74 sample \$0.00 8. Field Blank 2 sample \$26.25 \$52.50 9. Groundwater (low flow purge) \$97.10 \$0.00 sample 10. Equipment Blank \$26.25 sample \$0.00

					9
K. Laboratory Analyses-Groundwater					
1. BTEXNM+Oxyg's+1,2 DCA+Eth(8260B)	42	per sample	\$130.17	100.01	\$5,467.14
2. Lead, Filtered		per sample	\$14.72		\$0.00
3. Rush EPA Method 8260B		per sample	\$163.89		\$0.00
4. Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$29.88		\$0.00
5. PAH's		per sample	\$64.66	1,5,3	\$0.00
6. Lead		per sample	\$17.07		\$0.00
7. EDB by EPA 8011	40	per sample	\$48.23		\$1,929.20
8. EDB by EPA Method 8011 Rush		per sample	\$72.77	19. 31	\$0.00
9. 8 RCRA Metals		per sample	\$67.65	Aug	\$0.00
10. TPH (9070)		per sample	\$43.75		\$0.00
11. PH		per sample	\$5.55	44 7 5 7	\$0.00
12. BOD		per sample	\$21.34		\$0.00
13. Ethanol		per sample	\$15.79		\$0.00
K. Analyses-Drinking Water					
14. BTEXNM+1,2 DCA (524.2)	4	per sample	\$132.36		\$529.44
15. 7-OXYGENATES & ETHANOL (8260B)	4	per sample	\$97.90	270700000000000000000000000000000000000	\$391.60
16. EDB (504.1)	3	per sample	\$84.83		\$254.49
17. RCRA METALS (200.8)		per sample	\$106.70	100 6	\$0.00
K. Analyses-Soil		por dampio	* 100.70		
18. BTEX + Naphth.		per sample	\$68.29	1958	\$0.00
19. PAH's		per sample	\$68.33	(100) A	\$0.00
20. 8 RCRA Metals		per sample	\$60.18		\$0.00
21. TPH-DRO (3550C/8015C)		per sample	\$42.68		\$0.00
22. TPH- GRO (5035B/8015C)		1 ' '	\$38.37		\$0.00
,		per sample	l i		\$0.00
23. Grain size/hydrometer		per sample	\$110.97		
24. Total Organic Carbon K. Analyses-Air		per sample	\$32.65		\$0.00
25. BTEX + Naphthalene		nor comple	¢220.47		\$0.00
K. Analyses-Free Phase Product		per sample	\$230.47		Φ0.00
26. Hydrocarbon Fuel Identification		nor comple	\$380.92		\$0.00
L. Aquifer Characterization*		per sample	\$300.92		Φ0.00
		naa hawa	¢04.54	10000	¢ 0.00
1. Pumping Test		per hour	\$24.54	17.17	\$0.00
2. Slug Test		per test	\$203.80		\$0.00
3. Fractured Rock		per test	\$106.70		\$0.00
M. Free Product Recovery Rate Test*		each	\$40.55		\$0.00
N. Fate/Transport Modeling					**
Mathematical Model		each	\$106.70	e the file	\$0.00
2. Computer Model		each	\$106.70		\$0.00
O. Risk Evaluation					
1. Tier I Risk Evaluation		each	\$320.10	A POST	\$0.00
2. Tier II Risk Evaluation		each	\$106.70		\$0.00
P. Subsequent Survey*	1	each	\$260.00		\$260.00
Q. Disposal (gallons or tons)*					
1. Wastewater	1000	gallon	\$0.60		\$600.00
2. Free Product		gallon	\$0.53		\$0.00
3. Soil Treatment/Disposal	10	ton	\$64.02		\$640.20
4. Drilling fluids		gallon	\$0.45	76-15	\$0.00
R. Miscellaneous (attach receipts)					
		each	\$0.00		\$0.00
		each	\$0.00		\$0.00
		each	\$0.00	1.450	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)					
1. Southeast Region		standard	\$11,026.00		\$0.00
2. All Other Counties		standard	\$12,093.00		\$0.00
U. IGWA (Use DHEC 3666 form)					
1. Southeast Region		standard	\$3,803.00	(1 5 ± 1 + 1	\$0.00
2. All Other Counties		standard	\$4,123.00	nung ng	\$0.00

22. Corrective Action (Use DHEC 3667 form)		PFP Bid		71.47	\$0.00
W. Aggressive Fluid & Vapor Recovery (AFVR)					
1. 8-hour Event*		per event	\$1,467.13	-0.80	\$0.00
2. 24-hour Event*		per event	\$4,081.28	n di den	\$0.00
3. 48-hour Event*		per event	\$6,706.10	sides,	\$0.00
4. 96-hour Event*		per event	\$13,409.52		\$0.00
5. Off-gas Treatment 8 hour		per event	\$130.71		\$0.00
6. Off-gas Treatment 24 hour		per event	\$257.68	ta (Ma	\$0.00
7. Off-gas Treatment 48 hour		per event	\$348.91	0,763	\$0.00
8. Off-gas Treatment 96 hour		per event	\$832.26		\$0.00
9. Off-gas Treatment 8 hour (w/chlorinated compounds)		per event	\$430.00	100000	\$0.00
10. Off-gas Treatment 24 hour (w/chlorinated compounds)		per event	\$500.00	170	\$0.00
11. Off-gas Treatment 48 hour (w/chlorinated compounds)		per event	\$1,000.00		\$0.00
12. Off-gas Treatment 96 hour (w/chlorinated compounds)		per event	\$2,000.00		\$0.00
13. AFVR Effluent Disposal(w/chlorinated compounds)		gallon	\$0.50		\$0.00
14. AFVR Site Reconnaissance		each	\$216.87		\$0.00
15. Additional Hook-ups		each	\$27.48	area e	\$0.00
16. AFVR Effluent Disposal		gallon	\$0.47	- 147	\$0.00
17. AFVR Mobilization/Demobilization		each	\$417.73	3,000	\$0.00
X. Granulated Activated Carbon (GAC) filter system installat	ion & service:			10 MIN	,
New GAC System Installation*		each	\$2,027.30	10 Ber	\$0.00
2. Refurbished GAC Sys. Install*		each	\$960.30	(E) Emi	\$0.00
3. Filter replacement/removal*		each	\$373.45		\$0.00
GAC System removal, cleaning, & refurbishment*		each	\$293.43	34596	\$0.00
5. GAC System housing*		each	\$266.75		\$0.00
6. In-line particulate filter		each	\$160.05		\$0.00
7. Additional piping & fittings		foot	\$1.60	6 3 000	\$0.00
Y. Well Repair				16.77	
Additional Copies of the Report Delivered		each	\$53.35		\$0.00
2. Repair 2x2 MW pad*		each	\$53.35		\$0.00
3. Repair 4x4 MW pad*		each	\$93.90	Sec.	\$0.00
4. Replace well vault*		each	\$125.91	1,150	\$0.00
5. Replace well cover bolts		each	\$2.77	-1047	\$0.00
6. Replace locking well cap & lock		each	\$16.00		\$0.00
7. Replace/Repair stick-up*		each	\$142.98	201	\$0.00
8. Convert Flush-mount to Stick-up*		each	\$160.05		\$0.00
Convert Stick-up to Flush-mount*		each	\$138.71	A 3 (1) (1)	\$0.00
10. Replace missing/illegible well ID plate		each	\$12.80		\$0.00
S. Report Prep & Project Management	12%	percent	\$31,890.58	10016.5	\$3,826.87
TOTAL					\$35,717.45

DHEC D-4074 (1-2020) *The appropriate mobilization cost can be added to complete these tasks, as necessary

DAN MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501 MAR 17 2021

Re:

Additional Assessment Notice to Proceed

Coastal Truck Stop 76, 2513 E Palmetto St., Florence, SC UST Permit #03538; CA #62860; UMW-28344 Release #1 reported September 27, 1995 Site Specific Work Plan received January 6, 2021 Florence County

Dear Mr. McEachin:

The Underground Storage Tank Management Division (UST Division) of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed and approved the referenced Site-Specific Work Plan (SSWP) submitted by your contractor. All work should be conducted in accordance with the most recent revision of the UST Quality Assurance Program Plan (QAPP), your contractor's Annual Contractor Quality Assurance Plan, and in compliance with all applicable regulations. A copy of the current revision of the UST QAPP is available at SCDHEC.gov/Environment/LW/UST/ReleaseAssessmentClean-up/QualityAssurance/

The Additional Assessment should begin immediately upon receipt of this letter. A monitoring well approval has been enclosed for the monitoring well installation. The above referenced cost agreement number has been approved for the amount shown on the enclosed cost agreement form.

The Contractor must provide the UST Project Manager with a Project Status Report on a weekly basis via e-mail or notify the UST Project Manager via email 4 days prior to initiation of any site rehabilitation activities. If there are any changes or conflicts with the date(s) of site activities, the UST Project Manager must be contacted within 24 hours of those changes.

The Additional Assessment report, contractor checklist (QAPP Appendix K), and invoice should be submitted to the UST Division within ninety (90) days of the date of this correspondence. The report submitted at the completion of these activities should include the required information outlined in the UST QAPP.

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. By law, the SUPERB Account cannot compensate any costs that are not pre-approved. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

Please note that Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that no costs will be allowed unless prior approval from the UST Division is obtained. If for any reason additional tasks will be completed, these additional tasks and the associated cost must be pre-approved by the UST Division for the cost to be paid. The UST Division reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, the UST Division reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work.

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a DHEC-certified site rehabilitation contractor as required by R.61-98.

The UST Division grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All investigation-derived waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety (90) days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern (CoC) concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the project manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

On all correspondence regarding this site, please reference the above listed UST Permit number. Should you have any questions regarding this correspondence, please feel free to contact me by phone at (803) 898-0592, by fax at (803) 898-0673, or by email at edgarsk@dhec.sc.gov.

Sincerely,

Sedona Edgar, Hydrogeologist (

Assessment & Non-Permitted Petroleum Section Underground Storage Tank Management Division

Bureau of Land and Waste Management

enc:

Approved Cost Agreement (ACA)

Monitoring Well Approval (MWA)

CC:

Midlands Environmental Consultants, Inc., PO Box 854, Lexington, S 29071 (w/enc)

Technical file (w/ enc)

Monitoring Well Approval

Approval is granted to: Midlands Environmental Consultants, Inc.

On behalf of: Dan McEachin

Facility: Coastal Truck Stop 76, 2513 E Palmetto St., Florence, SC

UST Permit: #03538 **County:** Florence

This approval is for the installation of fourteen shallow, one deep, and six recovery groundwater monitoring wells. The monitoring wells are to be installed in the approved locations. Monitoring wells are to be installed following the South Carolina Well Standards, R.61-71, and the applicable guidance documents.

Please note that R.61-71 requires the following:

- 1. All wells shall be drilled, constructed, and abandoned by a South Carolina certified well driller per R.61-71.D.1.
- 2. All monitoring wells shall be labeled as required by R.61-71.H.2.c.
- 3. A Water Well Record Form or other form provided or approved by the UST Division shall be completed and submitted to the UST Division within 30 days after well completion or abandonment unless another schedule has been approved by the UST Division. The form should contain the "as-built" construction details and all other information required by R.61-71.H.1.f
- 4. All analytical data and water levels obtained from each monitoring well shall be submitted to the UST Division within 30 days of receipt of laboratory results unless another schedule has been approved by the UST Division as required by R.61-71.H.1.d.
- 5. If any of the information provided to the UST Division changes, notification to Sedona Edgar, the project manager (phone: (803) 898-0592 or email: edgarsk@dhec.sc.gov) shall be provided a minimum of twenty-four (24) hours prior to well construction as required by R.61-71.H.1.a.
- 6. All temporary monitoring wells shall be abandoned within 5 days of borehole completion using appropriate methods as required by R.61-71.H.4.c. All other wells shall be properly developed per R.61-71.H.2.d.
- 7. UST Division approval is required prior to abandonment of all monitoring wells as required by R.61-71.H.1.a.

This approval is pursuant to the provisions of Section 44-55-40 of the 1976 South Carolina Code of Laws and R.61-71 of the South Carolina Well Standards and Regulations, dated May 27, 2016. A copy of this approval should be on the site during well installation.

Date of Issuance: February 24, 2021

Approval #: UMW-28344

Sedona Edgar, Hydrogeologist

Assessment & Non-Permitted Petroleum Section Underground Storage Tank Management Division

Bureau of Land and Waste Management

Approved Cost Agreement

62860

Facility: 03538 COASTAL 76 TRUCK STOP

EDGA RSK PO Number:

Task / Description Categories	Item Description	Qty / Pct	Unit Price	<u>Amount</u>
A PLAN PREPARATION				
	1 SITE SPECIFIC WORK PLAN	1.0000	\$160.050	160.05
D MOB/DEMOB				
	1 EQUIPMENT	1.0000	\$1,088.340	1,088.34
	2 PERSONNEL	6.0000	\$451.340	2,708.04
I WELL INSTALLATION				
	2 WATER TABLE DRILL RIG 2" DIA	210.0000	\$40.550	8,515.50
	3 TELESCOPING	36.0000	\$53.350	1,920.60
	7 RECOVERY WELL (4" DIAMETER)	102.0000	\$48.020	4,898.04
J SAMPLE COLLECTION				
	1 GROUND WATER PURGE	37.0000	\$64.020	2,368.74
	3 WATER SUPPLY SAMPLE/ DUPLICATE	2.0000	\$23.470	46.94
	4 GROUNDWATER NO-PURGE/DUPL/GRAB	2.0000	\$29.880	59.76
<u>'</u>	8 FIELD BLANK	2.0000	\$26.250	52.50
K ANALYSES				
DW DRINKING WATER	14 BTEXNM+1,2 DCA (524.2) WSW	4.0000	\$132.360	529.44
	15 OXYGENATES & ETHANOL 8260B WSW	4.0000	\$97.900	391.60
	16 EDB (504.1) WSW	3.0000	\$84.830	254.49
GW GROUNDWATER	1 BTEXNM+OXYGS+1,2-DCA+ETH-8260B	42.0000	\$130.170	5,467.14
	7 EDB BY EPA 8011	40.0000	\$48.230	1,929.20
P SUBSEQUENT SURVEY				
	P SUBSEQUENT SURVEY	1.0000	\$260.000	260.00
Q DISPOSAL				
	1 WASTEWATER	1,000.0000	\$0.600	600.00
	3 SOIL TREATMENT DISPOSAL	10.0000	\$64.020	640.20
S REPORT PROJECT MANAGEMENT			2	
	S REPORT PREP & PROJ. MANAGEMENT	0.1200	\$31,890.580	3,826.87
			····	

Total Amount 35,717.45

Document Receipt Information

Hard Copy	CD Email	
	5-12-21	
Date Received	<u> </u>	
Permit Number	03538	
Project Manager	Sedona Edgar	
Name of Contractor	MECL	
Docket Number	68 Jean	
Document Title	Additional Assessment	-
Scanned		

ADDITIONAL ASSESSMENT REPORT

Coastal 76 Truck Stop 2513 E. Palmetto Street Florence, South Carolina SCDHEC SITE ID 03538 CA # 62860

Prepared By:

231 Dooley Road, Lexington, SC 29073 (803) 808-2043 fax: 808-2048

May 3, 2021

MECI Project No. 20-7518

Ms. Sedona Edgar, Hydrogeologist
Assessment & Non-Permitted Petroleum Section
Underground Storage Tank Management Division
Bureau of Land and Waste Management
South Carolina Department of Health
and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

Subject:

Additional Assessment Report

Coastal 76 Truck Stop 2513 E. Palmetto Street Florence, South Carolina

SCDHEC Site ID# 03538, CA # 62860

MECI Project Number 20-7518

Certified Site Rehabilitation Contractor UCC-0009

Dear Ms. Edgar,

On behalf of Mr. Dan McEachin, Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Additional Assessment Report for the referenced site. This report describes assessment activities conducted at the site and results of those activities in general accordance with South Carolina Department of Health and Environmental Control (SCDHEC) guidelines, including adherence to the UST Division Programmatic Quality Assurance Program Plan (QAPP).

Midlands Environmental appreciates the opportunity to offer our professional environmental services to you on this project. Please feel free to contact us at 803-808-2043 if you have any immediate questions or comments.

Sincerely,

Midlands Environmental Consultants, Inc.

Kyle V. Pudney

Bryan T. Shane, P.G. Principal Geologist

Post Office Box 854, Lexington, SC 29071 • 231 Dooley Road, Lexington, SC 29073 Telephone: (803) 808-2043 • Fax: (803) 808-2048

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 PROJECT INFORMATION	1
2.0 SURROUNDING PROPERTY USAGE	2
3.0 AREA GEOLOGY AND HYDROGEOLOGY	
3.1 LOCAL SUBSURFACE CONDITIONS	3
4.0 FIELD EXPLORATION	4
4.1 MONITORING WELL INSTALLATION	4
5.0 TEST RESULTS AND EVALUATION	Q
5.1 GROUNDWATER ANALYTICAL RESULTS	R
6.0 ASSESSMENT SUMMARY & RECOMMENDATIONS	.9
7.0 QUALIFICATIONS OF REPORT	10

TABLE OF CONTENTS (cont.)

TABLES:

**Table 1 – SOIL COC CONCENTRATION DATA

Table 2 – POTENTIOMETRIC DATA

Table 3 – GROUNDWATER COC CONCENTRATION DATA

**Table 4 – AQUIFER CHARACTERISTICS **Table 5 – SITE CONCEPTUAL MODEL

FIGURES:

Figure 1 – TOPOGRAPHIC MAP

Figure 2 – SITE BASE MAP

**Figure 3 – SOIL COC SITE MAP

Figure 4 – GROUNDWATER COC SITE MAP (BENZENE ISOPLETH)

Figure 4A – GROUNDWATER COC SITE MAP (NAPHTHALENE ISOPLETH)

Figure 4B – GROUNDWATER COC SITE MAP (EDB ISOPLETH) Figure 4C – GROUNDWATER COC SITE MAP (OXYGENATES)

Figure 5 – POTENTIOMETRIC DATA SITE MAP (GROUNDWATER CONTOUR)

**Figure 6A – GEOLOGIC CROSS SECTION A-A, *Figure 6B – GEOLOGIC CROSS SECTION B-B,

**APPENDIX A - SITE SURVEY

APPENDIX B - SAMPLING LOGS, LABORATORY DATA SHEETS AND CHAIN OF CUSTODY FORMS

**APPENDIX C - TAX MAP DATA

**APPENDIX D – SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS

APPENDIX E - WELL LOGS & 1903 FORMS

**APPENDIX F – AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

APPENDIX G - DISPOSAL MANIFESTS

**APPENDIX H - LOCAL ZONING REGULATIONS

**APPENDIX I - FATE & TRANSPORT MODELING

APPENDIX J - ACCESS AGREEMENTS

APPENDIX K – DATA VERIFICATION CHECKLIST

NOTE: ITEMS LISTED WITH AN ** BESIDE IT WERE NOT NEEDED AS A PART OF THIS SCOPE OF WORK

1.0 INTRODUCTION

A. Owner/Operator Information

Facility Name: Coastal 76 Truck Stop UST Permit #: 03538

Facility Address: 2513 E. Palmetto Street

Name: Dan McEachin

Address: 1007 Wentworth Drive, Florence, SC 29501

Telephone #: Contact: Dan McEachin (803) 651-8835

B. Property Owner Information

Name Squeaky Shrimp LLC

Tax Map #: Florence Co. Tax Map #: 90150-01-029
Address 180 N. Irby Street, Florence, SC 29501

Telephone # Contact: Dan McEachin (803) 651-8835

C. Contractor Information

Name: Midlands Environmental Consultants, Inc.

Certification #: 9

Address: P. O. Box 854, Lexington, SC 29071

Telephone #: (803) 808-2043

D. SCDHEC Certified Well Driller

Name: N/A

Driller: N/A

Certification #: N/A
Address: N/A

Telephone #: N/A

E. SCDHEC Certified Laboratory

Name: Pace Analytical Services, LLC

Certification #: 99006001

Address: 9800 Kincey Ave. Suite 100, Huntersville, NC 28078

Telephone #: (704) 875-9092

1.1 PROJECT INFORMATION

The subject site (Costal 76 Truck Stop) is located at 2513 East Palmetto Street, Florence, Florence County, South Carolina. The following table represents Underground Storage Tanks (UST'S) which are associated with the subject site.

Tank#	Capacity/Product	In Use/Abandoned	Tank Status
1	2,000 Gallon Gasoline	Abandoned	Removed (9/1995)
2	3,000 Gallon Gasoline	Abandoned	Removed (9/1995)
3	1,000 Gallon Gasoline	Abandoned	Removed (9/1995)
4	1,000 Gallon Diesel	Abandoned	Removed (9/1995)

The South Carolina Department of Health and Environmental Control (SCDHEC) reported a release of petroleum product on September of 1995 and confirmed this release in August of 1997. The subject site is currently rated a Class 2BB.

The above project information is based on MECI field notes and SCDHEC files.

2.0 SURROUNDING PROPERTY USAGE

The subject site is located inside the city limits of Florence, Florence County, South Carolina. East Palmetto Street (U.S. Highway 76) forms the southern border of the site, beyond which is the Florence County Regional Airport. North Koppers Road (SC State Rd. S-21-176) forms the eastern border of the site, beyond which are commercial properties. Commercial properties border the site to the west. North of the site is wooded and undeveloped.

Identified potential receptors at the referenced site include one water supply well. The following table identifies water supply well and the physical address of their locations:

Water Supply Well Number	Well Owner	Florence County Tax Map Number:	Notes:	Well Status
WSW-1	Ken-Co Homes of Florence, LLC.	90150-01-031	2623 East Palmetto Street/700' Feet East	Active/Sampled

This water supply well (WSW-1) is located approximately 330 feet east of the subject site.

3.0 AREA GEOLOGY AND HYDROGEOLOGY

The mean elevation of the property as depicted on the local USGS quadrangle (Florence, SC) appears to be approximately 45 meters feet above sea level. The site is located in the Coastal Plain Physiographic Province, which is generally comprised of Upper Cretaceous to present aged, wedge shaped formations that begin at the "Fall Line" and dip towards the Atlantic Ocean with ground surface elevations typically less than 300 feet. The sedimentary soils of these formations consist of unconsolidated sand, clay, gravel, marl, cemented sands, and limestone that were deposited unconformably over Mesozoic/Paleozoic age basement rock consisting of granite, schist, and gneiss similar to the rocks of the Piedmont Physiographic Province. The thickness of the Coastal Plain sediments varies from zero at the "Fall Line" to more than 4,000 feet at the southern tip of South Carolina near Hilton Head Island.

The Coastal Plain province was formed during Quaternary, Tertiary, and late Cretaceous geologic periods and can be divided generally into three subunits: Upper Coastal Plain, Middle Coastal Plain, and Lower Coastal Plain. The Lower Coastal Plain comprises approximately one-half of the entire Atlantic Coastal Plain of South Carolina and is separated from the middle coastal plain by the Surry Scarp, a seaward facing scarp with a toe elevation of 90 to 100 feet. The Middle Coastal Plain and the Upper Coastal Plain each compose approximately one fourth of the Coastal Plain area and are separated by the Orangeburg Scarp, a seaward facing scarp with a toe elevation of 250 to 270 feet.

The Lower Coastal Plain is typically identified as the area east of the Surry Scarp below elevation 100 feet, with a vertical stratigraphic sequence overlying the basement rock consisting of unconsolidated Cretaceous, Tertiary, and Quaternary sedimentary deposits. The surface deposits of the Lower Coastal Plain were formed during the Quaternary period which was characterized by the formation of the Carolina Bays and scarps throughout the east coast

due to sea level rise and fall, the formation of the barrier islands, and the formation of flood plains from major rivers. Preceding the Quaternary period, limestone was deposited in the Lower Coastal Plain.

The Middle Coastal Plain is typically identified as the area between the Orangeburg Scarp and the Surry Scarp and falls between elevation 100 feet and 270 feet. The vertical stratigraphic sequence overlying the basement rock consists of unconsolidated Cretaceous and Tertiary sedimentary deposits formed as a result of scouring from the regressive cycles of the Ocean as it retreated. During the Eocene epoch of the Tertiary period, limestone was deposited in the Middle Coastal Plain.

The Upper Coastal Plain is typically identified as the area between the "Fall Line" and the Orangeburg Scarp and falls between elevations 270 feet and 300 feet. The Upper Coastal Plain was formed during the Tertiary and late Cretaceous periods and is marked by the formation of the Sandhills dunes as a result of fluvial deposits over the Coastal Plain consisting of marine sediments, limestone, and sand.

3.1 LOCAL SUBSURFACE CONDITIONS

The subject site is located in the Middle Coastal Plain. According to Newell et al. (In Review), the site is located within the Bear Bluff Formation. The Bear Bluff Formation is a Pliocene aged secondary unit which generally consists of gray to cream fossiliferous, coarse-grained calcareous sand and sandy limestone. Unconformably the Bear Bluff Formation overlies the Peedee Formation and is underlain by the Canepatch, Conway and Waccamaw Formations.

Coastal plain sediments were encountered during drilling activities conducted at the site. A generalized vertical profile to the investigated depth of 36' feet below ground surface (BGS) is as follows:

Depth (Feet BGS)	Generalized Soil Description			
0.0'-3.0'	Black, Fine to Medium Grained SAND			
3.0'-10.0'	Tan & Brown, Fine to Medium SAND			
10.0'-15.0' Orange & Red, Clayey Fine SAND				
15.0'-36.0'	Tan & Brown, Fine SAND			

The above descriptions provide a general summary of the subsurface conditions encountered. The attached Test Boring Records (Appendix E) contain detailed information recorded at each new monitoring well location. The Test Boring Records represent our interpretation of the field logs based on examination of the field samples. The lines designating the interfaces between various strata represent approximate boundaries, and the transition between strata may be gradational.

On April 20, 2021, stabilized groundwater levels were measured in the monitoring wells. Depth to groundwater ranged from 3.42 to 8.94 feet below top of casing in the wells measured. The groundwater measurements are summarized in tabular form in Table 2 and on Figure 5. Groundwater levels may fluctuate several feet with seasonal and rainfall variations and with change in the water level of adjacent drainage features. Normally, the highest groundwater levels occur in late winter and spring. The lowest levels occur in late summer and fall.

Locally, in the surficial aquifer, groundwater discharges into streams, lakes or springs where the groundwater table intersects lows occupied by these water bodies. The apparent direction (based on

the current hydraulic gradient) of groundwater flow from the release is to the east towards drainage features associated with Canal Branch.

4.0 FIELD EXPLORATION

Field exploration conducted at the site included:

- installation of twenty additional wells;
- comprehensive sampling of the entire monitoring well network and nearby receptor;
- chemical analyses of groundwater samples;
- a subsequent survey of the site; and
- monitoring well pad replacement.

4.1 MONITORING WELL INSTALLATION

On April 13-15, 2021, thirteen single-cased monitoring wells, one double-cased deep monitoring well, and six groundwater recovery wells were installed at the referenced site to better define the contaminant plume emanating from the site and to provide extraction wells for Aggressive Fluid and Vapor Recovery (AFVR) events. These wells were installed by Environmental Drilling and Probing Services, LLC. of Charlotte, North Carolina (S.C. Driller Certification: Jared Pawless # D 02100). The wells were installed utilizing a Geoprobe® 7822DT. Single cased monitoring wells were installed utilizing 7.5"-inch outer diameter hollow stem augers. This includes monitoring wells MW02R, MW05R, MW07R, MW10RRR, MW15R, MW16R, MW17R, MW22R, MW24R, MW25R, MW26R, MW29, and MW30. Recovery wells RW01 through RW06 were installed utilizing 10.0"-inch outer diameter hollow stem augers to complete the borehole. One "Deep" monitoring well (MW25D) was installed as a double-cased monitoring well. During construction, a 6-inch outer casing was advanced to the appropriate depth utilizing a 10.0" inch hollow-stem augers and grouted in-place. The grout was allowed to cure and the remainder of the depth of the borehole was achieved using mud-rotary techniques, employing a 4 5/8"-inch drag bit.

The following table presents well installation details:

Well Number	Single Cased	Double Cased	Screened Interval	Total Depth (ft)
03538-MW02R	X		3.00-18.00	17.88'
03538-MW05R	X		3.00-18.00	18.15'
03538-MW07R	X		3.00-18.00	17.90'
03538-MW10RRR	X		3.00-18.00	18.02'
03538-MW15R	X		2.00-17.00	16.94'
03538-MW16R	X		2.00-17.00	17.14'
03538-MW17R	·X		3.00-18.00	18.20'
03538-MW22R	X		2.00-17.00	16.85'
03538-MW24R	X		2.00-17.00	16.95'
03538-MW25R	X		3.00-18.00	18.13'
03538-MW25D		X	31.00-36.00	36.20'
03538-MW26R	X		3.00-18.00	17.98'
03538-MW29	X		3.00-18.00	17.91'
03538-MW30	X		3.00-18.00	18.07'

Well Number	Single Cased	Double Cased	Screened Interval	Total Depth (ft)
03538-RW01	X		3.00-18.00	18.04'
03538-RW02	X		3.00-18.00	17.84
03538-RW03	X		3.00-18.00	17.87
03538-RW04	X		3.00-18.00	17.79'
03538-RW05	X		3.00-18.00	17.88
03538-RW06	X		3.00-18.00	17.96'

Representative portions of soil samples were screened with a Photo Ionization Detector (PID) and classified by MECI personnel. Test boring records showing soil descriptions and screening results are attached in Appendix E.

Drill cuttings were containerized and transported to Richland County Landfill in Elgin, SC by MECI personnel on April 16, 2021. A total of 2.91 tons was disposed of in this manner. A disposal manifest for these soils is attached at the end of this report.

Following completion of the monitoring wells, the wells were developed by purging until they were determined to be functioning properly and turbidity was reduced. These wells were developed utilizing a Mini-Monsoon submersible well pump. The drum of purge water was treated by MECI personnel using a granular activated carbon drum. A total of 320.00 gallons of purge/development water was disposed of in this manner. A disposal manifest for the treated purge water is presented in Appendix G.

4.2 SAMPLING AND CHEMICAL ANALYSES

On April 20, 2021, MECI personnel collected groundwater samples from thirty-five (35) monitoring wells and one (1) water supply well at the subject site. During sampling activities, several monitoring wells were unable to be located (Please See Site Activity Summary Sheets for Details). As directed by SCDHEC, all monitoring wells were to be purged prior to sample collection. During sampling activities, thirty-four (34) monitoring wells were purged prior to sample collection. Monitoring well IGWA-R was unable to be purged due to an obstruction at 5.30 feet below the top of casing.

Prior to sampling, MECI personnel utilized an electronic water level indicator for water level measurements and an oil/water interface probe for free phase petroleum product level measurements. Purging was completed by bailing at least five well volumes of water from the well, until pH, conductivity, dissolved oxygen and turbidity stabilized, or all water was evacuated from the well, whichever occurred first. Sampling/purging was completed utilizing a prepackaged, clear, disposable polyethylene bailer and nylon rope. A new set of nitrile gloves were worn at each monitoring well, and at all time samples were handled. Field measurements of pH, conductivity, dissolved oxygen, water temperature, and turbidity were obtained before well sampling process. MECI utilized YSI Pro20 meter for DO (mg/L) and temperature readings (°C), YSI Pro1030 meter for pH and conductivity (uS) readings and a MicroTPI turbidimeter for turbidity readings (NTU). The attached Field Data Information Sheets presents the results of the field measurements obtained. The wells were sampled in accordance with SCDHEC's most recent revision of the Quality Assurance Program Plan for the Underground Storage Tank Management Division and MECI's most recent revision of Standard Operating Procedures.

Groundwater samples obtained were sent to Pace Analytical Services, LLC of Huntersville, NC (SCDHEC Laboratory Certification #99006001) for analysis.

The following sampling matrix contains well development and requested analyses for each well:

Sample ID	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method 524.2)	EDB (EPA Method 504.1)
								l	Aı	nalyte San	npled		1
03538-IGWA						Х				T	İ		
03538-IGWAR		X					X	X	X	X			
03538-MW01	X						X	X	X	X			
03535-MW02R	X						X	X	X	X			
03538-MW03	X						X	X	X	X			
03538-MW04	X						X	Х	X	X			
03538-MW05R	X						X	Х	X	X			-
03538-MW06	X						X	Х	X	X			
03538-MW07R	X						X	Х	X	X			-
03538-MW08	X						X	X	X	X			
03538-MW09						Х				1			
03538-MW10RRR	X			\neg			X	X	X	X			
03538-MW11	X						X	X	X	X			
03538-MW14						X							
03538-MW15R	X					\neg	X	X	X	X			
03538-MW16R	X						Х	X	X	X			
03538-MW17R	X						Х	X	X	Х			
03538-MW18	Х						X	X	X	Х			
03538-MW19	X						X	X	X	X			
03538-MW20	X						X	Х	X	X			
03538-MW21		\neg				Х							
03538-MW22R	X		_				X	X	X	X			
03538-MW22D	Х					o	Х	Х	Х	X			
03538-MW24R	Х	\top					X	X	X	X			
03538-MW25R	X						X	X	X	Х			
03538-MW25D	Х						Х	X	Х	X			
03538-MW26	Х				\top		Х	Х	Х	X			
03538-MW27	X		\top	\top			X	X	X	X			
03538-MW28	X	_			\top		X	X	X	X			
03538-MW29	Х			\top		+	X	x	X	X			
03538-MW30	X			_		\top	X	X	X	X			—
03538-TW01	X			-	+	\dashv	X	X	X	X			
03538-TW02	X	\top	\top		+	\top	X	X	X	X			
03538-RW01	X	_		+	+	+	X	X	X	X			
Notes: BTEX = Benze	ene. To	luene,	Ethylb	enzene	& To	tal Xvl							

Notes: BTEX = Benzene, Toluene, Ethylbenzene, & Total Xylenes

MTBE=Methyl tertiary butyl ether
1,2 DCA = 1,2 Dicloroethane
EDB = Ethylene Dibromide

Sample ID	Purge	No Purge	Gauge Only	Low-Flow Sampling	Not Sampled	Not Located	BTEX, Naphthalene, MTBE (EPA Method 8260-B)	EDB (EPA Method 8011)	1,2 DCA (EPA Method 8260-B)	8 Oxygenates (EPA Method 8260-B)	Total Lead (EPA Method 6010)	BTEX, Naphthalene, MTBE, 1,2 DCA (EPA Method S24,2)	EDB (EPA Method 504.1)
									Ana	lyte Samp	oled		
03538-RW02	X						X	X	X	X			
03538-RW03	X			-			X	X	Х	Х			
03538-RW04	X						X	X	Х	X			
03538-RW05	X						X	X	Х	X			
03538-RW06	X						X	X	X	X			
DUP-1(MW02R)		X					X	X	Х	Х			
DUP-2(RW05)		X					X	X	Х	X			
Field Blank							X	X	Х	X			
Trip Blank 1							X		X	X			
Trip Blank 2							X		X	X			
03538-WSW01										X		X	X
WSW01 DUP										X		X	X
WSW Field Blank										Х		X	X
WSW Trip Blank										X		X	

MTBE=Methyl tertiary butyl ether 1,2 DCA = 1,2 Dicloroethane EDB = Ethylene Dibromide

The results of the laboratory analyses are summarized in Table 3 and presented in Appendix B.

Purge water produced by the purging process was treated on-site utilizing a granular activated carbon unit. A total of 571.00 gallons of purge water was disposed of in this manner. A disposal manifest for the referenced purge water is presented in Appendix G.

4.3 SITE SURVEY

On April 20, 2021, a subsequent survey was conducted by MECI personnel, utilizing a fiberglass rod, level, and tape to determine the horizontal and vertical position of the newly installed wells. Top of casing (TOC) elevations of 145.56' for 03538-MW04, 146.04' for 03538-MW06, 145.68' for 03538-MW11, and a TOC of 145.77' for 03538-TW01 were used as benchmarks for surveying the newly installed wells. Elevations were based on site datum obtained from a comprehensive survey performed by Souther Land Surveying dated December 5, 2014. See Table 2 and Figure 5 for potentiometric data. The following table presents site survey results:

Well Number	Top of Casing (TOC) Elevation
03538-MW02R	145.79'
03538-MW05R	144.77'
03538-MW07R	144.76'
03538-MW10RRR	144.75'

Well Number	Top of Casing (TOC) Elevation
03538-MW15R	144.21'
03538-MW16R	145.49°
03538-MW17R	146.75'
03538-MW22R	145.16'
03538-MW24R	145.22'
03538-MW25R	144.08'
03538-MW25D	144.60'
03538-MW26R	144.96'
03538-MW29	145.36'
03538-MW30	144.52'
03538-RW01	145.51'
03538-RW02	145.52'
03538-RW03	145.50'
03538-RW04	145.52'
03538-RW05	145.77'
03538-RW06	145.75'

4.4 MONITORING WELL PAD REPAIR

On April 15, 2021, the well pad/vault/tag for monitoring well 03538-MW01 were replaced under the direction of Mr. Jared Pawless (SC Driller's License # D 02100) of Environmental Drilling and Probing Services, Inc. of Charlotte, NC. The top of casing elevation was not disturbed, therefore, a subsequent survey for the monitoring well was not necessary.

5.0 TEST RESULTS AND EVALUATION

The following sections discuss groundwater test results for the subject site.

5.1 GROUNDWATER ANALYTICAL RESULTS

As discussed in section 4.1, groundwater samples obtained from the monitoring well network were analyzed for dissolved phase petroleum constituents. The analytical results indicate petroleum impact to the surficial aquifer ("Shallow" Zone), with the highest dissolved concentrations being detected in the area of MW01 and RW02. Of the thirty-five monitoring wells sampled, fourteen monitoring wells (MW01, MW02R, MW03, MW04, MW05R, MW17R, MW22R, MW25D, RW01, RW02, RW03, RW04, RW05, and RW06) detected petroleum constituents above Risked Based Screening Levels (RBSL's). Petroleum constituents detected above the established RBSL include:

Compound	RBSL/SCAL (ug/l)	Wells Above RBSL
Benzene	5	MW01, MW02R, MW03, MW04, MW17R, MW22R, MW25D, RW01, RW02, RW03, RW04, RW05, & RW06
Toluene	1,000	MW01, MW02R, MW03, RW01, RW02, RW05, & RW06
Ethylbenzene	700	MW01, MW02R, MW03, RW01, RW02, RW05, & RW06
Total Xylenes	10,000	MW02R & RW02
Naphthalene	25	MW01, MW03, MW04, MW05R, MW07R, MW17R, RW01, RW02, RW03, RW04, RW05 & RW06
MTBE	40	MW17R & MW22R
1,2 DCA	5	None
EDB	0.05	MW01, MW02R, MW03, MW04, MW17R, RW01, RW02, RW03, RW04, RW05 & RW06
Lead	15	Not Analyzed
TAA	240	MW17R & RW04
TAME	128	None
ETBA	NE	RBSL Not Established
TBA	1,400	None
TBF	NE	RBSL Not Established
DIPE	150	None
Ethanol	10,000	None
ETBE	47	None

In addition, the analytical results also detected petroleum constituents above the laboratory method detection limit or "J" values in monitoring wells MW15R, MW16R, MW24R, MW29, MW30, and in water supply well WSW-1, however these values did not exceed the established RBSL's. The results of the analyses for each monitoring well and specific parameters are listed on Table 3 and provided in Appendix B.

6.0 ASSESSMENT SUMMARY & RECOMMENDATIONS

- Impacted groundwater appears to be moving in an easterly direction toward drainage features associated with the Canal Branch, however, this flow direction changes over time and can be generally radial to semi-radial.
- Free phase petroleum product was not detected in any of the monitoring wells during sampling activities. The highest concentrations of dissolved phase contaminants appear to be located in the vicinity of wells 03538-MW01 and 03538-RW02. Constituents of concern include Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene, MTBE, EDB and TAA.
- Of the thirty-six monitoring points sampled, fourteen points (MW01, MW02R, MW03, MW04, MW05R, MW17R, MW22R, MW25D, RW01, RW02, RW03, RW04, RW05, and RW06) detected petroleum constituents above Risked Based Screening Levels (RBSL's). In addition, the analytical results also detected petroleum constituents above the laboratory method detection limit or "J" values in monitoring wells MW15R, MW16R, MW24R, MW29, MW30, and in water supply well WSW-1, however these values did not exceed the establish RBSL's.
- Since the June 29, 2020 groundwater sampling event, CoC concentrations have decreased in monitoring wells 03538-IGWAR and 03538-MW04 and increased in monitoring well 03538-MW01. The remainder of the wells have generally remained constant.

- Due to the continued presence of MTBE in water supply well WSW01, MECI believes WSW01 should be either abandoned or fitted with a granular carbon filtration system.
- MECI also recommends a series of AFVR events on the newly installed recovery wells along
 with monitoring wells MW01 and MW02R to reduce elevated petroleum constituents of
 concern.
- Following the recommended AFVR events, MECI recommends continued monitoring of the well network and receptor to establish trends in groundwater contaminant concentrations and to determine if concentrations are attenuating naturally.

7.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in hydrogeological assessment and waste management projects of this type. Our evaluation of site conditions has been based on our understanding of the site, project information provided to us, and data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpretation of subsurface data between borings. Contents of this report are intended for the sole use of Mr. Dan McEachin, MECI and SCDHEC under mutually agreed upon terms and conditions. If other parties wish to rely on this report, please contact MECI prior to their use of this information so that a mutual understanding and agreement of the terms and conditions of our services can be established.

-oOo-

TABLES

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwate Elevation
	9/29/1999		NA	NA	0.21	145.19	NA
	2/20/2012		-	DRY	-	145.19	DRY
	6/26/2012			NM	-	145.19	NM
	12/3/2012		_	11.98	2	145.19	133.21
	12/13/2014		-	12.15	_	145.19	133.04
IGWA	8/31/2015	TD: 16.74	-	13.78	_	145.19	131.41
	6/1/2016	15. 10.11	_	4.61		145.19	
	4/4/2017			8.48			140.58
	4/4/2018		8889	11.10	5	145.19	136.71
					-	145.19	134.09
	6/29/2020		-	NL Ni	-	145.19	NL
	4/20/2021		-	NL	-	145.19	NL
	9/29/1999		-	14.10	-	145.14	131.04
	2/20/2012		-	NM		145.14	MM
	6/26/2012		-	14.10	-	145.14	131.04
	12/3/2012		12	11.93	4	145.14	133.21
	12/13/2014		-	12.10	-	145.14	133.04
IGWA-R	8/31/2015	11-21	-	NM	÷.	145.14	NM NM
	6/1/2016		-	4.49	-	145.14	140.65
	4/4/2017		2	8.52	-	145.14	136.62
	4/4/2018		-	11.09	2	145.14	134.05
	6/29/2020		-	3.62	7.41	145.14	141.52
	4/20/2021		-	3.75	_	145.14	141.39
	9/29/1999		-	13.31	_	145.87	132.56
	2/20/2012		2	DRY	_	145.87	DRY
	6/26/2012*		14.69	14.71	0.02	145.87	131.18
	12/2/2012		14.09	12.54	0.02	145.87	
	12/13/2014						133.33
MW-1	1	TD: 17 00	-	12.75	-	145.87	133.12
10100-1	8/31/2015	TD: 17.80	-	12.31	-	145.87	133.56
	6/1/2016		-	5.16	(-)	145.87	140.71
	4/4/2017		-	9.24	-	145.87	136.63
	4/4/2018		*	11.62	-	145.87	134.25
	6/29/2020		-	4.31	*	145.87	141.56
	4/20/2021		-	6.02		145.87	139.85
	9/29/1999		5	13.63	-	145.19	131.56
	2/20/2012		€	DRY	-	145.19	DRY
	6/26/2012		2	14.04	\$ 2 5	145.19	131.15
	12/2/2012		_	12.34	-	145.19	132.85
	12/13/2012		_	12.36	1-1	145.19	132.83
MW-2	8/31/2015	TD: 18.30	1.7	12.17	_	145.19	133.02
	6/1/2016		_	4.57	_	145.19	140.62
	4/4/2017		_	7.95	_	145.19	137.24
	4/4/2018		_	11.00	42	145.19	
	6/29/2020		_	NL			134.19
MW-2R	4/20/2021	3.00-18.00	1077		-	145.19	NL
1414 A-VI	9/29/1999	3.00-10.00	-	6.00	-	145.79	139.79
	2/20/2012*		17.00	13.13	-	145.51	132.38
			17.80	18.20	0.40	145.51	127.65
	6/26/2012*		14.18	14.19	0.01	145.51	131.33
	12/2/2012		-	12.67	-	145.51	132.84
	12/13/2014		-	12.39	-	145.51	133.12
MW-3	8/31/2015	TD:18.20	17.	12.06	-	145.51	133.45
	6/1/2016		((2))	4.68	-	145.51	140.83
	4/4/2017		_	8.73	<u> </u>	145.51	136.78
	4/4/2018		(=)	11.30	₩	145.51	134.21
	6/29/2020		0000	3.88	_	145.51	141.63
	4/20/2021		i l	5.62	[145.51	139.89

1

MW-5	9/29/1999 2/20/2012* 6/26/2012 12/2/2013 12/13/2012 8/31/2015 6/1/2016 4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017 4/4/2018	TD:18.35	Product (feet)	Water (feet) 12.91 17.58 14.35 12.26 12.43 12.24 NL 8.86 11.27 3.94 5.84	Thickness (feet) - 0.02	Elevation 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56	132.65 128.00 131.21 133.30 133.13 133.32 NL 136.70 134.29 141.62 139.72
MVV-5	6/26/2012 12/2/2013 12/13/2012 8/31/2015 6/1/2016 4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017		-	14.35 12.26 12.43 12.24 NL 8.86 11.27 3.94 5.84	- - - - - - - - -	145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56	128.00 131.21 133.30 133.13 133.32 NL 136.70 134.29 141.62 139.72
MW-5	12/2/2013 12/13/2012 8/31/2015 6/1/2016 4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017		-	12.26 12.43 12.24 NL 8.86 11.27 3.94 5.84	- - - - - - -	145.56 145.56 145.56 145.56 145.56 145.56 145.56 145.56	131.21 133.30 133.13 133.32 NL 136.70 134.29 141.62 139.72
MVV-5	12/13/2012 8/31/2015 6/1/2016 4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017		-	12.43 12.24 NL 8.86 11.27 3.94 5.84		145.56 145.56 145.56 145.56 145.56 145.56 145.56	133.30 133.13 133.32 NL 136.70 134.29 141.62 139.72
MW-5	8/31/2015 6/1/2016 4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017		- - - - - -	12.43 12.24 NL 8.86 11.27 3.94 5.84		145.56 145.56 145.56 145.56 145.56 145.56	133.13 133.32 NL 136.70 134.29 141.62 139.72
MW-5	6/1/2016 4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017		- - - - -	12.24 NL 8.86 11.27 3.94 5.84	-	145.56 145.56 145.56 145.56 145.56	133.32 NL 136.70 134.29 141.62 139.72
	4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017		- - - - -	NL 8.86 11.27 3.94 5.84 12.54		145.56 145.56 145.56 145.56 145.56	NL 136.70 134.29 141.62 139.72
	4/4/2017 4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	9 20 40 CC	- - - -	8.86 11.27 3.94 5.84 12.54	1	145.56 145.56 145.56 145.56	136.70 134.29 141.62 139.72
	4/4/2018 6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	B 20 40 20		11.27 3.94 5.84 12.54	-	145.56 145.56 145.56	134.29 141.62 139.72
	6/29/2020 4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	9.20.40.20		3.94 5.84 12.54		145.56 145.56	141.62 139.72
	4/20/2021 9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	0.20.40.20	-	5.84 12.54	-	145.56	139.72
	9/29/1999 2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	9.20.40.00	-	12.54	-		
	2/20/2012 6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	0.20.40.00	~				
	6/26/2012 12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	0.20.40.00	-		_		NA
	12/3/2014 12/13/2014 8/31/2015 6/1/2016 4/4/2017	9 20 40 00	- i	17.05	Η	145.11	128.06
	12/13/2014 8/31/2015 6/1/2016 4/4/2017	0.20.40.00	1	13.90	-	145.11	131.21
	8/31/2015 6/1/2016 4/4/2017	0.00.40.00	-	NL	-	145.11	NL
	6/1/2016 4/4/2017	8.29-18.29	-	NL	-	145.11	NL
MW-5R	4/4/2017	0.20 10.20	-	NL	25	145.11	NL
MW-5R			-	4.35	E .	145.11	140.76
MW-5R	4/4/2018		-	8.45	-	145.11	136.66
MW-5R			-	10.34	-	145.11	134.77
MW-5R	6/29/2020		D D	NL	_	145.11	NL
	4/20/2021	3.00-18.00	_	4.80	-	144.77	139.97
	9/29/1999		_	13.04	14	146.04	133.00
	2/20/2012		_	DRY	_	146.04	DRY
	6/26/2012		_	14.65		146.04	
İ	12/2/2013		0 0	12.67		146.04	131.39
	12/13/2012			12.07			133.37
MW-6	8/31/2015	8.29-18.29			-	146.04	133.13
MIVV-O		0.29-10.29	-	12.54	-	146.04	133.50
	6/1/2016		-	5.13	-	146.04	140.91
=	4/4/2017		-	9.60	(=)	146.04	136.44
	4/4/2018		-	11.84	-	146.04	134.20
i	6/29/2020		-	4.46	-	146.04	141.58
	4/20/2021		-	5.23	-	146.04	140.81
	9/29/1999		000	NA	-	144.61	NA
l	2/20/2012		-	16.54	-	144.61	128.07
	6/26/2012		-	13.45	-	144.61	131.16
1	12/3/2012		-	11.20	-	144.61	133.41
MANA / 7	12/13/2014	0.00.40.00	-	11.47	E27	144.61	133.14
MW-7	8/31/2015	8.38-18.38	-	11.15	1-	144.61	133.46
	6/1/2016		_	3.97	_	144.61	140.64
1	4/4/2017		_	NL	_	144.61	140.64 NL
ĺ	4/4/2018		_	10.40	_	i	
	6/29/2020		_	3.00		144.61	134.21
MW-7R	4/20/2021	3.00-18.00				144.61	141.61
1414 A= 1.17	9/29/1999	3.00-10.00	-	4.84	-	144.76	139.92
			-	11.54	-	143.78	132.24
	2/20/2012		150	15.59		143.78	128.19
	6/26/2012		-	12.62		143.78	131.16
	12/3/2012		-	10.43	-	143.78	133.35
	12/13/2014		-	10.61	₩	143.78	133.17
MW-8	8/31/2015	8.29-18.29	-	10.32	-	143.78	133.46
	6/1/2016		-	3.08	-	143.78	140.70
	4/4/2017	i	-	6.93	_	143.78	136.85
	4/4/2018		12	9.41	-	143.78	134.37
	6/29/2020		2	2.18	2	143.78	141.60
Í	· ·	ł	1	2.10		140.10	UØ.1#1

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head	Groundwater
	9/29/1999	11101101	-	12.08	Tilickiless (leet)	Elevation NA	Elevation NA
	2/20/2012		_	NL NL	_	NL NL	NL NA
	6/26/2012		12	NL	-	NL NL	NL NL
	12/3/2012		*	NL	- 80	NL	NL NL
	12/13/2014		_	NL	_	NL	NL.
MW-9	8/31/2015	8.33-18.33	_	NL	-	NL.	NL NL
	6/1/2016			NL	-	NL	NL
	4/4/2017		2	NL.	_	NL	NL
	4/4/2018		_	NL		NL	NL
	6/29/2020		_	NL		NL	NL
	4/20/2021		=	NL	-	NL	NL NL
	9/29/1999		ā	NA	-	143.84	NA NA
	2/20/2012		-	15.65	_	143.84	128.19
	6/26/2012		-	12.41	(7)	143.84	131.43
	12/3/2012		-	NL	_	143.84	NL
MVV-10	12/13/2014	TD: 18.25	(-)	NL	-	143.84	NL
	8/31/2015		1.5	NL	_	143.84	NL
	6/1/2016		-	NL	-	143.84	NL
	4/4/2017		12	NL		143.84	NL
	4/4/2018		(4)	NL	_	143.84	NL
	12/3/2014		+	10.50	-	143.81	133.31
	12/13/2014		-	10.62	-	143.81	133.19
MW-10R	8/31/2015	TD:11.61	-	10.29	-	143.81	133.52
70177 1017	6/1/2016	10.11.01	-	NL	-	143.81	NL
	4/4/2017		-	NL	-	143.81	NL
	4/4/2018		-	NL	-	143.81	NL
MW-10RR	4/4/2018	7.00-17.00	-	9.91	-	144.36	134.45
	6/29/2020	7.00-17.00		DESTROYED	-	144.36	DESTROYED
MW-10RRR	4/20/2021	3.00-18.00		4.68	-	144.75	140.07
	9/29/1999		-	12.75	-	145.68	132.93
	2/20/2012		=	17.85	72	145.68	127.83
	6/26/2012		8	14.39	-	145.68	131.29
	12/3/2014		ā	12.64	-	145.68	133.04
	12/13/2014		-	12.70	π.	145.68	132.98
MVV-11	8/31/2015	8.42-18.42	-	13.69	-	145.68	131.99
	6/1/2016		-	5.36	-	145.68	140.32
	4/4/2017		-	9.38	-	145.68	136.30
	4/4/2018		-	11.62	-	145.68	134.06
	6/29/2020		-	4.28	-	145.68	141.40
	4/20/2021		2	6.01		145.68	139.67
	9/29/1999		-	11.87	-	144.36	132.49
	2/20/2012		-	16.35	-	144.36	128.01
	6/26/2012		-	NL	-	144.36	NL
	12/3/2012		-	NL		144.36	NL
MM 4 4 4	12/13/2014	0.00.40.00	-	11.39	-	144.36	132.97
MW-14	8/31/2015	8.29-18.29	-	13.11	*	144.36	131.25
	6/1/2016		-	3.43	-	144.36	140.93
	4/4/2017	ł	-	7.25	S#3	144.36	137.11
	4/4/2018		70	NL	-	144.36	NL
	6/29/2020		-	NL	-	144.36	NL
	4/20/2021		-	NL	-	144.36	NL_
	6/26/2012		000	12.78	-	143.54	130.76
	12/3/2014		-	10.46	-	143.54	133.08
	12/13/2014	ł	-	10.62	-	143.54	132.92
MW-15	8/31/2015	10-20	-	12.32	*	143.54	131.22
	6/1/2016			3.00	-	143.54	140.54
	4/4/2017		-	8.06	-	143.54	135.48
	4/4/2018		-	10.37	2	143.54	133.17
BANA (455	6/29/2020			NL	•	143.54	NL
MW-15R	4/20/2021	3.00-18.00	-	4.48	-	144.21	139.73

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwar Elevation
	6/26/2012		-	13.43	-	144.33	130.90
	12/3/2014		-	11.18	-	144.33	133.15
	12/13/2014		(i=)	11.42	123	144.33	132.91
MW-16	8/31/2015	11-21	-	14.48	-	144.33	129.85
1010 0-10	6/1/2016	11-21	-	NL	_	144.33	NL
	4/4/2017		-	7.51	_	144.33	136.82
	3/29/2018		823	NL	-	144.33	NL
	6/29/2020		(40)	NL	_	144.33	NL
MW-16R	4/20/2021	3.00-18.00	-	5.48	-	145.49	140.01
	6/26/2012		-	13.96	-	145.08	131.12
	12/3/2014		(5)	11.92		145.08	133.16
	12/13/2014		-	12.10	-	145.08	132.98
MW-17	8/31/2015	44.04	(4)	11.72	_	145.08	133.36
IVIVV-17	6/1/2016	11-21	-	4.54	_	145.08	140.54
	4/4/2017	1	_	8.46	_	145.08	136.62
	3/29/2018		-	10.69	-	145.08	134.39
	6/29/2020		2	ABANDONED	_	145.08	ABANDONE
MW-17R	4/20/2021	3.00-18.00	-	6.71	-	146.75	140.04
	6/26/2012		-	14.44		145.79	131.35
	12/3/2014		-	12.42		145.79	133.37
	12/13/2014		_	12.60		145.79	1
	8/31/2015		en _	12.28	-	145.79	133.19
MW-18	6/1/2016	11-21	_	4.93	=		133.51
	4/4/2017	1-21	-	4.93 9.11	15.	145.79	140.86
	4/4/2018			11.45		145.79	136.68
	6/29/2020			4.11	-	145.79	134.34
	4/20/2021		-		-	145.79	141.68
	12/3/2014			5.86	(5)	145.79	139.93
	12/13/2014		-	9.79	- [143.67	133.88
	8/31/2015		-	10.66	-	143.67	133.01
	6/1/2016		-	10.74	-	143.67	132.93
MW-19	4/4/2017	2.12-12.12	-	3.13	-	143.67	140.54
	4/4/2017		-	6.68		143.67	136.99
			1.2	14.85	(#)	148.42	133.57
	6/29/2020		-	6.11	-	148.42	142.31
	4/20/2021		-	8.88	-	148.42	139.54
	12/3/2014		-	10.97	- 1	143.93	132.96
	12/13/2014			11.17	-	143.93	132.76
	8/31/2015	i		11.80	-	143.93	132.13
MW-20	6/1/2016	4.50-14.50	-	NL	-	143.93	NL
	4/4/2017		-	NL	12	143.93	NL
	4/4/2018		353	14.26	-	148.46	134.20
	6/29/2020		27.0	7.00	-	148.46	141.46
	4/20/2021		-	8.94	-	148.46	139.52
	12/3/2014		-	10.38	5	143.25	132.87
	12/13/2014		-	10.60	2	143.25	132.65
	8/31/2015		-	10.91	-	143.25	132.34
MW-21	6/1/2016	2.75-12.75	-	2.63	-	143.25	140.62
	4/4/2017	2.10-14.10	177.1	6.34	Ε.	143.25	136.91
	3/29/2018		-	NL	-	143.25	NL
	6/29/2020		_	NL	-	143.25	NL
	4/20/2021		_	NL	231	143.25	NL

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwater Elevation
	12/3/2014		-	9.92	-	145.03	135.11
	12/13/2014		-	12.16		145.03	132.87
	8/31/2015		(*)	11.53	-	145.03	133.50
MW-22	6/1/2016	5.09-15.09	-	4.31	-	145.03	140.72
	4/4/2017		-	7.54	-	145.03	137.49
	4/4/2018		-	NL		145.03	NL
	6/29/2020			NL	-	145.03	NL NL
MW-22R	4/20/2021	2.00-17.00	-	5.41	-	145.16	139.75
	12/3/2014		-	13.83	-	144.89	131.06
	12/13/2014		-	13.82	_	144.89	131.07
	8/31/2015		<u> </u>	13.78	-	144.89	131.11
MW-22D	6/1/2016	20 22 44 22	2	6.32	_	144.89	138.57
1010 0-220	4/4/2017	39.23-44.23	-	10.26	-	144.89	134.63
	4/4/2018		-	NL	_	144.89	NL
	6/29/2020		_	6.80	*	144.89	138.09
	4/20/2021			8.21	-	144.89	136.68
	12/3/2014		2	11.90	5.	143.63	131.73
	12/13/2014		-	10.77	-	143.63	132.86
	8/31/2015		-	15.00	2	143.63	128.63
MW-23	6/1/2016	1.61-11.61	-	3.22	-	143.63	140,41
	4/4/2017		5	6.79		143.63	136.84
	3/29/2018		-	9.62	-	143.63	134.01
	6/29/2020		Ξ.	ABANDONED	-	143.63	ABANDONED
	12/3/2014		¥	10.81	1/20	143.78	132.97
	12/13/2014		-	11.03	_	143.78	132.75
	8/31/2015		-	DRY	-	143.78	DRY
MW-24	6/1/2016	8.42-18.42	7	3.30	18 8 0	143.78	140.48
	4/4/2017		2	6.60	(5)	143.78	137.18
	3/29/2018		-	9.39	-	143.78	134.39
	6/29/2020		-	ABANDONED	-	143.79	ABANDONED
MW-24R	4/20/2021	2.00-17.00	-	5.80	-	145.22	139.42
	12/3/2014			10.66	150	144.04	133.38
	12/13/2014	}	72	11.08	-	144.04	132.96
	8/31/2015		-	DRY	-	144.04	DRY
MW-25	6/1/2016	8.29-18.29	-	3.40	-	144.04	140.64
	4/4/2017		-	7.32	-	144.04	136.72
	3/29/2018		(3)	10.05	1-	144.04	133.99
	6/29/2020		-	ABANDONED	-	144.04	ABANDONED
MW-25R	4/20/2021	3.00-18.00	-	4.19	-	144.08	139.89
MW-25D	4/20/2021	31.00-36.00	-	5.04	-	144.60	139.56
	12/3/2014		-	11.84	-	144.96	133.12
	12/13/2014			12.09	-	144.96	132.87
	8/31/2015		-	14.27	-	144.96	130.69
MW-26	6/1/2016	10-20	-	4.51	-	144.96	140.45
	4/4/2017		(<u>u</u>	8.34		144.96	136.62
	3/29/2018		-	10.66	_	144.96	134.30
	6/29/2020		- 1	ABANDONED	-	144.96	ABANDONED
MW-26R	4/20/2021	3.00-18.00	-	5.89	_	145.73	139.84

Well Number	Sample Date	Screened Interval	Depth to Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Well-head Elevation	Groundwate Elevation
	12/3/2014		-	11.37	3-3	144.77	133.40
	12/13/2014		-	11.50	-	144.77	133.27
	8/31/2015		2	14.31	-	144.77	130.46
MW-27	6/1/2016	11-21		3.96		144.77	140.81
IVIVV-27	4/4/2017	11-21	_	8.32	_	144.77	136.45
	4/4/2018		-	11.27	-	144.77	133.50
	6/29/2020		0.74	3.10	-	144.77	141.67
	4/20/2021		1027	3.42	-	144.77	141.35
	12/3/2014		-	9.97	2	142.71	132.74
	12/13/2014		_	10.10	_	142.71	132.61
	8/31/2015		0.00	10.59	_	142.71	132.12
	6/1/2016		; = ;	NL NL	_	142.71	NL
MW-28	4/4/2017	11-21	_	NL	_	142.71	NL NL
	4/4/2018		_	13.08		147.16	134.08
	6/29/2020		_	5.80		147.16	141.36
	4/20/2021			7.42		147.16	
MW-29	4/20/2021	3.00-18.00	- 45%	5.22			139.74
MW-30	4/20/2021	3.00-18.00	-	5.12	-	145.36	140.14
11111 00	9/29/1999	3.00-10.00	-	12.79		144.52	139.40
	2/20/2012		-		-	145.77	132.98
	6/26/2012			17.75 14.65	-	145.77	128.02
	12/3/2014				-	145.77	131.12
	12/13/2014		-	NL	-	145.77	NL
TW-1	I .	24.20	-	12.69	-	145.77	133.08
1 V V- 1	8/31/2015	31-36	-	12.26		145.77	133.51
	6/1/2016		-	NL	112	145.77	NL
	4/4/2017		-	9.24	-	145.77	136.53
	4/4/2018		-	11.53	- [145.77	134.24
	6/29/2020		-	4.22	-	145.77	141.55
	4/20/2021		-	5.97	-	145.77	139.80
	6/26/2012		-	13.95	-	143.98	130.03
	12/3/2014		-	10.79	- ,	143.98	133.19
	12/13/2014			11.93	-	143.98	132.05
	8/31/2015		F4	11.63	-	143.98	132.35
TW-2	6/1/2016	31-36	2	3.35	-	143.98	140.63
	4/4/2017		-	7.21	-	143.98	136.77
	4/4/2018		-	10.05	-	143.98	133.93
	6/29/2020		=	2.21	-	143.98	141.77
	4/20/2021		7.	4.29	:=:	143.98	139.69
RW-1	4/20/2021	3.00-18.00	-	5.65	-	145.51	139.86
RW-2	4/20/2021	3.00-18.00	-	5.69	-	145.52	139.83
RW-3	4/20/2021	3.00-18.00	-	5.51	_	145.50	139.99
RW-4	4/20/2021	3.00-18.00	_	5.63	-	145.52	139.89
RW-5	4/20/2021	3.00-18.00	-	5.89	_	145.77	139.88
RW-6	4/20/2021	3.00-18.00	-	5.90		145.75	139.85

Notes

^{1.} Well Head elevations obtained from SCDHEC Files.

Groundwater depths were measured from the top of the PVC riser pipe.
 Groundwater elavtions corrected for the presence of free product using a specific gravity of 0.85.

^{4.} NL = Not Located
5. NA = Information not available
6. DRY = Well Gauged DRY
7. Monitoring wells MW-17, MW-24, MW-25, and MW-26 were abandoned on 3/29/18.

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDD	1							SCDHEC ID N	NUMBER 035
Well Number	Sample Date	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	EDB (μg/l)	Lead	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
		RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)
	09/29/99	PROD	1,000 PROD	700	10,000	25	40	5	0.05	0.015	240	RBSL 128	RBSL NE	RBSL 1,400	RBSL	RBSL	RBSL	RBSL
	02/20/12	DRY	DRY	PROD DRY	PROD DRY	PROD DRY	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	150 PROD	10,000	47
	06/26/12	NS	NS	NS	NS	NS NS	DRY NS	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	PROD DRY	PROD DRY
	12/03/14 12/13/14	1,300	6,000	630	11,000	310.0	<40	NS <15	NS 2.0	NS 65	NS 790J	NS	NS	NS	NS	NS	NS	NS
IGWA	08/31/15	NS 1,730	NS 7,710	NS 933	NS 44 FOO	NS	NS	NS	NS	NS	NS NS	<20 NS	<100 NS	<670 NS	<100	<40	<3300	<20
	06/01/16	976	6,630	646	11,500 8,210	566 197J	<100 <200	<100	0.26	NT	2,740	<200	<2,000	<2,000	NS <1.000	NS <100	NS <4,000	NS
	04/04/17 04/04/18	533	4,630	895	9,090	358	<125	<200 <125	0.28 0.51	NT NT	<4,000	<400	<4,000	<4,000	<2,000	<200	<8,000	<200 <400
	06/29/20	532 NL	2,990 NL	306 NL	8,440	337	<200	<200	0.84	NT	<2,500 <4.000	<250 <400	<2,500 <4,000	<2,500 <4,000	<1,250	<125	<5,000	<250
	04/20/21	NL	NL NL	NL NL	NL NL	NL NI	NL NL	NL	NL	NL	NL	NL.	NL NL	\4,000 NL	<2,000 NL	<200 NL	<8,000 NL	<400
	06/26/12	130	790	180	980	160	<25	NL <25	NL 0.71	NL 9.0J	NL NT	NL	NL	NL	NL	NL	NL NL	NL NL
	12/03/14 12/13/14	2,000 NS	9,400	1,800	7,000	530	<40	<15	3.2	51	NT <2,500	NT <20	NT	NT	NT	NT	NT	NT
	08/31/15	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS	<2,500 NS	<670 NS	<100 NS	<40 NS	<3,300	<250
IGWA-R	06/01/16	405	3,450	1,590	5.790	NS 426	NS <125	NS <125	NS 0.39	NS	NL	NL	NL	NL	NL NL	NL NL	NS NL	NS NL
	04/04/17 04/04/18	906 932	6,540 6,290	2,260	8,480	623	<250	<250	0.93	NT NT	<2,500 <5,000	<250 <500	<2,500	<2,500	<1,250	<125	<5,000	<250
	06/29/20	115	422	2,300 68.5	8,170 707	590	<250	<250	0.74	NT	<5,000	<500 <500	<5,000 <5,000	<5,000 <5,000	<2,500 <2.500	<250 <250	<10,000	<500
	04/20/21	<1.7	<2.0	<1.8	<5.0	37.7 <2.1	<20.0 <3.1	<20.0 <2.1	0.03	NT	<400	<40.0	<400	<400	<200	<20.0	<10,000 <800	<500 <40.0
	09/29/99 02/20/12	19,900 DRY	26,000	2,040	12,080	592	7,400	NT NT	<0.0099 111	NT 609	<65.6 NT	<3.0 NT	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	06/26/12	PROD	DRY PROD	DRY PROD	DRY PROD	DRY PROD	DRY	DRY	DRY	DRY	DRY	DRY	NT DRY	NT DRY	NT DRY	NT DRY	NT	NT
ĺ	12/03/14	17,000	27,000	1,500	15,000	820	PROD 250J	PROD <74	PROD	PROD	PROD	PROD	PROD	PROD	PROD	PROD	DRY PROD	DRY PROD
MW-1	12/13/14 08/31/15	NS 4.300	NS	NS	ŃS	NS	NS	NS	210 NS	630 NS	8,800J NS	<100	<500	<3,400	<500	<200	<17,000	<100
15.00	06/01/16	4,300 14,100	7,020 18,100	976 1,240	5,230	332	288	21.6J	6.2	NT	4,220	NS <100	NS <1,000	NS <1,000	NS <500	NS 150.0	NS	NS
	04/04/17	13,900	25,400	1,070	18,100 15,700	1,130 1,000	<1,000 <1,000	<1,000	10.2	NT	<20,000	<2,000	<20,000	<20,000	<10,000	<50.0 <1,000	<2,000 <40,000	<100
	04/04/18 06/29/20	11,000	18,100	1,010	17,200	1,210	<1,000	<1,000 <1,000	20.2 156	NT NT	<20,000	<2,000	<20,000	<20,000	<10,000	<1,000	<40,000	<2,000 <2,000
	04/20/21	90.8 5490	308 12600	10.6J 802	313	40.1	<12.5	<12.5	0.077	NT	<20,000 <250	<2,000 <25.0	<20,000 <250	<20,000 <250	<10,000	<1,000	<40,000	<2,000
	09/29/99	18,500	28,300	3,360	7270 15,270	578 670	<310 19,500	<206 NT	27.8	NT	<6560	<304	<5390	<9100	<125 <2410	<12.5 <349	<500 <14400	<25.0
	02/20/12 06/26/12	DRY 9.800	DRY	DRY	DRY	DRY	DRY	DRY	ND DRY	403 DRY	NT DRY	NT	NT	NT	NT	NT	NT NT	<846 NT
(12/03/14	4,800	17,000 8,200	1,300 940	11,000 4,500	370	1,100	240J	65	390	NT I	DRY NT	DRY NT	DRY NT	DRY NT	DRY	DRY	DRY
MW-2	12/13/14	NS	NS	NS	4,500 NS	260 NS	250 NS	<15 NS	28	150	4,200	<20	<100	<670	<100	NT <40	NT <3,300	NT <20
	08/31/15 06/01/16	4,760	7,890	996	5,870	355	317	21.9	NS 8.4	NS NT	NS 4,600	NS 150.0	NS	NS	NS	NS	NS	NS
	04/04/17	2,870 270	3,760 21,3	364 39.9	2,500 49.0	139	281	<125	10.9	NT	2,680	<50.0 <250	<500 <2,500	420J <2,500	<250	<25.0	<1,000	<50.0
	04/04/18	4,070	5,900	943	4,400	23.6 165J	36.6 332	<10.0	0.13	NT	259	<20.0	<200	<200	<1,250 <100	<125 <10.0	<5,000 <400	<250
MW-2R	06/29/20 04/20/21	NL 2200	NL NL	NL_	NL	NL NL	NL NL	<250 NL	22.2 NL	NT NL	4,630J NI	<500	<5,000	<5,000	<2,500	<250	<10,000	<20.0 <500
10104-717	09/29/99	3380 6,800	12400 16,900	2680 2,380	12100	768	<310	<206	4.9	NT	<6560	NL <304	NL <5390	NL <9100	NL c2410	NL NL	NL	NL
	02/20/12	PROD	PROD	PROD	14,020 PROD	570 PROD	31.5 PROD	NT	81.1	116	NT	NT	NT	NT	<2410 NT	<349 NT	<14400 NT	<846
	06/26/12 12/03/14	PROD	PROD	PROD	PROD	PROD	PROD	PROD PROD	PROD PROD	PROD PROD	PROD PROD	PROD	PROD	PROD	PROD	PROD	PROD	NT PROD
1	12/13/14	2,000 NS	10,000 NS	1,600 NS	11,000 NS	780	<40	<15	3.2	100	2,200	PROD <20	PROD <100	PROD <670	PROD <100	PROD	PROD	PROD
MW-3	08/31/15	4,220	7,460	972	5,810	NS 375	NS 312	NS 19.9J	NS	NS	ŃS	NS	NS	NS	NS NS	<40 NS	<3,300 NS	<20 NS
	06/01/16 04/04/17	1,620	11,200	2,020	13,000	996	<500	<500	6.6 0.91	NT NT	5,120	<50.0	<500	431J	<250	<25.0	<1,000	<50.0
	04/04/17	1,580 1,490	10,900 9.660	1,810 1,910	12,000	810	<500	<500	0.97	NT I	<10,000 <10,000	<1,000 <1.000	<10,000 <10,000	<10,000 <10,000	<5,000	<500	<20,000	<1,000
	06/29/20	450	2,560	792	11,700 5,310	884 435	<500	<500	1.3	NT	<10,000	<1,000	<10,000	<10,000	<5,000 <5,000	<500 <500	<20,000 <20,000	<1,000
	04/20/21	446	2900	768	5030	522	<125 <77.5	<125 <51.5	0.21 0.17	NT NT	<2,500	<250	<2,500	<2,500	<1,250	<125	<20,000 <5,000	<1,000 <250
	09/29/99 02/20/12	19,300 PROD	34,300 PROD	4,630 BBOD	21,500	800	4,530	NT	ND ND	113	<1640 NT	<76.0 NT	<1350 NT	<2280 NT	<602	<87.2	<3600	<212
	06/26/12	8,500	22,000	PROD 21,000	PROD 17,000	PROD 1,100	PROD	PROD	PROD	PROD	PROD	PROD	PROD	NT PROD	NT PROD	NT PROD	NT PROD	NT
	12/03/14	3,600	9,100	810	10,000	710	<500 <80	<500 <29	14 2.20	440	NT	NT	NT	NT	NT	NT	NT PROD	PROD NT
MW-4	12/13/14 08/31/15	NS 4,390	NS 7,900	NS NS	ŃS	NS	NS	NS	NS	110 NS	2,800J NS	<40 NS	<200 NS	<1,300	<200	<80	<6,600	<40
	06/01/16	4,390 NL	7,900 NL	953 NL	5,940 NL	366 NL	301	19.6J	6.9	NT	5,100	<50.0	<500	NS 439J	NS <250	NS <25.0	NS 41,000	NS
1	04/04/17	2,210	3,800	703	5,130	363	NL <125	NL <125	NL 16	NL	NL	NL	NL	NL	NL NL	<25.0 NL	<1,000 NL	<50.0 NL
	04/04/18 06/29/20	1,870 1,070	4,230	503	4,600	342	<125	<125	1.6 1.0	NT NT	2,760 3,230	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
	04/20/21	254	4,030 134	744 26.5	4,200 1310	304	<200	<200	1.6	NT	<4,000	<250 <400	<2,500 <4,000	<2,500 <4,000	<1,250 <2,000	<125	<5,000	<250
				20.0	1310	88.6	<12.4	<8.2	0.19	NT	<262	<12.2	<216	<364	<2,000	<200 <14.0	<8,000 <576	<400

MW-5R	09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	(µg/I) RBSL 5 1,590 640 810 NL NL NL 20.4 101 196 NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0	Toluene (µg/l) RBSL 1,000 7,410 5,100 7,400 NL NL NL NL S8.8 424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <2.0	Ethylbenzene (μg/l) RBSL 700 1,850 990 1,500 NL NL NL 93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	Total Xylenes (μg/l) RBSL 10,000 10,320 5,800 10,000 NIL NL 147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	Naphthalene (µg/l) RBSL 25 560 210 770 NL NL NL 47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	MTBE (µg/l) RBSL 40 13.1 <5.0 <200 NL NL S5.0 <50.0 <50.0 NL NL S5.0 <50.0 <50.0 NL ORY <50.0 ORY <50.0 ORY <50.0 ORY <50.0 ORY <50.0 ORY	1,2 DCA (µg/l) RBSL 5 NT 12 <200 NL NL S50 <50.0 <50.0 NL NL <2.1 NT DRY <5.0	EDB (µg/l) RBSL 0.05 11.9 0.45 0.86 NL NL O.019 <0.020 <0.020 NL NL O.098 ND ND	Lead (μg/l) RBSL 0.015 43 670 31 NL NL NL NT NT NT NT NT NT NT	TAA (μg/l) RBSL 240 NT <6.7 NT NL NL NL <100 <1,000 <1,000 NL	TAME (µg/l) RBSL 128 NT <0.20 NT NL NL <10.0 <100 <100 NL	ETBA (µg/l) RBSL NE NT <1.0 NT NL NL NL <100 <1,000 <1,000 NL	TBA {µg/l} RBSL 1,400 NT <6.7 NT NL NL NL 0100 <1,000 <1,000 NL NL NL	TBF (µg/l) RBSL NE NT <1.0 NT NL NL NL S50.0 <500 NL	DIPE (µg/l) RBSL 150 NT <0.40 NT NL NL NL S5.0 <50.0 <50.0 NL	Ethanol {µg/l} RBSL 10,000 NT <33 NT NL NL VL <200 <2,000 <2,000 NI NL NL	ETBE (µg/l) RBSL 47 NT <0.20 NT NL NL NL <10.0 <100 <100
MW-5R	02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/17 09/29/20 04/20/21 09/29/99 02/20/12	5 1,590 640 810 NL NL NL 20.4 101 196 NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <1.7	1,000 7,410 5,100 7,400 NL NL NL 88.8 424 684 NL 6.1 5 DRY <5.0 <0.333 NS <5.0 <5.0 <5.0 <5.0 <5.0	700 1,850 990 1,500 NL NL NL 93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	10,000 10,320 5,800 10,000 NL NL 147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	RBSL 25 560 210 770 NL NL NL 47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	RBSL 40 13.1 <5.0 <200 NL NL <5.0 <50.0 <50.0 NL 3.1 ND DRY <5.0 <0.40	RBSL 5 NT 12 <200 NL NL NL S5.0 <50.0 <50.0 NL <2.1 NT DRY	RBSL 0.05 11.9 0.45 0.86 NL NL <0.019 <0.020 <0.020 NL <0.0098 ND	RBSL 0.015 43 670 31 NL NL NL NT NT NT	RBSL 240 NT <6.7 NT NL NL <100 <1,000 <1,000 NL	RBSL 128 NT <0.20 NT NL NL <10.0 <10.0 <100	RBSL NE NT <1.0 NT NL NL VL <100 <1,000	RBSL 1,400 NT <6.7 NT NL NL VL <100 <1,000 <1,000	RBSL NE NT <1.0 NT NL NL S0.0 <50.0 <5000	RBSL 150 NT <0.40 NT NL NL S5.0 <50.0	RBSL 10,000 NT <33 NT NL NL 200 <2,000 <2,000	RBSL 47 NT <0.20 NT NL NL NL <10.0 <100 <100
MW-5R	02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/17 09/29/20 04/20/21 09/29/99 02/20/12	1,590 640 810 NL NL NL 20.4 101 196 NL <1.7 ND DRY <55.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	7,410 5,100 7,400 NL NL NL 88.8 424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	1,850 990 1,500 NL NL NL 93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0	10,320 5,800 10,000 NIL NL 147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	560 210 770 NL NL NL 47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	13.1 <5.0 <200 NL NL NL <5.0 <50.0 NL <3.1 ND DRY <5.0 <0.40	NT 12 <200 NL NL NL <5.0 <50.0 <50.0 NL <2.1 NT DRY	11.9 0.45 0.86 NL NL VL <0.019 <0.020 <0.020 NL <0.098 ND	43 670 31 NL NL NL NT NT NT	NT <6.7 NT NL NL NL <100 <1,000 <1,000 NL	NT <0.20 NT NL NL 10.0 <10.0	NE NT <1.0 NT NL NL NL <100 <1,000 <1,000	1,400 NT <6.7 NT NL NL <100 <1,000 <1,000	NE NT <1.0 NT NL NL S50.0 <500 <500	150 NT <0.40 NT NL NL <5.0 <50.0 <50.0	10,000 NT <33 NT NL NL <200 <2,000 <2,000	47 NT <0.20 NT NL NL NL <10.0 <100 <100
MW-5R	06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/17 06/29/20 04/20/21 09/29/99 02/20/12	810 NL NL 20.4 101 196 NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	7,400 NL NL NL 88.8 424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	990 1,500 NL NL NL 93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	5,800 10,000 NL NL NL 147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	210 770 NL NL NL 47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	<5.0 <200 NL NL NL <5.0 <50.0 <50.0 NL NL <3.1 ND DRY <5.0 <0.40	12 <200 NL NL NL <5.0 <50.0 <50.0 NL <2.1 NT DRY	0.45 0.86 NL NL VL <0.019 <0.020 <0.020 NL <0.0098 ND	670 31 NL NL NL NT NT NT	<6.7 NT NL NL NL <100 <1,000 <1,000 NL	<0.20 NT NL NL <10.0 <100 <100	<1.0 NT NL NL NL <100 <1,000	<6.7 NT NL NL <100 <1,000 <1,000	<1.0 NT NL NL NL <50.0 <500 <500	<0.40 NT NL NL <5.0 <50.0 <50.0	<33 NT NL NL NL <200 <2,000 <2,000	<0.20 NT NL NL <10.0 <100 <100
MW-5R	12/03/14 12/13/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	NL NL NL 20.4 101 196 NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	NL NL 88.8 424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	NL NL 93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	NL NL 147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	NL NL NL 47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	NL NL <5.0 <50.0 <50.0 NL <3.1 ND DRY <5.0 <0.40	NL NL NL <5.0 <50.0 <50.0 NL <2.1 NT DRY	NL NL 0.019 <0.020 <0.020 NL <0.0098	31 NL NL NL NT NT NT NL	NT NL NL <100 <1,000 <1,000 NL	NT NL NL NL <10.0 <100 <100	NT NL NL NL <100 <1,000	NT NL NL NL <100 <1,000	NT NL NL <50.0 <500 <500	NT NL NL NL <5.0 <50.0 <50.0	NT NL NL NL <200 <2,000 <2,000	NT NL NL NL <10.0 <100 <100
MW-5R	08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	NL 20.4 101 196 NL < 1.7 ND DRY <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	NL 88.8 424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	NL NL 93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	NL NL 147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	NL NL 47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	NL NL <5.0 <50.0 <50.0 NL <3.1 ND DRY <5.0 <0.40	NL NL <5.0 <50.0 <50.0 NL <2.1 NT DRY	NL NL <0.019 <0.020 <0.020 NL <0.0098 ND	NL NL NT NT NL NT	NL NL <100 <1,000 <1,000 NL	NL NL <10.0 <100 <100	NL NL <100 <1,000 <1,000	NL NL <100 <1,000 <1,000	NL NL <50.0 <500 <500	NL NL <5.0 <50.0 <50.0	NL NL NL <200 <2,000 <2,000	NL NL NL <10.0 <100
MW-5R	06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	20.4 101 196 NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	88.8 424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	93 1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	147 2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	47.2 427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	<5.0 <50.0 <50.0 NL <3.1 ND DRY <5.0 <0.40	NL <5.0 <50.0 <50.0 NL <2.1 NT DRY	NL <0.019 <0.020 <0.020 NL <0.0098 ND	NL NT NT NT NL NT	NL <100 <1,000 <1,000 NL	NL <10.0 <100 <100	NL <100 <1,000 <1,000	NL <100 <1,000 <1,000	NL <50.0 <500 <500	NL <5.0 <50.0 <50.0	NL <200 <2,000 <2,000	NL <10.0 <100 <100
MW-5R	04/04/18 06/29/20 04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	101 196 NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	424 684 NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	1,020 1,130 NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	2,940 2,520 NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	427 299 NL 25.5 7.8 DRY <5.0 <0.40 NS	<50.0 <50.0 NL <3.1 ND DRY <5.0 <0.40	<50.0 <50.0 NL <2.1 NT DRY	<0.020 <0.020 NL <0.0098 ND	NT NT NL NT	<1,000 <1,000 NL	<100 <100	<1,000 <1,000	<100 <1,000 <1,000	<50.0 <500 <500	<5.0 <50.0 <50.0	<200 <2,000 <2,000	<10.0 <100 <100
MW-5R	06/29/20 04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	NL <1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <1.7	NL 6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	NL 45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0	NL 175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	NL 25.5 7.8 DRY <5.0 <0.40 NS	NL <3.1 ND DRY <5.0 <0.40	<50.0 NL <2.1 NT DRY	<0.020 NL <0.0098 ND	NT NL NT	<1,000 NL	<100	<1,000	<1,000	<500	<50.0	<2,000	<100
MW-6	04/20/21 09/29/99 02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	<1.7 ND DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	6.1 5 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0 <5.0	45.7 5.72 DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	175 25.93 DRY <5.0 <0.33 NS <5.0 <5.0	25.5 7.8 DRY <5.0 <0.40 NS	<3.1 ND DRY <5.0 <0.40	<2.1 NT DRY	<0.0098 ND	NT		NL						
MW-6	02/20/12 06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	DRY <5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <1.7	DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	DRY <5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	DRY <5.0 <0.33 NS <5.0 <5.0	7.8 DRY <5.0 <0.40 NS	ND DRY <5.0 <0.40	NT DRY	ND									l NL
MW-6	06/26/12 12/03/14 12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	<5.0 <0.13 NS <5.0 <5.0 <5.0 <5.0 <1.7	<5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	<5.0 <0.33 NS <5.0 <5.0 <5.0 <5.0	<5.0 <0.33 NS <5.0 <5.0	<5.0 <0.40 NS	<5.0 <0.40		DDV	23	<65.6 NT	<3.0 NT	<53.9 NT	<91.0 NT	<24.1 NT	<3.5 NT	<144 NT	<8.5
MW-6	12/13/14 08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	NS <5.0 <5.0 <5.0 <5.0 <5.0 <1.7	NS <5.0 <5.0 <5.0 <5.0 <5.0	NS <5.0 <5.0 <5.0 <5.0	<0.33 NS <5.0 <5.0	<0.40 NS	<0.40		DRY <0.019	DRY 9.7J	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NT DRY
MW-6	08/31/15 06/01/16 04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	<5.0 <5.0 <5.0 <5.0 <5.0 <1.7	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0			<0.15	<0.019	2.3J	NT 180	NT <0.20	NT <1.0	N⊤ 8.9	NT <1.0	NT <0.40	NT	NT
	04/04/17 04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	<5.0 <5.0 <5.0 <1.7	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0	<5.0	NS <5.0	NS <5.0	NS <0.010	NS	NS	NS	NS	NS	NS	NS	<33 NS	<0.20 NS
	04/04/18 06/29/20 04/20/21 09/29/99 02/20/12	<5.0 <5.0 <1.7	<5.0 <5.0	<5.0		<5.0	<5.0	<5.0	<0.019 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0	<200	<10.0
	04/20/21 09/29/99 02/20/12	<1.7			<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	09/29/99 02/20/12			<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0	<200	<10.0
			5,440	<1.8 1.750	<5.0 7,350	<2.1 530	<3.1 979	<2.1	<0.0098	NT NT	<65.6	<3.0	<53.9	<91.0	<50.0 <24.1	<5.0 <3.5	<200 <144	<10.0 <8.5
	06/26/12	180	870	740	2,500	210	<5.0	NT 4.1J	ND <0.020	25 280	NT 140	NT <0.20	NT 2.5J	NT	NT	NT	NT	NT
'	06/26/12 12/03/14	390 210	3,000 740	1,700 1,300.0	7,500 3,700	600 270	<200 <20	<200	< 0.063	25	NT	NT	NT	8.9 <i>J</i> NT	<1.0 NT	<0.40 NT	<33 NT	<0.20 NT
	12/13/14 08/31/15	NS	NS	NS	ŃS	NS	NS NS	<7.4 NS	<0.020 NS	8.1J NS	<340 NS	<50 NS	<50 NS	<340	<50	<20	<1,700	<10
	06/01/16	180 <5.0	475 <5.0	1,090 <5.0	2,320 <5.0	283 2.1J	<25.0	<25.0	<0.019	NT	647	<50.0	<500	NS <500	NS <250	NS <25.0	NS <1,000	NS <50.0
	04/04/17	NL	NL	NL	NL	NL	<5.0 NL	<5.0 NL	<0.020 NL	NT NL	<100 NL	<10.0 NL	<100	<100	<50.0	<5.0	<200	<10.0
(04/04/18 06/26/20	3.7J <5.0	2.4J <5.0	5.3 <5.0	34.5 <5.0	5.7 <5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	NL <100	NL <100	NL <50.0	NL <5.0	NL <200	NL <10.0
	04/20/21	<3.5	<4.0	173	469	73.4	<5.0 <6.2	<5.0 <4.1	<0.020 <0.0096	NT NT	<100 <131	<10.0 <6.1	<100	<100	<50.0	<5.0	<200	<10.0
	09/29/99 02/20/12	ND <0.20	65.1 <1.7	1,110 <1.7	5,690 3.4J	410	ND	NT	ND	16	NT	NT NT	<108 NT	<182 NT	<48.2 NT	<7.0 NT	<288 NT	<16.9 NT
	06/26/12	<5.0	<5.0	6.9	29	4.1J 20	<0.40 <5.0	<0.30 <5.0	<0.019 <0.021	140 20	72J NT	<0.20	<1.0	18J	<1.0	<0.40	<33	<0.20
	12/03/14 12/13/14	<0.13 NS	<0.33 NS	<0.33 NS	<0.33 NS	<0.40	<0.40	<0.15	<0.020	31	<6.7	NT <1.0	NT <1.0	NT <6.7	NT <1.0	NT <0.40	NT <33	NT -0.00
MW-8 0	08/31/15	<5.0	<5.0	<5.0	<5.0	NS <5.0	NS <5.0	NS <5.0	NS <0.020	NS NT	NS 1100	NS	NS	NS	NS	NS	NS	<0.20 NS
	06/01/16 04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0
0	04/04/18	<5.0	<5.0	<5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0 <10.0
	06/29/20 04/20/21	<5.0 <1.7	<5.0 <2.0	<5.0 <1.8	<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
0	09/29/99	ND	ND	<1.8 ND	<5.0 1.46	<2.1 ND	<3.1 ND	<2.1 NT	<0.0097 ND	NT 12	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<200 <144	<10.0 <8.5
	02/20/12 06/26/12	NL NL	NL NL	NL NI	NL	NL	NL	NL	NL NL	NL	NT NL	NT NL	NT NL	NT NL	NT NL	NT NL	NT	NT
1	12/03/14	NL.	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL
	12/13/14 08/31/15	NL NL	NL NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL
0	06/01/16	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL
	04/04/17 04/04/18	NL NL	NL NI	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL
0	06/29/20	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL
	04/20/21 09/29/99	NL ND	NL 4.09	NL NL	NL	NL_	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL
02	02/20/12	<0.20	4.09 <1.7	2.63 <1.7	7.43 <1.7	ND <1.7	14.15 < 0.40	NT <0.30	ND	13	NT	NT	NT	NT	NT NT	NL NT	NL NT	NL NT
	06/26/12 12/03/14	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.30 <5.0	<0.023 <0.019	2.9 11	<6.7 NT	<0.20 NT	<1.0 NT	<6.7 NT	<1.0	<0.40	<33	<0.20
12	12/13/14	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL	NI NL	NT NL	NT NL	NT NL	NT NL
	08/31/15 06/01/16	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL	NL	NL	NL	NL
	04/04/17	NL NL	NL NL	NL (NL NL	NL NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
04	04/04/18	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL	NL	NL	NL	NL	NL NL
	06/29/20 04/20/21	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL
12	12/03/14	<0.13	<0.33	<0.33	<0.33	NL <0.40	NL <0.40	NL <0.15	NL <0.020	NL 28	NL CG 7	NL	NL	NL	NL	NL	NL	NL NL
	12/13/14 08/31/15	NS <5.0	NS <5.0	NS <5.0	NS	NS	NS	NS	NS	NS	<6.7 NS	<0.20 NS	<1.0 NS	<6.7 NS	<1.0 NS	<0.40 NS	<33	<0.20
W-10R 06	06/01/16	NL	NL	NL.	<10.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<0.019	NT	<100	<10.0	<100	<100	<50.0	<5.0	NS <200	NS <10.0
04	04/04/17 04/04/18	NL NL	NL NI	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL	NL	NL
06	06/29/20	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL NI	NL	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL
0.4	04/20/21	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL	NL	NL	NL	NL
06	04/04/18 06/29/20	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0	<5.0	<5.0	0.028	NT	<100	<10.0	NL <100	NL <100	NL <50.0	NL <5.0	NL <200	NL
	04/20/21	<1.7	<2.0	<1.8	NL <5.0	NL <2.1	NL <3.1	NL <2.1	NL <0.0098	NL NT	NL <65.6	NL <3.0	NL <53.9	NL <91.0	NL <24.1	NL <3.5	NL <144	<10.0 NL

!

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTDE	40004				···					SCOHEC ID	JMBER 21-751 NUMBER 0353
Well Nu mber	Sample Date	(μg/l)	(μg/l)	(μg/l)	(μg/l)	Napritnaiene (μg/l)	MTBE (μg/l)	1,2 DCA (μg/l)	EDB (μg/l)	Lead (μg/l)	TAA	TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
		RBSL 5	RBSL 1,000	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL.	RBSL	(µg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l)	(μg/l)	(µg/l)
	09/29/99	10.1	1.63	700 19.90	10,000 11.18	25 15.2	ND ND	5	0.05	0.015	240	128	NE	1,400	NE	RBSL 150	RBSL 10,000	RBSL 47
	02/20/12 06/26/12	DRY	DRY	DRY	DRY	DRY	DRY	NT DRY	ND DRY	120 DRY	NT DRY	NT DRY	NT DRY	NT	NT	NT	NT	NT
	12/03/14	<5.0 <0.13	<5.0 <0.33	<5.0 <0.33	<5.0 <0.33	<5.0 <0.40	<5.0	<5.0	<0.020	NT	NT	NT	NT	DRY NT	DRY NT	DRY NT	DRY NT	DRY NT
MW-11	12/13/14	NS	NS	NS	NS	NS	<0.40 NS	<0.15 NS	<0.020 NS	NT NS	<6.7 NS	<0.20 NS	<1.0	<6.7	<1.0	<0.40	<33	<0.20
10144-11	08/31/15 06/01/16	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	NS <100	NS <100	NS <50.0	NS <5.0	NS <200	NS
- 1	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0 <10.0
	04/04/18 06/29/20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
	04/20/21	<1.7	<2.0	<1.8	<5.0 <5.0	<5.0 <2.1	<5.0 <3.1	<5.0 <2.1	<0.020 <0.0098	NT NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	09/29/99 02/20/12	591 530	1,350 3,100	640 1,500	2,123	8.4	8.68	NT	ND	16	<65.6 NT	<3.0 NT	<53.9 NT	<91.0 NT	<24.1 NT	<3.5 NT	<144	<8.5
	06/26/12	13	16	73	4,400 49	260 46	<0.40 <5.0	10 <5.0	0.21 <0.019	5.2	630	<0.20	1.1J	9.5J	<1.0	<10	NT <33	NT <0.20
	12/03/14 12/12/14	NS 2.8	NS 20	NS	NS	NS	NS	NS NS	NS NS	3.0J NS	NT NL	NT NL	NT NL	NT	NT	NT	NT	NT
MW-14	08/31/15	3.4J	2.0 <5.0	5.3 10.9	4.9 <10.0	<5.0 8.4	<5.0 <5.0	<5.0 <5.0	<0.019	NT	7.9	<1.0	<0.20	NL <6.7	NL <1.0	NL <0.40	NL <33	NL <0.20
	06/01/16 04/04/17	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<0.019 <0.019	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100	<50.0	<5.0	<200	<10.0
	04/04/18	NL NL	<5.0 NL	<5.0 NL	<10.0 NL	<5.0 NL	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
	06/29/20	NL	NL	NL	NL.	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL NI	NL	NL	NL	NL	NL NL
	04/20/21 06/26/12	NL 92	NL 280	NL 140	NL 380	NL 1.3	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
ļ	12/03/14	<0.13	<0.33	<0.33	< 0.33	<0.40	<25 <0.40	<5.0 <0.15	0.05 <0.020	8.6J <1.9	NT <6.7	NT <0.20	NT	NT 10.7	NT	NT	NT	NT NT
MW-15	12/13/14 08/31/15	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS	NS	NS	NS	NS	<0.20 NS	<1.0 NS	<6.7 NS	<1.0 NS	<0.40 NS	<33 NS	<0.20 NS
10101-112	06/01/16	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.019 <0.020	NT NT	<100 <100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/04/17 04/04/18	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	< 5.0	<5.0	<5.0	<0.020	NT	<100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
1414/450	06/29/20	NL	NL	NL NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<0.020 NL	NT NL	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
MW-15R	04/20/21 06/26/12	<1.7 180	<2.0 580	6.8	19.7	<2.1	<3.1	<2.1	<0.0096	NT NT	NL <65.6	NL <3.0	NL <53.9	NL <91.0	NL <24.1	NL <3.5	NL	NL NL
	12/03/14	1.3	0.62J	83 <0.33	380 0.68J	39 <0.40	5.4J 1.1	<25 <0.15	0.59 0.031	16	NT	NT	NT	NT	NT NT	NT NT	<144 NT	<8.5 NT
	12/13/14 08/31/15	NS 759	NS 138	NS NS	NS	NS	NS	NS	NS NS	<1.9 NS	<6.7 NS	<0.20 NS	<1.0 NS	<6.7 NS	<1.0 NS	<0.40	<33	<0.20
MW-16	06/01/16	NL	NL	286 NL	211 NL	70.1 NL	10.5 NL	1.8J NL	<0.020	NT	678	<10.0	<100	<100	<50.0	NS <5.0	NS <200	NS <10.0
	04/04/17 03/29/18	<5.0 NL	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	NL <0.020	NL NT	NL <100	NL <10.0	NL <100	NL <100	NL <50.0	NL	NL	NL
	06/29/20	NL NL	NL NL	NL NL	NL NI	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL NL	NL	<5.0 NL	<200 NL	<10.0 NL
MW-16R	04/20/21 06/26/12	<1.7 880	<2.0	<1.8	15.4	<2.1	<3.1	<2.1	NL <0.0095	NL NT	NL <65.6	NL <3.0	NL <53.9	NL <91.0	NL 104.4	NL	NL	NL
	12/03/14	230	1,500 600	1,500 1,000	5,700 5,000	980 340	20J <20	<100 <7.4	2.8	35	NT	NT	NT	NT NT	<24.1 NT	<3.5 NT	<144 NT	<8.5 NT
	12/13/14 08/31/15	NS 5,020	NS	NS	NS	NS	NS	NS NS	0.7 NS	31 NS	<340 NS	<10 NS	<50 NS	<340 NS	<50	<20	<1700	<10
MVV-17	06/01/16	2,680	8,730 5,400	1,200 1,780	6,430 5,890	391 506	331 <200	20.5J	9.5	NT	4,930	<50.0	<500	421J	NS <250	NS <25.0	NS <1,000	NS <50.0
	04/04/17 03/29/18	91.4	11.9	17.3	131	22.8	<5.0	<200 <5.0	4.7 0.11	NT NT	<4,000 96.7J	<10 <10.0	<4,000 <100	<100	<50.0	<200	<8,000	<400
	06/29/20	1,720 ABANDONED	2,700 ABANDONED	1,020 ABANDONED	5,830 ABANDONED	449 ABANDONED	81.5J	<125	5.1	NT	3,590	<250	<2,500	<100 <2,500	<50.0 <1,250	<5.0 <125	<200 <5,000	<10.0 <250
MW-17R	04/20/21	501	386	209	1210	108	ABANDONED 82.9	ABANDONED <8.2	ABANDONED 2.7	ABANDONED NT	ABANDONED 721	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
Ì	06/26/12 12/03/14	<5.0 <0.13	<5.0 <0.33	<5.0 0.40J	<5.0 80	<5.0	<5.0	<5.0	<0.020	11	NT	<12.2 NT	<216 NT	<364 NT	<96.4 NT	<14.0 NT	<576 NT	<33.8
1	12/13/14	NS	NS	NS	NS	21 NS	<0.40 NS	<0.15 NS	<0.019 NS	<1.9 NS	<6.7 NS	<0.20 NS	<1.0	12J	<1.0	<0.40	<33	NT <0.20
MW-18	08/31/15 06/01/16	2,720 <5.0	14,500 <5.0	2,050 <5.0	14,700 <5.0	2,450 <5.0	<1,000	<1,000	4.3	NT	25,200	<2,000	NS <20,000	NS <20,000	NS <10,000	NS <1,000	NS <40,000	NS
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.019 <0.020	NT NT	<100 <100	<10.0 <10.0	<100	<100	<50.0	<5.0	<200	<2,000 <10.0
ĺ	04/04/18 06/29/20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<0.019	NT	<100	<10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0 <5.0	<200 <200	<10.0
	04/20/21	<1.7	<2.0	<1.8	<5.0 <5.0	<5.0 <2.1	<5.0 <3.1	<5.0 <2.1	<0.019 <0.0097	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0 <10.0
	12/03/14 12/13/14	<0.13 NS	<0.33 NS	<0.33 NS	<0.33	<0.40	<0.40	<0.15	<0.020	<1.9	<65.6 <6.7	<3.0 <0.20	<53.9 <1.0	<91.0 <6.7	<24.1 <1.0	<3.5 <0.40	<144	<8.5
	08/31/15	<5.0	<5.0	<5.0	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <0.020	NS NT	NS	NS	NS	NS	NS	NS	<33 NS	<0.20 NS
MW-19	06/01/16 04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	< 0.019	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0	<200	<10.0
	04/04/18	<5.0	<5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0 <10.0
[06/29/20 04/20/21	<5.0 <1.7	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<0.020 <0.019	NT NT	<100 <100	<10.0 <10.0	<100 <100	<100 <100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<2.0 <0.33	<1.8 <0.33	<5.0 <0.33	<2.1 <0.40	<3.1 <0.40	<2.1 <0.15	<0.0096	NT	<65.6	<3.0	<53.9	<91.0	<50.0 <24.1	<5.0 <3.5	<200 <144	<10.0 <8.5
	12/13/14 08/31/15	NS	NS	NS	NS	NS	NS	<0.15 NS	<0.020 NS	<1.9 NS	<6.7 NS	<0.20 NS	<1.0 NS	<6.7	<1.0	<0.40	<33	<0.20
MW-20	06/01/16	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0 NL	<5.0	<5.0	<0.019	NT	<100	<10.0	<100	NS <100	NS <50.0	NS <5.0	NS <200	NS <10.0
	04/04/17	NL	NL	NL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NI	NL	NL	NL	, NL	NL	NL
ļ	04/04/18 06/29/20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	NL <10.0	NL <100	NL <100	NL <50.0	NL <5.0	NL <200	NL <10.0
1	04/20/21	<1.7	<2.0	<1.8	<5.0 <5.0	<5.0 <2.1	<5.0 <3.1	<5.0 <2.1	<0.019 <0.010	NT NT	<100 <65.6	<10.0 <3.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0 <10.0

3

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	Lead	TAA	TARE					SI PROJECT NU SCDHEC ID I	NUMBER 035
Well Number	Sample Date	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)		TAME	ETBA	TBA	TBF	DIPE	Ethanol	ETBE
		RBSL 5	RBSL 1,000	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	(μg/l) RBSL	(μg/l) RBSL	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)
	12/03/14	<0.13	<0.33	700	10,000	25	40	5	0.05	0.015	240	128	RBSL NE	RBSL 1,400	RBSL	RBSL	RBSL	RBSL
	12/13/14	NS	NS	NS	<0.33 NS	<0.40 NS	<0.40	<0.15	< 0.020	6.9J	<6.7	<0.20	<1.0	<6.7	NE <1.0	150	10,000	47
	08/31/15	<5.0	<5.0	<5.0	<5.0	<5.0	NS <5.0	NS <5.0	NS	NS	NS	NS	NS	NS	NS	<0.40 NS	<33 NS	<0.20
MW-21	06/01/16 04/04/17	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<0.019 <0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	NS <10.0
	04/04/17	<5.0 NL	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100 <100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	NL,	NL NL	NL NL	NL	NL	NL	NL	NL	NL	NL NL	<10.0 NL	<100 NL	<100	<50.0	<5.0	<200	<10.0
	04/20/21	NL	NL	NL NL	NL NL	NL NL	NL	NL	NL.	NL	NL NL	NL	NL NL	NL NL	NL NL	NL	NL	NL
	12/03/14	< 0.13	<0.33	<0.33	<0.33	<0.40	NL <0.40	NL <0.15	NL 10.000	NL NL	NL	ŅL	NL NL	NL NL	NI	NL NL	NL NL	NL
	12/13/14 08/31/15	<0.13	<0.33	< 0.33	<0.33	< 0.40	<0.40	<0.15	<0.020 <0.020	2J NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	NL <0.20
MW-22	06/01/16	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.019	NT	<6.7 <100	<0.20 <10.0	<1.0	<6.7	<1.0	< 0.40	<33	<0.20
	04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100 <100	<100 <100	<50.0	<5.0	<200	<10.0
	04/04/18	NL	NL	NL NL	NL NL	<5.0 NL	<5.0 NL	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
MW-22R	06/29/20	NLNL	NL	NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL	NL	<200 NL	<10.0
10100-221	04/20/21 12/03/14	8.0 <0.13	6.2	77.5	92.2	42.4	<3.1	<2.1	<0.0098	NL NT	NL 705 C	NL NL	NL NL	NLNL	NL_	NL	NL NL	NL NL
	12/13/14	NS NS	<0.33 NS	<0.33 NS	<0.33	<0.40	<0.40	<0.15	<0.020	3.4J	<65.6 <6.7	<3.0 <0.20	<53.9 <1.0	<91.0	<24.1	<3.5	<144	<8.5
	08/31/15	<5.0	<5.0	<5.0	NS <5.0	NS <5.0	NS	NS	NS	NS	NS	NS	NS	<6.7 NS	<1.0 NS	<0.40	<33	< 0.20
MW-22D	06/01/16	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0	NS <5.0	NS cano	NS
	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0 <5.0	<0.020 <0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0	<200 <200	<10.0 <10.0
	04/04/18 06/29/20	NL <5.0	NL 55.0	NL.	NL	NL	NL	NL	NL	NT NL	<100 NL	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	04/20/21	<5.0 <1.7	<5.0 <2.0	<5.0 <1.8	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100	NL <10.0	NL <100	NL <100	NL 150.0	NL	NL	NL NL
	12/03/14	<0.13	<0.33	<0.33	<5.0 <0.33	<2.1 <0.40	<3.1	<2.1	<0.0096	NT	<65.6	<3.0	<53.9	<100 <91.0	<50.0 <24.1	<5.0	<200	<10.0
	12/13/14	<0.13	<0.33	<0.33	<0.33	<0.40	<0.40 <0.40	<0.15 <0.15	<0.020	43	<6.7	<0.20	<1.0	<6.7	<1.0	<3.5 <0.40	<144 <33	<8.5
MW-23	08/31/15 06/01/16	<5.0 <5.0	16.4	<5.0	<5.0	4.2J	<5.0	<5.0	<0.020 <0.023	NT NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20 <0.20
10100-23	04/04/17	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.023	NT	<100 <100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0
	03/29/18	<5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0 <10.0	<100 <100	<100 <100	<50.0 <50.0	<5.0	<200	<10.0
	06/29/20	ABANDONED	ABANDONED	ABANDONED	ABANDONED	<5.0 ABANDONED	<5.0 ABANDONED	<5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
	12/03/14	<0.13	< 0.33	< 0.33	< 0.33	<0.40	<0.40	ABANDONED <0.15	ABANDONED <0.020	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	<200 ABANDONED	<10.0 ABANDONED
	12/13/14 08/31/15	NS NS	NS	NS	NS	NS	NS	NS	NS	2J NS	<6.7 NS	<0.20	<1.0	<6.7	<1.0	< 0.40	<33	<0.20
MW-24	06/01/16	<5.0	NS <5.0	NS <5.0	NS	NS	NS	NS	NS NS	NS	DRY	NS DRY	NS DRY	NS	NS	NS	NS	NS
	04/04/17	<5.0	<5.0	<5.0	<5.0 <10.0	<5.0 <5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	DRY <100	DRY <50.0	DRY	DRY	DRY
	03/29/18	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0
MW-24R	06/29/20 04/20/21	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	<0.019 ABANDONED	NT ABANDONED	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0 <10.0
10100-2-410	12/03/14	<1.7 <0.13	3.3 J <0.33	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099	NT	ABANDONED <65.6	ABANDONED <3.0	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
	12/13/14	NS	NS NS	<0.33 NS	<0.33 NS	<0.40	<0.40	<0.15	<0.020	3.1J	<6.7	<0.20	<53.9 <1.0	<91.0 <6.7	<24.1	<3.5	<144	<8.5
MAIA (D.C.	08/31/15	NS	NS	NS	NS I	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	<1.0 NS	<0.40 NS	<33 NS	<0.20
MW-25	06/01/16 04/04/17	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NS <0.020	NS NE	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NS DRY
	03/29/18	<5.0 <5.0	<5.0 <5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.021	NT NT	<100 <100	<10.0 <10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	ABANDONED	ABANDONED	<5.0 ABANDONED	<5.0 ABANDONED	<5.0	<5.0	<5.0	< 0.019	NT NT	<100	<10.0	<100 <100	<100 <100	<50.0	<5.0	<200	<10.0
MW-25R	04/20/21	<1.7	<2.0	<1.8	<5.0	ABANDONED <2.1	ABANDONED <3.1	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	<50.0 ABANDONED	<5.0 ABANDONED	<200 ABANDONED	<10.0
MW-25D	04/20/21	6.3	<2.0	5.0 J	<5.0	<2.1	<3.1	<2.1 <2.1	<0.0097 <0.0097	NT NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	ABANDONED
	12/03/14 12/13/14	<0.13 NS	<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	<0.0097	NT 3.3J	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5 <8.5
	08/31/15	<5.0	NS <5.0	NS <5.0	NS 110.0	NS	NS	NS	NS	NS NS	<6.7 NS	<0.20 NS	<1.0 NS	<6.7	<1.0	<0.40	<33	<0.20
MW-26	06/01/16	<5.0	<5.0	<5.0 <5.0	<10.0 <5.0	4.0J <5.0	<5.0	<5.0	<0.020	NT i	<100	<10.0	<100	NS <100	NS <50.0	NS 15.0	NS	NS
ĺ	04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0 <5.0	<5.0 <5.0	<0.020	NT	<100	<10.0	<100	<100	<50.0	<5.0 <5.0	<200 <200	<10.0
	03/29/18 06/29/20	<5.0 NL	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	<10.0 <10.0
MW-26R	04/20/21	<1.7	NL <2.0	NL NL	NL	NL	NL	NL NL	NL 10.02.0	NL I	<100 NL	<10.0 NL	<100 Ni	<100	<50.0	<5.0	<200	<10.0
	12/03/14	<0.13	<0.33	<1.8 <0.33	<5.0 <0.33	<2.1	<3.1	<2.1	<0.0099	NT	<65.6	<3.0	<53.9	NL <91.0	NL 1	NL NL	NL	NLNL
	12/13/14	NS	NS	NS	NS	<0.40 NS	<0.40	<0.15	<0.019	<1.9	<6.7	<0.20	<1.0	<6.7	<24.1 <1.0	<3.5	<144	<8.5
	08/31/15	<5.0	<5.0	<5.0	<10.0	<5.0	NS <5.0	NS <5.0	NS 10.000	NS	NS	NS	NS	NS	NS	<0.40 NS	<33 NS	<0.20
MW-27	06/01/16 04/04/17	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<0.020 <0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200	NS <10.0
1	04/04/18	<5.0 <5.0	<5.0 <5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.020	NT	<100 <100	<10.0 <10.0	<100	<100	<50.0	<5.0	<200	<10.0
	06/29/20	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100 <100	<100 <100	<50.0	<5.0	<200	<10.0
	04/20/21	<1.7	<2.0	<1.8	<5.0 <5.0	<5.0 <2.1	<5.0 <3.1	<5.0	<0.019	NT	<100	<10.0	<100	<100	<50.0 <50.0	<5.0 <5.0	<200	<10.0
1	12/03/14	<0.13	<0.33	<0.33	<0.33	<0.40	<3.1 <0.40	<2.1 <0.15	<0.0096 <0.020	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<5.0 <3.5	<200 <144	<10.0
1	12/13/14 08/31/15	NS S O	NS 15.0	NS	NS	NS	NS NS	NS NS	<0.020 NS	3.3J NS	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<8.5 <0.20
MMAZOO	06/01/16	<5.0 NL	<5.0 NL	<5.0	<10.0	4.2J	<5.0	<5.0	<0.020	NT NS	NS <100	NS <10.0	NS <100	NS	NS	NS	NS	NS NS
MW-28	04/04/17	NL NL	NL NL	NL NL	NL NL	NL	NL	NL	NL	NL	NL NL	NL NL	<100 NL	<100 NL	<50.0	<5.0	<200	<10.0
}	04/04/18	<5.0	<5.0	<5.0	NL <5.0	NL <5.0	NL <5.0	NL 50	NL 10.000	NL	NL	NL	NL I	NL NL	NL NL	NL NL	NL NI	NL
	06/29/20	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.020 <0.020	NT	<100	<10.0	<100	<100	<50.0	INL <5.0	NL <200	NL -10.0
1	04/20/21	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.020	NT NT	<100	<10.0	<100	<100	<50.0	<5.0	<200 <200	<10.0 <10.0
MW-29		221							-0.0001	1911	<65.6	<3.0	<53.9	<91.0	<24.1			
MW-29 MW-30	04/20/21	3.2 J <1.7	13.7 2.6 J	4.6 J <1.8	22.8 <5.0	<2.1 <2.1	<3.1 <3.1	<2.1	<0.0097	NT	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5 <3.5	<144	<8.5

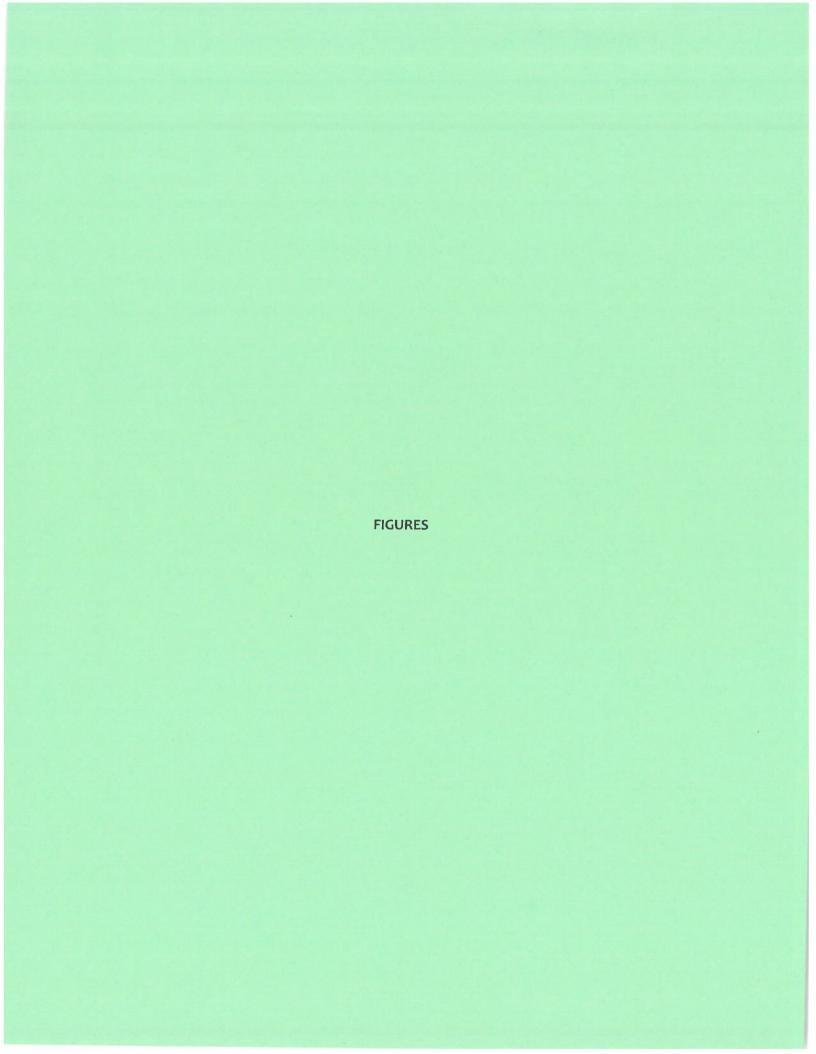
4

			B	T				1									MECI	SCDHEC ID N	MBER 21-7518 UMBER 03538
Part	Woll North	Samuel D.	Benzene (µg/l)	Toluene (ug/l)						1					TBA	TBF	DIPE		
Second Part March Second Part March Second Part March Ma	vveii Number	Sample Date	RBSL	RBSL															(μg/l)
Company Comp	The state of the s	09/29/99				10,000	25	40	5	0.05		240	128						
900 10		02/20/12	<0.20	<1.7	<1.7		-										NT	NT	NT
The column The							<5.0	<5.0	<5.0	<0.020	3.4J	NT							
Second S	T)A/ 4	12/13/14	<0.13	< 0.33	< 0.33	< 0.33											NL	NL	NL
County C										0.13	NT	<2,000	<200	<2,000					
				<5.0	<5.0	<10.0	<5.0	<5.0											NL
Company Comp		06/29/20	<5.0									<100	<10.0	<100	<100	<50.0	<5.0	<200	
1985 1985					<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097	NT								
THE - 2015		12/03/14	<0.13	<0.33	< 0.33	<0.33								NT		NT	NT	NT	NT
West West										NS	NS	NS	NS	NS	NS	NS			
Michel 102	TW-2			<5.0	<5.0	<5.0	<5.0	<5.0											<10.0
		04/04/18	<5.0										<10.0	<100	<100	<50.0	<5.0	<200	
Fig. Gr. 10.							<5.0	<5.0	<5.0	0.068	NT	<100							
Property Property		04/20/21	318	5770	1930	8350	610										<3.5	<144	<8.5
Second S	RW-3	04/20/21	60.5					<620	<412	41.2	NT	<13100	<608	<10800	<18200	<4820	<698		
Section 1985 1986			287	580	342	1510	132	34.9	<10.3	0.19							<7.0	<288	<16.9
Wilson		04/20/21	1100	5750	1630						,,,,	<1640	<76.0	<1350	<2280	<602	<87.2	<3600	<212
Marco Marc							<0.50	2.0	<0.50	<0.020	NT	<100	<10.0						
March Marc	WSW-1	08/14/19	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50							NT	NT	NT	NT
## 1500 1500	- NAVA G TO	04/20/21	<0.21									<100	<10.0	<100	<100	<50.0	<1.0	<200	
[GMM Dis.] GMM Dis.] GMM					1,700	10,000	750	<40	<15	3.2	100								
20.00 1.00	IGWA Dup.	08/31/15	1,670	7,540	792	10,200									<670	<100	<40	<3,300	<20
U.S. (19AA) SETUPE 444 3.500	DUP.1(IGWA)							<25.0	<25.0	0.86	NT	2,810	<200	<2,000	<2,000				
1.5.2 1.5.	DUP-2. (IGWA-R)		434	3,670	1,710	6,300	471	<125											<500
DIFFERIOR VILLE STATE 1.580	DUP-2. (ÌGWA-R)	04/04/17	898	7,100								<2,500	<250	<2,500	<2,500	<1,250	<125	<5,000	<250
DEPTINGS 1 04001 0400	DUP-1(MW-17) DUP-1(IGWA)						352	66.9	<50.0	4.3	NT	1,850							
DEPAYSON-1 DEP	DUP(WSW-1)	04/04/18	<0.50	<0.50	<0.50	<0.50											<200	<8,000	<400
DUP-0W-10 002220 002221	DUP(WSW-1)							2.7		NT	NT	NT	NT	NT	NT				
200-144-07-08-0-0-20-21 3420 11800 2990 11400 300 410 300 41					8.7J	286	32.3	<10.0	<10.0										
Def Def	DUP-1(MW-2Ŕ)	04/20/21	3420	11800								<100	<10.0	<100	<100	<50.0	<1.0	<200	<10.0
12021/4							505	<77.5	<51.5	0.33	NT	<1640							
121214		12/02/14	<0.13	< 0.33	< 0.33	<0.33	<0.40	<0.40						<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
0887115 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0		12/12/14							<0.15	<0.020	<1.9	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	
Pield Blank Pield Blank		08/31/15	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<0.019	NT							<33	<0.20
Field Blank 0.529/18 0.50		04/04/17	<5.0	<5.0	<5.0	<10.0							<10.0	<100	<100	<50.0	<5.0	<200	<10.0
040418	Field Blank						<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0	<100	<100			.000	
0814419		04/04/18	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50								<5.0	<200	<10.0
06/29/20 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5		08/14/19	<0.50	<0.50	<0.50							NT	NT	NT	NT	NT	NT	NT	NT
04/20/21 <17 <20						<5.0	<5.0	<5.0	<5.0	<0.020	NT	<100	<10.0						
12/03/14 -0.13 -0.33 -0.33 -0.33 -0.33 -0.34 -0.16 -0.013 NT -36.4 -2.7 -61.9 -26.8 -2.9 -4.0.31 -7.2 -3.2 -7.2	1	04/20/21	<1.7	<2.0	<1.8	<5.0	<2.1									<50.0	<1.0	<200	<10.0
12/03/14 <0.13 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.30 <0.30 <0.31 <0.30 <0.31 <0.30 <0.31 <0.30 <0.31 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.340 <0.40 <0.15 NT NT <6.7 <0.20 <1.0 <6.7 <1.0 <0.40 <33 <0.20 <0.41 <0.40 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.4		12/03/14	<0.13					<0.14	<0.16	<0.013	NT	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31		
121/21/4 0.13 0.33 0.33 0.33 0.33 0.40 0.40 0.40 0.15 NT NT 487 0.20 0				<0.33	<0.33	<0.33	<0.40	<0.40	<0.15	NT								<33	<0.20
08/31/15 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,		12/12/14	<0.13	<0.33	<0.33						NT	<6.7	<0.20	<1.0	<6.7	<1.0	<0.40	<33	<0.20
O4/04/17						<10.0	<5.0	<5.0	<5.0	NT	NT	<100	<10.0						
Trip Blank		04/04/17	<5.0	<5.0	<5.0	<10.0	<5.0								<100	<50.0	<5.0	<200	<10.0
04/04/18 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	Trip Blank	04/04/18						<5.0	<5.0	NT	NT	<100	<10.0	<100	<100	<50.0	<5.0		
Object O	-		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NT								<200	<10.0
06/29/20 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.		08/14/19	<0.50							NT	NT	NT	NT	NT	NT	NT	NT	NT	
04/20/21 <1.7 <2.0 <1.8 <5.0 <2.1 <3.1 <2.1 NT NT <100 <10.0 <100 <100 <50.0 <1.0 <200 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10					<5.0	<5.0	<5.0	<5.0	<5.0	NT	NT								<10.0
04/20/21 <1.7 <2.0 <1.8 <5.0 <2.1 <3.1 <2.1 NT NT <65.6 <3.0 <53.9 <91.0 <24.1 <3.5 <144 <8.5 <5.0 <4.1 <3.5 <4.1 <4.5 <5.0 <4.1 <3.5 <4.1 <4.5 <5.0 <4.1 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.		04/20/21	<1.7	<2.0	<1.8									<100	<100	<50.0	<1.0	<200	<10.0
s; 1. BDL = Below Practical Quantitative Limits 7. DRY = Well was Dry at the time of Sampling 13. "J" Values used in Total BTEX Calculations 18. DIPE - Discognition (Section 2017) 18. DIPE - DISCognition (Section 2017) 18. DIPE - DISCognition (Section 2017) 18. DIPE - DISCognition (Section 2017) 18. DIPE - DISCognition (Section						<5.0	<2.1	<3.1	<2.1	NT	NT	<65.6	<3.0	<53.9	<91.0	<24.1			
		BDL ≈ Below Practical Qu	uantitative Limits		7.	DRY = Well was Dry at th					NT				<26.8	<29.4	<0.31		

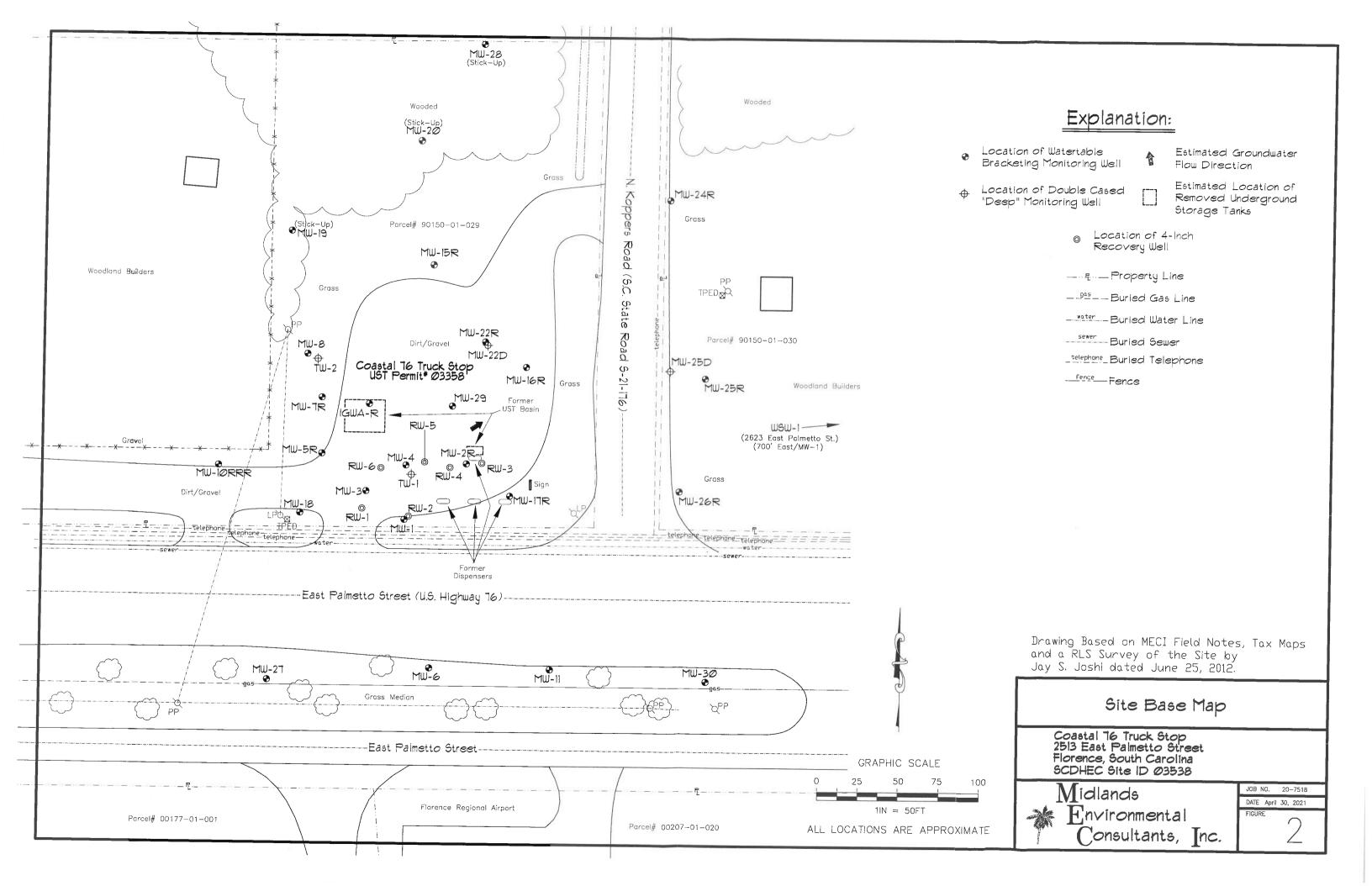
24. ETBA = 3,3-Dimethyl-1-Butanol 25. ABD. = Well Has been Abandoned

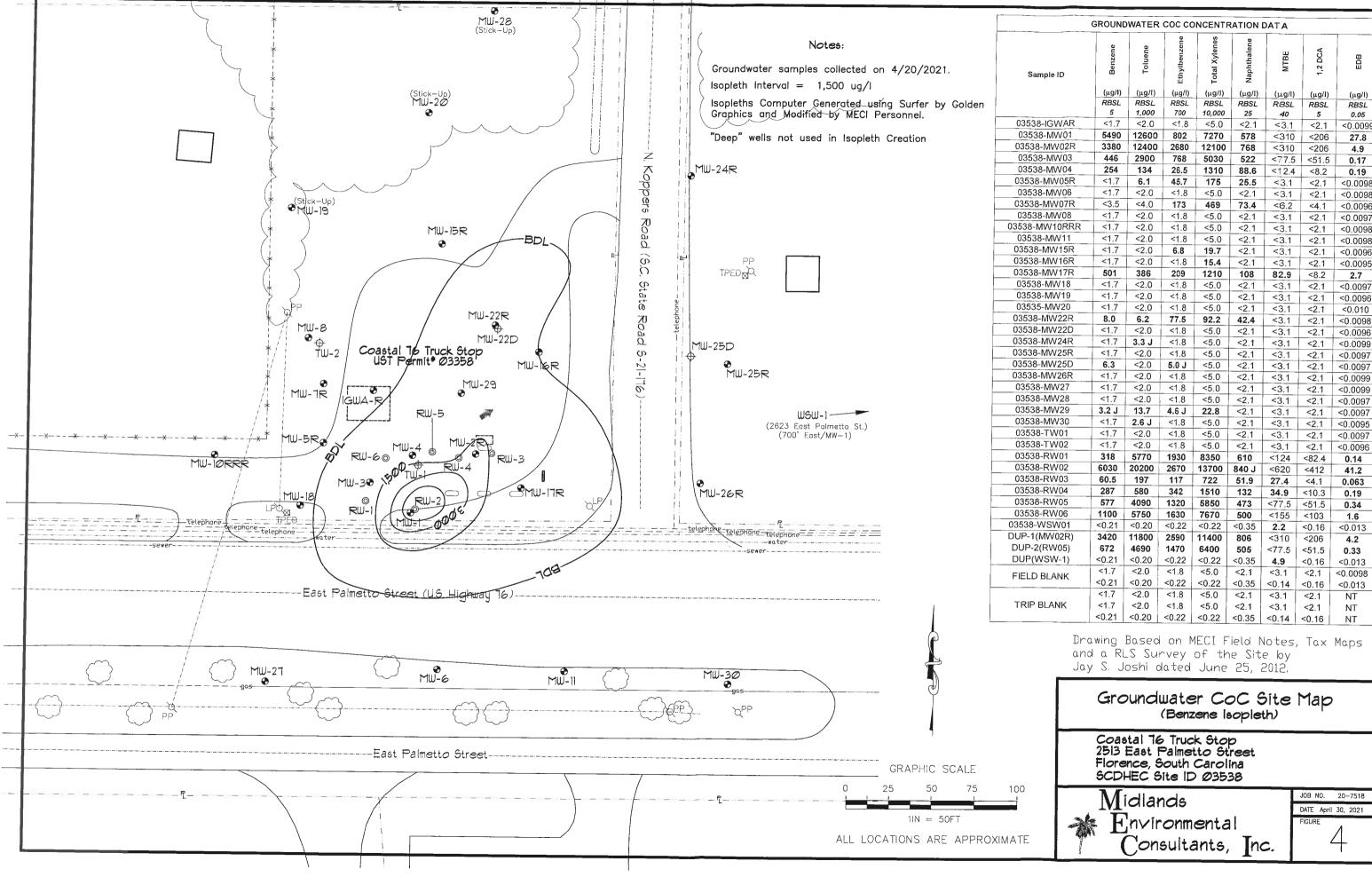
ug/l = micrograms per liter
 mg/l = milligrams per liter
 MTBE = Methyl-Tertiary-Butyl Ether
 See Appendix for Laboratory Detection Limits
 NL = Not Located

<sup>NT = Veil was Dry at the time of Samplii
NT = Not Tested,

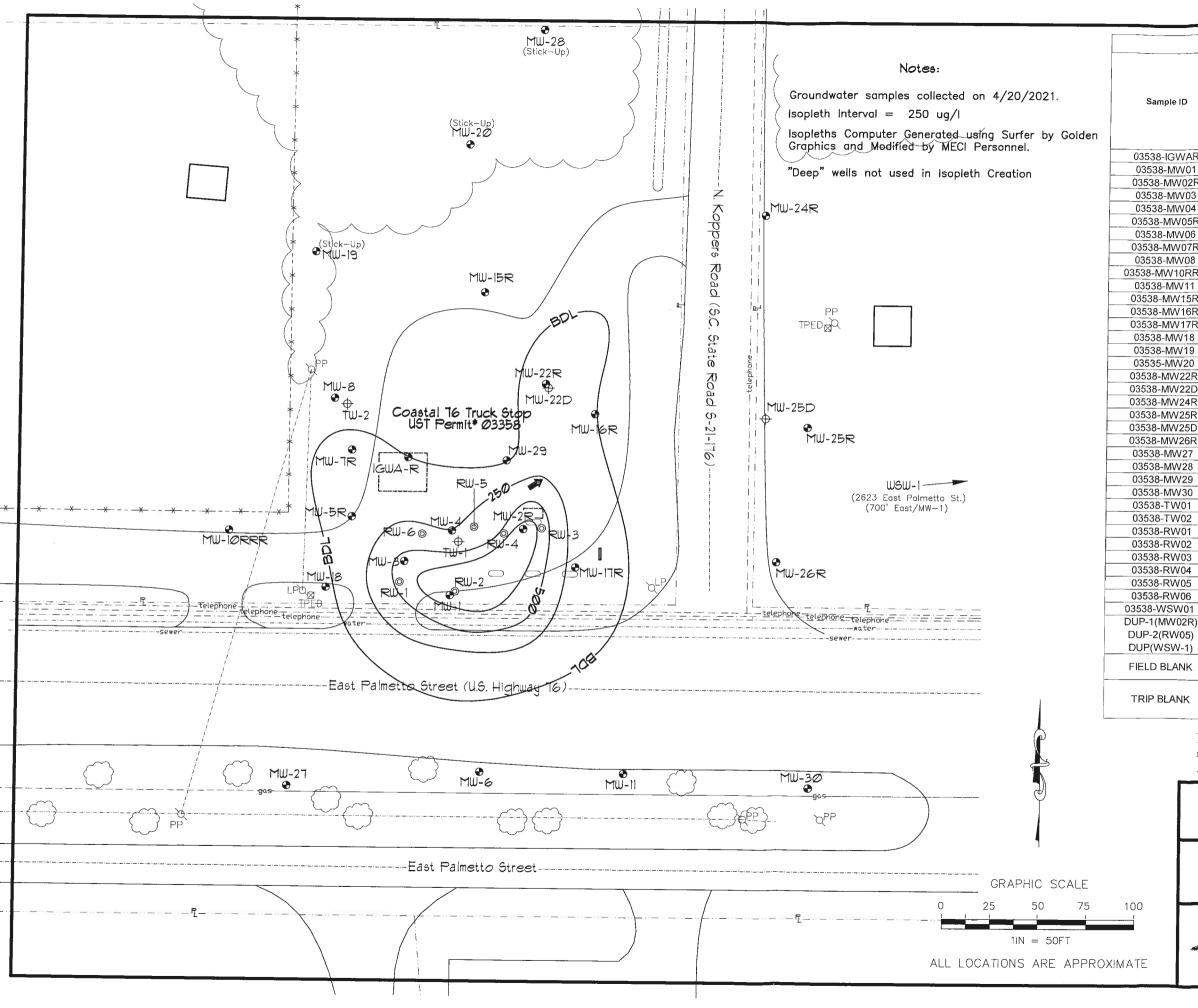

EDB = Ethylene Dibromide

10. 1,2 DCA = 1,2-Dichloroethane


11. PROD = Free Phase Petroleum Product</sup> 12. * = Sample collected beneath Product


^{13. 3} Values used in Total DIEX Calculations
14. "J" values report concentrations above the method detection limits (MDL) and below actual reporting limit (RL).
15. B = Detected in Method Blank
16. S = MS/MSD Failure
17. P = The RPD between the two columns exceeds 40%.

^{18.} DIPE = Disopropyl Ether
19. ETBE = Ethyl ter-butyl Ether
20. TAA = tert-Amyl Alcohol
21. TAME = tert-Amyl Methyl Ether
22. TBA = tert-Butyl Alcohol
23. TBF = tert-Butyl Formate



		GROUNE	WATER	coccc	NCENT	RATION	DATA			
	Sample ID	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB	
		(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μ g /l)	
l		RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	٦
ļ		5	1,000	700	10,000	25	40	5	0.05	
	03538-IGWAR	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099	7
	03538-MW01	5490	12600	802	7270	578	<310	<206	27.8	
	03538-MW02R	3380	12400	2680	12100	768	<310	<206	4.9	7
L	03538-MW03	446	2900	768	5030	522	<77.5	<51.5	0.17	1
	03538-MW04	254	134	26.5	1310	88.6	<12.4	<8.2	0.19	7
L	03538-MW05R	<1.7	6.1	45.7	175	25.5	<3.1	<2.1	<0.0098	1
	03538-MW06	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098	7
	03538-MW07R	<3.5	<4.0	173	469	73.4	<6.2	<4.1	< 0.0096	1
	03538-MW08	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.0097	1
	03538-MW10RRR	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.0098	1
	03538-MW11	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098	1
	03538-MW15R	<1.7	<2.0	6.8	19.7	<2.1	<3.1	<2.1	< 0.0096	1
	03538-MW16R	<1.7	<2.0	<1.8	15.4	<2.1	<3.1	<2.1	< 0.0095	1
	03538-MW17R	501	386	209	1210	108	82.9	<8.2	2.7	1
	03538-MW18	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097	1
	03538-MW19	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0096	1
	03535-MW20	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.010	1
	03538-MW22R	8.0	6.2	77.5	92.2	42.4	<3.1	<2.1	< 0.0098	1
	03538-MW22D	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0096	1
	03538-MW24R	<1.7	3.3 J	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099	
	03538-MW25R	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097	1
	03538-MW25D	6.3	<2.0	5.0 J	<5.0	<2.1	<3.1	<2.1	<0.0097	ĺ
	03538-MW26R	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099	
	03538-MW27	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099	
	03538-MW28	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097	
	03538-MW29	3.2 J	13.7	4.6 J	22.8	<2.1	<3.1	<2.1	<0.0097	
	03538-MW30	<1.7	2.6 J	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0095	
	03538-TW01	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097	
	03538-TW02	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0096	
	03538-RW01	318	5770	1930	8350	610	<124	<82.4	0.14	
	03538-RW02	6030	20200	2670	13700	840 J	<620	<412	41.2	
	03538-RW03	60.5	197	117	722	51.9	27.4	<4.1	0.063	
	03538-RW04	287	580	342	1510	132	34.9	<10.3	0.19	
	03538-RW05	577	4090	1320	5850	473	<77.5	<51.5	0.34	
	03538-RW06	1100	5750	1630	7670	500	<155	<103	1.6	
	03538-WSW01	<0.21	<0.20	<0.22	<0.22	<0.35	2.2	<0.16	<0.013	
	DUP-1(MW02R)	3420	11800	2590	11400	806	<310	<206	4.2	
	DUP-2(RW05)	672	4690	1470	6400	505	<77.5	<51.5	0.33	
	DUP(WSW-1)	<0.21	<0.20	<0.22	<0.22	< 0.35	4.9	<0.16	<0.013	
	FIELD BLANK	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098	
	LIELD BLAINK	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.013	
		<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	
	TRIP BLANK	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT	
		<0.21	<0.20	< 0.22	< 0.22	<0.35	<0.14	<0.16	NT	

Drawing Based on MECI Field Notes, Tax Maps and a RLS Survey of the Site by

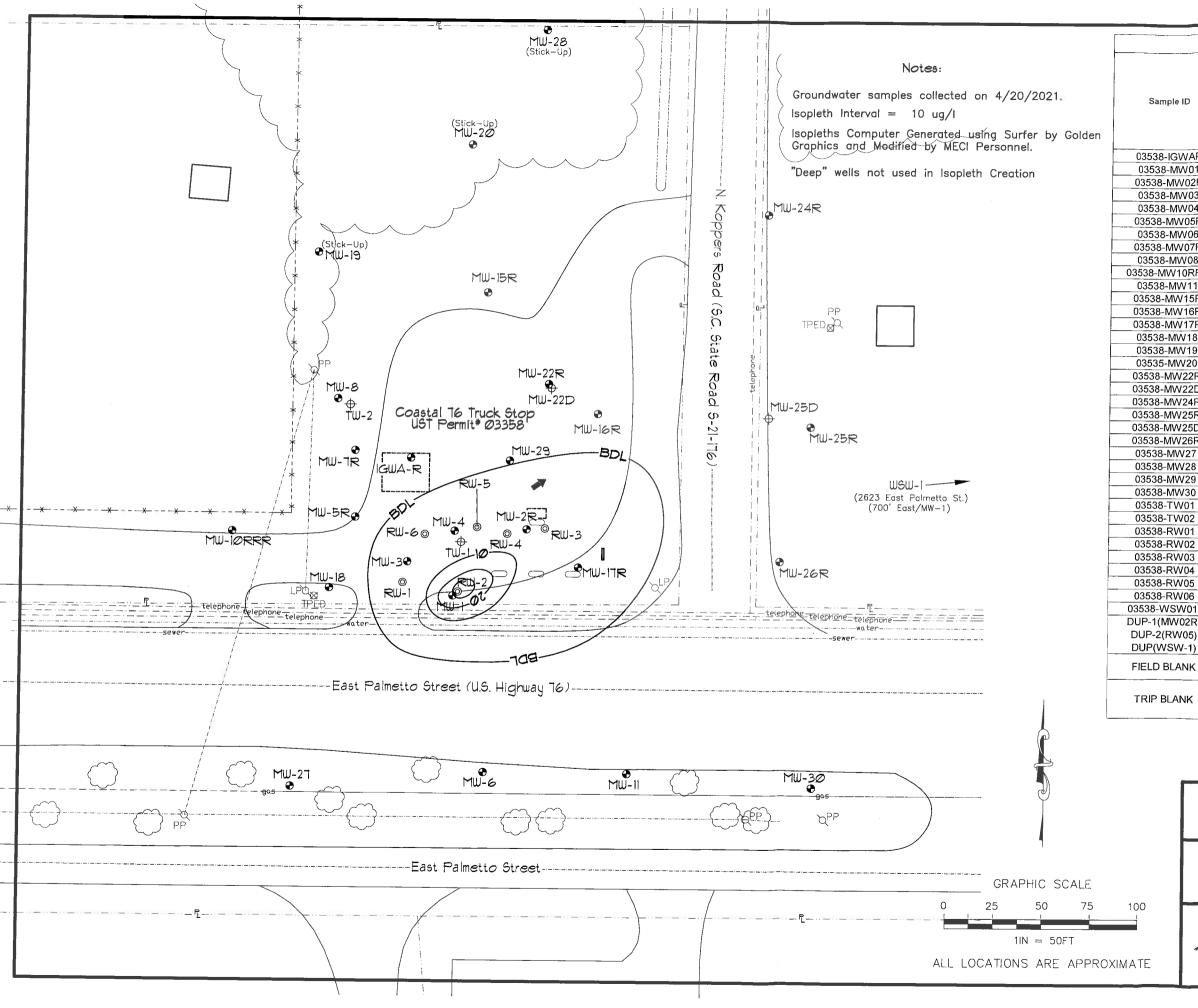
Groundwater CoC Site Map

JOB NO. 20-7518 DATE April 30, 2021

	GROUN	WATER	coc co	DNCENTI	RATION	DATA		
Sample ID	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB
	(μg/l) RBSL	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)
	5	1,000	RBSL 700	RBSL 10,000	RBSL 25	RBSL 40	RBSL 5	RBSL 0.05
03538-IGWAR	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099
03538-MW01	5490	12600	802	7270	578	<310	<206	27.8
03538-MW02R	3380	12400	2680	12100	768	<310	<206	4.9
03538-MW03	446	2900	768	5030	522	<77.5	<51.5	0.17
03538-MW04	254	134	26.5	1310	88.6	<12.4	<8.2	0.19
03538-MW05R	<1.7	6.1	45.7	175	25.5	<3.1	<2.1	<0.0098
03538-MW06	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098
03538-MW07R	<3.5	<4.0	173	469	73.4	<6.2	<4.1	<0.0096
03538-MW08	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.0097
03538-MW10RRR	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098
03538-MW11	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098
03538-MW15R	<1.7	<2.0	6.8	19.7	<2.1	<3.1	<2.1	<0.0096
03538-MW16R	<1.7	<2.0	<1.8	15.4	<2.1	<3.1	<2.1	<0.0095
03538-MW17R	501	386	209	1210	108	82.9	<8.2	2.7
03538-MW18	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097
03538-MW19	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0096
03535-MW20	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.010
03538-MW22R	8.0	6.2	77.5	92.2	42.4	<3.1	<2.1	<0.0098
03538-MW22D	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0096
03538-MW24R	<1.7	3.3 J	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099
03538-MW25R	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097
03538-MW25D	6.3	<2.0	5.0 J	<5.0	<2.1	<3.1	<2.1	<0.0097
03538-MW26R	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099
03538-MW27	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0099
03538-MW28	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097
03538-MW29	3.2 J	13.7	4.6 J	22.8	<2.1	<3.1	<2.1	<0.0097
03538-MW30	<1.7	2.6 J	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0095
03538-TW01	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0097
03538-TW02	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0096
03538-RW01	318	5770	1930	8350	610	<124	<82.4	0.14
03538-RW02	6030	20200	2670	13700	840 J	<620	<412	41.2
03538-RW03	60.5	197	117	722	51.9	27.4	<4.1	0.063
03538-RW04	287	580	342	1510	132	34.9	<10.3	0.19
03538-RW05	577	4090	1320	5850	473	<77.5	<51.5	0.34
03538-RW06	1100	5750	1630	7670	500	<155	<103	1.6
03538-WSW01	<0.21	<0.20	<0.22	<0.22	<0.35	2.2	<0.16	< 0.013
DUP-1(MW02R)	3420	11800	2590	11400	806	<310	<206	4.2
DUP-2(RW05)	672	4690	1470	6400	505	<77.5	<51.5	0.33
DUP(WSW-1)	<0.21	<0.20	<0.22	<0.22	<0.35	4.9	<0.16	<0.013
FIELD BLANK	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.0098
	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	<0.013
TOID DI ANIC	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT
TRIP BLANK	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT
	<0.21	<0.20	<0.22	<0.22	<0.35	<0.14	<0.16	NT

Drawing Based on MECI Field Notes, Tax Maps and a RLS Survey of the Site by Jay S. Joshi dated June 25, 2012.

Groundwater CoC Site Map (Naphthalene Isopleth)


Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina SCDHEC Site ID Ø3538

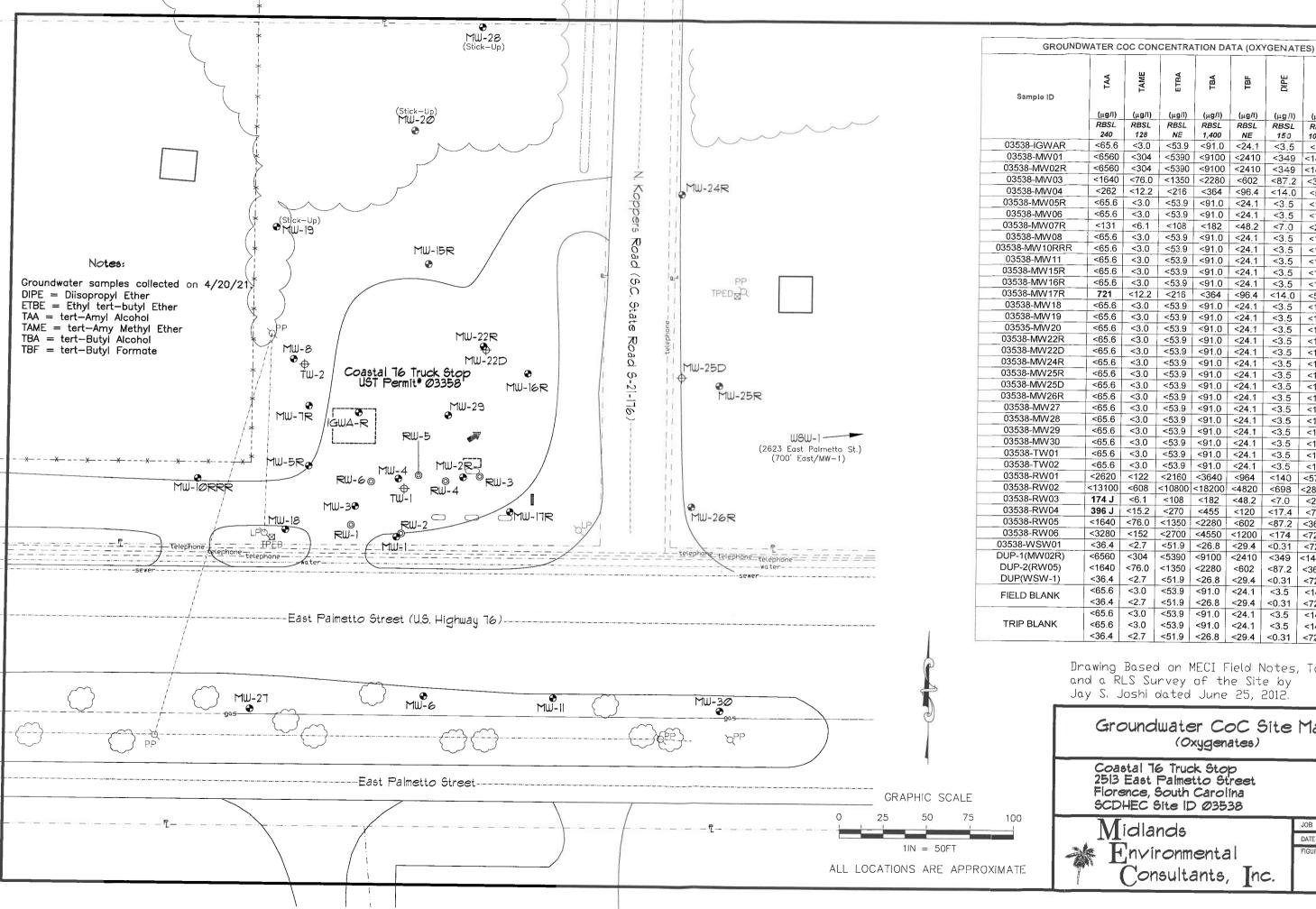
Midlands
Environmental
Consultants, Inc.

JOB NO. 20-7518

DATE April 30, 2021

FIGURE

	GROUNE	OWATER	COCCC	ONCENT	RATION	DATA		
Sample ID	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	MTBE	1,2 DCA	EDB
	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l
	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBS
	5	1,000	700	10,000	25	40	5	0.05
03538-IGWAR	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW01	5490	12600	802	7270	578	<310	<206	27.8
03538-MW02R	3380	12400	2680	12100	768	<310	<206	4.9
03538-MW03	446	2900	768	5030	522	<77.5	<51.5	0.17
03538-MW04	254	134	26.5	1310	88.6	<12.4	<8.2	0.19
03538-MW05R	<1.7	6.1	45.7	175	25.5	<3.1	<2.1	<0.00
03538-MW06	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW07R	<3.5	<4.0	173	469	73.4	<6.2	<4.1	<0.00
03538-MW08	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW10RRR	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW11	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW15R	<1.7	<2.0	6.8	19.7	<2.1	<3.1	<2.1	<0.00
03538-MW16R	<1.7	<2.0	<1.8	15.4	<2.1	<3.1	<2.1	<0.00
03538-MW17R	501	386	209	1210	108	82.9	<8.2	2.7
03538-MW18	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW19	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03535-MW20	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.01
03538-MW22R	8.0	6.2	77.5	92.2	42.4	<3.1	<2.1	<0.00
03538-MW22D	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW24R	<1.7	3.3 J	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW25R	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.009
03538-MW25D	6.3	<2.0	5.0 J	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW26R	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW27	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.00
03538-MW28	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.009
03538-MW29	3.2 J	13.7	4.6 J	22.8	<2.1	<3.1	<2.1	<0.009
03538-MW30	<1.7	2.6 J	<1.8	<5.0	<2.1	<3.1	<2.1	<0.009
03538-TW01	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	< 0.009
03538-TW02	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.009
03538-RW01	318	5770	1930	8350	610	<124	<82.4	0.14
03538-RW02	6030	20200	2670	13700	840 J	<620	<412	41.2
03538-RW03	60.5	197	117	722	51.9	27.4	<4.1	0.063
03538-RW04	287	580	342	1510	132	34.9	<10.3	0.19
03538-RW05	577	4090	1320	5850	473	<77.5	<51.5	0.34
03538-RW06	1100	5750	1630	7670	500	<155	<103	1.6
03538-WSW01	<0.21	<0.20	<0.22	<0.22	< 0.35	2.2	<0.16	<0.01
DUP-1(MW02R)	3420	11800	2590	11400	806	<310	<206	4.2
DUP-2(RW05)	672	4690	1470	6400	505	<77.5	<51.5	0.33
DUP(WSW-1)	<0.21	<0.20	<0.22	<0.22	< 0.35	4.9	<0.16	<0.01
FIELD BLANK	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	<0.009
FIELD DLANK	<0.21	<0.20	<0.22	<0.22	< 0.35	<0.14	<0.16	<0.013
	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT
TRIP BLANK	<1.7	<2.0	<1.8	<5.0	<2.1	<3.1	<2.1	NT

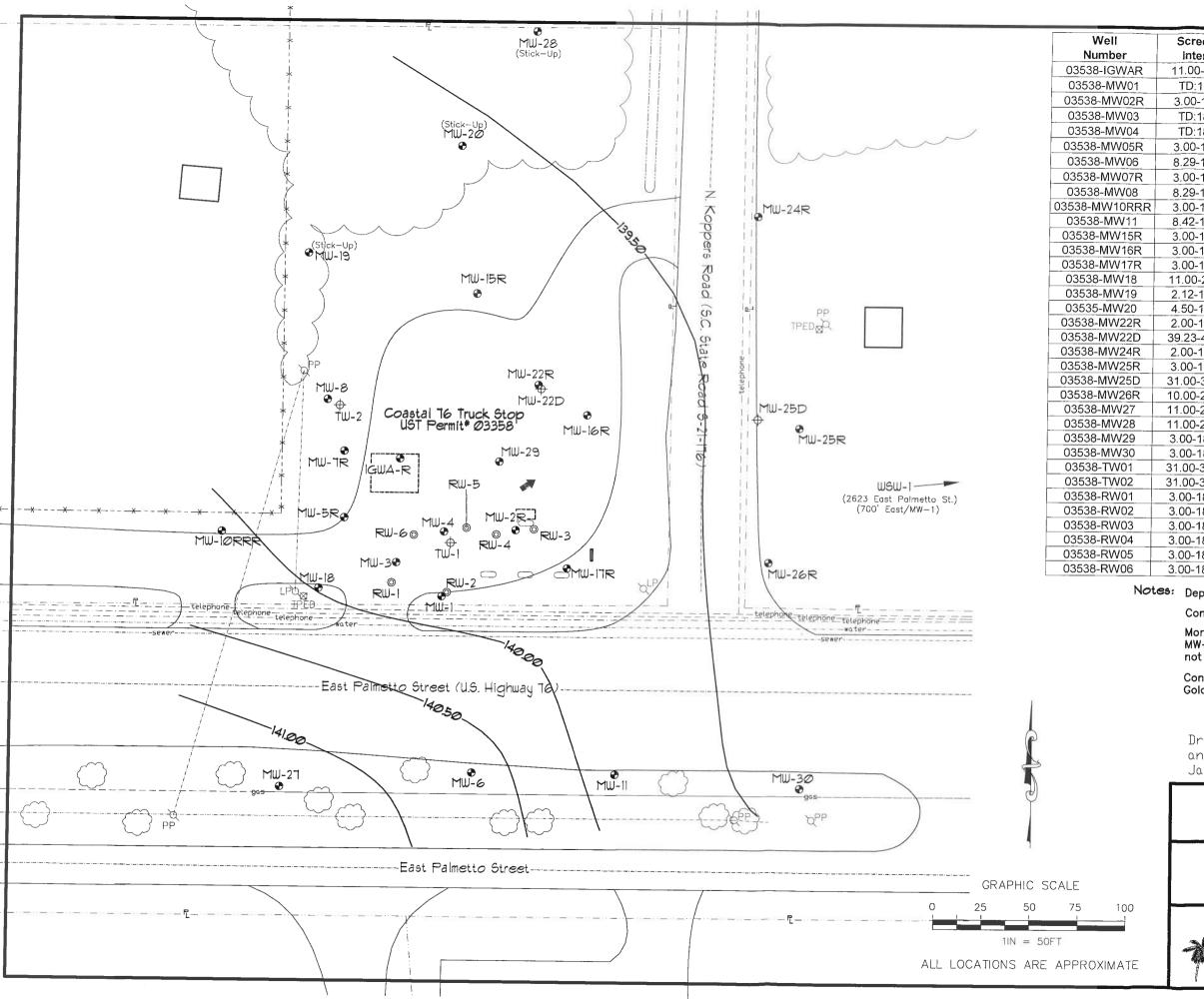

Drawing Based on MECI Field Notes, Tax Maps and a RLS Survey of the Site by Jay S. Joshi dated June 25, 2012.

Groundwater CoC Site Map (EDB isopleth)

Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina SCDHEC Site ID 03538

 ${f M}$ idlands $\bar{\mathbf{E}}$ nvironmental Consultants, Inc.

JOB NO. 20-7518 DATE April 30, 2021


				1	17 (07	TOLIVA	13)	
Sample ID	TAA	TAME	ETBA	TBA	18F	DIPE	Ethanol	ETBE
	(μ g /l)	(µg/I)	(μg/l)	(μg/l)	(μg/l)	(µg/I)	(μg/l)	(µg/l)
	RB\$L	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL	RBSL
	240	128	NE	1,400	NE	150	10,000	47
03538-IGWAR	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW01	<6560	<304	<5390		<2410	<349	<14400	<846
03538-MW02R	<6560	<304	<5390	<9100	<2410	<349	<14400	<846
03538-MW03	<1640	<76.0	<1350	<2280	<602	<87.2	<3600	<212
03538-MW04	<262	<12.2	<216	<364	<96.4	<14.0	<576	<33.8
03538-MW05R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW06	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW07R	<131	<6.1	<108	<182	<48.2	<7.0	<288	<16.9
03538-MW08	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW10RRR	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW11	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW15R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW16R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW17R	721	<12.2	<216	<364	<96.4	<14.0	<576	<33.8
03538-MW18	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW19	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03535-MW20	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW22R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW22D	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW24R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW25R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW25D	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW26R	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW27	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW28	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW29	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-MW30	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-TW01	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-TW02	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
03538-RW01	<2620	<122	<2160	<3640	<964	<140	<5760	<338
03538-RW02	<13100	<608		<18200	<4820	<698	<28800	<1690
03538-RW03	174 J	<6.1	<108	<182	<48.2	<7.0	<288	<16.9
03538-RW04	396 J	<15.2	<270	<455	<120	<17.4	<720	<42.3
03538-RW05	<1640	<76.0	<1350	<2280	<602	<87.2	<3600	<212
03538-RW06	<3280	<152	<2700	<4550	<1200	<174	<7200	<423
03538-WSW01	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
DUP-1(MW02R)	<6560	<304	<5390	<9100	<2410	<349	<14400	<846
DUP-2(RW05)	<1640	<76.0	<1350	<2280	<602	<87.2	<3600	<212
DUP(WSW-1)	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
FIELD BLANK	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
TRIP BLANK	<65.6	<3.0	<53.9	<91.0	<24.1	<3.5	<144	<8.5
	<36.4	<2.7	<51.9	<26.8	<29.4	<0.31	<72.2	<3.2
			.01.0	-20.0	-2.5.7	-0.51	-12.2	~3.Z

Drawing Based on MECI Field Notes, Tax Maps and a RLS Survey of the Site by Jay S. Joshi dated June 25, 2012.

Groundwater CoC Site Map (Oxygenates)

Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina SCDHEC Site ID Ø3538

Midlands Environmental Consultants, Inc. JOB NO. 20-7518 DATE April 30, 2021

Well	Screened	Depth to	Well-head	Groundwater
Number	interval	Water (feet)	Elevation	Elevation
03538-IGWAR	11.00-21.00	3.75	145,14	141.39
03538-MW01	TD:17.80	6.02	145.87	139.85
03538-MW02R	3.00-18.00	6.00	145.79	139.79
03538-MW03	TD:18.20	5.62	145.51	139.89
03538-MW04	TD:18.35	5.84	145.56	139.72
03538-MW05R	3.00-18.00	4.80	144.77	139.97
03538-MW06	8.29-18.29	5.23	146.04	140.81
03538-MW07R	3.00-18.00	4.84	144.76	139.92
03538-MW08	8.29-18.29	3.98	143.78	139.80
03538-MW10RRR	3.00-18.00	4.68	144.75	140.07
03538-MW11	8.42-18.42	6.01	145.68	139.67
03538-MW15R	3.00-18.00	4.48	144.21	139.73
03538-MW16R	3.00-18.00	5.48	145.49	140.01
03538-MW17R	3.00-18.00	6.71	146.75	140.04
03538-MW18	11.00-21.00	5.86	145.79	139.93
03538-MW19	2.12-12.12	8.88	148.42	139.54
03535-MW20	4.50-14.50	8.94	148.46	139.52
03538-MW22R	2.00-17.00	5.41	145.16	139.75
03538-MW22D	39.23-44.23	8.21	144.89	136.68
03538-MW24R	2.00-17.00	5.80	145.22	139.42
03538-MW25R	3.00-18.00	4.19	144.08	139.89
03538-MW25D	31.00-36.00	5.04	144.60	139.56
03538-MW26R	10.00-20.00	5.89	144.96	139.07
03538-MW27	11.00-21.00	3.42	144.77	141.35
03538-MW28	11.00-21.00	7.42	147.16	139.74
03538-MW29	3.00-18.00	5.22	145.36	140.14
03538-MW30	3.00-18.00	5.12	144.52	139.40
03538-TW01	31.00-36.00	5.97	145.77	139.80
03538-TW02	31.00-36.00	4.29	143.98	139.69
03538-RW01	3.00-18.00	5.65	145.51	139.86
03538-RW02	3.00-18.00	5.69	145.52	139.83
03538-RW03	3.00-18.00	5.51	145.50	139.99
03538-RW04	3.00-18.00	5.63	145.52	139.89
03538-RW05	3.00-18.00	5.89	145.77	139.88
03538-RW06	3.00-18.00	5.90	145.75	139.85

Notes: Depth to groundwater measured on 4/20/2021.

Contour Interval = 0.50 Feet

Monitoring well IGWAR, MW—16R, MW—17R, MW—22D, MW—25R, MW—25D, MW—28, MW—29, TW—1 and TW—2 not used in contouring.

Contours Computer Generated using Surfer by Golden Graphics and Modified by MECI Personnel.

Drawing Based on MECI Field Notes, Tax Maps and a RLS Survey of the Site by Jay S. Joshi dated June 25, 2012.

Potentiometric Data Site Map (Groundwater Contour)

Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina SCDHEC Site ID 03538

Midlands
Environmental
Consultants, Inc.

	JOB NO. 20-7518
1	DATE April 30, 2021
	FIGURE
ĺ	h
ı	\cup

APPENDIX A:

SITE SURVEY (Not Applicable)

APPENDIX B:

SAMPLING LOGS, LABORATORY DATA SHEETS, & CHAIN-OF-CUSTODY FORMS

			or No (P)	Dissolved Oxygen.	ed Every 3 Months by QA Manager	Gallons Purged Notes						0 5	3	0			7000	<u>2</u>	9	0	D.P-1	2	3	12G102878	+
Irgo	ita	Calibration Data for :	pH: Conductivity	Dissolved Oxygen.	Well David	(feet) *(feet) **calc.							27			-Q-L	1.7 8 102 1	08	2,		47.700	18 5		Case #1 15H101448 Case #2 15E101448	1 3 2 - 2
Monitoring Well Purge	And Sampling Data	10176	-7518		dity Depth to (feet):	product						3	١	٤ .	2.4	1	<u>></u> ر	3 - 0			000		×5 = Gallons Purged (calculated)		
Mo	A	Job Name: (545Fe)	Job Number: 20		Temp. DO Turbidity	(°C) (mg/l) (NTU)						Joseph John Market Mark		(1) to (1	* 15.4 × 1.61	M.7 3.19 70.	201 2-70 (6.	33.		17-7 3.69 6	14.9 3.79 (17.8 37/ 3461	One Well Volume x 5	SIIBA O MEIIS	
	Inc.	CH, HS	(Los)		Sample pH(i) cond(i)) N(6	to who		The Conference of the Conferen	4:00 7.62 156-8	(4.01 7.4. 176.)	7.43 (8)	4:10 7.27 161.7	12:44 1.84 2220	7.74	72	72 IL.C	ater Height .163 for 2" wells, or * x 66 for 4" wells	Casing Gallons	2" 0.163 4" 0.653 6" 1.469
Midlands		25.5	2/2	۸۱ <u></u>	Vell No. Purge	Initial	T GW A 2nd	3rd	Sth Sth	initial	H GWA-N	3rd	4th 5th	Sampling		1st 2nd	ard and		- 1	A.WAR 2nd	3rd 4th	Sampling	*= (Depth of Well) - (Depth to Water = Water Height One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells * 1.00 to 1.00 t		

			Se or No (Pie	No No	Callbra	ight Gallons Purged Notes	2.05	10,25 (0.5 00)		2.04	10,51 Oder	620		2.15	100	10.76		18	9			Ph/Conductance SN	15H101448 12(10K 101895 08B101407	
Vanitoring III D	And Sampling Data		20-7518 pH: Conductivity:	Dissolved Oxygen: Turbidity: Conductivi	Turbidity Deeth to freety Marit Park 1885	Product Initial H ₂ O final H ₂ O	2	37.18 4. 4.	17.31	<u>څ</u>	24.4	5	79%	0 3 0	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3417	7.72	8.00	1	76.64		**= One Well Volume x 5 = Gallons Purged (calculated)	Case #1		
	Inc.	Job Name:	Job Number:	- 11-	00	("C) ("C) ("C) ("C) ("G)(")	13:02 7.37 132.7 29-4 15:05 13	(3:56).47 (65.7 20.4 2.73 (3:56).41 (65.7 20.4 2.73	130.1 11.2 2.97	15:07 7.54 161.2 14.8 3.24	15: 11 1.47 (tr. [17.8 3.27]	1 2 2 3 15 2 2 14	7.5 2.17 235.7 25.31	11:31 7.632724 19, 5 3.84	11: 41 7.54 24.6 14.4 3.67	21. € 2.61 1.425 C4.7 24:11	0:17 7.62 56.5 18.5 3.41	10,21 7.43 69.4 19.3 3.59	10:27 74 66.7 17.5 3.48	73.5 721 1.45 74.7 14.5 3.67 (D: C]		rells, or * x .66 for 4" wells, 1.469 for 6" v	Casing Gallons	2" 0.163 4" 0.653	204.
Midlands	جري	Sampling Details: 45, 55	1	1	Well No. Pu	Initial	~~W~-3	Eas	<u> </u>	J. M.		Sam	Initial	Z Znd		Sampling	Initial	2nd	MW & S	91	Sampling	= (Uepth of Well) - (Depth to Water = Water Height One Well Volume = x.047 for 1" wells * x.163 for 2" w			

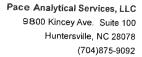
Midla	Midlands	Monitoring III		=	
W C	· · · · · · · · · · · · · · · · · · ·	And Committee B.	rurge		
Field Personnel:		And Sampling Data			
	Job Name: (Destro)	Dastel 76	Calibration Successful S	7	_
Cerriping Date(s):	Job Number:	20-7518	pH:	res or No (Pi	ile)
Sampling Case#:			Dissolved Oxygen:	No	
Well No.	Purge Sample pH(i) Cond(i)		I UI DIGITY: Conductivi	UIDIGITY. Conductivity Calibrated Every 3 Months by QA Manager	A Manager
		Turbidity Depth to (feet):	-	ht Gallons Purged	
	11.54 7.55 187.7 18.4 5.22	テ		**calc. actual	Notes
AN 121-7P	68.3 1.4 5.A22 1C2	51.8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	~	1,10	
۷ , , , , ,	2:027-54 2:45	164.7			4.3.4
	7.61 (16.7 19.1 5.40	7 -12.07	/ ξ ~	10.72	200
	5 C 01 050 JET (C.1)		/ ~~		
	7. 49 141.7 19.4 3.67	イン・シーク	00		
0	(127 7 6 3 133.2 (4. 5 7.7 7	1		~ %	5
0	15-2 5-61 /·241 LT-2 5 hill	64 CAC		7	
	17-5 3.70		18.89 PE.81	١ ٥٠	
	Initial		,		
84	2nd	í.			
5131	3rd		20.0		
	4th 5th		5000		
	50		18.55		
	11.18 7.84 218.8 19.0 5.85	24.17			
State of the state	71.0 0-11 27.7 4 7.7 12:11 pu	67.49	m	2,17	2°
	7-7-3 19-19-19-19-19-19-19-19-19-19-19-19-19-1	Po 7 .00	•		*\rac{1}{2}
	153.1 19.8 5.8)	46.24	2	200	
*= (Depth of Well) - (Dep	th to Water Water Water		1	900	
One Well Volume =x,047	One Well Volume =x.047 for 1" wells "x .163 for 2" wells, or "x .66 for 4" wells, 1.469 for 6" wells	**= One Well Volume x 5 = Gallons Purged (calculated) wells	Sampling Case#	7/7	
	Casing Gallons		Case #1	12G102878 14H103098	201301183 201301183
			Case #3		201510251
	1.469				

Sircle)	Dissolved Óxygen: No No No Turbidity: Conductivity Calibrated Every 3 Months by QA Manager Well Depth Water Height Gallons Printed	Notes 7		5 8	203	Turbidity 201301183 201301774 201510251
Yes or No (Please Circle)	NO NO ted Every 3 Months	actual actual		ō. 12	2,5	12G102878 14H103098 08B101407
1 -1 . 0/10	Calibrated Eve	202	5	2.07	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Phyconductures SN 15H101448 15E101481 10K 101895
ta Calibration Data for: Calibration Successful? YepH: Conductivity:	Dissolved Óxygen: Curbidity: Conductivity Well Depth Water Height	(feet)	,	3-5	1 32.1	6 #1 6 #2 6 #3
Data Calibratio PH: Conductiv	Dissolved Turbidity:	(feet) 8.43 7.43 (8.43)		4.5	017	
Well Poling D	ΙËL	Initial It, of final It, o		3h-1	3 845	(Calculated)
Monitoring Well And Sampling South 76 20-7518		Product Init	7	3h-4) 3	**= One Well Volume x 5 = Gallons Purged (calculated)
	Turbidity	ンバッとので		122.47 102.47 106.4 106.4 106.4 131.43	136.6 181.4 14.34	ell Volume x 5 =
Job Name: Job Number:	DO (ma/l)	200000		5.5.5.5 5.5.5.5 5.5.5.5 5.5.5.5 5.5.5.5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	**= One Wi
	cond(i) Temp.	7 60 7 60 80		LC 2020	215.6 18. 314.4 16. 331.6 11. 319.9 16. 316.1 (1,	" wells, 1.469 fo
		7.66 123.9 7.74 134 9 7.57 124 7 7.61 133.9		7.47 57.8	7.81 215.6 7.56 314.9 7.58 319.9 7.67 324.5 7.65 316.1	ells, or * x .66 for 4 Gallons 0.047 0.163 0.653 1.469
Inc.	Sample Time	10:00 10 10 10 10 10 10 10 10 10 10 10 10 1		11:05 11:05 12:05 12:05 17:05	11:06 7:01 11:08 7:01 11:12 7:01 11:16 7:01	rater Height .163 for 2" wells .13
ants,	Purge	1st 1st 2nd 3rd 4th 6th Sampling	Initial 1st 2nd 3rd 4th 5th Sampling	18t 2nd 3rd 4th 6th Sampling	1st 1st 2nd 3rd 4th 5th 5th 5th 5th 5th 5th 5th 5th 5th 5	pth to Water = W 7 for 1" wells * x
Midlands Environn Consult Field Personnet:	Well No.	M. J.	7/32	RE. (5R	49) . W. K.	*= (Depth of Well) - (Depth to Water = Water Height One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells Casing Gallons 1" 0.047 2" 0.163 4" 0.653

Calibration Data for: Calibration Successful? Yes or No (Please Circle) Conductivity: Conductivity: Conductivity: Conductivity: Conductivity: Conductivity Calibrated Every 3 Months by QA Manager	(feet) "(feet) "calc. actual Notes To be continued to the continued of th	2 7, 5, 12 12 12 12 12 12 12 12 12 12 12 12 12	. [3] Si 60	4.50 4.56 1.56 Sept.	Sampling Cases PhyConductance SN Do SN Turbidity Case #2 15E101481 14H103098 201301174 Case #3 10K 101895 08B101407 201510251
Monitoring Well Prand Sampling Da Job Number: 20-7518 Temp. DO Turbidia.	(°C) (mg/l) (NTU) product initial H ₂ O final H ₃ O G -2 - 2 - 3 C - 3 G -2 - 2 - 4 C - 3 G -2 - 2 - 4 C - 3 C -3 - 5 C - 3 C -3 - 5 C - 3 C -3 - 5 C - 3 C -3 - 5 C - 3 C	14.4 4. (1 22.64 14.9 4.51 68.31 29.0 4.45 174.3 14.5 4.55 41.61 14.5 4.51 82	17.8 5.10 26-91 19.8 5.13 (17.1 18.5 5.24 (70.4 18.8 5.37 (5.13 18.8 5.37 (5.13 18.8 5.37 (5.13	21 77.61 46 14.61 42 64.91 43 64.91 43 64.91 44 64.91 45 64.91	ne Well Volume x 5 = Gailons P
- 2 3		181	27.7.2.65	1st 10,461,67 85.4 2nd 10,477,84 87.7 3th 10,4 7.95 86.2 5th 10,5 9 7.12 85.1	= (Ueptin of Well) - (Deptih to Water = Water Height One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells Casing Gallons 1" 0.047 2" 0.163 4" 0.653 6" 1.469

Sample pH(i) cond(i) Temp. Do Number: Sample pH(i) cond(i) Temp. Do Time DH(i) cond(i) Temp. Do Time DH(i) Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time DH(i) Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time DH(i) Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Call Cond(i) Temp. Do Time Cond	l Purge Data	Calibration Data for: Calibration Successful? Yes or No (Please Circle) PH: Conductivity: Dissolved Oxygen:	Well Depth Water Height Gallons Purged Notes """ """ """ """ """ """ """	3.75		12 1.81 No	r '	29.36 20 03 1.83	7 11.2 9.5 0.5	d) Sampling Case# Ph/Conductance SN DO SN Turbidity Case #1 15H101448 12G102878 201301183 Case #2 15E101481 14H103098 201301174 Case #3 10K 101895 08B101407 201510251
Midlands Anvironment Consultants ield Personnel: R5, 5, 5 iampling Date(s): Well No. Purge Volume Initial 1st 2nd 4th 6th 8th 8th 1st 1st 2nd 4th 8th 8th 8th 8th 8th 8th 8th 8th 8th 8	Midlands Environmental Consultants, Inc.	Job Number: 20 -751	pH(i) cond(i) Temp. DO Turbidity Depth to (rest) ("C") (mg/l) (NTU) product Initial H ₂ O	2nd 3rd 4th 6th Sampling	1st [[:51 7.91 202.6 [9.6 4.86 7.41 213.6 19.6 4.86 7.41	Sumpling N:55 7.87 287.1 [4. C 5.19 [24.C 4th [1]: 57.784 27.1 [4. C 5.19 [24.C 4th [1]: 9]	11.78 7-87 \$1.3 19.2 5.43 22.36 11.24 7.64 32.4 19.7 5.41 70.41 11.30 7.71 57.6 12.8 5.17 130.7 11.30 7.75 7.7 17.7 5.30 11.6.7	10:17 7.64 21:7 5.12 57.11 [0:17 7.12 57.11 [0:17 7.64.9] 10:21 7.87 7224 72.7 5.12 [10:6]	1. 57 41.34 .87 30.21	**= One Well Volume x 5 = Gallons Purged (calculated) Casing Gallons 1" 0.047 2" 0.163 4" 0.653

Calibration Data for: Calibration Successful? Yes or No (Please Circle) PH: Conductivity: Conductivity: No Dissolved Oxygen: Turbidity: Conductivity Circle	Well Depth Water Height "calc. actual Notes Column Column Callons Purged Notes	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 1, 5,	12.86 14.5 oter	Sampling Case# Ph/Canductance SN Do SN Tumbidity Case #1 15H10148 12G102878 201301183 Case #2 15E101481 14H103098 201301174 Case #3 10K 101895 08B101407 201510251
Monitoring Well Purge And Sampling Data Job Name: Ceast 176 Calibra Job Number: 20-7518 Conduc Dissolv Turbidil	Temp. DO Turbidity Depth to (reet): We (°C) (mg/l) (NTU) product Initial H ₂ O final H ₃ O (nai H ₃ O (2) S.e.	2 5.13 64.83 1 5.24 124.3 1 5.21 124.3 1 5.27 1 129.3	5.88 84.69 5.88 84.66 5.47 (120. 1 5.40 79.41 5.90 79.41	18-7 4.51 25:31 11.4 5:11 63 41 14.5 4.74 183.4 14.5 4.74 183.4 11.7 4.14 183.4 11.5 4.61 3 7,94	**= One Well Volume x 5 = Gallons Purged (calculated)
	Molume Time pH(I) cond(I) Volume Time Inttal (D.2.2. 7.5c 1.5.7 120.7	7.17 7.4 38.5 7.19 28-9 25:0 7.19 28-9 25:0 7.19 28-9 25:0	1053 47.75 163.1 1053 67.54 12.7 1054 07.05 145.8 1054 07.05 145.8 1054 07.05 145.8	Ath 10, 12 7.7 74.7 74.7 74.7 74.7 74.7 74.7 8.7 7.7 7.6 61.5 8.7 7.6 7.8 8.7 7.6 8.7 8.7 7.6 8.7 8.7 7.6 8.7 7.6 8.7 8.7 7.6	One Well Volume =x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells Casing Gallons


e	Calibration Data for: Calibration Successful? Yes or No (Please Circle) pH: Conductivity: Conductivity: Dissolved Oxygen:	th Water Height Gallons Purg	2.83	2 2		E 0.3	
Monitoring Well Purge And Sampling Data	N.	DO Turbidity Depth to (feet): (mg/l) (NTU) product Initial H ₂ O final H ₃ O	-24130.3 -24130.3 -61167.7 -61167.7 -61167.7	18. 2 347 23.64 18. 8 4-14 70.14 18. 8 4-14 70.14 18. 8 4-15 171. 3 18. 8 4-15 25 C1	180.43 1 16.43 1 1 16.43 1 1 1 1 1 1 1 1 1	20.2 4-83 26.91 20.2 4.61 67.41 20.7 4.70 [601	V 8 38 94 ne Well Volume x 5 = Gallons Purged (calculated)
idlands Invironmental Consultants,	Sampling Case#: \$ 5155, CH, H 5	- 0	2	111 11:23 1.44 \$50.1 11:25 1.44 \$50.1 11:25 1.81 243.6 11:27 1.81 243.6 11:27 1.81 346.9 11:31 1.87 346.9 11:31 1.87 328.9 1.87 328.9 11:31 1.87 328.9 1.87 328.	Mw 30 2nd 10:00 7.37 54.1 2nd 10:00 7.10 17.3 3nd 10:06 7.10 11.3 4th 10:05 7.15 61.6 5th 10:01 0 1.15 61.6	14:35 7.59 109,0 14:45 1.31 83.7 14:50 7.26 81.7	** (Depth of Well) - (Depth to Water Height One Well Volume =x.047 for 1" wells ** x.163 for 2" wells, or ** x.66 for 4" wells, 1.469 for 6" wells Casing Gallons 1" 0.047 2" 0.163 4" 0.653

Data Calibration Data for: Calibration Successful? Yes or No (Please Circle) PH: Conductivity: Conductivity: Conductivity: Conductivity: Conductivity Calibrated Every 3 Months. by OA Man	Mell Depth Water Height Gallons Purged Notes (feet) "(feet) "calc. actual Notes 3.1	8.06	3 2 804 40.5 odor	3 8.16 41 8.16 41 5 81	Sampling Cases Ph/Conductance SN DO SN Turbidity Case #2 15H101448 12G102878 201301183 Case #2 15E101481 14H103098 201301174 Case #3 10K 101895 08B101407 201510251
Monitoring Well And Sampling H 5 Job Number: Co. 27 5 18	ime pri(i) cond(j) Temp. DO Turbidity Depth to (rest) (NTU) (NTU) product Initial Holiff 1.17 31.4 18.1 5.21 674.4 [22.47] [4 7.27 75.7 18.8 5.17 124.2 2.47 2.47 2.47 2.47 2.47 2.47 2.47	17.42 64.9 14.4 3.56 17.17 131.6 23.0 3.87 17.29 131.6 23.0 3.87 17.39 131.6 20.1 3.16 17.50 13.6 20.1 3.16	7.43 [54,7 [4,7 2-94] 7.47 [54,2 [4,7 2-94] 7.47 [54,2 [4,7 7.9] 7.49 [4,6 [1,7 7.9] 7.40 [53,1 [4,8 3.0]	12:057.64284: (17.8 4.272).44 12:137.472674 20.23.84 [40.1] 12:217.55 243.820.0 41.14 [89.7] 12:217.577.64 20.2 4.24 4.24 4.27 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7	Casing Gallons Purged (calculated) Casing Gallons The Dody A 0653 Give Wells, 1.469 for 6" wells, 1.469 for 6" wells Casing Gallons Casing Gallons The Dody A 0653 Give Wells, 1.469 for 4" wells, 1.469 for 6" wells Casing Calculated)
Midlands Environmental Consultants, Inc. Field Personnel: \$5,55,044 Sampling Date(s): \$720,021 Sampling Case#: \$	Volume Initial II. 1st II. 2nd II. 3rd II. 4th 6th 6th 8ampling II.		18t 17: 2nd 17: 4th 13: 8th 13: 8th 13:	1st 12: 0.5 2nd 12: 1.5 3nd 12: 2.1 4th 12: 2.1 5th 12: 3.7 5th 12: 3.	CE

	for: 17 Yes or No (Please Circle) 18 No No No No No No No No No No No No No N	Well Depth Water Height	Gallons Purged Notes actual Calc. G. O. S. O. S. HO. S. HO. 31 HO. 31 HO. 35 HO. S.		7.51 39.5 Bar-2	1	7.90 oder	5			15H101448 12G102878 7ubidity 15E101481 12G102878 201301183 15E101481 14H103098 201301174 10K 101895 08B101407 201510251
ll Purge L'Data	Calibration Data for Calibration Successful? Y pH: Conductivity: Conductivity: Dissolved Oxygen: Cast Turbidity.	Well Depth Water Heigh		2/	M18	1	N 1 ∞		8-1 8:0	6	Case #2
Monitoring Well Purge And Sampling Data	Job Number: 20 -7 518	Turbidity	12.43 product Initial H ₂ O 12.43 CS - 7 (S) CS (S)	23.64		23.(1	0 200	3531		One Well Volume x 5 ≈ Gailons Purged (calculated)	
ac i	Job Name:	cond(i) Temp.	184.5	11.4	241-7 75-1 136-6-75-1 241-7 10-2 136-7 15-2	168-8 14.2 U.8	(61.9 17.8 7.19 94.3 12.5 5.0 136 14.8 4.9	12:34 0	14:28 Oder	X.66 for 4" wells, 1.469 for 6" walle	200
Midlands F Environmental Consultants, Inc.	T 21 WI		Initial 13:04 7.2 2nd 13:04 7.2 3nd 13:25 7.4 4th 7:35 7.3	15: 48 7.6	77.77	1st 14:17 7.54	プレイン: ト) ord the control of the co	Sampling Initial 1st	3rd K.C. S	*= (Depth of Well) - (Depth to Water Height One Well Volume = x.047 for 1" wells * x.163 for 2" wells, or * x.66 for 4" wells, 1.469 for 6" wells	Casing Gallons 1" 0.047 2" 0.163 4" 0.653 6" 1.469
Field Personnel	Sampling Date(s):	Welf No.	7-32		8-28		Sw. 6	DUP-1	6-9VO	*= (Depth of Well) - (Α.

Т

Purge	Calibration Data for: Calibration Successful? Yes or No (Please Circle) Conductivity:	Well Depth Water Height Gallons Purg	16,-79.7187012	4.05						PhiCambras	
Monitoring Well Purge	Job Number: 20-7518 Cal Cal Cal Diss	Cond(i) Temp. DO Turbidity Depth to (feet); (°C) (mg/l) (NTU) product Initial 4,0 Inial 4,0	34.1975716							or 4" wells, 1.469 for 6" wells	
<u></u>	Field Personnel: \$ 5, 55, CH, H 5 Sampling Date(s): 4/20/201 Sampling Case#: \$	Volume Time pH(i) Initial S. 2. 5	3rd 4th 5th Samulin	+++	Sanding Sand	F B 1st 15.30	T & 3rd & 10.2	1st Znd	4th 5th Sampling	± ₹	Casing Gallons 1" 0.047 2" 0.163 4" 0.653 6" 1.469

April 28, 2021

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE:

Project: 03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on April 21, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92534563001	IGWA-R	Water	04/20/21 12:11	04/21/21 10:35
92534563002	MW-1	Water	04/20/21 14:10	04/21/21 10:35
92534563003	MW-2R	Water	04/20/21 12:54	04/21/21 10:35
92534563004	MW-3	Water	04/20/21 13:06	04/21/21 10:35
92534563005	MW-4	Water	04/20/21 15:13	04/21/21 10:35
92534563006	MW-5R	Water	04/20/21 11:45	04/21/21 10:35
92534563007	MW-6	Water	04/20/21 10:27	04/21/21 10:35
92534563008	MW-7R	Water	04/20/21 12:04	04/21/21 10:35
92534563009	MW-8	Water	04/20/21 11:47	04/21/21 10:35
92534563010	MW-10RRR	Water	04/20/21 11:28	04/21/21 10:35
92534563011	MW-11	Water	04/20/21 10:10	04/21/21 10:35
92534563012	MW-15R	Water	04/20/21 11:11	04/21/21 10:35
2534563013	MW-16R	Water	04/20/21 11:16	04/21/21 10:35
2534563014	MW-17R	Water	04/20/21 11:50	04/21/21 10:35
2534563015	MW-18	Water	04/20/21 12:02	04/21/21 10:35
2534563016	MW-19	Water	04/20/21 11:02	04/21/21 10:35
2534563017	MW-20	Water	04/20/21 10:50	04/21/21 10:35
2534563018	MW-22R	Water	04/20/21 11:54	04/21/21 10:35
2534563019	MW-22D	Water	04/20/21 11:36	04/21/21 10:35
2534563020	MW-24R	Water	04/20/21 10:27	04/21/21 10:35
2534563021	MW-25R	Water	04/20/21 10:38	04/21/21 10:35
2534563022	MW-25D	Water	04/20/21 10:32	04/21/21 10:35
2534563023	MW-26R	Water	04/20/21 10:44	04/21/21 10:35
2534563024	MW-27	Water	04/20/21 10:15	04/21/21 10:35
2534563025	MW-28	Water	04/20/21 10:54	04/21/21 10:35
2534563026	MW-29	Water	04/20/21 11:33	04/21/21 10:35
534563027	MVV-30	Water	04/20/21 10:30	04/21/21 10:35
534563028	TW-1	Water	04/20/21 14:56	04/21/21 10:35
534563029	TW-2	Water	04/20/21 11:30	04/21/21 10:35
534563030	RW-1	Water	04/20/21 12:49	04/21/21 10:35
534563031	RW-2	Water	04/20/21 13:53	04/21/21 10:35
534563032	RW-3	Water	04/20/21 12:37	04/21/21 10:35
534563033	RW-4	Water	04/20/21 13:41	04/21/21 10:35
534563034	RW-5	Water	04/20/21 14:28	04/21/21 10:35
534563035	RW-6	Water	04/20/21 14:57	04/21/21 10:35
534563036	DUPLICATE 1	Water	04/20/21 12:54	04/21/21 10:35
34563037	DUPLICATE 2	Water	04/20/21 14:28	04/21/21 10:35

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

Lab ID	Sample ID	Matrix	Date Collected	Date Received	19	
92534563038	FIELD BLANK	Water	04/20/21 15:10	04/21/21 10:35		
92534563039	TRIP BLANK 1	Water	04/20/21 08:00	04/21/21 10:35		
92534563040	TRIP BLANK 2	Water	04/20/21 08:00	04/21/21 10:35		

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

Lab ID	Sample ID	14 See	Method	Analysts	Analytes Reported	Laborator
92534563001	IGWA-R		EPA 8011	. НН	a p 2	PASI-C
			EPA 8260D	BSH	20	PASI-C
92534563002	MW-1		EPA 8011	НН	2	PASI-C
			EPA 8260D	PM1	20	PASI-C
92534563003	MW-2R		EPA 8011	НН	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
92534563004	MW-3		EPA 8011	HH	2	PASI-C
****			EPA 8260D	PM1	20	PASI-C
92534563005	MW-4		EPA 8011	НН	2	PASI-C
000040000			EPA 8260D	BSH	20	PASI-C
92534563006	MW-5R		EPA 8011	нн	2	PASI-C
2072.77			EPA 8260D	PM1	20	PASI-C
92534563007	MW-6		EPA 8011	HH	2	PASI-C
005045000			EPA 8260D	BSH	20	PASI-C
92534563008	MW-7R		EPA 8011	НН	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
92534563009	MW-8		EPA 8011	НН	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
92534563010	MW-10RRR		EPA 8011	НН	2	PASI-C
			EPA 8260D	PM1	20	PASI-C
2534563011	MW-11		EPA 8011	НН	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
2534563012	MW-15R		EPA 8011	НН	2	PASI-C
			EPA 8260D	PM1	20	PASI-C
2534563013	MW-16R		EPA 8011	НН	2	PASI-C
			EPA 8260D	PM1	20	PASI-C
2534563014	MW-17R		EPA 8011	НН	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
2534563015	MW-18		EPA 8011	НН	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
2534563016	MW-19		EPA 8011	НН	2	PASI-C
P04P00			EPA 8260D	BSH	20	PASI-C
2534563017	MW-20		EPA 8011	нн	2	PASI-C
			EPA 8260D	BSH	20	PASI-C
534563018	MW-22R		EPA 8011	НН		PASI-C
			EPA 8260D	PM1		PASI-C
534563019	MW-22D		EPA 8011	HH ···		PASI-C

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

Lab ID	Sample ID	142 H	, la e	Method	Analysts	Analytes Reported	Laboratory
				EPA 8260D	BSH	20	PASI-C
92534563020	MW-24R			EPA 8011	HH	2	PASI-C
		¥3		EPA 8260D	PM1	20	PASI-C
92534563021	MW-25R			EPA 8011	НН	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
92534563022	MW-25D			EPA 8011	НН	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
92534563023	MW-26R			EPA 8011	НН	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
92534563024	MW-27			EPA 8011	НН	2	PASI-C
00004#000				EPA 8260D	BSH	20	PASI-C
92534563025	MW-28			EPA 8011	HH	2	PASI-C
				EPA 8260D	BSH	20	PASI-C
2534563026	MW-29			EPA 8011	НН	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
2534563027	MW-30			EPA 8011	HH	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
2534563028	TW-1			EPA 8011	HH	2	PASI-C
				EPA 8260D	BSH	20	PASI-C
2534563029	TW-2			EPA 8011	НН	2	PASI-C
				EPA 8260D	BSH	20	PASI-C
2534563030	RW-1			EPA 8011	НН	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
2534563031	RW-2			EPA 8011	нн	2	PASI-C
				EPA 8260D	BSH	20	PASI-C
2534563032	RW-3			EPA 8011	HH	2	PASI-C
6				EPA 8260D	BSH	20	PASI-C
534563033	RW-4			EPA 8011	НН	2	PASI-C
				EPA 8260D	BSH	20	PASI-C
534563034	RW-5			EPA 8011	НН	2	PASI-C
				EPA 8260D	BSH	20	PASI-C
534563035	RW-6			EPA 8011	НН	2	PASI-C
				EPA 8260D	PM1	20	PASI-C
534563036	DUPLICATE 1			EPA 8011	нн	2	PASI-C
				EPA 8260D	BSH.	20	PASI-C
534563037	DUPLICATE 2			EPA 8011	нн	2	PASI-C
				EPA 8260D	BSH	20	PASI-C

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
92534563038	FIELD BLANK	EPA 8011	НН	2	PASI-C	
		EPA 8260D	BSH	20	PASI-C	
92534563039	TRIP BLANK 1	EPA 8260D	BSH	20	PASI-C	
92534563040	TRIP BLANK 2	EPA 8260D	BSH	20	PASI-C	

PASI-C = Pace Analytical Services - Charlotte

REPORT OF LABORATORY ANALYSIS

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

92534563

Sample: IGWA-R	Lab ID:	92534563001	Collected	: 04/20/2	1 12:11	Received: 04	4/21/21 10:35 A	/latrix: Water	
			Report				W	Tati ix. Vvatei	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Metho	od: EPA	\ 8011	100		
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0099	1	04/23/21 13:57	04/23/21 23:32	2 106-93-4	
1-Chloro-2-bromopropane (S)	106	%	60-140		1	04/23/21 13:57	04/23/21 23:32	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Analy	tical Services -	Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/00/04 00 44		
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 22:11		
Benzene	ND	ug/L	5.0	1.7	1		04/23/21 22:11		
,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 22:11		
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 22:11		
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 22:11		v1
,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 22:11		
iisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 22:11		
thanol	ND	ug/L	200	144	1		04/23/21 22:11		
thylbenzene	ND	ug/L	5.0	1.8	1		04/23/21 22:11		
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/23/21 22:11	100-41-4	
ethyl-tert-butyl ether	ND	ug/L	5.0				04/23/21 22:11		
aphthalene	ND	ug/L	5.0	3.1 2.1	1		04/23/21 22:11	.00,017	
pluene	ND	ug/L	5.0		1		04/23/21 22:11		
ylene (Total)	ND	ug/L	5.0	2.0	1		04/23/21 22:11	108-88-3	
&p-Xylene	ND	ug/L	10.0	5.0	1		04/23/21 22:11	1330-20-7	
Xylene	ND	ug/L ug/L		4.1	1		04/23/21 22:11	179601-23-1	
urrogates	ND	ug/L	5.0	2.0	1		04/23/21 22:11	95-47-6	
Bromofluorobenzene (S)	106	%	70-130		1		0.1/00/01/01		
2-Dichloroethane-d4 (S)	121		70-130 70-130					460-00-4	
pluene-d8 (S)	102		70-130 70-130		1			17060-07-0	
` ,	102	70	10-130		1		04/23/21 22:11	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-1	Lab ID:	92534563002	Collected:	04/20/2	1 14:10	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011	11 (677)		
		lytical Services							
1,2-Dibromoethane (EDB) Surrogates	27.8	ug/L	1.0	0.49	50	04/23/21 13:57	04/26/21 11:06	106-93-4	
1-Chloro-2-bromopropane (S)	0	%	60-140		50	04/23/21 13:57	04/26/21 11:06	301-79-56	S4
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services -	Charlotte						
tert-Amyl Alcohol	ND	ug/L	10000	6560	100		04/26/21 18:49	75-85-4	
tert-Amylmethyl ether	ND	ug/L	1000	304	100		04/26/21 18:49		
Benzene	5490	ug/L	500	174	100		04/26/21 18:49		
3,3-Dimethyl-1-Butanol	ND	ug/L	10000	5390	100		04/26/21 18:49		
tert-Butyl Alcohol	ND	ug/L	10000	9100	100		04/26/21 18:49		
tert-Butyl Formate	ND	ug/L	5000	2410	100		04/26/21 18:49		
1,2-Dichloroethane	ND	ug/L	500	206	100		04/26/21 18:49		
Diisopropyl ether	ND	ug/L	500	349	100		04/26/21 18:49		
Ethanol	ND	ug/L	20000	14400	100		04/26/21 18:49		
Ethylbenzene	802	ug/L	500	184	100		04/26/21 18:49		
Ethyl-tert-butyl ether	ND	ug/L	1000	846	100		04/26/21 18:49		
Methyl-tert-butyl ether	ND	ug/L	500	310	100		04/26/21 18:49		
Naphthalene	578	ug/L	500	209	100		04/26/21 18:49		
Toluene	12600	ug/L	500	201	100			108-88-3	
(ylene (Total)	7270	ug/L	500	500	100			1330-20-7	
n&p-Xylene	4330	ug/L	1000	411	100		04/26/21 18:49		
-Xylene	2940	ug/L	500	204	100		04/26/21 18:49		
Surrogates		J . –			.00		04/20/21 10.49	JU-41-0	
-Bromofluorobenzene (S)	98	%	70-130		100		04/26/21 18:49	460-00-4	
,2-Dichloroethane-d4 (S)	109	%	70-130		100		04/26/21 18:49		
oluene-d8 (S)	101	%	70-130		100		04/26/21 18:49		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

92534563

Sample: MW-2R	Lab ID:	92534563003	Collected	04/20/2	21 12:54	Received: 0	4/21/21 10:35	Matrix: Water	
			Report					viatrix. Vvatci	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	nod: EPA	8011	W. W2		
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	4.9	ug/L	0.21	0.10	10	04/23/21 13:57	04/26/21 11:17	7 106-93-4	
1-Chloro-2-bromopropane (S)	0	%	60-140		10	04/23/21 13:57	04/26/21 11:17	' 301-79-56	S4
8260 MSV	Analytical I	Method: EPA 82	260D						•
		tical Services -							
tert-Amyl Alcohol	ND	ug/L		0500	400				
tert-Amylmethyl ether	ND	ug/L ug/L	10000	6560	100		04/23/21 22:51		
Benzene	3380	ug/L ug/L	1000	304	100		04/23/21 22:51		
3,3-Dimethyl-1-Butanol	ND	ug/L ug/L	500	174	100		04/23/21 22:51		
tert-Butyl Alcohol	ND	•	10000	5390	100		04/23/21 22:51		
ert-Butyl Formate	ND	ug/L	10000	9100	100		04/23/21 22:51		
1,2-Dichloroethane	ND ND	ug/L	5000	2410	100		04/23/21 22:51		
Diisopropyl ether	ND ND	ug/L	500	206	100		04/23/21 22:51		
Ethanol	ND ND	ug/L	500	349	100		04/23/21 22:51	108-20-3	
Ethylbenzene		ug/L	20000	14400	100		04/23/21 22:51		
Ethyl-tert-butyl ether	2680	ug/L	500	184	100		04/23/21 22:51	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	1000	846	100		04/23/21 22:51	637-92-3	
laphthalene	ND	ug/L	500	310	100		04/23/21 22:51	1634-04-4	
oluene	768	ug/L	500	209	100		04/23/21 22:51	91-20-3	
ylene (Total)	12400	ug/L	500	201	100		04/23/21 22:51		
. , ,	12100	ug/L	500	500	100		04/23/21 22:51		
1&p-Xylene	8450	ug/L	1000	411	100		04/23/21 22:51		
-Xylene	3660	ug/L	500	204	100		04/23/21 22:51		
<i>urrogates</i> -Bromofluorobenzene (S)								0	
2 Dioblerosthers 44 (C)	99		70-130		100		04/23/21 22:51	460-00-4	
2-Dichloroethane-d4 (S)	110		70-130		100		04/23/21 22:51	17060-07-0	
oluene-d8 (S)	95	%	70-130		100		04/23/21 22:51		

REPORT OF LABORATORY ANALYSIS

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

92034505									
Sample: MW-3	Lab ID:	92534563004	Collected	d: 04/20/2	21 13:06	Received: 04	4/21/21 10:35 N	Matrix: Water	
			Report					······································	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA	3011 Prepar	ation Meth	od: EPA	\ 8011	1 1/2		
	Pace Anal	lytical Services	- Charlotte		.ou. Li ,	(0011			
1,2-Dibromoethane (EDB)	0.17	ug/L	0.020	0.0096	1	DAI22/21 12:E7	04/24/21 00:07	7 400 00 .	
Surrogates		-3	0.020	0.0000	'	04/23/21 13.5/	04/24/21 00:07	106-93-4	
1-Chloro-2-bromopropane (S)	109	%·	60-140		1	04/23/21 13:57	04/24/21 00:07	301-79-56	
8260 MSV	Analytical	Method: EPA 8	3260D						
		ytical Services							
tert-Amyl Alcohol	ND	ug/L	2500	1640	25		04/23/21 04:36	75.05.4	
tert-Amylmethyl ether	ND	ug/L	250	76.0	25		04/23/21 04:36		
Benzene	446	ug/L	125	43.5	25				
3,3-Dimethyl-1-Butanol	ND	ug/L	2500	1350	25		04/23/21 04:36		
tert-Butyl Alcohol	ND	ug/L	2500	2280	25		04/23/21 04:36		
tert-Butyl Formate	ND	ug/L	1250	602	25		04/23/21 04:36		
1,2-Dichloroethane	ND	ug/L	125	51.5	25		04/23/21 04:36		
Diisopropyl ether	ND	·	125	87.2	25		04/23/21 04:36		
Ethanol	ND	·	5000	3600	25		04/23/21 04:36		
Ethylbenzene	768	ug/L	125	46.0	25		04/23/21 04:36		
Ethyl-tert-butyl ether	ND	ug/L	250	212	25		04/23/21 04:36		
Methyl-tert-butyl ether	ND	ug/L	125	77.5	25 25		04/23/21 04:36		
laphthalene	522	ug/L	125	52.2			04/23/21 04:36		
oluene	2900	ug/L	125	52.2 50.2	25		04/23/21 04:36		
(ylene (Total)	5030	ug/L	125		25		04/23/21 04:36		
n&p-Xylene	3460	ug/L ug/L	250	125	25		04/23/21 04:36		
-Xylene	1570	•		103	25		04/23/21 04:36		
urrogates	1370	ug/L	125	51.0	25		04/23/21 04:36	95-47-6	
-Bromofluorobenzene (S)	100	%	70-130		25				
,2-Dichloroethane-d4 (S)	96	%	70-130		25		04/23/21 04:36		
oluene-d8 (S)	99	%	70-130		25		04/23/21 04:36		
\ - <i>/</i>	33	/0	10-130		25		04/23/21 04:36	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-4	Lab ID:	92534563005	Collected	04/20/2	1 15:13	Received: 04	/21/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	nd: FPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	0.19	ug/L	0.020	0.0099	1	04/23/21 13:57	04/24/21 00:19	106-93-4	
1-Chloro-2-bromopropane (S)	104	%	60-140		1	04/23/21 13:57	04/24/21 00:19	301-79-56	
8260 MSV	Analytical i	Method: EPA 8	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	400	262	4		04/22/24 40:04	75.05.4	
tert-Amylmethyl ether	ND	ug/L	40.0	12.2	4		04/23/21 18:04 04/23/21 18:04		
Benzene	254	ug/L	20.0	7.0	4				
3,3-Dimethyl-1-Butanol	ND	ug/L	400	216	4		04/23/21 18:04		
tert-Butyl Alcohol	ND	ug/L	400	364	4		04/23/21 18:04		
ert-Butyl Formate	ND	ug/L	200	96.4	4		04/23/21 18:04		
1,2-Dichloroethane	ND	ug/L	20.0	8.2	4		04/23/21 18:04		
Diisopropyl ether	ND	ug/L	20.0	14.0	4		04/23/21 18:04		
Ethanol	ND	ug/L	800	576	4		04/23/21 18:04		
Ethylbenzene	26.5	ug/L	20.0	7.4	4		04/23/21 18:04		
thyl-tert-butyl ether	ND	ug/L	40.0	33.8	4		04/23/21 18:04		
Methyl-tert-butyl ether	ND	ug/L	20.0	12.4	4		04/23/21 18:04		
laphthalene	88.6	ug/L	20.0	8.4	4		04/23/21 18:04		
oluene	134	ug/L	20.0	8.0	4		04/23/21 18:04		
ylene (Total)	1310	ug/L	20.0	20.0			04/23/21 18:04		
1&p-Xylene	853	ug/L	40.0	16.4	4		04/23/21 18:04		
-Xylene	455	ug/L	20.0		4		04/23/21 18:04		
urrogates	700	ug/L	20.0	8.2	4		04/23/21 18:04	95-47-6	
-Bromofluorobenzene (S)	98	%	70-130		4		04/00/04 40 5 :		
2-Dichloroethane-d4 (S)	108		70-130		4		04/23/21 18:04		
oluene-d8 (S)	98		70-130				04/23/21 18:04		
• •	00	70	70-130		4	(04/23/21 18:04	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-5R	Lab ID:	92534563006	Collected	: 04/20/2	1 11:45	Received: 04	1/21/21 10:35 N	Matrix: Water	
			Report					Tati ix. VValei	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0098	1	04/23/21 13:57	04/24/21 00:30	106-93-4	
1-Chloro-2-bromopropane (S)	108	%	60-140		1	04/23/21 13:57	04/24/21 00:30	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	4		0.400.00.4.00		
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1 1		04/22/21 22:53		
Benzene	ND	ug/L	5.0	1.7			04/22/21 22:53		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 22:53		
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 22:53		
ert-Butyl Formate	ND	ug/L	50.0		1		04/22/21 22:53		
1,2-Dichloroethane	ND	ug/L	5.0	24.1	1		04/22/21 22:53		
Diisopropyl ether	ND	ug/L		2.1	1		04/22/21 22:53		
Ethanol	ND	-	5.0	3.5	1		04/22/21 22:53		
Ethylbenzene	45.7	ug/L	200	144	1		04/22/21 22:53		
Ethyl-tert-butyl ether	ND	ug/L	5.0	1.8	1		04/22/21 22:53		
Methyl-tert-butyl ether	ND ND	ug/L	10.0	8.5	1		04/22/21 22:53		
laphthalene		ug/L	5.0	3.1	1		04/22/21 22:53		
oluene	25.5	ug/L	5.0	2.1	1		04/22/21 22:53	91-20-3	
Sylene (Total)	6.1	ug/L	5.0	2.0	1		04/22/21 22:53	108-88-3	
n&p-Xylene	175	ug/L 	5.0	5.0	1		04/22/21 22:53	1330-20-7	
-Xylene	138	ug/L	10.0	4.1	1		04/22/21 22:53		
-∧ylene urrogates	37.5	ug/L	5.0	2.0	1		04/22/21 22:53		
-Bromofluorobenzene (S)	400	0.4							
2-Dichloroethane-d4 (S)	102		70-130		1		04/22/21 22:53	460-00-4	
pluene-d8 (S)	103		70-130		1		04/22/21 22:53		
ndene-do (3)	101	%	70-130		1		04/22/21 22:53		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

92534563

Parameters	Results	Units	Report Limit			Received: 04		atrix: Water	
		Units	Limit						
	Analytical			MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Pace Anal	Method: EPA 8 ytical Services	011 Prepara - Charlotte	tion Metho	od: EPA	8011	7 (1)		
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0098	1	04/23/21 13:57	04/24/21 00:42	106-93-4	
1-Chloro-2-bromopropane (S)	115	%	60-140		1	04/23/21 13:57	04/24/21 00:42	301-79-56	
8260 MSV	Analytical I	Method: EPA 82	260D						
	Pace Analy	tical Services -	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 17:08	75-85-4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 17:08		
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 17:08		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 17:08		v1
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 17:08		L1
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 17:08		
I,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 17:08		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 17:08		
Ethanol	ND	ug/L	200	144	1		04/22/21 17:08		v1
thylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 17:08		• •
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 17:08		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 17:08		
laphthalene	ND	ug/L	5.0	2.1	1		04/22/21 17:08		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 17:08		
ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 17:08		
1&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 17:08		
-Xylene <i>urrogates</i>	ND	ug/L	5.0	2.0	1		04/22/21 17:08		
Bromofluorobenzene (S)	100	%	70-130		1		04/22/24 47:00	400.00.4	
2-Dichloroethane-d4 (S)	108		70-130		1		04/22/21 17:08		
pluene-d8 (S)	95		70-130		1		04/22/21 17:08 ± 04/22/21 17:08 ± 2		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-7R	Lab ID:	92534563008	Collected	: 04/20/2	1 12:04	Received: 04	1/21/21 10:35 M	Matrix: Water	
D .			Report				,,	TOTAL VVAICE	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: FPA	\ 8011	(2)))))))	10	
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0096	1	04/23/21 13:57	04/24/21 00:53	106-93-4	
1-Chloro-2-bromopropane (S)	108	%	60-140		1	04/23/21 13:57	04/24/21 00:53	301-79-56	
8260 MSV	Analytical I	Method: EPA 8	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	200	131	2		04/00/04 00 40		
tert-Amylmethyl ether	ND	ug/L	20.0	6.1	2		04/23/21 22:48		
Benzene	ND	ug/L	10.0	3.5	2		04/23/21 22:48		
3,3-Dimethyl-1-Butanol	ND	ug/L	200	108	2		04/23/21 22:48		
tert-Butyl Alcohol	ND	ug/L	200	182	2		04/23/21 22:48		
ert-Butyl Formate	ND	ug/L	100	48.2	2		04/23/21 22:48		v1
1,2-Dichloroethane	ND	ug/L	10.0	4.1	2		04/23/21 22:48		
Diisopropyl ether	ND	ug/L	10.0	7.0	2		04/23/21 22:48		
Ethanol	ND	ug/L	400	288	2		04/23/21 22:48		
Ethylbenzene	173	ug/L	10.0	3.7	2		04/23/21 22:48		
thyl-tert-butyl ether	ND	ug/L	20.0	3.7 16.9			04/23/21 22:48		
Methyl-tert-butyl ether	ND	ug/L	10.0	6.2	2		04/23/21 22:48		
laphthalene	73.4	ug/L	10.0		2		04/23/21 22:48		
oluene	ND	ug/L	10.0	4.2	2		04/23/21 22:48		
ylene (Total)	469	ug/L ug/L		4.0	2		04/23/21 22:48		
n&p-Xylene	437	ug/L ug/L	10.0	10.0	2		04/23/21 22:48		
-Xylene	32.0	•	20.0	8.2	2		04/23/21 22:48		
urrogates	32.0	ug/L	10.0	4.1	2		04/23/21 22:48	95-47-6	
-Bromofluorobenzene (S)	105	%	70-130		0				
2-Dichloroethane-d4 (S)	123		70-130		2		04/23/21 22:48		
oluene-d8 (S)	104		70-130 70-130		2		04/23/21 22:48		
- \-/	104	/0	70-130		2		04/23/21 22:48	2037-26-5	



Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-8	Lab ID:	92534563009	Collected	: 04/20/21	11:47	Received: 04	1/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Metho	d: EPA	8011	3100		
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/23/21 13:57	04/24/21 01:05	106-93-4	
1-Chloro-2-bromopropane (S)	116	%	60-140		1	04/23/21 13:57	04/24/21 01:05	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		ytical Services							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 17:26	75.05.4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1			994-05-8	v1
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 17:26		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 17:26		4
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 17:26		v1 L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 17:26		LI
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 17:26		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 17:26		
Ethanol	ND	ug/L	200	144	1		04/22/21 17:26		4
Ethylbenzene	ND	ug/L	5.0	1.8	1			100-41-4	v1
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 17:26		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 17:26		
Naphthalene	ND	ug/L	5.0	2.1	1		04/22/21 17:26		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 17:26		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 17:26		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 17:26		
-Xylene	ND	ug/L	5.0	2.0	1		04/22/21 17:26		
Gurrogates		-	•				U-122121 11.20	3J-47-0	
-Bromofluorobenzene (S)	103	%	70-130		1		04/22/21 17:26	460-00-4	
,2-Dichloroethane-d4 (S)	108	%	70-130		1		04/22/21 17:26		
oluene-d8 (S)	99	%	70-130		1		04/22/21 17:26		

Project:

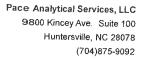
Date: 04/28/2021 10:17 AM

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-10RRR	Lab ID:	92534563010	Collected	: 04/20/2	1 11:28	Received: 04	1/21/21 10:35	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Deserved			
						Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepara	tion Metho	od: EPA	\ 8011			
	Pace Anal	ytical Services	 Charlotte 						
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	0.0098	1	04/23/21 13:57	04/24/21 01:17	7 106-93-4	
Surrogates 1-Chloro-2-bromopropane (S)	40=							100 00-4	
r-omoro-z-bromopropane (S)	107	%	60-140		1	04/23/21 13:57	04/24/21 01:17	7 301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		tical Services							
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/00/04 00:40	. == .	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 23:12		
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 23:12		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 23:12		
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 23:12		
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 23:12		
,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 23:12		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 23:12		
thanol	ND	ug/L	200	144	1		04/22/21 23:12		
thylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 23:12		
thyl-tert-butyl ether	ND	ug/L	10.0	8.5			04/22/21 23:12		
lethyl-tert-butyl ether	ND	ug/L	5.0	6.5 3.1	1		04/22/21 23:12		
aphthalene	ND	ug/L	5.0		1		04/22/21 23:12		
oluene	ND	ug/L ug/L	5.0	2.1	1		04/22/21 23:12		
ylene (Total)	ND	ug/L	5.0	2.0	1		04/22/21 23:12		
&p-Xylene	ND	ug/L ug/L		5.0	1		04/22/21 23:12		
Xylene	ND	•	10.0	4.1	1		04/22/21 23:12		
urrogates	IND	ug/L	5.0	2.0	1		04/22/21 23:12	95-47-6	
Bromofluorobenzene (S)	98	%	70-130		1		0.4/0.0/0.4 0.5		
2-Dichloroethane-d4 (S)	103	%	70-130		1		04/22/21 23:12		
luene-d8 (S)	126	%	70-130		1		04/22/21 23:12		
	120	70	10-130		7	1	04/22/21 23:12	2037-26-5	

REPORT OF LABORATORY ANALYSIS


Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 9

Date: 04/28/2021 10:17 AM

Sample: MW-11	Lab ID:	92534563011	Collected:	04/20/21	10:10	Received: 04	/21/21 10:35 N	latrix: Water	
Parameters	Danith		Report						
- arameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	d: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0098	1	04/23/21 13:57	04/24/21 01:28	106-93-4	
1-Chloro-2-bromopropane (S)	106	%	60-140		1	04/23/21 13:57	04/24/21 01:28	301-79-56	
3260 MSV	Analytical I	Method: EPA 8	260D						
		tical Services							
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 17:44	75.05.4	
ert-Amylmethyl ether	NĐ	ug/L	10.0	3.0	1		04/22/21 17:44		v1
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 17:44		
,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 17:44		_
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 17:44		V1
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 17:44		L1
,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 17:44		
iisopropyl ether	ND	ug/L	5.0	3.5	1				
thanol	ND	ug/L	200	144	1		04/22/21 17:44 04/22/21 17:44		
thylbenzene	ND	ug/L	5.0	1.8	1				v1
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 17:44		
lethyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 17:44		
aphthalene	ND	ug/L	5.0	2.1	1		04/22/21 17:44		
pluene	ND	ug/L	5.0	2.0	1		04/22/21 17:44		
ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 17:44		
&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 17:44		
Xylene	ND	ug/L	5.0	2.0	-		04/22/21 17:44		
urrogates		-g, L	5.0	2.0	1		04/22/21 17:44	95-47-6	
Bromofluorobenzene (S)	104	%	70-130		1		04/22/24 47:44	400.00.4	
2-Dichloroethane-d4 (S)	112		70-130		1		04/22/21 17:44		
luene-d8 (S)	97		70-130		1		04/22/21 17:44 04/22/21 17:44		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 9

Date: 04/28/2021 10:17 AM

Sample: MW-15R	Lab ID:	92534563012	Collected:	04/20/21	11:11	Received: 04	1/21/21 10:35 N	Matrix: Water	
			Report					ACTIA. VVIICE	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	\ 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0096	1	04/23/21 13:57	04/24/21 01:40	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140		1	04/23/21 13:57	04/24/21 01:40	301-79-56	
8260 MSV	Analytical	Method: EPA 82	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	4		0.1/00/01/02	_	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1 1		04/22/21 23:30		
Benzene	ND	ug/L	5.0	3.0 1.7			04/22/21 23:30		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1 1		04/22/21 23:30		
tert-Butyl Alcohol	ND	ug/L	100	91.0	-		04/22/21 23:30		
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 23:30		
1,2-Dichloroethane	ND	ug/L ug/L	5.0	24.1	1		04/22/21 23:30		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 23:30		
Ethanol	ND	ug/L	200		1		04/22/21 23:30		
Ethylbenzene	6.8	ug/L ug/L	200 5.0	144	1		04/22/21 23:30		
Ethyl-tert-butyl ether	ND	ug/L ug/L		1.8	1		04/22/21 23:30		
Methyl-tert-butyl ether	ND	•	10.0	8.5	1		04/22/21 23:30		
laphthalene	ND	ug/L	5.0	3.1	1		04/22/21 23:30		
oluene	ND	ug/L	5.0	2.1	1		04/22/21 23:30		
(ylene (Total)		ug/L	5.0	2.0	1		04/22/21 23:30		
n&p-Xylene	19.7	ug/L	5.0	5.0	1		04/22/21 23:30		
-Xylene	16.6	ug/L	10.0	4.1	1		04/22/21 23:30	179601-23-1	
currogates	3.1J	ug/L	5.0	2.0	1		04/22/21 23:30	95-47-6	
-Bromofluorobenzene (S)	99	%	70-130		4		C 1856		
,2-Dichloroethane-d4 (S)	103		70-130		1		04/22/21 23:30		
oluene-d8 (S)	101				1		04/22/21 23:30		
= (0)	101	70	70-130		1		04/22/21 23:30	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: MW-16R	Lab ID:	92534563013	Collected	: 04/20/2	1 11:16	Received: 04	/21/21 10:35 M	1atrix: Water	
			Report					ACTIA. VVAICI	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) <i>Surrogates</i>	ND	ug/L	0.019	0.0095	1	04/23/21 13:57	04/24/21 01:52	106-93-4	
1-Chloro-2-bromopropane (S)	111	%	60-140		1	04/23/21 13:57	04/24/21 01:52	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		tical Services							
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 22:40	75.05.4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 23:48 04/22/21 23:48		
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 23:48		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 23:48		
ert-Butyl Alcohol	ND	ug/L	100	91.0	1				
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 23:48		
,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 23:48		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 23:48		
thanol	ND	ug/L	200	144	1		04/22/21 23:48		
thylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 23:48		
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 23:48		
lethyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 23:48		
aphthalene	ND	ug/L	5.0	2.1	1		04/22/21 23:48		
oluene	ND	ug/L	5.0	2.0	•		04/22/21 23:48		
ylene (Total)	15.4	ug/L	5.0		1		04/22/21 23:48		
&p-Xylene	10.4	ug/L ug/L	10.0	5.0	1		04/22/21 23:48		
Xylene	5.0			4.1	1		04/22/21 23:48		
urrogates	5.0	ug/L	5.0	2.0	1		04/22/21 23:48	95-47-6	
-Bromofluorobenzene (S)	81	%	70-130		1		04/00/04 00 :-		
2-Dichloroethane-d4 (S)	104	%	70-130				04/22/21 23:48		
pluene-d8 (S)	101	%	70-130		1		04/22/21 23:48		
(-)	101	70	70-130		1		04/22/21 23:48	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

32304303									
Sample: MW-17R	Lab ID:	92534563014	Collected	: 04/20/21	11:50	Received: 04	/21/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepara	ation Metho	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB)	2.7	ug/L	0.097	0.048	5	04/23/21 13:57	04/26/21 11:29	106-93-4	
Surrogates		Ū				0 1120/21 10:01	0-120121 11.29	100-93-4	
1-Chloro-2-bromopropane (S)	132	%	60-140		5	04/23/21 13:57	04/26/21 11:29	301-79-56	
8260 MSV	Analytical I	Method: EPA 8	260D						
	Pace Analy	tical Services	- Charlotte						
tert-Amyl Alcohol	721	ug/L	400	262	4		04/23/21 18:22	75.85.4	
tert-Amylmethyl ether	ND	ug/L	40.0	12.2	4		04/23/21 18:22		
Benzene	501	ug/L	20.0	7.0	4		04/23/21 18:22		
3.3-Dimethyl-1-Butanol	ND	ug/L	400	216	4		04/23/21 18:22		
tert-Butyl Alcohol	ND	ug/L	400	364	4		04/23/21 18:22		
tert-Butyl Formate	ND	ug/L	200	96.4	4		04/23/21 18:22		
1,2-Dichloroethane	ND	ug/L	20.0	8.2	4		04/23/21 18:22		
Diisopropyl ether	ND	ug/L	20.0	14.0	4		04/23/21 18:22		
Ethanol	ND	ug/L	800	576	4		04/23/21 18:22		
Ethylbenzene	209	ug/L	20.0	7.4	4		04/23/21 18:22	- · · · · · ·	
Ethyl-tert-butyl ether	ND	ug/L	40.0	33.8	4		04/23/21 18:22		
Methyl-tert-butyl ether	82.9	ug/L	20.0	12.4	4		04/23/21 18:22		
Naphthalene	108	ug/L	20.0	8.4	4		04/23/21 18:22		
Toluene	386	ug/L	20.0	8.0	4		04/23/21 18:22		
Xylene (Total)	1210	ug/L	20.0	20.0	4				
n&p-Xylene	847	ug/L	40.0	16.4	4		04/23/21 18:22		
>-Xylene	365	ug/L	20.0	8.2	4		04/23/21 18:22		
Surrogates		~g, _	20.0	0.2	7		04/23/21 18:22	95-47-6	
4-Bromofluorobenzene (S)	98	%	70-130		4		04/23/21 18:22	460.00.4	
1,2-Dichloroethane-d4 (S)	108	%	70-130		4				
foluene-d8 (S)	97	%	70-130		4		04/23/21 18:22		
` '	٠.	70	70-100		4		04/23/21 18:22	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92

Date: 04/28/2021 10:17 AM

Sample: MW-18	Lab ID:	92534563015	Collected	: 04/20/21	12:02	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ntion Metho	od: EPA	N 8011	6		
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/23/21 13:57	04/24/21 02:15	106-93-4	
1-Chloro-2-bromopropane (S)	114	%	60-140		1	04/23/21 13:57	04/24/21 02:15	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Analy	tical Services -	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 18:02	75-85-4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 18:02		٧,
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 18:02		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 18:02		v1
tert-Butyl Alcohol	NÐ	ug/L	100	91.0	1		04/22/21 18:02		L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 18:02		LI
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 18:02		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 18:02		
Ethanol	ND	ug/L	200	144	1		04/22/21 18:02		v1
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 18:02		V 1
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 18:02		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 18:02		
Naphthalene	ND	ug/L	5.0	2.1	1		04/22/21 18:02		
Toluene	ND	ug/L	5.0	2.0	1		04/22/21 18:02		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 18:02		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 18:02		
-Xylene	ND	ug/L	5.0	2.0	1		04/22/21 18:02		
Surrogates -Bromofluorobenzene (S)	100	0/	70.400						
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/22/21 18:02		
oluene-d8 (S)	112	%	70-130		1		04/22/21 18:02		
oluene-do (3)	96	%	70-130		1		04/22/21 18:02	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92

Date: 04/28/2021 10:17 AM

Sample: MW-19	Lab ID:	92534563016	Collected	: 04/20/2	1 11:02	Received: 04	/21/21 10:35 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	\ 8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0096	1	04/23/21 13:57	04/24/21 02:27	106-93-4	
1-Chloro-2-bromopropane (S)	121	%	60-140		1	04/23/21 13:57	04/24/21 02:27	301-79-56	
8260 MSV	Analytical I	Method: EPA 8	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 18:20	75-85-4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 18:20		V 1
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 18:20		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 18:20		v1
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 18:20		L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 18:20		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 18:20		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 18:20		
Ethanol	ND	ug/L	200	144	1		04/22/21 18:20		v1
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 18:20		V 1
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 18:20		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 18:20		
laphthalene	ND	ug/L	5.0	2.1	1		04/22/21 18:20		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 18:20		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 18:20		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 18:20		
-Xylene	ND	ug/L	5.0	2.0	1		04/22/21 18:20		
urrogates							1 10.20	00 71-0	
-Bromofluorobenzene (S)	101	%	70-130		1		04/22/21 18:20	460-00-4	
,2-Dichloroethane-d4 (S)	115		70-130	₩.	1		04/22/21 18:20		
oluene-d8 (S)	96	%	70-130		1		04/22/21 18:20		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: MW-20	Lab ID:	92534563017	Collected	: 04/20/21	10:50	Received: 04	/21/21 10:35 M	latrix: Water	
			Report					TOTAL PROTO	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Metho	od: EPA	8011			
		lytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.010	1	04/26/21 09:13	04/26/21 16:17	106-93-4	
1-Chloro-2-bromopropane (S)	100	%	60-140		1	04/26/21 09:13	04/26/21 16:17	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		ytical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 18:38	75.05.4	4
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 18:38		v1
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 18:38		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 18:38		. 4
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 18:38		v1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1				L1
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 18:38		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 18:38		
∃thanol	ND	ug/L	200	144	1		04/22/21 18:38		
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 18:38		v1
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 18:38		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 18:38		
Vaphthalene	ND	ug/L	5.0	2.1	1		04/22/21 18:38		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 18:38		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 18:38		
n&p-Xylene	ND	ug/L ug/L	10.0	5.0 4.1			04/22/21 18:38		
-Xylene	ND	ug/L	5.0		1		04/22/21 18:38		
urrogates	110	ug/L	5.0	2.0	1		04/22/21 18:38	95-47-6	
-Bromofluorobenzene (S)	102	%	70-130		1		04/00/04 40:00	100.00	
,2-Dichloroethane-d4 (S)	116	%	70-130		1		04/22/21 18:38		
oluene-d8 (S)	96	%	70-130		1		04/22/21 18:38		
` '	00	70	70-100		1	(04/22/21 18:38	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: MW-22R	Lab ID:	92534563018	Collected	: 04/20/2	1 11:54	Received: 04	/21/21 10:35 N	latrix: Water	
			Report				,= ,, = ,, = ,, = ,, ,, ,, ,, ,, ,, ,, ,	idti ix. Vvatei	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	\ 8011	57.00	N	
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0098	1	04/26/21 09:13	04/26/21 16:48	106-93-4	
1-Chloro-2-bromopropane (S)	100	%	60-140		1	04/26/21 09:13	04/26/21 16:48	301-79-56	
8260 MSV	Analytical	Method: EPA 82	260D						
		ytical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/00/04 00 04		
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 00:24		
Benzene	8.0	ug/L	5.0	1.7	1		04/23/21 00:24		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 00:24		
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 00:24		
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 00:24		
1,2-Dichloroethane	ND	ug/L	5.0	24.1	1		04/23/21 00:24		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 00:24		
Ethanol	ND	ug/L	200	3.5 144			04/23/21 00:24		
Ethylbenzene	77.5	ug/L	5.0		1		04/23/21 00:24		
Ethyl-tert-butyl ether	ND	ug/L	10.0	1.8	1		04/23/21 00:24		
Methyl-tert-butyl ether	ND	ug/L ug/L	5.0	8.5	1		04/23/21 00:24		
Naphthalene	42.4	ug/L ug/L	5.0	3.1	1		04/23/21 00:24		
oluene	6.2	-		2.1	1		04/23/21 00:24		
(ylene (Total)	92.2	ug/L	5.0	2.0	1		04/23/21 00:24		
n&p-Xylene	76.8	ug/L	5.0	5.0	1		04/23/21 00:24		
-Xylene		ug/L	10.0	4.1	1		04/23/21 00:24		
Surrogates	15.4	ug/L	5.0	2.0	1		04/23/21 00:24	95-47-6	
-Bromofluorobenzene (S)	107	%	70-130		1		04/02/04 00:04	400.00.4	
,2-Dichloroethane-d4 (S)	101		70-130		1		04/23/21 00:24		
oluene-d8 (S)	101		70-130		1		04/23/21 00:24		
· ·		.0	70 100		4		04/23/21 00:24	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Date: 04/28/2021 10:17 AM

Sample: MW-22D	Lab ID:	92534563019	Collected	04/20/21	11:36	Received: 04	/21/21 10:35 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Pace Anal	Method: EPA 8 ytical Services	011 Prepara - Charlotte	tion Metho	od: EPA	8011	old Some		
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0096	1	04/26/21 09:13	04/26/21 17:34	106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/26/21 09:13	04/26/21 17:34	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		tical Services							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 18:56	75.85.4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 18:56		VI
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 18:56		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 18:56		v1
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 18:56		L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 18:56		LI
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 18:56		
Diisopropyl ether	ND	ug/L	5.0	3.5	1			108-20-3	
Ethanol	ND	ug/L	200	144	1		04/22/21 18:56		v1
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 18:56		V 1
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 18:56		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 18:56		
Naphthalene	ND	ug/L	5.0	2.1	1		04/22/21 18:56		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 18:56		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 18:56		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 18:56		
-Xylene	ND	ug/L	5.0	2.0	1		04/22/21 18:56		
-Bromofluorobonzono (C)	100	04					erganetic)	0	
-Bromofluorobenzene (S)	106	%	70-130		1		04/22/21 18:56	460-00-4	
,2-Dichloroethane-d4 (S)	112		70-130		1			17060-07-0	
oluene-d8 (S)	94	%	70-130		1	5.4	04/22/21 18:56	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92

Date: 04/28/2021 10:17 AM

Sample: MW-24R	Lab ID:	92534563020	Collected	d: 04/20/2°	1 10:27	Received: 04	/21/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepar	ation Metho	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0099	1	04/26/21 09:13	04/26/21 17:50	106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/26/21 09:13	04/26/21 17:50	301-79-56	
8260 MSV	Analytical	Method: EPA 82	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/23/21 00:42	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 00:42		
Benzene	ND	ug/L	5.0	1.7	1		04/23/21 00:42		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 00:42		
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 00:42		
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 00:42		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 00:42		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 00:42		
Ethanol	ND	ug/L	200	144	1		04/23/21 00:42		
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/23/21 00:42		
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/23/21 00:42		
fethyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/23/21 00:42		
laphthalene	ND	ug/L	5.0	2.1	1		04/23/21 00:42		
oluene	3.3J	ug/L	5.0	2.0	1				
ylene (Total)	ND	ug/L	5.0	5.0	1		04/23/21 00:42		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/23/21 00:42		
-Xylene	ND	ug/L	5.0	2.0	1		04/23/21 00:42		
urrogates		-9	0.0	۷.0	'		04/23/21 00:42	95-47-6	
-Bromofluorobenzene (S)	99	%	70-130		1		04/23/21 00:42	460.00.4	
2-Dichloroethane-d4 (S)	102	%	70-130		1		04/23/21 00:42		
oluene-d8 (S)	101	%	70-130		1		04/23/21 00:42		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Date: 04/28/2021 10:17 AM

Sample: MW-25R	Lab ID:	92534563021	Collected:	04/20/21	10:38	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	d: EPA	8011		-	
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 18:05	106-93-4	
1-Chloro-2-bromopropane (S)	96	%	60-140		1	04/26/21 09:13	04/26/21 18:05	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/23/21 01:00	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 01:00	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		04/23/21 01:00	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 01:00	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 01:00	75-65-0	
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 01:00	762-75-4	P5
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 01:00	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 01:00		
Ethanol	ND	ug/L	200	144	1		04/23/21 01:00		
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/23/21 01:00	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/23/21 01:00	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/23/21 01:00		
Naphthalene	ND	ug/L	5.0	2.1	1		04/23/21 01:00		
Toluene	ND	ug/L	5.0	2.0	1		04/23/21 01:00		
(Ylene (Total)	ND	ug/L	5.0	5.0	1		04/23/21 01:00		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/23/21 01:00		
o-Xylene	ND	ug/L	5.0	2.0	1		04/23/21 01:00		
Surrogates		-							
l-Bromofluorobenzene (S)	99	%	70-130		1		04/23/21 01:00	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/23/21 01:00	17060-07-0	
oluene-d8 (S)	101	%	70-130		1		04/23/21 01:00		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Date: 04/28/2021 10:17 AM

Sample: MW-25D	Lab ID:	92534563022	Collected	: 04/20/21	1 10:32	Received: 04	1/21/21 10:35 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Metho	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 18:20	106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/26/21 09:13	04/26/21 18:20	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		tical Services -							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/23/21 01:18	75.85.4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 01:18		
Benzene	6.3	ug/L	5.0	1.7	1		04/23/21 01:18		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 01:18		
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 01:18		
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 01:18		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 01:18		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 01:18		
Ethanol	ND	ug/L	200	144	1		04/23/21 01:18		
Ethylbenzene	5.0J	ug/L	5.0	1.8	1		04/23/21 01:18		
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/23/21 01:18		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/23/21 01:18		
Naphthalene	- ND	ug/L	5.0	2.1	1		04/23/21 01:18		
oluene	ND	ug/L	5.0	2.0	1		04/23/21 01:18		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/23/21 01:18		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/23/21 01:18		
-Xylene	ND	ug/L	5.0	2.0	1		04/23/21 01:18		
Surrogates		J	V.V	2.0	•		04/23/21 01:18	90-41-b	
-Bromofluorobenzene (S)	82	%	70-130		1		04/23/21 01:18	460-00-4	
,2-Dichloroethane-d4 (S)	101	%	70-130		1		04/23/21 01:18		
oluene-d8 (S)	120	%	70-130		1		04/23/21 01:18		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

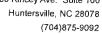
Sample: MW-26R	Lab ID:	92534563023	Collected	: 04/20/2	10:44	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepara	ation Metho	od: EPA	8011			
	Pace Anal	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0099	1	04/26/21 09:13	04/26/21 18:36	106-93-4	
1-Chloro-2-bromopropane (S)	96	%	60-140		1	04/26/21 09:13	04/26/21 18:36	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohoi	ND	ug/L	100	65.6	1		04/23/21 01:36	75-85-4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 01:36		
Benzene	ND	ug/L	5.0	1.7	1		04/23/21 01:36		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 01:36	624-95-3	
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 01:36		
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 01:36		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 01:36	-	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 01:36		
Ethanol	ND	ug/L	200	144	1		04/23/21 01:36		
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/23/21 01:36		
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/23/21 01:36	,	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/23/21 01:36		
Naphthalene	ND	ug/L	5.0	2.1	1		04/23/21 01:36		
l'oluene	ND	ug/L	5.0	2.0	1		04/23/21 01:36		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/23/21 01:36		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/23/21 01:36		
-Xylene	ND	ug/L	5.0	2.0	1		04/23/21 01:36		
Surrogates		-							
-Bromofluorobenzene (S)	98	%	70-130		1		04/23/21 01:36	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/23/21 01:36		
oluene-d8 (S)	102	%	70-130		1		04/23/21 01:36		

Project:

03538 COASTAL TRUCK STOP 76

95

%


70-130

Pace Project No.: 92534563

Date: 04/28/2021 10:17 AM

Sample: MW-27 Lab ID: 92534563024 Collected: 04/20/21 10:15 Received: 04/21/21 10:35 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8011 Preparation Method: EPA 8011 8011 GCS EDB and DBCP Pace Analytical Services - Charlotte 1,2-Dibromoethane (EDB) ND ug/L 0.020 0.0096 04/26/21 09:13 04/26/21 18:51 106-93-4 1 Surrogates 1-Chloro-2-bromopropane (S) 96 04/26/21 09:13 04/26/21 18:51 301-79-56 % 60-140 8260 MSV Analytical Method: EPA 8260D Pace Analytical Services - Charlotte tert-Amyl Alcohol ND ug/L 100 65.6 1 04/22/21 19:14 75-85-4 v1 tert-Amylmethyl ether ND ug/L 10.0 3.0 1 04/22/21 19:14 994-05-8 Benzene ND ug/L 5.0 1.7 1 04/22/21 19:14 71-43-2 3,3-Dimethyl-1-Butanol ND ug/L 100 53.9 04/22/21 19:14 624-95-3 1 ν1 tert-Butyl Alcohol ND ug/L 100 91.0 04/22/21 19:14 75-65-0 L1 tert-Butyl Formate ND ug/L 50.0 24.1 1 04/22/21 19:14 762-75-4 1,2-Dichloroethane ND ug/L 5.0 2.1 1 04/22/21 19:14 107-06-2 Diisopropyl ether ND ug/L 5.0 3.5 1 04/22/21 19:14 108-20-3 Ethanol ND ug/L 200 144 1 04/22/21 19:14 64-17-5 v1 Ethylbenzene ND ug/L 5.0 1.8 1 04/22/21 19:14 100-41-4 Ethyl-tert-butyl ether ND ug/L 10.0 8.5 1 04/22/21 19:14 637-92-3 Methyl-tert-butyl ether ND ug/L 5.0 3.1 1 04/22/21 19:14 1634-04-4 Naphthalene ND ug/L 5.0 2.1 1 04/22/21 19:14 91-20-3 Toluene ND ug/L 5.0 2.0 1 04/22/21 19:14 108-88-3 Xylene (Total) ND ug/L 5.0 5.0 1 04/22/21 19:14 1330-20-7 m&p-Xylene ND ug/L 10.0 4.1 04/22/21 19:14 179601-23-1 1 o-Xylene ND ug/L 5.0 2.0 1 04/22/21 19:14 95-47-6 Surrogates 4-Bromofluorobenzene (S) 105 % 70-130 1 04/22/21 19:14 460-00-4 1,2-Dichloroethane-d4 (S) 112 % 70-130 04/22/21 19:14 17060-07-0 Toluene-d8 (S)

04/22/21 19:14 2037-26-5

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: MW-28	Lab ID:	92534563025	Collected	: 04/20/2	1 10:54	Received: 04	1/21/21 10:35 N	latrix: Water	
			Report					THE PROPERTY OF	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Methe	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 19:07	106-93-4	
1-Chloro-2-bromopropane (S)	95	%	60-140		1	04/26/21 09:13	04/26/21 19:07	301-79-56	
8260 MSV	Analytical	Method: EPA 82	260D						
		ytical Services -							
ert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 19:31	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 19:31		v1
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 19:31		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 19:31		
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 19:31		v1
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 19:31		L1
,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 19:31		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 19:31		
thanol	ND	ug/L	200	144	1		04/22/21 19:31		4
thylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 19:31		v1
thyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 19:31		
lethyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 19:31	1634-04-4	
aphthalene	ND	ug/L	5.0	2.1	1		04/22/21 19:31		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 19:31		
ylene (Total)	ND	ug/L	5.0	5.0	1			1330-20-7	
&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 19:31		
Xylene	ND	ug/L	5.0	2.0	1		04/22/21 19:31		
urrogates		J		2.0			UTIZZIZ 18.31	90-4/-b	
Bromofluorobenzene (S)	104	%	70-130		1		04/22/21 19:31	460.00.4	
2-Dichloroethane-d4 (S)	114	%	70-130		1			400-00-4 17060-07-0	
oluene-d8 (S)	97	%	70-130		1		04/22/21 19:31		

Project:

Date: 04/28/2021 10:17 AM

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Sample: MW-29	Lab ID:	92534563026	Collected:	04/20/2	11:33	Received: 04	/21/21 10:35 N	latrix: Water	_
			Report					TYUICI	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011	v		
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 19:22	106-93-4	
1-Chloro-2-bromopropane (S)	96	%	60-140		1	04/26/21 09:13	04/26/21 19:22	301-79-56	
8260 MSV	Analytical	Method: EPA 82	260D						
	Pace Analy	ytical Services -	Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/23/21 01:54	75.05.4	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 01:54		
Benzene	3.2J	ug/L	5.0	1.7	1		04/23/21 01:54		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1				
ert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 01:54		
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 01:54		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 01:54		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 01:54		
Ethanol	ND	ug/L	200	144	1		04/23/21 01:54		
Ethylbenzene	4.6J	ug/L	5.0	1.8	1		04/23/21 01:54		
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/23/21 01:54		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	-		04/23/21 01:54		
laphthalene	ND	ug/L ug/L	5.0	2.1	1		04/23/21 01:54		
oluene	13.7	ug/L			1		04/23/21 01:54		
(ylene (Total)	22.8	•	5.0	2.0	1		04/23/21 01:54		
n&p-Xylene	16.4	ug/L	5.0	5.0	1		04/23/21 01:54		
-Xylene		ug/L	10.0	4.1	1		04/23/21 01:54		
currogates	6.4	ug/L	5.0	2.0	1		04/23/21 01:54	95-47-6	
-Bromofluorobenzene (S)	100	%	70-130						
,2-Dichloroethane-d4 (S)	102		70-130		1		04/23/21 01:54		
oluene-d8 (S)	101				1		04/23/21 01:54		
	101	70	70-130		1		04/23/21 01:54	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 9

Date: 04/28/2021 10:17 AM

Sample: MW-30	Lab iD:	92534563027	Collected	04/20/2	1 10:30	Received: 04	1/21/21 10:35 N	Matrix: Water	
			Report					nation. Valei	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	N 8011			
	Pace Anal	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.019	0.0095	1	04/26/21 09:13	04/26/21 19:38	3 106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/26/21 09:13	04/26/21 19:38	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
		ytical Services							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/04 00:00	75.05.	
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/23/21 02:30		
Benzene	ND	ug/L	5.0	1.7	1		04/23/21 02:30		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/23/21 02:30		
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/23/21 02:30		
ert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/23/21 02:30		
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/23/21 02:30		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/23/21 02:30		
Ethanol	ND	ug/L	200	144	1		04/23/21 02:30		
Ethylbenzene	ND	ug/L	5.0	1.8	-		04/23/21 02:30		
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1 1		04/23/21 02:30		
Methyl-tert-butyl ether	ND	ug/L	5.0	6.5 3.1			04/23/21 02:30		
laphthalene	ND	ug/L	5.0		1		04/23/21 02:30		
oluene	2.6J	ug/L	5.0	2.1	1		04/23/21 02:30		
(ylene (Total)	ND	ug/L ug/L	5.0 5.0	2.0	1		04/23/21 02:30		
n&p-Xylene	ND	ug/L ug/L		5.0	1		04/23/21 02:30		
-Xylene	ND	-	10.0	4.1	1		04/23/21 02:30		
Gurrogates	IAD	ug/L	5.0	2.0	1		04/23/21 02:30	95-47-6	
-Bromofluorobenzene (S)	99	%	70-130		1		04/00/04 00 ==		
2-Dichloroethane-d4 (S)	102	%	70-130				04/23/21 02:30		
oluene-d8 (S)	101	%	70-130		1		04/23/21 02:30		
- \-/	101	70	70-130		1		04/23/21 02:30	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

92534563

Sample: TW-1	Lab ID:	92534563028	Collected	04/20/21	14:56	Received: 04	4/21/21 10:35	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte			. 0011			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 19:5	3 106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/26/21 09:13	04/26/21 19:53	301-79-56	
8260 MSV	Analytical I	Method: EPA 8	260D						
		tical Services							
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/00/04 45 45		
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 19:49		v1
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 19:49		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 19:49		
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 19:49		V1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 19:49		L1
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 19:49		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 19:49		
Ethanol	ND	ug/L	200	144	1		04/22/21 19:49		
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 19:49		v1
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 19:49		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 19:49		
Naphthalene	ND	ug/L	5.0	2.1	1		04/22/21 19:49		
l'oluene	ND	ug/L	5.0	2.0	1		04/22/21 19:49		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 19:49		
n&p-Xylene	ND	ug/L	10.0	4.1	-		04/22/21 19:49		
-Xylene	ND	ug/L	5.0		1		04/22/21 19:49		
Surrogates		ug/L	5.0	2.0	1		04/22/21 19:49	95-47-6	
-Bromofluorobenzene (S)	104	%	70-130		1		04/00/04 40 15		
,2-Dichloroethane-d4 (S)	109		70-130		1		04/22/21 19:49		
oluene-d8 (S)	97		70-130		1		04/22/21 19:49		
• •		,,	, 0.100		1		04/22/21 19:49	2037-26-5	

REPORT OF LABORATORY ANALYSIS

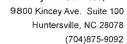
Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: TW-2	Lab ID:	92534563029	Collected	04/20/2	1 11:30	Received:	04/21/21 10:35	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Pace Anal	Method: EPA 8 ytical Services	011 Prepara	tion Metho	od: EPA	8011	_ 15_ (E.S)		
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0096	1	04/26/21 09:1	13 04/26/21 20:0	8 106-93-4	
1-Chloro-2-bromopropane (S)	102	%	60-140		1	04/26/21 09:1	3 04/26/21 20:0	8 301-79-56	
8260 MSV		Method: EPA 82						0077000	
ort Amyl Alaskat		rtical Services -	Charlotte						
ert-Amyl Alcohol ert-Amylmethyl ether	ND	ug/L	100	65.6	1		04/22/21 20:0	7 75-85-4	v1
Benzene	ND	ug/L	10.0	3.0	1		04/22/21 20:0		• •
,3-Dimethyl-1-Butanol	ND	ug/L	5.0	1.7	1		04/22/21 20:07		
ert-Butyl Alcohol	ND	ug/L	100	53.9	1		04/22/21 20:07		v1
ert-Butyl Formate	ND	ug/L	100	91.0	1		04/22/21 20:07		L1
,2-Dichloroethane	ND	ug/L	50.0	24.1	1		04/22/21 20:07		
iisopropyl ether	ND	ug/L	5.0	2.1	1		04/22/21 20:07		
thanol	ND	ug/L	5.0	3.5	1		04/22/21 20:07		
thylbenzene	ND	ug/L	200	144	1		04/22/21 20:07		v1
thyl-tert-butyl ether	ND	ug/L	5.0	1.8	1		04/22/21 20:07		
ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 20:07		
aphthalene	ND	ug/L	5.0	3.1	1		04/22/21 20:07		
pluene	ND	ug/L	5.0	2.1	1		04/22/21 20:07		
/lene (Total)	ND	ug/L	5.0	2.0	1		04/22/21 20:07		
&p-Xylene	ND	ug/L	5.0	5.0	1		04/22/21 20:07		
Xylene	ND	ug/L	10.0	4.1	1		04/22/21 20:07		
Irrogates	ND	ug/L	5.0	2.0	1		04/22/21 20:07		
Bromofluorobenzene (S)	104	%	70-130				6 1		
2-Dichloroethane-d4 (S)	114		70-130 70-130		1		04/22/21 20:07		
luene-d8 (S)	96		70-130 70-130		1		04/22/21 20:07 04/22/21 20:07		


Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: RW-1	Lab ID:	92534563030	Collected:	04/20/21	12:49	Received: 04	/21/21 10:35 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	d: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	0.14	ug/L	0.020	0.0096	1	04/26/21 09:13	04/26/21 20:23	106-93-4	
1-Chloro-2-bromopropane (S)	101	%	60-140		1	04/26/21 09:13	04/26/21 20:23	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	Charlotte						
tert-Amyl Alcohol	ND	ug/L	4000	2620	40		04/26/21 18:31	75-85-4	
tert-Amylmethyl ether	ND	ug/L	400	122	40		04/26/21 18:31	994-05-8	
Benzene	318	ug/L	200	69.6	40		04/26/21 18:31	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	4000	2160	40		04/26/21 18:31		
tert-Butyl Alcohol	ND	ug/L	4000	3640	40		04/26/21 18:31		
tert-Butyl Formate	ND	ug/L	2000	964	40		04/26/21 18:31		
1,2-Dichloroethane	ND	ug/L	200	82.4	40		04/26/21 18:31	107-06-2	
Diisopropyl ether	ND	ug/L	200	140	40		04/26/21 18:31	108-20-3	
Ethanol	ND	ug/L	8000	5760	40		04/26/21 18:31	64-17-5	
Ethylbenzene	1930	ug/L	200	73.6	40		04/26/21 18:31	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	400	338	40		04/26/21 18:31		
Methyl-tert-butyl ether	ND	ug/L	200	124	40		04/26/21 18:31		
Naphthalene	610	ug/L	200	83.6	40		04/26/21 18:31		
foluene	5770	ug/L	200	80.4	40		04/26/21 18:31		
(ylene (Total)	8350	ug/L	200	200	40		04/26/21 18:31		
n&p-Xylene	5960	ug/L	400	164	40		04/26/21 18:31		
-Xylene	2400	ug/L	200	81.6	40		04/26/21 18:31		
Surrogates		Ŭ					0 ±0,2 1 10,01	00.41-0	
-Bromofluorobenzene (S)	100	%	70-130		40		04/26/21 18:31	460-00-4	
,2-Dichloroethane-d4 (S)	110	%	70-130		40		04/26/21 18:31		
oluene-d8 (S)	102	%	70-130		40		04/26/21 18:31		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: RW-2	Lab ID:	92534563031	Collected	04/20/2	1 13:53	Received: 04	/21/21 10:35 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
	Pace Anal	lytical Services	 Charlotte 						
1,2-Dibromoethane (EDB) Surrogates	41.2	ug/L	0.99	0.49	50	04/26/21 09:13	04/27/21 09:16	106-93-4	
1-Chloro-2-bromopropane (S)	0	%	60-140		50	04/26/21 09:13	04/27/21 09:16	301-79-56	S4
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	20000	13100	200		04/23/21 23:27	75-85-4	
tert-Amylmethyl ether	ND	ug/L	2000	608	200		04/23/21 23:27	994-05-8	
Benzene	6030	ug/L	1000	348	200		04/23/21 23:27	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	20000	10800	200		04/23/21 23:27	624-95-3	
tert-Butyl Alcohol	ND	ug/L	20000	18200	200		04/23/21 23:27	75-65-0	
tert-Butyl Formate	ND	ug/L	10000	4820	200		04/23/21 23:27	762-75-4	
1,2-Dichloroethane	ND	ug/L	1000	412	200		04/23/21 23:27	107-06-2	
Diisopropyl ether	ND	ug/L	1000	698	200		04/23/21 23:27	108-20-3	
Ethanol	ND	ug/L	40000	28800	200		04/23/21 23:27	64-17-5	
Ethylbenzene	2670	ug/L	1000	368	200		04/23/21 23:27	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	2000	1690	200		04/23/21 23:27	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	1000	620	200		04/23/21 23:27	1634-04-4	
Naphthalene	840J	ug/L	1000	418	200		04/23/21 23:27	91-20-3	
Toluene	20200	ug/L	1000	402	200		04/23/21 23:27	108-88-3	
Xylene (Total)	13700	ug/L	1000	1000	200		04/23/21 23:27	1330-20-7	
m&p-Xylene	9220	ug/L	2000	822	200			179601-23-1	
o-Xylene	4430	ug/L	1000	408	200		04/23/21 23:27		
Surrogates		ū						-	
4-Bromofluorobenzene (S)	101	%	70-130		200		04/23/21 23:27	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%	70-130		200		04/23/21 23:27	17060-07-0	
Foluene-d8 (S)	95	%	70-130		200		04/23/21 23:27	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: RW-3	Lab ID:	92534563032	Collected	1: 04/20/2	1 12:37	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Metho	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	0.063	ug/L	0.020	0.0099	1	04/26/21 09:13	04/26/21 20:54	106-93-4	
1-Chloro-2-bromopropane (S)	100	%	60-140		1	04/26/21 09:13	04/26/21 20:54	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	Charlotte						
tert-Amyl Alcohol	174J	ug/L	200	131	2		04/23/21 23:06	75-85-4	
tert-Amylmethyl ether	ND	ug/L	20.0	6.1	2		04/23/21 23:06		
Benzene	60.5	ug/L	10.0	3.5	2		04/23/21 23:06	71-43-2	
3,3-Dìmethyl-1-Butanol	ND	ug/L	200	108	2		04/23/21 23:06	624-95-3	
tert-Butyl Alcohol	NĐ	ug/L	200	182	2		04/23/21 23:06	75-65-0	v1
ert-Butyl Formate	ND	ug/L	100	48.2	2		04/23/21 23:06		• •
1,2-Dichloroethane	ND	ug/L	10.0	4.1	2		04/23/21 23:06		
Diisopropyl ether	ND	ug/L	10.0	7.0	2		04/23/21 23:06		
Ethanol	ND	ug/L	400	288	2		04/23/21 23:06		
Ethylbenzene	117	ug/L	10.0	3.7	2		04/23/21 23:06	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	20.0	16.9	2				
Methyl-tert-butyl ether	27.4	ug/L	10.0	6.2	2		04/23/21 23:06		
Naphthalene	51.9	ug/L	10.0	4.2	2		04/23/21 23:06		
oluene	197	ug/L	10.0	4.0	2			108-88-3	
(ylene (Total)	722	ug/L	10.0	10.0	2		04/23/21 23:06		
n&p-Xylene	531	ug/L	20.0	8.2	2		04/23/21 23:06		
-Xylene	191	ug/L	10.0	4.1	2		04/23/21 23:06		
Gurrogates		-						0	
-Bromofluorobenzene (S)	103	%	70-130		2		04/23/21 23:06	460-00-4	
,2-Dichloroethane-d4 (S)	118	%	70-130		2		04/23/21 23:06		
oluene-d8 (S)	104	%	70-130		2		04/23/21 23:06		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Date: 04/28/2021 10:17 AM

Sample: RW-4	Lab ID:	92534563033	Collected:	04/20/21	1 13:41	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	0.19	ug/L	0.020	0.0096	1	04/26/21 09:13	04/26/21 21:09	106-93-4	
1-Chloro-2-bromopropane (S)	97	%	60-140		1	04/26/21 09:13	04/26/21 21:09	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Analy	ytical Services	- Charlotte						
tert-Amyl Alcohol	396J	ug/L	500	328	5		04/23/21 18:58	75-85-4	
tert-Amylmethyl ether	ND	ug/L	50.0	15.2	5		04/23/21 18:58	994-05-8	
Benzene	287	ug/L	25.0	8.7	5		04/23/21 18:58	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	500	270	5		04/23/21 18:58	624-95-3	
tert-Butyl Alcohol	ND	ug/L	500	455	5		04/23/21 18:58	75-65-0	
tert-Butyl Formate	ND	ug/L	250	120	5		04/23/21 18:58	762-75-4	
1,2-Dichloroethane	ND	ug/L	25.0	10.3	5		04/23/21 18:58	107-06-2	
Diisopropyl ether	ND	ug/L	25.0	17.4	5		04/23/21 18:58	108-20-3	
Ethanol	ND	ug/L	1000	720	5		04/23/21 18:58		
Ethylbenzene	342	ug/L	25.0	9.2	5		04/23/21 18:58	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	50.0	42.3	5		04/23/21 18:58	637-92-3	
Methyl-tert-butyl ether	34.9	ug/L	25.0	15.5	5		04/23/21 18:58	1634-04-4	
Naphthalene	132	ug/L	25.0	10.4	5		04/23/21 18:58	91-20-3	
foluene	580	ug/L	25.0	10.0	5		04/23/21 18:58	108-88-3	
(ylene (Total)	1510	ug/L	25.0	25.0	5		04/23/21 18:58		
n&p-Xylene	1090	ug/L	50.0	20.6	5		04/23/21 18:58		
-Xylene	418	ug/L	25.0	10.2	5		04/23/21 18:58		
Surrogates		Č							
-Bromofluorobenzene (S)	101	%	70-130		5		04/23/21 18:58	460-00-4	
,2-Dichloroethane-d4 (S)	109	%	70-130		5		04/23/21 18:58	17060-07-0	
oluene-d8 (S)	95	%	70-130		5		04/23/21 18:58	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.: 92534563

Date: 04/28/2021 10:17 AM

Sample: RW-5	Lab ID:	92534563034	Collected	: 04/20/21	14:28	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ition Metho	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	0.34	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 21:25	106-93-4	
1-Chloro-2-bromopropane (S)	98	%	60-140		1	04/26/21 09:13	04/26/21 21:25	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	2500	1640	25		04/24/21 00:00	75-85-4	
tert-Amylmethyl ether	ND	ug/L	250	76.0	25		04/24/21 00:00		
Benzene	577	ug/L	125	43.5	25		04/24/21 00:00		
3,3-Dimethyl-1-Butanol	ND	ug/L	2500	1350	25		04/24/21 00:00		
ert-Butyl Alcohol	ND	ug/L	2500	2280	25		04/24/21 00:00		v1
ert-Butyl Formate	ND	ug/L	1250	602	25		04/24/21 00:00		• •
1,2-Dichloroethane	ND	ug/L	125	51.5	25		04/24/21 00:00		M1
Diisopropyl ether	ND	ug/L	125	87.2	25		04/24/21 00:00		M1
Ethanol	ND	ug/L	5000	3600	25		04/24/21 00:00		
Ethylbenzene	1320	ug/L	125	46.0	25		04/24/21 00:00	_	
thyl-tert-butyl ether	ND	ug/L	250	212	25		04/24/21 00:00		M1
Methyl-tert-butyl ether	ND	ug/L	125	77.5	25		04/24/21 00:00		
laphthalene	473	ug/L	125	52.2	25		04/24/21 00:00		
oluene	4090	ug/L	125	50.2	25		04/24/21 00:00		
ylene (Total)	5850	ug/L	125	125	25		04/24/21 00:00		
n&p-Xylene	4260	ug/L	250	103	25		04/24/21 00:00		
-Xylene	1590	ug/L	125	51.0	25		04/24/21 00:00		
urrogates								0	
-Bromofluorobenzene (S)	103	%	70-130		25		04/24/21 00:00	460-00-4	
,2-Dichloroethane-d4 (S)	118	%	70-130		25		04/24/21 00:00		
oluene-d8 (S)	104	%	70-130		25		04/24/21 00:00		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: RW-6	Lab ID:	92534563035	Collected	: 04/20/2	1 14:57	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	ation Meth	od: EPA	8011			
		ytical Services							
1,2-Dibromoethane (EDB) Surrogates	1.6	ug/L	0.040	0.019	2	04/26/21 09:13	04/27/21 09:31	106-93-4	
1-Chloro-2-bromopropane (S)	116	%	60-140		2	04/26/21 09:13	04/27/21 09:31	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	5000	3280	50		04/22/21 19:53	75-85-4	
tert-Amylmethyl ether	ND	ug/L	500	152	50		04/22/21 19:53		
Benzene	1100	ug/L	250	87.0	50		04/22/21 19:53		
3,3-Dimethyl-1-Butanol	ND	ug/L	5000	2700	50		04/22/21 19:53		
ert-Butyl Alcohol	ND	ug/L	5000	4550	50		04/22/21 19:53		
ert-Butyl Formate	ND	ug/L	2500	1200	50		04/22/21 19:53		
1,2-Dichloroethane	ND	ug/L	250	103	50		04/22/21 19:53		
Diisopropyl ether	ND	ug/L	250	174	50		04/22/21 19:53		
Ethanol	ND	ug/L	10000	7200	50		04/22/21 19:53		
Ethylbenzene	1630	ug/L	250	92.0	50		04/22/21 19:53		
Ethyl-tert-butyl ether	ND	ug/L	500	423	50		04/22/21 19:53		
Methyl-tert-butyl ether	ND	ug/L	250	155	50		04/22/21 19:53		
Naphthalene	500	ug/L	250	104	50		04/22/21 19:53		
oluene	5750	ug/L	250	100	50		04/22/21 19:53		
(ylene (Total)	7670	ug/L	250	250	50		04/22/21 19:53		
n&p-Xylene	5590	ug/L	500	206	50		04/22/21 19:53		
-Xylene	2090	ug/L	250	102	50		04/22/21 19:53		
Surrogates		-						0	
-Bromofluorobenzene (S)	100	%	70-130		50		04/22/21 19:53	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		50		04/22/21 19:53	17060-07-0	
oluene-d8 (S)	100	%	70-130		50		04/22/21 19:53		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Sample: DUPLICATE 1	Lab ID:	92534563036		04/20/2	1 12:54	Received: 04/	/21/21 10:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	3011 Prepara	tion Meth	od: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	4.2	ug/L	0.099	0.048	5	04/26/21 09:13	04/27/21 09:47	106-93-4	
1-Chloro-2-bromopropane (S)	142	%	60-140		5	04/26/21 09:13	04/27/21 09:47	301-79-56	S5
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	10000	6560	100		04/23/21 22:33	75-85-4	
tert-Amylmethyl ether	ND	ug/L	1000	304	100		04/23/21 22:33	994-05-8	
Benzene	3420	ug/L	500	174	100		04/23/21 22:33	71-43-2	
3,3-Dimethyl-1-Butanol	ND	ug/L	10000	5390	100		04/23/21 22:33	624-95-3	
tert-Butyl Alcohol	ND	ug/L	10000	9100	100		04/23/21 22:33	75-65-0	
ert-Butyl Formate	ND	ug/L	5000	2410	100		04/23/21 22:33	762-75-4	
1,2-Dichloroethane	ND	ug/L	500	206	100		04/23/21 22:33	107-06-2	
Diisopropyl ether	ND	ug/L	500	349	100		04/23/21 22:33	108-20-3	
Ethanol	ND	ug/L	20000	14400	100		04/23/21 22:33	64-17-5	
Ethylbenzene	2590	ug/L	500	184	100		04/23/21 22:33	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	1000	846	100		04/23/21 22:33	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	500	310	100		04/23/21 22:33	1634-04-4	
Naphthalene	806	ug/L	500	209	100		04/23/21 22:33	91-20-3	
oluene	11800	ug/L	500	201	100		04/23/21 22:33	108-88-3	
(ylene (Total)	11400	ug/L	500	500	100		04/23/21 22:33		
n&p-Xylene	7930	ug/L	1000	411	100		04/23/21 22:33		
-Xylene	3490	ug/L	500	204	100		04/23/21 22:33		
Gurrogates									
-Bromofluorobenzene (S)	100	%	70-130		100		04/23/21 22:33	460-00-4	
,2-Dichloroethane-d4 (S)	109	%	70-130		100		04/23/21 22:33	17060-07-0	
oluene-d8 (S)	93	%	70-130		100		04/23/21 22:33	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: DUPLICATE 2	Lab ID:	92534563037	Collected	04/20/2	1 14:28	Received: 04	/21/21 10:35 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Meth	od: EPA	8011			
		lytical Services							
1,2-Dibromoethane (EDB) Surrogates	0.33	ug/L	0.020	0.0097	1	04/26/21 09:13	04/26/21 23:12	106-93-4	
1-Chloro-2-bromopropane (S)	100	%	60-140		1	04/26/21 09:13	04/26/21 23:12	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	2500	1640	25		04/23/21 21:57	75-85-4	
tert-Amylmethyl ether	ND	ug/L	250	76.0	25		04/23/21 21:57		
Benzene	672	ug/L	125	43.5	25		04/23/21 21:57		
3,3-Dimethyl-1-Butanol	ND	ug/L	2500	1350	25		04/23/21 21:57		
tert-Butyl Alcohol	ND	ug/L	2500	2280	25		04/23/21 21:57		
tert-Butyl Formate	ND	ug/L	1250	602	25		04/23/21 21:57		
1,2-Dichloroethane	ND	ug/L	125	51.5	25		04/23/21 21:57		
Diisopropyl ether	ND	ug/L	125	87.2	25		04/23/21 21:57		
Ethanol	ND	ug/L	5000	3600	25		04/23/21 21:57		
Ethylbenzene	1470	ug/L	125	46.0	25		04/23/21 21:57		
Ethyl-tert-butyl ether	ND	ug/L	250	212	25		04/23/21 21:57		
Methyl-tert-butyl ether	ND	ug/L	125	77.5	25		04/23/21 21:57		
Naphthalene	505	ug/L	125	52.2	25		04/23/21 21:57		
Toluene Toluene	4690	ug/L	125	50.2	25		04/23/21 21:57		
(ylene (Total)	6400	ug/L	125	125	25		04/23/21 21:57		
n&p-Xylene	4570	ug/L	250	103	25		04/23/21 21:57		
-Xylene	1830	ug/L	125	51.0	25		04/23/21 21:57		
Surrogates		-							
-Bromofluorobenzene (S)	100	%	70-130		25		04/23/21 21:57	460-00-4	
,2-Dichloroethane-d4 (S)	110	%	70-130		25		04/23/21 21:57		
oluene-d8 (S)	96	%	70-130		25		04/23/21 21:57		

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: FIELD BLANK	Lab ID:	92534563038	Collected:	04/20/21	15:10	Received: 04	/21/21 10:35 N	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical	Method: EPA 8	011 Prepara	tion Metho	d: EPA	8011			
	Pace Anal	ytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.0098	1	04/26/21 09:13	04/26/21 23:28	106-93-4	
1-Chloro-2-bromopropane (S)	96	%	60-140		1	04/26/21 09:13	04/26/21 23:28	301-79-56	
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 16:14	75-85-4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 16:14	994-05-8	
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 16:14		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 16:14	624-95-3	v1
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 16:14	75-65-0	L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 16:14	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 16:14	107-06-2	
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 16:14	108-20-3	
Ethanol	ND	ug/L	200	144	1		04/22/21 16:14	64-17-5	v1
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 16:14	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 16:14	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 16:14	1634-04-4	
Vaphthalene	ND	ug/L	5.0	2.1	1		04/22/21 16:14	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		04/22/21 16:14		
(ylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 16:14	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 16:14	179601-23-1	
-Xylene	ND	ug/L	5.0	2.0	1		04/22/21 16:14	95-47-6	
Surrogates									
-Bromofluorobenzene (S)	103	%	70-130		1		04/22/21 16:14	460-00-4	
,2-Dichloroethane-d4 (S)	110	%	70-130		1		04/22/21 16:14	17060-07-0	
oluene-d8 (S)	94	%	70-130		1		04/22/21 16:14	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: TRIP BLANK 1	Lab ID:	92534563039	Collected	04/20/2	1 08:00	Received: 04	/21/21 10:35 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	3260D						
	Pace Anal	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 16:32	75-85-4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 16:32		
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 16:32		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 16:32		v1
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 16:32	75-65-0	L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 16:32	762-75-4	
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 16:32		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 16:32	108-20-3	
Ethanol	ND	ug/L	200	144	1		04/22/21 16:32	64-17-5	v1
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 16:32	100-41-4	
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 16:32	637-92-3	
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 16:32	1634-04-4	
Naphthalene	ND	ug/L	5.0	2.1	1		04/22/21 16:32	91-20-3	
Toluene	ND	ug/L	5.0	2.0	1		04/22/21 16:32	108-88-3	
Xylene (Total)	ND	ug/L	5.0	5.0	1		04/22/21 16:32		
m&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 16:32	179601-23-1	
o-Xylene	ND	ug/L	5.0	2.0	1		04/22/21 16:32	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		04/22/21 16:32	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1		04/22/21 16:32	17060-07-0	
Toluene-d8 (S)	97	%	70-130		1		04/22/21 16:32	2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

Sample: TRIP BLANK 2	Lab ID:	92534563040	Collected	: 04/20/2	1 08:00	Received: 0	4/21/21 10:35 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260D						
	Pace Analy	ytical Services	- Charlotte						
tert-Amyl Alcohol	ND	ug/L	100	65.6	1		04/22/21 16:50	75-85-4	v1
tert-Amylmethyl ether	ND	ug/L	10.0	3.0	1		04/22/21 16:50		VI
Benzene	ND	ug/L	5.0	1.7	1		04/22/21 16:50		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	53.9	1		04/22/21 16:50		v1
tert-Butyl Alcohol	ND	ug/L	100	91.0	1		04/22/21 16:50		L1
tert-Butyl Formate	ND	ug/L	50.0	24.1	1		04/22/21 16:50		LI
1,2-Dichloroethane	ND	ug/L	5.0	2.1	1		04/22/21 16:50		
Diisopropyl ether	ND	ug/L	5.0	3.5	1		04/22/21 16:50		
≣thanol	ND	ug/L	200	144	1		04/22/21 16:50		v 1
Ethylbenzene	ND	ug/L	5.0	1.8	1		04/22/21 16:50		VI
Ethyl-tert-butyl ether	ND	ug/L	10.0	8.5	1		04/22/21 16:50		
Methyl-tert-butyl ether	ND	ug/L	5.0	3.1	1		04/22/21 16:50	00. UL 0	
Vaphthalene	ND	ug/L	5.0	2.1	1		04/22/21 16:50		
oluene	ND	ug/L	5.0	2.0	1		04/22/21 16:50		
(ylene (Totai)	ND	ug/L	5.0	5.0	1		04/22/21 16:50		
n&p-Xylene	ND	ug/L	10.0	4.1	1		04/22/21 16:50		
-Xylene Surrogates	ND	ug/L	5.0	2.0	1		04/22/21 16:50		
-Bromofluorobenzene (S)	106	%	70-130		1		04/22/21 16:50	460-00-4	
,2-Dichloroethane-d4 (S)	109	%	70-130		1		04/22/21 16:50		
oluene-d8 (S)	96	%	70-130		1			2037-26-5	

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

QC Batch Method:

92534563

QC Batch:

615560

15500

Analysis Method:

EPA 8260D

EPA 8260D

Analysis Description:

8260 MSV SC

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563035

METHOD BLANK: 3239284

•

Matrix: Water

Associated Lab Samples: 92534563035

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	04/22/21 11:12	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	04/22/21 11:12	
Benzene	ug/L	ND	5.0	1.7	04/22/21 11:12	
Diisopropyl ether	ug/L	ND	5.0	3.5	04/22/21 11:12	
Ethanol	ug/L	ND	200	144	04/22/21 11:12	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	04/22/21 11:12	
Ethylbenzene	ug/L	ND	5.0	1.8	04/22/21 11:12	
m&p-Xylene	ug/L	ND	10.0	4.1	04/22/21 11:12	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	04/22/21 11:12	
Naphthalene	ug/L	ND	5.0	2.1	04/22/21 11:12	
o-Xylene	ug/L	ND	5.0	2.0	04/22/21 11:12	
tert-Amyl Alcohol	ug/L	ND	100	65.6	04/22/21 11:12	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	04/22/21 11:12	
tert-Butyl Alcohol	ug/L	ND	100	91.0	04/22/21 11:12	
tert-Butyl Formate	ug/L	ND	50.0	24.1	04/22/21 11:12	
Toluene	ug/L	ND	5.0	2.0	04/22/21 11:12	
Xylene (Total)	ug/L	ND	5.0	5.0	04/22/21 11:12	
1,2-Dichloroethane-d4 (S)	%	102	70-130		04/22/21 11:12	
4-Bromofluorobenzene (S)	%	98	70-130		04/22/21 11:12	
Toluene-d8 (S)	%	101	70-130		04/22/21 11:12	

LABORATORY CONTROL SAMPLE:	3239285					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	49.2	98	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1030	103	70-130	
Benzene	ug/L	50	48.5	97	70-130	
Diisopropyl ether	ug/L	50	47.0	94	70-130	
Ethanol	ug/L	2000	2090	105	70-130	
Ethyl-tert-butyl ether	ug/L	100	101	101	70-130	
Ethylbenzene	ug/L	50	48.0	96	70-130	
m&p-Xylene	ug/L	100	99.8	100	70-130	
Methyl-tert-butyl ether	ug/L	50	48.2	96	70-130	
Naphthalene	ug/L	50	51.6	103	70-130	
o-Xylene	ug/L	50	48.8	98	70-130	
tert-Amyl Alcohol	ug/L	1000	1020	102	70-130	
tert-Amylmethyl ether	ug/L	100	101	101	70-130	
tert-Butyl Alcohol	ug/L	500	511	102	70-130	
tert-Butyl Formate	ug/L	400	414	104	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

LABORATORY CONTROL SAMPL	E: 3239285					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Toluene	ug/L	50	48.8	98	70-130	
Xylene (Total)	ug/L	150	149	99	70-130	
1,2-Dichloroethane-d4 (S)	%			101	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 3239	286		3239287	,						
			MS	MSD								
	9	2534563035	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	1000	1000	1230	1230	123	123	70-137	0	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	20000	20000	24000	24000	120	120	39-157	0	30	
Benzene	ug/L	1100	1000	1000	2430	2430	133	133	70-151	0	30	
Diisopropyl ether	ug/L	ND	1000	1000	1130	1130	113	113	63-144	0	30	
Ethanol	ug/L	ND	40000	40000	48200	48200	121	121	39-176	0	30	
Ethyl-tert-butyl ether	ug/L	ND	2000	2000	2490	2490	125	125	66-137	0	30	
Ethylbenzene	ug/L	1630	1000	1000	2680	2680	105	105	66-153	0	30	
m&p-Xylene	ug/L	5590	2000	2000	7000	7000	70	70	69-152	0	30	
Methyl-tert-butyl ether	ug/L	ND	1000	1000	1250	1250	125	125	54-156	0	30	
Naphthalene	ug/L	500	1000	1000	1580	1580	108	108	61-148	0	30	
o-Xylene	ug/L	2090	1000	1000	3020	3020	93	93	70-148	0	30	
tert-Amyl Alcohol	ug/L	ND	20000	20000	25100	25100	126	126	54-153	0	30	
tert-Amylmethyl ether	ug/L	ND	2000	2000	2460	2460	123	123	69-139	0	30	
tert-Butyl Alcohol	ug/L	ND	10000	10000	12900	12900	129	129	43-188	0	30	
tert-Butyl Formate	ug/L	ND	8000	8000	7120	7120	89	89	10-170	0	30	
Toluene	ug/L	5750	1000	1000	6710	6710	96	96	59-148	0	30	
Xylene (Total)	ug/L	7670	3000	3000	10000	10000	78	78	63-158	0	30	
1,2-Dichloroethane-d4 (S)	%						96	96	70-130	,		
4-Bromofluorobenzene (S)	%						99	99	70-130			
Toluene-d8 (S)	%						100	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

615564

Analysis Method:

EPA 8260D

QC Batch Method:

EPA 8260D

Analysis Description:

8260 MSV SC

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563004, 92534563006, 92534563010, 92534563012, 92534563013, 92534563018, 92534563020, 92534563021, 92534563022, 92534563023, 92534563026, 92534563027

METHOD BLANK: 3239296

Matrix: Water

Associated Lab Samples:

92534563004, 92534563006, 92534563010, 92534563012, 92534563013, 92534563018, 92534563020,

92534563021, 92534563022, 92534563023, 92534563026, 92534563027

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	04/22/21 22:35	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	04/22/21 22:35	
Benzene	ug/L	ND	5.0	1.7	04/22/21 22:35	
Diisopropyl ether	ug/L	ND	5.0	3.5	04/22/21 22:35	
Ethanol	ug/L	ND	200	144	04/22/21 22:35	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	04/22/21 22:35	
Ethylbenzene	ug/L	ND	5.0	1.8	04/22/21 22:35	
m&p-Xylene	ug/L	ND	10.0	4.1	04/22/21 22:35	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	04/22/21 22:35	
Naphthalene	ug/L	ND	5.0	2.1	04/22/21 22:35	
o-Xylene	ug/L	ND	5.0	2.0	04/22/21 22:35	
ert-Amyl Alcohol	ug/L	ND	100	65.6	04/22/21 22:35	
ert-Amylmethyl ether	ug/L	ND	10.0	3.0	04/22/21 22:35	
ert-Butyl Alcohol	ug/L	ND	100	91.0	04/22/21 22:35	
tert-Butyl Formate	ug/L	ND	50.0	24.1	04/22/21 22:35	
Toluene	ug/L	ND	5.0	2.0	04/22/21 22:35	
(ylene (Total)	ug/L	ND	5.0	5.0	04/22/21 22:35	
,2-Dichloroethane-d4 (S)	%	103	70-130	0.0	04/22/21 22:35	
l-Bromofluorobenzene (S)	%	98	70-130		04/22/21 22:35	
oluene-d8 (S)	%	100	70-130		04/22/21 22:35	

LABORATORY CONTROL SAMPLE:	3239297					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	49.8	100	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1050	105	70-130	
Benzene	ug/L	50	49.3	99	70-130	
Diisopropyl ether	ug/L	50	50.1	100	70-130	
Ethanol	ug/L	2000	2090	105	70-130	
Ethyl-tert-butyl ether	ug/L	100	106	106	70-130	
Ethylbenzene	ug/L	50	48.8	98	70-130	
m&p-Xylene	ug/L	100	99.0	99	70-130	
Methyl-tert-butyl ether	ug/L	50	51.8	104	70-130	
Naphthalene	ug/L	50	52.1	104	70-130	
o-Xylene	ug/L	50	49.3	99	70-130	
tert-Amyl Alcohol	ug/L	1000	1010	101	70-130	
tert-Amylmethyl ether	ug/L	100	100	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

LABORATORY CONTROL SAMPLE:	3239297						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
tert-Butyl Alcohol	ug/L	500	542	108	70-130		
tert-Butyl Formate	ug/L	400	428	107	70-130		
Toluene	ug/L	50	49.3	99	70-130		
Xylene (Total)	ug/L	150	148	99	70-130		
1,2-Dichloroethane-d4 (S)	%			98	70-130		
4-Bromofluorobenzene (S)	%			101	70-130		
Toluene-d8 (S)	%			99	70-130		

MATRIX SPIKE & MATRIX S	PIKE DUPLK	CATE: 3239	298		3239299)						
			MS	MSD								
_		2534563021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dichloroethane	ug/L	ND	20	20	22.0	22.7	110	113	70-137	3	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	401	415	100	104	39-157	3	•	
Benzene	ug/L	ND	20	20	23.5	23.6	117	118	70-151	0	30	
Diisopropyl ether	ug/L	ND	20	20	20.2	20.0	101	100	63-144	1	30	
Ethanol	ug/L	ND	800	800	803	870	100	109	39-176	8	30	
Ethyl-tert-butyl ether	ug/L	ND	40	40	44.8	44.7	112	112	66-137	0	30	
Ethylbenzene	ug/L	ND	20	20	21.0	21.6	105	108	66-153	3	30	
n&p-Xylene	ug/L	ND	40	40	40.9	41.8	102	105	69-152	2	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	21.9	22.1	109	111	54-156	1	30	
Naphthalene	ug/L	ND	20	20	17.6	18.7	88	94	61-148	6	30	
o-Xylene	ug/L	ND	20	20	20.7	20.6	103	103	70-148	0	30	
ert-Amyl Alcohol	ug/L	ND	400	400	408	430	102	107	54-153	5	30	
ert-Amylmethyl ether	ug/L	ND	40	40	43.3	43.7	108	109	69-139	1	30	
ert-Butyl Alcohol	ug/L	ND	200	200	272	282	136	141	43-188	4	30	
ert-Butyl Formate	ug/L	ND	160	160	ND	ND	0	0	10-170	-	30 F	25
Toluene Toluene	ug/L	ND	20	20	22.3	22.6	111	113	59-148	2	30	-
(ylene (Total)	ug/L	ND	60	60	61.6	62.4	103	104	63-158	1	30	
,2-Dichloroethane-d4 (S)	%						94	95	70-130			
-Bromofluorobenzene (S)	%						104	101	70-130			
oluene-d8 (S)	%						99	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

615566

Analysis Method:

EPA 8260D

QC Batch Method:

EPA 8260D

Analysis Description:

8260 MSV SC

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563007, 92534563009, 92534563011, 92534563015, 92534563016, 92534563017, 92534563019, 92534563024, 92534563025, 92534563028, 92534563029, 92534563038, 92534563039, 92534563040

METHOD BLANK: 3239301

Matrix: Water

Associated Lab Samples:

92534563007, 92534563009, 92534563011, 92534563015, 92534563016, 92534563017, 92534563019, 92534563024, 92534563025, 92534563028, 92534563029, 92534563038, 92534563039, 92534563040

		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
1,2-Dichloroethane	ug/L	ND	5.0	2.1	04/22/21 15:38		
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	04/22/21 15:38	v1	
Benzene	ug/L	ND	5.0	1.7	04/22/21 15:38		
Diisopropyl ether	ug/L	ND	5.0	3.5	04/22/21 15:38		
Ethanol	ug/L	ND	200	144	04/22/21 15:38	v1	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	04/22/21 15:38		
Ethylbenzene	ug/L	ND	5.0	1.8	04/22/21 15:38		
m&p-Xylene	⊚ ug/L	ND	10.0	4.1	04/22/21 15:38		
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	04/22/21 15:38		
Naphthalene	ug/L	ND	5.0	2.1	04/22/21 15:38		
o-Xylene	ug/L	ND	5.0	2.0	04/22/21 15:38		
tert-Amyl Alcohol	ug/L	ND	100	65.6	04/22/21 15:38	v1	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	04/22/21 15:38		
tert-Butyl Alcohol	ug/L	ND	100	91.0	04/22/21 15:38		
tert-Butyl Formate	ug/L	ND	50.0	24.1	04/22/21 15:38		
Toluene	ug/L	ND	5.0	2.0	04/22/21 15:38		
Xylene (Total)	ug/L	ND	5.0	5.0	04/22/21 15:38		
1,2-Dichloroethane-d4 (S)	%	127	70-130		04/22/21 15:38		
4-Bromofluorobenzene (S)	%	94	70-130		04/22/21 15:38		
Toluene-d8 (S)	%	97	70-130		04/22/21 15:38		

LABORATORY CONTROL SAMPLE:	3239302					
Parameter	Units	Spîke Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	52.4	105	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1270	127	70-130 v1	
Benzene	ug/L	50	48.6	97	70-130	
Diisopropyl ether	ug/L	50	56.7	113	70-130	
Ethanol	ug/L	2000	2400	120	70-130	
Ethyl-tert-butyl ether	ug/L	100	116	116	70-130	
Ethylbenzene	ug/L	50	52.0	104	70-130	
m&p-Xylene	ug/L	100	103	103	70-130	
Methyl-tert-butyl ether	ug/L	50	52.8	106	70-130	
Naphthalene	ug/L	50	57.4	115	70-130	
o-Xylene	ug/L	50	51.7	103	70-130	
tert-Amyl Alcohol	ug/L	1000	1210	121	70-130 v1	
tert-Amylmethyl ether	ug/L	100	103	103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

ABORATORY CONTROL SAMPLE:	3239302					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
rt-Butyl Alcohol	ug/L	500	679	136	70-130	L1,v1
t-Butyl Formate	ug/L	400	461	115	70-130	
uene	ug/L	50	48.4	97	70-130	
ene (Total)	ug/L	150	155	103	70-130	
Dichloroethane-d4 (S)	%			111	70-130	
romofluorobenzene (S)	%			101	70-130	
uene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SI	SPIKE DUPLICATE: 3239303				3239304								
			MS	MSD									
	9	2534581010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qua		
1,2-Dichloroethane	ug/L	ND	20	20	29.2	33.8	146	169	70-137	15	30 M1		
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	516	571	129	143	39-157	10	30		
Benzene	ug/L	ND	20	20	26.8	29.3	134	147	70-151	9	30		
Diisopropyl ether	ug/L	ND	20	20	30.4	34.4	152	172	63-144	12	30 M1,v		
Ethanol	ug/L	ND	800	800	1230	1370	154	171	39-176	11	30		
Ethyl-tert-butyl ether	ug/L	ND	40	40	61.9	70.7	155	177	66-137	13	30 M1		
Ethylbenzene	ug/L	ND	20	20	25.8	28.6	129	143	66-153	10	30		
m&p-Xylene	ug/L	ND	40	40	51.4	57.0	129	143	69-152	10	30		
Methyl-tert-butyl ether	ug/L	ND	20	20	29.0	33.5	145	167	54-156	14	30 M1		
Naphthalene	ug/L	ND	20	20	25.9	28.3	129	142	61-148	9	30		
o-Xylene	ug/L	ND	20	20	24.1	26.2	121	131	70-148	8	30		
tert-Amyl Alcohol	ug/L	ND	400	400	524	575	131	144	54-153	9	30		
tert-Amylmethyl ether	ug/L	ND	40	40	53.1	59.0	133	148	69-139	11	30 M1		
tert-Butyl Alcohol	ug/L	ND	200	200	425	496	212	248	43-188	15	30 M0		
tert-Butyl Formate	ug/L	ND	160	160	ND	ND	13	9	10-170		30 P5		
Toluene	ug/L	ND	20	20	25.3	28.6	126	143	59-148	12	30		
Xylene (Total)	ug/L	ND	60	60	75.5	83.3	126	139	63-158	10	30		
1,2-Dichloroethane-d4 (S)	%						116	130	70-130				
4-Bromofluorobenzene (S)	%						104	105	70-130				
Toluene-d8 (S)	%						104	102	70-130				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

615875

Analysis Method:

EPA 8260D 8260 MSV SC

QC Batch Method:

EPA 8260D

Analysis Description:

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563001, 92534563008, 92534563032, 92534563034

METHOD BLANK: 3240990

Matrix: Water

Associated Lab Samples: 92534563001, 92534563008, 92534563032, 92534563034

Doromotos	3.1-21	Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
1,2-Dichloroethane	ug/L	ND	5.0	2.1	04/23/21 14:55		
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	04/23/21 14:55		
Benzene	ug/L	ND	5.0	1.7	04/23/21 14:55		
Diisopropyl ether	ug/L	ND	5.0	3.5	04/23/21 14:55		
Ethanol	ug/L	ND	200	144	04/23/21 14:55		
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	04/23/21 14:55		
Ethylbenzene	ug/L	ND	5.0	1.8	04/23/21 14:55		
m&p-Xylene	ug/L	- ND	10.0	4.1	04/23/21 14:55		
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	04/23/21 14:55		
Naphthalene	ug/L	ND	5.0	2.1	04/23/21 14:55		
o-Xylene	ug/L	ND	5.0	2.0	04/23/21 14:55		
tert-Amyl Alcohol	ug/L	ND	100	65.6	04/23/21 14:55		
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	04/23/21 14:55		
tert-Butyl Alcohol	ug/L	ND	100	91.0	04/23/21 14:55	v1	
tert-Butyl Formate	ug/L	ND	50.0	24.1	04/23/21 14:55		
Toluene	ug/L	ND	5.0	2.0	04/23/21 14:55		
Xylene (Total)	ug/L	ND	5.0	5.0	04/23/21 14:55		
1,2-Dichloroethane-d4 (S)	%	121	70-130		04/23/21 14:55		
4-Bromofluorobenzene (S)	%	104	70-130		04/23/21 14:55		
Toluene-d8 (S)	%	102	70-130		04/23/21 14:55		

LABORATORY CONTROL SAMPLE:	3240991					
Doromatas	11.2	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	57.9	116	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1110	111	70-130	
Benzene	ug/L	50	52.7	105	70-130	
Diisopropyl ether	ug/L	50	60.2	120	70-130	
Ethanol	ug/L	2000	2430	122	70-130	
Ethyl-tert-butyl ether	ug/L	100	123	123	70-130	
Ethylbenzene	ug/L	50	51.9	104	70-130	
m&p-Xylene	ug/L	100	106	106	70-130	
Methyl-tert-butyl ether	ug/L	50	57.5	115	70-130	
Naphthalene	ug/L	50	56.3	113	70-130	
o-Xylene	ug/L	50	49.0	98	70-130	
tert-Amyl Alcohol	ug/L	1000	1080	108	70-130	
tert-Amylmethyl ether	ug/L	100	108	108	70-130	
tert-Butyl Alcohol	ug/L	500	586	117	70-130 v	1
tert-Butyl Formate	ug/L	400	480	120	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

Ethanol

Ethylbenzene

m&p-Xylene

Naphthalene

tert-Amyl Alcohol

tert-Butyl Alcohol

tert-Butyl Formate

tert-Amylmethyl ether

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

o-Xylene

Toluene

Xylene (Total)

Toluene-d8 (S)

Ethyl-tert-butyl ether

Methyl-tert-butyl ether

03538 COASTAL TRUCK STOP 76

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

%

ND

ND

1320

4260

ND

473

1590

ND

ND

ND

ND

4090

5850

20000

1000

500

1000

500

500

500

10000

1000

5000

4000

500

1500

Pace Project No.:

92534563

Parameter		Units	Spike Conc.		CS suft	LCS % Rec	% R Lim		Qualifiers			
Toluene		ug/L		50	51.0	10	2	70-130 —		11		
Xylene (Total)		ug/L	_ 1	50	155	10	3	70-130				
1,2-Dichloroethane-d4 (S)		%				.11	0	70-130				
4-Bromofluorobenzene (S)		%				10	4	70-130				
Toluene-d8 (S)		%				10	0 :	70-130				
MATRIX SPIKE & MATRIX SPI	KE DUP	LICATE: 3240	992 MS	MSD	3240993	}						
		92534563034	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	500	500	760	754	152	151	70-137	1	30	M1
3,3-Dimethyl-1-Butanol	ug/L	ND	10000	10000	13900	14400	139	144	39-157	4	30	
Benzene	ug/L	577	500	500	1290	1260	142	136	70-151	2	30	
Diisopropyl ether	ug/L	ND	500	500	790	748	158	150	62 144		00	
Silaopiopyi cuici	ug/L	ND	500	300	790	140	100	100	63-144	6	30	M1, v1

20000

1000

500

1000

500

500

500

10000

1000

5000

4000

500

1500

32200

1620

2010

5590

1090

2260

13900

1360

7920

5810

4790

7850

767

29600

1590

1990

5460

735

1130

2200

14200

1340

8010

5690

4760

7670

161

162

138

134

153

124

133

139

136

158

145

142

134

116

104

102

148

159

133

121

147

132

122

142

134

160

142

136

121

115

106

105

39-176

66-137

66-153

69-152

54-156

61-148

70-148

54-153

69-139

43-188

10-170

59-148

63-158

70-130

70-130

70-130

8 30

2

1 30

2 30

4 30

3 30

3 30

2 30

1 30

1 30

2 30

2 30

1 30

30 M1

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

QC Batch Method:

92534563

QC Batch:

615878

Analysis Method:

EPA 8260D

EPA 8260D

Analysis Description:

Matrix: Water

8260 MSV SC

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

 $92534563003,\,92534563005,\,92534563014,\,92534563031,\,92534563033,\,92534563036,\,92534563037$ METHOD BLANK: 3241002

Associated Lab Samples:

92534563003, 92534563005, 92534563014, 92534563031, 92534563033, 92534563036, 92534563037

		Blank	Reporting	- 1000000, 021	50-505050, 9 <u>2</u> 5545	00007	
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
1,2-Dichloroethane	ug/L	ND	5.0	2.1	04/23/21 14:30		
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	04/23/21 14:30		
Benzene	ug/L	ND	5.0	1.7	04/23/21 14:30		
Diisopropyl ether	ug/L	ND	5.0	3.5	04/23/21 14:30		
Ethanol	ug/L	ND	200	144	04/23/21 14:30		
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	04/23/21 14:30		
Ethylbenzene	ug/L	ND	5.0	1.8	04/23/21 14:30		
m&p-Xylene	ug/L	ND	10.0	4.1	04/23/21 14:30		
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	04/23/21 14:30		
Vaphthalene	ug/L	ND	5.0	2.1	04/23/21 14:30		
o-Xylene	ug/L	ND	5.0	2.0	04/23/21 14:30		
ert-Amyl Alcohol	ug/L	ND	100	65.6	04/23/21 14:30		
ert-Amylmethyl ether	ug/L	ND	10.0	3.0	04/23/21 14:30		
ert-Butyl Alcohol	ug/L	ND	100	91.0	04/23/21 14:30		
ert-Butyl Formate	ug/L	ND	50.0	24.1	04/23/21 14:30		
oluene	ug/L	ND	5.0	2.0	04/23/21 14:30		
(ylene (Total)	ug/L	ND	5.0	5.0	04/23/21 14:30		
,2-Dichloroethane-d4 (S)	%	109	70-130		04/23/21 14:30		
-Bromofluorobenzene (S)	%	105	70-130		04/23/21 14:30		
Toluene-d8 (S)	%	97	70-130		04/23/21 14:30		

LABORATORY CONTROL SAMPLE:	3241003					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	52.9	106	70-130	
3,3-Dimethyl-1-Butanol	ug/L	1000	1190	119	70-130	
Benzene	ug/L	50	48.5	97	70-130	
Diisopropyl ether	ug/L	50	53.4	107	70-130	
Ethanol	ug/L	2000	2330	116	70-130	
Ethyl-tert-butyl ether	ug/L	100	111	111	70-130	
Ethylbenzene	ug/L	50	50.1	100	70-130	
m&p-Xylene	ug/L	100	99.8	100	70-130	
Methyl-tert-butyl ether	ug/L	50	54.1	108	70-130	
Naphthalene	ug/L	50	55.7	111	70-130	
o-Xylene	ug/L	50	49.6	99	70-130	
tert-Amyl Alcohol	ug/L	1000	1140	114	70-130	
tert-Amylmethyl ether	ug/L	100	102	102	70-130	
tert-Butyl Alcohol	ug/L	500	634	127	70-130	
tert-Butyl Formate	ug/L	400	460	115	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

92534563

LABORATORY CONTROL SAMPLE:	3241003					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Toluene	ug/L	50	47.7	95	70-130	
(ylene (Total)	ug/L	150	149	100	70-130	
,2-Dichloroethane-d4 (S)	%			114	70-130	
-Bromofluorobenzene (S)	%			100	70-130	
oluene-d8 (S)	%			96	70-130	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 3241	004		3241005							
			MS	MSD								
	9	2534420007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	8000	8000	12000	10400	150	130	70-137	14	30	M1
3,3-Dimethyl-1-Butanol	ug/L	ND	160000	160000	204000	187000	127	117	39-157	8	30	
Benzene	ug/L	5140	8000	8000	16100	15600	137	131	70-151	3	30	
Diisopropyl ether	ug/L	ND	8000	8000	13300	12000	155	139	63-144	10	30	M1, v1
Ethanol	ug/L	ND	320000	320000	484000	436000	151	136	39-176	10	30	,
Ethyl-tert-butyl ether	ug/L	ND	16000	16000	25500	22000	159	138	66-137	15	30	M1
Ethylbenzene	ug/L	3630	8000	8000	14300	13100	133	118	66-153	9	30	
m&p-Xylene	ug/L	13800	16000	16000	34700	33000	131	120	69-152	5	30	
Methyl-tert-butyl ether	ug/L	ND	8000	8000	12000	10400	150	130	54-156	14	30	
Naphthalene	ug/L	ND	8000	8000	11500	10600	132	121	61-148	8	30	
o-Xylene	ug/L	6710	8000	8000	16100	15300	118	107	70-148	5	30	
tert-Amyl Alcohol	ug/L	ND	160000	160000	203000	187000	127	117	54-153	8	30	
tert-Amylmethyl ether	ug/L	ND	16000	16000	21600	19100	135	120	69-139	12	30	
tert-Butyl Alcohol	ug/L	ND	80000	80000	113000	98700	141	123	43-188	14	30	
tert-Butyl Formate	ug/L	ND	64000	64000	97700	85000	153	133	10-170	14	30	
Toluene	ug/L	40200	8000	8000	49800	54900	119	183	59-148	10	30	M1
Xylene (Total)	ug/L	20500	24000	24000	50800	48300	126	116	63-158	5	30	
1,2-Dichloroethane-d4 (S)	%						123	121	70-130			
4-Bromofluorobenzene (S)	%						105	102	70-130			
Toluene-d8 (S)	%						103	102	70-130			

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

616191

Analysis Method:

EPA 8260D

QC Batch Method: EPA 8260D

Analysis Description:

8260 MSV SC

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563002, 92534563030

METHOD BLANK: 3242725

Matrix: Water

Associated Lab Samples:

00504500000 00504500000

Associated Lab Samples:	92534563002, 92534563030					
D		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND	5.0	2.1	04/26/21 17:19	
3,3-Dimethyl-1-Butanol	ug/L	ND	100	53.9	04/26/21 17:19	
Benzene	ug/L	ND	5.0	1.7	04/26/21 17:19	
Diisopropyl ether	ug/L	ND	5.0	3.5	04/26/21 17:19	
Ethanol	ug/L	ND	200	144	04/26/21 17:19	
Ethyl-tert-butyl ether	ug/L	ND	10.0	8.5	04/26/21 17:19	
Ethylbenzene	ug/L	ND	5.0	1.8	04/26/21 17:19	
m&p-Xylene	ug/L	ND	10.0	4.1	04/26/21 17:19	
Methyl-tert-butyl ether	ug/L	ND	5.0	3.1	04/26/21 17:19	
Naphthalene	ug/L	ND	5.0	2.1	04/26/21 17:19	
o-Xylene	ug/L	ND	5.0	2.0	04/26/21 17:19	
tert-Amyl Alcohol	ug/L	ND	100	65.6	04/26/21 17:19	
tert-Amylmethyl ether	ug/L	ND	10.0	3.0	04/26/21 17:19	
tert-Butyl Alcohol	ug/L	ND	100	91.0	04/26/21 17:19	
tert-Butyl Formate	ug/L	ND	50.0	24.1	04/26/21 17:19	
Toluene	ug/L	ND	5.0	2.0	04/26/21 17:19	
Xylene (Total)	ug/L	ND	5.0	5.0	04/26/21 17:19	
1,2-Dichloroethane-d4 (S)	%	111	70-130		04/26/21 17:19	
4-Bromofluorobenzene (S)	%	97	70-130		04/26/21 17:19	
Toluene-d8 (S)	%	103	70-130		04/26/21 17:19	

LABORATORY CONTROL SAMPLE:	3242726						_
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
1,2-Dichloroethane	ug/L	50	58.9	118	70-130		
3,3-Dimethyl-1-Butanol	ug/L	1000	1190	119	70-130		
Benzene	ug/L	50	56.2	112	70-130		
Diisopropyl ether	ug/L	50	58.6	117	70-130		
Ethanol	ug/L	2000	2510	126	70-130		
Ethyl-tert-butyl ether	ug/L	100	125	125	70-130		
Ethylbenzene	ug/L	50	56.1	112	70-130		
n&p-Xylene	ug/L	100	114	114	70-130		
Methyl-tert-butyl ether	ug/L	50	59.5	119	70-130		
laphthalene	ug/L	50	62.9	126	70-130		
-Xylene	ug/L	50	56.1	112	70-130		
ert-Amyl Alcohol	ug/L	1000	1140	114	70-130		
ert-Amylmethyl ether	ug/L	100	113	113	70-130		
ert-Butyl Alcohol	ug/L	500	628	126	70-130		
ert-Butyl Formate	ug/L	400	505	126	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

LABORATORY CONTROL SAMPLE:	3242726					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
oluene	ug/L	50	56.5	113	70-130	7
ylene (Total)	ug/L	150	170	113	70-130	
?-Dichloroethane-d4 (S)	%			103	70-130	
Bromofluorobenzene (S)	%			100	70-130	
oluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3242727					3242728	3						
			MS	MSD								
		92534563002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/L	ND	2000	2000	2280	2200	114	110	70-137	4	30	
3,3-Dimethyl-1-Butanol	ug/L	ND	40000	40000	40000	39100	100	98	39-157	2	30	
Benzene	ug/L	5490	2000	2000	7780	7780	115	115	70-151	0	30	
Diisopropyl ether	ug/L	ND	2000	2000	2050	1990	103	99	63-144	3	30	
Ethanol	ug/L	ND	80000	80000	84600	84700	106	106	39-176	0	30	
Ethyl-tert-butyl ether	ug/L	ND	4000	4000	4540	4410	113	110	66-137	3	30	
Ethylbenzene	ug/L	802	2000	2000	2810	2830	101	102	66-153	1	30	
m&p-Xylene	ug/L	4330	4000	4000	7830	7880	87	89	69-152	1	30	
Methyl-tert-butyl ether	ug/L	ND	2000	2000	2300	2220	115	111	54-156	3	30	
Naphthalene	ug/L	578	2000	2000	2430	2360	93	89	61-148	3	30	
o-Xylene	ug/L	2940	2000	2000	4600	4590	83	82	70-148	0	30	
tert-Amyl Alcohol	ug/L	ND	40000	40000	44700	43000	108	104	54-153	4	30	
tert-Amylmethyl ether	ug/L	ND	4000	4000	4460	4290	111	107	69-139	4	30	
tert-Butyl Alcohol	ug/L	ND	20000	20000	21400	20800	107	104	43-188	3	30	
tert-Butyl Formate	ug/L	ND	16000	16000	15200	15000	95	94	10-170	1	30	
Toluene	ug/L	12600	2000	2000	13800	13800	62	60	59-148	0	30	
Xylene (Total)	ug/L	7270	6000	6000	12400	12500	86	87	63-158	0	30	
1,2-Dichloroethane-d4 (S)	%						91	93	70-130	Ü	50	
4-Bromofluorobenzene (S)	%						100	100	70-130			
Toluene-d8 (S)	%						101	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

615811

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Associated Lab Samples:

Laboratory: 02534563002, 02534563002,

Pace Analytical Services - Charlotte

92534563001, 92534563002, 92534563003, 92534563004, 92534563005, 92534563006, 92534563007, 92534563008, 92534563009, 92534563010, 92534563011, 92534563012, 92534563013, 92534563014, 92534563012, 92534563013, 92534563014, 9253456014, 925546014, 925546014, 925546014, 925546014, 925546014, 925546014, 925546014, 925546014, 925546014, 925546014, 925546014,

92534563015, 92534563016

METHOD BLANK: 3240523

Matrix: Water

Associated Lab Samples:

Date: 04/28/2021 10:17 AM

92534563001, 92534563002, 92534563003, 92534563004, 92534563005, 92534563006, 92534563007, 92534563008, 92534563009, 92534563010, 92534563011, 92534563012, 92534563013, 92534563014,

92534563015, 92534563016

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers 1,2-Dibromoethane (EDB) ug/L ND 0.020 04/23/21 21:35 0.0096 1-Chloro-2-bromopropane (S) % 122 60-140 04/23/21 21:35

LABORATORY CONTROL SAMPLE 8	LABORATORY CONTROL SAMPLE & LCSD: 3240524									
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	0.24	0.26	0.28	109 110	112 112	60-140 60-140	5	20	•

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3240	527		3240528			pl =				
Parameter	Units	92534513015 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND	0.24	0.24	0.28	0.27	114 103	112 103	60-140 60-140	1	20	

SAMPLE DUPLICATE: 3240526						
Parameter	Units	92534513014 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND 111	ND 108		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

616081

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description:

GCS 8011 EDB DBCP

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563017, 92534563018, 92534563019, 92534563020, 92534563021, 92534563022, 92534563023, 92534563024, 92534563025, 92534563026, 92534563027, 92534563028, 92534563029, 92534563030,

92534563031, 92534563032, 92534563033, 92534563034, 92534563035, 92534563036

METHOD BLANK: 3242031

Matrix: Water

Associated Lab Samples:

Date: 04/28/2021 10:17 AM

92534563031, 92534563032, 92534563033, 92534563034, 92534563035, 92534563036

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers 1.2-Dibromoethane (EDB) ug/L ND 0.020 0.0098 04/26/21 15:31 1-Chloro-2-bromopropane (S) % 100 60-140 04/26/21 15:31

LABORATORY CONTROL SAMPLE & LCSD: 3242032 3242033 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits RPD **RPD** Qualifiers 1,2-Dibromoethane (EDB) ug/L 0.25 0.25 0.27 101 109 60-140 7 20 1-Chloro-2-bromopropane (S) % 100 107 60-140

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3242035 3242036 MS MSD 92534563018 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc Result Result % Rec % Rec Limits RPD RPD Qual 1,2-Dibromoethane (EDB) 0.25 ug/L ND 0.25 0.24 0.25 97 60-140 98 20 1-Chloro-2-bromopropane % 98 99 60-140

SAMPLE DUPLICATE: 3242034 92534563017 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 1,2-Dibromoethane (EDB) ND ug/L ND 20 1-Chloro-2-bromopropane (S) 100 % 102

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

QC Batch:

616082

EPA 8011

QC Batch Method: EPA 8011

Analysis Method: Analysis Description:

GCS 8011 EDB DBCP

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534563037, 92534563038

METHOD BLANK: 3242037

92534563037, 92534563038

Associated Lab Samples:

Parameter

Blank Reporting Result

Matrix: Water

Limit

MDL

Analyzed 0.0098 04/26/21 22:26 Qualifiers

1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S) ug/L

Units

Units

ug/L

%

ND 115

0.020 60-140

LCSD

Result

0.27

04/26/21 22:26

LABORATORY CONTROL SAMPLE & LCSD:

Parameter

3242038

3242039 Spike LCS Conc. Result

0.27

LCS LCSD % Rec % Rec 110

107

% Rec Limits

60-140

60-140

Max RPD RPD

4

Qualifiers

1,2-Dibromoethane (EDB)

1-Chloro-2-bromopropane (S)

Parameter

MS

3242041

MSD

3242042

MS

111

106

105

115

20

20

Max Qual

1,2-Dibromoethane (EDB) (S)

1-Chloro-2-bromopropane

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Result ND

Units

ug/L

%

92534581002

Spike Spike Conc. Conc. 0.25 0.25

0.25

MS Result

MSD Result 0.29 0.30

MSD % Rec % Rec 116

% Rec Limits 120 60-140

60-140

RPD **RPD**

3 20

SAMPLE DUPLICATE: 3242040

Units

ug/L

%

Parameter 1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S) 92534581001 Result ND

105

Dup Result ND 108 RPD

Max RPD

Qualifiers

Date: 04/28/2021 10:17 AM

QUALIFIERS

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/28/2021 10:17 AM

L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
P5	The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
S4	Surrogate recovery not evaluated against control limits due to sample dilution.
S5	Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

03538 COASTAL TRUCK STOP 76

Pace Project No.:

92534563

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92534563001	IGWA-R	EPA 8011	615811	EPA 8011	615940
92534563002	MVV-1	EPA 8011	615811	EPA 8011	615940
92534563003	MW-2R	EPA 8011	615811	EPA 8011	615940
92534563004	MVV-3	EPA 8011	615811	EPA 8011	615940
92534563005	MVV-4	EPA 8011	615811	EPA 8011	615940
92534563006	MW-5R	EPA 8011	615811	EPA 8011	615940
92534563007	MVV-6	EPA 8011	615811	EPA 8011	615940
92534563008	MW-7R	EPA 8011	615811	EPA 8011	615940
92534563009	MW-8	EPA 8011	615811	EPA 8011	615940
92534563010	MW-10RRR	EPA 8011	615811	EPA 8011	615940
92534563011	MW-11	EPA 8011	615811	EPA 8011	615940
92534563012	MW-15R	EPA 8011	615811	EPA 8011	615940
92534563013	MW-16R	EPA 8011	615811	EPA 8011	615940
92534563014	MW-17R	EPA 8011	615811	EPA 8011	615940
92534563015	MW-18	EPA 8011	615811	EPA 8011	615940
92534563016	MW-19	EPA 8011	615811	EPA 8011	615940
92534563017	MW-20	EPA 8011	616081	EPA 8011	616234
2534563018	MW-22R	EPA 8011	616081	EPA 8011	616234
2534563019	MW-22D	EPA 8011	616081	EPA 8011	616234
2534563020	MW-24R	EPA 8011	616081	EPA 8011	616234
2534563021	MW-25R	EPA 8011	616081	EPA 8011	616234
2534563022	MW-25D	EPA 8011	616081	EPA 8011	616234
2534563023	MW-26R	EPA 8011	616081	EPA 8011	616234
2534563024	MW-27	EPA 8011	616081	EPA 8011	616234
2534563025	MW-28	EPA 8011	616081	EPA 8011	616234
2534563026	MW-29	EPA 8011	616081	EPA 8011	616234
2534563027	MW-30	EPA 8011	616081	EPA 8011	616234
2534563028	TW-1	EPA 8011	616081	EPA 8011	616234
2534563029	TW-2	EPA 8011	616081	EPA 8011	616234
2534563030	RW-1	EPA 8011	616081	EPA 8011	616234
2534563031	RW-2	EPA 8011	616081	EPA 8011	616234
2534563032	RW-3	EPA 8011	616081	EPA 8011	616234
2534563033	RW-4	EPA 8011	616081	EPA 8011	616234
2534563034	RW-5	EPA 8011	616081	EPA 8011	616234
2534563035	RW-6	EPA 8011	616081	EPA 8011	616234
2534563036	DUPLICATE 1	EPA 8011	616081	EPA 8011	616234
2534563037	DUPLICATE 2	EPA 8011	616082	EPA 8011	616235
2534563038	FIELD BLANK	EPA 8011	616082	EPA 8011	616235
2534563001	IGWA-R	EPA 8260D	615875		
2534563002	MW-1	EPA 8260D	616191		
2534563003	MW-2R	EPA 8260D	615878		
2534563004	MW-3	EPA 8260D	615564		
2534563005	MW-4	EPA 8260D	615878		
2534563006	MW-5R	EPA 8260D	615564		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

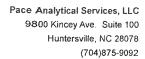
03538 COASTAL TRUCK STOP 76

Pace Project No.:

Date: 04/28/2021 10:17 AM

92534563

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92534563007	MW-6	EPA 8260D	615566		
92534563008	MW-7R	EPA 8260D	615875		
92534563009	MW-8	EPA 8260D	615566		
92534563010	MW-10RRR	EPA 8260D	615564		
92534563011	MW-11	EPA 8260D	615566		
92534563012	MW-15R	EPA 8260D	615564		
92534563013	MW-16R	EPA 8260D	615564		
92534563014	MW-17R	EPA 8260D	615878		
92534563015	MW-18	EPA 8260D	615566		
92534563016	MW-19	EPA 8260D	615566		
92534563017	MW-20	EPA 8260D	615566		
92534563018	MW-22R	EPA 8260D	615564		
92534563019	MW-22D	EPA 8260D	615566		
92534563020	MW-24R	EPA 8260D	615564		
2534563021	MW-25R	EPA 8260D	615564		
2534563022	MW-25D	EPA 8260D	615564		
92534563023	MW-26R	EPA 8260D	615564		
2534563024	MW-27	EPA 8260D	615566		
2534563025	MW-28	EPA 8260D	615566		
2534563026	MW-29	EPA 8260D	615564		
2534563027	MW-30	EPA 8260D	615564		
2534563028	TW-1	EPA 8260D	615566		
2534563029	TW-2	EPA 8260D	615566		
2534563030	RW-1	EPA 8260D	616191		
2534563031	RW-2	EPA 8260D	615878		
2534563032	RW-3	EPA 8260D	615875		
2534563033	RW-4	EPA 8260D	615878		
2534563034	RW-5	EPA 8260D	615875		
2534563035	RW-6	EPA 8260D	615560		
2534563036	DUPLICATE 1	EPA 8260D	615878		
2534563037	DUPLICATE 2	EPA 8260D	615878		
2534563038	FIELD BLANK	EPA 8260D	615566		
2534563039	TRIP BLANK 1	EPA 8260D	615566		
2534563040	TRIP BLANK 2	EPA 8260D	615566		


er Number or		_		zinc acetate,	ın sulfate,	hecklist:	A PACE	N 14 14	ZGZ K KK	2)8"		X. N W.		N & N		100	C2C2	W 00	ているしい	300		さら シーク	(200)	perature Info:	Temp Blank Received: Y (N/ NA Therm ID#: (12(12/4) Cooler 1 Temp Unon Receipt (13)		Comments:	eived: X N NA TSP Other	nce(s): Page:
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		drachlaric acid, (4) sodium hydroxide, (5	e) hexane, (A) ascorbic acid, (B) ammoniter	Lab Profile/Line: Lab Sample Receipt Checklist:	Custody Seals Present/Intact Custody Signatures Present Collector Signature Present	Bottles Intact Correct Bottles Sufficient Volume	Samples Received on Ice VOA - Headspace Acceptable USDA Regulated Soils	Samples in Holding Time Residual Chlorine Present Cl Strips:	Sample pH Acceptable pH Strips:	Sulfide Present Lead Acetate Strips:	N a	STE SZ17	1 27.00	100 00cm	したら	dolor	5/1/2/1/20	パルジュー	100 /2	られてり	3	N/A Lab		Cooler 1 Ther		Arth Blank Received: HCL MeOH	Non Conformance(s):
MD标: 92534563		92534563	Container Preservative type	ypes: (1) nitric acid, (2) sulfuric acid, (3) hy	(d) incuranto, (/) sociulti oscinate, (d) Socium triosultate, (5) nexane, (A) ascorbic acid, (B) ammonium suffate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Analyses									Monte and the second se									SHORT HOLDS PRESENT (<72 hours): Y (N	king #: 2615905	elved via; UPS Client Courier	me: MTJL LA	Date/Time: Template:	
	ent fields			** Preservative	7	, 5	oring?		d on Ice:	olicable):	4	(WW),	Res # of Ctns Ctns	T	1 经食物	シャ								Dry None SHORT	S Lab Tracking #:	Y N (MA)			ignature)
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information:		原	Site Callection info/Address; (724)	County/City: Time Zone Collected:	mplia Yes	DW PWS ID #: DW Location Code:	Immediately Packed on Ice.	Field Filtered ay [] Yes	[] 5 Day	und Water (GW), Wastewater (V Bioassay (B), Vapor (V), Other (O	Collected (or Composite End	Time Date Time	The second secon	Sec. 1		75.27	0000		10.27	25.2		Net) Blue	Packing Material Used:	Radchem sample(s) screened (<500 cpm):	(2-35 Received by/Company, (Signature)	1520 (A) P.A. E LEV	Received by/Compar
CHAIN-OF-CUSTODY	Chain-of-Custody is a LEGAL	Billing Inf	*5	Email To:	Site Calle		Site/Facility ID #:	Purchase Order #: Quote #:	Turnaround Date Required:	Rush: [] Same Day [] Next Day	[] 2 Day [] 3 Day [] 4 Day (Expedite Charges Apply)	elow): Drinking Water (DW), Gro Wipe (WP), Air (AR), Tissue (TS),	Matrix * Grab Compo	Date		JUN (0 1/242	***************************************								Packing	Radchen	MACC Date/Time:		Date/Time:
8	Face Analytical	Company: A ECT	Address: 231 DOVICE RU	Report To: (2. 5 hone	Copy To:	Customer Project Name/Number:		Collected By (pript): Pur	Collected By (signature): Tu	posal: s appropriate [Return	[] Hold:	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (St), Oil (OU), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID		1070	ンプラン・ドスト	12.57	さんがなく		メルトラインスメ	745-60	ろうころ	355	Customer Remarks / Special Conditions / Possible Hazards:			2	Reinquished by/Company/(Signature)	Ke <u>N</u> nquished by/Company: (Signature)

J. 000 Cooler 1 Therm Corr. Factor: O oc Cooler 1 Therm Corr. Factor: O oc Cooler 1 Corrected Temp: 3-3 oc O. C. ¥ AN (S) 336555556 22222222 22465555 10 0.0 Y N NA ナイ Other Page: Lab Sample Temperature Info: of: Temp Blank Received: Y ber or ** Preservative Types; (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other Custody Seals Present/Intact Custody Signatures Present Collector Signature Present Lab Profile/Line: Lab Sumple Receipt Checklist: Trip Blank Received: (V) VOA - Headspace Acceptable USDA Regulated Soils Samples in Holding Time Residual Chlorine Present Non Comprmance(s): LAB USE ONLY: Lab Sample # / Comments; Samples Received on Ice Cl Strips: Sample pH Acceptable Lead Acetate Strips: 3 garcer Due Date: 04/28/21 Sufficient Volume pH Strips: Sulfide Present Bottles Intact Correct Bottles 20 02 SO Lab Project Manager: WO#: 92534563 0 20 DU ace Courier MTIL CARGOOT CLIENT: 92-MIDLAND Z 2615792 Z × Courier Template: (cctnum; Prefogin: Table #: Container Preservative Type ** SHORT HOLDS PRESENT (<72 hours): PB: Client 032 Analyses Samples received via: UPS LAB USE O スススラ ab Tracking #: Date/Time: Date/Time: 12/12/1 FEDEX 2000 5/10 X 3 # of Ctns State: County/Gity: Imme Lovine County/Gity: 0 プロイン Received by/Company: (Signature) None Received by/Company: (Signature) deceived by/Company: (Signature) CHAIN-OF-CUSTODY Analytical Request Document Z Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields Res Mallas mmediately Packed on Ice. Field Filtered (if applicable) Radchem sample(s) screened (<500 cpm): Y Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Compliance Monitoring? ρ Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT) DW Location Code: Composite End えばら poplar Dad Blue DW PWS ID #: Josh Analysis: Z Yes Date Yes Site Collection Info/Address: Wet. (g) 100 Packing Material Used 116 [12 Day [13 Day []4 Day []5 Day 05.00 0.50 Time 9 Billing Information: Composite Start) Type of Ice Used: Email To: 1/ Collected (or [] Same Day [] Next Day 1/2000 2/20/2 Date (Expedite Charges Apply) Date/Time: Date/Time 727 Turnaround Date Required: Comp / Grab Sustomer Remarks / Special Conditions / Possible Hazards: Ð Legitariiniy 15 % Purchase Order #: Site/Facility ID #: Matrix * 3 0 Quote #: Rush: Stop Addished by/Company; (Signature) Religiushed by/Company: (Signature) elinquished by Company (Signature このだい | Dispose as appropriate [] Return Sustamer Project Name/Number 山でして / Wartas Pace Analytical てるのへ (T) Collected By (signature): 2010人の大か ベーミン Customer Sample ID 3 てくらい のことって Collected By (print): 丁くくろ 1 1555 こくくこ 5 sample Disposal: 1 126 クラン Costa Address: Archive: Report To: Company: 5 5 Copy To: Phone: Email:

	CHAIN-OF-CUSTODY Analytical Req	JSTODY /	Analytic	al Reques	uest Document	ent		LAB US	: 240	925	WO#: 92534563	~	lumber or	
Pace Analytical	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	ly is a LEGAL I	DOCUMENT	- Complete all	relevent field	s		à	PM: AMB	3	Due Date: 04/28/21	14/28/21		7
Sompany:		Billing Information:	rmation:					ರ	TENT:	CLIENT: 92-MIDLAND	Q			
Address:		T				<u>l l </u>	6	Contain			Lau Proje	Lau Project Manager:		Marketin Linear Community of the Communi
Report To: Shave		Email 2	Email To:	エボ・			Preservativ 6) methanol,	e Types: (1) nit (7) sodium bisi	ric acid, (2) su ulfate, (8) sodi	furic acid, (3) hy um thiosulfate, (9	frochloric acid, (4) hexane, (A) asco	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (8) ammonium sulfate,	, (5) zinc acetate, onium sulfate,	
}		Site Collec	tion Info/Ac	Site Collection Info/Address:	ナンキら	1	C) ammoniun	hydroxide, (C	D) TSP, (U) Unp Analyses	(C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other Analyses	lab Prof	lle/Line:		
Customer Project Name/Number:		State:	County/City:	y: Time Z	me Zone Collected:	jej L	8				Lab Sample	ample Receipt	t Checklist:	
CO45ttack 19	y ID #:		WOO I	pliar	ce Monitoring?		097	le jui			Custo	Custody Seals Present/Intact Custody Signatures Present Collector Signature Present	sent/Intact s Present re Present	AN AN AN AN AN AN AN AN AN AN AN AN AN A
Email: Collected Bv (print):	レスナ オロシ Purchase Order #:	7,7		DW PWS ID #:	1 120		P 2				Bottles	les Intact		
Chris Hanson	Quote #:			DW Location Code:	Code:		hy					Sufficient Volume Samples Received on Loc	on Ice	z zC
Collected By (signature):	Turnaround Date Required:	uired:		Immediately Packed on Ice: [] Yes	Packed on Ice [] No		o V.				VOA	VOA – Headspace Acceptable USDA Regulated Soils Samples in Holding Time	cceptable ils q Time	13
Sample Disposal: Dispose as appropriate Return	<u>~</u>	[] Next Day	1 2	Field Filtered (if applicable): [] Yes [] No	(if applicable [] No		7Q 7				Resi Cl S Samp	Residual Chlorine Present Cl Strips: Sample pH Acceptable	Present	Y W WA
Archive;	[2 Day 3 Day 14 Day Expedite Charges Apply)	[3 Day 4 Day (Expedite Charges Apply)	ken c f 1	Analysis:			-()				pH S	pH Strips: Sulfide Present		Y N WA
* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	ox below): Drinking Wat	er (DW), Gro	und Water (Bioassay (B),	GW), Wastew: Vapor (V), Otl	ater (WW), her (OT)		198 MM				LAB	Lead Acetate Strips: LAB USE ONLY:	:541	>
	/ Comp /	/ Collec	Collected (or	Composite		Res # of	हुर हुर्				Lab	Lab Sample # / Comments:	omments:	
Customer Sample ID	Matrix * Grab		Composite Start) Date Time	-	Time		181 13					21/2	S. 1) S. L. ES. 26	M
14 Nav. 7.			1 1	H		4					\$ 	SWV		
		12/2/2	11: 5v			-	×				S.	no odor	210	
			11:36			No. aginera il l				5.1	2002	o adul	010	
37-776			10:27								NO	yorko o	0.20	
,	**************************************		10:78	-nes		Ki danga ,					200	2 adlor	02	
1 1 1	entainen sa	one aggress	10:32	Lest.			2000 Marce 1 1				200		Co	
mu 26R			77.01								NO Y	odor.	21	M
アン・シブ			10:15					10 1			3	10 dour	770	7 1/2
82.30	ラ	>	10:5%			١.	3)				Z .	NO Oder	200	
N. V. 20 (Second Conditions / Boscible Harande	Secretary of the second	T	Type of Ice Used:	/Wet / Blue	e Dry	None	시 시	SHORT HOLDS PRESENT (<72 hours):	ESENT (<72	- >-	N/A N/A	V & C A C A C A C A C A C A C A C A C A C	Lab Sample Temperature Info	fo:
Customer Remarks / Special Cond	IIIIONS / FOSSIOIE NAZALO		Packing Material Used		- 8		Lab	Lab Tracking #:		ì		Temp Bla	Thom 104. O'H Co. Y (N) NA	C NA
			0	公	c bash					JERRT97)	Cooler 1	Temp Upon Re	Cooler 1 Temp Upon Receipt: 2.3.oc O.1
		Radcher	n sample(s)	V Radchem sample(s) screened (<500 cpm):	0 cpm); Y	NAN	$\overline{}$	Samples received via FEDEX UPS	ed via; UPS Client	Ŝ	Pace Courier	Cooler 1 Cooler 1	Cooler 1 Therm Corr. Factor: Cooler 1 Corrected Temp:	19: 00 XX :00.4
Reimquerfed by Company: Rignature	で多	Date/Time:	6:33	Received by/Company: (Signature)	Company: (Signa	gnature)		Date/Time: 4/21/21	1035	MTJL Č Table #:	MTJL CAB-USE ONLY #:	Comments:	ıts:	
Relinfulished by/Company/(Stenature)		Date/Time: 4/21/21	1520	Received by/	Received by/Company: (Signature)	gnature)		Date/Time:	E	Template:		Trip Blan	Trip Blank Received: The HCL MeOH TSP	N NA Other
Refinquished by/Company: (Signature)		Date/Time:		Received by/	Company: (S	gnature)		Date/Time:		PM:		Non Confo	rmance(s): / NO	Page: of:

Company:		or or minimal services	Chair-Or-Col OD1 Analytical Request Document	COCやCCZの: 対OM	irkorder Number or
	nain-of-Custody	Chain-of-Custody is a LEGAL DOCUMENT - Complete	omplete all relevent fields	PM: AMB Due Date: 04/28/21	28/21
M&C. 74. 00019. 72.1	Alexander of the later of the l			CLIENT: 92-MIDLAND	DNLY Lab Project Manager:
Shane		Email To: C Mecian		** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (8) ammonium sulfate,	id, (4) sodium hydroxide, (5) zinc acetate, s) escorbic acid, (8) ammonium sulfate,
		3		.) arnmonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other Analyses	Pas El = H :
Coxx Fro 76		State: County/City:	Time Zone Collected:	ET CSCAUNTY	· ·
Phone: Site/Facility ID #: Email: なな 中	250	8 -	Compliance Monitoring?	ons	Present X N
Collected By (print): Purchase Order #:			DW PWS ID #: DW Location Code:		ZZZ KKK
(signature):	Turnaround Date Required;		Immediately Packed on Ice:		reptable (VN)
Sample Disposal: [Dispose as appropriate [] Return [Archive:	ush: [] Same Day [] Next E [] 2 Day [] 3 Day [] 4 Day [Fynedise Chares Annou	[] Next Day [] 4 Day [] 5 Day	terei	100	ime (Y) N esent Y N
Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bloassav (B), Vanor (V), Other (OT)	Drinking Water VP), Air (AR), T	(DW), Ground Water (GW)	, Wastewater (WW),	8 8	Sulfide Present Lead Acetate Strips:
Customer Sample ID Matrix *	Comp/	Collected (or Composite Start)	Composite End Cl Ctris	X3153	LAB USE ONLY: Lab Sample # / Comments:
Dualitore 7 Gw	5	87: M1 17	+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.5000
Field Black		19:16			7. C C X
Thorsance		\$:00	~		5
राज ५ छोष गर् २		30:4	7		2:5
Customer Remarks / Special Conditions / Possible Hazards:	sible Hazards:	Type of Ice Used: (Wet	Blue Dry None	SHORT HOLDS PRESENT (<72 hours): Y (N) N/A	Lab Sample Temperature Info:
		Packing Material Used:	c hags	Lab Tracking #. 2615791	Therm IDH: Grading 4 D NA Therm IDH: Grading 40 Cooler 1 Temp Upon Receipt: 7-8 oc
Belimqushed-qy/Company (Signature)	Dat	Radchem sample(s) screened (<500 cpM): Date/Time:	creened (<500 cph): Y N (NA)	d via; IPS Client Co	Cooler 1 Therm Corr, Factor: 2 Cooler 1 Corrected Temp: 2 S
M. C. W. C.	1	(0:35		1/3/2) 1035 Table #:	Comments:
Solo Sh Mall q5	Date	131 1520	ACTION (Signature)	1578	Trip Blank Received: (Y) N NA
				Date/ Time: PM; PM; PB;	Non Conformance(s): Page:

Pace Analytical"		
,	Sample Receiving Non-Co	onformance Form (NCF)
	valuated by: ++ N	₩0#:92534563 'ace
Client: MECI		PM: AMB Due Date: 04/28/21 CLIENT: 92-MIDLAND
1. If Chain-of-Custody (COC) i lab personnel. Note issues on th	is not received: contact client and if nis NCF.	if necessary, fill out a COC and indicate that it was filled out by
2. If COC is incomplete, check	capplicable issues below and add	d details where appropriate:
Collection date/time missing or incorrect	Analyses or analytes; missing or clarification needed	Samples listed on COC do not match samples received (missing, additional, etc.)
Sample IDs on COC do not match sample labels Comments/Details/Other Issue	Required trip blanks were not rece	eived Required signatures are missing
3. Sample integrity issues: ch	eck applicable issues below and a	add details where appropriate:
Samples: Past holding time	Samples: Condition needs to be b lab personnel's attention (details b	below) Preservation: Improper
Samples: Not field filtered	Containers: Broken or compromise	Temperature: not within acceptance criteria (typically o-6C)
Samples: Insufficient volume received	Containers: Incorrect	Temperature: Samples arrived frozen
Samples: Cooler damaged or compromised	Custody Seals: Missing or compro samples, trip blanks or coolers	omised on V-Vials received with improper headspace
Samples: contain chlorine or sulfides	Packing Material: Insufficient/Impr	roper Other.
	swing semples how're mp. Rw-3, I vial mRW-4.	
4. If Samples not preserved pr	roperly and Sample Receiving adju	
Sample ID:	Date/Time:	Amount/type pres added:
Preserved by:	Initial and Final pH:	Lot # of pres added:
Sample ID:	Date/Time:	Amount/type pres added:
Preserved by:	Initial and Final pH:	Lot # of pres added:
Sample ID:	Date/Time:	Amount/type pres added:
Preserved by:	Initial and Final pH:	Lot # of pres added:
5. Client Contact: If client is co	ontacted for any issue listed abov	/e, fill in details below:
Client:	Contacted per:	
PM Initials:	Date/Time:	
Client Comments/Instructions	s:	

April 28, 2021

Mr. Bryan Shane Midlands Environmental PO Box 854 Lexington, SC 29071

RE:

Project:

Coastal 76 03538

Pace Project No.: 92534730

Dear Mr. Shane:

Enclosed are the analytical results for sample(s) received by the laboratory on April 21, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Mr. Jeff Coleman, Midlands Environmental Mr. Kyle Pudney, Midlands Environmental

CERTIFICATIONS

Project:

Coastal 76 03538

Pace Project No.:

92534730

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706

North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627

Kentucky UST Certification #: 84

Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project:

Coastal 76 03538

Pace Project No.:

92534730

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92534730001	WSW-1	Water	04/20/21 15:25	04/21/21 10:35
92534730002	WSW-1 DUP	Water	04/20/21 15:25	04/21/21 10:35
92534730003	WSW-FIELD BLANK	Water	04/20/21 15:30	04/21/21 10:35
92534730004	WSW-TRIP BLANK	Water	04/20/21 08:00	04/21/21 10:35

SAMPLE ANALYTE COUNT

Project:

Coastal 76 03538

Pace Project No.:

92534730

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92534730001	WSW-1	EPA 504.1	HH	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	NSCQ	11	PASI-C
92534730002	WSW-1 DUP	EPA 504.1	НН	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	NSCQ	11	PASI-C
2534730003	WSW-FIELD BLANK	EPA 504.1	НН	2	PASI-C
		EPA 524.2	LMB	11	PASI-C
		EPA 8260D	NSCQ	11	PASI-C
2534730004	WSW-TRIP BLANK	EPA 524.2	LMB	11	PASI-C
		EPA 8260D	NSCQ	11	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project:

Coastal 76 03538

Pace Project No.:

Date: 04/28/2021 02:04 PM

92534730

Sample: WSW-1	Lab ID:	92534730001	Collected	1: 04/20/21	15:25	Received: 04	/21/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP		Method: EPA 5		ration Meth	od: EP/	A 504.1			
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.013	1	04/27/21 14:38	04/27/21 17:30	106-93-4	
1-Chloro-2-bromopropane (S)	98	%	70-130		1	04/27/21 14:38	04/27/21 17:30	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		04/26/21 19:30	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		04/26/21 19:30		
Ethylbenzene	ND	ug/L	0.50	0.22	1		04/26/21 19:30	100-41-4	
Methyl-tert-butyl ether	2.2	ug/L	0.50	0.14	1		04/26/21 19:30		
Naphthalene	ND	ug/L	0.50	0.35	1		04/26/21 19:30		
Toluene	ND	ug/L	0.50	0.20	1		04/26/21 19:30		
Xylene (Total)	ND	ug/L	0.50	0.22	1		04/26/21 19:30		
m&p-Xylene	ND	ug/L	1.0	0.39	1		04/26/21 19:30		
o-Xylene	ND	ug/L	0.50	0.22	1		04/26/21 19:30		
Surrogates		~ 3 / =	0.00	0.22	•		04/20/21 15.50	33-47-0	
1,2-Dichlorobenzene-d4 (S)	94	%	70-130		1		04/26/21 19:30	2199-69-1	
1-Bromofluorobenzene (S)	90	%	70-130		1		04/26/21 19:30		
3260 MSV Low Level SC	Analytical I	Method: EPA 82	260D						
	•	tical Services -							
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		04/24/21 07:15	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		04/24/21 07:15	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		04/24/21 07:15		
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		04/24/21 07:15		
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		04/24/21 07:15		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		04/24/21 07:15		
Ethanol	ND	ug/L	200	72.2	1		04/24/21 07:15		
Ethyl-tert-butyl ether Surrogates	ND	ug/L	10.0	3.2	1		04/24/21 07:15		
-Bromofluorobenzene (S)	91	%	70-130		1		04/24/21 07:15	460-00-4	
,2-Dichloroethane-d4 (S)	100	%	70-130		1		04/24/21 07:15		
oluene-d8 (S)	101	%	70-130		1		04/24/21 07:15		

Project:

Coastal 76 03538

Pace Project No.: 92534730

Date: 04/28/2021 02:04 PM

Sample: WSW-1 DUP	Lab ID:	92534730002	Collected	: 04/20/21	15:25	Received: 04	/21/21 10:35 N	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepar	ation Meth	od: EP	A 504.1			
		ytical Services							
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	0.013	1	04/27/21 14:38	04/27/21 17:46	5 106-93-4	
Surrogates									
1-Chloro-2-bromopropane (S)	99	%	70-130		1	04/27/21 14:38	04/27/21 17:46	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	tical Services -	Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		04/26/21 19:56	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		04/26/21 19:56		
Ethylbenzene	ND	ug/L	0.50	0.22	1		04/26/21 19:56		
Methyl-tert-butyl ether	4.9	ug/L	0.50	0.14	1		04/26/21 19:56		
Naphthalene	ND	ug/L	0.50	0.35	1		04/26/21 19:56		
Toluene	ND	ug/L	0.50	0.20	1		04/26/21 19:56		
Xylene (Total)	ND	ug/L	0.50	0.22	1		04/26/21 19:56		
m&p-Xylene	ND	ug/L	1.0	0.39	1		04/26/21 19:56		
o-Xylene	ND	ug/L	0.50	0.22	1		04/26/21 19:56		
Surrogates		-3	0.00	0.2.2	•		04/20/21 15.50	93-47-0	
1,2-Dichlorobenzene-d4 (S)	97	%	70-130		1		04/26/21 19:56	2199-69-1	
4-Bromofluorobenzene (S)	94	%	70-130		1		04/26/21 19:56		
3260 MSV Low Level SC	Analytical N	/lethod: EPA 82	60D						
		tical Services -							
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		04/24/21 07:33	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		04/24/21 07:33	994-05-8	
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		04/24/21 07:33		
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		04/24/21 07:33		
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		04/24/21 07:33		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		04/24/21 07:33		
thanol	ND	ug/L	200	72.2	1		04/24/21 07:33		
Ethyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		04/24/21 07:33		
Surrogates		Ü			-			007 02-0	
-Bromofluorobenzene (S)	91	%	70-130		1		04/24/21 07:33	460-00-4	
,2-Dichloroethane-d4 (S)	99	%	70-130		1		04/24/21 07:33		
oluene-d8 (S)	100	%	70-130		1		04/24/21 07:33		

Project:

Coastal 76 03538

Pace Project No.:

Date: 04/28/2021 02:04 PM

92534730

Sample: WSW-FIELD BLANK	Lab ID:	92534730003	Collected:	04/20/2	1 15:30	Received: 04	/21/21 10:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Meth	od: EP/	A 504.1			
	Pace Anal	lytical Services	- Charlotte						
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.020	0.013	1	04/27/21 14:38	04/27/21 18:01	106-93-4	
1-Chloro-2-bromopropane (S)	94	%	70-130		1	04/27/21 14:38	04/27/21 18:01	301-79-56	
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		04/26/21 16:53	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		04/26/21 16:53	107-06-2	
Ethylbenzene	ND	ug/L	0.50	0.22	1		04/26/21 16:53	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		04/26/21 16:53	1634-04-4	
Naphthalene	ND	ug/L	0.50	0.35	1		04/26/21 16:53		
Toluene	ND	ug/L	0.50	0.20	1		04/26/21 16:53		
(Ylene (Total)	ND	ug/L	0.50	0.22	1		04/26/21 16:53		
m&p-Xylene	ND	ug/L	1.0	0.39	1		04/26/21 16:53		
-Xylene	ND	ug/L	0.50	0.22	1		04/26/21 16:53		
Surrogates		~g/_	0.00	0.22	•		0-1/20/21 10:00	33-47-0	
I,2-Dichlorobenzene-d4 (S)	95	%	70-130		1		04/26/21 16:53	2199-69-1	
I-Bromofluorobenzene (S)	95	%	70-130		1		04/26/21 16:53		
3260 MSV Low Level SC	Analytical I	Method: EPA 82	260D						
		rtical Services -							
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		04/24/21 06:21	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		04/24/21 06:21	994-05-8	
,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		04/24/21 06:21	624-95-3	
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		04/24/21 06:21		
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		04/24/21 06:21		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		04/24/21 06:21		
Ethanol	ND	ug/L	200	72.2	1		04/24/21 06:21		
thyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		04/24/21 06:21		
-Bromofluorobenzene (S)	93	%	70-130		1		04/24/21 06:21	460-00-4	
,2-Dichloroethane-d4 (S)	100	%	70-130		1		04/24/21 06:21		
oluene-d8 (S)	101	%	70-130		1		04/24/21 06:21		

Project:

Coastal 76 03538

Pace Project No.:

Date: 04/28/2021 02:04 PM

92534730

Sample: WSW-TRIP BLANK	Lab ID:	92534730004	Collected	: 04/20/2	1 08:00	Received: 0	4/21/21 10:35 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
524.2 MSV SC List	Analytical	Method: EPA 5	24.2						
	Pace Anal	ytical Services	- Charlotte						
Benzene	ND	ug/L	0.50	0.21	1		04/26/21 17:19	71-43-2	
1,2-Dichloroethane	ND	ug/L	0.50	0.16	1		04/26/21 17:19	· · · -	
Ethylbenzene	ND	ug/L	0.50	0.22	1		04/26/21 17:19		
Methyl-tert-butyl ether	ND	ug/L	0.50	0.14	1		04/26/21 17:19		
Naphthalene	ND	ug/L	0.50	0.35	1		04/26/21 17:19		
Toluene	ND	ug/L	0.50	0.20	1		04/26/21 17:19		
Xylene (Total)	ND	ug/L	0.50	0.22	1		04/26/21 17:19		
m&p-Xylene	ND	ug/L	1.0	0.39	1		04/26/21 17:19		
o-Xylene	ND	ug/L	0.50	0.22	1		04/26/21 17:19		
Surrogates		•						00 17 0	
1,2-Dichlorobenzene-d4 (S)	96	%	70-130		1		04/26/21 17:19	2199-69-1	
4-Bromofluorobenzene (S)	93	%	70-130		1		04/26/21 17:19	460-00-4	
8260 MSV Low Level SC	Analytical I	Method: EPA 82	260D						
	Pace Analy	rtical Services -	Charlotte						
ert-Amyl Alcohol	ND	ug/L	100	36.4	1		04/24/21 06:03	75-85-4	
ert-Amylmethyl ether	ND	ug/L	10.0	2.7	1		04/24/21 06:03		
3,3-Dimethyl-1-Butanol	ND	ug/L	100	51.9	1		04/24/21 06:03		
ert-Butyl Alcohol	ND	ug/L	100	26.8	1		04/24/21 06:03		
ert-Butyl Formate	ND	ug/L	50.0	29.4	1		04/24/21 06:03		
Diisopropyl ether	ND	ug/L	1.0	0.31	1		04/24/21 06:03		
Ethanol	ND	ug/L	200	72.2	1		04/24/21 06:03		
thyl-tert-butyl ether	ND	ug/L	10.0	3.2	1		04/24/21 06:03		
Gurrogates									
-Bromofluorobenzene (S)	96	%	70-130		1		04/24/21 06:03	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130		1		04/24/21 06:03	17060-07-0	
oluene-d8 (S)	101	%	70-130		1		04/24/21 06:03	2037-26-5	

Project:

Coastal 76 03538

Pace Project No.:

92534730

QC Batch:

616205

Analysis Method:

EPA 524.2

QC Batch Method:

EPA 524.2

Analysis Description:

524.2 MSV

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92534730001, 92534730002, 92534730003, 92534730004

METHOD BLANK: 3242855

Matrix: Water

Associated Lab Samples:

Date: 04/28/2021 02:04 PM

92534730001, 92534730002, 92534730003, 92534730004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	ND .	0.50	0.16	04/26/21 14:42	
Benzene	ug/L	ND	0.50	0.21	04/26/21 14:42	
Ethylbenzene	ug/L	ND	0.50	0.22	04/26/21 14:42	
m&p-Xylene	ug/L	ND	1.0	0.39	04/26/21 14:42	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.14	04/26/21 14:42	
Naphthalene	ug/L	ND	0.50	0.35	04/26/21 14:42	
o-Xylene	ug/L	ND	0.50	0.22	04/26/21 14:42	
Toluene	ug/L	ND	0.50	0.20	04/26/21 14:42	
Xylene (Total)	ug/L	ND	0.50	0.22	04/26/21 14:42	
1,2-Dichlorobenzene-d4 (S)	%	97	70-130		04/26/21 14:42	
4-Bromofluorobenzene (S)	%	93	70-130		04/26/21 14:42	

LABORATORY CONTROL SAMPLE:	3242856					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane	ug/L	20	20.5	102	70-130	
Benzene	ug/L	20	20.5	103	70-130	
Ethylbenzene	ug/L	20	20.7	104	70-130	
m&p-Xylene	ug/L	40	42.5	106	70-130	
Methyl-tert-butyl ether	ug/L	20	20.1	101	70-130	
Naphthalene	ug/L	20	19.6	98	70-130	
o-Xylene	ug/L	20	20.6	103	70-130	
Toluene	ug/L	20	21.6	108	70-130	
Xylene (Total)	ug/L	60	63.0	105		
1,2-Dichlorobenzene-d4 (S)	%			100	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	

Project:

Coastal 76 03538

Pace Project No.:

92534730

QC Batch:

615838

Analysis Method:

EPA 8260D

QC Batch Method:

EPA 8260D

Analysis Description:

8260 MSV Low Level SC

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

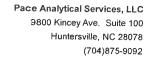
92534730001, 92534730002, 92534730003, 92534730004

METHOD BLANK: 3240787

Matrix: Water

Associated Lab Samples: 92534730001, 92534730002, 92534730003, 92534730004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	ND	100	51.9	04/23/21 22:31	
Diisopropyl ether	ug/L	ND	1.0	0.31	04/23/21 22:31	
Ethanol	ug/L	ND	200	72.2	04/23/21 22:31	
Ethyl-tert-butyl ether	ug/L	ND	10.0	3.2	04/23/21 22:31	
tert-Amyl Alcohol	ug/L	ND	100	36.4	04/23/21 22:31	
tert-Amylmethyl ether	ug/L	ND	10.0	2.7	04/23/21 22:31	
tert-Butyl Alcohol	ug/L	ND	100	26.8	04/23/21 22:31	
tert-Butyl Formate	ug/L	ND	50.0	29.4	04/23/21 22:31	
1,2-Dichloroethane-d4 (S)	%	100	70-130		04/23/21 22:31	
4-Bromofluorobenzene (S)	%	93	70-130		04/23/21 22:31	
Toluene-d8 (S)	%	100	70-130		04/23/21 22:31	


LABORATORY CONTROL SAMPLE:	3240788					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
3,3-Dimethyl-1-Butanol	ug/L	1000	885	89	70-130	
Diisopropyl ether	ug/L	50	44.5	89	70-130	
Ethanol	ug/L	2000	1860	93	70-130	
Ethyl-tert-butyl ether	ug/L	100	91.4	91	70-130	
tert-Amyl Alcohol	ug/L	1000	843	84	70-130	
tert-Amylmethyl ether	ug/L	100	88.7	89	70-130	
tert-Butyl Alcohol	ug/L	500	416	83	70-130	
tert-Butyl Formate	ug/L	400	346	87	70-130	
1,2-Dichloroethane-d4 (S)	%			96	70-130	
4-Bromofluorobenzene (S)	%			97	70-130	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	JCATE: 3240	789		3240790)		•				
			MS	MSD								
		92534802001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
3,3-Dimethyl-1-Butanol	ug/L	ND	400	400	494	470	124	117	39-157	5	30	
Diisopropyl ether	ug/L	ND	20	20	25.3	23.6	127	118	63-144	7	30	
Ethanol	ug/L	ND	800	800	1130	1080	141	135	39-176	4	30	
Ethyl-tert-butyl ether	ug/L	ND	40	40	53.1	49.4	133	123	66-137	7	30	
tert-Amyl Alcohol	ug/L	ND	400	400	487	466	122	116	54-153	5	30	
tert-Amylmethyl ether	ug/L	ND	40	40	48.7	45.3	122	113	69-139	7	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

Coastal 76 03538

Pace Project No.:

Date: 04/28/2021 02:04 PM

92534730

MATRIX SPIKE & MATRIX SP	PIKE DUPI	LICATE: 3240	789		3240790)						
Parameter	Units	92534802001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
tert-Butyl Alcohol	ug/L	ND ND	200	200	275	275	138	137	43-188	0	30	
tert-Butyl Formate	ug/L	ND	160	160	192	162	120	101	10-170	17	30	
1,2-Dichloroethane-d4 (S)	%						112	110	70-130		00	
4-Bromofluorobenzene (S)	%						100	101	70-130			
Toluene-d8 (S)	%						99	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Page 11 of 17

Project:

Coastal 76 03538

Pace Project No.:

92534730

QC Batch:

02004700

O Daton.

616500

Analysis Method:

EPA 504.1

QC Batch Method:

EPA 504.1

Analysis Description:

GCS 504 EDB DBCP

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

s: 92534730001, 92534730002, 92534730003

Matrix: Water

METHOD BLANK: 3244133
Associated Lab Samples: 0

Date: 04/28/2021 02:04 PM

Associated Lab Samples: 92534730001, 92534730002, 92534730003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	ND	0.021	0.013	04/27/21 15:12	
1-Chloro-2-bromopropane (S)	%	93	70-130		04/27/21 15:12	

LABORATORY CONTROL SAMPLE & LO	CSD: 3244134		32	244135						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	0.26	0.24	0.26	92 92	98 99	70-130 70-130	9	20	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3244	1136		3244137	7						
Parameter	Units	92534588001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND	0.26	0.26	0.27	0.26	102 96	100 94	65-135 70-130	2	20	

SAMPLE DUPLICATE: 3244138						
Parameter	Units	92534588002 Result	Dup Result	RPD	Max RPD	Qualifiers
1,2-Dibromoethane (EDB) 1-Chloro-2-bromopropane (S)	ug/L %	ND 101	ND 101		20	0

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project:

Coastal 76 03538

Pace Project No.:

92534730

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.


A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 04/28/2021 02:04 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Coastal 76 03538

Pace Project No.:

Date: 04/28/2021 02:04 PM

92534730

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92534730001 92534730002 92534730003	WSW-1 WSW-1 DUP WSW-FIELD BLANK	EPA 504.1 EPA 504.1 EPA 504.1	616500 616500 616500	EPA 504.1 EPA 504.1 EPA 504.1	616529 616529 616529
92534730001 92534730002 92534730003 92534730004	WSW-1 WSW-1 DUP WSW-FIELD BLANK WSW-TRIP BLANK	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	616205 616205 616205 616205		010023
92534730001 92534730002 92534730003 92534730004	WSW-1 WSW-1 DUP WSW-FIELD BLANK WSW-TRIP BLANK	EPA 8260D EPA 8260D EPA 8260D EPA 8260D	615838 615838 615838 615838		

Bemindsises & Company Signature) Relinquished by/Company Signature) Relinquished by/Company: (Signature) Relinquished by/Company: (Signature) Dat Dat Date Description:	Collected By (print): Collected By (print): Collected By (signature): Compsile Figure (if applicated for Composite Start): Composite Start	Company: Company: Company: Company: Company: Company: Control: Report To: Copy To: Copy To: Customer Project Name/Number: Coostal 71 Phone: Email: Site/Facility ID #:
Packing Marcrial Lised: Radchen sample(s) screened (x500 cpin): Y N. (NA) Pare/Time: Received by/Company: (Signature) Pare/Time: Received by/Company: (Signature) Received by/Company: (Signature) Received by/Company: (Signature) Received by/Company: (Signature)	Cao Cas	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields Billing Information: Email To: Delle Puc J. NCX Site Collection Info/Address: County/Cty: Time Zone Collected: Shate: County/Cty: Time Zone Collected: Shate: Connoliance Montrolected: Facility ID #: Connoliance Montrolected:
SHORT HOUSE SINE SERVIT (57 Z hours): Y (.W. N/A Lab Sample Temper Lab Stracking # 2.6.1.5.9(0.4 Temp Blank Reconstruction of the Property Lab Stracking # 2.6.1.5.9(0.4 Temp Blank Reconstruction of the Property Lab Sample Temp by Cooler 3 therm of Cooler 3 therm o		LAB MO#: 92534730 LOTIL Preservative Types; (1) liftic ced, (2) softum thoselface, (9) hexane, (A) accords; edd, (8) ammonium hydroxida-(0) TSP, (U) Unpreserved, (0) Other Ayralyses Ayralyses Lib Sample Secretary Copiety Cupies
ature infoc aggregative (9) NA aggregative (1) oc aggregative (Tritanch X (), and the foliate (i) and the foliate (ii) and the foliate (ii) and the foliate (ii) and the foliate (iiii) and the foliate (iiii) and the foliate (iii) and the foliate (iii) and the fo	at or

Pace Analytical*

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

PM: AMB

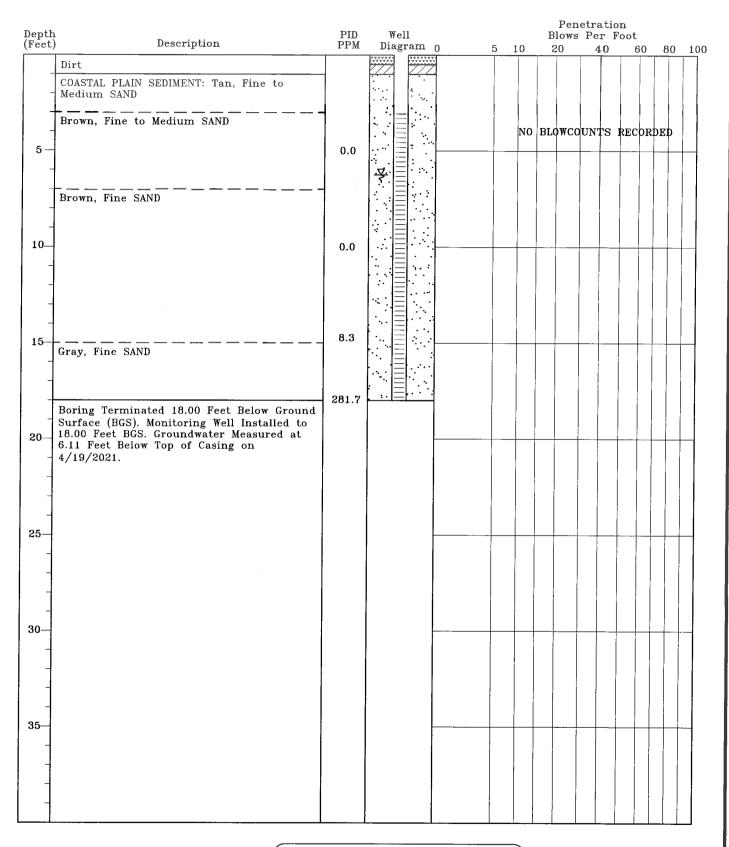
Due Date: 04/30/21

CLIENT: 92-MIDLAND

Sample ID	Type of Preservative	pH upon receipt	Justment Log for Pres	The state of the s		
			sate preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
					,	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Date: LI-22-21 Client: MECT	Sample Receiving Non-C	Afi W	10#:92534730 Due Date: 04/30/21		
			LIENT: 92-MIDLAND		
			ry, fill out a COC and indicate that it was filled o		
2. If COC is incomplete, c	neck applicable issues below and ad	d details w	Where appropriate.		
Collection date/time missin	9 or Arialyses of arialytes: missing or		Samples listed on COC do not match samples		
Sample IDs on COC do no	clarification needed		received (missing, additional, etc.)		
match sample labels Comments/Details/Other I	Required trip blanks were not rec	eived	Required signatures are missing		
	listed on samples or COC.				
3. Sample integrity issues:	check applicable issues below and	add details	s where appropriate:		
Samples: Past holding time	Samples: Condition needs to be b lab personnel's attention (details b	rought to	Preservation: Improper		
Samples: Not field filtered	Containers: Broken or compromise	ad	Temperature: not within acceptance criteria (typi		
Samples: Insufficient volume received		au	0-6C)		
Samples: Cooler damaged o	Containers: Incorrect		Temperature: Samples arrived frozen		
compromised	Custody Seals: Missing or compro samples, trip blanks or coolers	mised on	Viale recained with impression		
Samples: contain chlorine or sulfides	Packing Material: Insufficient/Impro		Vials received with improper headspace		
Comments/Details:	g weeks. Meditelentimpre	iper	Other:		
4. If Samples not preserved	properly and Sample Receiving adju				
Sample ID:	Date/Time:				
		1	Amount/type pres added:		
ample ID:	Initial and Final pH:		Lot # of pres added:		
	Date/Time:		Amount/type pres added:		
reserved hy:	Initial and Final pH:		Lot # of pres added:		
	DOO! INC.		Amount/type pres added:		
ample ID:					
ample ID: reserved by:	Initial and Final pH:	Loi	ot#of pres added:		
ample ID: reserved by:	Initial and Final pH:	Loi			
ample ID: reserved by: Client Contact: If client is c	Initial and Final pH:	Loi			
ample ID: reserved by: Client Contact: If client is client:	Initial and Final pH: ontacted for any issue listed above, Contacted per: (1) (1) Date/Time: (1) (2) (2)	Loi			
M Initials: AND Initials: Manual Initials: Manual Initials: Manual Initials: Manual Initials	Initial and Final pH: ontacted for any issue listed above, Contacted per: (1) (1) Date/Time: (1) (2) (2)	fill in detai	ils below:		


F-ALL-C-011-rev.00, 05Jul2018

APPENDIX C:

TAX MAP (Not Applicable) APPENDIX D:
SOIL BORING/FIELD SCREENING LOGS & 1903 FORMS
(Not Applicable)

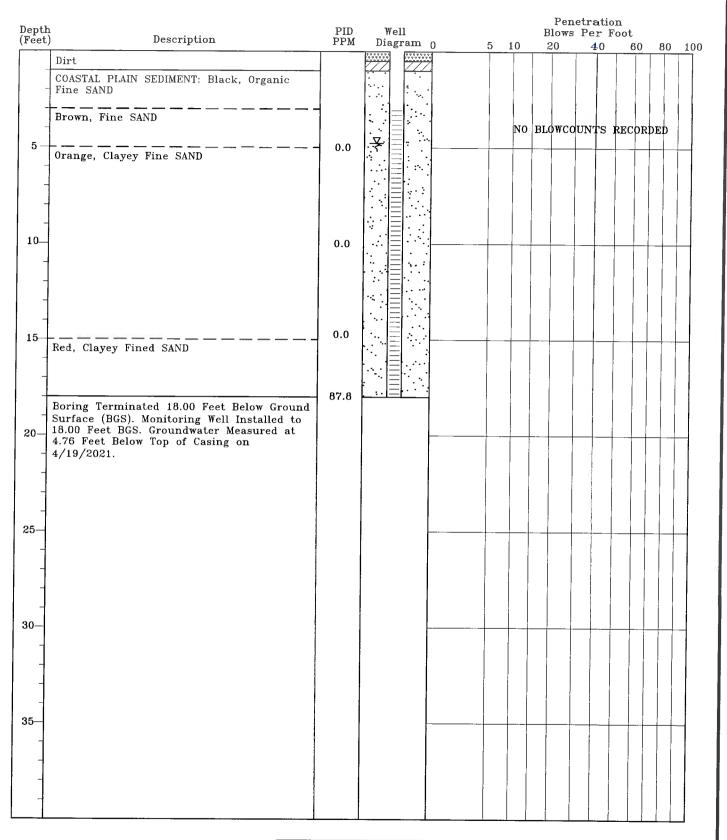
APPENDIX E:

WELL COMPLETION LOGS & 1903 FORMS

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* 03538
MECI Project Number 20-7518

Boring Number:	03538-MW02R	
Date Drilled:	4/13/2/21	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

Prepared By:


Midlands
Environmental
Consultants, Inc.

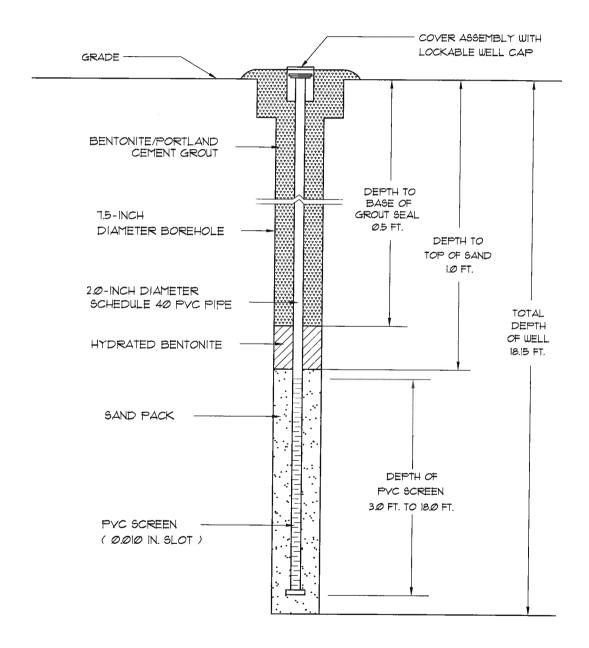
Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	03538-MW02R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D @21@@
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.

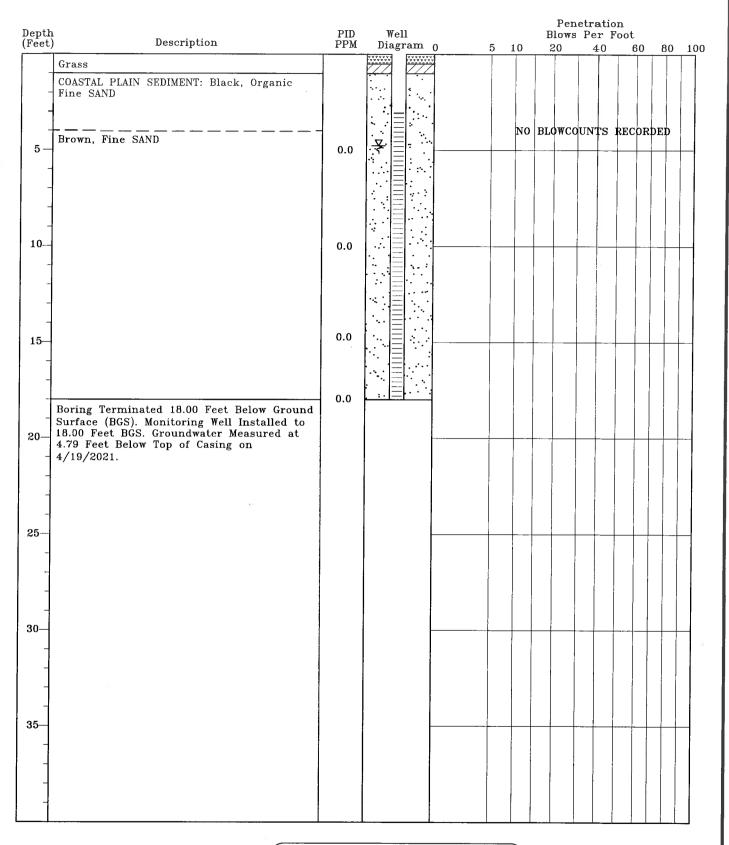
TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* Ø3538
MECI Project Number 20-7518

Boring Number:	03538-MW05R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs


Prepared By:

Midlands

Environmental


Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	03538-MW05R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D @21@@
Logged By:	K. Jacobs

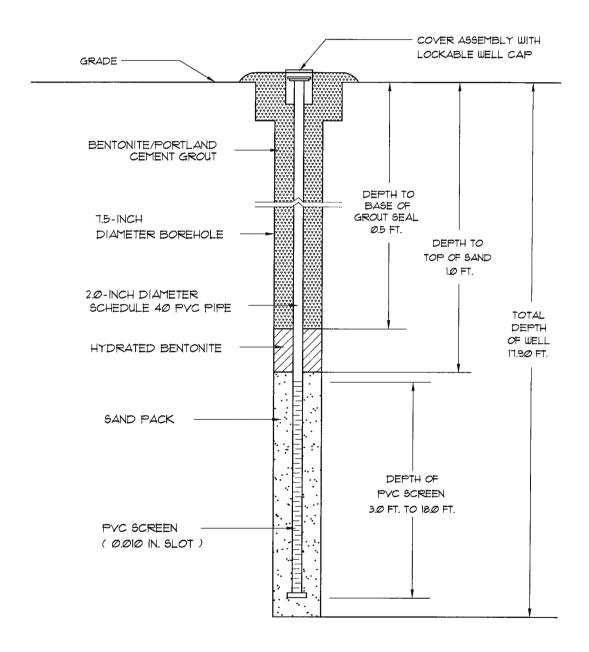
Midlands
Environmental
Consultants, Inc.

TEST BORING RECORD

Coastal 76 Truck Stop

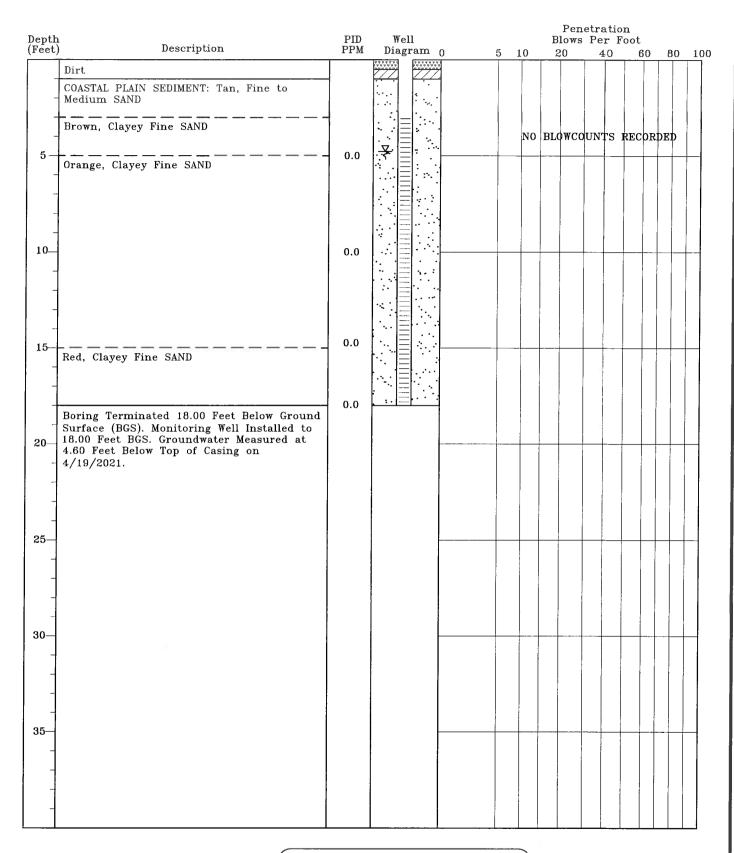
Florence, South Carolina

SCDHEC Site ID* 03538


MECI Project Number 20-7518

Boring Number:	03538-MW07R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs

Prepared By:


Midlands
Finvironmental
Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

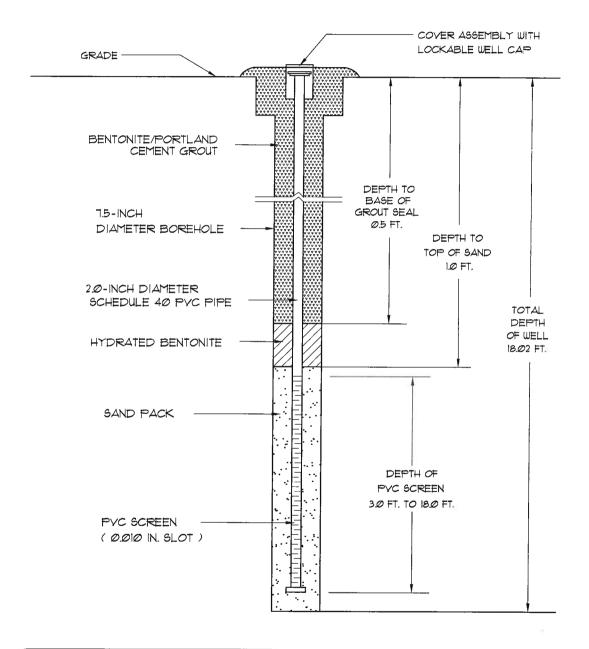
Well Number:	03538-MW07R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D: D @21@@
Logged By:	K. Jacobs

TEST BORING RECORD

Coastal 76 Truck Stop

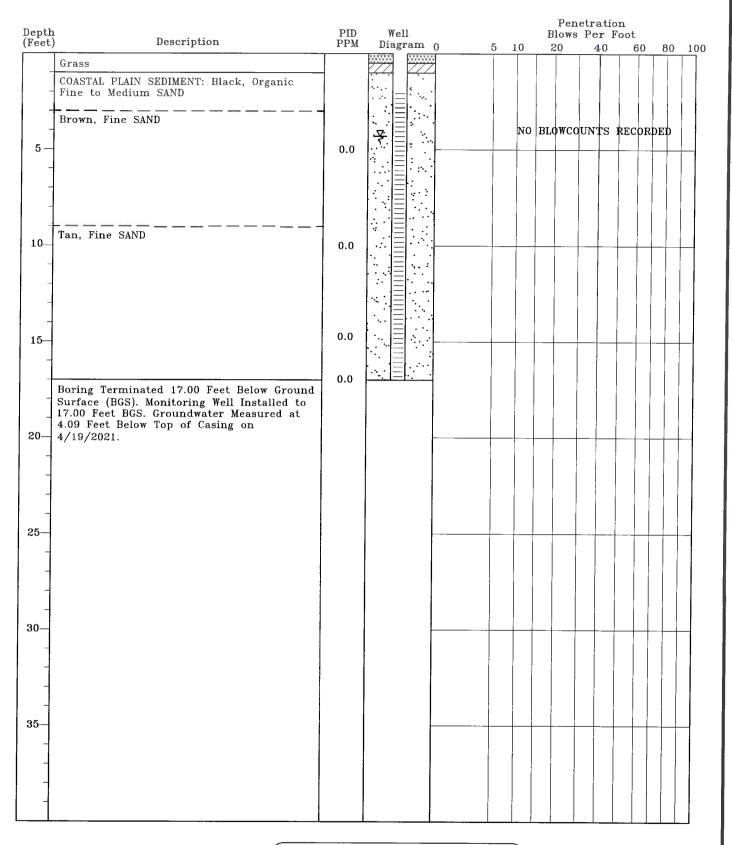
Florence, South Carolina

SCDHEC Site ID* 03538


MECI Project Number 20-7518

Boring Number:	03538-MWIØRRR
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs

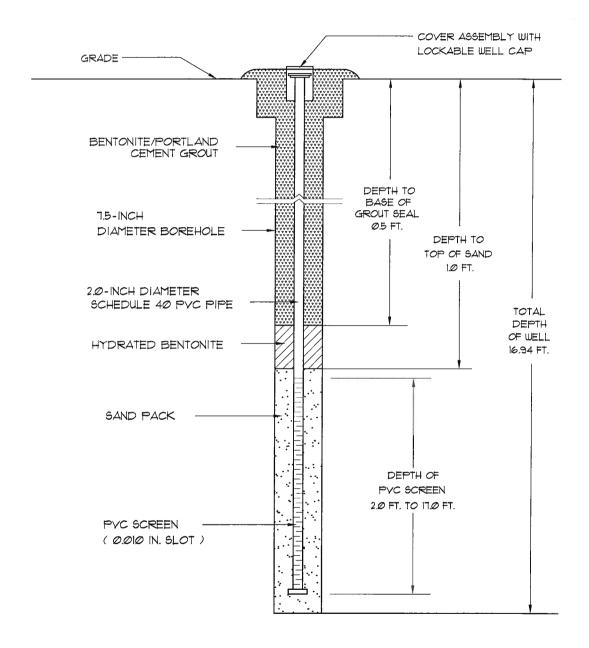
Prepared By:


Midlands
Environmental
Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

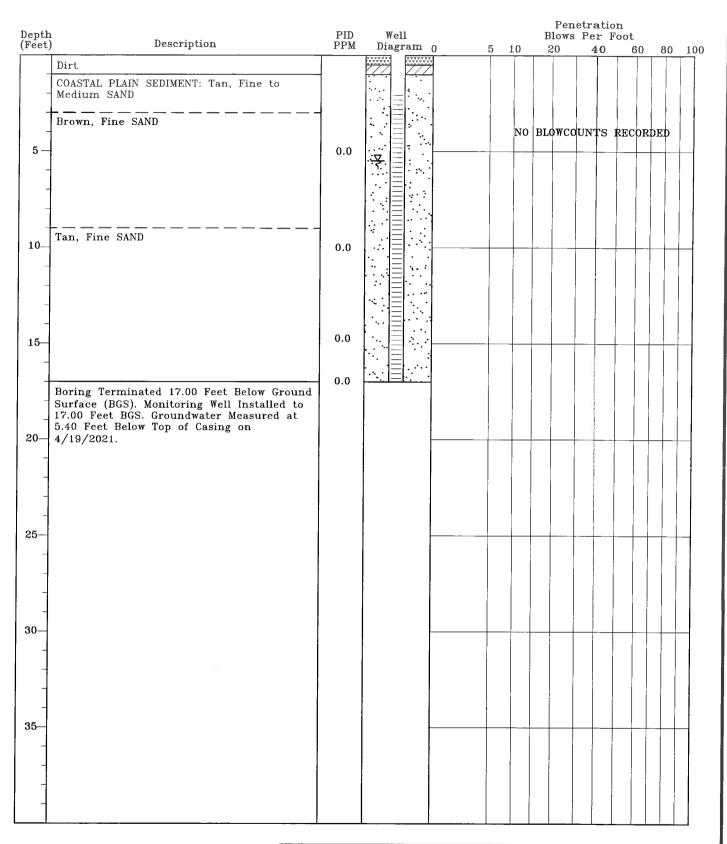
Well Number:	03538-MWIORRR
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D Ø21ØØ
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.



TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* 03538
MECI Project Number 20-7518

Boring Number:	Ø3538-MWI5R
Date Drilled:	4/13/2021
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs


Midlands
Finvironmental
Consultants, Inc.

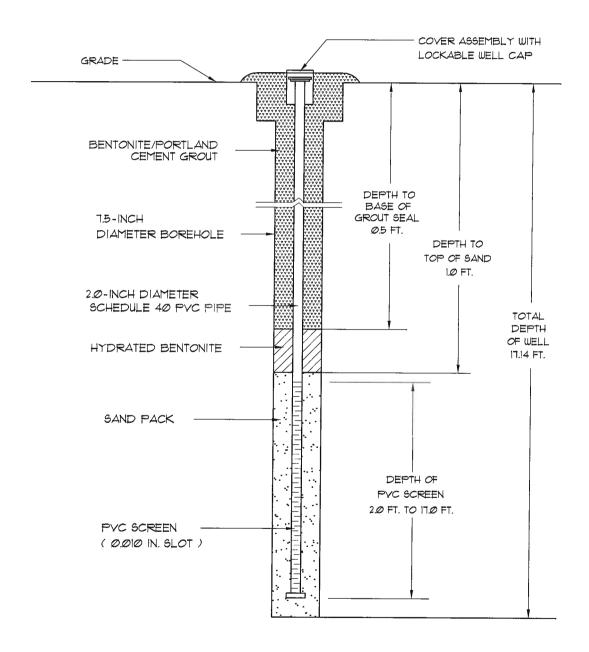
Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	Ø3538-MWI5R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D Ø2100
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* Ø3538
MECI Project Number 20-7518

Boring Number:	Ø3538-MWI6R	
Date Drilled:	4/13/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

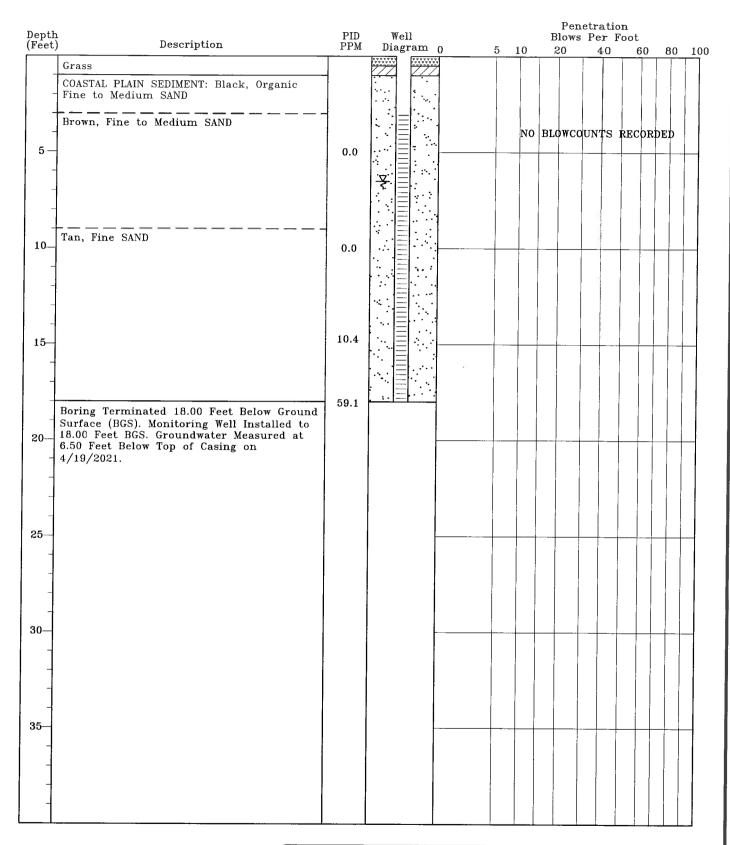

Prepared By:

Midlands

Environmental

Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

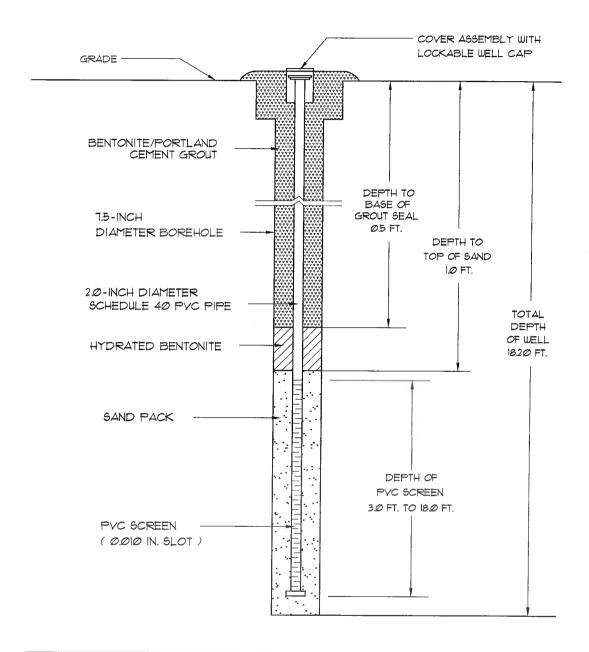


Well Number:	03538-MWI6R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D @21@@
Logged By:	K. Jacobs

Midlands

Environmental

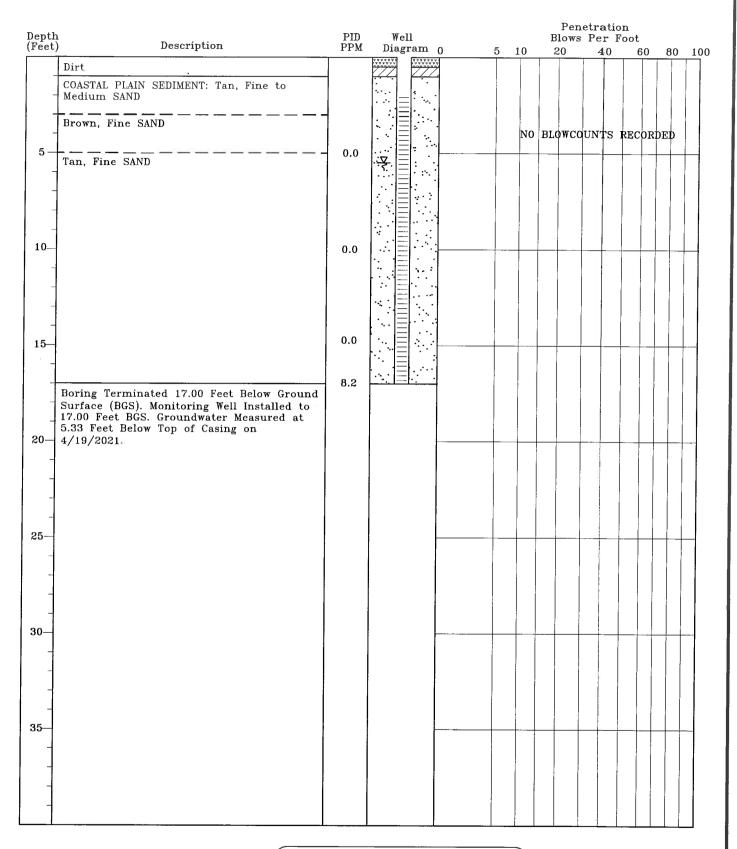
Consultants, Inc.


TEST BORING RECORD Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Boring Number:	03538-MWITR	
Date Drilled:	4/13/2@21	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

Prepared By:

 \mathbf{M} ídlands $\overline{\mathrm{E}}$ nvironmental Consultants, Inc.


Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID* Ø3538 MECI Project Number 20-7518

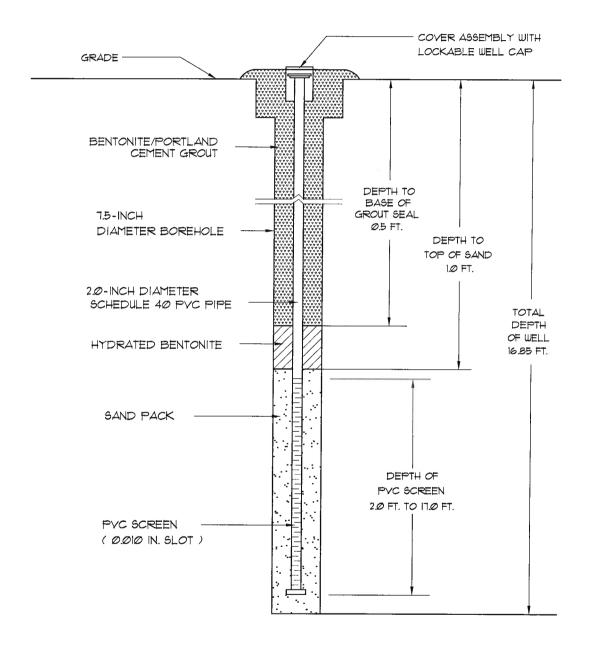
Well Number:	Ø3538-MWITR
Date Drilled:	4/13/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#:D Ø2100
Logged By:	K. Jacobs

Prepared By:

Midlands
Environmental
Consultants, Inc.

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID# 03538
MECI Project Number 20-7518

Boring Number:	Ø3538-MW22R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs

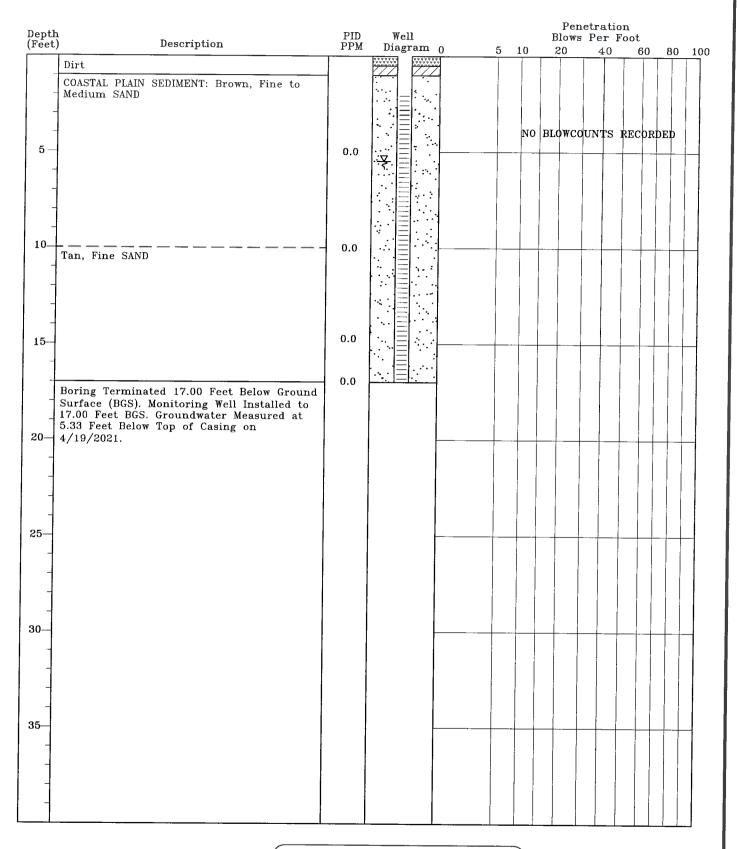

Prepared By:

Midlands

★ Environmental

Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

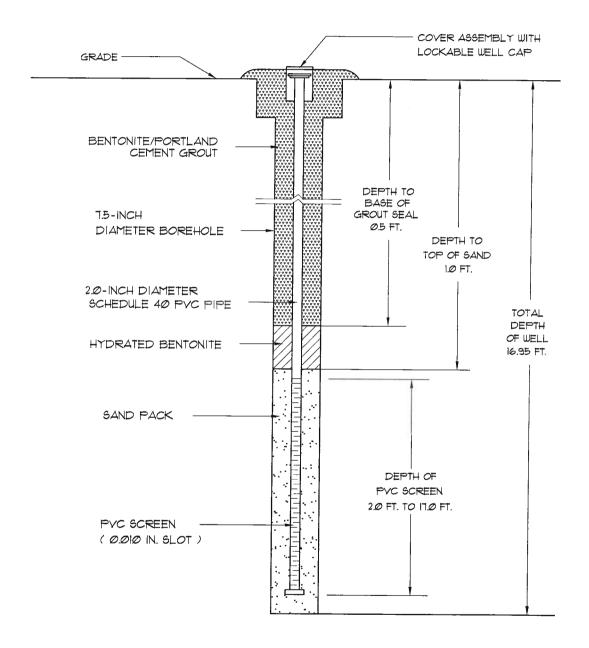

Well Number:	Ø3538-MW22R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pauless	S.C. I.D.*: D Ø2100
Logged By:	K. Jacobs

Midlands

Environmental

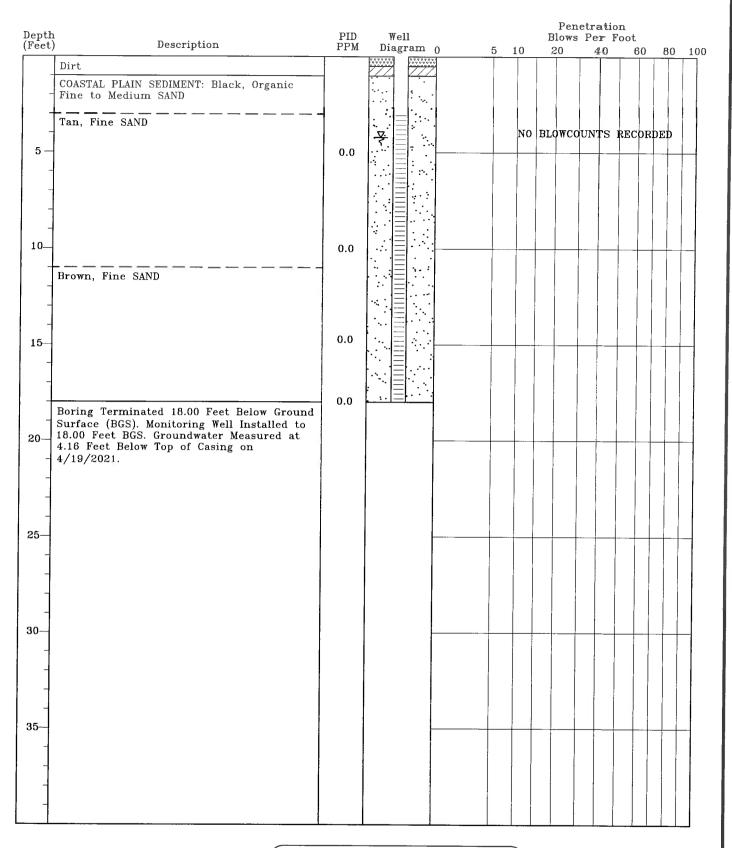
Consultants, Inc.

23! Dooley Road
Lexington, South Carolina 29013
(803) 808-2043 fax: 808-2048


TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* Ø3538
MECI Project Number 20-7518

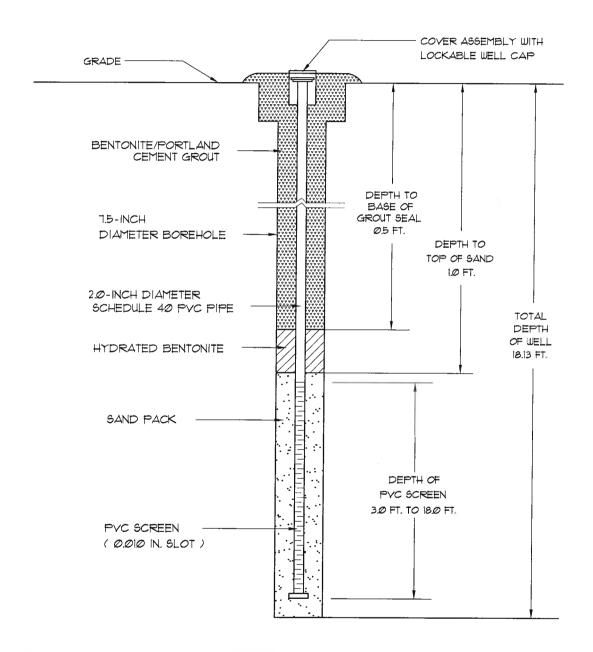
Boring Number:	03538-MW24R	
Date Drilled:	4/14/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

Prepared By:


Midlands
Environmental
Consultants, Inc.

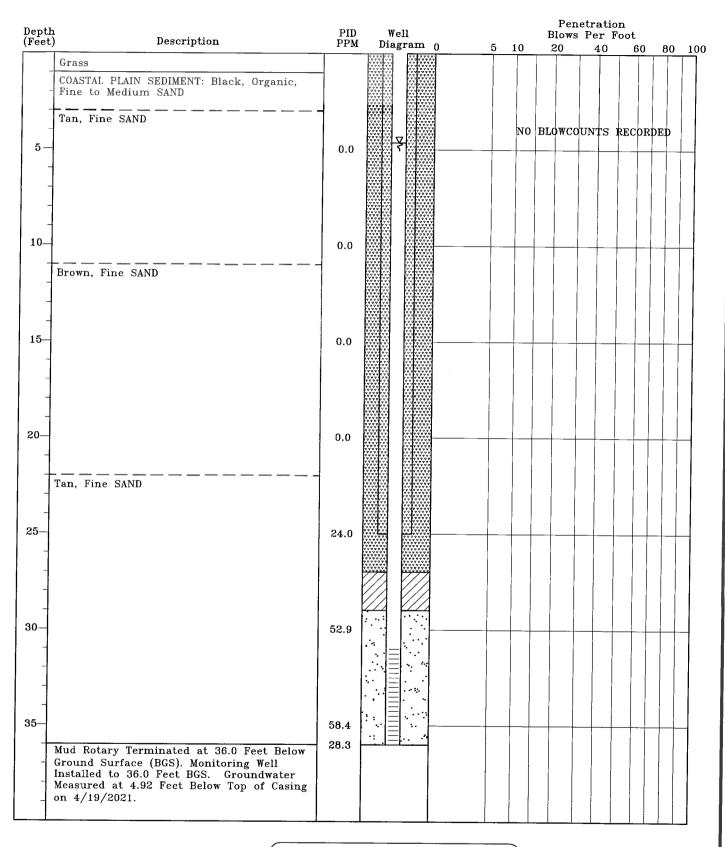
Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	03538-MW24R
Date Drilled:	4/13/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D 02100
Logged By:	K. Jacobs


TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* 03538
MECI Project Number 20-7518

Boring Number:	Ø3538-MW25R	Ì
Date Drilled:	4/14/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

Prepared By:

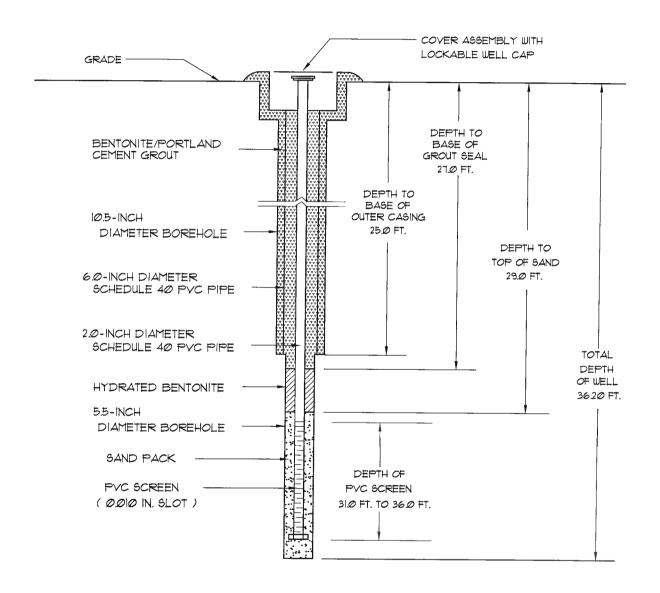

Midlands
Environmental
Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	03538-MW25R
Date Drilled:	4/14/2Ø21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D 02100
Logged By:	K. Jacobs

Midlands
Finvironmental
Consultants, Inc.

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID# Ø3538
MECI Project Number 20-7518


Boring Number	: Ø3538-MW25D
Date Drilled:	4/14/2021-4/15/2021
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs

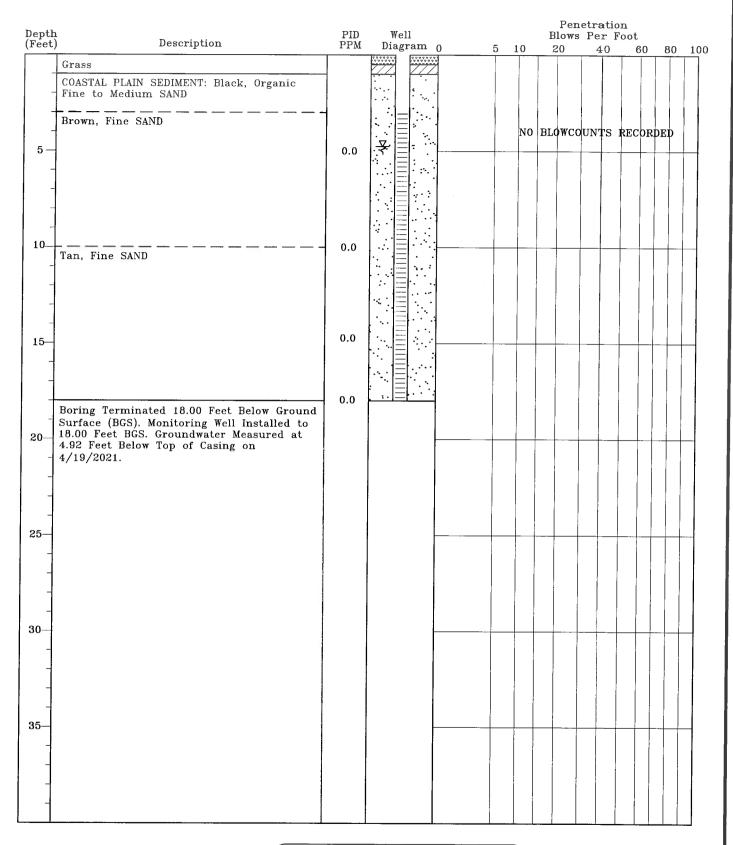
Prepared By:

Midlands
Environmental
Consultants, Inc.

231 Dooley Road
Lexington, South Carolina 29013
(803) 808-2043 fax: 808-2048

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number: Ø3538-MW25D


Date Drilled: 4/14/2021-4/15/2021

Drilled By: EDPS, LLC.

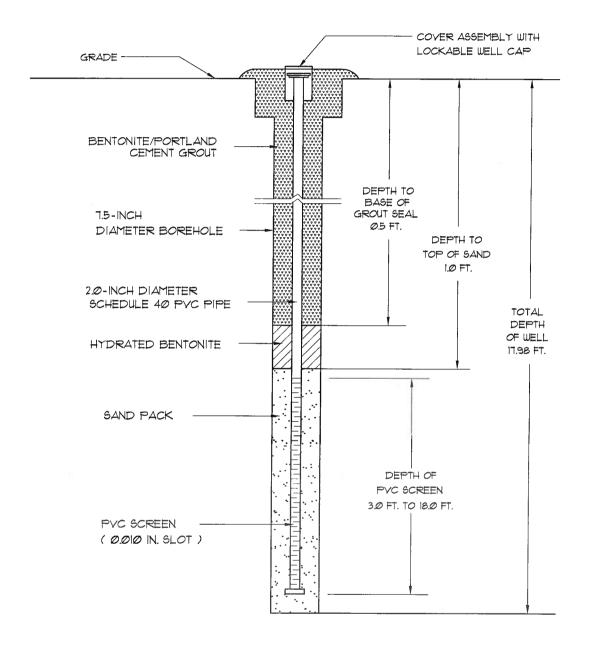
Driller: J. Pawless S.C. I.D. *: D02100

Logged By: K. Jacobs

Midlands
Environmental
Consultants, Inc.

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* 03538
MECI Project Number 20-7518

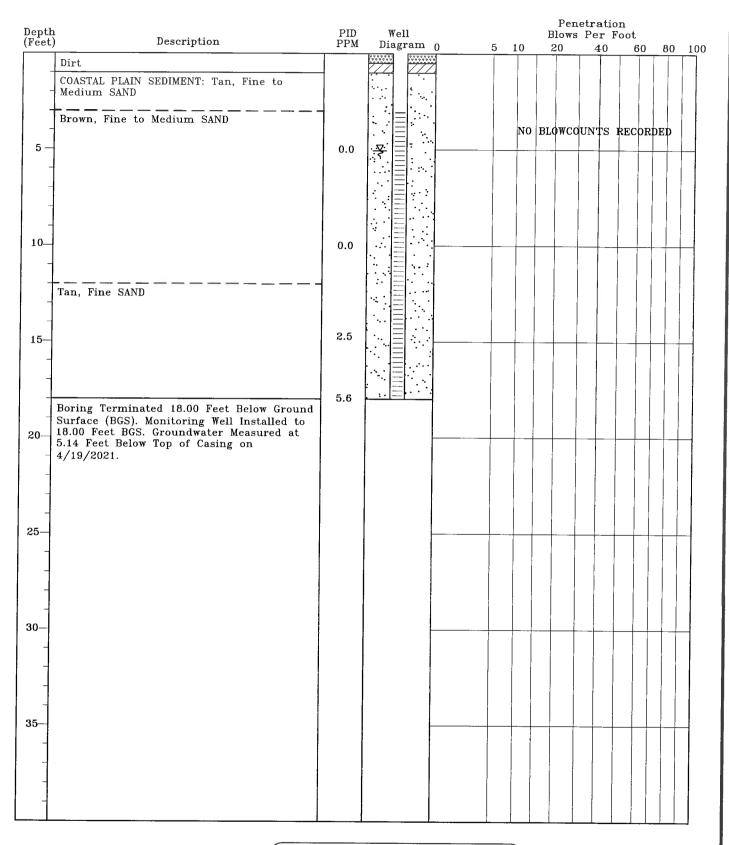
Boring Number:	Ø3538-MW26R	
Date Drilled:	4/14/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	


Prepared By:

Midlands

Environmental

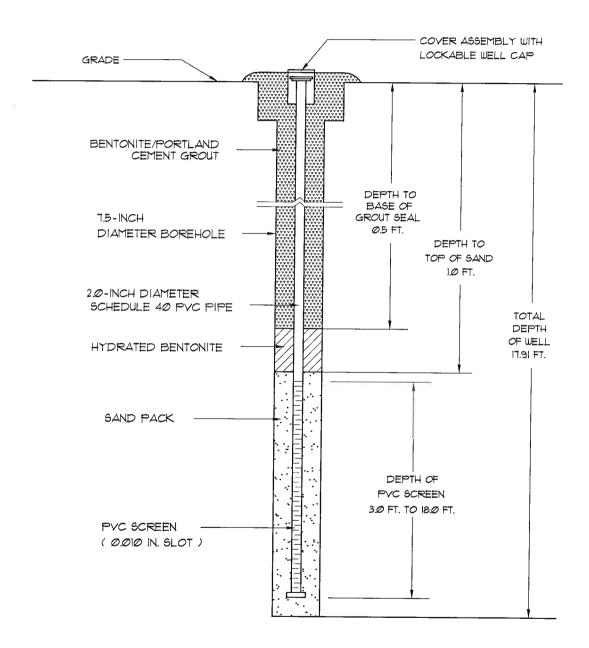
Consultants, Inc.


Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	03538-MW26R
Date Drilled:	4/14/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D 02100
Logged By:	K. Jacobs

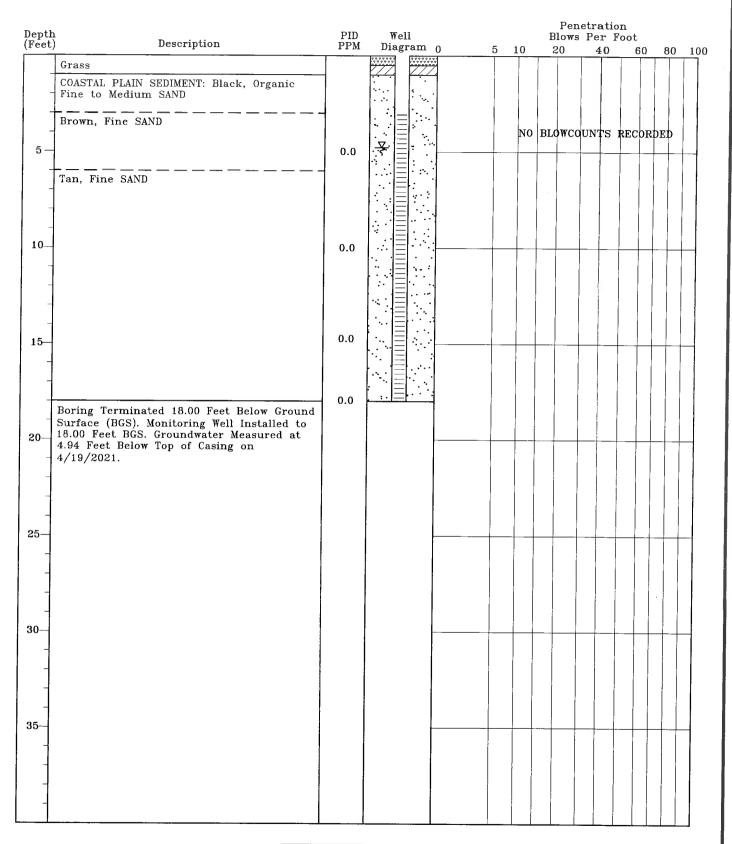
Midlands
Environmental
Consultants, Inc.

231 Dooley Road
Lexington, South Carolina 29013
(803) 808-2043 fax: 808-2048


TEST BORING RECORD Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Boring Number:	Ø3538-MW29	
Date Drilled:	4/13/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

Prepared By:


 ${f M}$ ídlands Environmental Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

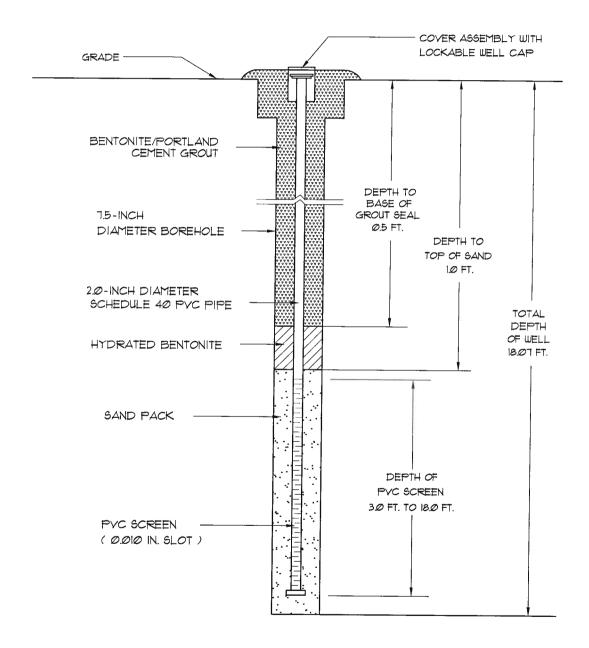
Well Number:	Ø3538-MW29
Date Drilled:	4/13/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.*: D @21@@
Logged By:	K. Jacobs

Midlands
Finvironmental
Consultants, Inc.

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* Ø3538
MECI Project Number 20-7518

Boring Number:	Ø3538-MW3Ø
Date Drilled:	4/14/2@21
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs

Prepared By:

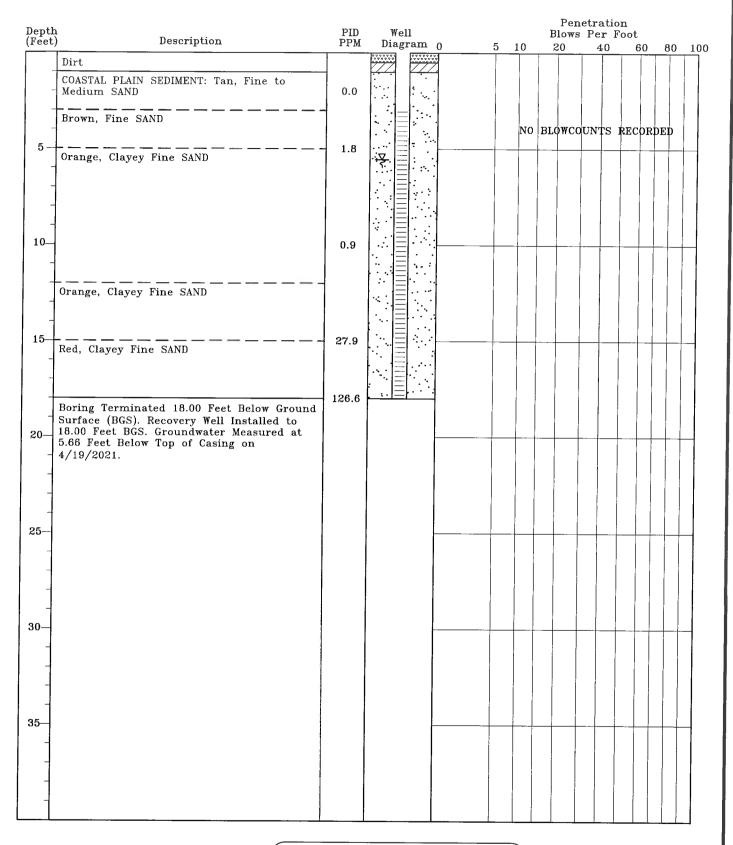

Midlands

Environmental

Consultants, Inc.

231 Dooley Road
Lexington, South Carolina 29073
(803) 808-2043 fax: 808-2048

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

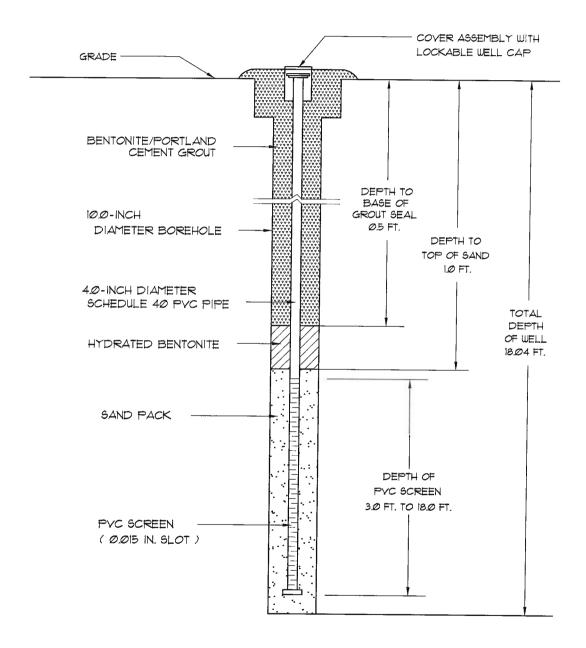


Well Number:	Ø3538-MW3Ø
Date Drilled:	4/14/2@21
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#:D 02100
Logged By:	K. Jacobs

Midlands

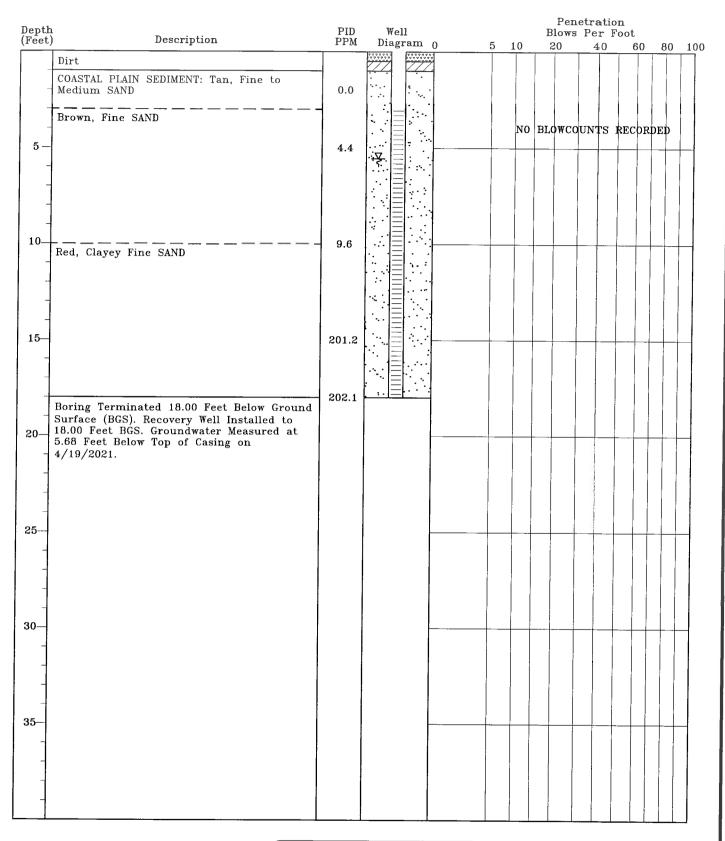
Environmental

Consultants, Inc.


TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID# 03538
MECI Project Number 20-7518

Boring Number:	Ø3538-RWØI	
Date Drilled:	4/15/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

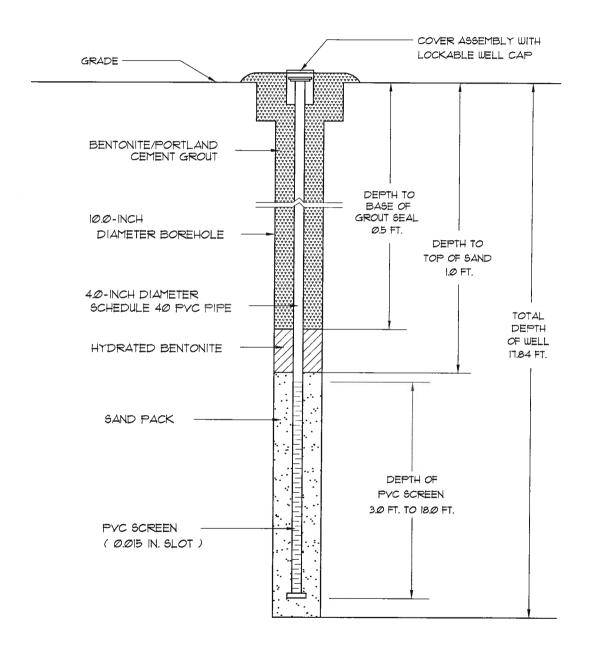
Prepared By:


Midlands
Environmental
Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID* Ø3538 MECI Project Number 20-7518

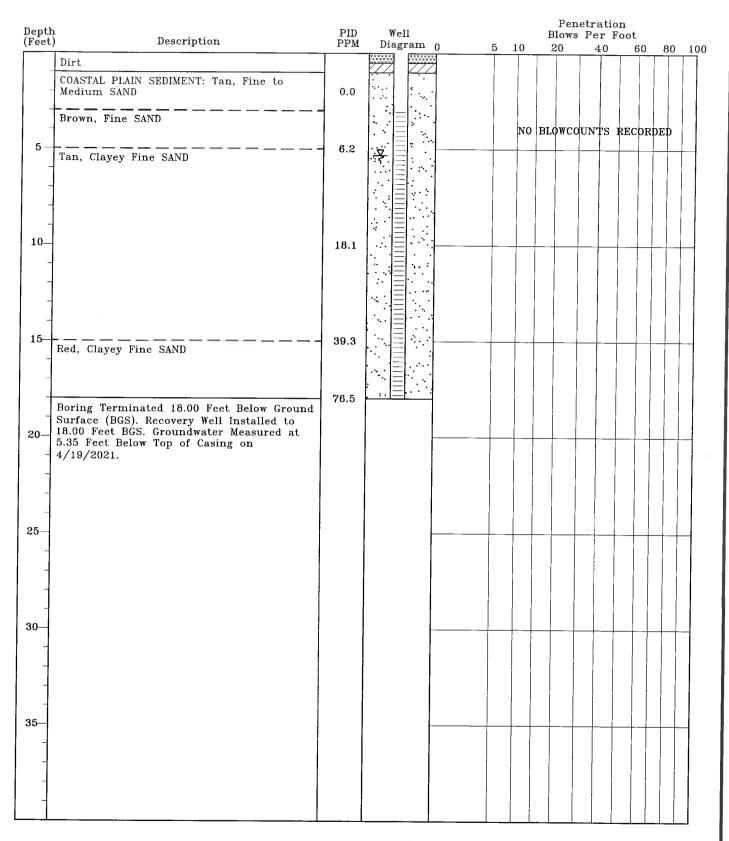
Well Number:	03538-RW01
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Driller: J. Pauless	S.C. I.D.#: D 2100
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.


TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* 03538
MECI Project Number 20-7518

Boring Number:	03538-RW02	
Date Drilled:	4/15/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

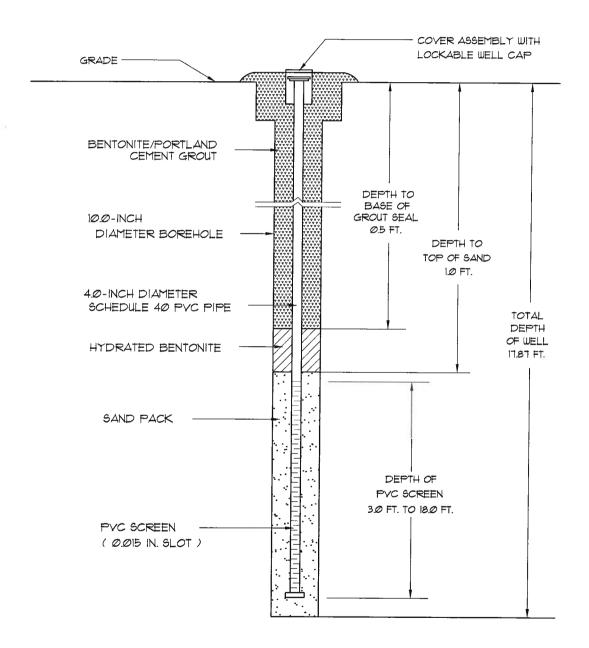
Prepared By:


Midlands
Environmental
Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID* Ø3538 MECI Project Number 20-7518

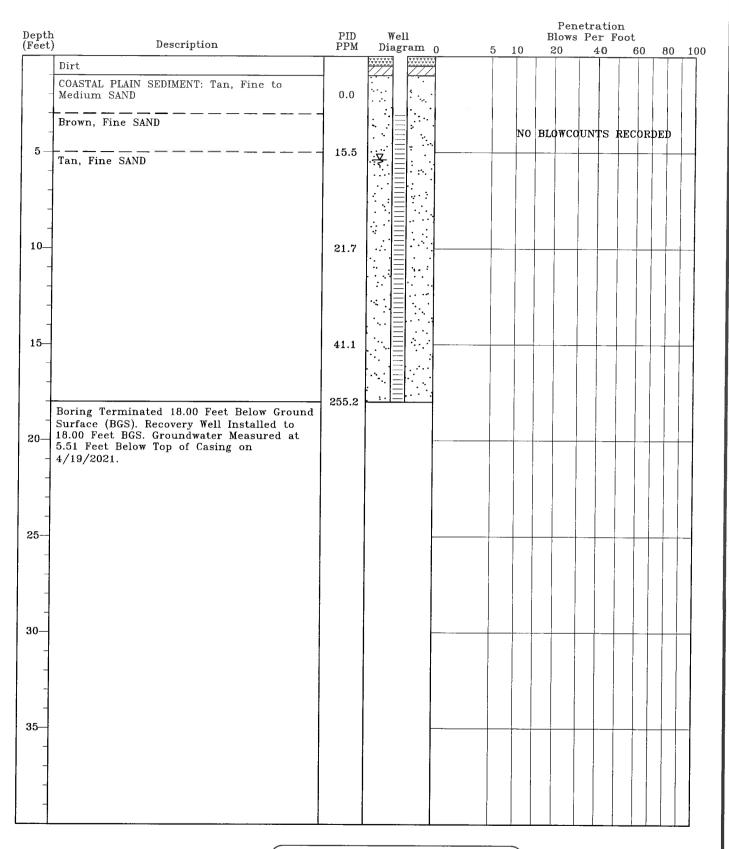
Well Number:	03538-RW02
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#: D 2100
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.


TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* Ø3538
MECI Project Number 20-7518

		$\overline{}$
Boring Number:	03538-RW03	
Date Drilled:	4/15/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	

Prepared By:


Midlands
Environmental
Consultants, Inc.

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

Well Number:	03538-RW03
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#: D 2100
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.

TEST BORING RECORD

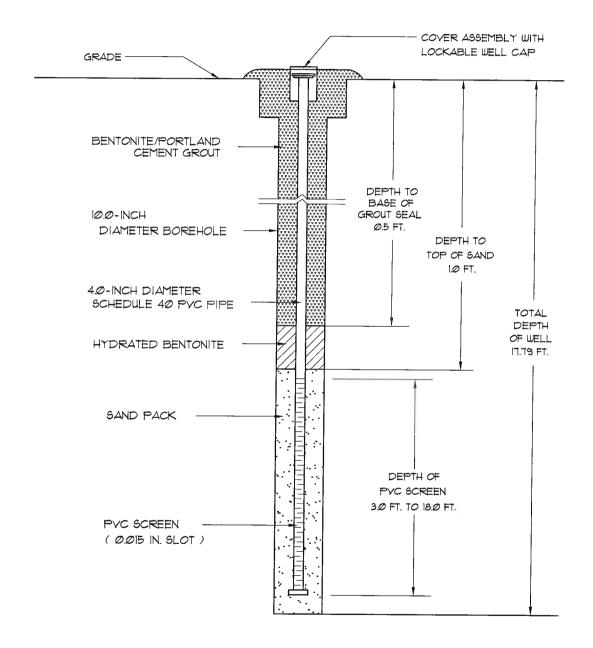
Coastal 76 Truck Stop

Florence, South Carolina

SCDHEC Site ID# 03538

MECI Project Number 20-7518

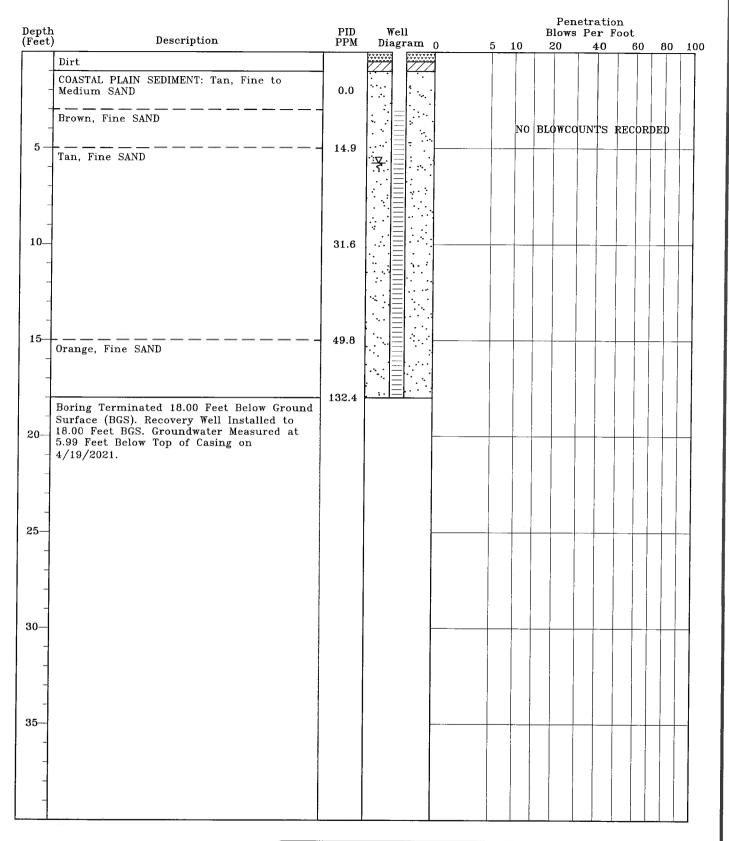
Boring Number:	03538-RW04
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs


Prepared By:

Midlands
Environmental
Consultants, Inc.

231 Dooley Road Lexington, South Carolina 29073 (803) 808-2043 fax: 808-2048

MONITORING WELL INSTALLATION RECORD


Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID* Ø3538 MECI Project Number 20-7518

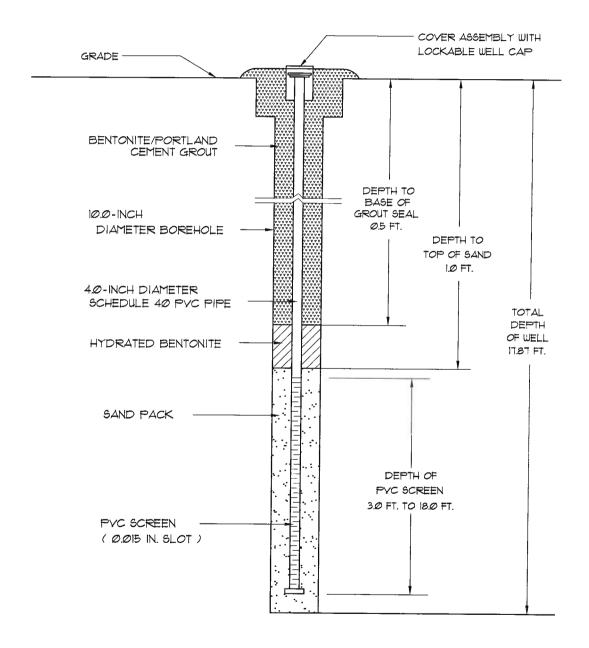
Well Number:	03538-RW04
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#: D 2100
Logged By:	K. Jacobs

Midlands
Finvironmental
Consultants, Inc.

231 Dooley Road
Lexington, South Carolina 29073
(803) 808-2043 fax: 808-2048

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID* Ø3538
MECI Project Number 20-7518

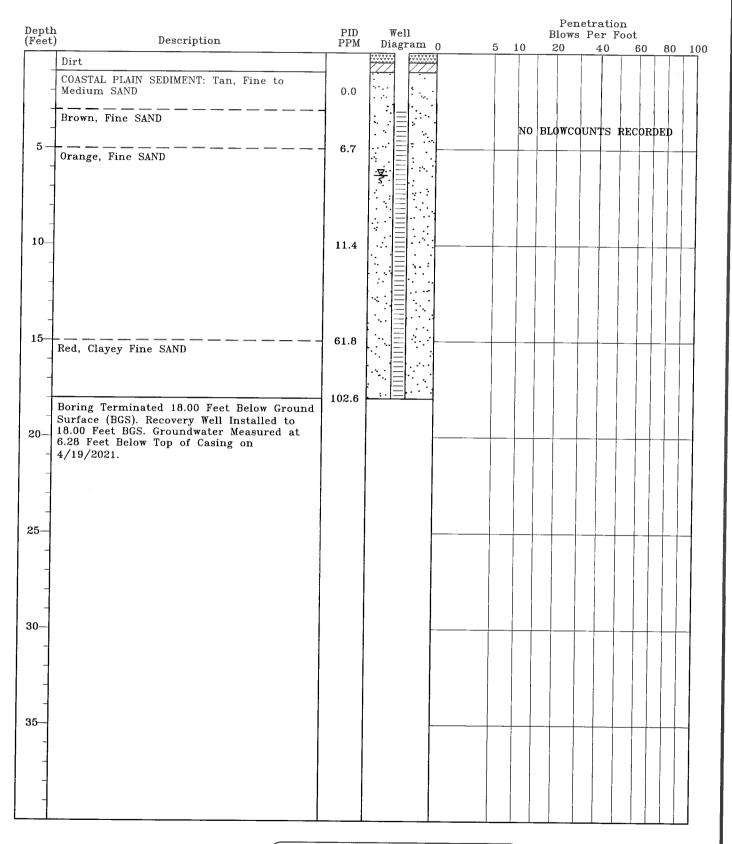
Boring Number:	Ø3538-RWØ5	
Date Drilled:	4/15/2021	
Drilled By:	EDPS, LLC.	
Logged By:	K. Jacobs	


Prepared By:

Midlands
Finvironmental
Consultants, Inc.

231 Dooley Road Lexington, 9outh Carolina 29073 (803) 808-2043 fax: 808-2048

MONITORING WELL INSTALLATION RECORD


Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# Ø3538 MECI Project Number 20-7518

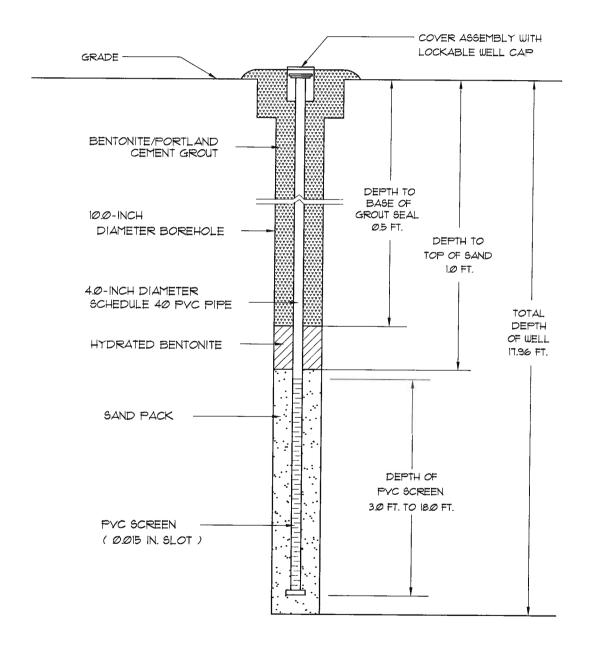
Well Number:	03538-RW05
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#:D 2100
Logged By:	K. Jacobs

Midlands
Environmental
Consultants, Inc.

231 Dooley Road Lexington, South Carolina 29073 (803) 808-2043 fax: 808-2048

TEST BORING RECORD
Coastal 76 Truck Stop
Florence, South Carolina
SCDHEC Site ID# Ø3538
MECI Project Number 20-7518

Boring Number:	03538-RW06
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Logged By:	K. Jacobs


Prepared By:

Midlands
Finvironmental
Consultants, Inc.

231 Dooley Road Lexington, South Carolina 29073 (803) 808-2043 fax: 808-2048

MONITORING WELL INSTALLATION RECORD

Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID# 03538 MECI Project Number 20-7518

Weil Number:	03538-RW06
Date Drilled:	4/15/2021
Drilled By:	EDPS, LLC.
Driller: J. Pawless	S.C. I.D.#:D 2100
Logged By:	K. Jacobs

Midlands

Environmental

Consultants, Inc.

231 Dooley Road Lexington, South Carolina 29013 (803) 808-2043 fax: 808-2048

TROMOTE TROTECT PROSPER			
WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: Dan McEachin			UMW-28344
(last) (first)			8. USE:
Address: 1007 Wentworth Drive			☐ Residential ☐ Public Supply ☐ Process
			☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: Florence State: SO	Zip: 29	9501-0000	☐ Test Well ☐ Monitor Well ☐ Replacement
-			
Telephone: Work:	Home:		•
2. LOCATION OF WELL: C	OUNTY: Flore	ence	18.0 ft. Date Completed: 4/13/2021
Name: Coastal 76 Truck Stop			10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto	Street		Diam.: 2" Height: Above /Below
City: Florence	Zip: 29506-6	2000	Type: 🗹 PVC 🗌 Galvanized Surfaceft.
110101100	29300-	3000	Stool Char Weight
Latitude: Longitud	e.		$\frac{2.0}{}$ in. to $\frac{3.0}{}$ ft. depth Drive Shoe? \square Yes \square No
			in. to ft. depth
3. PUBLIC SYSTEM NAME: PI	IBLIC SYSTE	M MIIMBED:	11. SCREEN:
03538	MW02		Type: Schedule 40 Diam.: 2"
			Slot/Gauge: 0.010 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐	No		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
			ft. andft. USE SECOND SHEET
Grouted Depth: from	ft. to	ft.	Sieve Analysis Yes (please enclose) No
	*Thickness	Depth to	12. STATIC WATER LEVEL 6.11 ft. below land surface after 24 hours
Formation Description	of	Bottom of	
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
		j	ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) ☐ No
SEE GEOLOGIST LOG			Yield:
SEE GEOEOGIST EOG			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	1 1		Please enclose lab results.
			15 ADTICION EUTED (filter neels) [7] Vee [7] No
			15. ARTIFICIAL FILTER (filter pack) Yes No
			Installed from $\underbrace{18.0}_{\text{ft. to }}$ ft. to $\underbrace{1.0}_{\text{ft.}}$ ft. Effective size $\underbrace{1.43}_{\text{Uniformity Coefficient }}$ Uniformity Coefficient $\underbrace{1.30}_{\text{ft.}}$
		-	16. WELL GROUTED? ☑ Yes ☐ No
			☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
			Depth: From 0.50 ft. to 0.0 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			Mfr. Name: Model No.:
		- 1	H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine ☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C D (circle one)
	l	ľ	17538 Greenhill Road
*Indicate Water Bearing Zones			Charlotte. NC 28278
mulcate vvater bearing zones		J	Telephone No.: 7()4-6()7-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
O. NEIWARNO:	ļ		\mathcal{I} , \mathcal{O} \mathcal{I}
MW02R			Lud Pank
*Bentonite seal from 1.0' to 0.5'		- 1	4/20/2021
			Signed: Date: 4/30/2021 Well Driller
6 TVDF. D.M. I.S.			Zillei
6. TYPE: Mud Rotary	□ B		If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rot	,	riven ·	Tommy Bolyard/B1846
☐ Cable tool ☑ Other -	Auger		Tommy bolyara/b 1040

4 WELLOWNED DECORMATION	
1. WELL OWNER INFORMATION:	7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin	OW W - 28344
(last) (first)	8. USE:
Address: 1007 Wentworth Drive	☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
State. SC 21p. 29301-0000	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/13/2021
	- 8
2. LOCATION OF WELL: COUNTY: Florence	ft. Date Completed: 4/13/2021
Name: Coastal 76 Truck Stop	10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto Street	Diam.: 2" Height: Above /Below
City: Florence Zip: 29506-0000	Type: 🗹 PVC 🗌 Galvanized Surface ft.
2)300-0000	☐ Steel ☐ Other Majaht
Latitude: Longitude:	
201914435 .	in. to ft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER:	
03538 MW05R	Type: Schedule 40 Diam.: 2"
TATT ODAL	Type: Schedule 40 Diam.: 2" Slot/Gauge: 0.010 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐ No	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
	the and the series of the seri
Grouted Depth: from ft. to ft.	Sieve Analysis Yes (please enclose) No
*Thickness Depth to	
Formation Description of Bottom of	12. STATIC WATER LEVEL 4.76 ft. below land surface after 24 hours
Stratum Stratum	13. PUMPING LEVEL Below Land Surface.
	ft. afterhrs. PumpingG.P.M.
	Pumping Test: ☐ Yes (please enclose) ☐ No
SEE CEOLOCIST LOC	Yield:
SEE GEOLOGIST LOG	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
	Installed from 18.0 ft. to 1.0 ft.
	Effective size 1.43 Uniformity Coefficient 1.30
	16. WELL GROUTED? ☑ Yes ☐ No
	☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
	Depth: From 0.50 ft. to 0.0 ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type
	Well Disinfected ☐ Yes ☐ No Type: Amount:
	18. PUMP: Date installed: Not installed [
	Mfr. Name: Model No.:
	H.P Volts Length of drop pipe ft. Capacity gpm
	TYPE: Submersible Jet (shallow) Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
	Address: (Print) Level: A B C (D) (circle one)
	17538 Greenhill Road
	Charlotte. NC 28278
Indicate Water Bearing Zones	Telephone No.: 7()4-6()7-7529 Fax No.: 803-548-2233
	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:	2
MW05R	Luc Panh
*Bentonite seal from 1.0' to 0.5'	
Demonte scal from 1.0 to 0.5.	Signed: Date: 4/30/2021_
	Well Driller
B. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven	n o Level Diniel, provide supervising uniter's name:
☐ Cable tool	Tommy Bolyard/B1846

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: Dan McEachin			UMW-28344
(last)	(fir	st)	
Address: 1007 Wentworth Drive		,	8. USE:
			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC	Zip: 2	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
**			☐ lest vveii ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/15/2021
2. LOCATION OF WELL: C	DUNTY: Flore	ence	18.0 pate Completed: 4/15/2021
Name: Coastal 76 Truck Stop			10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto	Street		Diam.: 2" Height: Above /Below
City: Florence	Zip: 20506-	0000	Type: 🗹 PVC 🔲 Galvanized Surfaceft.
	29300-	3000	☐ Steel ☐ Other Weight lb /ft
Latitude: Longitude) :		$\frac{2.0}{10.00}$ in, to $\frac{3.0}{10.00}$ ft, depth Drive Shoe? \Box Yes \Box No.
v			in. toft. depth
3. PUBLIC SYSTEM NAME: PL	BLIC SYSTE	M NUMBER:	11. SCREEN:
03538	MW07		Type: Schedule 40 Diam.: 2"
4. ABANDONMENT:			Slot/Gauge: <u>0.010</u> Length: <u>15.0</u>
4. ABANDONIVIENT. Tes	NO		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
Crouted Donthy from	2 4-		ft. and ft. USE SECOND SHEET
Grouted Depth: from			Sieve Analysis ☐ Yes (please enclose) ☐ No
Formation Description	*Thickness	Depth to	12. STATIC WATER LEVEL 4.79 ft. below land surface after 24 hours
1 offilation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
		- Oudium	ft. after hrs. Pumping G.P.M.
		ĺ	Pumping Test: Yes (please enclose) No
GET GEOLOGICELOG			Yield:
SEE GEOLOGIST LOG		i	14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ✓ Yes No
			Installed from $\underbrace{18.0}$ ft. to $\underbrace{1.0}$ ft. Effective size $\underbrace{1.43}$ Uniformity Coefficient $\underbrace{1.30}$
			16. WELL GROUTED? ☑ Yes ☐ No
			□ Neat Cement □ Bentonite □ Bentonite/Cement □ Other
			Depth: From 0.50 ft. to 0.0 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
	ļ		Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
		ļ	Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
		- 1	TYPE: Submersible Jet (shallow) Turbine
		-	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		- 1	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C (D) (circle one)
		- 1	17538 Greenhill Road
Indicate Mater Description			Charlotte. NC 28278
Indicate Water Bearing Zones	İ	1	Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
			Ind Pank
MW07R	1		
*Bentonite seal from 1.0' to 0.5'		ŀ	Signed: Date: 4/30/2021
			Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted	□ Во	ored	If D Lavel Driller provide companies and the de
☐ Dug ☐ Air Rota	_		If D Level Driller, provide supervising driller's name:
☐ Cable tool ☑ Other - 2	•		Tommy Bolyard/B1846
	<u> </u>	<u></u>	

- TROMOTE TROUBLE		·	
1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin (last) (first)			O.1.111 203 1 1
Address: 1007 Wentworth Drive			8. USE:
1007 Wentworth Drive			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC	Zip: 25	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
			☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/15/2021
2. LOCATION OF WELL: C	OUNTY: Flore	ence	18.0 ft. Date Completed: 4/15/2021
Name: Coastal 76 Truck Stop			10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto	Street		Diam.: 2" Height: Above /Below
City: Florence	Zip: 29506-0	0000	Type: PVC Galvanized Surface ft.
			Steel Other Weight — Ib./ft.
Latitude: Longitude	e:		2.0 in. to 3.0 ft. depth
3. PUBLIC SYSTEM NAME: PU			11. SCREEN: Type: Schedule 40 Diam.: 2"
03538	MW10	RRR	Slot/Gauge: 0.010 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐	No		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
			ft. andft. USE SECOND SHEET
Grouted Depth: from	ft. to	ft.	Sieve Analysis Yes (please enclose) No
	*Thickness	Depth to	12. STATIC WATER LEVEL 4.60 ft. below land surface after 24 hours
Formation Description	of	Bottom of	13. PUMPING LEVEL Below Land Surface.
	Stratum	Stratum	ft. after hrs. Pumping G.P.M.
		ì	Pumping Test: Yes (please enclose) No
			Yield:
SEE GEOLOGIST LOG			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ✓ Yes No
	1		Installed from 18.0 ft. to 1.0 ft.
			Effective size 1.43 Uniformity Coefficient 1.30
			16. WELL GROUTED? ☑ Yes ☐ No
			□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other
			Depth: From 0.50 ft. to 0.0 ft.
		1	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C (D) (circle one)
			17538 Greenhill Road
*1-1:			Charlotte. NC 28278
*Indicate Water Bearing Zones			Telephone No.: 7()4-6()7-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
İ		l	Lui Pank
MW10RRR			
*Bentonite seal from 1.0' to 0.5'			Signed: Date: 4/30/2021_
			Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted	□в		If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rota	-	riven	
☐ Cable tool ☑ Other -	Auger	- 1	Tommy Bolyard/B1846

4 14 2 1 6 14 14 2 14 14 14 14 14 14 14 14 14 14 14 14 14			
1. WELL OWNER INFORMATION: Name: Dan McEachin			7. PERMIT NUMBER: UMW-28344
(last) (first)			
Address: 1007 Wentworth Drive			8. USE:
			☐ Residential ☐ Public Supply ☐ Process ☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: Florence State: S	C Zip: 2	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/13/2021
2. LOCATION OF WELL:		ence	17.0
Name: Coastal 76 Truck Stop	1 101	31100	17.0 ft. Date Completed: 4/13/2021 10. CASING: □ Threaded □ Welded □
Street Address: 2513 E Palmetto	Street		Diam.: 2" Height: Above /Below
City: Florence	¬ :	0000	Type: PVC Galvanized Surfaceft
	29300	0000	Steel Other Weight — lb./ft.
Latitude: Longitud	le:		2.0 in. to 2.0 ft. depth
3. PUBLIC SYSTEM NAME: P	UBLIC SYSTE	M NUMBER:	11. SCREEN:
03538	MW15	R	Type: Schedule 40 Diam.: 2"
4. ABANDONMENT: Yes] No		Slot/Gauge: 0.010 Length: 15.0 Set Between: 2.0 ft. and 17.0 ft. NOTE: MULTIPLE SCREENS
			ft. andft. USE SECOND SHEET
Grouted Depth: from	ft. to	ft.	Sieve Analysis Yes (please enclose) No
E	*Thickness	Depth to	12. STATIC WATER LEVEL 4.09 ft. below land surface after 24 hours
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
	Ottatum	Stratum	ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) ☐ No
SEE GEOLOGIST LOG			Yield:
ole obolector for			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from $\underbrace{17.0}$ ft. to $\underbrace{1.0}$ ft. Effective size $\underbrace{1.43}$ Uniformity Coefficient $\underbrace{1.30}$
		•	16. WELL GROUTED? ☑ Yes ☐ No ☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
			Depth: From 0.50 ft. to 0.0 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
		ľ	Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine ☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: JAPAG PAWIESS CERT. NO.: 2100 Address: (Print) Level: A B C (D) (circle one)
			17538 Greenhill Road
			Charlotte. NC 28278
Indicate Water Bearing Zones			Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)		ľ	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
MW15R		j	Luc Pank
*Bentonite seal from 1.0' to 0.5'			
			Signed: Date: 4/30/2021_
. TYPE: Mud Rotary Jetted	B	ored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rot	*	riven	
☐ Cable tool ☑ Other -	Auger		Tommy Bolyard/B1846

WELL OWNER INFORMATION:			
Name: Dan McEachin			7. PERMIT NUMBER: UMW-28344
(last)	(fir	et)	
Address: 1007 Wentworth Drive	(111	3()	8. USE:
1007 Wentworth Drive			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC	Zip: 2	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
1.0101100		2007 0000	☐ lest Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/13/2021
2. LOCATION OF WELL: C	OUNTY: Flore	ence	17.0 ft. Date Completed: 4/13/2021
Name: Coastal 76 Truck Stop			10. CASING: Threaded Welded
Street Address: 2513 E Palmetto	Street		Diam.: 2" Height: Above /Below
	Zip: 29506-	0000	Type: PVC Galvanized Surface ft.
- I forefice	29306-	0000	Steel Other Weight
Latitude: Longitude	٠.	-	2.0 in to 2.0 ft. depth Drive Shoe? Yes No
	•		in. to ft. depth
3. PUBLIC SYSTEM NAME: PL	IBLIC SYSTE	M NIIMBED:	11. SCREEN:
03538	MW16		Type: Schedule 40 Diam.: 2"
			Slot/Gauge: 0.010 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐	No		Set Between: 2.0 ft. and 17.0 ft. NOTE: MULTIPLE SCREENS
			ft. and ft. USE SECOND SHEET
Grouted Depth: from	t. to	ft	Sieve Analysis ☐ Yes (please enclose) ☐ No
Farman Carlo Brown N. H.	*Thickness	Depth to	12. STATIC WATER LEVEL 5.40 ft. below land surface after 24 hours
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
	Stratum	Stratum	ft. after hrs. Pumping G.P.M.
		£	Pumping Test: Yes (please enclose) No
		ŧ	Yield:
SEE GEOLOGIST LOG			14. WATER QUALITY
	i	e g	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
		É	15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
		······································	Installed from $\frac{17.0}{1.0}$ ft. to $\frac{1.0}{1.0}$
		1	Effective size 1.43 Uniformity Coefficient 1.30
	_		16. WELL GROUTED? ☑ Yes ☐ No
			□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other □
			Depth: From 0.50 ft. to 0.0 ft.
		- 1	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
		- 1	Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
		- 1	TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C (D) (circle one)
		1	17538 Greenhill Road
*Indicate Motor Depuis - 7			Charlotte. NC 28278
*Indicate Water Bearing Zones			Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
			In Pank
MW16R		1	
*Bentonite seal from 1.0' to 0.5'		- 1	Signed: Date: 4/30/2021
			Well Driller
5. TYPE: ☐ Mud Rotary ☐ Jetted	□в	ored	If D Level Driller, provide supervising driller's assess
☐ Dug ☐ Air Rota			If D Level Driller, provide supervising driller's name:
☐ Cable tool ☑ Other	-	- [Tommy Bolyard/B1846
		<u> </u>	

1. WELL OWNER INFORMATION:	
Name: Dan McEachin	7. PERMIT NUMBER: UMW-28344
(last) (first)	C.T.H. 20311
Address: 1007 Wentworth Drive	8. USE:
1007 Wentworth Drive	☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
250010000	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/13/2021
2. LOCATION OF WELL: COUNTY: Florence	18.0 ft. Date Completed: 4/13/2021
Name: Coastal 76 Truck Stop	10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto Street	Diam.: 2" Height: Above /Below
City: Florence Zip: 29506-0000	Type: ☑ PVC ☐ Galvanized Surfaceft
29300-0000	☐ Steel ☐ Other Weight
Latitude: Longitude:	2.0 in. to 3.0 ft. depth Drive Shoe? \square Yes \square No
Ü	in. to ft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER:	11. SCREEN:
03538 MW17R	Type: Schedule 40 Diam.: 2"
4. ABANDONMENT: Yes No	Slot/Gauge: 0.010 Length: 15.0
4. ADAMOUNIMENT. LI TES LI NO	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
Crouted Double, from	ft. and ft. USE SECOND SHEET
Grouted Depth: fromft. toft.	Sieve Analysis ☐ Yes (please enclose) ☐ No
*Thickness Depth to Formation Description of Bottom of	12. STATIC WATER LEVEL 6.50 ft. below land surface after 24 hours
Formation Description of Bottom of Stratum Stratum	13. PUMPING LEVEL Below Land Surface.
Statum Statum	ft. after hrs. PumpingG.P.M.
	Pumping Test: ☐ Yes (please enclose) ☐ No
CET CROLOGICAL OC	Yield:
SEE GEOLOGIST LOG	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ✓ Yes No
	Installed from 17.0 ft. to 1.0 ft. Effective size 1.43 Uniformity Coefficient 1.30
	16. WELL GROUTED? ☑ Yes ☐ No
	□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other □
	Depth: From <u>0.50</u> ft. to <u>0.0</u> ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type
	Well Disinfected ☐ Yes ☐ No Type: Amount:
	18. PUMP: Date installed: Not installed
	Mfr. Name: Model No.:
	H.P. Volts Length of drop pipe ft. Capacity gpm
	TYPE: Submersible Jet (shallow) Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
	Address: (Print) Level: A B C D (circle one)
	17538 Greenhill Road
*Indicate Water Bearing Zones	Charlotte. NC 28278
Indicate Valer Bearing 201103	Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:	
	Luc Pank
MW17R *Bentonite seal from 1.0' to 0.5'	
Demonite Seat thori 1.0 to 0.3	Signed:
	Well Driller
B. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven	
☐ Cable tool	Tommy Bolyard/B1846

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: Dan McEachin			UMW-28344
(last) (first)			8. USE:
Address: 1007 Wentworth Drive			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC	Zip: 2	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/13/2021
2. LOCATION OF WELL: C		ence	17.0 ft. Date Completed: 4/13/2021
Name: Coastal 76 Truck Stop	1101		10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto	Street		Diam.: 2" Height: Above /Below
	Zip: 29506-	0000	Type: ☑ PVC □ Galvanized Surfaceft.
	2,500	0000	☐ Steel ☐ Other Weight
Latitude: Longitude	e:		2.0in. to 2.0ft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. toft. depthin. to
3. PUBLIC SYSTEM NAME: PU	JBLIC SYSTE	M NUMBER:	11. SCREEN:
03538	MW22	R	Type: Schedule 40 Diam.: 2"
4. ABANDONMENT: ☐ Yes ☐	No		Slot/Gauge: 0.010 Length: 15.0 Set Between: 2.0 ft. and 17.0 ft. NOTE: MULTIPLE SCREENS
Grouted Depth: from	ft. to	ft.	———— ft. and ————— ft. USE SECOND SHEET Sieve Analysis □ Yes (please enclose) □ No
	*Thickness	Depth to	12. STATIC WATER LEVEL 5.33 ft. below land surface after 24 hours
Formation Description	of	Bottom of	
	Stratum	Stratum	PUMPING LEVEL Below Land Surface. ft. after hrs. Pumping G.P.M.
			Pumping Test: \(\sum \) Yes (please enclose) \(\sum \) No
CEE CEOI OCIOTI OC		4	Yield:
SEE GEOLOGIST LOG		·u	14. WATER QUALITY
		3	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
		•	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from 17.0 ft. to 1.0 ft.
			Effective size 1.43 Uniformity Coefficient 1.30
			16. WELL GROUTED? ☑ Yes ☐ No
			□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other □
			Depth: From <u>0.50</u> ft. to <u>0.0</u> ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C D (circle one)
			17538 Greenhill Road
Indicate Water Bearing Zones			Charlotte. NC 28278 Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Han a 2nd about 15 marks)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed) 5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
			Luc Pank
MW22R		- 1	
*Bentonite seal from 1.0' to 0.5'			Signed:
	l.		Well Driller
5. TYPE: Mud Rotary	□ B		If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rota☐ Cable tool ☐ Other -	•	riven	Tommy Bolyard/B1846
Cubic co.	. rugei	<u> </u>	• • •

TROMOTE TROTECT TROSTER			
WELL OWNER INFORMATION: Name: Dan McEachin			7. PERMIT NUMBER: UMW-28344
(last) (first)			
Address: 1007 Wentworth Drive			8. USE:
City: Florence State: S		9501-0000	☐ Residential ☐ Public Supply ☐ Process ☐ Irrigation ☐ Air Conditioning ☐ Emergency
Tolophone: Works			9. WELL DEPTH (completed) Date Started: 4/14/2021
Telephone: Work: 2. LOCATION OF WELL:	Home: COUNTY: Flore		
Name: Coastal 76 Truck Stop	COUNTY: Flore	ence	17.0 ft. Date Completed: 4/14/2021
Street Address: 2513 E Palmett	to Cturet		10. CASING: Threaded Welded Diam.: 2" Height: Above / Below
City: Florence		0000	Diam.: ∠
Plotence	Zip: 29506-	0000	
Latitude: Longitu	ide:		2.0
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTE	M NUMBER:	11. SCREEN:
03538	MW24		Type: Schedule 40 Diam.: 2"
4. ABANDONMENT: Yes	□ No		Slot/Gauge: 0.010 Length: 15.0
Grouted Depth: from		4	Set Between: 2.0 ft. and 17.0 ft. NOTE: MULTIPLE SCREENS — ft. and — ft. USE SECOND SHEET
Grouted Depth. Iron	*Thickness	π. Depth to	Sieve Analysis
Formation Description	of	Bottom of	12. STATIC WATER LEVEL 5.69 ft. below land surface after 24 hours
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
			ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) ☐ No
SEE GEOLOGIST LOG	1 1	ć	Yield:
			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
		į	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from $\underbrace{17.0}$ ft. to $\underbrace{1.0}$ ft. Effective size $\underbrace{1.43}$ Uniformity Coefficient $\underbrace{1.30}$
			16. WELL GROUTED? ☑ Yes ☐ No ☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
			Depth: From 0.50 ft. to 0.0 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
		ļ	TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		- 1	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C D (circle one)
			17538 Greenhill Road
Indicate Water Bearing Zones			Charlotte. NC 28278 Telephone No.: 704-607-7529 Fax No.: 803-548-2233
-		ŀ	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
REMARKS:			2
MW24R			Land Pank
*Bentonite seal from 1.0' to 0.5'			4/20/2021
			Signed: Date: 4/30/2021 Well Driller
. TYPE: Mud Rotary Jetted	J □ Bo	ored	If D Level Driller provide cuponicing deithed and a
☐ Dug ☐ Air Ro			If D Level Driller, provide supervising driller's name:
☐ Cable tool ☑ Other	- Auger		Tommy Bolyard/B1846

A LIVER OF THE STATE OF THE STA	
1. WELL OWNER INFORMATION:	7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin	OIVI W -28344
(last) (first)	8. USE:
Address: 1007 Wentworth Drive	☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
- 1 lorence =	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/14/2021
2. LOCATION OF WELL: COUNTY: Florence	18.0 ft. Date Completed: 4/14/2021
Name: Coastal 76 Truck Stop	10. CASING: Threaded Welded
Street Address: 2513 E Palmetto Street	Diam.: 2" Height: Above /Below
	Type: PVC Galvanized Surface ft.
City: Florence Zip: 29506-0000	
Latitude: Longitude:	2.0 in. to 3.0 ft. depth Weight Ib./ft. Drive Shoe? Yes No
Longitudo.	in. toft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER:	11. SCREEN:
03538 MW25R	Type: Schedule 40 Diam.: 2" Slot/Gauge: 0.010 Length: 15.0
	Slot/Gauge: <u>0.010</u> Length: <u>15.0</u>
4. ABANDONMENT: ☐ Yes ☐ No	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
	ft. and ft. USE SECOND SHEET
Grouted Depth: fromft. toft.	Sieve Analysis ☐ Yes (please enclose) ☐ No
*Thickness Depth to	12. STATIC WATER LEVEL 4.16 ft. below land surface after 24 hours
Formation Description of Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
Stratum Stratum	ft. after hrs. Pumping G.P.M.
	Pumping Test: Yes (please enclose) No
	Yield:
SEE GEOLOGIST LOG	
	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
	Installed from 18.0 ft. to 1.0 ft.
	Effective size 1.43 Uniformity Coefficient 1.30
	16. WELL GROUTED? ☑ Yes ☐ No
	□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other
	Depth: From 0.50 ft. to 0.0 ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type
	Well Disinfected ☐ Yes ☐ No Type: Amount:
	18. PUMP: Date installed: Not installed
	Mfr. Name: Model No.:
	H.P Volts Length of drop pipe ft. Capacity gpm
	TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
	Address: (Print) Level: A B C (D) (circle one)
	17538 Greenhill Road
	Charlotte. NC 28278
Indicate Water Bearing Zones	Telephone No.: 7()4-6()7-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)	
TO SEE A ATTU STICE LITTLE COUNTY I	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
	 WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.
	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS: MW25R	
5. REMARKS:	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS: MW25R	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS: MW25R *Bentonite seal from 1.0' to 0.5'	my direction and this report is true to the best of my knowledge and belief. Signed:
5. REMARKS: MW25R *Bentonite seal from 1.0' to 0.5' 5. TYPE: Mud Rotary Jetted Bored	my direction and this report is true to the best of my knowledge and belief. Signed: Date: $\frac{4/30/2021}{}$
MW25R *Bentonite seal from 1.0' to 0.5'	my direction and this report is true to the best of my knowledge and belief. Signed:

A MELL OWNED WEDDAM TON	
1. WELL OWNER INFORMATION:	7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin	ON W-20544
(last) (first)	8. USE:
Address: 1007 Wentworth Drive	☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
110101100 00 1 25001 0000	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/14/2021
2. LOCATION OF WELL: COUNTY: Florence	36.0 ft. Date Completed: 4/15/2021
Name: Coastal 76 Truck Stop	10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto Street	Diam.: 2 " & 6" Height: Above /Below
City: Florence Zip: 29506-0000	Type: ☑ PVC ☐ Galvanized Surfaceft.
29300-0000	Steel Other Weight
Latitude: Longitude:	
•	2.0 in. to 31.0 ft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER	11. SCREEN:
03538 MW25D	Type: Schedule 40 Diam.: 2"
4. ABANDONMENT: ☐ Yes ☐ No	Slot/Gauge: 0.010 Length: 5.0
100 1100	Set Between: 31.0 ft. and 36.0 ft. NOTE: MULTIPLE SCREENS
Grouted Depth: from ft. to ft.	ft. and ft. USE SECOND SHEET
*Thickness Depth to	Tes (picase enclose) El No
Formation Description of Bottom of	12. STATIC WATER LEVEL 4.92 ft. below land surface after 24 hours
Stratum Stratum	13. PUMPING LEVEL Below Land Surface.
	ft. after hrs. Pumping G.P.M.
	Pumping Test: ☐ Yes (please enclose) ☐ No
SEE GEOLOGIST LOG	Yield:
SEE GEOEGGIST EGG	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
	Installed from 29.0 ft. to 1.0 ft.
	Effective size 1.43 Uniformity Coefficient 1.30
	16. WELL GROUTED? ☑ Yes ☐ No
	☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
	Depth: From <u>27.0</u> ft. to <u>0.0</u> ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type
	Well Disinfected ☐ Yes ☐ No Type: Amount:
	18. PUMP: Date installed: Not installed ☐ Mfr. Name: Model No.:
	H.P Volts Length of drop pipe ft. Capacity gpm
	TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
	Address: (Print) Level: A B C D (circle one)
	17538 Greenhill Road
	Charlotte. NC 28278
Indicate Water Bearing Zones	Telephone No.: 704-607-7529 Fax No.: 803-548-2233
	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:	1
MW25D	Luc Panh
*Bentonite seal from 27.0' to 29.0'	
	Signed:
5. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored	
5. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored ☐ Dug ☐ Air Rotary ☐ Driven	If D Level Driller, provide supervising driller's name:
☐ Cable tool ☐ Other - Auger	Tommy Bolyard/B1846
2 case ac. E oue - Muget	
•	

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: Dan McEachin			UMW-28344
(last) (first)			8. USE;
Address: 1007 Wentworth Drive	Address: 1007 Wentworth Drive		☐ Residential ☐ Public Supply ☐ Process
City: Et Crete: Cl	d 7: 205	01 0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: Florence State: Se	C Zip: 295	01-0000	☐ Test Weil ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/14/2021
2. LOCATION OF WELL:			4
	John T. Florence	ce	
Name: Coastal 76 Truck Stop			10. CASING: ☐ Threaded ☐ Welded Diam.: 2" Height: Above /Below
Street Address: 2513 E Palmetto	Street		
City: Florence	Zip: 29506-00	00	Type:
Latitude: Longitud	١.		1 20 20
Latitude: Longitud	e:		2.0 in. to 3.0 ft. depth Drive Shoe? ☐ Yes ☐ No in. to ft. depth
3. PUBLIC SYSTEM NAME: P	UDI IC CVCTEM	MUMPED	11. SCREEN:
03538	MW26R	NUMBER:	Type: Schedule 40 Diam.: 2"
			Slot/Gauge: 0.010 Length: 15.0
4. ABANDONMENT: Yes	l No		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
			ft. andft. USE SECOND SHEET
Grouted Depth: from		ft.	Sieve Analysis ☐ Yes (please enclose) ☐ No
	1	Depth to	12. STATIC WATER LEVEL 5.41 ft. below land surface after 24 hours
Formation Description		Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
	Stratum	Stratum	ft. after hrs. Pumping G.P.M.
			Pumping Test: Yes (please enclose) No
			Yield:
SEE GEOLOGIST LOG			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
		200	Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) Yes No
			Installed from $\underbrace{18.0}$ ft. to $\underbrace{1.0}$ ft. Effective size $\underbrace{1.43}$ Uniformity Coefficient $\underbrace{1.30}$
			16. WELL GROUTED? ☑ Yes ☐ No
			□ Neat Cement □ Bentonite □ Bentonite/Cement □ Other □
			Depth: From 0.50 ft. to 0.0 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected Yes No Type: Amount:
			18. PUMP: Date installed: Not installed
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm TYPE: Submersible Jet (shallow) Turbine
			Y 1D 1
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100 Address: (Print) Level: A. B. C. (D) (circle one)
			(circle offe)
			17538 Greenhill Road Charlotte, NC 28278
*Indicate Water Bearing Zones			Telephone No.: 7()4-6()7-7529 Fax No.: 803-548-2233
İ			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:		- 1	1 1
MW26R		- 1	Luc Pank
*Bentonite seal from 1.0' to 0.5'			4/20/2021
			Signed:
6 TVDE: [] Mud Dotter			
6. TYPE: Mud Rotary Jetted Bored			If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven ☐ Cable tool ☑ Other - Auger			Tommy Bolyard/B1846
Outlet -	ruger		, ,

PROMOTE PROTECT PROSPER	
1. WELL OWNER INFORMATION:	7. PERMIT NUMBER:
Name: Dan McEachin	UMW-28344
(last) (first)	8. USE:
Address: 1007 Wentworth Drive	Residential Public Supply Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: Florence State: SC Zip: 29501-0000	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/13/2021
2. LOCATION OF WELL: COUNTY: Florence	<u> </u>
Name: Coastal 76 Truck Stop	18.0 ft. Date Completed: 4/13/2021
Street Address: 2513 E Palmetto Street	10. CASING: ☐ Threaded ☐ Welded Diam.: 2" Height: Above / Below
	Treight 7 bove 7 below
City: Florence Zip: 29506-0000	Type:
Latitude: Longitude:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Longitude.	in. toft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER:	
03538 MW29	Type: Schedule 40 Diam.: 2"
	Slot/Gauge: 0.010 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐ No	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
One to d Double Co.	ft. and ft. USE SECOND SHEET
Grouted Depth: fromft. toft.	Sieve Analysis 🔲 Yes (please enclose) 🗍 No
*Thickness Depth to Formation Description of Bottom of	12. STATIC WATER LEVEL 5.14 ft. below land surface after 24 hours
Formation Description of Bottom of Stratum Stratum	13. PUMPING LEVEL Below Land Surface.
Otatam Otatam	ft. after hrs. Pumping G.P.M.
	Pumping Test: Yes (please enclose) No
SEE CEOLOGIST LOG	Yield:
SEE GEOLOGIST LOG	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
	1-4-Had form 10.0
	Effective size 1.43 Uniformity Coefficient 1.30
	16. WELL GROUTED? ☑ Yes ☐ No
	□ Neat Cement □ Bentonite □ Bentonite/Cement □ Other
	Depth: From 0.50 ft. to 0.0 ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type Amount:
	18. PUMP: Date installed: Not installed Mfr. Name: Model No.:
	H.P Volts Length of drop pipe ft. Capacity gpm
	TYPE: Submersible Jet (shallow) Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	Jan. 110. 2100
	torion in B of B (circle one)
	17538 Greenhill Road Charlotte. NC 28278
Indicate Water Bearing Zones	Telephone No.: 704-607-7529 Fax No.: 803-548-2233
	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:	A = A = A
MW29	Las Pank
*Bentonite seal from 1.0' to 0.5'	4/30/2021
	Signed: Date: 4/30/2021
i. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored	
☐ Dug ☐ Air Rotary ☐ Driven	If D Level Driller, provide supervising driller's name:
☐ Cable tool ☐ Other - Auger	Tommy Bolyard/B1846
	-

1. WELL OWNER INFORMATION:	7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin	OIVI W -28344
(last) (first)	8. USE:
Address: 1007 Wentworth Drive	☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
5-1 tolence 5-4-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/14/2021
2. LOCATION OF WELL: COUNTY: Florence	18.0 ft. Date Completed: 4/14/2021
Name: Coastal 76 Truck Stop	10. CASING: Threaded Welded
Street Address: 2513 E Palmetto Street	Diam.: 2" Height: Above /Below
	Type: PVC Galvanized Surface ft.
City: Florence Zip: 29506-0000	Steel Other Weight
Latitude: Longitude:	2.0 in to 3.0 ft. depth Drive Shoe? \square Yes \square No
Longitude.	in. to ft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER:	11. SCREEN:
03538 MW30	Type: Schedule 40 Diam.: 2"
4. ABANDONMENT:	Slot/Gauge: 0.010 Length: 15.0
4. ABANDONWENT: Lifes Lino	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
Crowtod Double, from	ft. and ft. USE SECOND SHEET
Grouted Depth: fromft. toft.	Sieve Analysis ☐ Yes (please enclose) ☐ No
*Thickness Depth to	12. STATIC WATER LEVEL 5.35 ft. below land surface after 24 hours
Formation Description of Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
- Citatum - Citatum	ft. after hrs. Pumping G.P.M.
	Pumping Test: Yes (please enclose) No
CER CURA COVER A	Yield:
SEE GEOLOGIST LOG	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) Yes No
	Installed from $\underbrace{18.0}_{\text{ft. to }}$ $\underbrace{1.0}_{\text{ft.}}$ ft. Effective size $\underbrace{1.43}_{\text{constraint}}$ Uniformity Coefficient $\underbrace{1.30}_{\text{constraint}}$
	16. WELL GROUTED? ☑ Yes ☐ No
	□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other □
	Depth: From 0.50 ft. to 0.0 ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type
	Well Disinfected ☐ Yes ☐ No Type: Amount:
	18. PUMP: Date installed: Not installed
	Mfr. Name: Model No.:
	H.P Volts Length of drop pipe ft. Capacity gpm
	TYPE: Submersible Jet (shallow) Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
	Address: (Print) Level: A B C D (circle one)
	17538 Greenhill Road
Indicate Water Bearing Zones	Charlotte, NC 28278
	Telephone No.: 7()4-6()7-7529 Fax No.: 803-548-2233 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	my direction and this report is true to the best of my knowledge and belief.
. REMARKS:	2
	Luc Panh
MW30 *Pontonite seel from 1.024a.0.52	
*Bentonite seal from 1.0' to 0.5'	Signed: Date: 4/30/2021
	Well Driller
. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven	
☐ Cable tool	Tommy Bolyard/B1846

A Maria august a contract a contr	
1. WELL OWNER INFORMATION:	7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin (last) (first)	ON W-20344
(last) (first) Address: 1007 Wentworth Drive	8. USE:
1007 Wentworth Drive	☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: Home:	9. WELL DEPTH (completed) Date Started: 4/15/2021
2. LOCATION OF WELL: COUNTY: Florence	ft. Date Completed: 4/15/2021
Name: Coastal 76 Truck Stop	10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto Street	Diam.: 4" Height: Above /Below
City: Florence Zip: 29506-0000	Type: PVC Galvanized Surface ft.
2,500-0000	☐ Steel ☐ Other Weight
Latitude: Longitude:	$\frac{4.0}{}$ in. to $\frac{3.0}{}$ ft. depth Drive Shoe? \square Yes \square No
	in. toft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER	11. SCREEN:
03538 RW01	Type: Schedule 40 Diam.: 4" Slot/Gauge: 0.015 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐ No	
Grouted Depth: from ft. to ft.	————— ft. and ————— ft. USE SECOND SHEET Sieve Analysis □ Yes (please enclose) □ No
*Thickness Depth to	12. STATIC WATER LEVEL 5.66 ft. below land surface after 24 hours
Formation Description of Bottom of	13. PUMPING LEVEL Below Land Surface.
Stratum Stratum	13. FOMPING LEVEL Below Land Surface. ft. after hrs. Pumping G.P.M.
	Pumping Test: Yes (please enclose) No
CEE CEO CONTA O C	Yield:
SEE GEOLOGIST LOG	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
	Installed from 18.0 ft. to 1.0 ft.
	Effective size 1.43 Uniformity Coefficient 1.30
	16. WELL GROUTED? ☑ Yes ☐ No
	□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other
	Depth: From 0.50 ft. to 0.0 ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Type
	Well Disinfected ☐ Yes ☐ No Type: Amount:
	18. PUMP: Date installed: Not installed
	Mfr. Name: Model No.:
	H.P Volts Length of drop pipe ft. Capacity gpm
	TYPE: Submersible Jet (shallow) Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
	Address: (Print) Level: A B C (D) (circle one)
	17538 Greenhill Road
Indicate Water Bearing Zones	Charlotte. NC 28278 Telephone No.: 704-607-7529 Fax No.: 803-548-2233
	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:	4
RW01	Luc Panh
*Bentonite seal from 1.0' to 0.5'	4/20/2021
	Signed: Date: 4/30/2021
B. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored	
☐ Dug ☐ Air Rotary ☐ Driven	If D Level Driller, provide supervising driller's name:
☐ Cable tool	Tommy Bolyard/B1846
, and the second	

TROMOTE TROTTER			
1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin			OW W-28344
(last) (first)			8. USE:
Address: 1007 Wentworth Drive			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: S	C. Zip: 2:	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
7 Horence	C 2,p. 2.	2301-0000	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/15/2021
2. LOCATION OF WELL:		nce	
Name: Coastal 76 Truck Stop	Tore	Aircc	
Street Address: 2513 E Palmetto	C.		\$ AR
City: F1			
City: Florence	Zip: 29506-	0000	Type: PVC Galvanized Surfaceft.
Latituda.			
Latitude: Longitud	le:		4.0 in. toft. depth Drive Shoe? ☐ Yes ☐ No ft. depth
A BUBLIC OVOTERS			
3. PUBLIC SYSTEM NAME: P		M NUMBER:	11. SCREEN: - Schedule 40 - 4"
03538	RW02		Type: Schedule 40 Diam.: 4" Slot/Gauge: 0.015 Length: 15.0
4. ABANDONMENT: Yes	l No		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
			Tt. and Local Tt. NOTE: MULTIPLE SCREENS Tt. Set Between. 2.0 tt. NOTE: MULTIPLE SCREENS Tt. Set Between. 2.0 tt. NOTE: MULTIPLE SCREENS Tt. Set Between. 2.0 tt. NOTE: MULTIPLE SCREENS
Grouted Depth: from	ft. to	ft.	Tt. andft. USE SECOND SHEET Sieve Analysis □ Yes (please enclose) □ No
	*Thickness	Depth to	
Formation Description	of	Bottom of	12. STATIC WATER LEVEL 5.68 ft. below land surface after 24 hours
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
			ft. after hrs. Pumping G.P.M.
			Pumping Test: 🗌 Yes (please enclose) 🔲 No
SEE GEOLOGIST LOG			Yield:
SEE GEOEGIST EGG			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
		2	15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
			Installed from 18.0 ft. to 1.0 ft.
			Effective size 1.43 Uniformity Coefficient 1.30
			16. WELL GROUTED? ☑ Yes ☐ No
			☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
			Depth: From 0.50 ft. to 0.0 ft.
]		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
			Mfr. Name: Model No.:
	-		H.P Volts Length of drop pipe ft. Capacity gpm
		ľ	TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		- 1	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C (D) (circle one)
		ŀ	17538 Greenhill Road
Kladicata Matau Dania 7			Charlotte. NC 28278
Indicate Water Bearing Zones			Telephone No.: 704-607-7529 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
			\mathcal{I} , \mathcal{O} \mathcal{I}
RW02			Luc Panh
*Bentonite seal from 1.0' to 0.5'			Signed: Date: 4/30/2021
			Well Driller Date: Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted	□ Во	ored	
□ Dug □ Air Rot			If D Level Driller, provide supervising driller's name:
☐ Cable tool ☐ Other -	•	IACII	Tommy Bolyard/B1846
United	1145CI	<u> </u>	-

PROMOTE PROTECT PROSPER		
WELL OWNER INFORMATION:		7. PERMIT NUMBER:
Name: Dan McEachin		UMW-28344
(last)	(first)	8. USE:
Address: 1007 Wentworth Drive	8	☐ Residential ☐ Public Supply ☐ Process
City: Florence State:	SC Zip: 29501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
T torence	, 25001 0000	☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:	9. WELL DEPTH (completed) Date Started: 4/15/2021
2. LOCATION OF WELL:	COUNTY: Florence	ft. Date Completed: 4/15/2021
Name: Coastal 76 Truck Stop		10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmet	to Street	Diam.: 4'' Height: Above /Below
City: Florence	Zip: 29506-0000	Type: ☑ PVC ☐ Galvanized Surfaceft.
		Steel Other Weight — Ib./ft.
Latitude: Longitu	ıde:	$\frac{4.0}{}$ in. to $\frac{3.0}{}$ ft. depth Drive Shoe? \square Yes \square No
		in. toft. depth
J	PUBLIC SYSTEM NUMBER:	11. SCREEN: Type: Schedule 40 Diam.: 4"
03538	RW03	Slot/Gauge: 0.015 Length: 15.0
4. ABANDONMENT: Yes	□ No	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
		ft. and ft. USE SECOND SHEET
Grouted Depth: from		Sieve Analysis 🔲 Yes (please enclose) 🗌 No
Formation December	*Thickness Depth to	12. STATIC WATER LEVEL 5.35 ft. below land surface after 24 hours
Formation Description	of Bottom of Stratum Stratum	13. PUMPING LEVEL Below Land Surface.
	Ottatum Ottatum	ft. after hrs. Pumping G.P.M.
		Pumping Test: Yes (please enclose) No
SEE GEOLOGIST LOG		Yield:
SEE GEOLOGIST LOG		14. WATER QUALITY
		Chemical Analysis □ Yes □ No Bacterial Analysis □ Yes □ No
		Please enclose lab results.
		15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
		Installed from 18.0 ft. to 1.0 ft.
		Effective size 1.43 Uniformity Coefficient 1.30
		16. WELL GROUTED? ☑ Yes ☐ No
		☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
		Depth: From 0.50 ft. to 0.0 ft.
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
		Type
		Well Disinfected ☐ Yes ☐ No Type: Amount:
		18. PUMP: Date installed: Not installed
		Mfr. Name: Model No.:
		H.P Volts Length of drop pipe ft. Capacity gpm
		TYPE: Submersible Jet (shallow) Turbine
		☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
		Address: (Print) Level: A B C D (circle one)
		17538 Greenhill Road
*Indicate Water Bearing Zones	6	Charlotte. NC 28278 Telephone No.: 704-607-7529 Fax No.: 803-548-2233
		20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)		my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:		$A \sim A$
RW03		Luc Pank
*Bentonite seal from 1.0' to 0.5'		4/20/2021
		Signed: Date: 4/30/2021 Well Driller
6. TYPE: Mud Rotary Jetted	d □ Bored	
□ Dug □ Air Ro		If D Level Driller, provide supervising driller's name:
	- Auger	Tommy Bolyard/B1846

4 MELL OWNER DISCOURS			
1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: UMW-28344
Name: Dan McEachin (last) (first)			CIVITY 20344
Address: 1007 Wentworth Drive	(111	St)	8. USE:
1007 Wentworth Drive			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: So	C Zip: 2	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency
			☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/15/2021
	COUNTY: Flore	ence	ft. Date Completed: 4/15/2021
Name: Coastal 76 Truck Stop			10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto			Diam.: 4" Height: Above /Below
City: Florence	Zip: 29506-	0000	Type: 🗹 PVC 🔲 Galvanized Surface
Latitude: Longitud	e:		4.0 in. to 3.0 ft. depth Drive Shoe? ☐ Yes ☐ No in. to ft. depth
3. PUBLIC SYSTEM NAME: P	IIDI IC EVETE	M MUMBED.	11. SCREEN:
03538	RW04	IN NUMBER.	Type: Schedule 40 Diam: 4"
			Slot/Gauge: 0.015 Length: 15.0
4. ABANDONMENT: ☐ Yes ☐	No	3	Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
Crouted Dootley form			ft. andft. USE SECOND SHEET
Grouted Depth: from			Sieve Analysis 🗌 Yes (please enclose) 🗌 No
Formation Description	*Thickness of	Depth to Bottom of	12. STATIC WATER LEVEL 5.51 ft. below land surface after 24 hours
Torriation Description	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
			ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) ☐ No
SEE GEOLOGIST LOG			Yield:
			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
			Installed from 18.0 ft. to 1.0 ft.
			Effective size 1.43 Uniformity Coefficient 1.30
			16. WELL GROUTED? ☑ Yes ☐ No
		ĺ	☐ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other
			Depth: From 0.50 ft. to 0.0 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
]		Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
		- 1	Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
		- 1	TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		- 1	19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			Address: (Print) Level: A B C D (circle one)
			17538 Greenhill Road Charlotte, NC 28278
Indicate Water Bearing Zones			Telephone No.: 704-607-7529 Fax No.: 803-548-2233
	ĺ		20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			$A \sim A \sim A$
RW04		- 1	Luc Pank
*Bentonite seal from 1.0' to 0.5'			Signed: Date: 4/30/2021_
			Well Driller Date: 150/2021
5. TYPE: Mud Rotary Jetted	□в	ored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rot			
☐ Cable tool ☐ Other -	Auger		Tommy Bolyard/B1846

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: Dan McEachin			UMW-28344
(last)	(first)		
Address: 1007 Wentworth Drive			8. USE:
			☐ Residential ☐ Public Supply ☐ Process
City: Florence State: SC	Zip: 2950	01-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/15/2021
2. LOCATION OF WELL: C	OUNTY: Florence	e	18.0 ft. Date Completed: 4/15/2021
Name: Coastal 76 Truck Stop			10. CASING: ☐ Threaded ☐ Welded
Street Address: 2513 E Palmetto	Street		Diam.: 4" Height: Above /Below
City: Florence	Zip: 29506-000	00	Type: ☑ PVC ☐ Galvanized Surface #
1 ToToTio	29300-000)0	
Latitude: Longitude	e:		$\frac{4.0}{}$ in to $\frac{3.0}{}$ ft. depth Drive Shoe? \square Yes \square No
			in. toft, depth
3. PUBLIC SYSTEM NAME: PL	JBLIC SYSTEM N	IUMBER:	11. SCREEN:
03538	RW05		Type: Schedule 40 Diam.: 4"
4 ADANDONISTATE DE VIII DE			Slot/Gauge: <u>0.015</u> Length: <u>15.0</u>
4. ABANDONMENT: ☐ Yes ☐	NO		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS
0 1 1 5 11 1			ft. and ft. USE SECOND SHEET
Grouted Depth: from			Sieve Analysis ☐ Yes (please enclose) ☐ No
Farmer D. C. C.	1	Depth to	12. STATIC WATER LEVEL 5.99 ft. below land surface after 24 hours
Formation Description		ottom of Stratum	13. PUMPING LEVEL Below Land Surface.
	Suatum	Straturii	ft. after hrs. Pumping G.P.M.
		8	Pumping Test: Yes (please enclose) \(\square\) No
			Yield:
SEE GEOLOGIST LOG			
			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No
			Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from 18.0 ft. to 1.0 ft.
			Effective size 1.43 Uniformity Coefficient 1.30
			16. WELL GROUTED? ☑ Yes ☐ No
			☐ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other
			Depth: From 0.50 ft. to 0.0 ft.
		ı	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Туре
		,	Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed
		P+	Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
	}		TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100
			2100
			(61.51.5 51.6)
	ì		17538 Greenhill Road
Indicate Water Bearing Zones			Charlotte. NC 28278 Telephone No.: 704-607-7529 Fax No.: 803-548-2233
-			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			
RW05	[1	Lud Pank
*Bentonite seal from 1.0' to 0.5'			4/20/2021
26	ĺ		Signed: Date: 4/30/2021
			Well Driller
6. TYPE: Mud Rotary Jetted	☐ Bored	-	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rota	•	n [
☐ Cable tool ☑ Other -	Auger		Tommy Bolyard/B1846

1. WELL OWNER INFORMATION:									
Name: Dan McEachin			7. PERMIT NUMBER: UMW-28344						
(last)	(fir	ret)	011.11 20374						
Address: 1007 Wentworth Drive	(111	31)	8. USE:						
1007 Welltworth Drive			☐ Residential ☐ Public Supply ☐ Process						
City: Florence State: SC	Zip: 2	9501-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement						
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 4/15/2021						
2. LOCATION OF WELL: C	OUNTY: Flore	ence	18.0 ft. Date Completed: 4/15/2021						
Name: Coastal 76 Truck Stop	1101	onice	10. CASING: Threaded Welded						
Street Address: 2513 E Palmetto	Stroot		β A11						
			Diam.: 4 Height: Above /Below Type: ☑ PVC ☐ Galvanized Surfaceft.						
riorence	Zip: 29506-	0000	Steel Other Weight						
Latitude: Longitude	a:		4.0 in. to 3.0 ft. depth Drive Shoe? \square Yes \square No						
Landae. Longitude	J.		in. toft. depth						
3. PUBLIC SYSTEM NAME: PL	JBLIC SYSTE	M NUMBER:	11. SCREEN:						
03538	RW06		Type: Schedule 40 Diam.: 4" Slot/Gauge: 0.015 Length: 15.0						
4. ABANDONMENT: Yes			Slot/Gauge: 0.015 Length: 15.0						
4. ABANDONMENT. 1 fes 1	NO		Set Between: 3.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS						
Granted Donth: from	EL 1-		ft. and ft. USE SECOND SHEET						
Grouted Depth: from			Sieve Analysis 🔲 Yes (please enclose) 🗌 No						
Formation Description	*Thickness of	Depth to Bottom of	12. STATIC WATER LEVEL 6.28 ft. below land surface after 24 hours						
1 offilation bescription	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.						
			ft. after hrs. Pumping G.P.M.						
			Pumping Test: Yes (please enclose) No						
SEE GEOLOGIST LOG			Yield:						
SEE GEOLOGIST LOG			14. WATER QUALITY						
			Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No						
		ž	Please enclose lab results.						
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No						
			Installed from 18.0 ft. to 1.0 ft.						
			Effective size 1.43 Uniformity Coefficient 1.30						
			16. WELL GROUTED? ☑ Yes ☐ No						
			□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other						
			Depth: From 0.50 ft. to 0.0 ft.						
		ļ	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction						
			Type						
			Well Disinfected ☐ Yes ☐ No Type: Amount:						
			18. PUMP: Date installed: Not installed						
	İ	- 1	Mfr. Name: Model No.:						
			H.P Volts Length of drop pipe ft. Capacity gpm						
			TYPE: Submersible Jet (shallow) Turbine						
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal						
			19. WELL DRILLER: Jarad Pawless CERT. NO.: 2100						
			Address: (Print) Level: A B C (D) (circle one)						
			17538 Greenhill Road						
Indicate Water Regging Zange			Charlotte. NC 28278						
Indicate Water Bearing Zones		- 1	Telephone No.: 704-607-7529 Fax No.: 803-548-2233						
(Use a 2nd sheet if needed)	}		20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under						
. REMARKS:			my direction and this report is true to the best of my knowledge and belief.						
		- 1	Luc Panh						
RW06									
*Bentonite seal from 1.0' to 0.5'	ĺ		Signed:						
TVDE G			Well Driller						
Jetted	□ Bo		If D Level Driller, provide supervising driller's name:						
☐ Dug ☐ Air Rota ☐ Cable tool ☑ Other	-	riven	Tommy Bolyard/B1846						
☐ Cable tool ☑ Other - ,	Auger								

DHE C	_			nt Data Verif					
South Carolina Department of Health and Environmental Conrol	Underground Storage Tank Management Division								
	Coastal 76 Truck Stop Site ID#: 03538 Date: 4/19/2021								
Drilling Company:	EDPS		Driller:	Jared P	awless				
Field Personnel:	K.J., J.P. Driller Certification Number: D 2100								
Weather Conditions: Sunny Temp. (°F): 79									
		Well De	evelopment N	<u>Iethod</u>					
Surge Block:		ıbmersible P		X but not utilized alone		Air Lifting:			
	Bailing can be con		ality Assuran		for development				
pH Meter: Condu Serial no. 15E101481 Serial no. pH=4.0 X Standard pH-7.0 X pH-10.0 X	ctivity Meter: _15E101481 _X_		T	emperature M 14H103098		Serial No NTU 0.6 NTU 1.6 NTU10.6	X X		
W. W.			illing Method	d					
Hollow Stem Augers: X Air Rotary:	So	lid Flight Au Mud Rotary	_	-		Direct Push:			
						Sonic:			
Monitoring Well ID#: MW-2R	Well Casing	Diameter (in	1)_2		Borel	nole Diameter (in): 7.5	_	
Depth to Ground Water (DGW):	6.11 ft.		Screen Leng	gth (ft):15	5	Slot Size (i	n): <u>0.010</u>	_	
Total Well Depth (TWD):	_17.88 ft.		Screen Inter	val: <u>3.0</u> ft.	to <u>18.0</u> ft	-			
Length of Water Column (TWD-DGW):	<u>11.77</u> ft.			ling Fluid Use					
Total Gallons of Water Removed:	11.00_gals		Drilling Flui	ids Recovered	: <u>N/A</u>				
Time:	12:44	12:46	12:48	12:50	12:52				
pH(s.u)*:	6.27	6.02	6.06	5.92	5.94				
Specific Conductivity (mmhos/cm)*:	283.1	278.0	270.6	185.1	264.9				
Water Temperature (°C)*:	20.0	19.0	19.2	19.6	19.4				
Turbidity (NTU)*:	269.4	174.9	89.34	41.69	9.12				
Physical Characteristics (color/odor:)	Grey/Odor	Grey/Odor	Light Grey/ Odor	Clear / Odor	Clear / Odor				
Depth to Water (ft from TOC):	6.30	8.94	10.31	14.69	16.98				
Cumulative Gallons Removed:	0.0	3.0	6.0	9.0	11.0				
*Development is completed once groundwa		10 NTU and al	parameters are	± 10%	L				
Detailed Description of Well Developmen									
The monitoring well was developed using	ng a Mini-Mo	nsoon well	pump. The si	ubmersible p	ump was pl	aced inside th	e water colu	ımn and	
operated until all water was evacuated.	The well was	allowed to r	echarge before	ore developm	ent continu	ed. Developm	ent was cor	nplete	
after 11.0 gallons were removed.									

Driller Signature: Paul

Date: __4/19/2021

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control					nt Data Verif e Tank Mana					
Facility Name:	Coast	Coastal 76 Truck Stop Site ID#: 03538 Date: 4/19/2021								
Drilling Company:	EDPS Driller: Jared Pawless									
Field Personnel:	K.J., J.P. Driller Certification Number: D 2100									
Weather Conditions:	Sunny Temp. (°F): 79									
Surge Block: Submersible Pump: X Air Lifting: **Bailing can be combined with any of the above methods, but not utilized alone for development										
		**Bailing can be cor		the above methods, I lity Assuran		for development				
pH Meter: Conductivity Meter: Temperature Meter: Turbiditiy Meter: Serial no. 15E101481 Serial no. 15E101481 Serial no. 14H103098 Serial No. 201301174 pH=4.0 X Standard X NTU 0.0 X pH-7.0 X NTU 1.0 X pH-10.0 X NTU 10.0 X										
II II C				illing Method	d					
Hollow Stem Augers: Air Rotary:	X Solid Flight Augers: Direct Push: Mud Rotary: Sonic:									
Monitoring Well ID#: MW-5R Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5										
Depth to Ground War	ter (DGW):	4.76 ft.		Screen Leng	gth (ft):15	5	Slot S	Size (in): 0.010		
Total Well Dep		_18.15_ ft.		Screen Inter	val: <u>3.0</u> ft.	to <u>18.0</u> f	t.			
Length of Water Column (T	WD-DGW):	_13.39_ ft.		Type of Dril	ling Fluid Use	ed: N/A				
Total Gallons of Water	Removed:			Drilling Flui	ds Recovered	: <u>N/A</u>				
Time:		10:55	10:57	10:59	11:01	11:03				
pH(s.u)*:		5.51	5.58	5.70	5.65	5.66	-			
Specific Conductivity (mr	nhos/cm)*:	242.4	352.8	215.9	200.9	198.9				
Water Temperature (°C)*	:	20.7	18.6	18.2	18.0	18.2				
Turbidity (NTU)*:		219.7	211.0	143.50	67.11	10.06				
Physical Characteristics (o	color/odor:)	Light Brown/ Slight Odor	Light Brown/ Slight Odor	Light Brown/ Slight Odor	Clear / Slight Odor	Clear / Slight Odo	or			
Depth to Water (ft from T	OC):	4.76	7.14	9.04	9.97	10.34				
Cumulative Gallons Remo		0.0	5.0	10.0	15.0	20.0				
*Development is complete			10 NTU and al	parameters are	± 10%					
Detailed Description of Wo	_				,					
The monitoring well was	developed usir	ig a Mini-Mo	onsoon well	pump. The s	ubmersible p	ump was p	laced ins	ide the water colur	nn and	

operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete

Driller Signature: In Pank

after 20.0 gallons were removed.

Date: 4/19/2021

DHE PROMOTE PROTECT ROSPE South Carolina Department of Heal and Environmental Control	
Facility N	J
Drilling Com	p
Field Perso	1(
Weather Condi	ti

Well Development Data Verification Form

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control		Undergro	ound Storage	e Tank Mana	gement Di	vision		
Facility Name: Coast	al 76 Truck	Stop	Site ID#:	03538]	Date:	4/19/2021	
Drilling Company:	EDPS		Driller:	Jared Pa	wless	_		
Field Personnel:	K.J., J.P.		Driller C	ertification Nu	ımber:	D 2100		
Weather Conditions: Sunny	Temp. (°F)	: 79	_					
Well Development Method								
Surge Block:		bmersible Pu		<u>X</u>		Air Lifting	g:	
2	Balling can be con		lity Assuran	out not utilized alone	for development			
	tivity Meter:			emperature M	eter:		Turbiditiy	Meter:
Serial no. 15E101481 Serial no.	15E101481	2	Serial no.	14H103098			ial No. 20130	01174
pH=4.0 X Standard pH-7.0 X	<u>X</u>						TU 0.0 X	
pH-10.0 X							TU 1.0 <u>X</u> U10.0 X	
		Dri	lling Method	1				
Hollow Stem Augers: X	Sol	id Flight Aug	gers:	-		Direct	Push:	
Air Rotary:		Mud Rotary	•	-		Son	ic:	
Monitoring Well ID#: MW-7R	Well Casing	Diameter (in))_2		Borel	nole Diam	neter (in): 7.5	
Depth to Ground Water (DGW):	4.79 ft.		Screen Leng	th (ft):15		Slot S	Size (in):0.010	
Total Well Depth (TWD):	_17.90_ ft.		Screen Inter	val: <u>3.0</u> ft.	to <u>18.0</u> ft			
Length of Water Column (TWD-DGW):	_13.11 ft.		Type of Dril	ling Fluid Use	ed: <u>N/A</u>			
Total Gallons of Water Removed:	gals	•	Drilling Flui	ds Recovered:	N/A			
Time:	11:09	11:11	11:13	11:15	11:17			
pH(s.u)*:	6.12	6.20	6.10	6.11	6.13			
Specific Conductivity (mmhos/cm)*:	226.0	238.9	209.9	204.6	209.6			
Water Temperature (°C)*:	19.4	17.9	17.6	17.6	17.6			
Turbidity (NTU)*:	314.3	231.2	124.70	54.12	10.11			
Physical Characteristics (color/odor:)	Brown/ Slight Odor	Brown/ Slight Odor	Light Brown/ Slight Odor	Light Brown/ Slight Odor	Clear / Slight Odo	r		
Depth to Water (ft from TOC):	4.83	6.93	9.03	11.36	13.16			
Cumulative Gallons Removed:	0.0	5.0	10.0	15.0	20.0			
*Development is completed once groundwa		10 NTU and all	parameters are	± 10%				
Detailed Description of Well Developmen		.,	F-124					
The monitoring well was developed using								
operated until all water was evacuated.	he well was	allowed to r	echarge before	ore developm	ent continu	ed. Deve	elopment was co	mplete
after 20.0 gallons were removed.				.				
				 ,				
							MARKAN ORBERTSANINES	
	<u> </u>							
Driller Signature:	Paul	_		- 4	/10/0001			
Diffici Signature.			7	Date: 4	/19/2021			

Facility Name: Coastal 76 Truck Stop Site ID#: 03538 Date: 4/19/2021 Drilling Company: EDPS Driller: Jared Pawless Field Personnel: K.J., J.P. Driller Certification Number: D 2100 Weather Conditions: Sunny Temp. (°F): 79								
Field Personnel: K.J., J.P. Driller Certification Number: D 2100								
Difficility of the control Number.								
Weather Conditions: Sunny Temp. (°F): 79								
Well Development Method								
Surge Block: Submersible Pump: X Air Lifting: **Bailing can be combined with any of the above methods, but not utilized alone for development								
Quality Assurance								
pH Meter: Conductivity Meter: Temperature Meter: Turbiditiy Meter Serial no. 15E101481 Serial no. 15E101481 Serial no. 14H103098 Serial No. 20130117 pH=4.0 X Standard X NTU 0.0 X pH-7.0 X NTU 1.0 X pH-10.0 X NTU10.0 X	_							
Drilling Method								
Hollow Stem Augers: X Solid Flight Augers: Direct Push: Air Rotary: Mud Rotary: Sonic:								
Monitoring Well ID#: MW-10RR Well Casing Diameter (in): 2 Borehole Diameter (in): 7.5								
Depth to Ground Water (DGW): 4.60 ft. Screen Length (ft): 15 Slot Size (in): 0.010								
Total Well Depth (TWD): 18.02 ft. Screen Interval: 3.0 ft. to 18.0 ft.								
Length of Water Column (TWD-DGW): 13.42 ft. Type of Drilling Fluid Used: N/A								
Total Gallons of Water Removed: 25.00 gals. Drilling Fluids Recovered: N/A								
Time: 10:39 10:41 10:43 10:45 10:47 10:49								
pH(s.u)*: 4.86 4.71 4.60 4.62 4.57 4.61								
Specific Conductivity (mmhos/cm)*: 85.3 84.0 79.1 81.7 80.3 80.7								
Water Temperature (°C)*: 19.6 18.4 17.9 17.9 17.9 19.9								
Turbidity (NTU)*: 319.6 211.9 143.7 71.86 23.04 7.07								
Physical Characteristics (color/odor:) Brown/ No Odor Odor Brown/ No Odor Light Brown/ Light Brown/ No Odor No Odor No Odor No Odor Clear / No Odor No Odor								
Depth to Water (ft from TOC): 4.97 7.34 10.07 13.86 14.73 14.81								
Cumulative Gallons Removed: 0.0 5.0 10.0 15.0 20.0 25.0								
*Development is completed once groundwater turbidity is ≤10 NTU and all parameters are ± 10%								
Detailed Description of Well Development Process:								
The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and								
operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete after 25.0 gallons were removed.	·							

Driller Signature:

Luc Panh

Date: __ 4/19/2021

D		E	C
	arolina Dep I Environm		
	F	acili	ty Na

Well Development Data Verification Form

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergro	ound Storage	e Tank Mana	gement Div	ision		
Facility Name:	Coasta	ıl 76 Truck	Stop	Site ID#:	03538	E	ate:	4/19/2021	
Drilling Company:_		EDPS		Driller:	Jared Pa	wless			
Field Personnel:_		K.J., J.P.		Driller C	ertification Nu	mber:	D 2100	_	
Weather Conditions:	Sunny	Temp. (°F)	79	_				_	
Well Development Method									
Surge Bl			bmersible Pu		<u>X</u>	Α	ir Lifting:		
	**	*Bailing can be com		the above methods, be ality Assuran	out not utilized alone f	or development			
pH Meter:	Conduct	tivity Meter:			emperature Me	ton		Tr., d. 1 174	N ()
Serial no. 15E101481	Serial no.	15E101481			14H103098	itel.	Serial	Turbiditiy No 20130	<u>Meter:</u> 01174
pH=4.0 X	Standard	X	-			-	NTU		71171
pH-7.0 X							NTU		
pH-10.0 X							NTU	10.0 X	
Hollow Stem Augers:	v	S ₀ 1	<u>Dri</u> id Flight Au	illing Method	1		D:		
Air Rotary:	X		Mud Rotary		-		Direct Pu Sonic		
Monitoring Well ID#: N	/XV 15D	W							
		Well Casing	Diameter (in			Boreh	ole Diamet	ter (in): 7.5	_
Depth to Ground Water	` ′	4.09 ft.		Screen Leng	` '			ze (in): <u>0.010</u>	_
Total Well Depth		16.94 ft.			val:2.0 ft. t				
Length of Water Column (TW	ŕ	12.85 ft.			ling Fluid Use				
Total Gallons of Water I	Removed:	20.00 gals.		Drilling Flui	ds Recovered:	N/A	_		
Time:		11:36	11:38	11:40	11:42	11:44			
pH(s.u)*:		6.09	6.03	5.88	5.62	5.66			
Specific Conductivity (mml	hos/cm)*:	186.2	171.5	146.3	111.4	104.9			
Water Temperature (°C)*:		18.7	18.1	18.2	18.0	18.1			
Turbidity (NTU)*:		269.3	183.4	93.41	46.29	9.94			
Physical Characteristics (co	olor/odor:)	Brown/ No Odor	Brown/ No Odor	Light Brown/ No Odor	Light Brown/ No Odor	Clear / No Odor			
Depth to Water (ft from TO	C):	4.97	7.34	10.07	13.86	14.73			
Cumulative Gallons Remov		0.0	5.0	10.0	15.0	20.0			-
*Development is complete			10 NTU and all	parameters are	± 10%				
etailed Description of Well						, , , , , , , , , , , , , , , , , , ,			
The monitoring well was d									
operated until all water wa	s evacuated. T	he well was	allowed to r	echarge before	ore developme	ent continue	ed. Develo	opment was co	mplete
after 20.0 gallons were rem	noved.								
			#						
Driller Signature:	Zu	Paul	_		Data. 4/	10/2021			
Zimor Oignature.					Date: 4/	19/2021		——————————————————————————————————————	

D	H	E	C
South C	arolina Dej l Environm	cartment o	Health rol

Well Development Data Verification Form

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergro	ound Storage	Tank Mana	gement Divi	sion		
Facility Name:	Coasta	ıl 76 Truck		Site ID#:	03538			19/2021	
Drilling Company:		EDPS		– Driller:	Jared Pa	wless			
Field Personnel:		K.J., J.P.		Driller Ce	ertification Nu	ımber:]	D 2100		
Weather Conditions:	Sunny	Temp. (°F)	: 79			_			
			Well De	velopment M	ethod				
Surge B			ibmersible Pu	imp: he above methods, b	X	Ai	r Lifting:		
		Daining can be con		lity Assurance		for development			
<u>pH Meter:</u> Serial no. 15E101481	Conduct Serial no.	ivity Meter: 15E101481			mperature Mo	eter:	Serial 1	Turbiditiy Me	
pH=4.0 X	Standard	X	_	benai no.	1411103098	-	NTU		. /4
pH-7.0 X pH-10.0 X							NTU		
pii 10.0 _ 11 _							NTU1	0.0 X	
Hollow Stem Augers: Air Rotary:	X	So	Dri lid Flight Au _l Mud Rotary				Direct Pus	sh:	
Monitoring Well ID#:	MW 16D	Wall Casing	Diameter (in			D 1	Sonic:		
_			Diameter (III)	-	1 (0)		e Diamete	` /	
Depth to Ground Wate Total Well Dep	, ,	5.40 ft. 17.14 ft.		Screen Leng	th (ft): <u>15</u> val: 2.0 ft. i		Slot Size	(in): <u>0.010</u>	
Length of Water Column (T	, ,	11.74 ft.			ing Fluid Use				
Total Gallons of Water		10.00 gals		Drilling Fluid	_		-		
Time:		11:50	11:52	11:54	11:56	11:58			
pH(s.u)*:		6.38	6.93	7.05	7.07	7.09			
Specific Conductivity (mm	nhos/cm)*:	1035	1115	1137	1149	1151			
Water Temperature (°C)*:		19.9	22.1	23.4	23.6	23.5			
Turbidity (NTU)*:		309.7	216.9	101.90	41.82	9.12			
Physical Characteristics (c	olor/odor:)	Brown/ No Odor	Grey Brown/ No Odor	Light Grey/ No Odor	Clear/ No Odor	Clear / No Odor			
Depth to Water (ft from To	OC):	5.63	8.19	11.44	14.74	15.97			
Cumulative Gallons Remo	- /	0.0	3.0	5.0	8.0	10.0	<u></u>		
A.4.1.1.D								<u> </u>	
Detailed Description of We	-			TO	1 71				
The monitoring well was operated until all water wa									
operated until all water wa after 10.0 gallons were rea		ne wen was	allowed to r	ecnarge bero	re developm	ent continued	I. Develop	oment was comp	olete
artor 10.0 garrons word for	moved.								
			-						
				MM 771 47					
		·							
ميتو	Lui	Paul	· ~						
Driller Signature:					Date:4	19/2021			
					· · · · · · · · · · · · · · · · · · ·				

Cumulative Gallons Removed: 0.0 5.0 8.0 12.0 16.0 Detailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	D H E C		Well	Developmen	t Data Verif	ication Form	<u> </u>	<u></u>		
Drilling Company: EDPS Spriller Jared Pawless D 2100	PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control	Underground Storage Tank Management Division								
Field Personnel:	Facility Name:	Coastal 76 Truck	Stop	Site ID#:	03538	Da	ate: 4/1	19/2021		
Neather Conditions	Drilling Company:	EDPS		Driller:	Jared Pa	awless	-			
Surge Block Surge Block Submersible Pump: X submersible Pump: X over the store treated at a reference processes of the store treated at the store treated at the store treated at the store treated at the store treated at the store treated at the s	Field Personnel:	K.J., J.P.		Driller Co	ertification N	umber:	D 2100			
Surge Block Submersible Pump: X Submersible Pu	Weather Conditions: Sunn	y Temp. (°F)): 79							
Phi			Well De	evelopment N	lethod					
Serial no. 15E101481 Serial no. 15E101	Surge Block:	S				Ai	r Lifting:			
Serial no. 15E101481		Balling can be co.				for development				
Serial no. 15E 10148 Serial no. 10148 Se	pH Meter:	Conductivity Meter:		Te	emperature M	eter:		Turbiditiv I	Meter	
NTU 1.0 X NTU 1.0 X	Serial no. 15E101481 Serial	no. 15E10148					Serial N			
Hollow Stem Augers: X	1	ard X								
Hollow Stem Augers: X Solid Flight Augers: Mud Rotary: Sonic: Monitoring Well ID#: MW-17R Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5 Store Depth to Ground Water (DGW): 6.50 ft. Screen Length (ft): 15 Slot Size (in): 0.010 Total Well Depth (TWD): 18.20 ft. Screen Interval: 3.0 ft. to 18.0 ft. Length of Water Column (TWD-DGW): 11.70 ft. Type of Drilling Fluid Used: N/A Total Gallons of Water Removed: 16.00 gals. Drilling Fluids Recovered: N/A Time: 12:17 12:19 12:21 12:23 12:25 N/A Physical Conductivity (mmhos/cm)*: 205.0 194.4 153.7 151.5 148.8 N/A Water Temperature (°C)*: 19.7 18.7 18.6 19.3 20.3 N/A Water Temperature (°C)*: 19.7 18.7 18.6 19.3 20.3 N/A Physical Characteristics (color/odor:) Light Brown/ Light Brown/ Slight Odor Sl	-									
Monitoring Well ID#: MW-17R Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5			Dr	illing Method	1					
Monitoring Well ID#: MW-17R Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5		Sc	lid Flight Au	gers:	-		Direct Push	h:		
Depth to Ground Water (DGW): 6.50 ft. Screen Length (ft): 15 Slot Size (in): 0.010	Air Rotary:		Mud Rotary	·			Sonic:			
Total Well Depth (TWD): 18.20 ft. Screen Interval: 3.0 ft. to 18.0 ft.	Monitoring Well ID#: MW-17	Well Casing	Diameter (in) 2	-	Boreho	le Diameter	(in): 7.5		
Length of Water Column (TWD-DGW):	Depth to Ground Water (DGV	V): <u>6.50</u> ft.		Screen Leng	th (ft): 15	;	Slot Size	(in): 0.010	_	
Total Gallons of Water Removed: 16.00 gals. Drilling Fluids Recovered: N/A	Total Well Depth (TW)	D): <u>18.20</u> ft.		Screen Inter	val:3.0_ft.	to <u>18.0</u> ft.			_	
Time: 12:17 12:19 12:21 12:23 12:25 pH(s.u)*: 5.61 5.55 5.50 5.56 5.66 Specific Conductivity (mmhos/cm)*: 205.0 194.4 153.7 151.5 148.8 Water Temperature (°C)*: 19.7 18.7 18.6 19.3 20.3 Turbidity (NTU)*: 279.6 132.7 76.34 31.28 8.74 Physical Characteristics (color/odor:) Light Brown/ Slight Odor Slight Odor	Length of Water Column (TWD-DG)	W): <u>11.70</u> ft.		Type of Dril	ling Fluid Use	ed:N/A	_			
pH(s.u)*: 5.61 5.55 5.50 5.56 5.66 Specific Conductivity (mmhos/cm)*: 205.0 194.4 153.7 151.5 148.8 Water Temperature (°C)*: 19.7 18.7 18.6 19.3 20.3 Turbidity (NTU)*: 279.6 132.7 76.34 31.28 8.74 Physical Characteristics (color/odor:) Light Brown/ Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Odor Odor Odor Odor Odor Odor Odor	Total Gallons of Water Remove	ed: <u>16.00</u> gals	3.	Drilling Flui	ds Recovered	:N/A	29			
Specific Conductivity (mmhos/cm)*: 205.0 194.4 153.7 151.5 148.8 Water Temperature (°C)*: 19.7 18.7 18.6 19.3 20.3 Turbidity (NTU)*: 279.6 132.7 76.34 31.28 8.74 Physical Characteristics (color/odor:) Light Brown/ Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Odor Odor Depth to Water (ft from TOC): 6.74 8.36 11.21 13.21 16.21 Cumulative Gallons Removed: 0.0 5.0 8.0 12.0 16.0 Petailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	Time:	12:17	12:19	12:21	12:23	12:25				
Water Temperature (°C)*: 19.7 18.7 18.6 19.3 20.3 Turbidity (NTU)*: 279.6 Light Brown/ Slight Odor Slight Odor Slight Odor Slight Odor Odor Depth to Water (ft from TOC): 6.74 8.36 11.21 13.21 16.21 Cumulative Gallons Removed: 0.0 5.0 8.0 12.0 16.0 Detailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	pH(s.u)*:	5.61	5.55	5.50	5.56	5.66				
Turbidity (NTU)*: 279.6 132.7 76.34 31.28 8.74 Physical Characteristics (color/odor:) Light Brown/ Slight Odor Slight Odor Slight Odor Slight Odor Odor Depth to Water (ft from TOC): 6.74 8.36 11.21 13.21 16.21 Cumulative Gallons Removed: 0.0 5.0 8.0 12.0 16.0 Detailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	Specific Conductivity (mmhos/cm)*: 205.0	194.4	153.7	151.5	148.8				
Physical Characteristics (color/odor:) Light Brown/ Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Slight Odor Odor Odor Odor Odor Odor Odor Odor	Water Temperature (°C)*:	19.7	18.7	18.6	19.3	20.3				
Depth to Water (ft from TOC): 6.74 8.36 11.21 13.21 16.21 Cumulative Gallons Removed: 0.0 5.0 8.0 12.0 16.0 Detailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	Turbidity (NTU)*:	279.6	132.7	76.34	31.28	8.74				
Cumulative Gallons Removed: 0.0 5.0 8.0 12.0 16.0 Detailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	Physical Characteristics (color/odd					_				
Detailed Description of Well Development Process: The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	Depth to Water (ft from TOC):	6.74	8.36	11.21	13.21	16.21				
The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	Cumulative Gallons Removed:	0.0	5.0	8.0	12.0	16.0	-			
The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	D-4-9-1 D : 4: CW HD									
operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete	_	-		T.I.	1 "1					
atter 16 H gallons were removed	after 16.0 gallons were removed.	iaieu. The well was	anowed to	recharge befo	ore developm	ent continue	a. Develop	ment was co	mplete	
arter 10.0 gamons were removed.	area 10.0 ganons were removed.		-					<u> </u>		

Driller Signature: Pound

Date: 4/19/2021

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control	Well Development Data Verification Form Underground Storage Tank Management Division								
Facility Name: Coa	istal 76 Truck	Site ID#:	03538		Date: 4/19	2/2021			
Drilling Company:	EDPS	Driller:	Jared Pa	wless					
Field Personnel:	K.J., J.P.		 Driller C	Driller Certification Number: D 2100					
Weather Conditions: Sunny	Temp. (°F)	:79_			_				
		Well De	velopment M	1ethod					
Surge Block:	Su **Bailing can be com	bmersible Probined with any of		X but not utilized alone	for development	Air Lifting:			
			lity Assuran						
pH Meter: Cond Serial no. 15E101481 Serial no. pH=4.0 X Standard pH-7.0 X The ph-10.0 X	ductivity Meter: 15E101481 X	-		emperature <u>M</u> 14H103098	eter: -	Serial No NTU 0.0 NTU 1.0 NTU10.0) X		
Hollow Stem Augers: X Air Rotary:	Sol	<u>Dr</u> id Flight Au Mud Rotary		<u>d</u>		Direct Push: Sonic:			
Monitoring Well ID#: MW-22R	Well Casing	Diameter (in) 2		Borel	nole Diameter (in): 7.5		
Depth to Ground Water (DGW):	5.33 ft.		Screen Leng	gth (ft): 15	5	Slot Size (i	n): 0.010	_	
Total Well Depth (TWD):	16.85 ft.		Screen Inter	val: <u>2.0</u> ft.	to <u>17.0</u> ft	t.		_	
Length of Water Column (TWD-DGW):	_11.52_ ft.		Type of Dril	lling Fluid Use	ed: N/A				
Total Gallons of Water Removed:	<u>11.00_</u> gals		Drilling Flu	ids Recovered	: <u>N/A</u>				
Time:	11:23	11:25	11:27	11:29	11:31				
pH(s.u)*:	6.37	6.53	6.64	6.62	6.61				
Specific Conductivity (mmhos/cm)*:	361.3	353.0	336.2	312.5	303.2				
Water Temperature (°C)*:	19.7	19.6	20.0	20.5	20.6				
Turbidity (NTU)*:	296.9	173.2	86.34	34.61	9.03				
Physical Characteristics (color/odor:)	Grey/ No Odor	Grey/ No Odor	Grey/ No Odor	Clear/ No Odor	Clear/ No Odor				
Depth to Water (ft from TOC): 5.54 8.43		12.51	15.24	16.34					
Cumulative Gallons Removed:	0.0	3.0	5.0	8.0	11.0				
Detailed Description of Well Developm The monitoring well was developed to operated until all water was evacuated.	sing a Mini-Mo							umn an	

Driller Signature: Paul

after 11.0 gallons were removed.

Date: 4/19/2021

	H		
South C	arolina Der d Environm	ental Cont	f Health rol
	F	acilit	y Na

Well Development Data Verification Form

FROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division									
Facility Name:	Coasta	al 76 Truck	Stop	Site ID#:	03538	Da	te:	4/19/2021	
Drilling Company:		EDPS		Driller:	Jared Pa	wless	-		
Field Personnel:		K.J., J.P.		Driller Ce	rtification Nu	ımber: I	2100		
Weather Conditions:	Sunny	Temp. (°F)	: <u>79</u>						
Well Development Method									
Surge Bl			bmersible Pu		<u>X</u>	Air	r Lifting	g:	
**Bailing can be combined with any of the above methods, but not utilized alone for development Quality Assurance									
pH Meter:	Conduc	tivity Meter:		Те	mperature Me	eter:		<u>Turbiditiy</u> 1	Meter:
Serial no. <u>15E101481</u>	Serial no.	15E101481	40	· · · · · · · · · · · · · · · · · · ·	14H103098	2	Seria	al No. 20130	
pH=4.0 X pH-7.0 X	Standard	<u>X</u>						U 0.0 X	
pH-10.0 X								U 1.0 X U10.0 X	
			Dri	lling Method					
Hollow Stem Augers:	X	Sol	id Flight Aug	gers:			Direct I		
Air Rotary:		<u> </u>	Mud Rotary				Soni	c:	
Monitoring Well ID#: _N	/IW-24R	Well Casing	Diameter (in)	2		Borehol	e Diam	eter (in): 7.5	
Depth to Ground Wate	er (DGW):	5.69 ft.		Screen Lengt	h (ft):15		Slot S	ize (in):0.010	
Total Well Dept	h (TWD):	_16.95 ft.		Screen Interv	ral: <u>2.0</u> ft. t	to <u>17.0</u> ft.			
Length of Water Column (TV									
Total Gallons of Water	Removed:	11.00_gals.		Drilling Fluid	ds Recovered:	N/A			
Time:		9:43	9:45	9:47	9:49	9:51			
pH(s.u)*:	*	5.54	5.58	5.65	5.51	5.56			
Specific Conductivity (mm	hos/cm)*:	140.5	139.6	106.5	85.4	86.5			
Water Temperature (°C)*:		19.7	19.9	20.4	20.6	20.7			
Turbidity (NTU)*:		261.3	163.9	104.30	59.38	9.04			
Physical Characteristics (co	olor/odor:)	Light Brown/ No Odor	Light Brown/ No Odor	Light Brown/ No Odor	Clear/ No Odor	Clear/ No Odor			
Depth to Water (ft from TC	OC):	6.12	8.91	12.61	15.61	16.12	·, <u></u>		
Cumulative Gallons Remov	ved:	0.0	3.0	5.0	8.0	11.0			
Notailed Description of Wel	I D I								
Detailed Description of Wel	•				1 211				
The monitoring well was o									
operated until all water wa after 11.0 gallons were ren		ne wen was	allowed to r	ecnarge beto	re developm	ent continued	I. Deve	lopment was co	mplete
arter 11.0 garions were ren	noveu.								
									
Driller Signature:	20	Paul	<i>t</i>		D	/10/0001			
Diffici Signature.					Date:4/	/19/2021			

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Convol	Well Development Data Verification Form Underground Storage Tank Management Division								
Facility Name: Coa	stal 76 Truck	Site ID#:	03538	D	ate: 4/	19/2021			
Drilling Company:	EDPS		Driller:	Jared Pa	wless				
Field Personnel:	K.J., J.P. Driller Certification Number: D 2100								
Weather Conditions: Sunny	Temp. (°F)	:79	_						
Well Development Method									
Surge Block:		ıbmersible Pu		<u>X</u>	A	ir Lifting:			
	**Bailing can be con		ne above methods, t lity Assuran		for development				
pH Meter: Cond Serial no. 15E101481 Serial no. pH=4.0 X Standard pH-7.0 X pH-10.0 X	uctivity Meter: 15E101481 X			emperature M 14H103098	eter:	Serial NTU (NTU (NTU 1	0.0 X 1.0 X		
Hollow Stem Augers: X Solid Flight Augers: Direct Push: Air Rotary: Mud Rotary: Sonic:									
Monitoring Well ID#: MW-25R Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5									
Depth to Ground Water (DGW):	4.16 ft.		Screen Leng	th (ft):15	<u> </u>	Slot Size	(in): 0.010		
Total Well Depth (TWD):	18.13 ft.		Screen Inter	val: <u>3.0</u> ft.	to <u>18.0</u> ft.				
Length of Water Column (TWD-DGW):									
Total Gallons of Water Removed:	11.00_gals	•	Drilling Flui	ds Recovered	: <u>N/A</u>				
Time:	10:11	10:13	10:15	10:17	10:19				
pH(s.u)*:	5.68	5.99	5.95	5.71	5.67				
Specific Conductivity (mmhos/cm)*:	131.0	129.3	106.0	106.6	107.3				
Water Temperature (°C)*:	20.2	20.8	21.1	21.0	21.0				
Turbidity (NTU)*:	179.4	109.3	64.32	28.69	8.13				
Physical Characteristics (color/odor:)	Brown/ No Odor	Light Brown/ No Odor	Clear/ No Odor	Clear/ No Odor	Clear/ No Odor				
Depth to Water (ft from TOC):	5.01	8.69	14.03	16.43	17.14				
Cumulative Gallons Removed:	0.0	3.0	5.0	8.0	11.0				
Detailed Description of Well Developme	ent Process:								
The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and									
operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete									

Driller Signature: Low Paule

after 11.0 gallons were removed.

Date: 4/19/2021

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Convol			Developmen				
Facility Name: Coa	stal 76 Truck	Site ID#:	03538]	Date: 4/19/2021		
Drilling Company:	EDPS Driller: Jared Pawless						
Field Personnel:	K.J., J.P.		Driller Ce	ertification N	umber:	D 2100	
Weather Conditions: Sunny	Sunny Temp. (°F): 79_						
Well Development Method							
Surge Block: Submersible Pump: X Air Lifting: **Bailing can be combined with any of the above methods, but not utilized alone for development					Air Lifting:		
	Dailing can be con		lity Assuran		for development		
pH Meter: Cond Serial no. 15E101481 Serial no. pH=4.0 X Standard pH-7.0 X pH-10.0 X	uctivity Meter: 15E101481 X			emperature M 14H103098	eter:	Turbiditiy Meter: Serial No. 201301174 NTU 0.0 X NTU 1.0 X NTU10.0 X	
Hollow Stem Augers: X	Ç.		illing Method	l			
Hollow Stem Augers: X Air Rotary:	50	lid Flight Au Mud Rotary		-		Direct Push: Sonic:	
Monitoring Well ID#: MW-25D	MW-25D Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5						
Depth to Ground Water (DGW):	4.92 ft.		Screen Leng	th (ft):	5	Slot Size (in): 0.010	
Total Well Depth (TWD):	_36.20 ft.		Screen Inter-	val: <u>31.0</u> ft.	to 36.0 ft		
Length of Water Column (TWD-DGW):	_31.28 ft.		Type of Dril	ling Fluid Use	ed: N/A		
Total Gallons of Water Removed:	_11.00 gals	•	Drilling Flui	ds Recovered	: <u>N/A</u>	_	
Time:	9:58	10:00	10:02	10:04	10:06		
pH(s.u)*:	5.10	5.06	5.07	5.03	4.97		
Specific Conductivity (mmhos/cm)*:	57.9	64.2	66.9	53.8	49.6		
Water Temperature (°C)*:	21.3	20.9	21.0	21.9	22.1		
Turbidity (NTU)*:	286.9	163.4	43.14	47.11	8.63		
Physical Characteristics (color/odor:)	Light Brown/ No Odor	Light Brown/ No Odor	Light Brown/ No Odor	Clear/ No Odor	Clear/ No Odor		
Depth to Water (ft from TOC):	5.17	15.81	23.79	34.18	32.41		
Cumulative Gallons Removed:	0.0	3.0	6.0	9.0	11.0		
Detailed Description of Well Developme	ent Process			·····			
The monitoring well was developed us		nsoon well	numn The o	ahmercihle =	liman ivos1	loand incide the western as low	
operated until all water was evacuated							

Driller Signature: Paul

after 11.0 gallons were removed.

Date: 4/19/2021

PROMOT South Care	olina Dep	ECT PRO	Health
	F	acilit	y N
	Drilli	ng Co	omp
	Fie	ld Pe	rsor

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergro	ound Storage	Tank Mana	gement Div	ision		
Facility Name:	Coast	al 76 Truck	Stop	Site ID#:	03538	D	ate:	4/19/2021	
Drilling Company:		EDPS		Driller:	Jared Pa	ıwless			
Field Personnel:		K.J., J.P.		Driller Ce	Driller Certification Number: D 21)	
Weather Conditions:	Sunny	Temp. (°F)	79						
			Well De	velopment M	ethod				
Surge B			bmersible Pu		<u>X</u>	A	ir Liftin	ıg:	
	-	*Bailing can be con		he above methods, bi		for development			
pH Meter: Serial no. 15E101481 pH=4.0 X pH-7.0 X pH-10.0 X	<u>Conduc</u> Serial no. Standard	tivity Meter: _15E101481 _X	-		mperature Mo 14H103098	eter: -	N' N'	Turbiditi ial No. 201 IU 0.0 X IU 1.0 X IU 1.0 X	y Meter: 301174
				lling Method					
Hollow Stem Augers: Air Rotary:	X	Sol	id Flight Aug Mud Rotary				Direct Son		
Monitoring Well ID#:	MW-26R	Well Casing	Diameter (in)_2		Boreho	le Dian	neter (in): 7.5	5
Depth to Ground Water	er (DGW):	5.41 ft.		Screen Lengt	th (ft):15		Slot S	Size (in): 0.01	10
Total Well Dep	th (TWD):	_17.98 ft.		Screen Interv	val: _3.0 ft.	to <u>18.0</u> ft.		, , ,	
Length of Water Column (TV									
Total Gallons of Water	Removed:	12.00_gals.		Drilling Fluid	s Recovered	: <u>N/A</u>			
Time:		10:24	10:26	10:28	10:30	10:32			
pH(s.u)*:		6.25	6.16	6.04	5.99	6.01			
Specific Conductivity (mm	nhos/cm)*:	242.9	240.0	212.9	203.1	192.4			
Water Temperature (°C)*:		20.4	19.9	20.0	20.3	20.4			
Turbidity (NTU)*:		296.0	130.6	76.31	24.61	7.99			
Physical Characteristics (co	olor/odor:)	Light Brown/ No Odor	Light Brown/ No Odor	Light Brown/ No Odor	Clear/ No Odor	Clear/ No Odor			
Depth to Water (ft from TO	DC):	6.24	8.40	12.07	14.13	15.61			
Cumulative Gallons Remov	ved:	0.0	3.0	6.0	9.0	12.0			
Detailed Description of We The monitoring well was of operated until all water was	developed usin	g a Mini-Mo							
after 12.0 gallons were ren		ne wen was	anowed to i	cenarge bero	ie developiii	ent continue	d. Deve	elopment was o	complete
user 12.0 ganetis Were for	110 / Cu.								
			- -						
Driller Signature:	Zu	Paul	F		Date: 4	/19/2021			
<u> </u>					Date	17/2021			

Pacifity Name Coastal 76 Truck Stop Site ID# 03538 Date 4/19/2021	DHE C				nt Data Verif				
Drilling Company:									
Field Personnel: K.J., J.P. Driller Certification Number: D 2100		stal 76 Truck	Stop	Site ID#:	03538	D	ate: 4/1	9/2021	
Weather Conditions: Sunny Temp. (°F): 79 79 79 79 79 79 79 79 79 79 79 79		EDPS		_ Driller:	Jared Pa	awless			
Surge Block: Submersible Pump: X	Field Personnel:	K.J., J.P.	K.J., J.P. Driller Certification Number: D 2100						
Surge Block: Submersible Pump: X	Weather Conditions: Sunny	Temp. (°F)): 79						
PH Meter Conductivity Meter Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 15E101481 Serial no. 14H103098 Serial no. 201301174									
Duality Assurance pH Meter: Conductivity Meter: Serial no. 15E101481 Temperature Meter: Serial no. 201301174 Serial no. 15E101481 Serial no. 25E101481 Serial no. 35E101481 Serial no. 35E101481 Serial no. 201301174 pH=4.0 X Standard X NTU 0.0 X NTU 0.0 X pH-7.0 X NTU 10.0 X NTU 10.0 X pH-10.0 X NTU 10.0 X NTU 10.0 X Poiling Method Mud Rotary: Direct Push: Air Rotary: Mud Rotary: Sonic: Mud Rotary: Borehole Diameter (in): 7.5 Depth to Ground Water (DGW): 5.14 ft. Screen Length (ft): 15 Slot Size (in): 0.010 Total Well Depth (TWD): 17.91 ft. Screen Interval: 3.0 ft. to 18.0 ft. Length of Water Column (TWD-DGW): 12.77 ft. Type of Drilling Fluid Used: N/A Total Gallons of Water Removed: 11.00 gals. Drilling Fluid Recovered: N/A Drilling Fluid Sc	Surge Block:								
Serial no. 15E101481									
Hollow Stem Augers: X Air Rotary: Solid Flight Augers: Mud Rotary: Sonic:	Serial no. 15E101481 Serial no. pH=4.0 X Standard pH-7.0 X	15E101481				eter:	NTU 0. NTU 1.	0. 20130 0 X 0 X	
Air Rotary: Mud Rotary: Sonic: Monitoring Well ID#: MW-29 Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5 Depth to Ground Water (DGW): 5.14 ft. Screen Length (ft): 15 Slot Size (in): 0.010 Total Well Depth (TWD): 17.91 ft. Screen Interval: 3.0 ft. to 18.0 ft. Length of Water Column (TWD-DGW): 12.77 ft. Type of Drilling Fluid Used: N/A Total Gallons of Water Removed: 11.00 gals. Drilling Fluids Recovered: N/A Time: 12:04 12:06 12:08 12:10 12:12 12:12 pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	** **				1				
Depth to Ground Water (DGW): 5.14 ft. Screen Length (ft): 15 Slot Size (in): 0.010									
Total Well Depth (TWD): 17.91 ft. Screen Interval: 3.0 ft. to 18.0 ft. Length of Water Column (TWD-DGW): 12.77 ft. Type of Drilling Fluid Used: N/A Total Gallons of Water Removed: 11.00 gals. Drilling Fluids Recovered: N/A Time: 12:04 12:06 12:08 12:10 12:12 12:12 pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8 20.8	Monitoring Well ID#: MW-29 Well Casing Diameter (in) 2 Borehole Diameter (in): 7.5								
Total Well Depth (TWD): 17.91 ft. Screen Interval: 3.0 ft. to 18.0 ft. Length of Water Column (TWD-DGW): 12.77 ft. Type of Drilling Fluid Used: N/A Total Gallons of Water Removed: 11.00 gals. Drilling Fluids Recovered: N/A Time: 12:04 12:06 12:08 12:10 12:12 12:12 pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	Depth to Ground Water (DGW):	De de Company							-
Total Gallons of Water Removed: 11.00 gals. Drilling Fluids Recovered: N/A Time: 12:04 12:06 12:08 12:10 12:12 pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	Total Well Depth (TWD):	_17.91 ft.		_		to 18.0 ft.	(-
Time: 12:04 12:06 12:08 12:10 12:12 pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	Length of Water Column (TWD-DGW):	12.77 ft.		Type of Dril	ling Fluid Use	ed: N/A			
pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	Total Gallons of Water Removed:	_11.00_gals	•	Drilling Flui	ds Recovered	: N/A	_		
pH(s.u)*: 6.61 6.53 6.41 6.49 6.43 Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	Time:	12:04	12:06	12:08	12:10	12:12			
Specific Conductivity (mmhos/cm)*: 510 519 501 500 504 Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8	pH(s.u)*:	6.61	6.53	6.41	6.49	 			
Water Temperature (°C)*: 20.2 20.7 20.5 21.1 20.8		510	519	501	500	 			
	<u> </u>	20.2	20.7	20.5	21.1	20.8			
Turbidity (NTU)*: 269.4 131.2 69.43 24.61 9.02	Turbidity (NTU)*:	269.4	131.2	69.43	24.61	9.02			
Physical Characteristics (color/odor:) Light Brown/ Slight Odor S	Physical Characteristics (color/odor:)				_	_			
Depth to Water (ft from TOC): 5.36 8.21 12.31 15.83 17.12	Depth to Water (ft from TOC):	5.36	8.21	12.31	15.83	17.12			
Cumulative Gallons Removed: 0.0 3.0 5.0 8.0 11.0	Cumulative Gallons Removed:	0.0	3.0	5.0	8.0	11.0			
Detailed Description of Wall David	Detailed Description of Wall Down	4 D							
Detailed Description of Well Development Process:					1				
The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and									
operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete after 11.0 gallons were removed.		. The well was	allowed to i	recnarge before	ore developm	ent continue	d. Developn	nent was cor	nplete

Driller Signature: Paul

Date: 4/19/2021

ROMO buth Ca	rolina	Dep	artmo		Heal	
		F	ac	ilit	y N	Ja

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergro	ound Storage	Tank Mana	gement Divis	sion		
Facility Name:	Coast	al 76 Truck	Stop	Site ID#:	03538	Da	te:	4/19/2021	
Drilling Company:		EDPS		Driller:	Jared Pa	wless			
Field Personnel:		K.J., J.P.		Driller Ce	Driller Certification Number: D 2100				
Weather Conditions:	Sunny	Temp. (°F)	: 79	_					
			Well De	velopment M	ethod				
Surge I			bmersible Pu	imp:	X	Ai	r Liftin	g:	
		Banning can be con		lity Assurance		for development			
pH Meter:	Conduc	tivity Meter:		Те	mperature M	eter:		Turbiditiy	Meter
Serial no. <u>15E101481</u>	Serial no.	15E101481	_		14H103098		Seri		301174
pH=4.0 X pH-7.0 X									
pH-10.0 X		NTU 1.0 X NTU10.0 X							
			Dri	illing Method					
Hollow Stem Augers:	X	Sol	id Flight Au	gers:			Direct	-	
Air Rotary:	Mud Rotary: Sonic:					ic:			
Monitoring Well ID#:	MW-30	Well Casing	Diameter (in	2		Borehol	e Diam	neter (in): 7.5	
Depth to Ground Wa	ter (DGW):	4.94 ft.		Screen Lengt	th (ft):15		Slot S	Size (in):0.010)
Total Well De	pth (TWD):	_18.07_ ft.		Screen Interv	val: <u>3.0</u> ft.	to <u>18.0</u> ft.			
Length of Water Column (T									
Total Gallons of Water	r Removed:	11.00_gals		Drilling Fluid	ds Recovered	. <u>N/A</u>	-		
Time:		9:30	9:32	9:34	9:36	9:38			
pH(s.u)*:		5.90	5.83	5.48	5.22	5.15			
Specific Conductivity (m	mhos/cm)*:	80.9	75.1	56.7	60.0	57.4			
Water Temperature (°C)*	•	19.2	19.0	19.4	20.1	19.8			
Turbidity (NTU)*:		296.3	194.7	134.20	70.41	9.82			
Physical Characteristics (color/odor:)	Brown/ No Odor	Light Brown/ No Odor	Light Brown/ No Odor	Clear/ No Odor	Clear/ No Odor			
Depth to Water (ft from T	OC):	5.69	8.15	12.14	15.31	17.12			
Cumulative Gallons Remo	oved:	0.0	3.0	5.0	8.0	11.0			
otailed Description of XV	-II DI								
Detailed Description of W	•			(TD)	1 91				
The monitoring well was									
operated until all water water 11.0 gallons were re		ne wen was	allowed to r	ecnarge beto	re developm	ent continued	l. Deve	elopment was co	omplete
arter 11.0 garions were re	emoved.	ζ							
		· · ·							
									3.5
	Lui	Par 1	,						
Driller Signature:		1 clun	- The state of the		Date: 4	/19/2021			

DHE C	-
South Carolina Department of Health and Environmental Control	ı
Facility N	2
Drilling Comp)
Field Person	r
	:
Weather Condit	I

FROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control		Undergro	ound Storage	Tank Mana	gement Div	ision		
Facility Name: Coa	stal 76 Truck	Stop	Site ID#:	03538	D	ate:	4/19/2021	
Drilling Company:	EDPS			Jared Pa	wless			
Field Personnel:	K.J., J.P.		Driller Co	Driller: Jared Pawless Driller Certification Number:		D 2100		
Weather Conditions: Sunny	: Sunny Temp. (°F): 79							
			velopment M	ethod				
Surge Block:	Su **Bailing can be con	bmersible Pu		Xut not utilized alone	A for development	ir Lifting	;:	
			lity Assuran		ior development			
pH Meter: Conc Serial no. 15E101481 Serial no. pH=4.0 X Standard pH-7.0 X pH-10.0 X	uctivity Meter: 15E101481 X	_		emperature M 14H103098	eter:	NT NT	Turbiditiy Meter: al No. 201301174 U 0.0 X U 1.0 X J10.0 X	
Hallow Stown A			illing Method		<u></u>			
Hollow Stem Augers: X Air Rotary: X	Sol	id Flight Aug Mud Rotary				Direct I Soni		
Monitoring Well ID#: RW-1	Well Casing	Diameter (in) 4		Boreho	ole Diamo	eter (in): 10.0	
Depth to Ground Water (DGW):	5.66 ft.		Screen Leng	th (ft):15		Slot Si	ize (in): 0.010	
Total Well Depth (TWD):	18.04 ft.		Screen Inter	val: _3.0 ft.	to <u>18.0</u> ft.			
Length of Water Column (TWD-DGW):								
Total Gallons of Water Removed:		•	Drilling Flui	ds Recovered	N/A			
Time:	14:10	14:12	14:14	14:16	14:18			
pH(s.u)*:	5.40	5.21	4.98	5.05	5.13			
Specific Conductivity (mmhos/cm)*:	107.4	105.0	106.7	87.3	79.3			
Water Temperature (°C)*:	20.7	19.7	19.4	19.3	19.3			
Turbidity (NTU)*:	267.9	143.6	86.41	41.32	9.67			
Physical Characteristics (color/odor:)	Red Brown/ Odor	Red Brown/ Odor	Red Brown/ Odor	Clear/ Odor	Clear/ Odor			
Depth to Water (ft from TOC):	5.87	6.37	7.11	8.01	8.69			
Cumulative Gallons Removed:	0.0	5.0	10.0	15.0	20.0			
Detailed Description of Well Developm	ent Process							
The monitoring well was developed u		nsoon well:	numn The si	ihmersihle n	ımn was nla	aced inci	de the water column or	ad
operated until all water was evacuated								
after 20.0 gallons were removed.		unio // oci to i	contarge bere	re developini	ent continue	u. Deve.	topment was complete	
			· · · · · · · · · · · · · · · · · · ·			-		
							,	
Driller Signature:	Paul	<u></u>		Date: 4,	/19/2021	-		

DHEC PROMOTE PROTECT PROSPER South Carolina Department of Health	Well Development Data Verification Form								
and Environmental Control	Underground Storage Tank Management Division								
Facility Name:	Coas	tal 76 Truck	Stop	Site ID#:	03538	Da	ite: 4/19	9/2021	
Drilling Company:		EDPS		Driller: Jared Pawless					
Field Personnel:_		K.J., J.P.		Driller Certification Number: D 2100					
Weather Conditions:	Sunny	Temp. (°F): 79							
Well Development Method									
Surge Bl	Submersible Pump: X Air Lifting: **Bailing can be combined with any of the above methods, but not utilized alone for development								
	**Bailing can be cor		the above methods, lity Assuran		for development				
pH Meter: Serial no. 15E101481 pH=4.0 X pH-7.0 X pH-10.0 X	<u>Condu</u> Serial no. Standard	ctivity Meter: 15E101481 X		<u>T</u>	emperature Mo 14H103098	<u>eter:</u> 	Serial No NTU 0. NTU 1. NTU10.	$0 \frac{X}{X}$	
Drilling Method									
Hollow Stem Augers:	X	So	lid Flight Au						
Air Rotary:			Mud Rotary	:			Sonic:		
Monitoring Well ID#:	RW-2	Well Casing	Diameter (in)_4		Boreho	le Diameter ((in): 10.0	_
Depth to Ground Wate	r (DGW):	5.68 ft.		Screen Leng	th (ft): 15		Slot Size (i	in): 0.010	
Total Well Dept	h (TWD):	_17.84 ft.		Screen Interval: 3.0 ft. to 18.0 ft.					
Length of Water Column (TV	VD-DGW):	_12.16 ft.		Type of Dril	ling Fluid Use	ed: <u>N/A</u>	_		
Total Gallons of Water I	Removed:	gals		Drilling Flui	ds Recovered	:N/A	<u>.</u>		
Time:		13:39	13:41	13:43	13:45	13:47			
pH(s.u)*:		5.80	5.79	5.74	5.69	5.71			
Specific Conductivity (mm	hos/cm)*:	50.9	136.8	158.9	149.2	136.7			
Water Temperature (°C)*:		19.7	19.2	19.1	19.1	19.0			
Turbidity (NTU)*:		289.4	177.3	98.34	43.74	10.12			
Physical Characteristics (co	olor/odor:)	Brown/ Odor	Light Brown/ Odor	Light Brown/ Odor	Light Brown/ Odor	Clear/ Odor			
									l

Detailed Description of Well Development Process:

Cumulative Gallons Removed:

0.0

The monitoring well was developed using a Mini-Monsoon well pump. The submersible pump was placed inside the water column and operated until all water was evacuated. The well was allowed to recharge before development continued. Development was complete after 20.0 gallons were removed.

10.0

15.0

20.0

5.0

Driller Signature:

Date: 4/19/2021

DHE C
South Carolina Department of Health and Environmental Control
Facility Nar
Drilling Compa
Drilling Compa Field Personr

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergro	ound Storage	Tank Mana	gement Divis	sion		
Facility Name:	Coasta	ıl 76 Truck	Stop	Site ID#:	03538	Da	te:	4/19/2021	
Drilling Company:_	:EDPS			Driller:	Jared Pa	wless			
Field Personnel:	:K.J., J.P.			Driller Certification Number: D 2100					
Weather Conditions:	Sunny	Temp. (°F)	:79	_					
Well Development Method									
Surge B			bmersible Pu		X ut not utilized alone t	Air	Lifting	g:	
		Batting can be con		lity Assuran		tor development			
pH Meter:	Conduct	tivity Meter:		<u>Te</u>	mperature Me	eter:		Turbiditiy	Meter:
Serial no. <u>15E101481</u> pH=4.0 X	Serial no.	15E101481	_	Serial no.	14H103098	-		al No. 20130	01174
pH=4.0 X pH-7.0 X	Standard	<u>X</u>						TU 0.0 X	
pH-10.0 X	NTU10.0 X								
				lling Method					
Hollow Stem Augers: Air Rotary:	<u>X</u>		id Flight Aug Mud Rotary		-		Direct]		
					-		Soni	<u> </u>	
Monitoring Well ID#:	RW-3		Diameter (in			Borehol	e Diam	eter (in): 10.0	
Depth to Ground Wate	3 ()						Slot S	Size (in):0.010	_
Total Well Dept Length of Water Column (TV									
Total Gallons of Water									
	Ttomo vou.			1"					
Time:		12:30	12:32	12:34	12:36	12:38			
pH(s.u)*:		6.00	6.15	6.01	6.07	6.04			
Specific Conductivity (mm	nhos/cm)*:	159.5	246.8	254.1	295.1	259.3			
Water Temperature (°C)*:	-	20.3	19.0	19.0	19.0	18.8			
Turbidity (NTU)*:	* 114	291.3	174.7	99.43	30.41	9.41			
Physical Characteristics (co	olor/odor:)	Light Brown/ Slight Odor	Light Brown/ Slight Odor	Light Brown/ Slight Odor	Light Brown/ Slight Odor	Clear/ Slight Odor			
Depth to Water (ft from TO	DC):	5.61	7.14	10.13	12.64	14.12			
Cumulative Gallons Remov	ved:	0.0	5.0	10.0	15.0	20.0			
Detailed Description of We	ll Development	Process:							
The monitoring well was o	•		onsoon well	pump. The si	ıbmersible nı	ımn was nlac	ed insi	ide the water co	lumn and
operated until all water wa									
after 20.0 gallons were rer			·	<u> </u>			20,0	ropinone was co	mpiete
					,	B	<u></u>		
							-		-
	Lud	Pal	/						
Driller Signature:		1 com			Date: 4	/19/2021			

PROMOTE PROT	artment of Health
	Facility Na

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergre	ound Storage	Tank Mana	gement Div	ision		
Facility Name:	Coast	al 76 Truck	Stop	Site ID#:	03538	D	ate:	4/19/2021	
Drilling Company:		EDPS		Driller:	Jared Pa	wless	_		
Field Personnel:		K.J., J.P.		Driller Ce	ertification Nu	umber:	D 2100)	
Weather Conditions:	Sunny	Temp. (°F)	: 79						
			Well De	velopment M	lethod				
Surge B			ibmersible Pu	imp: he above methods, b	X	A	ir Liftin	ıg:	
		Baning can be con		lity Assuran		for development			····
pH Meter: Serial no. 15E101481 pH=4.0 X pH-7.0 X pH-10.0 X	Conduc Serial no. Standard	tivity Meter: 15E101481 X	-		emperature M 14H103098	<u>eter:</u> -	N' N'	Turbiditiy ial No. 2013 TU 0.0 X TU 1.0 X TU 1.0 X	y Meter: 301174
II II G				illing Method					
Hollow Stem Augers: Air Rotary:	X	Sol	id Flight Aug Mud Rotary		70		Direct Son		
Monitoring Well ID#:	RW-4	Well Casing	Diameter (in)_4		Boreho	ole Dian	neter (in): 10.0)
Depth to Ground Wat	er (DGW):	5.51 ft.		Screen Leng	th (ft):15	<u> </u>	Slot S	Size (in): 0.010	0
Total Well Dep	th (TWD):	_17.79 ft.		Screen Inter-	val: <u>3.0</u> ft.	to <u>18.0</u> ft.			_
Length of Water Column (T	· ·	<u>12.28</u> ft.		Type of Dril	ling Fluid Use	ed:N/A	_		
Total Gallons of Water	Removed:		•	Drilling Flui	ds Recovered	: <u>N/A</u>		·	
Time:		12:58	13:00	13:02	13:04	13:06			
pH(s.u)*:		5.57	5.31	5.33	5.44	5.54			
Specific Conductivity (mm	nhos/cm)*:	204.2	196.8	168.1	153.0	147.0			
Water Temperature (°C)*:		24.2	19.3	19.1	19.0	18.9			
Turbidity (NTU)*:		264.3	141.9	83.49	36.12	9.13			
Physical Characteristics (c	olor/odor:)	Light Brown/ Odor	Light Brown/ Odor	Light Brown/ Odor	Clear/ Odor	Clear/ Odor			
Depth to Water (ft from To	OC):	6.12	7.69	8.77	9.49	10.11			
Cumulative Gallons Remo	ved:	0.0	5.0	10.0	15.0	20.0			
Detailed Description of We The monitoring well was operated until all water was	developed usin	g a Mini-Mo							
after 20.0 gallons were rea									
					· · · · · · · · · · · · · · · · · · ·				
Driller Signature:	Lud	Paul			Date: 4	/19/2021	-		
									

D H E C			Well	Developmen	it Data Verif	ication For	·m		-
PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control			Undergre	ound Storage	e Tank Mana	igement Di	ivision		
Facility Name	Coas	tal 76 Truck	Stop	Site ID#:	03538]	Date:	4/19/2021	
Drilling Company	:	EDPS		Driller:	Jared Pa	awless			
Field Personnel	l:	K.J., J.P.		Driller C	ertification N	umber:	D 2100)	
Weather Conditions	: Sunny	Temp. (°F)	: 79						
			Well De	velopment M	<u>lethod</u>				
Surge	Block:		ıbmersible Pı		X		Air Liftin	ıg:	
		**Bailing can be cor		nlity Assuran		for development			
pH Meter: Serial no. 15E101481 pH=4.0 X pH-7.0 X pH-10.0 X	<u>Condu</u> Serial no. Standard	ctivity Meter: 15E101481 X	_		emperature M 14H103098	eter:	N' N'		y Meter: 301174
				illing Method	1				
Hollow Stem Augers: Air Rotary:	_X	So.	lid Flight Au Mud Rotary				Direct Son	-	
Monitoring Well ID#:	RW-5	Well Casing	Diameter (in)_4_		Borel	nole Dian	neter (in): 10.	0
Depth to Ground Wa	ater (DGW):	5.99 ft.		Screen Leng	th (ft): 15		Slot S	Size (in): 0.01	0
Total Well De	epth (TWD):	_17.88 ft.		Screen Inter	val: _3.0 ft.	to <u>18.0</u> ft		`	
Length of Water Column (TWD-DGW):	11.89 ft.		Type of Dril	ling Fluid Use	ed: <u>N/A</u>			
Total Gallons of Water	er Removed:	gals		Drilling Flui	ds Recovered	: <u>N/A</u>			
Time:		13:12	13:14	13:16	13:18	13:20			
pH(s.u)*:		5.84	6.06	5.90	5.80	5.93			
Specific Conductivity (m	mhos/cm)*:	171.2	182.6	190.2	184.1	193.7			
Water Temperature (°C)	*:	20.2	19.0	18.6	18.4	18.3			
Turbidity (NTU)*:		273.6	194.3	164.30	56.21	10.69			
Physical Characteristics	(color/odor:)	Light Brown / Odor	Light Brown / Odor	Light Brown / Odor	Clear/ Odor	Clear/ Odo	or		
Depth to Water (ft from	ГОС):	6.13	8.09	8.77	9.63	10.47			
Cumulative Gallons Rem	oved:	0.0	5.0	10.0	15.0	20.0			
Detailed Description of W	ell Developmen	t Process:							
The monitoring well was	•		nsoon well	numn The s	uhmersihle n	umn waa si	lacad inc	ida thata	
operated until all water v									
after 20.0 gallons were r					ac relopin	one continu	iou. Devi	cropment was	complete

Driller Signature: Paul

Date: 4/19/2021

D]	H .	· 元	PRO	C
South Caroli and En				
	F	aci	lity	Na

PROMOTE PROTECT PROSPER South Carolina Department of Health and Environmental Control		Undergro	ound Storage	Tank Mana	gement Divi	sion		
Facility Name:	Coastal 76 Truck	Stop	Site ID#:	03538	Da	ate: 4/	/19/2021	
Drilling Company:	EDPS		– Driller:	Jared Pa	wless			
Field Personnel:	K.J., J.P.		– Driller Ce	rtification Nu	ımber:	D 2100		
Weather Conditions: Sunny	Temp. (°F)	79						
		Well De	velopment M	ethod				
Surge Block:	Su **Bailing can be com	bmersible Publined with any of t		Xut not utilized alone	Ai for development	r Lifting:		
			lity Assuran		tor development			
pH Meter: Q Serial no. 15E101481 Serial r pH=4.0 X Standa pH-7.0 X pH-10.0 X		-		mperature Mo 14H103098	<u>eter:</u> -	Serial I NTU NTU NTU1	0.0 X 1.0 X	
II-11			lling Method					
Hollow Stem Augers: X Air Rotary:	Sol	id Flight Aug Mud Rotary:				Direct Pus Sonic:	sh:	
Monitoring Well ID#: RW-6	Well Casing	Diameter (in)) 4	······································	Boreho	le Diamete	er (in): 10.0	
Depth to Ground Water (DGW	7): 6.28 ft.		Screen Leng	th (ft): 15		Slot Size	(in): 0.010	
Total Well Depth (TWD	· ———		Screen Interv	val: 3.0 ft.	to <u>18.0</u> ft.			
Length of Water Column (TWD-DGW			Type of Drill	ing Fluid Use	ed: <u>N/A</u>	_		
Total Gallons of Water Remove	d: <u>20.00</u> gals.		Drilling Flui	ds Recovered	: N/A	_		
Time:	13:26	13:28	13:30	13:32	13:34			
pH(s.u)*:	5.80	5.47	5.30	5.42	5.44			
Specific Conductivity (mmhos/cm)	*: 152.0	257.0	139.9	192.6	164.1			
Water Temperature (°C)*:	19.9	19.0	19.0	18.9	19.0			
Turbidity (NTU)*:	277.4	164.3	89.41	32.44	8.74			
Physical Characteristics (color/odo	r:) Light Brown / Odor	Light Brown / Odor	Light Brown / Odor	Clear/ Odor	Clear/ Odor			
Depth to Water (ft from TOC):	6.49	8.13	10.03	12.01	13.67			
Cumulative Gallons Removed:	0.0	5.0	10.0	15.0	20.0			
Detailed Description of Well Develor. The monitoring well was develop operated until all water was evacuafter 20.0 gallons were removed.	ed using a Mini-Mo							
Driller Signature:	I Paul	<u></u>		Date: 4	/19/2021			

APPENDIX F:

AQUIFER EVALUATION SUMMARY FORMS, DATA, GRAPHS, EQUATIONS

(Not Applicable)

APPENDIX G:

DISPOSAL MANIFEST

Re:

Treatment of Purge Water Coastal 76 Truck Stop Florence, South Carolina SCDHEC Site ID Number 03538 MECI Project Number 20-7518

To Whom It May Concern;

Midlands Environmental Consultants, Inc. is providing the following letter as certification that treatment of the referenced purge water complied with the conditions of "Proposed Conditions for Use of Portable Activated Carbon Units for the Treatment of Small Volumes of Petroleum Hydrocarbon Contaminated Groundwater", as described in the following:

Applicability:

Groundwater treated was obtained as a result development of wells and sampling.

Conditions:

- 1. The purge/bail water from all wells is mixed before usage of the Activated Carbon Unit.
- 2. No free-product was detected in any of the purge water drums.
- Analytical results of from well sampling show average concentrations of petroleum hydrocarbon constituents less than 5000 parts per billion (ppb) Benzene and less than 20,000 ppb total BTEX.
- 4. The existing carbon pack will be replaced/reactivated every 5,000 gallons.
- 5. Record of usage is maintained by Contractor.
- 6. Any and all recommendations and conditions issued by the Manufacturer have been adhered to.
- Any and all recommendations and conditions (even on a site by site basis) issued by the SCDHEC must be adhered to.

All purge waters were treated on-site using an up-flow treatment drum loaded with 30 pounds of activated carbon. Carbon will be loaded to a maximum of 3 pounds of total organic compounds or 5,000 gallons of development/purge water, whichever occurs first.

- 320.00 gallons were treated on April 19, 2021 during development of the newly installed monitoring wells.
- 571.00 gallons were treated on April 20, 2021 during purging/sampling of the monitoring well network.

A total of 891.00 gallons were treated at the referenced site.

Midlands Environmental also tracks cumulative organic compounds adsorbed on the activated carbon to ensure the capacity of carbon mass is not over-charged. This data is available upon request.

Should you have any questions or comments, please contact the undersigned.

Sincerely,

Midlands Environmental Consultants, Inc.

Kyle V. Pudney

Richland County LF 1047 Highway Church Road Elgin, SC, 29045 Ph: (803) 788-3054

Reprint Ticket# 1816663

Payment Type Credit Account Manual Ticket# Hauling Ticket# Route State Waste Code Manifest O Destination PO Profile VA2718 (SOIL FROM UST ASSESSMENT) Generator Container Driver Check# Billing # 0000469 Gen EPA ID Gen EPA ID VA2718 (SOIL FROM UST ASSESSMENT) Generator Container Driver Check# Billing # 0000469 Gen EPA ID Manifest O Destination PO Profile VA2718 (SOIL FROM UST ASSESSMENT)
--

Time In 04/16/2021 08:38:45 Out 04/16/2021 08:59:18	Scale	ScaleMaster	Gross	14820 lb
	Inbound #2	KENNY1	Tare	9000 lb
	Outbound	Dwayne	Net	5820 lb
2			Tons	2.91

Comments

Prod	duct	LD%	Qty	MOU	Rate	Fee	Amount	Origin
1 2 3 4	SOIL-Cont. Soil - FUEL-Fuel Surcharg EVF-P-Standard Env RCR-P-Regulatory C	100 100	2.91	Tons % %				40-RICHLAN 40-RICHLAN 40-RICHLAN 40-RICHLAN

Total Fees Total Ticket

Driver`s Signature

The lacon

NON-HAZARDOUS MANIFEST

			1. Generator's	US EPA ID No.		Manifest	D M .							
		NON-HAZARDOUS MANIFEST		out in its its.		Manifest	DOC NO.	13	2. Page	1 of				
	1	3. Generator's Mailing Address:										•		
	1	MIDLANDS ENVIRONMENTAL		Generator's S	ite Address	(If different th	an mailing	31: /	. Mani	fest Numbe	r			-
	1	CONSULTANTS, INC.		Lonetal	76 Tm	Ack Sta								
		231 DOOLEY ROAD		Constal 2513 EP	almeti	e CI				D C+-				
	П			Florence	90	e or.				D. 312	ite Ge	nerator'	s ID	
		LEXINGTON, SC 29073		Florence	100	UST-	۵353	9						
	-	4. Generator's Phone 803-808	3-2042 X2	Florence	Consy	Loc	02			1				
- [5. Transporter 1 Company Name		6.	US EP/	A ID Numbe	<u> 70 </u>				च्या <u>अ</u> हरू	TEVENS	100 mg (4 mg) (4 mg)	
-	- 1			1			-	C.	State T	ransporter'	- ID			
- 1	-	7. Transporter 2 Company Name						D.	Transp	orter's Pho	מו צ			-
1		Transporter 2 Company Name		8.	US EPA	ID Number	•	ir .	1000		15,12			12
1								E	state Tr	ansporter's	s ID	eder (V. Time)	A 10 10 10 10 10 10 10 10 10 10 10 10 10	2
1		9. Designated Facility Name and Site Add	dress	10.	140.00			F. 1	ranspo	rter's Phon	e			
	11	RICHLAND COUNTY LANDFILL, IN	10	10.	US EP/	A ID Numbe	er .							3
1		1047 HIGHWAY CHURCH ROAD								cility ID		2401-11	101	
		LGIN, SC 29045						H. S	tate Fa	cility Phone	8	03-744-	3373	_
L		, = = = = = = = = = = = = = = = = = = =		- CO	<u> E\$5</u>								Selenier.	37
1	1	1 December 1				1.25			1 3 3				rest section .	
E	_	1. Description of Waste Materials				12. C	ontainers Typ	13. 7		14. Unit		l Miss	. Comments	ű.
V		NON-HAZ GAS AND DIESEL CONTAMINA	ATED SOIL			1	177	e Quar	itity	Wt./Vol.	-	7. PHISC	. Comments	_
E	1	9*1												
R		WM Profile #	VA2718				47.27.	V. E.				e e e e e e e e e e e e e e e e e e e	77 - 17 C - 4 A - 7 - 7 - 7 - 7	7. 1
T	Ь.													
0														
R		WM Pro	afila #			F Y TANK T BY THE					1			
- 1	c.	WW. F10	onie #											
-1				•				- 1				-		-
		WM Pro	ofile#				Carry Carry Carry							
-	d.									100	27			i
1														
		WM Pro	file #				***							
Γ	J. A	Additional Descriptions for Materials List	ted Ahove										C & C	
						K. Disposa	Locatio	n					men 22 mm a 2 m mm 12 m	1 = 5 %
					t	Cell								
H						Grid	_				Level			_
'	15. 3	Special Handling Instructions and Additio	nal Information	1					-				-	
_		<u> </u>												
_		ase Order #		EMERGE	NCY CONTA	ACT / PHON	E NO.:							_
		ENERATOR'S CERTIFICATE:												4
11	ere	by certify that the above-described mate stely described, classified and packaged a	erials are not ha	zardous wastes	as defined i	by 40 CFR P	art 261	or any anni						-
Dr.	cur	ntely described, classified and packaged and Name	and are in prop		riansportat	ion accoldit	ng to api	of any appi plicable ree	ulation	tate law, h	eve be	en fully a	and	1
<i>r</i> 1		Lyle Jacobs		Signature "C	n behalf of	91				<u>. </u>	Month	Day	Year	4
17		ansporter 1 Acknowledgement of Receip		Jula	oh.						4	16	2!	1
_	Prin	nted Name	of Materials	-0										1
		Vle Jacobs		Signature				·			Month	Day	Year	1
18.		insporter 2 Acknowledgement of Receipt	t of Motorials	flyling				_			4	16	21	1
		ted Name	t or iviaterials	l Girmi										
				Signature							Month	Day	Year	l
9.	Cer	tificate of Final Treatment/Disposal		-										
cei	tify,	on behalf of the above listed treatment le laws, regulations, permits and license	facility, that to	the best of my l	nowledge.	the above-	describa	d watte	as man	anned in -	_ P		.	
ս հեր	cat	le laws, regulations, permits and license	s on the dates I	isted above.				weste Wi	as midili	aRen IV COU	plianc	e with a	"	
٧.	raci	lity Owner or Operator: Certification of	receipt of non-l	hazardous mater	ials covere	d by this ma	nifest.			38 8				
	******	ed Name		Signature	2			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAM	20	1	onth I			
<u></u>	0	unett Robbins		_	72						onth	Day	Year	
nıt	e- T	REATMENT, STORAGE, DISPOSAL FACILIT	TY COPY	Blue- GENERA	TOR #2 CO	PY		Yell	OW- GF	NERATOR #	1 500	6-	121	
		Pink- FACILITY LICE ONLY						1011	UL	······································	T COL	ī		

Gold-TRANSPORTER #1 COPY

APPENDIX H:
LOCAL ZONING REGULATIONS
(Not Applicable)

APPENDIX I:

FATE AND TRANSPORT MODELING

(Not Applicable)

APPENDIX J:
ACCESS AGREEMENTS

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION Encroachment Permit

Permit No: 241302

Permit Decision Date:

1/22/2021

Expiration Date: 1/22/2022

Type

Permit: ENVIRONMENTAL

Location:

DistrictWork CountyTypeRouteAuxBegin
MPEnd MP5Florence, SCUS76None21.21421.214

Contact Information

Applicant: MidlandsEnvironmentalConsultants

Phone:

Contact: Kyle Pudney Address: 231 Dooley Rd,

City: Lexington

State: SC

Zip: 29072

Comments

One groundwater monitoring well will be installed along the southern shoulder of East Palmetto Street (US Hwy 76). The well will be installed approximately 100 feet south/southeast of the intersection of N. Koppers Road & East Palmetto Highway along the grass median. The well will be installed approximately 10 feet from edge of pavement, out of wheel path, and flush with the current grade.

Special Provisions:

ge: 1 of 1

9999 - See Attached for Additional Special Provisions

Permit Number : 241302

APPENDIX K:
DATA VERIFICATION CHECKLIST

Contractor Checklist

Item#	Item	Yes	No	N/A
1	Are Facility Name, Permit #, and address provided?	X		
2	Is UST Owner/Operator name, address, & phone number provided?	X		
3	Is name, address, & phone number of current property owner provided?	X		
4	Is the DHEC Certified UST Site Rehabilitation Contractor's Name, Address, telephone number, and certification number provided?	X		
5	Is the name, address, telephone number, and certification number of the well driller that	X		
6	installed borings/monitoring wells provided? Is the name, address, telephone number, and certification number of the certified laboratory(ies) performing analytical analyses provided?	X		
7	Has the facility history been summarized?	X		
8	Has the regional geology and hydrogeology been described?	X		
9	Are the receptor survey results provided as required?			X
10	Has current use of the site and adjacent land been described?	X	-	
11	Has the site-specific geology and hydrogeology been described?	X		
12	Has the primary soil type been described?	X		
13	Have field screening results been described?			X
14	Has a description of the soil sample collection and preservation been detailed?			X
15	Has the field screening methodology and procedure been detailed?			X
16	Has the monitoring well installation and development dates been provided?	X		
17	Has the method of well development been detailed?	X		
18	Has justification been provided for the locations of the monitoring wells?	X		
19	Have the monitoring wells been labeled in accordance with the UST QAPP guidelines?	X		
20	Has the groundwater sampling methodology been detailed?	X		
21	Have the groundwater sampling dates and groundwater measurements been provided? (Table 2 & Figure 5)	X		
22	Has the purging methodology been detailed?	X		
23	Has the volume of water purged from each well been provided along with measurements to verify that purging is complete? (Appendix B)	X		
24	If free-product is present, has the thickness been provided?			X
25	Does the report include a brief discussion of the assessment done and the results?	X		
26	Does the report include a brief discussion of the aquifer evaluation and results?	X		
27	Does the report include a brief discussion of the fate & transport models used?			X

Item#	Item	Yes	No	N/A
28	Are the site-conceptual model tables included? (Tier 1 Risk Evaluation)			X
29	Have the exposure pathways been analyzed? (Tier 2 Risk Evaluation)			X
30	Have the SSTLs for each compound and pathway been calculated? (Tier 2 Risk Evaluation)			X
31	Have recommendations for further action been provided and explained?	X		
32	Has the soil analytical data for the site been provided in tabular format? (Table 1)			Х
33	Has the potentiometric data for the site been provided in tabular format? (Table 2)	X		
34	Has the <u>current</u> and historical laboratory data been provided in tabular format? (Table 3)	X		
35	Have the aquifer characteristics been provided and summarized on the appropriate form? (Appendix F)	X		
36	Have the Site conceptual model tables been included? (Tier 1 Risk Evaluation)		-1	X
37	Has the topographic map been provided with all required elements? (Figure 1)	X		
38	Has the site base map been provided with all required elements? (Figure 2)	X		
39	Have the CoC site maps been provided? (Figures 4, 4A, 4B, 4C)	X		
40	Has the site potentiometric map been provided? (Figure 5)	Х		
41	Have the geologic cross-sections been provided? (Figure 6)			X
42	Have maps showing the predicted migration of the CoCs through time been provided? (Tier 2 Risk Evaluation)			X
43	Has the site survey been provided and include all necessary elements? (Appendix A)			X
44	Have the sampling logs, chain of custody forms, and the analytical data package been included with all required elements? (Appendix B)	Х		
45	Is the laboratory performing the analyses properly certified?	X		
46	Has the tax map been included with all necessary elements? (Appendix C)			X
47	Have the soil boring/field screening logs been provided? (Appendix D)			X
48	Have the well completion logs and SCDHEC Form 1903 been provided? (Appendix E)	Х		
49	Have the aquifer evaluation forms, data, graphs, equations, etc. been provided? (Appendix F)	X		
50	Have the disposal manifests been provided? (Appendix G)	X		
51	Has a copy of the local zoning regulations been provided? (Appendix H)			X
52	Has all fate and transport modeling been provided? (Appendix I)			X
53	Have copies of all access agreements obtained by the contractor been provided? (Appendix J)			X
54	Has a copy of this form been attached to the final report and are explanations for any missing or incomplete data been provided? (Appendix K)	Х		

SFP 0 5 2023

MR MALLOY D MCEACHIN 180 N IRBY ST MSC-XX FLORENCE SC 29505

Re: Site-Specific Work Plan Request for Groundwater Sampling Coastal 76 Truck Stop (Former), 2513 E Palmetto St, Florence, SC UST Permit #03538 Release reported September 27, 1995 Assessment report received May 12, 2021 Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed the referenced report.

To monitor what risk the referenced release may pose to public health and the environment, and in accordance with South Carolina UST Control Regulations (R. 61-92 § 280.65), sampling of all existing monitoring wells plus all water supply wells and surface water bodies within 1,000 feet of the referenced facility as outlined in the most recent revision of the UST Management Division Quality Assurance Program Plan and your contractor's Annual Contractor Quality Assurance Plan (ACQAP) is necessary. The groundwater sampling event must be conducted in compliance with all applicable regulations once the Site-Specific Work Plan (SSWP) is approved. Your contractor must complete and submit the SSWP within thirty (30) days of the date of this letter. Please note that approval from DHEC must be issued before work begins.

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions, please contact me by email dunn'ra@dhec.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn, Hydrogeologist

Corrective Action & Field Support Section

Underground Storage Tank Management Division

Bureau of Land and Waste Management

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071

Technical File

Mr. Robert Dunn, Hydrogeologist Corrective Action & Field Support Section Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina UST Permit# 03538

MECI Project Number 23-8197

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site.

On September 19, 2023, MECI personnel performed a site visit to the subject site to evaluate site conditions, locate monitoring wells and identify potential problems for future sampling activities.

If you have any questions or comments, please feel free to contact us at 803-808-2043.

Sincerely,

enior Scientist

Midlands Environmental Consultants, Inc.

September 20, 202

RECEIVED

SEP 25 2023 UST DIVISION

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Mr. Robert Dunn From: Jeff L. Coleman Contractor: Midlands Environmental Consultants, Inc. UST Contracto	(SCDHEC Projection Contractor Projection Certification Number: 009					
Facility Name: Coastal 76 Truck Stop	UST Permit #: 03538					
Facility Address: 2513 East Palmetto Street, Florence SC 29506 Responsible Party: Malloy D. McEachin & Margaret M. Gates Phone: (803) 651-8835 RP Address: 1007 Wentworth Drive, Florence, SC 29501 Property Owner (if different): Squeaky Shrimp, LLC.						
Property Owner Address: 180 North Irby Street, Florence, SC 29501 Current Use of Property: Storage Shed Sales						
Scope of Work (Please check all that apply) IGWA Tier II Tier I Monitoring Well Installation	☑ Groundwater Sampling ☑ Other	☐ GAC				
☐ PAH ☐ Oil & Grease (9071) ☐ Air: ☐ BTEXN	Other Dr 245.2)					
Sample Collection (Estimate the number of samples of each matr Soil Water Supply Wells Soil Surface Water Soil Surface Water	rix that are expected to be collected.) Air23Duplicate3	_ Field Blank _ Trip Blank				
Field Screening Methodology Estimate number and total completed depth for each point, and include their proposed locations on the attached map. # of shallow points proposed: Estimated Footage: feet per point # of deep points proposed: Estimated Footage: feet per point Field Screening Methodology:						
Permanent Monitoring Wells Estimate number and total completed depth for each well, and inclu # of shallow wells: Estimated Foo # of deep wells: Estimated Foo # of recovery wells: Estimated Foo Comments, if warranted:	otage: fe otage: fe	eet per point eet per point				

UST Permit #: 03538	Facility Name:	Coastal 76 Truck Stop	
		rs from approval) Field Work Completion: 11/20/2023 # of Copies Provided to Property Owners:	
Aquifer Characterization Pump Test: Slug Test: (Check	k one and prov	vide explanation below for choice)	
Investigation Derived Waste Disposa Soil:	Tons	Purge Water: 600.00	Gallons
Drilling Fluids:	Gallons	Free-Phase Product:	Gallons
event, etcDuring the initial site visit MECI personnel were unable	vells to be abar e to locate IGWAR, Mild by the property of collection.	ndoned/repaired, well pads/bolts/caps to replace, detain MW-2R, MW-4, MW-6, MW-8, MW-11, MW-22R, MW-22D, MW-29, TW-1, Two was made in the property owner in order to gain access and EDB	N-2 and RW-4.
	?? (Yes/No)	If no, indicate laboratory information below.	
N/A Well Driller as indicated in ACQAP Name of Well Driller: SCLLR Certification Number:		If no, indicate driller information below.	
None Other variations from ACQAP. Ple	ease describe t	pelow.	
Attachments 1. Attach a copy of the relevant po	rtion of the US	GS topographic map showing the site location.	
 Prepare a site base map. This remust include the following: North Arrow Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well locations Proposed soil boring locations Assessment Component Cost A 	Proposed Legend w Streets or Location on Location of	accurately scaled, but does not need to be surveyed. To a monitoring well locations with facility name and address, UST permit number, and highways (indicate names and numbers) of all present and former ASTs and USTs of all potential receptors DHEC Form D-3664	·
2	J. 55.116111, 501		

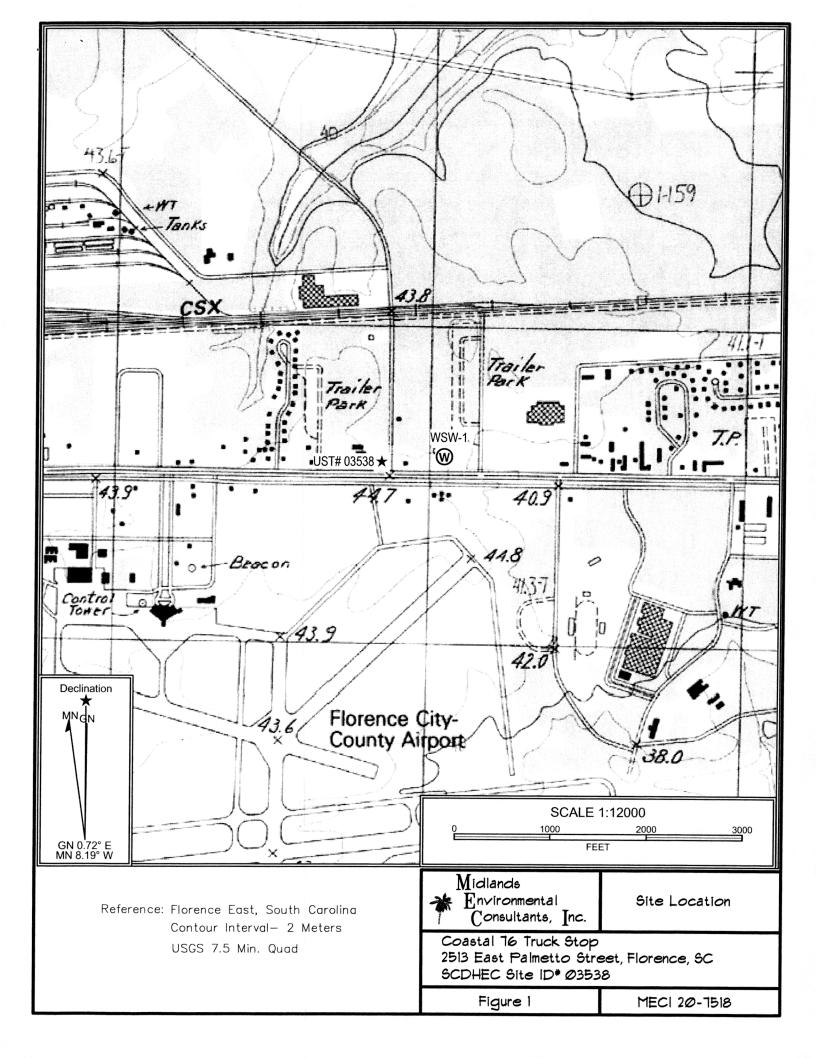
ASSESSMENT COMPONENT COST AGREEMENT

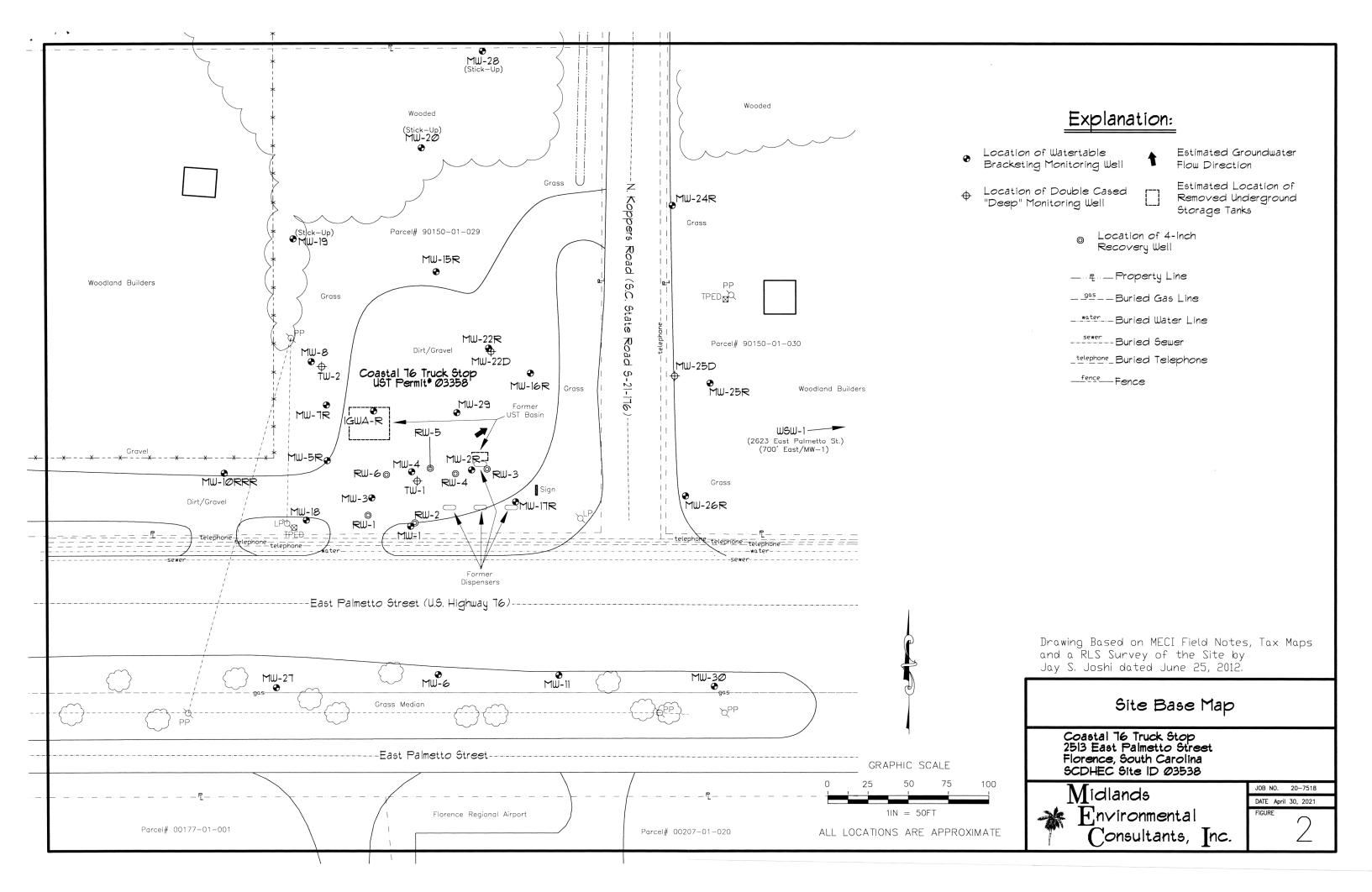
South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 9, 2023

Facility Name: Coastal 76 Truck Stop

UST Permit #: 03538	Cost Agreement #:		Proposal		
ITEM	QUANTITY	UNIT	UNIT PRICE	TOTAL	
A. Plan Preparation	AND THE STATE OF				
1.2 Site-specific Work Plan	1	each	\$183.22	\$183.22	
2.2 Tax Map		each	\$85.50	\$0.00	
3.2 QAPP Contractor Addendum (App B)		each	\$250.00	\$0.00	
B. Survey					
1.1 Receptor Survey		each	\$673.06	\$0.00	
C. Survey					
1.2 Comprehensive Survey		each	\$1,270.36	\$0.00	
5.1 Ground Penetrating Radar Survey (100 x 100)		each	\$1,111.57	\$0.00	
D. Mob/Demob					
1.2 Equipment		each	\$1,245.93	\$0.00	
2.2 Personnel	2	each	\$516.69	\$1,033.38	
3.2 Adverse Terrain Vehicle		each	\$610.75	\$0.00	
E. Soil Borings					
1.1 Soil Borings (hand auger)		foot	\$21.80	\$0.00	
F. Soil Borings (requiring equipment, push technology	ogy, etc) or Fie	ld Screening (i	including sampling and an	alyst)	
1.2 Standard		per foot	\$33.50	\$0.00	
2.2 Fractured Rock		per foot	\$41.40	\$0.00	
G.					
H. Well Abandonment					
1.2 2" diameter or less		per foot	\$3.79	\$0.00	
2.2 Greater than 2" to 6" diameter		per foot	\$5.50	\$0.00	
3.2 Dug/Bored well (up to 6 feet diameter)		per foot	\$18.32	\$0.00	
I. Well Installation (In accordance with R.61-71)		ten ale i qui pa dese d			
1.2 Water Table (hand augered)		per foot	\$31.40	\$0.00	
2.B Water Table (drill rig) 2" Diameter		per foot	\$54.90	\$0.00	
2.2 Single-cased 2" Diameter Monitoring Well >50ft		per foot	\$59.80	\$0.00	
3.2 Telescoping		per foot	\$84.70	\$0.00	
4.2 Rock Drilling		per foot	\$81.80	\$0.00	
5.2 2" Rock Coring		per foot	\$88.50	\$0.00	
6.2 Multi-sampling ports/screens		per foot	\$59.40	\$0.00	
7.2 Recovery Well (4" diameter)		per foot	\$69.60	\$0.00	
9.2 Rotosonic (2" diameter)		per foot	\$119.00	\$0.00	
10.2 Re-develop Existing Well		per foot	\$13.44	\$0.00	

J. Groundwater Sample Collection / Gauging Depth	to Water/Pi	roduct		Alaman Araba
1.2 Groundwater Purge	35	per well	\$73.29	\$2,565.15
2.2 Air or Vapors		sample	\$14.66	\$0.00
3.2 Water Supply Sample	1	sample	\$26.87	\$26.87
4.1A HydraSleeve		sample	\$34.20	\$0.00
4.2B No-purge Groundwater Sample/Surface water		sample	\$57.24	\$0.00
5.2 Gauge Well only		sample	\$8.55	\$0.00
6.2 Sample Below Product		sample	\$14.66	\$0.00
7.2 Passive Diffusion Bag		sample	\$31.75	\$0.00
8.2 Field Duplicates (MWs & WSWs) and Field Bla	5	sample	\$30.06	\$150.30
9.2 Groundwater (low flow purge)		sample	\$111.16	\$0.00
10.2 Equipment Blank		sample	\$30.06	\$0.00
11.1 Sample Product		per well	\$52.66	\$0.00
K. Laboratory Analyses-Groundwater	62.42			
1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D)	40	per sample	\$149.02	\$5,960.80
2.2 Lead, Filtered		per sample	\$16.85	\$0.00
3.2 Rush EPA Method 8260B		per sample	\$187.62	\$0.00
4.2 Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$34.20	\$0.00
5.2 PAH's		per sample	\$74.02	\$0.00
6.2 Lead		per sample	\$19.54	\$0.00
7.2 EDB by EPA 8011	38	per sample	\$55.21	\$2,097.98
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water				
14.2 BTEXNM+1,2 DCA (524.2)	4	per sample	\$151.52	\$606.08
15.2 7-OXYGENATES & ETHANOL (8260D)	4	per sample	\$112.07	\$448.28
16.2 EDB (504.1)	3	per sample	\$97.11	\$291.33
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00


K. Analyses-Air			
25.2 BTEX + Naphthalene	per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification			A Provincia A Co
27.1 C3-C44 Whole Oil (ASTM D3328)	per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)	per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)	per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)	per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)	per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)	per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)	per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints	per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report	each	\$595.30	\$0.00
L. Aquifer Characterization			•
1.2 Pumping Test	per hour	\$28.09	\$0.00
2.2 Slug Test	per test	\$233.31	\$0.00
3.2 Fractured Rock	per test	\$122.15	\$0.00
M. Free Product			
1.1 Free Product Recovery Rate Test	each	\$46.42	\$0.00
N.			
O. Risk Evaluation			
1.2 Tier I Risk Evaluation	each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation	each	\$122.15	\$0.00
P. Survey			
1.1 Subsequent Survey	each	\$297.65	\$0.00
Q. Disposal (gallons or tons)			
1.2 Wastewater	600 gallon	\$1.19	\$714.00
2.2 Free Product	gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal	ton	\$156.25	\$0.00
4.2 Drilling fluids	gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)			
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)		,	42.00
1.2 Southeast Region	standard	\$12,622.56	\$0.00
2.2 All Other Counties	standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)		, ,	+3.00
1.2 Southeast Region	standard	\$4,353.67	\$0.00
2.2 All Other Counties	standard	\$4,720.01	\$0.00
22. Active Correction Action		Bid Cost	\$0.00


W. Aggressive Fluid & Vapor Recovery (AFVR)			
1.2 8-hour Event	per event	\$1,787.40	\$0.00
2.1 24-hour Event	per event	\$4,407.78	\$0.00
3.1 48-hour Event	per event	\$7,242.29	\$0.00
4.1 96-hour Event	per event	\$14,482.28	\$0.00
5.1 Off-gas Treatment 8 hour	per event	\$141.17	\$0.00
6.2 Off-gas Treatment 24 hour	per event	\$294.30	\$0.00
7.2 Off-gas Treatment 48 hour	per event	\$386.10	\$0.00
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00
9.1 Off-gas Treatment 8 hour (w/chlorinated compounds)	per event	\$464.40	\$0.00
10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installation	1		
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00

Y. Well Repair 1.2 Additional Caping of the Bonart Delivered		l anah l	04.07	Φ0.00
1.2 Additional Copies of the Report Delivered		each	\$61.07	\$0.00
2.2 Repair 2x2 MW pad		each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad	1	each	\$107.49	\$0.00
4.2 Replace well vault		each	\$144.14	\$0.00
5.2 Replace well cover bolts		each	\$3.18	\$0.00
6.2 Replace locking well cap & lock		each	\$18.32	\$0.00
7.2 Replace/Repair stick-up		each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up		each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount		each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate		each	\$14.66	\$0.00
11.1 Down-hole Camera		per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization	· Samily			
1.1 HRSC Screening Equipment Mobilization		each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1		per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2		per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3		per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model		each	\$4,363.20	\$0.00
S. Report Prep & Project Management	12%	percent	\$14,077.39	\$1,689.29
TOTAL	•			\$15,766.68

DHEC D-4406 (07/2023)

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

OCT 24 2023

MR MALLOY D MCEACHIN 180 N IRBY ST MSC-XX FLORENCE SC 29505

Re: Site-Specific Work Plan (SSWP) Approval & Groundwater Sampling Notice to Proceed Coastal 76 Truck Stop (Former), 2513 E Palmetto St, Florence, SC UST Permit #03538; CA #67803
Release reported September 27, 1995
Site Specific Work Plan received September 25, 2023
Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed and approved the referenced SSWP. All scopes of work should be conducted in compliance with the most recent revision of the Quality Assurance Program Plan for the UST Management Division, your contractor's ACQAP, the submitted SSWP, and all applicable regulations.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". According to DHEC records, approximately \$134,321.90 has been expended from the SUPERB account to date. This scope of work, as recommended by your contractor, is anticipated to cost approximately \$15,766.68.

The Monitoring Report and invoice should be submitted within 60 days of the date of this correspondence. The approved costs are detailed in the enclosed Cost Agreement (CA).

In accordance with Section IV.A.4.c of the SUPERB Site Rehabilitation & Fund Access Regulation (R.61-98), the contractor shall be required to indemnify the property owner, underground storage tank owner/operator and the State of South Carolina from and against all claims, damages, losses, and expenses arising out of or resulting from activity conducted by the contractor, its agents, employees or subcontractors.

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

UST #03558; SSWP Approval & Groundwater Sampling Notice to Proceed Page 2

Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that the SUPERB Account cannot compensate any costs that are not pre-approved. If for any reason additional tasks will be completed, the additional tasks and the associated cost, must be pre-approved by the UST Management Division for the costs to be paid. DHEC reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, DHEC reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work.

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a DHEC-certified site rehabilitation contractor as required by the SUPERB Site Rehabilitation and Fund Access Regulation, R.61-98.

DHEC grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All Investigation-Derived Waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the Project Manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions please contact me by email dunnra@dhec.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn, Hydrogeologist

Corrective Action & Field Support Section

Underground Storage Tank Management Division

Bureau of Land and Waste Management

Enc: Cost Agreement

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 (w/ Enc)

Technical file (w/ Enc)

Approved Cost Agreement

67803

Facility: 03538 COASTAL 76 TRUCK STOP

DUNNRA PO Number:

PO Number:			a. 15.1	Harle Balan	Amarina		
Task / Description	Categories	Item Description	Qty / Pct	Unit Price	Amount		
A PLAN PREPARAT	TION						
		1.2 SITE SPECIFIC WORK PLAN	1.0000	\$183.220	183.22		
D MOB/DEMOB							
		2.2 PERSONNEL	2.0000	\$516.690	1,033.38		
J SAMPLE COLLEC	CTION						
		1.2 GROUND WATER PURGE	35.0000	\$73.290	2,565.15		
		3.2 WATER SUPPLY SAMPLE	1.0000	\$26.870	26.87		
		8.2 FIELD DUPL. (MWS & WSWS) & FB	5.0000	\$30.060	150.30		
K ANALYSES							
	DW DRINKING WATER	14.2 BTEXNM+1,2 DCA (524.2) WSW	4.0000	\$151.520	606.08		
		15.2 OXYGENATES & ETHANOL 8260D	4.0000	\$112.070	448.28		
		16.2 EDB (504.1)	3.0000	\$97.110	291.33		
	GW GROUNDWATER	1.2 BTEXNM+OXYGS+1,2 DCA+ETH 8260D	40.0000	\$149.020	5,960.80		
		7.2 EDB BY EPA 8011	38.0000	\$55.210	2,097.98		
Q DISPOSAL	Q DISPOSAL						
		1.2 WASTEWATER	600.0000	\$1.190	714.00		
S REPORT PROJEC	S REPORT PROJECT MANAGEMENT						
		S REPORT PREP & PROJ. MANAGEMENT	0.1200	\$14,077.390	1,689.29		
					45 700 60		

Total Amount 15,766.68

October 23, 2023 Page 1 of 1 suprcait.rdf Rev: 1.15

RECEIVED MAY 0 6 2024 UST DIVISION

May 3, 2024

Mr. Robert Dunn, Hydrogeologist Corrective Action & Field Support Section Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina UST Permit# 03538

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site. MECI is making this proposal to collect current analytical data to evaluate the groundwater quality beneath the site.

If you have any questions or comments, please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Senior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Mr. Robert Dunn (SCDHEC Project Manager)							
From: Jeff L. Coleman							
Contractor: Midlands Environmental Consultants, Inc.	UST Contractor						
Facility Name: Coastal 76 Truck Stop		UST Permit #:	03538				
Facility Address: 2513 East Palmetto Street, Florence SC 2	9506						
Responsible Party: Malloy D. McEachin & Margaret M. Ga		Phone: (803) 6	51-8835				
RP Address: 1007 Wentworth Drive, Florence, SC 29501							
Property Owner (if different): Squeaky Shrimp, LLC.							
Property Owner Address: 180 North Irby Street, Florence	, SC 29501						
Current Use of Property: Storage Shed Sales							
Scope of Work (Please check all that apply)			_				
☐ IGWA ☐ Tier II		Groundwater Sampling	☐ GAC				
☐ Tier I ☐ Monitoring Well Installation	on 🔲	Other					
Analyses (Please check all that apply)							
Groundwater/Surface Water:		_	_				
BTEXNMDCA (8260D) Lead		BOD	☐ Methane				
✓ Oxygenates (8260D) □ 8 RCRA	Metals	☐ Nitrate	Ethanol				
☑ EDB (8011) □ TPH		☐ Sulfate	☐ Dissolved Iron				
☐ PAH (8270E) ☐ pH		☐ Other					
Drinking Water Supply Wells:							
☑ BTEXNMDCA (524.2) ☐ Mecury ((200.8 245.1 or	245.2))				
✓ Oxygenates & Ethanol (8260D) ☐ RCRA M	letals (200.8)						
Soil:	• -						
☐ BTEXNM ☐ Lead ☐ RCRA Metals		TPH-DRO (3550B/8015B)	☐ Grain Size				
☐ PAH ☐ Oil & Grease (90		TPH-GRO (5030B/8015B)	☐ TOC				
Air:		,					
☐ BTEXN							
Sample Collection (Estimate the number of sample	es of each matri	x that are expected to be coll	lected.)				
•	Supply Wells	Air	2 Field Blank				
	ice Water	3 Duplicate	3 Trip Blank				
			mp biam				
Field Screening Methodology							
Estimate number and total completed depth for each	point, and inclu	de their proposed locations	on the attached map.				
# of shallow points proposed:							
# of deep points proposed:	Estimate	d Footage:	feet per point				
Field Screening Methodology:			· ,				
Permanent Monitoring Wells							
•	···-!! and includ	I - Marin managan Inggiana a	· 1111				
Estimate number and total completed depth for each			•				
	# of shallow wells: feet per point						
		tage:					
# of recovery wells:	Estimated Foot	tage:	feet per point				
Comments, if warranted:							

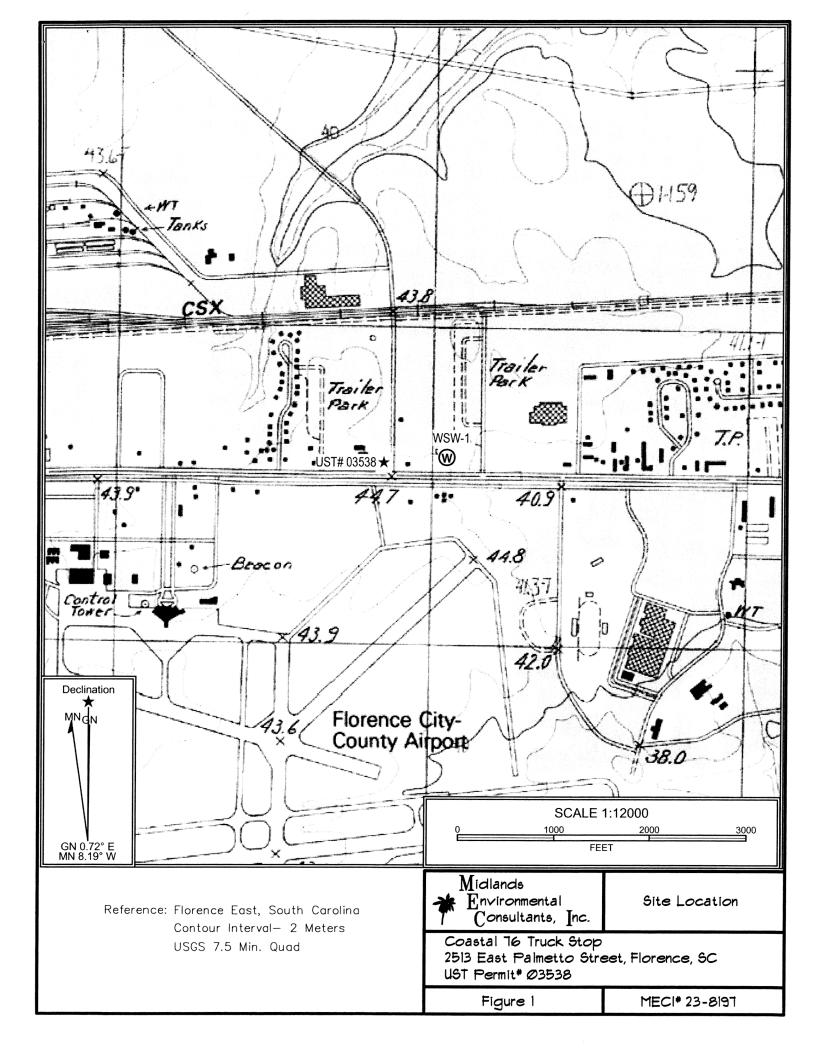
UST Permit #: 03538 Facility Name: Coastal 76 Truck Stop
Implementation Schedule (Number of calendar days from approval) Field Work Start-Up: 5/3/2024 Field Work Completion: 7/3/2024 Report Submittal: 8/3/2024 # of Copies Provided to Property Owners:
Aquifer Characterization Pump Test: Slug Test: (Check one and provide explanation below for choice)
Investigation Derived Waste Disposal Soil: Tons
Soil:
Additional Details For This Scope of Work For example, list wells to be sampled, wells to be abandoned/repaired, well pads/bolts/caps to replace, details of AFVR event, etc. -MECI proposes conducting a groundwater sampling event to collect current analytical data to evaluate the groundwater quality beneath the site. -Sampling at the referenced site has not been completed since October of 2023. -MECI proposes only purging wells which do not bracket the water table. Compliance With Annual Contractor Quality Assurance Plan (ACQAP)
Yes Laboratory as indicated in ACQAP? (Yes/No) If no, indicate laboratory information below. Name of Laboratory: SCDHEC Certification Number: Name of Laboratory Director:
N/A Well Driller as indicated in ACQAP? (Yes/No) Name of Well Driller: SCLLR Certification Number:
None Other variations from ACQAP. Please describe below.
Attachments 1. Attach a copy of the relevant portion of the USGS topographic map showing the site location. 2. Prepare a site base map. This map must be accurately scaled, but does not need to be surveyed. The map must include the following: North Arrow Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well locations Previous monitoring well locations Proposed soil boring locations Proposed soil boring locations
3. Assessment Component Cost Agreement, SCDHEC Form D-3664

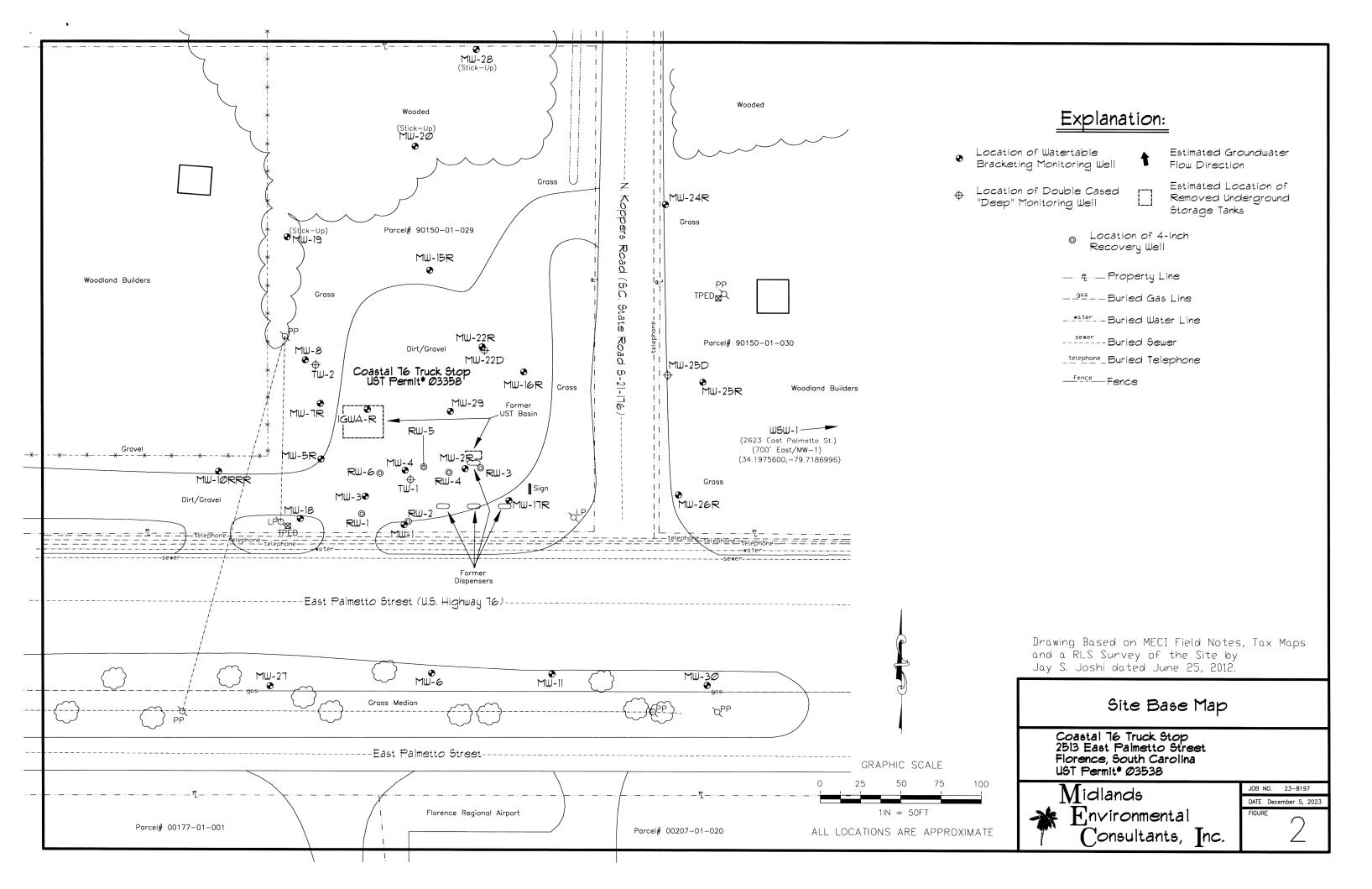
ASSESSMENT COMPONENT COST AGREEMENT

South Carolina Department of Health and Environmental Control
Underground Storage Tank Management Division
State Underground Petroleum Environmental Response Bank Account
August 9, 2023

Facility Name: Coastal 76 Truck Stop UST Permit #: 03538 Cost Agreement #: Proposal **UNIT PRICE TOTAL** ITEM **QUANTITY UNIT** A. Plan Preparation 1.2 Site-specific Work Plan 1 each \$183.22 \$183.22 2.2 Tax Map \$85.50 \$0.00 each 3.2 QAPP Contractor Addendum (App B) \$250.00 \$0.00 each B. Survey 1.1 Receptor Survey \$673.06 \$0.00 each C. Survey \$0.00 1.2 Comprehensive Survey \$1,270.36 each \$0.00 5.1 Ground Penetrating Radar Survey (100 x 100) \$1,111.57 each D. Mob/Demob \$0.00 1.2 Equipment each \$1,245.93 \$1,033.38 2 2.2 Personnel \$516.69 each \$0.00 3.2 Adverse Terrain Vehicle each \$610.75 E. Soil Borings \$0.00 1.1 Soil Borings (hand auger) foot \$21.80 F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including sampling and analyst) \$33.50 \$0.00 1.2 Standard per foot \$0.00 2.2 Fractured Rock per foot \$41.40 lG. H. Well Abandonment 1.2 2" diameter or less \$0.00 per foot \$3.79 \$0.00 \$5.50 2.2 Greater than 2" to 6" diameter per foot \$0.00 3.2 Dug/Bored well (up to 6 feet diameter) per foot \$18.32 Well Installation (In accordance with R.61-71) 1.2 Water Table (hand augered) per foot \$31.40 \$0.00 \$54.90 \$0.00 2.B Water Table (drill rig) 2" Diameter per foot \$0.00 2.2 Single-cased 2" Diameter Monitoring Well >50ft per foot \$59.80 \$0.00 3.2 Telescoping per foot \$84.70 \$0.00 4.2 Rock Drilling per foot \$81.80 5.2 2" Rock Coring per foot \$88.50 \$0.00 \$59.40 \$0.00 6.2 Multi-sampling ports/screens per foot 7.2 Recovery Well (4" diameter) \$69.60 \$0.00 per foot 9.2 Rotosonic (2" diameter) \$119.00 \$0.00 per foot \$0.00 10.2 Re-develop Existing Well per foot \$13.44

J. Groundwater Sample Collection / Gauging Dept	h to Water/Pi	oduct		
1.2 Groundwater Purge	4	per well	\$73.29	\$293.16
2.2 Air or Vapors		sample	\$14.66	\$0.00
3.2 Water Supply Sample	1	sample	\$26.87	\$26.87
4.1A HydraSleeve		sample	\$34.20	\$0.00
4.2B No-purge Groundwater Sample/Surface wate	31	sample	\$57.24	\$1,774.44
5.2 Gauge Well only		sample	\$8.55	\$0.00
6.2 Sample Below Product		sample	\$14.66	\$0.00
7.2 Passive Diffusion Bag		sample	\$31.75	\$0.00
8.2 Field Duplicates (MWs & WSWs) and Field Bla	5	sample	\$30.06	\$150.30
9.2 Groundwater (low flow purge)		sample	\$111.16	\$0.00
10.2 Equipment Blank		sample	\$30.06	\$0.00
11.1 Sample Product		per well	\$52.66	\$0.00
K. Laboratory Analyses-Groundwater				
1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D)	40	per sample	\$149.02	\$5,960.80
2.2 Lead, Filtered		per sample	\$16.85	\$0.00
3.2 Rush EPA Method 8260B		per sample	\$187.62	\$0.00
4.2 Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$34.20	\$0.00
5.2 PAH's		per sample	\$74.02	\$0.00
6.2 Lead		per sample	\$19.54	\$0.00
7.2 EDB by EPA 8011	38	per sample	\$55.21	\$2,097.98
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water				
14.2 BTEXNM+1,2 DCA (524.2)	4	per sample	\$151.52	\$606.08
15.2 7-OXYGENATES & ETHANOL (8260D)	4	per sample	\$112.07	\$448.28
16.2 EDB (504.1)	3	per sample	\$97.11	\$291.33
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00


K. Analyses-Air				
25.2 BTEX + Naphthalene		per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification		1 20. 00	1 Ψ200.04	1 1 \$0.00
27.1 C3-C44 Whole Oil (ASTM D3328)		per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)		per sample	\$398.39	
29.1 ALKYL Leads, EDB MMT (8080)		per sample	\$398.39	1 1
30.1 C8-C40 Full Scan (ASTM 5739)		per sample	\$629.64	1 1
31.1 Simulated Distillation (ASTM 2887)		per sample	\$398.39	
32.1 Parent & Alk. PAH Com. (8270 SIM)		per sample	\$723.63	· ·
33.1 C3-C10 Piano (8260 MOD)		per sample	\$599.88	i I
34.1 C10+Alkane Fingerprints		per sample	\$599.88	l I
35.1 Expert Data Interpretation & Report		each	\$595.30	· ·
L. Aquifer Characterization		V.	ψοσο.σσ	1 1 40,00
1.2 Pumping Test		per hour	\$28.09	\$0.00
2.2 Slug Test		per test	\$233.31	\$0.00
3.2 Fractured Rock		per test	\$122.15	\$0.00
M. Free Product			1 +	
1.1 Free Product Recovery Rate Test		each	\$46.42	\$0.00
N.				
O. Risk Evaluation				
1.2 Tier l Risk Evaluation		each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation		each	\$122.15	\$0.00
P. Survey				
1.1 Subsequent Survey		each	\$297.65	\$0.00
Q. Disposal (gallons or tons)		·		
1.2 Wastewater	150	gallon	\$1.19	\$178.50
2.2 Free Product		gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal		ton	\$156.25	\$0.00
4.2 Drilling fluids		gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)				
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
		each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)				
1.2 Southeast Region		standard	\$12,622.56	\$0.00
2.2 All Other Counties		standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)				
1.2 Southeast Region		standard	\$4,353.67	\$0.00
2.2 All Other Counties		standard	\$4,720.01	\$0.00
22. Active Correction Action		PFP	Bid Cost	\$0.00


W. Aggressive Fluid & Vapor Recovery (AFVR)							
1.2 8-hour Event	per event	\$1,787.40	\$0.00				
2.1 24-hour Event	per event	\$4,407.78	\$0.00				
3.1 48-hour Event	per event	\$7,242.29	\$0.00				
4.1 96-hour Event	per event	\$14,482.28	\$0.00				
5.1 Off-gas Treatment 8 hour	per event	\$141.17	\$0.00				
6.2 Off-gas Treatment 24 hour	per event	\$294.30	\$0.00				
7.2 Off-gas Treatment 48 hour	per event	\$386.10	\$0.00				
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00				
9.1 Off-gas Treatment 8 hour (w/chlorinated compounds)	per event	\$464.40	\$0.00				
10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00				
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00				
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00				
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00				
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00				
15.1 Additional Hook-ups	each	\$29.68	\$0.00				
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00				
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00				
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00				
19.1 Well sock 2" ID well	each	\$36.94	\$0.00				
20.1 Well sock 4" ID well	each	\$49.03	\$0.00				
21.1 pad (per pad)	each	\$49.95	\$0.00				
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00				
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00				
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00				
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00				
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00				
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00				
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00				
X. Granulated Activated Carbon (GAC) filter system installation	& service:						
1.2 New GAC System Installation	each	\$2,320.86	\$0.00				
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00				
3.2 Filter replacement/removal	each	\$427.53	\$0.00				
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00				
5.2 GAC System housing	each	\$305.38	\$0.00				
6.2 In-line particulate filter	each	\$183.22	\$0.00				
7.2 Additional piping & fittings	foot	\$1.84	\$0.00				

Y. Well Repair				
1.2 Additional Copies of the Report Delivered		each	\$61.07	\$0.00
2.2 Repair 2x2 MW pad		each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad		each	\$107.49	\$0.00
4.2 Replace well vault		each	\$144.14	\$0.00
5.2 Replace well cover bolts		each	\$3.18	\$0.00
6.2 Replace locking well cap & lock		each	\$18.32	\$0.00
7.2 Replace/Repair stick-up		each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up		each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount		each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate		each	\$14.66	\$0.00
11.1 Down-hole Camera		per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization				
1.1 HRSC Screening Equipment Mobilization		each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1		per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2		per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3		per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model		each	\$4,363.20	\$0.00
S. Report Prep & Project Management	12%	percent	\$13,044.34	\$1,565.32
TOTAL				\$14,609.66

DHEC D-4406 (07/2023)

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

JUN 1 0 2024

MR MALLOY D MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501

Re: Site-Specific Work Plan Approval & Groundwater Sampling Notice to Proceed Coastal 76 Truck Stop (Former), 2513 E Palmetto St, Florence, SC UST Permit #03538; CA #68767
Release #1 reported September 27, 1995
Site Specific Work Plan (SSWP) received May 6, 2024
Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (DHEC) has reviewed and approved the referenced SSWP. All scopes of work should be conducted in compliance with the most recent revision of the Quality Assurance Program Plan (QAPP) for the UST Management Division, your contractor's Annual Contractor Quality Assurance Plan (ACQAP), the submitted SSWP, and all applicable regulations.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". According to DHEC records, approximately \$147,590.32 has been expended from the SUPERB account to date. This scope of work, as recommended by your contractor, is anticipated to cost approximately \$15,188.36.

The Monitoring Report and invoice should be submitted within 60 days of the date of this correspondence. If the report cannot be submitted by the required due date, an extension must be requested in writing, via mail or email, prior to the due date. DHEC will issue a Notice of Alleged Violation if the report is not submitted by the required due date. Approved costs are detailed in the enclosed Cost Agreement (CA). Please note the following changes to the cost agreement:

1) One additional personnel mobilization is approved to locate and repair monitoring wells.

In accordance with Section IV.A.4.c of the SUPERB Site Rehabilitation & Fund Access Regulation (R.61-98), the contractor shall be required to indemnify the property owner, underground storage tank owner/operator and the State of South Carolina from and against all claims, damages, losses and expenses arising out of or resulting from activity conducted by the contractor, its agents, employees or subcontractors.

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

UST Permit #03538; CA #68767, SSWP Approval & Groundwater Sampling Notice to Proceed Page 2

Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that the SUPERB Account cannot compensate any costs that are not pre-approved. If for any reason additional tasks will be completed, the additional tasks and the associated cost, must be pre-approved by the UST Management Division for the costs to be paid. DHEC reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, DHEC reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work. Reimbursement for site rehabilitation activities shall in no event exceed the actual costs incurred as required by SUPERB Site Rehabilitation and Fund Access Regulations (R.61-98 § III.3.b).

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a DHEC-certified site rehabilitation contractor as required by the SUPERB Site Rehabilitation and Fund Access Regulation, R.61-98.

DHEC grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All Investigation-Derived Waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the Project Manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

The contractor will be responsible for keeping and preserving suitable records of hydrological and other site assessments, site plans, contracts, accounts, invoices, or other transactions related to the cleanup and rehabilitation and the records must be accessible to the department during regular business hours. In addition, this includes all subcontractor agreements, invoices, correspondence, plans, reports, records, including electronic and paper formats. All records must be maintained for 10 years after project completion.

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions please contact me by email dunnra@dhec.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn, Hydrogeologist

Corrective Action & Field Support Section

Underground Storage Tank Management Division

Bureau of Land and Waste Management

Enc: Approved CA

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 (w/ Enc) Technical file (w/ Enc)

Approved Cost Agreement

68767

Facility: 03538 COASTAL 76 TRUCK STOP

DUNNRA PO Number:

Unit Price Qty / Pct <u>Amount</u> Item Description Task / Description Categories A PLAN PREPARATION 183.22 1.2 SITE SPECIFIC WORK PLAN 1.0000 \$183.220 D MOB/DEMOB \$516.690 1,550.07 3.0000 2.2 PERSONNEL J SAMPLE COLLECTION 293.16 1.2 GROUND WATER PURGE 4.0000 \$73.290 \$26.870 26.87 1.0000 3.2 WATER SUPPLY SAMPLE 4.2B NO-PURGE GROUNDWATER 31.0000 \$57.240 1,774.44 150.30 8.2 FIELD DUPL. (MWS & WSWS) & FB 5.0000 \$30.060 K ANALYSES DW DRINKING WATER \$151.520 606.08 4.0000 14.2 BTEXNM+1,2 DCA (524.2) WSW 4.0000 \$112,070 448.28 15.2 OXYGENATES & ETHANOL 8260D 3.0000 \$97.110 291.33 16.2 EDB (504.1) GW GROUNDWATER 1.2 BTEXNM+OXYGS+1,2 DCA+ETH 8260D 5,960.80 40.0000 \$149.020 2,097.98 7.2 EDB BY EPA 8011 38.0000 \$55.210 Q DISPOSAL 178.50 150.0000 \$1.190 1.2 WASTEWATER S REPORT PROJECT MANAGEMENT

S REPORT PREP & PROJ. MANAGEMENT

Total Amount

0.1200 \$13,561.030

1,627.32 15,188.35

Midlands Environmental Consultants, Inc.

Mr. Robert Dunn, Hydrogeologist Corrective Action & Field Support Section Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Department of Environmental Services 2600 Bull Street Columbia, South Carolina 29201

Subject:

Site-Specific Work Plan Coastal 76 Truck Stop 2513 East Palmetto Street Florence, South Carolina UST Permit# 03538

Certified Site Rehabilitation Contractor UCC-0009

Dear Mr. Dunn,

Midlands Environmental Consultants Inc. (MECI) is pleased to submit the attached Site-Specific Work Plan for the referenced site.

MECI is making this proposal to gather current analytical data to evaluate the groundwater quality beneath the site.

If you have any questions or comments, please feel free to contact us at 803-808-2043.

Sincerely,

Midlands Environmental Consultants, Inc.

Senior Scientist

Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

To: Mr. Robert Dunn From: Jeff L. Coleman Contractor: Midlands Environmental Consultants, Inc. Us	(SCDHEC Project Manager)(Contractor Project Manager) ST Contractor Certification Number: 009					
Facility Name: Coastal 76 Truck Stop Facility Address: 2513 East Palmetto Street, Florence SC 29506 Responsible Party: Malloy D. McEachin & Margaret M. Gates Phone: (803) 651-8835						
RP Address: 1007 Wentworth Drive, Florence, SC 29501 Property Owner (if different): Squeaky Shrimp, LLC. Property Owner Address: 180 North Irby Street, Florence, SC 29501 Current Use of Property: Storage Shed Sales						
Scope of Work (Please check all that apply) GWA Tier II Tier I Monitoring Well Installation	☑ Groundwater Sampling ☐ GAC ☐ Other					
	Sulfate Dissolved Iron Other					
	of each matrix that are expected to be collected.) supply Wells Air 2 Field Blank e Water 3 Duplicate 3 Trip Blank					
Field Screening Methodology Estimate number and total completed depth for each point, and include their proposed locations on the attached map. # of shallow points proposed: Estimated Footage: feet per point # of deep points proposed: Estimated Footage: feet per point Field Screening Methodology:						
# of shallow wells: E # of deep wells: E	vell, and include their proposed locations on the attached map. Estimated Footage: feet per point Estimated Footage: feet per point Estimated Footage: feet per point					

UST	Permit #: 03538 Fa	acility Name: _	Coastal 76 Truck Stop	
Field	mentation Schedule (Number of c Work Start-Up: 1/9/2025 t Submittal: 4/9/2025		from approval) Field Work Completion: 3/9/2025 # of Copies Provided to Property Owners:	
-	er Characterization Test: ☐ Slug Test: ☐ (Check o	one and provi	de explanation below for choice)	
	tigation Derived Waste Disposal	Tons	Purge Water: 600.00	_ Gallons
Drillin	g Fluids:	Gallons	Free-Phase Product:	Gallons
For exert, -MECI -MECI		Is to be aband went to collect sem ample collection.		of AFVR
Yes	Name of Laboratory: SCDHEC Certification Number:	(Yes/No)	If no, indicate laboratory information below. If no, indicate driller information below.	
None (Other variations from ACQAP. Pleas	se describe be	elow.	
	nments Attach a copy of the relevant porti	on of the USC	GS topographic map showing the site location.	
2.	Prepare a site base map. This may must include the following: North Arrow Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well locations Proposed soil boring locations Assessment Component Cost Agr	Proposed Legend with Streets or handle Location of Location of	ccurately scaled, but does not need to be surveyed. The monitoring well locations th facility name and address, UST permit number, and be nighways (indicate names and numbers) fall present and former ASTs and USTs fall potential receptors	

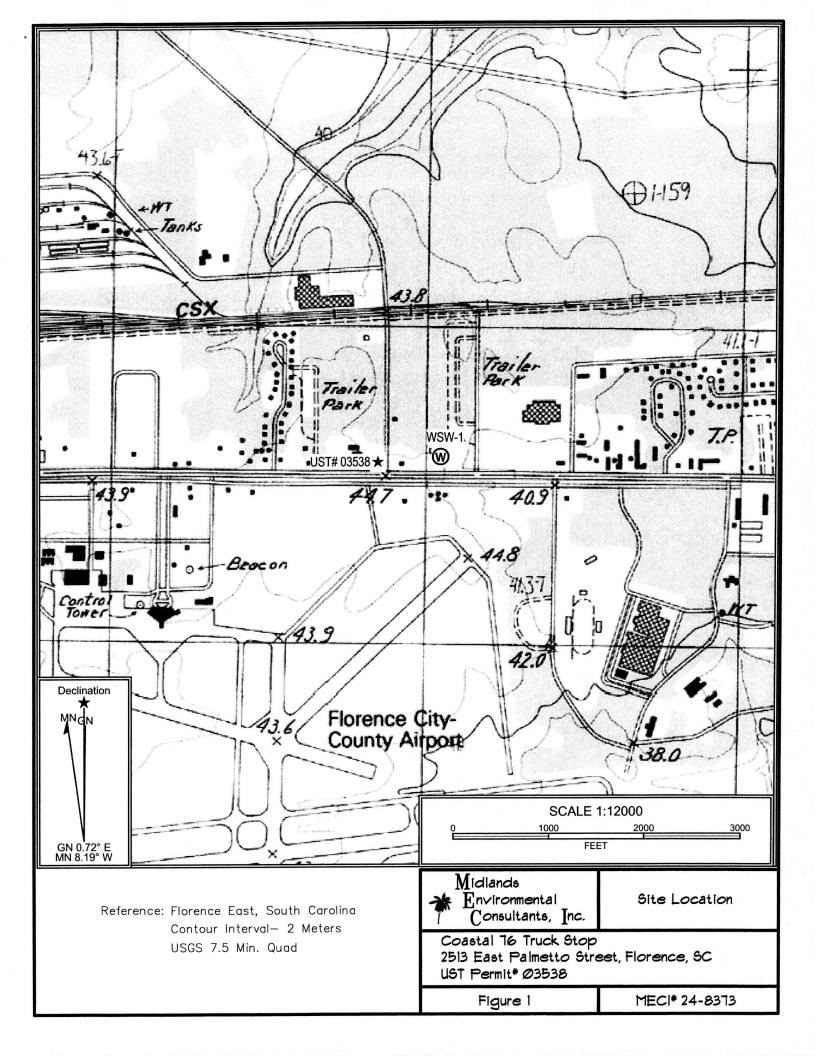
ASSESSMENT COMPONENT COST AGREEMENT

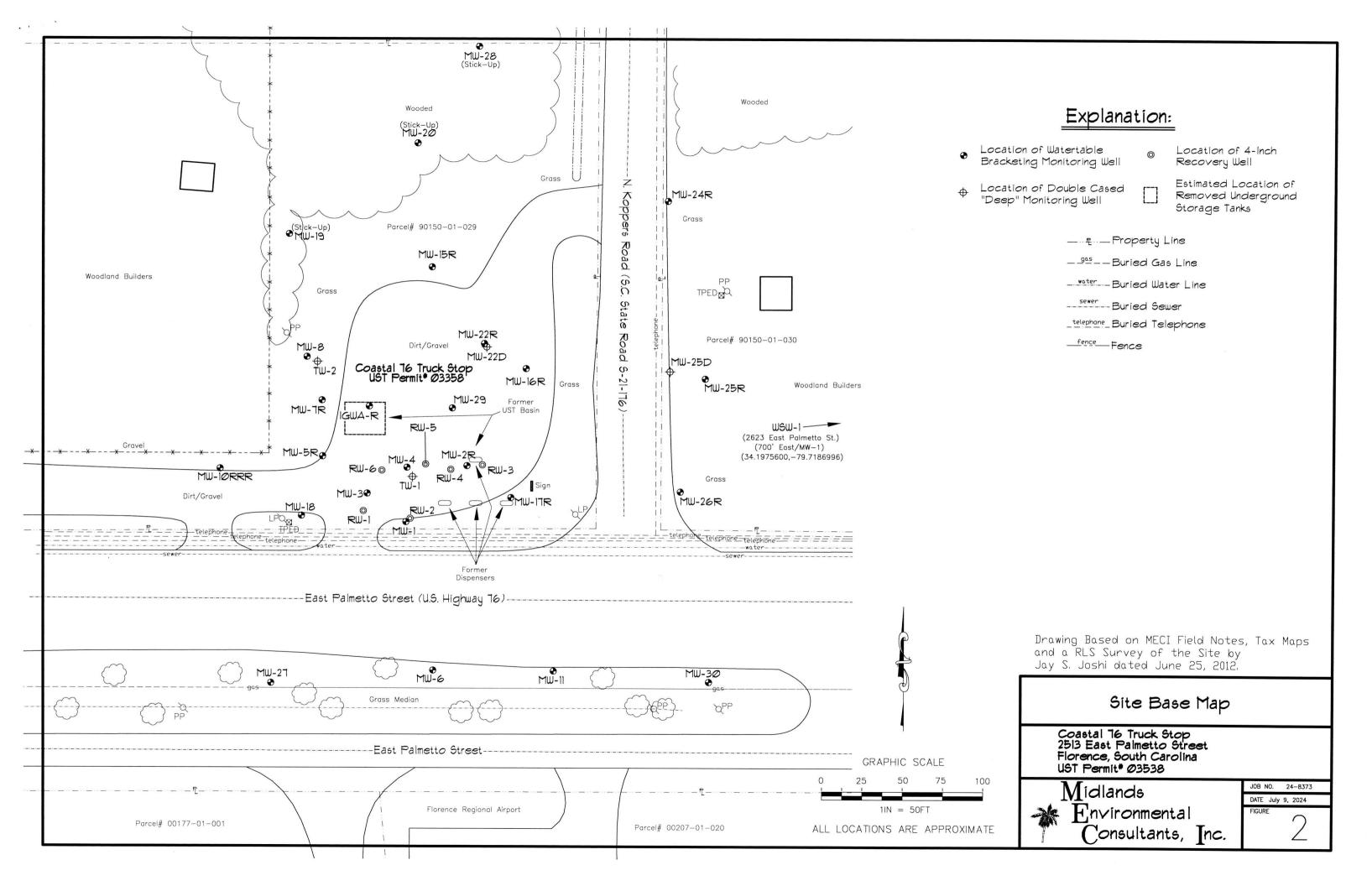
South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 9, 2023

Facility Name: Coastal 76 Truck Stop

UST Permit #: 03538	Cost Agreement #:		Proposal		
ITEM	QUANTITY	UNIT	UNIT PRICE	TOTAL	
A. Plan Preparation					
1.2 Site-specific Work Plan	1	each	\$183.22	\$183.22	
2.2 Tax Map		each	\$85.50	\$0.00	
3.2 QAPP Contractor Addendum (App B)		each	\$250.00	\$0.00	
B. Survey					
1.1 Receptor Survey		each	\$673.06	\$0.00	
C. Survey					
1.2 Comprehensive Survey		each	\$1,270.36	\$0.00	
5.1 Ground Penetrating Radar Survey (100 x 100)		each	\$1,111.57	\$0.00	
D. Mob/Demob					
1.2 Equipment		each	\$1,245.93	\$0.00	
2.2 Personnel	2	each	\$516.69	\$1,033.38	
3.2 Adverse Terrain Vehicle		each	\$610.75	\$0.00	
E. Soil Borings					
1.1 Soil Borings (hand auger)	A SPECTOR DOMESTIC NO. 100	foot	\$21.80	\$0.00	
F. Soil Borings (requiring equipment, push technol	ogy, etc) or Fie	ld Screening (including sampling and ar	nalyst)	
1.2 Standard	The second secon	per foot	\$33.50	\$0.00	
2.2 Fractured Rock		per foot	\$41.40	\$0.00	
G.					
H. Well Abandonment					
1.2 2" diameter or less		per foot	\$3.79	\$0.00	
2.2 Greater than 2" to 6" diameter		per foot	\$5.50	\$0.00	
3.2 Dug/Bored well (up to 6 feet diameter)		per foot	\$18.32	\$0.00	
I. Well Installation (In accordance with R.61-71)					
1.2 Water Table (hand augered)		per foot	\$31.40	\$0.00	
2.B Water Table (drill rig) 2" Diameter		per foot	\$54.90	\$0.00	
2.2 Single-cased 2" Diameter Monitoring Well >50f	t	per foot	\$59.80	\$0.00	
3.2 Telescoping		per foot	\$84.70	\$0.00	
4.2 Rock Drilling		per foot	\$81.80	\$0.00	
5.2 2" Rock Coring		per foot	\$88.50	\$0.00	
6.2 Multi-sampling ports/screens		per foot	\$59.40	\$0.00	
7.2 Recovery Well (4" diameter)		per foot	\$69.60	\$0.00	
9.2 Rotosonic (2" diameter)		per foot	\$119.00	\$0.00	
10.2 Re-develop Existing Well		per foot	\$13.44	\$0.00	

J. Groundwater Sample Collection / Gauging Depth	to Water/P	roduct		
1.2 Groundwater Purge	36	per well	\$73.29	\$2,638.44
2.2 Air or Vapors		sample	\$14.66	\$0.00
3.2 Water Supply Sample	1	sample	\$26.87	\$26.87
4.1A HydraSleeve		sample	\$34.20	\$0.00
4.2B No-purge Groundwater Sample/Surface water		sample	\$57.24	\$0.00
5.2 Gauge Well only		sample	\$8.55	\$0.00
6.2 Sample Below Product		sample	\$14.66	\$0.00
7.2 Passive Diffusion Bag		sample	\$31.75	\$0.00
8.2 Field Duplicates (MWs & WSWs) and Field Bla	5	sample	\$30.06	\$150.30
9.2 Groundwater (low flow purge)		sample	\$111.16	\$0.00
10.2 Equipment Blank	i.	sample	\$30.06	\$0.00
11.1 Sample Product		per well	\$52.66	\$0.00
K. Laboratory Analyses-Groundwater				10 mg
1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D)	41	per sample	\$149.02	\$6,109.82
2.2 Lead, Filtered		per sample	\$16.85	\$0.00
3.2 Rush EPA Method 8260B		per sample	\$187.62	\$0.00
4.2 Trimethal, Butyl, and Isopropyl Benzenes		per sample	\$34.20	\$0.00
5.2 PAH's		per sample	\$74.02	\$0.00
6.2 Lead		per sample	\$19.54	\$0.00
7.2 EDB by EPA 8011	39	per sample	\$55.21	\$2,153.19
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water				
14.2 BTEXNM+1,2 DCA (524.2)	4	per sample	\$151.52	\$606.08
15.2 7-OXYGENATES & ETHANOL (8260D)	4	per sample	\$112.07	\$448.28
16.2 EDB (504.1)	3	per sample	\$97.11	\$291.33
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.		per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	\$0.00
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00


K. Analyses-Air			
25.2 BTEX + Naphthalene	per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification			
27.1 C3-C44 Whole Oil (ASTM D3328)	per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)	per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)	per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)	per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)	per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)	per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)	per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints	per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report	each	\$595.30	\$0.00
L. Aquifer Characterization			
1.2 Pumping Test	per hour	\$28.09	\$0.00
2.2 Slug Test	per test	\$233.31	\$0.00
3.2 Fractured Rock	per test	\$122.15	\$0.00
M. Free Product			
1.1 Free Product Recovery Rate Test	each	\$46.42	\$0.00
N.			
O. Risk Evaluation			
1.2 Tier I Risk Evaluation	each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation	each	\$122.15	\$0.00
P. Survey			
1.1 Subsequent Survey	each	\$297.65	\$0.00
Q. Disposal (gallons or tons)			
1.2 Wastewater 600	gallon	\$1.19	\$714.00
2.2 Free Product	gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal	ton	\$156.25	\$0.00
4.2 Drilling fluids	gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)			
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)			
1.2 Southeast Region	standard	\$12,622.56	\$0.00
2.2 All Other Counties	standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)			
1.2 Southeast Region	standard	\$4,353.67	\$0.00
2.2 All Other Counties	standard	\$4,720.01	\$0.00
22. Active Correction Action	PFP B	id Cost	\$0.00


W. Aggressive Fluid & Vapor Recovery (AFVR)			
1.2 8-hour Event	per event	\$1,787.40	\$0.00
2.1 24-hour Event	per event	\$4,407.78	\$0.00
3.1 48-hour Event	per event	\$7,242.29	\$0.00
4.1 96-hour Event	per event	\$14,482.28	\$0.00
5.1 Off-gas Treatment 8 hour	per event	\$141.17	\$0.00
6.2 Off-gas Treatment 24 hour	per event	\$294.30	\$0.00
7.2 Off-gas Treatment 48 hour	per event	\$386.10	\$0.00
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00
9.1 Off-gas Treatment 8 hour (w/chlorinated compounds)	per event	\$464.40	\$0.00
10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installation	& service:		
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00

Y. Well Repair			and the second	and the same of the same of
1.2 Additional Copies of the Report Delivered		each	\$61.07	\$0.00
2.2 Repair 2x2 MW pad		each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad		each	\$107.49	\$0.00
4.2 Replace well vault		each	\$144.14	\$0.00
5.2 Replace well cover bolts		each	\$3.18	\$0.00
6.2 Replace locking well cap & lock		each	\$18.32	\$0.00
7.2 Replace/Repair stick-up		each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up		each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount		each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate		each	\$14.66	\$0.00
11.1 Down-hole Camera		per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization				
1.1 HRSC Screening Equipment Mobilization		each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1		per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2		per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3		per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model		each	\$4,363.20	\$0.00
S. Report Prep & Project Management	12%	percent	\$14,354.91	\$1,722.59
TOTAL				\$16,077.50

DHEC D-4406 (07/2023)

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

Robert A. Dunn Corrective Action & Field Support Section Underground Storage Tank Management Division

2600 Bull Street Columbia, SC 29201

MR MALLOY D MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501 FEB 27 2025

Re: Site-Specific Work Plan (SSWP) Approval & Groundwater Sampling Notice to Proceed Coastal 76 Truck Stop (Former), 2513 E Palmetto St, Florence, SC UST Permit #03538; CA #69684
Release reported September 27, 1995
Site-Specific Work Plan received December 11, 2024

Dear Mr. McEachin:

Florence County

The Underground Storage Tank (UST) Management Division of the S.C. Department of Environmental Servies (SCDES) has reviewed and approved the referenced SSWP. All scopes of work should be conducted in compliance with the most recent revision of the UST QAPP, your contractor's ACQAP, the submitted SSWP, and all applicable regulations.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". According to SCDES records, approximately \$162,914.94 has been expended from the SUPERB account to date. This scope of work, as recommended by your contractor, is anticipated to cost approximately \$16,077.50.

The Monitoring Report and invoice should be submitted within 60 days of the date of this correspondence. If the report cannot be submitted as required, an extension request must be submitted in writing prior to the due date. The Department will issue a Notice of Alleged Violation if the report or an extension request is not submitted by the required due date.

The contractor must provide notification to the UST Project Manager via email 4 days prior to initiation of any site rehabilitation activities. If there are any changes to the schedule, the UST Project Manager must be contacted within 24 hours of those changes.

In accordance with Section IV.A.4.c of the SUPERB Site Rehabilitation & Fund Access Regulation (R.61-98), the contractor shall be required to indemnify the property owner, underground storage tank owner/operator and the State of South Carolina from and against all claims, damages, losses and expenses arising out of or resulting from activity conducted by the contractor, its agents, employees or subcontractors.

Your contractor can submit an invoice for direct payment from the State Underground Petroleum Environmental Response Bank (SUPERB) Account for pre-approved costs. If the invoice is not submitted within 120 days from the date of this letter, monies allocated to pay this invoice will be uncommitted. This means that the invoice will not be processed for payment until all other committed funds are paid or monies become available.

UST #03538; SSWP Approval & Groundwater Sampling Notice to Proceed Page 2

Sections 44-2-110(4) and 44-2-130 of the SUPERB Statute state that the SUPERB Account cannot compensate any costs that are not pre-approved. If for any reason additional tasks will be completed, the additional tasks and the associated cost, must be pre-approved by the UST Management Division for the costs to be paid. SCDES reserves the authority to pay only for work properly performed and/or technically justified and will only pay rates in accordance with established criteria. Further, SCDES reserves the right to question and/or reject costs if deemed unreasonable and the right to audit project records at any time during the project or after completion of work. Reimbursement for site rehabilitation activities shall in no event exceed the actual costs incurred as required by SUPERB Site Rehabilitation and Fund Access Regulations (R.61-98 § III.3.b).

Please note that applicable South Carolina certification requirements regarding laboratory services, well installation, and report preparation must be satisfied. Any site rehabilitation activity associated with the UST release must be performed by a SCDES-certified site rehabilitation contractor as required by the SUPERB Site Rehabilitation and Fund Access Regulation, R.61-98.

SCDES grants pre-approval for transportation of virgin petroleum impacted soil and groundwater from the referenced site to a permitted treatment facility. There can be no spillage or leakage in transport. All Investigation-Derived Waste (IDW) must be properly contained and labeled prior to disposal. IDW should not be stored on-site longer than ninety days. A copy of the disposal manifest and/or acceptance letter from the receiving facility that clearly designates the quantity received must be included as an appendix to the report. If the Chemical of Concern concentrations based on laboratory analysis is below Risk-Based Screening Levels (RBSLs), please contact the Project Manager for approval to dispose of soil and/or groundwater on-site. The SUPERB Account will not reimburse for transportation or treatment of soil and/or groundwater with concentrations below RBSLs.

The contractor will be responsible for keeping and preserving suitable records of hydrological and other site assessments, site plans, contracts, accounts, invoices, or other transactions related to the cleanup and rehabilitation and the records must be accessible to the department during regular business hours. In addition, this includes all subcontractor agreements, invoices, correspondence, plans, reports, records, including electronic and paper formats. All records must be maintained for 10 years after project completion.

On all correspondence regarding this site, please reference the UST Permit number. Should you have any questions please contact me by email Robert.Dunn@des.sc.gov or phone (803) 898-0671.

Sincerely,

Robert A. Dunn Hydrogeologist III

Enc: Approved CA

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071 (w/ Enc) Technical file (w/ Enc)

Approved Cost Agreement

69684

Facility: 03538 COASTAL 76 TRUCK STOP

DUNNRA PO Number:

Task / Description Categories	Item Description	Qty / Pct	Unit Price	<u>Amount</u>
A PLAN PREPARATION				
	1.2 SITE SPECIFIC WORK PLAN	1.0000	\$183.220	183.22
D MOB/DEMOB				
	2.2 PERSONNEL	2.0000	\$516.690	1,033.38
J SAMPLE COLLECTION				
	1.2 GROUND WATER PURGE	36.0000	\$73.290	2,638.44
	3.2 WATER SUPPLY SAMPLE	1.0000	\$26.870	26.87
	8.2 FIELD DUPL. (MWS & WSWS) & FB	5.0000	\$30.060	150.30
K ANALYSES				
DW DRINKING WATER	14.2 BTEXNM+1,2 DCA (524.2) WSW	4.0000	\$151.520	606.08
	15.2 OXYGENATES & ETHANOL 8260D	4.0000	\$112,070	448.28
	16.2 EDB (504.1)	3.0000	\$97.110	291.33
GW GROUNDWATER	1.2 BTEXNM+OXYGS+1,2 DCA+ETH 8260D	41.0000	\$149.020	6,109.82
	7.2 EDB BY EPA 8011	39.0000	\$55.210	2,153.19
Q DISPOSAL				
	1.2 WASTEWATER	600.0000	\$1.190	714.00
S REPORT PROJECT MANAGEMENT				
	S REPORT PREP & PROJ. MANAGEMENT	0.1200	\$14,354.910	1,722.59

Total Amount 16,077.50

Robert A. Dunn

UST # 03538 Pel viceral 3/25/25

From:

ilc@meci.net

Sent:

Tuesday, March 25, 2025 3:40 PM

To:

Robert A. Dunn

Cc:

Stephanie M. Briney

Subject:

UST#03538/CA#69684-Addendum

Attachments:

69684_Addendum.xlsx

Robert,

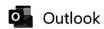
Please find the attached addendum for the above referenced site. Let me know if you have an equestions or concerns.

Thanks,

Jeff L. Coleman
Senior Scientist/Managing Principal
Midlands Environmental Consultants, Inc.
(office) 803-808-2043 Ext. 2
(cell) 803-446-0365
jlc@meci.net

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

ASSESSMENT COMPONENT COST AGREEMENT


South Carolina Department of Health and Environmental Control Underground Storage Tank Management Division State Underground Petroleum Environmental Response Bank Account August 9, 2023

Facility Name: Coastal 76 Truck Stop Cost Agreement #: 69684 UST Permit #: 3538 ITEM QUANTITY UNIT UNIT PRICE TOTAL A. Plan Preparation \$0.00 1.2 Site-specific Work Plan each \$183.22 \$0.00 2.2 Tax Map each \$85.50 \$0.00 3.2 QAPP Contractor Addendum (App B) \$250.00 each B. Survey \$0.00 1.1 Receptor Survey \$673.06 each C. Survey \$0.00 1.2 Comprehensive Survey each \$1,270.36 \$0.00 5.1 Ground Penetrating Radar Survey (100 x 100) each \$1,111.57 D. Mob/Demob \$0.00 1.2 Equipment each \$1,245.93 \$0.00 2.2 Personnel each \$516.69 \$0.00 3.2 Adverse Terrain Vehicle each \$610.75 E. Soil Borings \$0.00 1.1 Soil Borings (hand auger) foot \$21.80 F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including sampling and analyst) \$0.00 1.2 Standard per foot \$33.50 2.2 Fractured Rock \$0.00 per foot \$41.40 Addendum H. Well Abandonment \$16,077.50 1.2 2" diameter or less per foot \$3.79 \$0.00 Previously Approved: 2.2 Greater than 2" to 6" diameter per foot \$5.50 \$0.00 3.2 Dug/Bored well (up to 6 feet diameter) per foot \$18.32 \$0.00 Increase: (\$1,859.94). Well Installation (In accordance with R.61-71) \$14,217.56 1.2 Water Table (hand augered) per foot \$31.40 \$0.00 New Approved Total: 2.B Water Table (drill rig) 2" Diameter per foot \$54.90 \$0.00 2.2 Single-cased 2" Diameter Monitoring Well >50ft per foot \$59.80 \$0.00 Project Manager: 3.2 Telescoping per foot \$84.70 \$0.00 4.2 Rock Drilling per foot \$81.80 \$0.00 Section Manager: 5.2 2" Rock Coring per foot \$88.50 \$0.00 6.2 Multi-sampling ports/screens per foot \$59.40 \$0.00 Finance: 7.2 Recovery Well (4" diameter) per foot \$69.60 \$0.00 9.2 Rotosonic (2" diameter) per foot \$119.00 \$0.00 Date: \$0.00 10.2 Re-develop Existing Well per foot \$13.44 J. Groundwater Sample Collection / Gauging Depth to Water/Product # of pages 1.2 Groundwater Purge per well \$73.29 (\$73.29) From: 2.2 Air or Vapors \$0.00 sample \$14.66 -1 (\$26.87)UST/SCDHEC 3.2 Water Supply Sample sample \$26.87 4.1A HydraSleeve sample \$34.20 \$0.00 4.2B No-purge Groundwater Sample/Surface water \$0.00 fax # (sample \$57.24 5.2 Gauge Well only sample \$0.00 Phone # (\$8.55 6.2 Sample Below Product sample \$14.66 \$0.00 The SCDHEC reserves the authority to pay 7.2 Passive Diffusion Bag sample \$31.75 only for work properly performed and/or 8.2 Field Duplicates (MWs & WSWs) and Field Bla \$30.06 (\$30.06) technically justified and will only pay sample 9.2 Groundwater (low flow purge) sample \$0.00 rates in accordance with established criteria. \$111.16 10.2 Equipment Blank sample \$30.06 \$0.00 11.1 Sample Product per well \$52.66 \$0.00 K. Laboratory Analyses-Groundwater 1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D) per sample \$149.02 \$0.00 2.2 Lead, Filtered per sample \$16.85 \$0.00 3.2 Rush EPA Method 8260B per sample \$187.62 \$0.00 4.2 Trimethal, Butyl, and Isopropyl Benzenes per sample \$34.20 \$0.00 5.2 PAH's per sample \$74.02 \$0.00 6.2 Lead per sample \$19.54 \$0.00

7.2 EDB by EPA 8011		per sample	\$55.21	\$0.00
8.2 EDB by EPA Method 8011 Rush		per sample	\$83.31	\$0.00
9.2 8 RCRA Metals		per sample	\$77.45	\$0.00
10.2 TPH (9070)		per sample	\$50.09	\$0.00
11.2 PH		per sample	\$6.35	\$0.00
12.2 BOD		per sample	\$24.42	\$0.00
13.2 Ethanol		per sample	\$18.08	\$0.00
K. Analyses-Drinking Water				
14.2 BTEXNM+1,2 DCA (524.2)	-4	per sample	\$151.52	(\$606.08
15.2 7-OXYGENATES & ETHANOL (8260D)	-4	per sample	\$112.07	(\$448.28
16.2 EDB (504.1)	-3	per sample	\$97.11	(\$291.33
17.2 RCRA METALS (200.8)		per sample	\$122.15	\$0.00
K. Analyses-Soil				
18.2 BTEX + Naphth.	1	per sample	\$78.18	\$0.00
19.2 PAH's		per sample	\$78.22	\$0.00
20.2 8 RCRA Metals		per sample	\$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)		per sample	\$48.86	\$0.00
ACADOM MES DESIGNATION STATE AND ACADOM CONTRACTOR AND ACADOM STATE AND AC				\$0.00
22.2 TPH-GRO (5035B/8015C)		per sample	\$43.92	
23.2 Grain size/hydrometer		per sample	\$127.04	\$0.00
24.2 Total Organic Carbon		per sample	\$37.38	\$0.00
K. Analyses-Air				
25.2 BTEX + Naphthalene		per sample	\$263.84	\$0.00
K. Hydrocarbon Fuel Identification				
27.1 C3-C44 Whole Oil (ASTM D3328)		per sample	\$465.93	\$0.00
28.1 Fuel Oxygenates (1624 Mod)		per sample	\$398.39	\$0.00
29.1 ALKYL Leads, EDB MMT (8080)		per sample	\$398.39	\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)		per sample	\$629.64	\$0.00
31.1 Simulated Distillation (ASTM 2887)		per sample	\$398.39	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)		per sample	\$723.63	\$0.00
33.1 C3-C10 Piano (8260 MOD)		per sample	\$599.88	\$0.00
34.1 C10+Alkane Fingerprints		per sample	\$599.88	\$0.00
35.1 Expert Data Interpretation & Report		each	\$595.30	\$0.00
L. Aquifer Characterization		Cacii	ψοθο.σο	Ψ0.00
1.2 Pumping Test		l nor hour	1 620 00 1	\$0.00
2.2 Slug Test		per hour	\$28.09	
_		per test	\$233.31	\$0.00
3.2 Fractured Rock M. Free Product		per test	\$122.15	\$0.00
			1	
1.1 Free Product Recovery Rate Test		each	\$46.42	\$0.00
N.				
O. Risk Evaluation				
1.2 Tier I Risk Evaluation		each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation		each	\$122.15	\$0.00
P. Survey				
1.1 Subsequent Survey		each	\$297.65	\$0.00
Q. Disposal (gallons or tons)				
1.2 Wastewater	-155.25	gallon	\$1.19	(\$184.75)
1.2 Wastewater 2.2 Free Product	-155.25	gallon gallon	\$1.19 \$1.63	
01040 9000 9000 0000 0000 0000 0000 0000	-155.25	-		\$0.00
2.2 Free Product	-155.25	gallon	\$1.63	\$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids	-155.25	gallon ton	\$1.63 \$156.25	\$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal	-155.25	gallon ton gallon	\$1.63 \$156.25 \$1.25	\$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids	-155.25	gallon ton gallon each	\$1.63 \$156.25 \$1.25	\$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids	-155.25	gallon ton gallon each each	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00	\$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts)	-155.25	gallon ton gallon each	\$1.63 \$156.25 \$1.25	\$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form)	-155.25	gallon ton gallon each each each	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region	-155.25	gallon ton gallon each each each standard	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties	-155.25	gallon ton gallon each each each	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form)	-155.25	gallon ton gallon each each each standard standard	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region	-155.25	gallon ton gallon each each each standard standard	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties	-155.25	gallon ton gallon each each each standard standard standard	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action	-155.25	gallon ton gallon each each each standard standard	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR)	-155.25	gallon ton gallon each each each standard standard standard pFP	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event	-155.25	gallon ton gallon each each each standard standard standard	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR)	-155.25	gallon ton gallon each each each standard standard standard pFP	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event	-155.25	gallon ton gallon each each each standard standard standard PFP per event	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event 2.1 24-hour Event	-155.25	gallon ton gallon each each each standard standard standard PFP per event per event	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event 2.1 24-hour Event 3.1 48-hour Event	-155.25	gallon ton gallon each each each standard standard standard PFP per event per event per event	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event 2.1 24-hour Event 3.1 48-hour Event 4.1 96-hour Event	-155.25	gallon ton gallon each each each standard standard standard PFP per event per event per event per event	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost \$1,787.40 \$4,407.78 \$7,242.29 \$14,482.28	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event 2.1 24-hour Event 3.1 48-hour Event 4.1 96-hour Event 5.1 Off-gas Treatment 8 hour 6.2 Off-gas Treatment 24 hour	-155.25	gallon ton gallon each each each standard standard standard PFP per event per event per event per event per event per event per event per event	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost \$1,787.40 \$4,407.78 \$7,242.29 \$14,482.28 \$141.17 \$294.30	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
2.2 Free Product 3.2 Soil Treatment/Disposal 4.2 Drilling fluids R. Miscellaneous (attach receipts) T. Tier I Assessment (Use DHEC 3665 form) 1.2 Southeast Region 2.2 All Other Counties U. IGWA (Use DHEC 3666 form) 1.2 Southeast Region 2.2 All Other Counties 2.2 Active Correction Action W. Aggressive Fluid & Vapor Recovery (AFVR) 1.2 8-hour Event 2.1 24-hour Event 3.1 48-hour Event 4.1 96-hour Event 5.1 Off-gas Treatment 8 hour	-155.25	gallon ton gallon each each each standard standard standard PFP per event per event per event per event per event per event	\$1.63 \$156.25 \$1.25 \$0.00 \$0.00 \$0.00 \$12,622.56 \$13,844.06 \$4,353.67 \$4,720.01 Bid Cost \$1,787.40 \$4,407.78 \$7,242.29 \$14,482.28 \$141.17	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00

10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installation			
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00
Y. Well Repair	l anab l	ec4 oz	¢ 0.00
1.2 Additional Copies of the Report Delivered	each	\$61.07	\$0.00
2.2 Repair 2x2 MW pad	each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad	each	\$107.49	\$0.00
4.2 Replace well vault	each	\$144.14	\$0.00
5.2 Replace well cover bolts	each	\$3.18	\$0.00
6.2 Replace locking well cap & lock	each	\$18.32	\$0.00
7.2 Replace/Repair stick-up	each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up	each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount	each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate	each	\$14.66	\$0.00
11.1 Down-hole Camera	per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization		#4.400.00 L	
1.1 HRSC Screening Equipment Mobilization	each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1	per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2	per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3	per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model	each	\$4,363.20	\$0.00
S. Report Prep & Project Management 12%	percent	(\$1,660.66)	(\$199.28)
TOTAL			(\$1,859.94)

DHEC D-4406 (07/2023)

UST#03538/CA#69684-Addendum

From jlc@meci.net <jlc@meci.net>

Date Tue 3/25/2025 3:43 PM

To Robert A. Dunn < Robert. Dunn@des.sc.gov>

Cc Stephanie M. Briney <Stephanie.Briney@des.sc.gov>

1 attachment (82 KB) 69684_Addendum.xlsx;

Robert,

Please find the attached addendum for the above referenced site. Let me know if you have any questions or concerns.

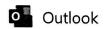
Thanks,

jlc@meci.net

Jeff L. Coleman
Senior Scientist/Managing Principal
Midlands Environmental Consultants, Inc.
(office) 803-808-2043 Ext. 2
(cell) 803-446-0365

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

ASSESSMENT COMPONENT COST AGREEMENT


South Carolina Department of Health and Environmental Control
Underground Storage Tank Management Division
State Underground Petroleum Environmental Response Bank Account
August 9, 2023

Facility Name: Coastal 76 Truck Stop UST Permit #: 3538 Cost Agreement #: 69684 ITEM QUANTITY UNIT **UNIT PRICE** TOTAL A. Plan Preparation 1.2 Site-specific Work Plan \$183.22 \$0.00 each 2.2 Tax Map each \$85.50 \$0.00 3.2 QAPP Contractor Addendum (App B) \$0.00 each \$250.00 B. Survey 1.1 Receptor Survey each \$673.06 \$0.00 C. Survey 1.2 Comprehensive Survey \$0.00 \$1,270.36 each 5.1 Ground Penetrating Radar Survey (100 x 100) \$0.00 each \$1,111.57 D. Mob/Demob \$1,245.93 1.2 Equipment \$0.00 each 2.2 Personnel \$0.00 each \$516.69 3.2 Adverse Terrain Vehicle \$0.00 each \$610.75 E. Soil Borings 1.1 Soil Borings (hand auger) \$0.00 foot \$21.80 F. Soil Borings (requiring equipment, push technology, etc) or Field Screening (including sampling and analyst) 1.2 Standard per foot \$33.50 \$0.00 2.2 Fractured Rock per foot \$0.00 \$41.40 Addendum H. Well Abandonment 1.2 2" diameter or less per foot \$3.79 \$0.00 Previously Approved: \$16,077.50 2.2 Greater than 2" to 6" diameter \$5.50 \$0.00 per foot 3.2 Dug/Bored well (up to 6 feet diameter) per foot \$18.32 \$0.00 Increase: (\$1,859.94)Well Installation (In accordance with R.61-71) 1.2 Water Table (hand augered) \$31.40 \$0.00 New Approved Total: \$14,217.56 per foot 2.B Water Table (drill rig) 2" Diameter per foot \$54.90 \$0.00 2.2 Single-cased 2" Diameter Monitoring Well >50ft \$0.00 Project Manager: per foot \$59.80 3.2 Telescoping \$0.00 per foot \$84.70 4.2 Rock Drilling \$0.00 per foot \$81.80 Section Manager: 5.2 2" Rock Coring \$0.00 per foot \$88.50 6.2 Multi-sampling ports/screens per foot \$59.40 \$0.00 Finance: 7.2 Recovery Well (4" diameter) per foot \$69.60 \$0.00 9.2 Rotosonic (2" diameter) per foot \$119.00 \$0.00 Date: 10.2 Re-develop Existing Well \$0.00 per foot \$13.44 J. Groundwater Sample Collection / Gauging Depth to Water/Product # of pages 1.2 Groundwater Purge (\$73.29) From: per well \$73.29 2.2 Air or Vapors \$0.00 \$14.66 sample 3.2 Water Supply Sample -1 \$26.87 (\$26.87)UST/SCDHEC sample 4.1A HydraSleeve \$0.00 sample \$34.20 4.2B No-purge Groundwater Sample/Surface water \$0.00 fax # (sample \$57.24 5.2 Gauge Well only Phone # (sample \$0.00 \$8.55 6.2 Sample Below Product \$14.66 \$0.00 The SCDHEC reserves the authority to pay sample 7.2 Passive Diffusion Bag sample \$31.75 \$0.00 only for work properly performed and/or 8.2 Field Duplicates (MWs & WSWs) and Field Bla -1 sample \$30.06 (\$30.06) technically justified and will only pay 9.2 Groundwater (low flow purge) \$0.00 rates in accordance with established criteria sample \$111.16 10.2 Equipment Blank \$30.06 \$0.00 sample 11.1 Sample Product \$52.66 \$0.00 per well K. Laboratory Analyses-Groundwater 1.2 BTEXNM+Oxyg's+1,2 DCA+Eth(8260D) per sample \$149.02 \$0.00 2.2 Lead, Filtered \$16.85 \$0.00 per sample 3.2 Rush EPA Method 8260B \$187.62 \$0.00 per sample 4.2 Trimethal, Butyl, and Isopropyl Benzenes per sample \$34.20 \$0.00 5.2 PAH's per sample \$74.02 \$0.00 6.2 Lead \$19.54 \$0.00 per sample

7.2 EDB hv. EDA 9044		- 455.04	* 0.00
7.2 EDB by EPA 8011	per sampl	5.0000000000000000000000000000000000000	\$0.00
8.2 EDB by EPA Method 8011 Rush	per sampl		\$0.00
9.2 8 RCRA Metals	per sampl	5.00 W 1550M	\$0.00
10.2 TPH (9070)	per sampl		\$0.00
11.2 PH 12.2 BOD	per sampl	14.000.000	\$0.00
13.2 Ethanol	per sampl		\$0.00
K. Analyses-Drinking Water	per sampl	e \$18.08	\$0.00
14.2 BTEXNM+1,2 DCA (524.2)	-4 per sampl	e \$151.52	(\$606.08
15.2 7-OXYGENATES & ETHANOL (8260D)	-4 per sampl		(\$448.28
16.2 EDB (504.1)	-3 per sampl	1	(\$291.33
17.2 RCRA METALS (200.8)	per sampl		\$0.00
K. Analyses-Soil	por sample	Ψ122.13	Ψ0:00
18.2 BTEX + Naphth.	per sample	e \$78.18	\$0.00
19.2 PAH's	per sample	NAME OF TAXABLE STATE O	\$0.00
20.2 8 RCRA Metals	per sample	e \$68.89	\$0.00
21.2 TPH-DRO (3550C/8015C)	per sample	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$0.00
22.2 TPH-GRO (5035B/8015C)	per sample	e \$43.92	\$0.00
23.2 Grain size/hydrometer	per sampl	e \$127.04	\$0.00
24.2 Total Organic Carbon	per sample	e \$37.38	\$0.00
K. Analyses-Air			
25.2 BTEX + Naphthalene	per sample	e \$263.84	\$0.00
K. Hydrocarbon Fuel Identification			
27.1 C3-C44 Whole Oil (ASTM D3328)	per sample		\$0.00
28.1 Fuel Oxygenates (1624 Mod)	per sample		\$0.00
29.1 ALKYL Leads, EDB MMT (8080)	per sample		\$0.00
30.1 C8-C40 Full Scan (ASTM 5739)	per sample		\$0.00
31.1 Simulated Distillation (ASTM 2887)	per sample	2000 1 1000	\$0.00
32.1 Parent & Alk. PAH Com. (8270 SIM)	per sample		\$0.00
33.1 C3-C10 Piano (8260 MOD)	per sample		\$0.00
34.1 C10+Alkane Fingerprints	per sample		\$0.00
35.1 Expert Data Interpretation & Report	each	\$595.30	\$0.00
L. Aquifer Characterization		1	•••
1.2 Pumping Test	per hour	\$28.09	\$0.00
2.2 Slug Test 3.2 Fractured Rock	per test	\$233.31	\$0.00
M. Free Product	per test	\$122.15	\$0.00
1.1 Free Product Recovery Rate Test	each	\$46.42	\$0.00
N.	Cacii	Ψ40.42	φυ.υυ
O. Risk Evaluation	<u> </u>		
1.2 Tier I Risk Evaluation	each	\$366.45	\$0.00
2.2 Tier II Risk Evaluation	each	\$122.15	\$0.00
P. Survey	1		
1.1 Subsequent Survey	each	\$297.65	\$0.00
Q. Disposal (gallons or tons)			
1.2 Wastewater	155.25 gallon	\$1.19	(\$184.75
2.2 Free Product	gallon	\$1.63	\$0.00
3.2 Soil Treatment/Disposal	ton	\$156.25	\$0.00
4.2 Drilling fluids	gallon	\$1.25	\$0.00
R. Miscellaneous (attach receipts)	•		
	each	\$0.00	\$0.00
	each	\$0.00	\$0.00
T. Tier I Assessment (Use DHEC 3665 form)	each	\$0.00	\$0.00
1.2 Southeast Region	standard	\$12,622.56	\$0.00
2.2 All Other Counties	standard	\$13,844.06	\$0.00
U. IGWA (Use DHEC 3666 form)	Standard	\$10,044.00	Ψ0.00
1.2 Southeast Region	standard	\$4,353.67	\$0.00
2.2 All Other Counties	standard	\$4,720.01	\$0.00
22. Active Correction Action	PFP	Bid Cost	\$0.00
W. Aggressive Fluid & Vapor Recovery (AFVR)			
1.2 8-hour Event	per event	\$1,787.40	\$0.00
2.1 24-hour Event	per event	\$4,407.78	\$0.00
3.1 48-hour Event	per event		\$0.00
4.1 96-hour Event	per event		\$0.00
5.1 Off-gas Treatment 8 hour	per event	1	\$0.00
6.2 Off-gas Treatment 24 hour	per event		\$0.00
7.2 Off-gas Treatment 48 hour	per event		\$0.00
			(A) (10 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
8.1 Off-gas Treatment 96 hour	per event	\$898.84	\$0.00

10.1 Off-gas Treatment 24 hour (w/chlorinated compounds)	per event	\$540.00	\$0.00
11.1 Off-gas Treatment 48 hour (w/chlorinated compounds)	per event	\$1,080.00	\$0.00
12.1 Off-gas Treatment 96 hour (w/chlorinated compounds)	per event	\$2,160.00	\$0.00
13.2 AFVR Effluent Disposal(w/chlorinated compounds)	gallon	\$0.64	\$0.00
14.2 AFVR Site Reconnaissance	each	\$302.40	\$0.00
15.1 Additional Hook-ups	each	\$29.68	\$0.00
16.2 AFVR Effluent Disposal	gallon	\$0.53	\$0.00
17.2 AFVR Mobilization/Demobilization	each	\$777.60	\$0.00
18.1 Mobilization for absorbents/skimmers	each	\$516.69	\$0.00
19.1 Well sock 2" ID well	each	\$36.94	\$0.00
20.1 Well sock 4" ID well	each	\$49.03	\$0.00
21.1 pad (per pad)	each	\$49.95	\$0.00
22.1 3" diameter x 10' length boom	each	\$108.00	\$0.00
23.1 5" diameter x 10' length boom	each	\$132.84	\$0.00
24.1 New FPP recovery skimmer (2" wells)	each	\$791.10	\$0.00
25.1 New FPP recovery skimmer (4" wells)	each	\$1,247.40	\$0.00
26.1 Refurbished FPP recovery skimmer (2" or 4" wells)	each	\$760.32	\$0.00
27.1 Disposal of Absorbents	pound	\$4.10	\$0.00
28.1 Disposal of product from skimmers	gallon	\$0.50	\$0.00
X. Granulated Activated Carbon (GAC) filter system installation		\$0.00	4 0.00
1.2 New GAC System Installation	each	\$2,320.86	\$0.00
2.2 Refurbished GAC Sys. Install	each	\$1,099.35	\$0.00
3.2 Filter replacement/removal	each	\$427.53	\$0.00
4.2 GAC System removal, cleaning, & refurbishment	each	\$335.92	\$0.00
5.2 GAC System housing	each	\$305.38	\$0.00
6.2 In-line particulate filter	each	\$183.22	\$0.00
7.2 Additional piping & fittings	foot	\$1.84	\$0.00
Y. Well Repair	1000	VI.OT	Ψ0.00
1.2 Additional Copies of the Report Delivered	l each l	\$61.07	\$0.00
2.2 Repair 2x2 MW pad	each	\$61.07	\$0.00
3.2 Repair 4x4 MW pad	each	\$107.49	\$0.00
4.2 Replace well vault	each	\$144.14	\$0.00
5.2 Replace well cover bolts	each	\$3.18	\$0.00
6.2 Replace locking well cap & lock			\$0.00
The state which is a page of the state of th	each	\$18.32	
7.2 Replace/Repair stick-up	each	\$163.68	\$0.00
8.2 Convert Flush-mount to Stick-up	each	\$183.22	\$0.00
9.2 Convert Stick-up to Flush-mount	each	\$158.79	\$0.00
10.2 Replace missing/illegible well ID plate	each	\$14.66	\$0.00
11.1 Down-hole Camera	per foot	\$29.25	\$0.00
Z. High Resolution Site Characterization			
1.1 HRSC Screening Equipment Mobilization	each	\$1,468.80	\$0.00
2.1 HRSC Drilling Category 1	per foot	\$31.32	\$0.00
3.1 HRSC Drilling Category 2	per foot	\$36.18	\$0.00
4.1 HRSC Drilling Category 3	per foot	\$29.16	\$0.00
5.1 HRSC 3-D Model	each	\$4,363.20	\$0.00
S. Report Prep & Project Management 12%	percent	(\$1,660.66)	(\$199.28)
TOTAL			(\$1,859.94)

DHEC D-4406 (07/2023)

UST#03538/CA#69684-Addendum

From jlc@meci.net <jlc@meci.net>

Date Tue 3/25/2025 3:43 PM

To Robert A. Dunn < Robert.Dunn@des.sc.gov>

Cc Stephanie M. Briney <Stephanie.Briney@des.sc.gov>

1 attachment (82 KB) 69684_Addendum.xlsx;

Robert,

Please find the attached addendum for the above referenced site. Let me know if you have any questions or concerns.

Thanks,

Jeff L. Coleman

Senior Scientist/Managing Principal Midlands Environmental Consultants, Inc. (office) 803-808-2043 Ext. 2 (cell) 803-446-0365 jlc@meci.net

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Robert A. Dunn Corrective Action & Field Support Section Underground Storage Tank Management Division

2600 Bull Street Columbia, SC 29201

JUL 25 2025

MR MALLOY D MCEACHIN 1007 WENTWORTH DR FLORENCE SC 29501

Re: Notification of Site-Specific Target Levels & Strategy to Closure

UST Permit #03538; Coastal 76 Truck Stop (Former), 2513 E Palmetto St, Florence, SC

Release reported September 27, 1995

Report of Groundwater Monitoring received April 3, 2025

Florence County

Dear Mr. McEachin:

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Environmental Services (SCDES) has established Site-Specific Target Levels (SSTLs) for the referenced release. The SSTLs are being provided to you and your contractor to help plan the investigative and remedial activities that are required.

Pursuant to S.C. Code Ann. Section 44-2-40(D), "The SUPERB Account and the SUPERB Financial Responsibility Fund shall provide combined coverage for site rehabilitation and third-party claims, respectively, not to exceed one million dollars per occurrence". **According to SCDES records, approximately \$177,132.50 has been expended from the SUPERB Account to date.**

Please see enclosed table for Site-Specific Target Levels (SSTLs). Your consultant should use previous assessment data and the SSTLs to evaluate site rehabilitation options as indicated in the Quality Assurance Program Plan for the UST Management Division (QAPP § A6.XIV, and B1.IV.). A Strategy to Closure document has been enclosed with points of consideration and discussion to be utilized in the development of the corrective action and closure strategy for this release. To assist in the selection of potential remedial technologies, please review the check lists at this link. https://des.sc.gov/programs/bureau-land-waste-management/underground-storage-tanks/ust-owneroperator-information

A meeting has been set for September 30, 2025, to discuss the proposed path to closure for this release. Please contact me within 15 days of the date of this letter to confirm the meeting date and time. In addition, please review and complete the Strategy to Closure document and remedial checklists and return them within 30 days from the date of this letter. The Strategy to Closure document and remedial checklists should be utilized in the development of the closure strategy for this release.

On all correspondence regarding this site, please reference the UST Permit number. Should you have questions, please contact me by email robert.dunn@scdes.sc.gov or phone at (803) 898-0671.

Sincerely,

Robert A. Dunn Hydrogeologist III

Enc: Table of SSTLs

Strategy to Closure Form

Targeted Scope Cost Agreement

Cc: Midlands Environmental Consultants, PO Box 854, Lexington, SC 29071Contractor Info (w/ Enc)

Quincy Hoffer (w/o Enc)

Technical file (w/ Table of SSTLs)

UST Facility Name:		COASTAL 76 TRUCK STOP	
UST Permit #:	03538		

Table of SSTLs

Site-specific target levels (SSTLs) in parts per billion (µg/l):

Well	Benzene	Toluene	Ethylbenzene	Xylene	MtBE	Naphthalene	EDB	1,2 DCA	Lead	ТВА	TAA	EtBE	TAME	DIPE	Ethanol
IGWA	427	26540	3700	21680	3621	969	127.42	5		1400	12599	47	128	150	10000
IGWA-R	427	26540	3700	21680	3621	969	127.42	5		1400	12599	47	128	150	10000
MW01	5	1112	749	10836	44	27	0.06	5		1400	259	47	128	150	10000
MW02R	12	2949	1434	21680	99	52	0.25	5		1400	531	47	128	150	10000
MW03	8	1826	1035	15817	66	37	0.12	5		1400	371	47	128	150	10000
MW04	12	2949	1434	21680	99	52	0.25	5		1400	531	47	128	150	10000
MW05R	15	3654	1661	21680	119	60	0.34	5		1400	624	47	128	150	10000
MW07R	851	26540	3700	21680	7281	1700	437.38	5		1400	23216	47	128	150	10000
MW16R	41	12345	3700	21680	335	141	2.01	5		1400	1557	47	128	150	10000
MW17R	8	1674	977	14792	61	35	0.11	5		1400	348	47	128	150	10000
MW29	125	26540	3700	21680	1039	353	14.28	5		1400	4215	47	128	150	10000
RW01	5	1112	749	10836	44	27	0.06	5		1400	259	47	128	150	10000
RW02	5	1112	749	10836	44	27	0.06	5		1400	259	47	128	150	10000
RW03	12	2949	1434	21680	99	52	0.25	5		1400	531	47	128	150	10000
RW04	12	2949	1434	21680	99	52	0.25	5		1400	531	47	128	150	10000
RW05	12	2949	1434	21680	99	52	0.25	5		1400	531	47	128	150	10000
RW06	12	2949	1434	21680	99	52	0.25	5		1400	531	47	128	150	10000
													-		
															_
														\perp	
														\bot	
														\bot	

BOLD SSTLs equal to Effective Solubility Limits for Gasoline Constituents (UST QAPP revision 4.0, Table D7)