Flow-Ecology Relationships Lower Savannah-Salkehatchie River RBC: August, 2024

Drs. Brandon Peoples, Luke Bower, and Joe Mruzek

Flow-Ecology Relationships

 In stream flow is critical for aquatic communities

"Master variable"

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Quantifying flow-ecology relationships across flow regime class and ecoregions in South Carolina

Luke M. Bower ^{a,*}, Brandon K. Peoples ^b, Michele C. Eddy ^c, Mark C. Scott ^d

 We aim to put the SWAM results into a biological context in aquatic communities

How will this work? Step 1 Timing, magnitude, frequency, and duration Hydrologic data ≥ 100 1) All flow regime components affect aquatic organism 11969 - WaterEAL **Biological data Fishes** 2) Relationships differ across stream classes Benthic macroinvertebrates % Change in MA1 Flow-ecology relationships

How will this work? Step 2

How will this work? Step 3

Biological Data:

- 492 Fish sites (streams & rivers)
 - DNR
 - 8 biological response metrics

- 530 aquatic insect sites
 - DHEC
 - 6 biological response metrics

Characterizing aquatic diversity

- Species richness: number of species
- Shannon's Diversity: Accounts for percentages

Tolerant

Diverse biota = healthy ecosystem

How can we use these relationships?

- Defining biological response limits
 - zones low, medium, and high change in the biological condition of streams along flow gradients
 - Searching for areas along flow gradients that induce changes in the biological metric
- Predicting responses
 - If we alter flow by X amount what will be the biological response?

Mean daily flow (MA1): biological response limits

- Lines defined by working group
- Performance measure

Mean daily flow (MA1): predictions

Scenario	Current	Predicted	% Change
MD	100	80	20%
HD	100	60	40%

Key to Understanding the Results of the Surface Water Modeling Scenarios:

Mean daily flow (MA1): N. Pacolet near Fingerville

	Scenario	Current	Predicted	% change	Bio Metric	Risk
	UIF	320	368.91	15.4%	Richness	Low
	MD 2070	320	283.39	-11.3%	Richness	Low
	HD 2070	320	257.78	-19.4%	Richness	Low
	P&R	320	227.65	-28.8%	Richness	Med
Cu	Current Use Scenario Mean Daily Flow		Sco Mean I	enario Daily Flows	% Cha scenaric the Curre	nges for each o are relative to ent Use Scenario

Colored lines correspond to scenario results shown in the table UIF HD2070 MD2070 P&R Fish Species Richness Dashed red 0.5 and blue lines separate the low medium 0.4 and high risk zones 0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean Daily Flow

Key to Understanding the Results of the Surface Water Modeling Scenarios:

Ecoregions

- Piedmont: Rolling hills
- Southeastern plains: Flatter, well drained sandy soils
- Middle Atlantic Coastal Plains

Stream Classes

- 1: Perennial runoff: moderately stabile flow and distinct seasonal extremes
 - Stable baseflow: high precipitation, sustained high baseflows, and moderately high run-off
 - 4: Perennial flashy: moderately stabile flow with high flow variability

Strategic Nodes: Salkehatchie

Selected Metrics: Lower Savannah

	Performance Recommendations and Risk Ranges					
Stream Type:	Southeastern Stable Baseflo			flow		
	Low	Med	High			
Flow Metric						
Mean Daily Flow (FR)	>0.75	0.52-0.75	<0.52			
Low Flow Duration (FR)	<0.13	0.13-0.40	>0.40			
			e			

٠

FR=Fish Species Richness: The number of fish species found in a stream or river reach

SAV28 Horse Creek: MA1-Richness

Scenario	Current	Predicted	% Flow	Bio Metric	% Bio	SE
UIF	185.669	198.503	6.912	Richness	5.28	10.3
MD 2070	185.669	183.168	-1.347	Richness	-1.03	10.3
HD 2070	185.669	168.678	-9.151	Richness	-6.99	10.3
P&R	185.669	120.457	-35.123	Richness	-26.84	10.3

SAV28 Horse Creek: MA1-Richness

<u>Scenario</u>	Current	Predicted	% change	Bio Metric	Risk
UIF	185.669	198.503	6.912	Richness	Low
MD 2070	185.669	183.168	-1.347	Richness	Low
HD 2070	185.669	168.678	-9.151	Richness	Low
P&R	185.669	120.457	-35.123	Richness	Low

SWAP-listed fishes in Lower Sav/Salk Basin

Savannah Darter

Bluebarred Pygmy Sunfish

Blackbanded sunfish

Robust Redhorse

Carolina Pygmy Sunfish

Bluespotted Sunfish

Christmas Darter

Everglades Pygmy Sunfish

Bridle Shiner

All photos from ncfishes.com

What this info <u>is</u>

- Guidance based on best available data and analysis tools
- Based on models with compounding statistical uncertainty

What this info *is not*

- Arbitrary recommendations from 'expert advice'
- Perfect.
- More data = less uncertainty
- Changing climate & land cover = more uncertainty

Flow Chart

Forecast Changes in Biota

What this info <u>is</u>

- Guidance based on best available data and analysis tools
- Based on models with compounding statistical uncertainty

• Representative of overall (30-year) flow regime characteristics

What this info *is not*

- Arbitrary recommendations from 'expert advice'
- Perfect.
- More data = less uncertainty
- Changing climate & land cover = more uncertanty

One-time withdrawal thresholds

PACOLET RIVER NEAR FINGERVILLE, SC

IMPORTANT Legacy real-time page

Monitoring location 02155500 is associated with a STREAM in SPARTANBURG COUNTY, SOUTH CAROLINA. Current conditions of DISCHARGE, GAGE HEIGHT, MEAN WATER VELOCITY FOR DISCHARGE COMPUTATION, and MORE are available. Water data back to 1903 are available online.

(† Y

What this info <u>is</u>

- Guidance based on best available data and analysis tools
- Based on models with compounding statistical uncertainty

- Representative of overall (30-year) flow regime characteristics
- Applicable to streams and small rivers (~86% of all SC waters)
- Relationships between organisms and flow

What this info *is not*

- Arbitrary recommendations from 'expert advice'
- Perfect.
- More data = less uncertainty
- Changing climate & land cover = more uncertanty

One-time withdrawal thresholds

• Applicable to large rivers and reservoirs

- Parsing out other factors that affect organisms
- Land use affects flow, etc.

Results summary

- Most scenarios showed little to no change for fish Richness and Shannon's diversity
- Full demand scenario could result in species loss
- Report to follow

Questions

Email: lmbower@clemson.edu, peoples@clemson.edu

