

September 20, 2017

Mr. Greg Cassidy State Voluntary Cleanup Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia SC 29201

RE: Groundwater Monitoring Report – June 2017 Event SCE&G Huger Street Former MGP Columbia, South Carolina

Dear Mr. Cassidy:

On behalf of SCANA Services, Inc., (SCANA) and their primary subsidiary, South Carolina Electric & Gas Company Inc. (SCE&G), enclosed, please find one hard copy and one CD of the Groundwater Monitoring Report – June 2017 Event for the Former Manufactured Gas Plant (MGP) located at 1409 Huger Street in Columbia, South Carolina. The Huger St. MGP is being administratively managed by the South Carolina Department of Health and Environmental Control (SCDHEC) under the Responsible Party Voluntary Cleanup Contract (VCC) #02-5295-RP, signed on August 19, 2002.

The June 2017 monitoring event was the sixth comprehensive, site-wide groundwater monitoring event conducted in support of the implementation of the Effectiveness Monitoring Plan (EMP) submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) on April 24, 2013 and subsequently approved on August 2, 2013.

As currently planned and in accordance with the EMP, the next groundwater monitoring event will be completed in March 2018.

Should you have any questions, please contact either Paul Biery of SCANA at (803) 465-7736 or me at (412) 829-9650.

Sincerely, Apex Companies, LLC

William J. Zeli, P.E

Senior Program Manager

Enclosures

cc: P. Biery - SCANA – w/ Encl. M. Ferlin, T. Wolf - Apex – w/o Encl.

SEP 2 2 2017

RECEIVE

SITE ASSESSMENT, REMEDIATION & REVITALIZATION

CO Scanned

57561

GROUNDWATER MONITORING REPORT JUNE 2017 EVENT

HUGER STREET FORMER MGP SITE COLUMBIA, SOUTH CAROLINA

September 2017

Prepared for:

SCANA Services, Inc. 220 Operation Way Cayce, South Carolina 29033

Prepared by:

Apex Companies, LLC

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Background Information	1
	1.2	Conceptual Approach to Remediation	3
2.0	POST	REMOVAL SITE-WIDE GROUNDWATER MONITORING	3
	2.1	Post Removal Action Replacement Monitoring Well Installation	3
	2.2	Monitoring Locations	4
	2.3	Analytical Parameters and Methods	5
	2.4	Groundwater Screening Values	5
3.0	FIELD	D ACTIVITIES	5
	3.1	Groundwater Level Measurements	5
	3.2	Groundwater Sampling	5
	3.3	QA/QC Sample Collection	6
4.0	GRO	UNDWATER FLOW CHARACTERISTICS	6
	4.1	Groundwater Monitoring Network	6
	4.2	Hydrogeologic Setting	6
	4.3	Groundwater Contour and Flow Patterns	7
		4.3.1 Horizontal	
		4.3.2 Vertical	7
5.0	GRO	UNDWATER ANALYTICAL RESULTS	7
	5.1	Data Evaluation	8
	5.2	Equipment and Trip Blanks	8
	5.3	Parcel "A" Monitoring Wells	8
	5.4	Parcel "B" Monitoring Wells	9
	5.5	Parcel "C" Monitoring Wells	9
6.0	SUMI	MARY1	0
7.0	CON	CLUSIONS1	2
8.0	RECO	OMMENDATIONS	2

- 1 Site-Wide Groundwater Monitoring Wells and Sampling Locations
- 2 Summary of Groundwater Analytical Parameters, Methods and Screening Levels
- 3 Groundwater Elevations and NAPL Measurements June 13, 2017
- 4 Final Groundwater Field Measurements June 2017
- 5 Summary of Equipment and Trip Blank Analytical Results June 2017
- 6 Summary of Parcel "A" Well Samples Groundwater Analytical Results June 2017
- 7 Summary of Parcel "B" Well Samples Groundwater Analytical Results June 2017
- 8 Summary of Parcel "C" Well Samples Groundwater Analytical Results June 2017

FIGURES

- 1. Monitoring Well Location Map
- 2 Groundwater Contour Map June 13, 2017
- 3 Analytical Results June 2017
- 4 Summary of Pre- and Post-Removal Action Groundwater Analytical Results
- 5 Illustrations of Pre- and Post-Excavation Benzene Concentrations
- 6 Illustrations of Pre- and Post-Excavation Naphthalene Concentrations

APPENDICES

- A Groundwater Purging Data
- B Laboratory Analytical Reports
- C Data Evaluation Memorandum
- D Summary of Historical Groundwater Quality Data

1.0 INTRODUCTION

On behalf of SCANA Services, Inc. (SCANA), this report presents the findings of the June 2017 groundwater monitoring event at the South Carolina Electric & Gas (SCE&G) Huger Street former Manufactured Gas Plant (MGP) site located in Columbia, South Carolina. The June 2017 monitoring event was the sixth comprehensive, site-wide groundwater monitoring event conducted in accordance with the Effectiveness Monitoring Plan (EMP) submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) on April 24, 2013 and subsequently approved on August 2, 2013.

The Huger Street former MGP site is currently managed under the SCDHEC Responsible Party Voluntary Cleanup Contract (VCC) #02-5295-RP. The contract provides for assessment and remediation of the site by SCE&G with oversight from SCDHEC. Previous work completed at the site has included a multi-phased remedial investigation and three separate Interim Removal Actions (IRA), as described below.

1.1 Background Information

For investigation and remediation purposes, the Huger Street site was divided into three separate parcels. The Parcels are shown on Figure 1 and are referred to as:

- Parcel "A";
- Parcel "B"; and
- Parcel "C".

For various reasons, each parcel was investigated and/or remediated via separate removal actions, and a summary of relevant information is provided below. Based on the successful completion of these removal activities, a significant quantity of MGP-impacted source material was removed from the site. It is anticipated that these removal activities will have a positive effect on groundwater quality at the site, which will be confirmed by continued implementation of the EMP.

Parcel "A"

The former MGP operations were generally situated on a city block (Parcel "A"), which is approximately 5.88 acres in size and bounded by Huger Street to the east, Washington Street to the south, Williams Street to the west, and Hampton Street to the north (Figure 1). Properties surrounding the site include a mix of industrial, residential and currently undeveloped properties. Previous structures relating to both the former MGP operations and the former bus maintenance facility on Parcel "A" are shown on Figure 1. A buried 72-inch diameter concrete stormwater drainage culvert passes through the site and discharges to the Congaree River at an outfall area located directly south of Gervais Street.

The former MGP operated from 1906 through 1954. There was a total of three above-grade gasholders at the site along with tar tanks, pressure vessels, purifiers and other apparatus (Figure 1). After 1954, MGP operations were terminated and the site was redeveloped to the current day grade and utilized for bus transit and maintenance operations by SCE&G and subsequently the Columbia Area Regional Transit Authority (CARTA). The CARTA operations were moved to a different location in May 2008. After CARTA vacated the site, the above-grade bus maintenance facility structures were demolished in preparation for the Interim Removal Action (IRA).

Mobilization of personnel and equipment to conduct the Parcel "A" IRA began in November 2009 and the IRA was completed in June 2011. The primary objective of the IRA was to remove known source material from the subsurface of the site. During the project, approximately 125,000 tons of MGP-impacted soil and debris was excavated and properly disposed. Following excavation to the required depth, each section was backfilled using clean backfill material. Backfill material within the saturated zone was amended with an oxygen-releasing product used to promote aerobic biodegradation of residual constituents in groundwater. A total of 2,375 pounds of EHC-O[™] was utilized throughout the project. The removal activities were documented in greater detail in the Interim Removal Action Report – Parcel "A" submitted to SCDHEC on February 20, 2013 and approved on April 26, 2013.

Parcel "B"

Parcel "B" is located directly south of Parcel "A", across Washington Street (Figure 1). No historical MGPrelated operations occurred on this property. An electrical substation currently exists in the western corner of the lot. SCE&G's former public transportation division used the central and eastern portions of the property for parking and storage of disabled or wrecked buses. A Phase I Environmental Site Assessment (Phase I ESA) conducted on Parcel "B" in preparation for sale of the property identified surface soil staining and residual impacts from the bus storage operations. An investigation and removal action were undertaken to address these impacts and a total of 951.71 tons of soil and 23.47 tons of debris were removed. Some of the removed material consisted of metal slag and paint waste material attributed to the former operations on the adjacent Klein Steel property. The primary constituents of interest (COI) that were addressed by the removal action included; chromium, cadmium, lead, zinc, benzo(a)pyrene and benzo(b)fluoranthene.

Post-excavation, confirmation soil samples illustrated achievement of residential and industrial regional screening levels (RSLs). SCDHEC provided concurrence on February 2, 2007 that no restrictions would be required on soil for future use of Parcel "B". SCE&G subsequently divested the property to the developers of the former Kline Steel property.

Parcel "C"

The SCE&G Williams Street Substation, also referred to as Parcel "C", is located to the west of Parcel "A", as shown on Figure 1. An apparent tar-like material (TLM) was visually observed at ground surface near the center of Parcel "C" in the general vicinity of the utility trench and buried concrete structure (BCS) (Figure 1). Although no MGP-related activities are known to have occurred on this parcel, the presence of the TLM suggests some correlation.

To gain a better understanding of the potential extent of TLM, SCE&G completed numerous investigative activities at the site, which included installation of soil borings and monitoring wells, excavation of test trenches and collection of groundwater and soil samples. The Parcel "C" removal action was conducted in September and October 2012 to remove the majority of a relatively small BCS that contained tar-like material and resulted in the excavation and off-site disposal of approximately 1,100 tons of impacted material. Figure 1 provides the location and extent of the removal activities. A relatively small amount of visually stained/discolored and/or odiferous soil had to be left in place under the BCS to maintain the structural integrity of the fiber optic conduit that bisects the excavation area. SCDHEC concurred with the decision to leave this material in place and additional soil sampling was conducted to document the

remaining impacts. The removal action activities were documented in the Parcel "C" Removal Action Report, which was submitted on December 13, 2012 and approved on January 29, 2013.

1.2 Conceptual Approach to Remediation

SCE&G has developed a conceptual approach to remediation, based on experience in managing similar sites impacted by MGP-related constituents that generally consists of source removal via excavation and subsequent monitoring of groundwater quality for effectiveness. The groundwater monitoring is intended to assess the effectiveness of remediation and the (anticipated) subsequent natural attenuation of dissolved-phase constituents. As currently envisioned and following a sufficient period of monitoring, a Focused Feasibility Study (FFS) will be prepared, if required, to address alternatives for further remediation of groundwater. The FFS will be prepared as a contingency, should natural attenuation alone appear to be inadequate to address the remaining impacts to groundwater.

Successful completion of the removal actions on all three parcels was the first step in the overall approach to remediation. The September 2013 site-wide groundwater monitoring event was the first post-removal action monitoring event intended to gauge the effectiveness of the remediation activities and the anticipated ongoing natural attenuation processes. It is important to note that baseline groundwater sampling events were completed prior to conducting the Parcel "A" and Parcel "C" removal actions. This baseline data is a critical component of the effectiveness monitoring program because it provides pre-removal action groundwater data for comparison with the recently collected data. The baseline data is further discussed in Section 5.0 of this report.

2.0 POST REMOVAL SITE-WIDE GROUNDWATER MONITORING

2.1 Post Removal Action Replacement Monitoring Well Installation

During completion of the IRA activities on Parcel "A", a total of six monitoring wells (MW-2, MW-4, MW-9, MW-12, MW-15 and MW-17) and one piezometer (PZ-01) located within the excavation area were abandoned with SCDHEC approval. More recently, in 2012 monitoring wells MW-6 and MW-8 located on the State Museum property were also abandoned, with SCDHEC approval, in support of ongoing building renovations on that property. Figure 1 shows the locations of the abandoned wells and the piezometer and Table 1 provides a list of existing and abandoned monitoring wells and their locations. Some wells located within the shallower IRA excavation areas were successfully protected from damage during the removal action. Other wells, located in the deeper excavation areas, were abandoned as the excavation progressed. These wells were either abandoned by a licensed South Carolina driller in accordance with R.61-71 or by complete physical removal with the excavator. The monitoring well locations on Parcels "B" and "C" were not impacted by removal activities and are still available for gauging and/or sampling activities.

The approved EMP included installation of new or replacement monitoring wells based on the following criteria:

1. General replacement of abandoned/removed monitoring wells with a recent history of elevated detections of constituents of potential concern (COPC);

- 2. Provide locations representative of the baseline Geoprobe Screen Point Sampling (GSPS) locations (GP-02 through GP-04 on Figure 1);
- Install new wells in areas known to previously contain significant impacts and/or potential low areas in the sub-surface bedrock where residual DNAPL may potentially accumulate, should it exist; and
- 4. Provide adequate spatial distribution to accurately assess groundwater flow patterns and overall site-wide groundwater quality.

The primary objective of satisfying criteria 1 and 2 above is to obtain current site-wide groundwater quality data that can be directly correlated to historical concentrations at specific locations to determine the effectiveness of the removal actions. Over time, the data is anticipated to demonstrate the subsequent natural attenuation of residual impacts to groundwater. Criteria number 3 provides data at new locations where the excavation operations identified significant impacts such as in the former retort house area. The fourth criterion provides a means to monitor groundwater flow patterns over time.

The approved EMP designated four new/replacement monitoring locations. These locations were installed in early September 2013 and properly developed prior to being sampled during the initial post-removal action September 2013 event. The locations included the following wells:

- MW-19 was installed near the former GP-02, MW-4 and MW-12 locations and is also located directly downgradient of the former gasholder #1.
- MW-20 was installed near the former retort house area, which was found to contain a significant amount of impacted material during completion of the removal action. MW-20 is also situated in the general vicinity of MW-2, which was removed during excavation activities and exhibited some historical detections of COPCs.
- MW-21 was installed near the former GP-04 location.
- MW-22 was intended to replace abandoned monitoring wells MW-9 and MW-15 and provide groundwater quality data downgradient of the former process area and the former underground storage tanks (USTs).

2.2 Monitoring Locations

In accordance with the EMP, all 26 site wide monitoring wells and piezometers are gauged during each event to determine the depth to groundwater (groundwater elevations), flow directions and to check for the presence of both light and dense non-aqueous phase liquids (NAPL). Eighteen locations, including three off-site wells, were proposed for sampling in the approved EMP. Table 1 provides a summary of the monitoring locations. For Parcels "A" and "B", these included the four proposed new/replacement monitoring wells (MW-19 through MW-22) and seven existing monitoring locations (MW-3, MW-5S, MW-5M, MW-5D, MW-13, MW-14 and MW-16).

For Parcel "C", any location that previously exhibited detections of constituents were retained in the post removal action monitoring program. These six locations include CMW-01 through CMW-04, CMW-07, and CMW-08. In addition, downgradient sentinel well location CMW-12 (which did not exhibit previous detections of COPCs) is included in the program.

2.3 Analytical Parameters and Methods

Groundwater samples collected during the June 2017 event were analyzed for the same constituents as in the remedial investigation and baseline groundwater monitoring events. These analyses include benzene, ethylbenzene, toluene, and total xylenes (BTEX) via EPA Method 8260B, and polynuclear aromatic hydrocarbons (PAHs) via EPA Method 8270D. Samples from monitoring locations in the vicinity and downgradient of the former UST locations shown on Figure 1 (MW-5D, MW-5M, MW-5S, MW-16 and MW-22) were also analyzed for methyl tert-butyl ether (MTBE) via EPA Method 8260B. The groundwater analytical parameters, methods, detection limits and screening levels are provided in Table 2. Field measurements include pH, specific conductance, temperature, redox potential, dissolved oxygen, and turbidity. Observations of groundwater color are also recorded.

2.4 Groundwater Screening Values

For data comparison and discussion purposes, the June 2017 groundwater analytical data was compared to published groundwater screening levels. The groundwater screening levels consisted of the SCDHEC Maximum Contaminant Levels (MCLs) in drinking water (R.61-58, 2009). If a SCDHEC drinking water standard was not available for a particular constituent, the U.S. EPA Region 9 Regional Screening Level (RSL) for tap water where carcinogens are based on a 1×10^{-6} risk and non-carcinogens are based on a hazard quotient of 1 (June 2017) was utilized as a groundwater screening level. The screening levels are provided in Table 2 and are included in the analytical summary Tables 6 through 8 and Figures 3 and 4. Exceedences of the screening value are highlighted on the tables and figures.

3.0 FIELD ACTIVITIES

In summary, field activities performed during the June 2017 groundwater sampling event included obtaining depth to groundwater level measurements, evaluating the presence/absence of NAPL, purging and sampling a total of 17 monitoring wells.

3.1 Groundwater Level Measurements

Groundwater level measurements were obtained at 26 accessible monitoring well and piezometer locations on June 13, 2017. A check for the occurrence of both light and dense NAPL was also evaluated at each monitoring well and piezometer location. The groundwater level measurements and NAPL evaluation was made using an electronic interface probe.

Table 3 provides the depth to groundwater level measurements, associated groundwater elevations, and findings from the NAPL evaluation. NAPL was not observed at any monitoring well location during this event.

3.2 Groundwater Sampling

Groundwater samples were collected from the 18 wells specified in the EMP on June 13 and 14, 2017. Purging and sampling was conducted using a portable peristaltic pump. The polyethylene and silicon tubing used for the purging and sampling was dedicated to each well. The wells were purged at a slow rate to minimize turbidity and the potential introduction of particles into the samples. The total volume of groundwater purged from each well was dependent on field indicator parameter stabilization (pH, specific conductance, temperature, dissolved oxygen, oxidation-reduction potential [redox], and turbidity). Table 4 provides the final groundwater field indicator parameter measurements for each well and Appendix A provides the complete data set.

The groundwater samples were collected following stabilization of the field indicator parameters. The samples were collected in the appropriate, pre-preserved sample containers provided by the laboratory, placed in coolers with ice, retained under chain-of-custody protocol, and hand delivered to Shealy Environmental Services, Inc. (Shealy) in West Columbia, South Carolina for laboratory analyses. Water generated during purging and groundwater sampling was placed in a 55-gallon drum and stored in the former radio repair/storage building located on-site.

3.3 QA/QC Sample Collection

QA/QC samples collected included one equipment blank (EB061317), one field duplicate (FD061317) collected at well MW-5S and one trip blank (TB061317) that was analyzed for BTEX and MTBE. Additional sample volume was collected at MW-5M for Matrix Spike/Matric Spike Duplicate (MS/MSD) purposes.

4.0 GROUNDWATER FLOW CHARACTERISTICS

4.1 Groundwater Monitoring Network

The groundwater monitoring network used to determine groundwater elevations consists of 25 monitoring wells and one piezometer located on Parcels "A", "B" and "C" (Table 3 and Figure 2).

4.2 Hydrogeologic Setting

In summary, both Parcel "A" and Parcel "C" were originally characterized as complex geologic settings where unconsolidated sedimentary deposits overlaid weathered saprolite and non-weathered igneous rocks (Columbia granite). These unconsolidated sedimentary deposits were interpreted to have been deposited unconformably in several geologic environments that include fluvial, marine, and anthropogenic fill. As a result of the removal actions, a large portion of the Parcel "A" geology was disturbed and replaced with clean backfill that may be characterized as fine sand and silt. The removal action, completed from 2009 to 2011, consisted of excavating approximately 125,000 tons of material from 2 feet to 30 feet below ground surface (bgs) over most of Parcel "A". For Parcel "C", approximately 1,100 tons of material was removed in 2012.

Since no specific geologic unit is designated as the shallow groundwater bearing unit, shallow groundwater is characterized by saturated conditions to the point of refusal in the underlying saprolite or granite. Generally, the well screening strategy was to screen the entire saturated zone. This saturated interval was then referred to as shallow groundwater, which is monitored at Parcel "A" and Parcel "C".

4.3 Groundwater Contour and Flow Patterns

4.3.1 Horizontal

The shallow groundwater contour and flow pattern developed for Parcels "A" and "C" are shown on Figure 2. Groundwater flow is generally directed from northwest to southeast. Semi-radial groundwater flow is observed on the western portion of Parcel "C" with groundwater flow generally directed from southwest to southeast. A 72-inch culvert is located on Parcel "A" and groundwater converges along the southern limits of this buried structure. The overall site-wide groundwater contour pattern for this event is similar to that observed historically.

The groundwater linear velocity is calculated by estimating horizontal hydraulic gradients, hydraulic conductivity (K) and assumption of porosity. The assumed porosity is 0.30. Two hydraulic gradients are determined along groundwater flowpaths in the western portions of Parcel "A" and Parcel "C" and are estimated at 5.0×10^{-2} feet/feet and 3.7×10^{-2} feet/feet, respectively. The hydraulic gradient in the vicinity of MW-16 and the 72-inch culvert is estimated at 3.2×10^{-2} feet/feet.

Slug tests were performed during the Parcel "A" RI at a total of six wells with varying lithologies to determine hydraulic conductivity (K). Slug tests were not performed on the Parcel "C" wells. Review of the boring logs suggest a lithologic comparison exists between MW-13 and generally Parcel "C". Therefore, the estimated K (0.5 feet/day) from MW-13 is used to estimate groundwater linear velocity on Parcel "C". The majority of Parcel "A" was excavated and backfilled with clean fill (silt and fine sand). Slug tests were not performed in the recently installed wells screened in backfill material and saprolite (MW-19 through MW-22) and therefore, the backfill and saprolite K is not known. By inference, the MW-14 lithology may be sufficiently comparable enough that the K estimated from this well may be representative of the backfill and saprolite. The MW-14 well screen straddled lithologies comprised of silt, sand, and saprolite and the estimated K = 9.5 feet/day. The estimated K from MW-16 located near the 72-inch culvert is 82.7 feet/day.

Based on the above, the estimated groundwater linear velocity in the western portion of Parcel "A" is 1.6 feet/day and in the western portion of Parcel "C" is 0.06 feet/day. Near the 72-inch culvert, groundwater linear velocity is estimated at 8.8 feet/day and is attributed to the higher estimated K value at MW-16.

4.3.2 Vertical

The vertical hydraulic gradient was assessed at well nest MW-5S (shallow), MW-5M (middle), and MW-5D (deep). The groundwater elevations differed by 0.03 feet between each interval monitored. The middle had the highest groundwater elevation, and the shallow and deep wells had lower groundwater elevations, indicating groundwater flow was directed from the middle to the upper and deep intervals during this event.

5.0 GROUNDWATER ANALYTICAL RESULTS

A discussion of the June 2017 monitoring event results is provided in this section along with a comparison of the results with the previous post-removal action and pre-removal action concentrations. The June 2017 groundwater analytical data is provided in Appendix B.

5.1 Data Evaluation

Following receipt of the data package from Shealy, the data was evaluated in accordance with the U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2017). The analytical data was reviewed with respect to sample preservation, holding times, equipment blank, field duplicate, trip blanks (volatiles only) and other laboratory control samples. The data was determined to be acceptable; however, it should be noted that the laboratory reported elevated detection limits due to laboratory sample dilutions for samples collected at well locations CMW-03, CMW-04 and MW-13. A memorandum discussing the analytical data evaluation is provided in Appendix C.

5.2 Equipment and Trip Blanks

Analytical results for the equipment blank and trip blank samples indicate that constituents were not detected. The equipment blank was analyzed for BTEX, MTBE and PAHs, while the trip blank was analyzed for BTEX and MTBE. The results are summarized in Table 5.

5.3 Parcel "A" Monitoring Wells

Eight monitoring wells associated with Parcel "A" were sampled during the June 2017 monitoring event. Table 6 and Figure 3 provide a summary of the analytical results. Similar to previous events, no constituents were detected above laboratory detection limits at four of the seven locations. These locations included wells MW-3, MW-14, MW-21 and MW-22 located in the northern and south-central portions of the completed excavation area. A minimal detection of acenaphthene (11 μ g/L), below the applicable screening value, was present in the sample collected from MW-16 located in the southwestern corner of the site.

The final three monitoring locations produced results above the screening levels for naphthalene at MW-13 (2,200 μ g/L), MW-19 (340 μ g/L) and MW-20 (13 μ g/L) and benzene at MW-19 (15 μ g/L) and MW-20 (90 μ g/L). MW-13 and MW-19 also exhibited low-level detections for other volatile and semi-volatile constituents below the applicable screening levels.

In summary and like previous events, the June 2017 exceedances of the screening levels for Parcel "A" were limited to three locations for naphthalene (MW-13, MW-19 and MW-20) and two locations for benzene (MW-19 and MW-20). These wells are located in the approximate central portion of the completed excavation area.

Previous baseline groundwater sampling events were conducted to provide pre-removal action groundwater data for comparison to post-removal action groundwater data. Appendix D provides a summary of the historical groundwater data for the Huger Street site. For illustrative purposes, Figure 4 provides benzene, naphthalene and in some cases MTBE concentrations from the pre-removal action baseline events and the post-removal action effectiveness monitoring events. Review of this data and Figure 4 provides the following information:

- The MW-3, MW-14 and MW-15/MW-22 locations continue to produce non-detect results.
- The detection of only one constituent (acenaphthene) at low concentrations is typical for monitoring well MW-16 and the June 2017 concentration is the lowest to date.

- The GP-02/MW-19 location continues to exhibit a reduction in benzene concentration from the 2009 pre-removal action baseline event concentration of 1,400 µg/L to 15 µg/L for the June 2017 event. This is second lowest concentration to date, which was seen during the previous (September 2016) event. Naphthalene concentrations at this location are also still well below the pre-removal action baseline concentration of 4,000 µg/L, and the June 2017 concentration of 340 µg/L was the lowest to date.
- The GP-04/MW-21 location continues to show a significant reduction in benzene and naphthalene concentrations from pre-removal action concentrations of 590 µg/L and 59 µg/L, respectively, to below laboratory detection limits in the post-removal action monitoring events.
- The naphthalene concentrations at MW-13 for the post-removal action monitoring events appear to be range bound. However, an overall decrease in naphthalene concentration from pre-removal action levels is still apparent at this location.
- The benzene and naphthalene concentrations at MW-20 continue to exhibit a steadily decreasing trend. No historical pre-removal action data is available for comparison at this location.

5.4 Parcel "B" Monitoring Wells

The wells associated with Parcel "B" include MW-5S, MW-5M and MW-5D, which are located south of Washington Street near the SCE&G substation. These wells were included in the post-removal action effectiveness monitoring program because of historical detections of MTBE, which has typically been the only constituent detected at these locations. The historical analytical results for these locations are summarized in Appendix D and the June 2017 results are provided in Table 7 and Figure 3. For the first time since inception of the monitoring program, MW-5S was the only well that exhibited a detection of MTBE. The June 2017 concentration (33 μ g/L), is the lowest to date and a continuation of a downward trend in MTBE concentrations at this location. This was the first event where MTBE was not detected at well MW-5M and MW-5D continues to produce non-detect results.

5.5 Parcel "C" Monitoring Wells

As specified in the EMP, seven of the 12 monitoring wells associated with Parcel "C" were sampled during the June 2017 event. Table 8 provides the analytical results for the June 2017 event and Figure 3 provides a summary of the benzene and naphthalene concentrations. Six of the locations were included in the monitoring program because they exhibited historical detections of COPCs. The final well (CMW-12) is a downgradient sentinel location that has not exhibited historical detections.

No constituents were detected above laboratory detection limits at two Parcel "C" monitoring locations (CMW-01 and downgradient CMW-12). Four of the remaining five wells produced naphthalene results above the screening level: CMW-02 (420 μ g/L), CMW-03 (2,400 μ g/L), CMW-04 (2,000 μ g/L)), and CMW-08 (11 μ g/L). In addition, three locations exhibited results above the screening level for benzene, CMW-02 (6.9 μ g/L), CMW-03 (130 μ g/L) and CMW-07 (7.1 μ g/L). Lower level volatile and semi-volatile concentrations (below screening values) were also noted at three locations (Table 8).

Review of the historical data for the Parcel "C" wells in Appendix D and the pre- and post-removal benzene and naphthalene concentration comparison on Figure 4 provides the following information:

• Consistent with the other post-removal action monitoring events, CMW-01 continues to produce results below laboratory detection limits for all constituents.

- Sentinel well CMW-12 also continues to produce non-detect results for all constituents.
- Benzene concentrations at CMW-07 appear to be developing a trend of range bound low-level results that are either below (non-detect) or slightly above the screening level. Naphthalene continued the trend of non-detect results for this location.
- At the CMW-08 location, benzene was not detected for the third straight event and the naphthalene concentration continues an established downward trend with the June 2017 concentration (11 μg/L) being the lowest since inception of the program.
- The benzene concentration at the CMW-04 location was non-detect at an elevated detection limit of 25 µg/L for this event. Recent benzene results for this location have been near this detection limit with the lowest being 24 µg/L in December 2015. The naphthalene concentrations continue to fluctuate and the June 2017 result of 2,000 µg/L is the second lowest, a significant decrease from the previous two events and a return to concentrations that are below the pre-removal action levels.
- The benzene and naphthalene concentrations at the CMW-02 and CMW-03 locations appear to be range bound and fluctuating slightly from event to event. The naphthalene concentration of 2,400 µg/L at CMW-03 is significantly lower than the last event and breaks the trend of increasing concentrations of naphthalene at this location.

6.0 SUMMARY

NAPL was not identified at any of the monitoring well locations. This event's groundwater contour pattern, flow directions, and hydraulic gradients were similar to historically observed patterns. The highest estimated groundwater linear velocity is in the vicinity of the 72-inch buried culvert and is attributed to the K measured at this site area. The groundwater elevations at the MW-5 well nest suggests divergent flow from the middle to upper and deep intervals.

For Parcel "A", four of the eight monitoring locations continue to produce results below laboratory detection limits. A fifth, MW-16, exhibited only a minimal semi-volatile detection that was well below the screening level. These monitoring locations (MW-3, MW-14, MW-16, MW-21 and MW-22) are located in the northern, central and southwestern portions of the site. Of the remaining three locations, three exhibited naphthalene concentrations above the screening level and two locations exceeded the screening level for benzene. A decrease in concentrations from pre-removal action conditions continues to be observed at all locations with comparable historical data. MW-20 produced the lowest concentrations to date and MTBE continues to be non-detect at the Parcel "A" monitoring wells analyzed for this constituent.

MTBE is the primary COPC for Parcel "B" and was not detected in two of the three locations, MW-5M and MW-5D, located in the middle and deep intervals. MW-5S (shallow) produced an MTBE concentration that exceeded the screening level, but was the lowest concentration to date for this location. The MTBE concentration for MW-5M (middle) was non-detect for the first time since inception of the program and is the result of a steady decline in concentrations of MTBE at this location. MW-5D (deep) continues to exhibit non-detect results for MTBE. The middle and deep locations appear to exhibit a trend of low or non-detect concentrations while the shallow location appears to be steadily decreasing in concentration.

No constituents were detected above laboratory detection limits at two Parcel "C" monitoring locations. One location is the sentinel location CMW-12, and the second (CMW-01) previously exhibited results above the screening level for naphthalene, but has produced non-detect results since inception of the post-removal action monitoring program.

For benzene at Parcel "C", results continue to be relatively low, when detected. CMW-08 continues the non-detect trend established during the December 2015 event and CMW-02 and CMW-07 continue the trend of low level/non-detect results. CMW-03, located directly downgradient of the former excavation area, continues to produce the highest results for this portion of the site. CMW-03 is the only location that consistently produces benzene concentrations that are higher than pre-removal action levels. This is likely due to its location, which is downgradient and very close to the former source area.

Naphthalene has been historically detected at four of the seven Parcel "C" monitoring locations. At three of these locations, CMW-03, CMW-04 and CMW-08, the June 2017 naphthalene concentrations were lower than the previous event. The concentration at CMW-02 was slightly higher but within the historical range. With the exception of CMW-03, an overall decrease in naphthalene concentrations as compared to pre-removal action concentrations is evident at all of the locations with detections. Similar to the benzene concentrations observed at CMW-03, the increase from pre-removal action concentrations is likely due to being downgradient and very close to the former source area. It is also important to note that the increasing trend in naphthalene concentrations that appeared to be occurring at the CMW-03 and CMW-04 locations following the last event was broken during this event with significant decreases in concentrations observed for naphthalene at these locations.

Surfer 10, a groundwater contouring and three-dimensional surface mapping program, was utilized to develop Figures 5 and 6, which approximately illustrate the pre- and post-removal action groundwater isoconcentrations for benzene and naphthalene, respectively. It is important to note that the spatial distribution of monitoring points directly affects the capability of the program to develop an accurate model of groundwater conditions. For example, more monitoring well locations would most likely produce plumes of smaller size since the edge of the plume is extended to the locations with non-detect results. However, this software will be utilized to graphically illustrate the change in the respective plumes as the monitoring program is continued in the future.

Review of the benzene figure shows a significant reduction in concentration and extent of the benzene plume following completion of the IRA. The June 2017 benzene plume for Parcel "A" appears similar in areal extent to the most recent previous events (December 2015 and September 2016) but illustrates the lower concentrations seen at the MW-20 location. The benzene plume for Parcel "C" is smaller due to the non-detect result (at an elevated detection limit) for the CMW-04 location.

The naphthalene figure shows the reduction in concentration but relatively similar aerial extent of naphthalene between the pre- and post-excavation monitoring events. The reduction in naphthalene concentrations at the MW-19 location is apparent when comparing the most recent events to historical illustrations.

7.0 CONCLUSIONS

Benzene, naphthalene and MTBE continue to be the primary COPCs for the Huger Street site. They continue to be the only constituents detected above the screening levels for the June 2017 event. For Parcel "A", the June 2017 monitoring event results continue to support the current hypothesis that source removal via excavation and augmentation of backfill material in the saturated zone with an oxygen-releasing product followed by natural attenuation will achieve a significant improvement in site-related groundwater quality. The Parcel "A" monitoring wells when compared to historical data continue to produce post-removal action results below the pre-removal action concentrations. A steady to slowly decreasing trend in constituent concentration is apparent at most of the monitoring locations.

Consistent with previous monitoring events, MTBE was the only constituent detected at Parcel "B" and a decreasing trend in MTBE concentrations is apparent with MW-5M being non-detect for the first time since inception of the program and continued reduction in concentrations at the MW-5S location.

With the exception of CMW-03, which is located downgradient and directly adjacent to the former source removal area, downward trends in concentrations are also becoming apparent at Parcel "C". The apparent increasing trend in naphthalene concentrations at the CMW-03 and CMW-04 locations following the last event did not continue this event, with significant decreases observed. More time and additional monitoring events will provide a better basis for trend determination on Parcel "C". Based on SCE&G's experience at similar sites, the desired effect of reducing constituent groundwater concentrations is dependent upon several site-specific factors. Consistent reductions may be observed relatively soon after source removal or may require years to achieve the desired groundwater restoration goals.

8.0 RECOMMENDATIONS

As specified in the approved EMP, groundwater samples are to be collected on a nine-month sampling frequency. This frequency was proposed to provide data to account for seasonal variations in groundwater quality. Therefore, the next nine-month event will take place in March 2018.

SITE-WIDE GROUNDWATER MONITORING WELLS AND SAMPLING LOCATIONS

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Well ID	Location	Status	Included or Excluded for Sampling	Rationale for Inclusion or Exclusion
MW-1	Parcel "A"	Existing	Excluded	Non-detect in previous three events and near MW-16
MW-2	Parcel "A"			Abandoned
MW-3	Parcel "A"	Existing	Included	Upgradient locations
MW-4	Parcel "A"			Abandoned
MW-5S	Parcel "B" SCE&G Substation	Existing	Included	Previous detections of MTBE
MW-5M	Parcel "B" SCE&G Substation	Existing	Included	Previous detections of MTBE
MW-5D	Parcel "B" SCE&G Substation	Existing	Included	Previous detections of MTBE
MW-6	Off-Site - Museum Parking Lot		Abando	ned - based on development
MW-7	Parcel "B"			Abandoned
MW-8	Off-Site - Museum Parking Lot		Abando	ned - based on development
MW-9	Parcel "A"			Abandoned
MW-10	Parcel "B" SCE&G Substation			Abandoned
MW-11	Off-Site - Museum Parking Lot			Abandoned
MW-12	Parcel "A"			Abandoned
MW-13	Parcel "A"	Existing	Included	Previous detections of benzene and naphthalene
MW-14	Parcel "A"	Existing	Included	Downgradient of the deep excavation area
MW-15	Parcel "A"		•	Abandoned
MW-16	Parcel "A"	Existing	Included	Previous detection of benzene and naphthalene
MW-17	Parcel "A"		•	Abandoned
MW-18	Parcel "A"	Existing	Excluded	Non-detect in previous three events and near MW-16
MW-19	Parcel "A"	Existing	Included	New monitoring location
MW-20	Parcel "A"	Existing	Included	New monitoring location
MW-21	Parcel "A"	Existing	Included	New monitoring location
MW-22	Parcel "A"	Existing	Included	New monitoring location
GP-02	Parcel "A"			Abandoned
GP-03	Parcel "A"			Abandoned
GP-04	Parcel "A"			Abandoned
PZ-01	Parcel "A"			Abandoned
PZ-02	Parcel "A"	Existing	Excluded	Piezometer location - not previously sampled
CMW-01	Parcel "C"	Existing	Included	Previous detections
CMW-02	Parcel "C"	Existing	Included	Previous detections
CMW-03	Parcel "C"	Existing	Included	Previous detections
CMW-04	Parcel "C"	Existing	Included	Previous detections
CMW-05	Parcel "C"	Existing	Excluded	Non-detect in previous three events
CMW-06	Parcel "C"	Existing	Excluded	Non-detect in previous three events
CMW-07	Parcel "C"	Existing	Included	Previous detections
CMW-08	Parcel "C"	Existing	Included	Previous detections
CMW-09	Parcel "C"	Existing	Excluded	Non-detect in previous three events
CMW-10	Parcel "C"	Existing	Excluded	Non-detect in previous three events
CMW-11	Parcel "C"	Existing	Excluded	Included if sufficient water present for sample
CMW-12	Parcel "C"	Existing	Included	Downgradient sentinel well

Note:

GP-02 through GP-04 were temporary Geoprobe Screen Point Sampling (GSPS) locations installed during the Parcel "A" baseline event to provide data in previously inaccessible locations.

SUMMARY OF GROUNDWATER ANALYTICAL PARAMETERS, METHODS AND SCREENING LEVELS

Constituent	Analytical Method	Detection Limit (µg/L)	MCL ⁽¹⁾ (µg/L)	Region 9 Regional Screening Level ^(2,3,4,5) (μg/L)
Volatile Organic Compounds				
Benzene	8260B	5	5	
Ethylbenzene	8260B	5	700	
Toluene	8260B	5	1,000	
Xylenes, Total	8260B	5	10,000	
MTBE ⁽⁷⁾	8260B	5	(6)	14
PAH Constituents				
Acenaphthene	8270C	5		530
Acenaphthylene	8270C	5		NL ⁽⁸⁾
Anthracene	8270C	5		1,800
Benzo(a)anthracene	8270C	5		0.03
Benzo(a)pyrene	8270C	5	0.2	
Benzo(b)fluoranthene	8270C	5		0.25
Benzo(g,h,i)perylene	8270C	5		NL
Benzo(k)fluoranthene	8270C	5		2.5
Chrysene	8270C	5		25
Dibenzo(a,h)anthracene	8270C	5		0.025
Fluoranthene	8270C	5		800
Fluorene	8270C	5		290
Indeno(1,2,3-cd)pyrene	8270C	5		0.25
Naphthalene	8270C	5		0.17
Phenanthrene	8270C	5		NL
Pyrene	8270C	5		120

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Notes:

Field measurements included pH, specific conductance, temperature, dissolved oxygen, turbidity and redox potential.

Quality assurance/quality control (QA/QC) samples included one equipment blank, one trip blank per sample delivery group (VOCs only) and one blind field duplicate.

- (1) MCL maximum contaminant level from South Carolina State Primary Drinking Water Regulation: R.61-58.
- (2) Represents the June 2017 U.S. EPA Region 9 Regional Screening Levels (RSL, [formerly PRG]) for tapwater and utilizes the target risk (TR) = 1 x 10⁻⁶ and hazard quotient (HQ) = 1 table.
- (3) For acenaphthene, anthracene, fluoranthene, fluorene, and pyrene, only a non-carcinogenic level exists and therefore, the value in the non-carcinogenic screening level (SL) HI = 1 column is shown.
- (4) For benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene, only a carcinogenic level exists and therefore, the level in the carcinogenic SL TR = 1 x 10⁻⁶ column is shown.
- (5) The carcinogenic TR = 1×10^{-6} is shown for MTBE and naphthalene since both a carcinogenic and non-carcinogenic level is provided in the Region 9 RSL for tapwater.
- (6) -- indicates a level is not provided or is superseded by the MCL for this project.
- (7) Only wells MW-5S, MW-5M, MW-5D, MW-16 and MW-22 were analyzed for MTBE.
- (8) NL indicates neither an MCL or Region 9 RSL for tapwater level exists for this constituent.

GROUNDWATER ELEVATIONS AND NAPL MEASUREMENTS - JUNE 13, 2017

Well	Top of Casing Elevation (feet) ⁽¹⁾	Depth to Groundwater (feet) ⁽²⁾	Groundwater Elevation (feet) ⁽¹⁾	NAPL Results ⁽³⁾
MW-1	182.53	19.43	163.10	NP
MW-3	200.47	15.42	185.05	NP
MW-5S	182.47	22.21	160.26	NP
MW-5M	182.50	22.21	160.29	NP
MW-5D	182.65	22.38	160.27	NP
MW-13	189.62	8.91	180.71	NP
MW-14	187.58	13.37	174.21	NP
MW-16	182.12	19.19	162.93	NP
MW-18	187.52	22.01	165.51	NP
MW-19	190.05	11.78	178.27	NP
MW-20	189.77	11.25	178.52	NP
MW-21	189.59	15.48	174.11	NP
MW-22	187.55	21.35	166.20	NP
PZ-02	183.58	21.26	162.32	NP
CMW-01	197.02	13.36	183.66	NP
CMW-02	195.23	11.81	183.42	NP
CMW-03	195.28	12.90	182.38	NP
CMW-04	197.03	13.34	183.69	NP
CMW-05	193.50	14.73	178.77	NP
CMW-06	191.54	18.67	172.87	NP
CMW-07	192.72	14.11	178.61	NP
CMW-08	195.13	14.02	181.11	NP
CMW-09	196.94	14.23	182.71	NP
CMW-10	197.96	16.16	181.80	NP
CMW-11	192.07	20.50	171.57	NP
CMW-12	192.85	18.11	174.74	NP

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Notes:

(1) Elevation referenced to NGVD '29.

(2) Depth to groundwater measured from top of PVC casing.

(3) NAPL includes both light and dense non-aqueous phase liquids and NP represents not present.

FINAL GROUNDWATER FIELD MEASUREMENTS - JUNE 2017

Well I.D.	Sampling Date	рН (S.U.)	Specific Conductance (µS/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Color
MW-3	06/14/17	3.29	1,063	23.8	0.26	480	4	Clear
MW-5S	06/13/17	5.97	371	23.2	2.98	-121	9	Clear
MW-5M	06/13/17	5.17	218	22.0	1.62	242	11	Clear
MW-5D	06/13/17	5.13	215	22.4	2.87	289	1	Clear
MW-13	06/14/17	5.16	326	24.5	0.25	43	3	Clear
MW-14	06/14/17	3.59	1,356	24.0	0.94	30	4	Clear
MW-16	06/14/17	6.63	1,144	21.8	1.96	-120	10	Clear
MW-19	06/14/17	6.05	632	24.8	1.21	-183	5	Clear
MW-20	06/14/07	5.43	425	24.1	0.28	536	2	Clear
MW-21	06/14/17	5.25	525	24.5	1.22	-186	5	Clear
MW-22	06/14/17	6.51	891	22.5	2.85	-34	1	Clear
CMW-01	06/14/17	5.12	208	21.9	0.44	324	0	Clear
CMW-02	06/14/17	5.24	152	21.6	0.93	-67	3	Clear
CMW-03	06/14/17	3.58	359	21.1	0.28	428	3	Clear
CMW-04	06/14/17	5.68	76	22.3	0.49	97	0	Clear
CMW-07	06/14/17	5.08	428	21.5	0.34	232	2	Clear
CMW-08	06/14/17	4.15	291	22.1	1.06	37	1	Clear
CMW-12	06/14/17	5.51	392	19.8	7.15	4	1	Clear

SCE&G Huger Street Former MGP Site Columbia, South Carolina

SUMMARY OF EQUIPMENT AND TRIP BLANK ANALYTICAL RESULTS - JUNE 2017

Constituent	Units	Screening Level	EB061317	TB061317
<u>Volatiles</u>				
Benzene	µg/L	5	5 U	5 U
Ethylbenzene	μg/L	700	5 U	5 U
Toluene	μg/L	1,000	5 U	5 U
Xylenes, Total	μg/L	10,000	5 U	5 U
MTBE	μg/L	14	5 U	5 U
	P-3-			
Semi-Volatiles				
Acenaphthene	μg/L	530	10 U	NA
Acenaphthylene	µg/L	NL	10 U	NA
Anthracene	µg/L	1,800	10 U	NA
Benzo(a)anthracene	µg/L	0.03	10 U	NA
Benzo(a)pyrene	µg/L	0.2	10 U	NA
Benzo(b)fluoranthene	µg/L	0.25	10 U	NA
Benzo(g,h,i)perylene	µg/L	NL	10 U	NA
Benzo(k)fluoranthene	µg/L	2.5	10 U	NA
Chrysene	µg/L	25	10 U	NA
Dibenz(a,h)anthracene	µg/L	0.025	10 U	NA
Fluoranthene	µg/L	800	10 U	NA
Fluorene	µg/L	290	10 U	NA
Indeno(1,2,3-cd)pyrene	µg/L	0.25	10 U	NA
Naphthalene	µg/L	0.17	10 U	NA
Phenanthrene	µg/L	NL	10 U	NA
Pyrene	µg/L	120	10 U	NA

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Notes:

- 1. NL Not Listed
- 2. NA Not Analyzed
- 3. U Indicates that the constituent was not detected at the reported detection limit.
- 4. Groundwater screening values are the SCDHEC Maximum Contaminant Levels (MCL) in drinking water (R.61-58, 2009). If a SCDHEC drinking water standard is not available for a particular constituent, the groundwater screening level is the U.S. EPA Region 9 Regional Screening Level (RSL [June 2017]) for tapwater where carcinogens are based on a 1x10⁻⁶ risk and non-carcinogens are based on a hazard quotient of 1.

SUMMARY OF PARCEL "A" WELL SAMPLES GROUNDWATER ANALYTICAL RESULTS - JUNE 2017

Constituent	Units	Screening Level	MW-3	MW-13	MW-14	MW-16	MW-19	MW-20	MW-21	MW-22
Volatiles										
Benzene	µg/L	5	5 U	5 U	5 U	5 U	15	90	5 U	5 U
Ethylbenzene	µg/∟ µg/L	700	5 U	53	5 U	5 U	13	5 U	5 U	5 U
Toluene	μg/L	1,000	5 U	120	5 U	5 U	9	5 U	5 U	5 U
Total Xylenes	μg/L	10,000	5 U	420	5 U	5 U	47	5 U	5 U	5 U
MTBE	µg/∟ µg/L	14	NA	NA	NA	5 U	NA	NA	NA	5 U
WIDE	µg/∟	14				50				50
Semi-Volatiles										
Acenaphthene	µg/L	530	10 U	40 U	10 U	11	28	10 U	10 U	10 U
Acenaphthylene	µg/L	NL	10 U	40 U	10 U	10 U	57	10 U	10 U	10 U
Anthracene	µg/L	1,800	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Benzo(a)anthracene	µg/L	0.03	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Benzo(a)pyrene	µg/L	0.2	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Benzo(b)fluoranthene	µg/L	0.25	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	µg/L	NL	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Benzo(k)fluoranthene	µg/L	2.5	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Chrysene	µg/L	25	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	µg/L	0.025	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Fluoranthene	µg/L	800	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Fluorene	µg/L	290	10 U	40 U	10 U	10 U	19	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	µg/L	0.25	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U
Naphthalene	μg/L	0.17	10 U	2,200	10 U	10 U	340	13	10 U	10 U
Phenanthrene	µg/L	NL	10 U	45	10 U	10 U	21	10 U	10 U	10 U
Pyrene	µg/L	120	10 U	40 U	10 U	10 U	8 U	10 U	10 U	10 U

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Notes:

1. NL - Not Listed

2. NA - Not Analyzed

3. NS - Not Sampled. MW-16 was not sampled because it was buried due to erosion that occurred at the site and was unable to be located during sampling activities.

4. U - Indicates that the consitutent was not detected at the reported detection limit.

5. Groundwater screening values are the SCDHEC Maximum Contaminant Levels (MCL) in drinking water (R.61-58, 2009). If a SCDHEC drinking water standard is not available for a particular constituent, the groundwater screening level is the U.S. EPA Region 9 Regional Screening Level (RSL [June 2017]) for tapwater where carcinogens are based on a 1x10⁻⁶ risk and non-carcinogens are based on a hazard quotient of 1.

6. Indicates constituent exceeds the Screening Level.

SUMMARY OF PARCEL "B" WELL SAMPLES GROUNDWATER ANALYTICAL RESULTS - JUNE 2017

Constituent	Units	Screening Level	MW-5S	MW-5S Dup	MW-5M	MW-5D
Volatiles		_	F 11	E 11	5 11	5 1 1
Benzene	µg/L	5	5 U	5 U	5 U	5 U
Ethylbenzene	µg/L	700	5 U	5 U	5 U	5 U
Toluene	µg/L	1,000	5 U	5 U	5 U	5 U
Total Xylenes	µg/L	10,000	5 U	5 U	5 U	5 U
MTBE	µg/L	14	33	37	5 U	5 U
Semi-Volatiles						
Acenaphthene	µg/L	530	10 U	10 U	10 U	10 U
Acenaphthylene	μg/L	NL	10 U	10 U	10 U	10 U
Anthracene	μg/L	1,800	10 U	10 U	10 U	10 U
Benzo(a)anthracene	μg/L	0.03	10 U	10 U	10 U	10 U
Benzo(a)pyrene	μg/L	0.2	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	μg/L	0.25	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	μg/L	NL	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	μg/L	2.5	10 U	10 U	10 U	10 U
Chrysene	μg/L	25	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	μg/L	0.025	10 U	10 U	10 U	10 U
Fluoranthene	μg/L	800	10 U	10 U	10 U	10 U
Fluorene	μg/L	290	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	μg/L	0.25	10 U	10 U	10 U	10 U
Naphthalene	μg/L	0.17	10 U	10 U	10 U	10 U
Phenanthrene	μg/L	NL	10 U	10 U	10 U	10 U
Pyrene	μg/L	120	10 U	10 U	10 U	10 U

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Notes:

1. NL - Not Listed

2. U - Indicates that the consitutent was not detected at the reported detection limit.

- 3. Groundwater screening values are the SCDHEC Maximum Contaminant Levels (MCL) in drinking water (R.61-58, 2009). If a SCDHEC drinking water standard is not available for a particular constituent, the groundwater screening level is the U.S. EPA Region 9 Regional Screening Level (RSL [June 2017) for tapwater where carcinogens are based on a 1x10⁻⁶ risk and non-carcinogens are based on a hazard quotient of 1.
- 4. Indicates constituent exceeds the Screening Level.

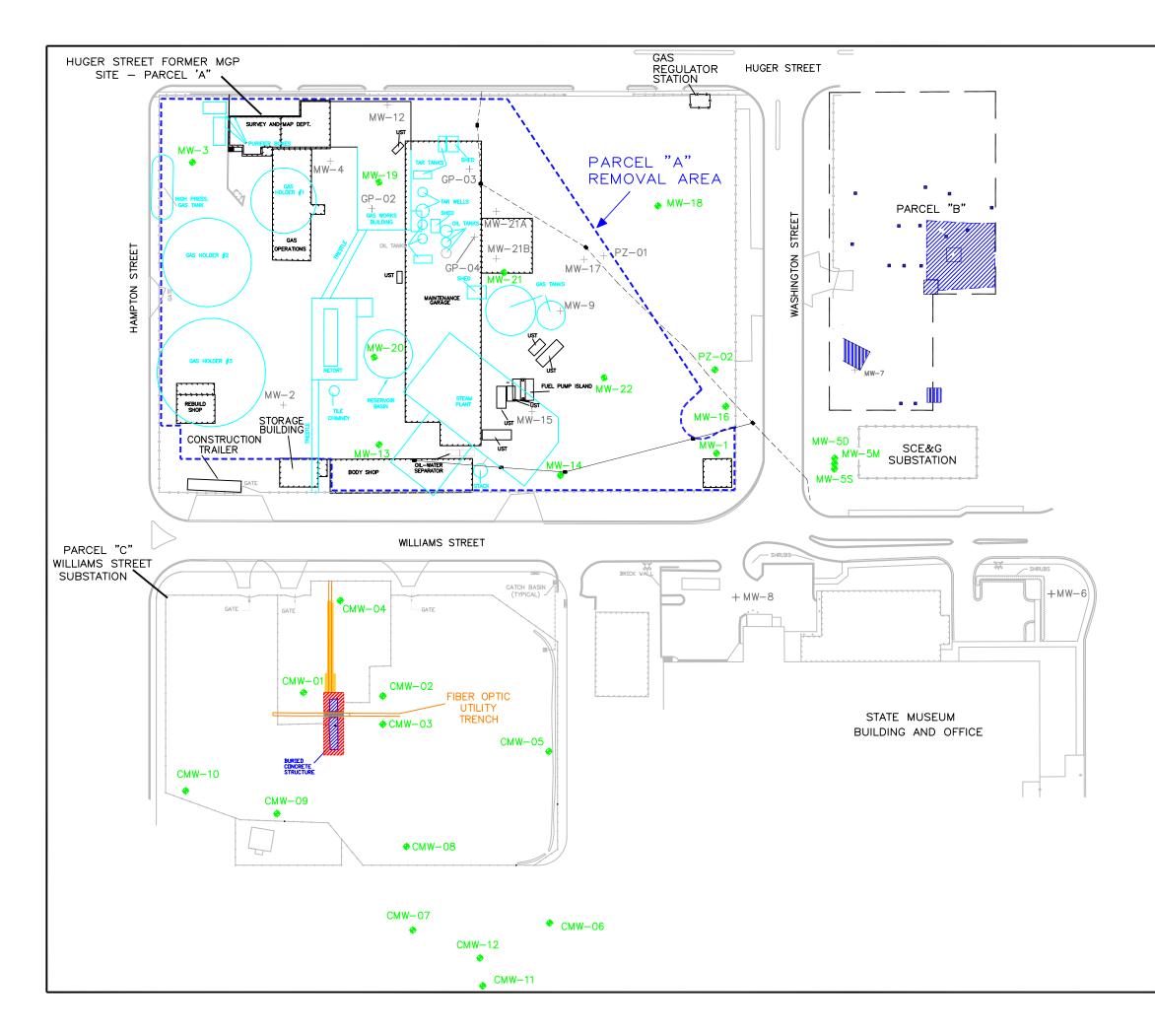
SUMMARY OF PARCEL "C" WELL SAMPLES GROUNDWATER ANALYTICAL RESULTS - JUNE 2017

Constituent	Units	Screening Level	CMW-01	CMW-02	CMW-03	CMW-04	CMW-07	CMW-08	CMW-12
Volatiles									
Benzene	µg/L	5	5 U	6.9	130	25 U	7.1	5 U	5 U
Ethylbenzene	µg/∟ µg/L	700	5 U	5 U	35	25 0	5 U	5 U	5 U
Toluene	μg/L	1,000	5 U	5 U	450	210	5 U	5 U	5 U
Total Xylenes		10,000	5 U	18	550	400	5 U	5 U	5 U
Total Aylenes	µg/L	10,000	50	10	550	400	50	50	50
Semi-Volatiles									
Acenaphthene	µg/L	530	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Acenaphthylene	µg/L	NL	10 U	38	55	40 U	10 U	10 U	10 U
Anthracene	µg/L	1,800	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Benzo(a)anthracene	µg/L	0.03	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Benzo(a)pyrene	µg/L	0.2	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Benzo(b)fluoranthene	µg/L	0.25	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	µg/L	NL	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Benzo(k)fluoranthene	µg/L	2.5	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Chrysene	μg/L	25	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	μg/L	0.025	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Fluoranthene	µg/L	800	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Fluorene	μg/L	290	10 U	21	40 U	46	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	μg/L	0.25	10 U	8 U	40 U	40 U	10 U	10 U	10 U
Naphthalene	μg/L	0.17	10 U	420	2,400	2,000	10 U	11	10 U
Phenanthrene	μg/L	NL	10 U	34	40 U	55	10 U	10 U	10 U
Pyrene	μg/L	120	10 U	8 U	40 U	40 U	10 U	10 U	10 U

SCE&G Huger Street Former MGP Site Columbia, South Carolina

Notes:

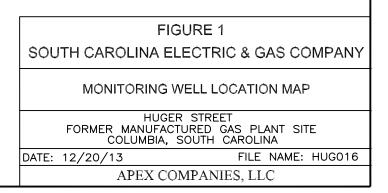
1. NL - Not Listed

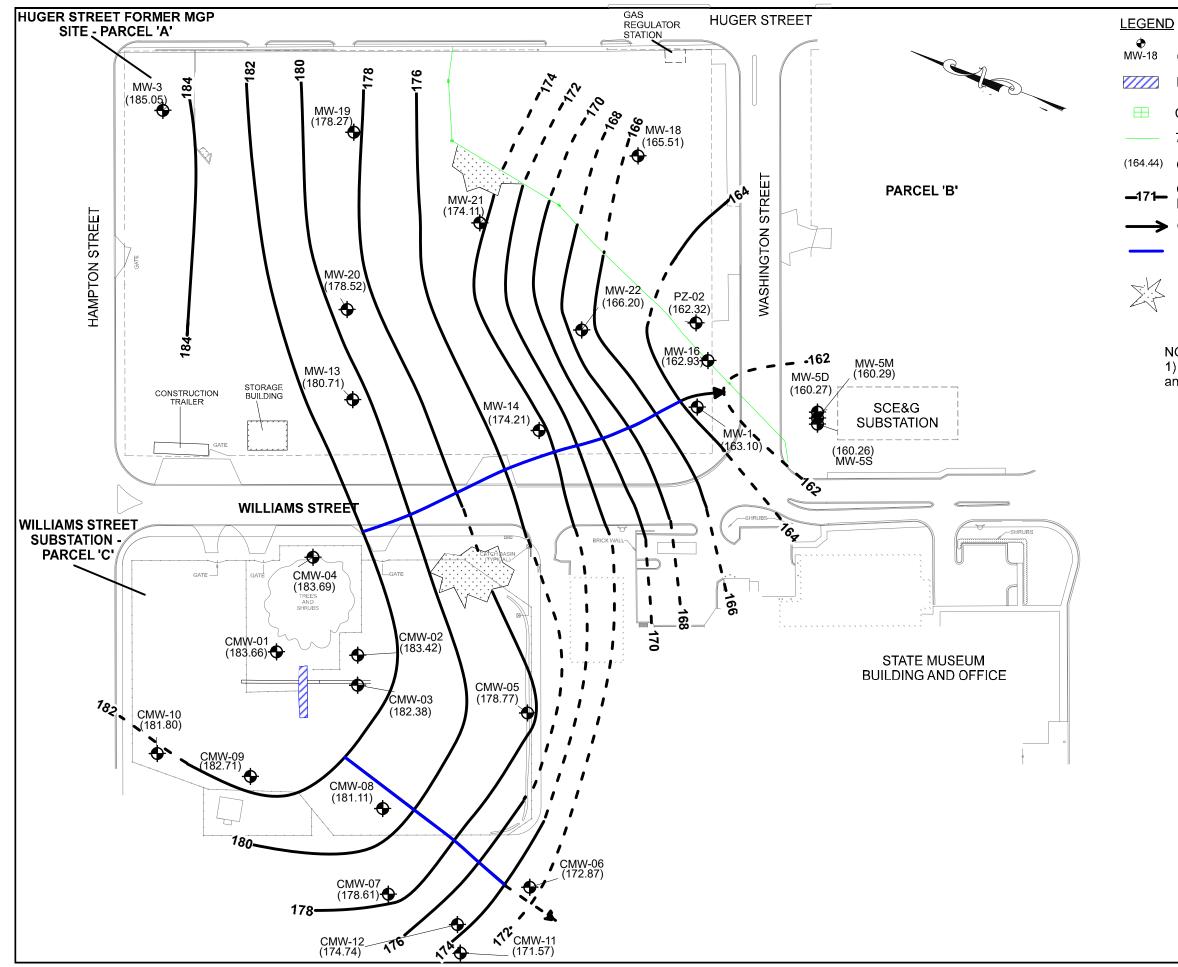

2. U - Indicates that the consitutent was not detected at the reported detection limit.

3. J - Indicates an estimated value. The constituent was positively identified. However, based on data evaluation the associated result is an approximate concentration of the constituent in the sample.

4. Groundwater screening values are the SCDHEC Maximum Contaminant Levels (MCL) in drinking water (R.61-58, 2009). If a SCDHEC drinking water standard is not available for a particular constituent, the groundwater screening level is the U.S. EPA Region 9 Regional Screening Level (RSL [June 2017]) for tapwater where carcinogens are based on a 1x10⁻⁶ risk and non-carcinogens are based on a hazard quotient of 1.

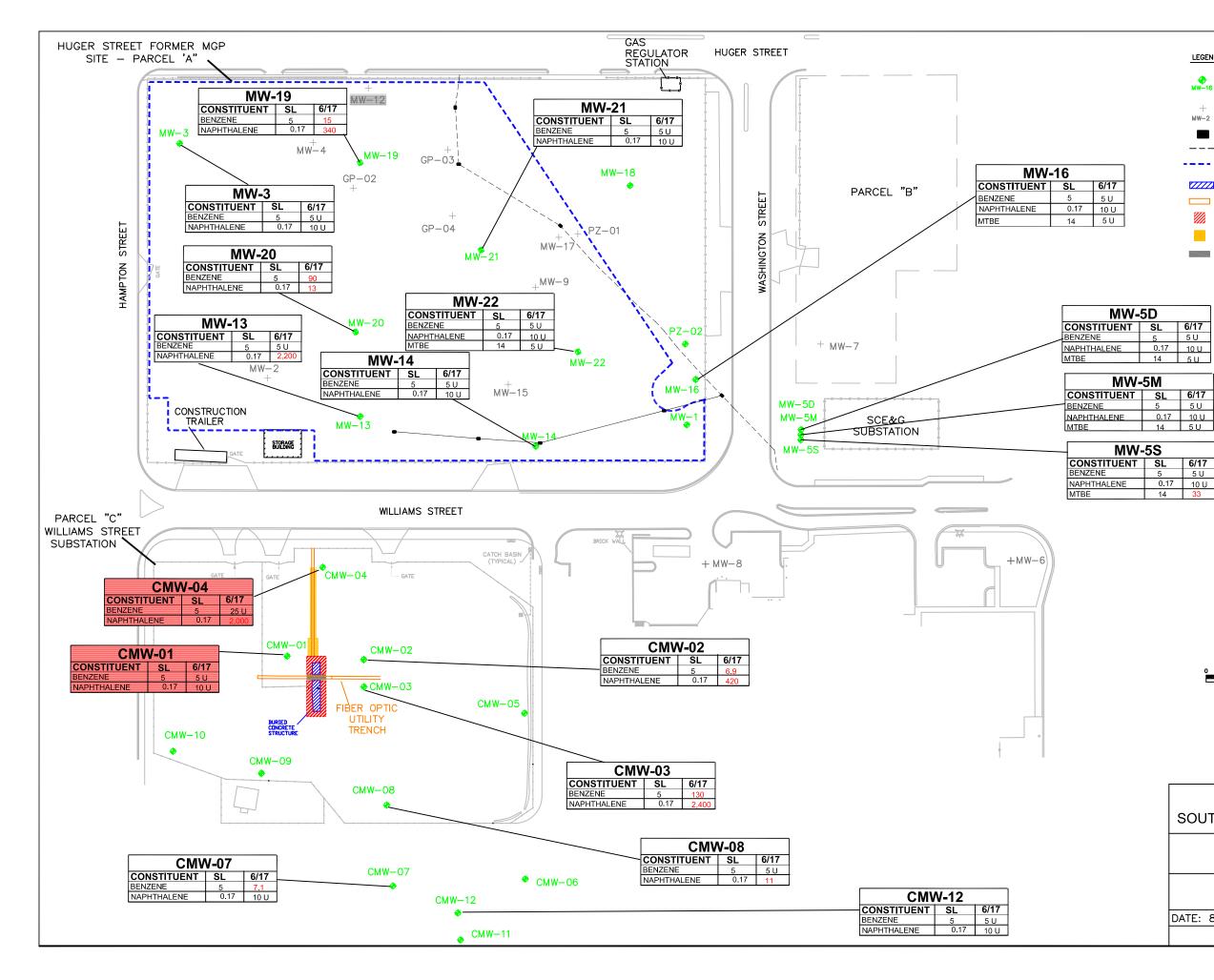
5. Indicates constituent exceeds the Screening Level.


FIGURES



LEGEND	
	FORMER MGP STRUCTURE, OUTLINE OR FEATURE
	FORMER BUS MAINTENANCE STRUCTURE, OUTLINE OR FEATURE
₩ — 16	EXISTING MONITORING WELL (MW) OR PIEZOMETER (PZ)
+ MW-2	ABANDONED WELL/PIEZOMETER/SOIL BORING/DIRECT PUSH LOCATION
	CATCH BASIN
	72-INCH BURIED STORM DRAIN CULVERT
	APPROXIMATE EXTENT OF PARCEL "A" EXCAVATION
DE-4	PARCEL "B" REMOVAL OF VISUALLY STAINED SURFACE SOIL EXCAVATION DEPTH 1-FOOT
	PARCEL "B" EXTENT OF SHALLOW EXCAVATION AT SS-3 AND SS-5 EXCAVATION DEPTH 2-FEET
	PARCEL "B" EXTENT OF DEEPER EXCAVATION AT TEST PIT LOCATIONS TP-1 AND TP-3, EXCAVATION DEPTH OF 5 TO 8 FEET
	BURIED CONCRETE STRUCTURE
	PARCEL "C" UTILITY TRENCH AND PIPES
	PARCEL "C" APPROXIMATE EXCAVATION AREA
	PARCEL "C" ADDITIONAL PIPE REMOVAL EXCAVATION AREA
~~~~	PARCEL "C" PORTION LEFT IN PLACE TO SUPPORT FIBER OPTIC CONDUIT




		SCALE:	1" = 100	)'	
0	25'	50'	100'	150'	200'
-		_			





EXISTING MONITORING WELL (MW) OR PIEZOMETER (PZ) FORMER BURIED CONCRETE STRUCTURE CATCH BASIN 72-INCH BUREID STORM DRAIN CULVERT (164.44) GROUDNWATER ELEVATION (FEET NGVD '29) GROUNDWATER ELEVATION CONTOUR (FEET NGVD '29, DASHED WHERE INFERRED, 2-FOOT CONTOUR INTERVAL GROUNDWATER FLOW DIRECTION LINE SEGMENT USED TO DETERMINE HYDRAULIC GRADIENT APPROXIMATE LOCATION OF BEDROCK HIGH NOTES: 1) The extents of potential bedrock highs on Parcels 'A' and 'C' are approximate. 200 Ω 100

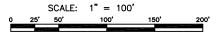


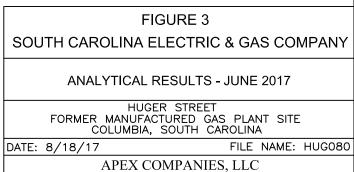


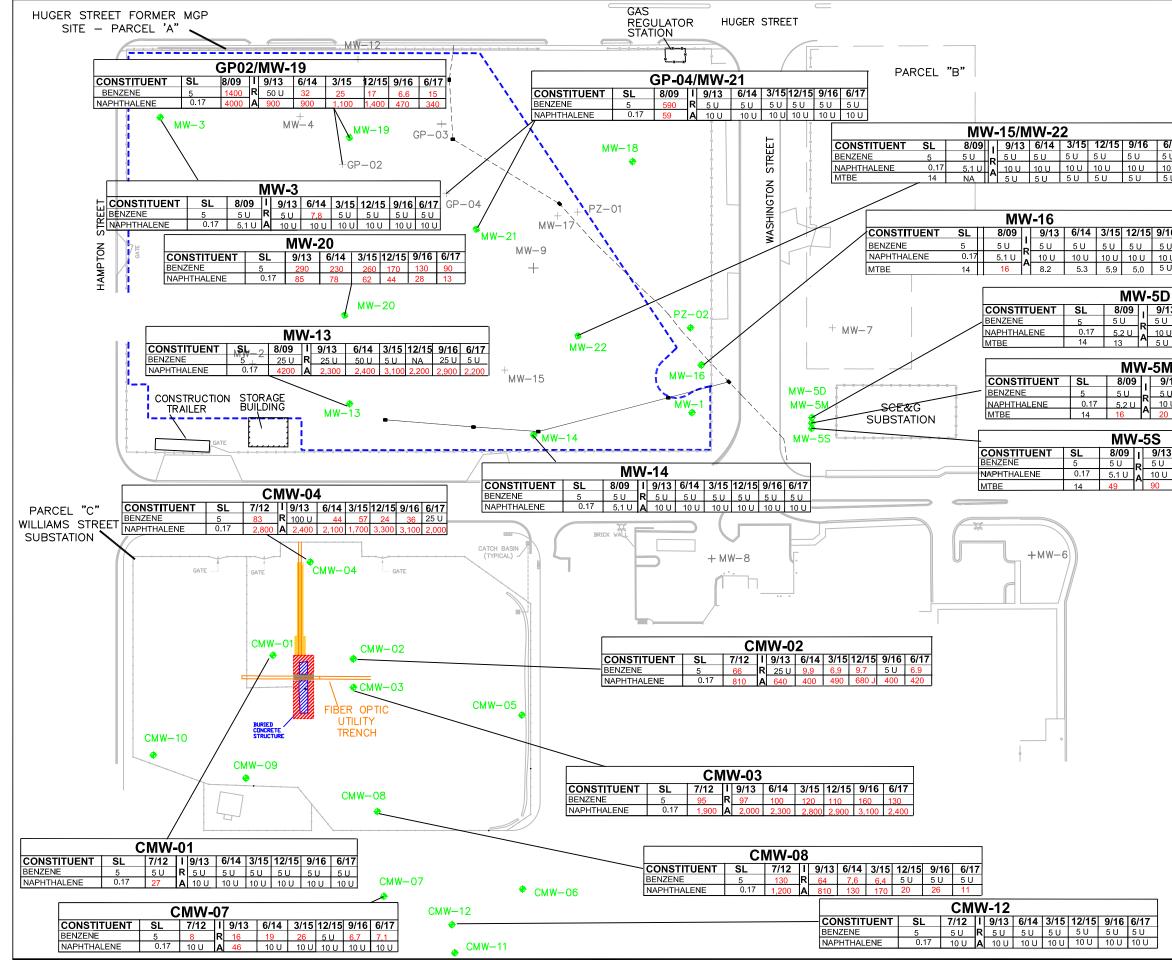
#### LEGEND

5 U

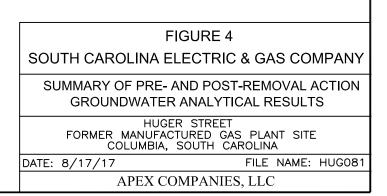
5 U


5 U

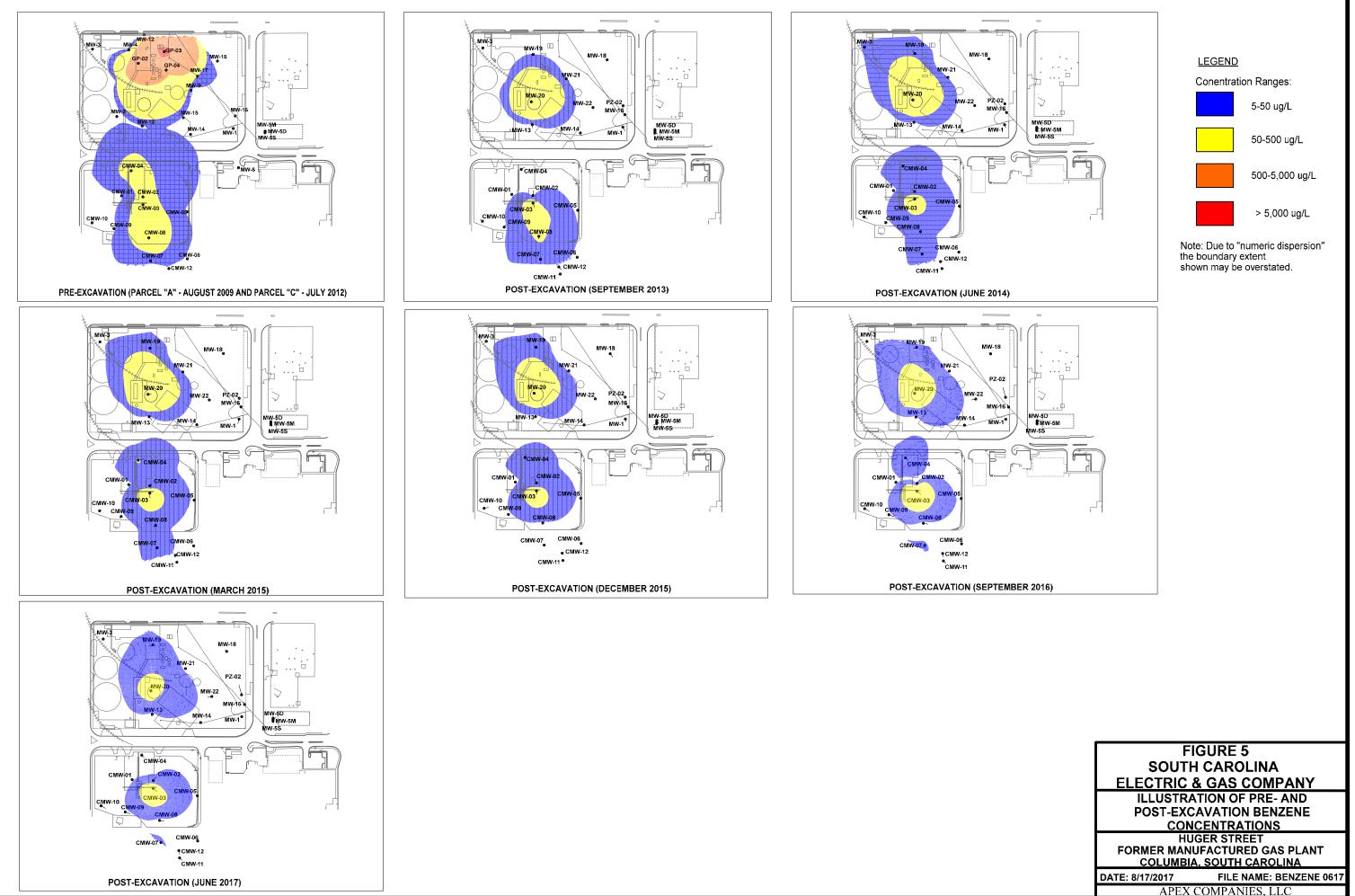

₩ <b>—</b> 16	EXISTING MONITORING WELL (MW) OR PIEZOMETER (PZ)
+ MW-2	ABANDONED WELL/PIEZOMETER/SOIL BORING/DIRECT PUSH LOCATION
	CATCH BASIN
	72-INCH BURIED STORM DRAIN CULVERT
	PARCEL "A" APPROXIMATE EXCAVATION AREA
	BURIED CONCRETE STRUCTURE
	PARCEL "C" UTILITY TRENCH AND PIPES
	PARCEL "C" APPROXIMATE EXCAVATION AREA
	PARCEL "C" ADDITIONAL PIPE REMOVAL EXCAVATION AREA
and the second s	PARCEL "C" PORTION LEFT IN PLACE TO SUPPORT FIBER OPTIC CONDUIT
	NOTES

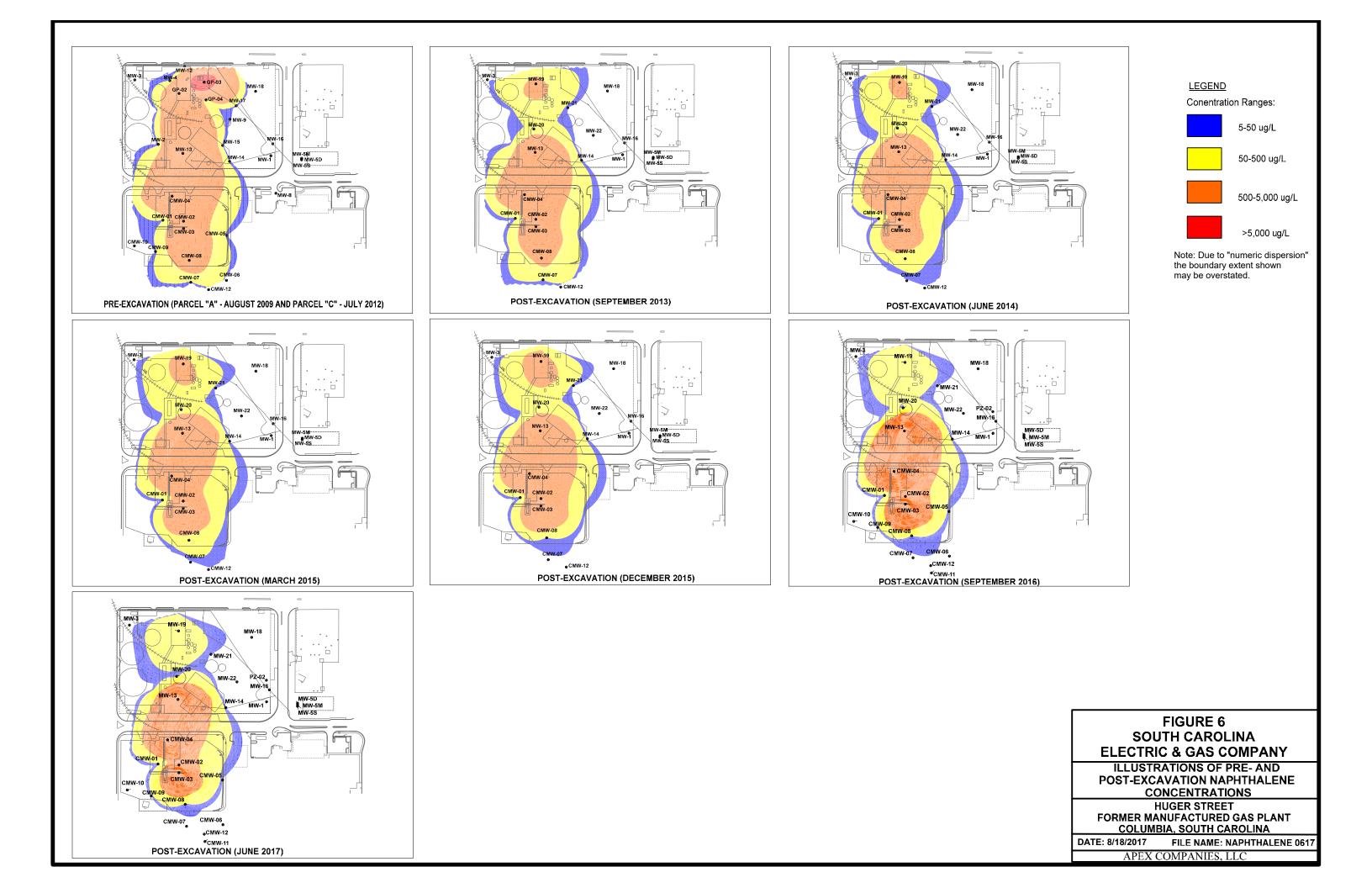

NOTES: 1) ALL RESUULTS ARE IN UG/L.

- 2) MTBE METHYL TERT-BUTYL ETHER
- 3) SL SCREENING LEVEL
- 4) NA NOT ANALYZED
- 5) GROUNDWATER SCREENING VALUES ARE THE SCDHEC MAXIMUM CONTAMINANT LEVELS (MCL) IN DRINKING WATER (R.61-58, 2009). IF A SCDHEC DRINKING WATER STANDARD IS NOT AVAILABLE FOR A PARTICULAR CONSTITUENT, THE GROUNDWATER SCREENING LEVEL IS THE U.S. EPA REGION 9 REGIONAL SCREENING LEVEL (RSL [JUNE 2017]) FOR TAPWATER WHERE CARCINOGENS ARE BASED ON A 1 X 10-6 RISK AND NON-CARCINOGENS ARE BASED ON A HAZARD QUOTENT OF 1.






		LEG	END				
		MW-	16	existing or piezo	MONITOR METER (F	ING WELL PZ)	(MW)
		+ mw-		ABANDO	NED WELL	/PIEZOME	TER/SOIL BORING/DIRECT PUSH LOCATION
				САТСН Е	BASIN		
	-		_	72-INCH	BURIED	STORM D	RAIN CULVERT
6/17	-		-	PARCEL	"A" APPR		EXCAVATION AREA
5 U	4		~~		CONCRETE	STRUCT	
<u>10 U</u>			~				H AND PIPES
5 U							
				PARCEL	"C" APPR	OXIMATE	EXCAVATION AREA
		ך 📒		PARCEL	"C" ADDI	TIONAL PI	PE REMOVAL EXCAVATION AREA
/16	6/17	· · · ·		PARCEL	"C" PORT	ION LEFT	IN PLACE TO SUPPORT FIBER OPTIC CONDUIT
<u>5 U</u>	5 U		<b>`</b>	INTERIM	REMOVAL	ACTION	(2009 – 2011)
0 U 5 U	10 U 5 U	-					
	I	1				NO	ITE:
D							ALL RESUULTS ARE IN UG/L.
/13	6/14	3/15	12/15		6/17	2)	MTBE - METHYL TERT-BUTYL ETHER
<u>ט</u> ווו	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	3)	SL – SCREENING LEVEL
U	5 U	5 U	50	5 U	50	4)	NA – NOT ANALYZED
						1 5)	THE MOST RECENTLY AVAILABLE
M	0.44	0.45	10/4	- 0/40	0/47		DATA WAS USED AS THE "PRE-REMOVAL" DATA. DATA IS PRESENTED IN APPENDIX B.
9/13 5 U	<b>6/14</b>	5 U	5 U	5 9/16	5 0/17	6)	GROUNDWATER SCREENING VALUES ARE
0 U	10 U	10 U		10 U	10 U	1 ,	THE SCDHEC MAXIMUM CONTAMINANT LEVELS (MCL) IN DRINKING WATER
20	8.8	7.2	6.7	5.4	5 U	ļ	(R.61–58, 2009). IF A SCDHEC DRINKING WATER STANDARD IS NOT AVAILABLE FOR
							A PARTICULAR CONSTITUENT, THE
13	6/14	3/15	12/15	12/15	9/16	6/17	GROUNDWATER SCREENING LEVEL IS THE U.S. EPA REGION 9 REGIONAL SCREENING
,	5 U	5 U	5 U	5 U	5 U	5 U	LEVEL (RSL [JUNE 2017]) FOR TAPWATER WHERE CARCINOGENS ARE BASED ON A 1
	10 U 90	10 U 58	10 U 58	10 U 58	10 U 42	10 U 33	X 10-6 RISK AND NON-CARCINOGENS ARE BASED ON A HAZARD QUOTIENT OF 1.
	00	00	00				
					C	. vo	
						₹L	



SCALE: 1" = 100'





**GROUNDWATER PURGING DATA** 

### GROUNDWATER PURGING DATA - JUNE 2017 EVENT PARCELS "A", "B" & "C"

#### SCE&G Huger Street Former MGP Site Columbia, South Carolina

Well ID:	MW-3		IDTW:	15.40	feet	Purge Begin:	12:29	Sample Date:	6/14/2017
otal Depth:	25.84	feet toc	Set Intake:	20.50	feet	Purge End:	12:42	Sample Time:	12:45
Purge Volume		Water Level	рН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(µS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	12:30	15.47	3.38	1,069	24.2	1.60	444	6	Clear
0.25	12:33	15.48	3.29	1,066	23.7	0.29	478	6	Clear
0.35	12:36	15.48	3.29	1,064	23.7	0.27	479	5	Clear
0.45	12:39	15.48	3.29	1,065	23.7	0.26	479	4	Clear
0.55	12:42	15.48	3.29	1,063	23.8	0.26	479	4	Clear
Vell ID: otal Depth:	MW-5M 36.02	feet toc	IDTW: Set Intake:	22.25 34.50	feet feet	Purge Begin: Purge End:	16:38 17:04	Sample Date: Sample Time:	6/13/2017 17:05
Purge Volume	1	Water Level	pH	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(μS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	16:40	22.35	5.38	222	22.2	3.82	272	531	Browm/Turbio
0.25	16:43	22.37	5.25	217	22.2	3.13	279	105	Light Brown
0.35	16:46	22.35	5.15	216	22.2	2.72	280	39	Clear
0.45	16:49	22.35	5.17	217	22.1	2.06	253	30	Clear
0.55	16:52	22.35	5.17	217	22.1	2.11	243	19	Clear
0.65	16:55	22.35	5.16	218	22.1	1.99	240	25	Clear
0.75	16:58	22.35	5.13	217	22.1	1.84	245	17	Clear
0.85	17:01	22.35	5.16	218	22.0	1.69	243	11	Clear
0.95	17:04	22.35	5.17	218	22.0	1.62	242	NM	Clear
Vell ID: otal Depth:	<b>MW-5S</b> 31.65	feet toc	IDTW: Set Intake:	22.15 27.00	feet feet	Purge Begin: Purge End:	16:10 16:22	Sample Date: Sample Time:	6/13/2017 16:30
Purge Volume		Water Level	рН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(µS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	16:10	22.15	7.25	388	24.1	2.00	-81	22	Clear
0.25	16:13	22.20	6.29	374	24.0	2.21	-97	19	Clear
0.35	16:16	22.20	6.04	370	23.5	3.41	-110	15	Clear
0.45	16:19	22.21	5.99	369	23.2	3.33	-118	12	Clear
0.55	16:22	22.21	5.97	371	23.2	2.98	-121	9	Clear
Collected FD06	61317 at 16:30.								
Vell ID:	MW-5D		IDTW:	22.37	feet	Purge Begin:	16:05	Sample Date:	6/13/2017
otal Depth:	39.54	feet toc	Set Intake:	40.00	feet	Purge End:	16:22	Sample Time:	16:25
Purge Volume		Water Level	pH	Conductivity	Temperature		Redox	Turbidity	10.20
(Gallons)	Time	(feet toc)	(S.U.)	(μS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
		· · · ·		. ,			. ,		
0.15	16:07	22.82	5.37	218	22.8	5.29	288	6	Clear
0.25	16:10	23.10	5.31	216 215	22.8	3.95	290 293	4	Clear Clear
0.35	16:13 16:16	23.20 23.27	5.21 5.11	215	22.6 22.6	3.37 3.04	293	3	Clear
0.45		23.27	-	215	22.6	3.04 2.95	293	2	
0 55	16:19		5.15			2.95	289		Clear
0.55	16.00	22.24	E 10						
0.55 0.65	16:22	23.31	5.13	215	22.4	2.87	289	1	Clear
	16:22 MW-13 20.24	23.31 feet toc	5.13 IDTW: Set Intake:	8.90 15.00	feet feet	Purge Begin: Purge End:	13:55 14:08	Sample Date: Sample Time:	6/14/2017 14:10

Total Depth:	20.24	feet toc	Set Intake:	15.00	feet	Purge End:	14:08	Sample Time:	14:10
Purge Volume		Water Level	рН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(μS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	13:56	10.45	5.03	243	23.6	0.29	242	7	Clear
0.25	13:59	10.23	5.10	336	24.6	0.27	60	5	Clear
0.35	14:02	10.15	5.16	329	24.6	0.27	45	5	Clear
0.45	14:05	10.15	5.17	330	24.6	0.27	44	3	Clear
0.55	14:08	10.15	5.16	326	24.5	0.25	43	3	Clear

#### GROUNDWATER PURGING DATA - JUNE 2017 EVENT PARCELS "A", "B" & "C"

#### SCE&G Huger Street Former MGP Site Columbia, South Carolina

Vell ID: otal Depth:	<b>MW-14</b> 17.00	feet toc	IDTW: Set Intake:	13.38 16.00	feet feet	Purge Begin: Purge End:	14:40 15:07	Sample Date: Sample Time:	6/14/2017 15:10
Purge Volume		Water Level	pН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(µS/cm)	(°C)	(mg/L)	(mV)	(N.T.U.)	Color
0.00	14:40	13.38	3.70	1,547	24.5	8.50	109	90	Clear
0.15	14:43	13.69	3.53	1,519	24.3	2.62	49	33	Clear
0.24	14:46	13.81	3.53	1,465	24.3	2.03	42	14	Clear
0.35	14:49	14.02	3.55	1,351	24.3	1.64	77	16	Clear
0.45	14:52	14.18	3.59	1,343	24.4	1.34	94	10	Clear
0.55	14:55	14.34	3.60	1,341	24.3	1.16	65	7	Clear
0.65	14:58	14.60	3.51	1,333	24.1	1.05	49	3	Clear
0.75	15:01	14.77	3.61	1,330	24.3	0.98	35	3	Clear
0.85	15:04	14.95	3.61	1,344	24.0	0.98	27	4	Clear
0.95	15:07	15.03	3.59	1,356	24.0	0.94	30	4	Clear
ell ID:	MW-16		IDTW:	19.22	feet	Purge Begin:	7:05	Sample Date:	6/13/2017
otal Depth:		feet toc	Set Intake:		feet	Purge End:	7:26	Sample Time:	7:30
Purge Volume		Water Level	pН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(μS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.00	7:05	19.22	7.62	2	21.6	9.20	10	59	Clear
0.15	7:08	19.22	6.73	1,133	21.8	2.88	-123	23	Clear
0.25	7:11	19.22	6.66	1,136	21.8	3.81	-127	24	Clear
0.35	7:14	19.22	6.66	1,137	21.8	3.40	-127	26	Clear
0.45	7:17	19.22	6.64	1,140	21.8	2.81	-126	18	Clear
0.55	7:20	19.22	6.64	1,141	21.8	2.46	-126	14	Clear
0.65	7:23	19.22	6.64	4 4 4 0	01.0	0.40	100	40	01
0.00	1.25	19.22	0.04	1,143	21.8	2.12	-123	13	Clear
0.75	7:26	19.22	6.63	1,143	21.8 21.8	2.12 1.96	-123 -120	13	Clear
0.75	7:26		6.63	1,144	21.8	1.96	-120	10	Clear
0.75 /ell ID:	7:26 MW-19	19.22	6.63 IDTW:	1,144	21.8 feet feet Temperature	1.96 Purge Begin:	-120 12:40	10 Sample Date:	Clear 6/14/2017
0.75 /ell ID: otal Depth: Purge Volume	7:26 MW-19	19.22 feet toc Water Level	6.63 IDTW: Set Intake: pH	1,144 11.94 20.50	21.8 feet feet	1.96 Purge Begin: Purge End: DO	-120 12:40 13:06 <b>Redox</b>	10 Sample Date: Sample Time: Turbidity	Clear 6/14/2017
0.75 ell ID: otal Depth: Purge Volume (Gallons)	7:26 MW-19 31.64 Time	feet toc Water Level (feet toc)	6.63 IDTW: Set Intake: pH (S.U.)	1,144 11.94 20.50 Conductivity (μS/cm)	21.8 feet Temperature (° C)	1.96 Purge Begin: Purge End: DO (mg/L)	-120 12:40 13:06 <b>Redox</b> (mV)	10 Sample Date: Sample Time: Turbidity (N.T.U.)	Clear 6/14/2017 13:10 <b>Color</b>
0.75 ell ID: otal Depth: Purge Volume (Gallons) 0.00	7:26 MW-19 31.64 Time 12:40	feet toc Water Level (feet toc) 11.94	6.63 IDTW: Set Intake: pH (S.U.) 6.30	1,144 11.94 20.50 Conductivity (μS/cm) 291	21.8 feet feet Temperature (° C) 25.5	1.96 Purge Begin: Purge End: DO (mg/L) 1.71	-120 12:40 13:06 <b>Redox</b> (mV) -78	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7	Clear 6/14/2017 13:10 Color Clear
0.75 ell ID: otal Depth: Purge Volume (Gallons) 0.00 0.15	7:26 MW-19 31.64 Time 12:40 12:43	19.22           feet toc           Water Level           (feet toc)           11.94           12.09	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271	21.8 feet Temperature (° C) 25.5 25.1	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6	Clear 6/14/2017 13:10 Color Clear Clear
0.75 ell ID: btal Depth: Purge Volume (Gallons) 0.00 0.15 0.25	7:26 MW-19 31.64 Time 12:40 12:43 12:46	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.09	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295	21.8 feet (° C) 25.5 25.1 24.9	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6	Clear 6/14/2017 13:10 Color Clear Clear Clear
0.75 ell ID: total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.54 5.38 5.38	1,144 11.94 20.50 <b>Conductivity</b> (μ\$/cm) 291 271 295 386	21.8 feet <b>Temperature</b> (° C) 25.5 25.1 24.9 25.0	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124	10       Sample Date:       Sample Time:       Turbidity       (N.T.U.)       7       6       6       5	Clear 6/14/2017 13:10 Clear Clear Clear Clear Clear
0.75 ell ID: btal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:52	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.54 5.38 5.38 5.38 5.68	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474	21.8 feet feet <b>Temperature</b> (° C) 25.5 25.1 24.9 25.0 25.3	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -114 -124 -146	10       Sample Date:       Sample Time:       Turbidity       (N.T.U.)       7       6       6       5       5	Clear 6/14/2017 13:10 Clear Clear Clear Clear Clear
0.75 ell ID: otal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:52 12:55	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.38 5.38 5.68 5.81	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566	21.8 feet Temperature (° C) 25.5 25.1 24.9 25.0 25.3 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -146 -158	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear
0.75 fell ID: otal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:52	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.54 5.38 5.38 5.38 5.68	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474	21.8 feet feet <b>Temperature</b> (° C) 25.5 25.1 24.9 25.0 25.3	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -114 -124 -146	10       Sample Date:       Sample Time:       Turbidity       (N.T.U.)       7       6       6       5       5	Clear 6/14/2017 13:10 Clear Clear Clear Clear Clear
0.75 Vell ID: purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75	7:26 <b>MW-19</b> 31.64 <b>Time</b> 12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.38 5.68 5.81 5.81 5.92 5.92	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566 586 614	21.8 feet Temperature (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -114 -124 -146 -158 -168	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5 3	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear
0.75 Vell ID: purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.65	7:26 <b>MW-19</b> 31.64 <b>Time</b> 12:40 12:43 12:46 12:49 12:52 12:55 12:55	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.38 5.68 5.68 5.81 5.92	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566 586	21.8 feet Temperature (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8 24.8 24.4	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -114 -124 -158 -168 -168 -171	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear
0.75 Vell ID: otal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:55 12:55 12:55 12:58 13:01 13:04 13:06	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31           12.31           12.33	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.68 5.81 5.92 5.92 5.92 5.95 6.05	1,144         11.94         20.50         Conductivity         (μS/cm)         291         271         295         386         474         566         586         614         632	21.8 feet Temperature (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8 24.8 24.4 24.9 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -114 -124 -146 -158 -168 -171 -174 -183	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear
0.75 Vell ID: otal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.65 0.65 0.75 0.85 0.95 Vell ID: Vell ID: Ve	7:26 MW-19 31.64 Time 12:40 12:43 12:43 12:46 12:49 12:52 12:55 12:55 12:58 13:01 13:04 13:06 MW-20	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31           12.33           12.33	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.68 5.68 5.81 5.92 5.92 5.92 5.95 6.05 IDTW:	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566 586 614 621 632 11.23	21.8 feet Temperature (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin:	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -114 -146 -158 -158 -168 -171 -174 -183 13:18	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear
0.75 Vell ID: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.65 0.65 0.75 0.85 0.95 Vell ID: ptal Depth:	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:55 12:55 12:55 12:58 13:01 13:04 13:06	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31           12.33           12.33           12.33	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.68 5.68 5.81 5.92 5.92 5.92 5.92 6.05 IDTW: Set Intake:	1,144         11.94         20.50         Conductivity         (μS/cm)         291         271         295         386         474         566         586         614         632         11.23         18.50	21.8 feet <b>Temperature</b> (° C) 25.5 25.1 25.0 25.3 24.9 25.3 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin: Purge End:	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -158 -158 -168 -158 -168 -171 -174 -183 -183 -13:18 13:18	10       Sample Date:       Sample Time:       Turbidity       (N.T.U.)       7       6       5       5       5       5       5       5       5       5       5       5       5       5       5       6       7	Clear 6/14/2017 13:10 Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear
0.75 ell ID: purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 ell ID: purge Volume	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:52 12:55 12:55 12:58 13:01 13:04 13:06 MW-20 28.22	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31           12.33           12.33           12.33           feet toc           Water Level	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.68 5.81 5.92 5.92 5.92 5.92 5.92 5.95 6.05 IDTW: Set Intake: pH	1,144         11.94         20.50         Conductivity         (μS/cm)         291         271         295         386         474         566         586         614         632         11.23         18.50         Conductivity	21.8 feet feet (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8 24.8 24.8 24.4 24.9 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin: Purge End: DO	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -146 -158 -168 -171 -174 -183 13:18 13:18 13:31 <b>Redox</b>	10       Sample Date:       Sample Time:       Turbidity       (N.T.U.)       7       6       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       Sample Date:       Sample Time:       Turbidity	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear C
0.75 ell ID: btal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 ell ID: btal Depth: Purge Volume (Gallons)	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:52 12:55 12:55 12:58 13:01 13:04 13:06 MW-20 28.22 Time	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31           12.33           12.33           12.33           (feet toc)	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.38 5.38 5.81 5.92 5.92 5.92 5.92 5.92 5.95 6.05 IDTW: Set Intake: pH (S.U.)	1,144         11.94         20.50         Conductivity         (μS/cm)         291         271         295         386         474         566         586         614         632         11.23         18.50         Conductivity         (μS/cm)	21.8 feet feet <b>Temperature</b> (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8 24.8 24.8 24.4 24.9 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin: Purge End: DO (mg/L)	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -146 -158 -168 -171 -174 -183 13:18 13:31 <b>Redox</b> (mV)	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Cl
0.75 ell ID: btal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 ell ID: btal Depth: Purge Volume (Gallons) 0.15	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:55 12:55 12:55 12:55 13:01 13:04 13:04 13:06 MW-20 28.22 Time 13:19	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.31           12.31           12.33           12.33           12.33           12.30           14.33           12.31           12.31           12.33           12.34           12.35           12.31           12.33	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.38 5.81 5.92 5.92 5.92 5.92 5.92 5.95 6.05 IDTW: Set Intake: pH (S.U.) 5.21	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566 586 614 621 632 11.23 18.50 <b>Conductivity</b> (μS/cm) 431	21.8 feet feet 25.5 25.1 24.9 25.3 25.3 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin: Purge End: DO (mg/L) 2.59	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -146 -158 -168 -171 -174 -183 13:18 13:31 <b>Redox</b> (mV) 479	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Cl
0.75 ell ID: purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 ell ID: purge Volume (Gallons) 0.15 0.25	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:55 12:55 12:55 12:55 13:01 13:04 13:06 MW-20 28.22 Time 13:19 13:22	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.28           12.31           12.33           12.33           feet toc           Water Level (feet toc)           11.40           11.53	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.68 5.81 5.92 5.92 5.92 5.92 5.95 6.05 IDTW: Set Intake: pH (S.U.) 5.21 5.40	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566 586 614 621 632 11.23 18.50 <b>Conductivity</b> (μS/cm) 431 427	21.8 feet feet Temperature (° C) 25.5 25.1 24.9 25.0 25.3 24.8 24.8 24.8 24.4 24.9 24.8 feet feet feet feet feet feet feet fee	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin: Purge End: DO (mg/L) 2.59 0.83	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -146 -158 -168 -171 -174 -183 13:18 13:31 <b>Redox</b> (mV) 479 523	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Cl
0.75 ell ID: btal Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 ell ID: btal Depth: Purge Volume (Gallons) 0.15	7:26 MW-19 31.64 Time 12:40 12:43 12:46 12:49 12:55 12:55 12:55 12:55 13:01 13:04 13:04 13:06 MW-20 28.22 Time 13:19	19.22           feet toc           Water Level (feet toc)           11.94           12.09           12.21           12.25           12.31           12.31           12.33           12.33           12.33           12.30           14.33           12.31           12.31           12.33           12.34           12.35           12.31           12.33	6.63 IDTW: Set Intake: pH (S.U.) 6.30 5.54 5.38 5.38 5.81 5.92 5.92 5.92 5.92 5.92 5.95 6.05 IDTW: Set Intake: pH (S.U.) 5.21	1,144 11.94 20.50 <b>Conductivity</b> (μS/cm) 291 271 295 386 474 566 586 614 621 632 11.23 18.50 <b>Conductivity</b> (μS/cm) 431	21.8 feet feet 25.5 25.1 24.9 25.3 25.3 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	1.96 Purge Begin: Purge End: DO (mg/L) 1.71 1.20 2.31 3.04 2.58 2.14 1.88 1.73 1.51 1.41 Purge Begin: Purge End: DO (mg/L) 2.59	-120 12:40 13:06 <b>Redox</b> (mV) -78 -114 -114 -124 -146 -158 -168 -171 -174 -183 13:18 13:31 <b>Redox</b> (mV) 479	10 Sample Date: Sample Time: Turbidity (N.T.U.) 7 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	Clear 6/14/2017 13:10 Color Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Cl

#### GROUNDWATER PURGING DATA - JUNE 2017 EVENT PARCELS "A", "B" & "C"

#### SCE&G Huger Street Former MGP Site Columbia, South Carolina

				Columbia, So	outh Carolina				
Vell ID: otal Depth:	<b>MW-21</b> 21.60	feet toc	IDTW: Set Intake:	15.62 16.50	feet feet	Purge Begin: Purge End:	13:45 14:03	Sample Date: Sample Time:	6/14/2017 14:10
Purge Volume	21.00	Water Level	pH	Conductivity	Temperature	DO	Redox	Turbidity	14.10
-	Time			(μS/cm)	(° C)	-		-	Calar
(Gallons)	Time	(feet toc)	(S.U.)			(mg/L)	(mV)	(N.T.U.)	Color
0.00	13:45	15.62	5.74	583	25.2	5.45	-112	18	Clear
0.15	13:48	16.04	5.13	557	24.8	2.48	-138	21	Clear
0.25	13:51	16.33	5.13	521	25.1	2.12	-151	17	Clear
0.35	13:54	16.45	5.21	517	24.9	1.76	-167	9	Clear
0.45	13:57	16.62	5.31	520	25.0	1.51	-182	5	Clear
0.55	14:00	16.75	5.29	524	24.7	1.34	-185	4	Clear
0.65	14:03	18.88	5.25	525	24.5	1.22	-186	5	Clear
/ell ID: otal Depth:	<b>MW-22</b> 25.98	feet toc	IDTW: Set Intake:	21.35 23.50	feet feet	Purge Begin: Purge End:	7:00 7:31	Sample Date: Sample Time:	6/14/2017 7:35
Purge Volume		Water Level	рН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(μS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	7:01	21.52	7.08	782	22.7	3.18	-6	NM	Clear
0.25	7:04	21.78	6.67	712	22.6	3.30	34	NM	Clear
0.35	7:04	21.70	6.59	692	22.6	3.60	29	NM	Clear
0.35	7:10	22.11	6.55	655	22.6	3.99	15	NM	Clear
0.45	7:10	22.24	6.54	722	22.0	4.62	3	NM	Clear
0.65	7:16	22.24	6.53	750	22.5	3.95	-8	NM	Clear
0.65	7:16	22.38	6.53	750	22.5	4.01	-8 -15	NM	Clear
0.85	7:22	22.56	6.53	804 844	22.5	3.99	-22	NM	Clear
0.95	7:25	22.68	6.52	-	22.5	2.85	-30	NM	Clear
1.05	7:28	22.78	6.52	870	22.5	2.84	-34	NM	Clear
1.15	7:31	22.84	6.51	891	22.5	2.85	-34	0.89	Clear
/ell ID:	CMW-01		IDTW:	13.20	feet	Purge Begin:	8:59	Sample Date:	6/14/2017
otal Depth:	38.34	feet toc	Set Intake:	31.00	feet	Purge End:	9:12	Sample Time:	9:15
Purge Volume		Water Level	pН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(µS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	9:00	13.42	4.89	213	22.2	2.27	347	NM	Clear
0.25	9:03	13.50	5.05	209	21.9	0.67	338	NM	Clear
0.35	9:06	13.51	5.08	208	21.9	0.52	333	NM	Clear
0.45	9:09	15.53	5.10	209	21.8	0.45	326	NM	Clear
0.55	9:12	13.53	5.12	208	21.9	0.44	324	0	Clear
Vell ID:	CMW-02		IDTW:	11.95	feet	Purge Begin:	8:15	Sample Date:	6/14/2017
otal Depth:	32.55	feet toc	Set Intake:	26.50	feet	Purge End:	8:50	Sample Time:	8:50
Purge Volume		Water Level	pН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(µS/cm)	(°C)	(mg/L)	(mV)	(N.T.U.)	Color
0.00	8:15	11.95	6.86	175	22.1	2.42	58	NM	Clear
0.00	8:18	12.15	5.60	175	22.1	1.88	55	NM	Clear
0.25	8:21	12.20	5.33	166	21.6	1.97	35	NM	Clear
0.35	8:24	12.20	5.32	163	21.6	1.76	8	NM	Clear
0.45	8:27	12.20	5.35	160	21.6	1.55	-13	NM	Clear
0.55	8:30	12.20	5.35	159	21.6	1.41	-25	NM	Clear
0.65	8:33	12.20	5.33	155	21.6	1.29	-34	3	Clear
0.75	8:36	12.20	5.25	152	21.6	1.21	-44	3	Clear
0.85	8:39	12.20	5.25	152	21.6	1.07	-54	2	Clear
0.95	8:42	12.20	5.25	151	21.6	1.07	-61	1	Clear
1.05	8:45	12.20	5.24	152	21.6	0.93	-67	3	Clear
/ell ID:	CMW-03		IDTW:	12.02	feet	Purge Begin:	8:15	Sample Date:	6/14/2017
otal Depth:	32.82	feet toc	Set Intake:	27.00	feet	Purge End:	8:32	Sample Time:	8:35
Purge Volume		Water Level	рН	Conductivity	Temperature	DO	Redox	Turbidity	
-	Time		-	(μS/cm)	(° C)	-		-	Color
(Gallons)		(feet toc)	(S.U.)	4		(mg/L)	(mV)	(N.T.U.)	
0.15	8:17	12.22	4.53	353	21.4	4.05	319	3	Clear
0.25	8:20	12.32	3.82	353	21.3	0.86	418	4	Clear
0.35	8:23	12.36	3.74	357	21.2	0.46	422	3	Clear
0.45	8:26	12.40	3.66	359	21.2	0.36	424	3	Clear
0.55	0.20	12/2	2 50	260	21.1	0.20	427	2	Clear

0.55

8:29 8:32 12.43 12.45 3.59 3.58 21.1 21.1 0.30

427

3 3

360 360 Clear Clear

#### APPENDIX A

#### GROUNDWATER PURGING DATA - JUNE 2017 EVENT PARCELS "A", "B" & "C"

#### SCE&G Huger Street Former MGP Site Columbia, South Carolina

				,	outh Carolina				
Well ID:	CMW-04		IDTW:	13.33	feet	Purge Begin:	9:42	Sample Date:	6/14/2017
Total Depth:	29.75	feet toc	Set Intake:	26.00	feet	Purge End:	9:55	Sample Time:	10:00
Purge Volume		Water Level	рН	Conductivity	Temperature	DO	Redox	Turbidity	
(Gallons)	Time	(feet toc)	(S.U.)	(µS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	9:43	13.56	5.79	78	22.7	2.74	119	NM	Clear
0.25	9:46	13.60	5.72	76	22.4	0.89	103	NM	Clear
0.35	9:49	13.62	5.71	75	22.4	0.58	95	NM	Clear
0.45	9:52	13.63	5.68	75	22.4	0.51	97	NM	Clear
0.55	9:55	13.63	5.68	76	22.3	0.49	97	0	Clear
Well ID:	CMW-07		IDTW:	13.97	feet	Purge Begin:	10:29	Sample Date:	6/14/2017
Total Depth:	37.05	feet toc	Set Intake:	28.50	feet	Purge End:	10:29	Sample Time:	10:45
Purge Volume	37.05	Water Level	pH	Conductivity	Temperature	DO	Redox	Turbidity	10.45
(Gallons)	Time	(feet toc)	(S.U.)	(μS/cm)	(° C)	(mg/L)	(mV)	(N.T.U.)	Color
0.15	10:30	14.40	5.25	428	21.7	2.32	209	2	Clear
0.15	10:33	14.40	5.15	428	21.7	0.74	209	2	Clear
0.35	10:35	14.68	5.12	428	21.6	0.50	228	1	Clear
0.00						0.40	-	2	Clear
0.45	10.30	14 74	5 10	/28					
0.45 0.55	10:39 10:42	14.74 14.78	5.10 5.08	428 428	21.4 21.5	0.40	230 232	2	Clear
0.55							232 9:20		
0.55 Well ID:	10:42		5.08	428	21.5	0.34	232	2	Clear
0.55 Well ID:	10:42 CMW-08	14.78	5.08	428 13.89	21.5 feet feet Temperature	0.34 Purge Begin:	232 9:20	2 Sample Date:	Clear 6/14/2017
0.55 Well ID: Total Depth:	10:42 CMW-08	14.78 feet toc	5.08 IDTW: Set Intake:	428 13.89 30.00	21.5 feet feet	0.34 Purge Begin: Purge End:	232 9:20 9:35	2 Sample Date: Sample Time:	Clear 6/14/2017
0.55 Well ID: Total Depth: Purge Volume	10:42 CMW-08 36.50	14.78 feet toc Water Level	5.08 IDTW: Set Intake: pH	428 13.89 30.00 Conductivity	21.5 feet feet Temperature	0.34 Purge Begin: Purge End: DO	232 9:20 9:35 <b>Redox</b>	2 Sample Date: Sample Time: Turbidity	Clear 6/14/2017 9:40
0.55 Well ID: Total Depth: Purge Volume (Gallons)	10:42 CMW-08 36.50 Time	feet toc Water Level (feet toc)	5.08 IDTW: Set Intake: pH (S.U.)	428 13.89 30.00 Conductivity (μS/cm)	21.5 feet Temperature (° C)	0.34 Purge Begin: Purge End: DO (mg/L)	232 9:20 9:35 Redox (mV)	2 Sample Date: Sample Time: Turbidity (N.T.U.)	Clear 6/14/2017 9:40 <b>Color</b>
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00	10:42 CMW-08 36.50 Time 9:20	feet toc Water Level (feet toc) 13.89	5.08 IDTW: Set Intake: pH (S.U.) 4.75	428 13.89 30.00 Conductivity (μS/cm) 295	21.5 feet feet <b>Temperature</b> (° C) 23.0	0.34 Purge Begin: Purge End: DO (mg/L) 5.44	232 9:20 9:35 Redox (mV) 25	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM	Clear 6/14/2017 9:40 Color Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35	10:42 CMW-08 36.50 Time 9:20 9:23 9:26 9:29	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15	428 13.89 30.00 Conductivity (μS/cm) 295 287 288 288 289	21.5 feet <b>Temperature</b> (° C) 23.0 22.1 22.1 22.0	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM NM	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25	10:42 CMW-08 36.50 Time 9:20 9:23 9:26	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22	428 13.89 30.00 <b>Conductivity</b> (μ\$/cm) 295 287 288	21.5 feet <b>Temperature</b> (° C) 23.0 22.1 22.1	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM NM 1	Clear 6/14/2017 9:40 Color Clear Clear Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45	10:42 <b>CMW-08</b> 36.50 <b>Time</b> 9:20 9:23 9:26 9:29 9:32	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15	428 13.89 30.00 <b>Conductivity</b> (μS/cm) 295 287 288 289 291	21.5 feet feet <b>Temperature</b> (° C) 23.0 22.1 22.1 22.0 22.1	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM 1 1 1 1	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID:	10:42 CMW-08 36:50 Time 9:20 9:23 9:26 9:29 9:32 CMW-12	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09           15.09	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 4.15 IDTW:	428 13.89 30.00 <b>Conductivity</b> (μS/cm) 295 287 288 289 291 18.12	21.5 feet Temperature (° C) 23.0 22.1 22.1 22.0 22.1 feet	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin:	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM NM 1 1 1 1 Sample Date:	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear Clear 6/14/2017
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID: Total Depth:	10:42 <b>CMW-08</b> 36.50 <b>Time</b> 9:20 9:23 9:26 9:29 9:32	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09           15.09           feet toc	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 4.15 UDTW: Set Intake:	428 13.89 30.00 <b>Conductivity</b> (μS/cm) 295 287 288 289 291 18.12 29.00	21.5 feet Temperature (° C) 23.0 22.1 22.1 22.0 22.1 feet feet	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin: Purge End:	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30 10:39	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM NM 1 1 1 1 Sample Date: Sample Date: Sample Time:	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID: Total Depth: Purge Volume	10:42 CMW-08 36.50 Time 9:20 9:23 9:26 9:29 9:32 CMW-12 31.37	14.78           feet toc           Water Level           (feet toc)           13.89           14.66           14.90           15.09           feet toc           water Level	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 4.15 4.15 UDTW: Set Intake: pH	428 13.89 30.00 Conductivity (μS/cm) 295 287 288 289 291 18.12 29.00 Conductivity	21.5 feet feet (° C) 23.0 22.1 22.1 22.0 22.1 feet feet feet <b>Temperature</b>	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin: Purge End: DO	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30 10:39 <b>Redox</b>	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM 1 1 1 1 Sample Date: Sample Date: Sample Time: Turbidity	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear Clear 6/14/2017 10:45
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID: Total Depth: Purge Volume (Gallons)	10:42 CMW-08 36.50 9:20 9:23 9:26 9:29 9:32 CMW-12 31.37 Time	14.78           feet toc           Water Level           (feet toc)           13.89           14.66           14.90           15.09           feet toc           Water Level           (feet toc)	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 4.15 4.15 UDTW: Set Intake: pH (S.U.)	428 13.89 30.00 Conductivity (μ\$/cm) 295 287 288 289 291 18.12 29.00 Conductivity (μ\$/cm)	21.5 feet feet (° C) 23.0 22.1 22.1 22.0 22.1 feet feet feet (° C)	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin: Purge End: DO (mg/L)	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30 10:39 <b>Redox</b> (mV)	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM 1 1 1 Sample Date: Sample Date: Sample Time: Turbidity (N.T.U.)	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear Clear 6/14/2017 10:45 Color
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID: Total Depth: Purge Volume (Gallons) 0.00	10:42 CMW-08 36:50 9:20 9:23 9:26 9:29 9:32 CMW-12 31.37 Time 10:30	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09           15.09           feet toc           Water Level (feet toc)           18.12	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 IDTW: Set Intake: pH (S.U.) 5.80	428 13.89 30.00 Conductivity (μ\$/cm) 295 287 288 289 291 18.12 29.00 Conductivity (μ\$/cm) 395	21.5 feet feet (° C) 23.0 22.1 22.1 22.1 22.0 22.1 feet feet feet feet feet c C) 20.4	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin: Purge End: DO (mg/L) 9.43	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30 10:39 <b>Redox</b> (mV) 36	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM 1 1 1 Sample Date: Sample Date: Sample Time: Turbidity (N.T.U.) 1	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear 6/14/2017 10:45 Color Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15	10:42 CMW-08 36.50 Time 9:20 9:23 9:26 9:29 9:32 CMW-12 31.37 Time 10:30 10:33	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09           15.09           feet toc           Water Level (feet toc)           18.12           18.68	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 IDTW: Set Intake: pH (S.U.) 5.80 5.57	428 13.89 30.00 Conductivity (μS/cm) 295 287 288 289 291 18.12 29.00 Conductivity (μS/cm) 395 392	21.5 feet feet Temperature (° C) 23.0 22.1 22.1 22.0 22.1 feet feet feet (° C) 20.4 19.9	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin: Purge End: DO (mg/L) 9.43 7.59	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30 10:39 <b>Redox</b> (mV) 36 6	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM 1 1 1 1 Sample Date: Sample Date: Sample Time: Turbidity (N.T.U.) 1 1	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear 6/14/2017 10:45 Color Clear Clear
0.55 Well ID: Total Depth: Purge Volume (Gallons) 0.00 0.15 0.25 0.35 0.45 Well ID: Total Depth: Purge Volume (Gallons) 0.00	10:42 CMW-08 36:50 9:20 9:23 9:26 9:29 9:32 CMW-12 31.37 Time 10:30	14.78           feet toc           Water Level (feet toc)           13.89           14.66           14.90           15.09           15.09           feet toc           Water Level (feet toc)           18.12	5.08 IDTW: Set Intake: pH (S.U.) 4.75 4.37 4.22 4.15 4.15 IDTW: Set Intake: pH (S.U.) 5.80	428 13.89 30.00 Conductivity (μ\$/cm) 295 287 288 289 291 18.12 29.00 Conductivity (μ\$/cm) 395	21.5 feet feet (° C) 23.0 22.1 22.1 22.1 22.0 22.1 feet feet feet feet feet c C) 20.4	0.34 Purge Begin: Purge End: DO (mg/L) 5.44 2.45 1.65 1.24 1.06 Purge Begin: Purge End: DO (mg/L) 9.43	232 9:20 9:35 <b>Redox</b> (mV) 25 24 39 44 37 10:30 10:39 <b>Redox</b> (mV) 36	2 Sample Date: Sample Time: Turbidity (N.T.U.) NM 1 1 1 Sample Date: Sample Date: Sample Time: Turbidity (N.T.U.) 1	Clear 6/14/2017 9:40 Color Clear Clear Clear Clear Clear 6/14/2017 10:45 Color Clear

APPENDIX B

LABORATORY ANALYTICAL REPORTS

# **Report of Analysis**

#### Apex Companies, LLC

1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Huger Street 6-2017

Lot Number:SF14079

Date Completed:07/03/2017 Revision Date: 08/10/2017

Project Manager: Nisreen Saikaly

Kell M. Name

08/10/2017 9:56 AM Approved and released by: Project Manager: Kelly M. Nance



The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010 NELAC No: E87653 NC DENR No: 329 NC Field Parameters No: 5639

#### Case Narrative Apex Companies, LLC Lot Number: SF14079

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Report Revision 08/10/17

At the client's request, 1-methylnaphthalene and 2-methylnaphthalene were removed from the PAH list for all samples.

#### Sample Summary Apex Companies, LLC Lot Number: SF14079

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	TB061317	Aqueous	06/13/2017	06/14/2017
002	EB061317	Aqueous	06/13/2017 1745	06/14/2017
003	FD061317	Aqueous	06/13/2017 1630	06/14/2017
004	MW-5S	Aqueous	06/13/2017 1630	06/14/2017
005	MW-5M	Aqueous	06/13/2017 1705	06/14/2017
006	MW-5D	Aqueous	06/13/2017 1625	06/14/2017
007	MW-16	Aqueous	06/14/2017 0730	06/14/2017
008	MW-22	Aqueous	06/14/2017 0735	06/14/2017
009	CMW-01	Aqueous	06/14/2017 0915	06/14/2017
010	CMW-02	Aqueous	06/14/2017 0850	06/14/2017
011	CMW-03	Aqueous	06/14/2017 0835	06/14/2017
012	CMW-04	Aqueous	06/14/2017 1000	06/14/2017
013	CMW-07	Aqueous	06/14/2017 1045	06/14/2017
014	CMW-12	Aqueous	06/14/2017 1045	06/14/2017
015	CMW-08	Aqueous	06/14/2017 0940	06/14/2017
016	MW-19	Aqueous	06/14/2017 1310	06/14/2017
017	MW-21	Aqueous	06/14/2017 1410	06/14/2017
018	MW-14	Aqueous	06/14/2017 1510	06/14/2017
019	MW-13	Aqueous	06/14/2017 1410	06/14/2017
020	MW-20	Aqueous	06/14/2017 1335	06/14/2017
021	MW-3	Aqueous	06/14/2017 1245	06/14/2017

(21 samples)

# SHEALY ENVIRONMENTAL SERVICES, INC.

#### Detection Summary Apex Companies, LLC

Lot Number: SF14079

Sampl	e Sample ID N	/latrix	Parameter	Method	Result	Q Units	s Page
003	FD061317 Ac	queous	Methyl tertiary butyl ether	8260B	37	ug/L	8
004	MW-5S Ac	queous	Methyl tertiary butyl ether	8260B	33	ug/L	10
007	MW-16 Ac	queous	Acenaphthene	8270D	11	ug/L	17
010	CMW-02 Ac	queous	Benzene	8260B	6.9	ug/L	22
010	CMW-02 Ac	queous	Xylenes (total)	8260B	18	ug/L	22
010	CMW-02 Ac	queous	Acenaphthylene	8270D	38	ug/L	23
010	CMW-02 Ac	queous	Fluorene	8270D	21	ug/L	23
010	CMW-02 Ac	queous	Naphthalene	8270D	420	ug/L	23
010	CMW-02 Ac	queous	Phenanthrene	8270D	34	ug/L	23
011	CMW-03 Ac	queous	Benzene	8260B	130	ug/L	24
011	CMW-03 Ac	queous	Ethylbenzene	8260B	35	ug/L	24
011	CMW-03 Ac	queous	Toluene	8260B	450	ug/L	24
011	CMW-03 Ac	queous	Xylenes (total)	8260B	550	ug/L	24
011	CMW-03 Ac	queous	Acenaphthylene	8270D	55	ug/L	25
011	CMW-03 Ac	queous	Naphthalene	8270D	2400	ug/L	25
012	CMW-04 Ac	queous	Ethylbenzene	8260B	26	ug/L	26
012	CMW-04 Ac	queous	Toluene	8260B	210	ug/L	26
012	CMW-04 Ac	queous	Xylenes (total)	8260B	400	ug/L	26
012	CMW-04 Ac	queous	Fluorene	8270D	46	ug/L	27
012	CMW-04 Ac	queous	Naphthalene	8270D	2000	ug/L	27
012	CMW-04 Ac	queous	Phenanthrene	8270D	55	ug/L	27
013	CMW-07 Ac	queous	Benzene	8260B	7.1	ug/L	28
015	CMW-08 Ac	queous	Naphthalene	8270D	11	ug/L	33
016	MW-19 Ac	queous	Benzene	8260B	15	ug/L	34
016	MW-19 Ac	queous	Ethylbenzene	8260B	13	ug/L	34
016	MW-19 Ac	queous	Toluene	8260B	9.0	ug/L	34
016	MW-19 Ac	queous	Xylenes (total)	8260B	47	ug/L	34
016	MW-19 Ac	queous	Acenaphthene	8270D	28	ug/L	35
016	MW-19 Ac	queous	Acenaphthylene	8270D	57	ug/L	35
016	MW-19 Ac	queous	Fluorene	8270D	19	ug/L	35
016	MW-19 Ac	queous	Naphthalene	8270D	340	ug/L	35
016	MW-19 Ac	queous	Phenanthrene	8270D	21	ug/L	35
019	MW-13 Ac	queous	Ethylbenzene	8260B	53	ug/L	
019	MW-13 Ac	queous	Toluene	8260B	120	ug/L	40
019	MW-13 Ac	queous	Xylenes (total)	8260B	420	ug/L	40
019	MW-13 Ac	queous	Naphthalene	8270D	2200	ug/L	41
019	MW-13 Ac	queous	Phenanthrene	8270D	45	ug/L	41
020	MW-20 Ac	queous	Benzene	8260B	90	ug/L	42
020	MW-20 Ac	queous	Naphthalene	8270D	13	ug/L	43

(39 detections)

Client: Apex Companies,	LLC					Laboratory ID: SF14079-001		
Description: TB061317						Matrix: Aqueous		
Date Sampled:06/13/2017								
Date Received: 06/14/2017								
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	5	s Date Analyst 17 1303 JM1	Prep Date	Batch 44333		
Deremeter			CAS	Analytical	Decult O	1.00	Unito	Dun
Parameter		-	nber	Method	Result Q	LOQ	Units	Run
Benzene			43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limit					
1,2-Dichloroethane-d4		106	70-130					
Bromofluorobenzene		107	70-130	1				
Toluene-d8		108	70-130	1				

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Client: Apex Companies,	LLC					Laboratory ID: SF14079-002	2	
Description: EB061317						Matrix: Aqueous		
Date Sampled:06/13/2017 1745								
Date Received: 06/14/2017								
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	2	sis Date Analyst 2017 1327 JM1	Prep Date	Batch 44333		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 lecovery	Accepta Lim					
1,2-Dichloroethane-d4		105	70-13	30				
Bromofluorobenzene		105	70-13	30				
Toluene-d8		106	70-13	30				

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the LOQ
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%

 H = Out of holding time
 W = Reported on wet weight basis
 P = The RPD between two GC columns exceeds 40%

 Shealy Environmental Services, Inc.
 For the RPD between two GC columns exceeds 40%

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Description: EB061317 Date Sampled:06/13/2017 1745 Laboratory ID: SF14079-002

Matrix: Aqueous

Date Received: 06/14/2017

Run 1

					_
n Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch	
3520C	8270D	1	06/29/2017 2106 JCG	06/15/2017 1620 44317	

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance nits				
Nitrobenzene-d5	79 38-1	27				
2-Fluorobiphenyl	65 37-1	29				
Terphenyl-d14	70 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, L Description: FD061317 Date Sampled:06/13/2017 1630 Date Received: 06/14/2017	LC					Laboratory ID: SF14079-00: Matrix: Aqueous	3	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	5	sis Date Analyst 2017 1359 ALL	Prep Date	Batch 44463		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	-04-4	8260B	37	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Lim					
1,2-Dichloroethane-d4		90	70-13	30				
Bromofluorobenzene		110	70-13	30				
Toluene-d8		106	70-13	30				

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the LOQ
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%

 H = Out of holding time
 W = Reported on wet weight basis
 P = The RPD between two GC columns exceeds 40%

 Shealy Environmental Services, Inc.
 For the RPD between two GC columns exceeds 40%

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Description: FD061317

Date Sampled:06/13/2017 1630 Date Received:06/14/2017 Laboratory ID: SF14079-003

Matrix: Aqueous

Run Prep MethodAnalytical MethodDilutionAnalysis DateAnalysisPrep DateBatch13520C8270D106/29/20172220JCG06/15/2017162044317

	CAS	Analytical				
Parameter	Number	Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance nits				
Nitrobenzene-d5	70 38-1	27				
2-Fluorobiphenyl	55 37-1	29				
Terphenyl-d14	66 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, L Description: MW-5S Date Sampled:06/13/2017 1630	LC					Laboratory ID: SF14079-004 Matrix: Aqueous	1	
Date Received: 06/14/2017								
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1		is Date Analyst 017 1425 ALL	Prep Date	Batch 44463		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE	)	1634-	-04-4	8260B	33	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	-20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptar Limi					
1,2-Dichloroethane-d4		88	70-13	0				
Bromofluorobenzene		103	70-13	0				
Toluene-d8		104	70-13	0				

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Description: MW-5S

Date Sampled:06/13/2017 1630

Laboratory ID: SF14079-004

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date E	Batch
1	3520C	8270D	1	06/29/2017 2244 JCG	06/15/2017 1620 4	4317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	68 38-1	27				
2-Fluorobiphenyl	54 37-1	29				
Terphenyl-d14	61 10-1	48				

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies,	LLC					Laboratory ID: SF14079-005	5	
Description: MW-5M						Matrix: Aqueous		
Date Sampled:06/13/2017 1705								
Date Received: 06/14/2017								
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2017 1450 ALL	Prep Date	Batch 44463		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	Units	Run
Benzene			43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Accepta Lim					
1,2-Dichloroethane-d4		90	70-13	30				
Bromofluorobenzene		107	70-13	30				
Toluene-d8		106	70-13	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: MW-5M

1

Date Sampled:06/13/2017 1705

Laboratory ID: SF14079-005 Matrix: Aqueous

Date Received: 06/14/2017 Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 3520C 8270D 1 06/29/2017 2309 JCG 06/15/2017 1620 44317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	66 38-1	27				
2-Fluorobiphenyl	52 37-1	29				
Terphenyl-d14	63 10-1	48				

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies, Description: MW-5D Date Sampled:06/13/2017 1625 Date Received: 06/14/2017	LLC					Laboratory ID: SF14079-000 Matrix: Aqueous	6	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2017 1515 ALL	Prep Date	Batch 44463		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	-04-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Accepta Lim					
1,2-Dichloroethane-d4		89	70-13	30				
Bromofluorobenzene		104	70-13	30				
Toluene-d8		106	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: MW-5D

Date Received: 06/14/2017

Date Sampled:06/13/2017 1625

Laboratory ID: SF14079-006

Matrix: Aqueous

Run 1	Prep Method 3520C	Analytical Method 8270D	Analysis Date Analyst 06/29/2017 2333 JCG	Batch 44317	

	CAS	Analytical				
Parameter	Number	Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accepta Q % Recovery Lim					
Nitrobenzene-d5	70 38-1	27				
2-Fluorobiphenyl	56 37-1.	29				
Terphenyl-d14	65 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, Description: MW-16 Date Sampled:06/14/2017 0730 Date Received: 06/14/2017	LLC					Laboratory ID: SF14079-007 Matrix: Aqueous	,	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	5	s Date Analyst 17 1540 ALL	Prep Date	Batch 44463		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Acceptan Limit					
1,2-Dichloroethane-d4		88	70-130	)				
Bromofluorobenzene		111	70-130	)				
Toluene-d8		104	70-130	)				

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the LOQ
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%

 H = Out of holding time
 W = Reported on wet weight basis
 P

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Laboratory ID: SF14079-007

Matrix: Aqueous

Client: Apex Companies, LLC

Description: MW-16

Date Sampled:06/14/2017 0730

Date Received: 06/14/2017

1

Terphenyl-d14

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 3520C 8270D 06/29/2017 2358 JCG 06/15/2017 1620 44317 1

27

CAS Analytical Parameter Result Q LOQ Units Run Number Method Acenaphthene 83-32-9 8270D 11 10 ug/L 1 Acenaphthylene 208-96-8 8270D ND 10 ug/L 1 Anthracene 120-12-7 8270D ND 10 ug/L 1 Benzo(a)anthracene 56-55-3 8270D ND 10 ug/L 1 Benzo(a)pyrene 50-32-8 8270D ND 10 ug/L 1 Benzo(b)fluoranthene 205-99-2 8270D ND 10 ug/L 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 10 ug/L 1 Benzo(k)fluoranthene 207-08-9 8270D ND 10 ug/L 1 Chrysene 218-01-9 8270D ND 10 ug/L 1 Dibenzo(a,h)anthracene 53-70-3 8270D ND 10 ug/L 1 Fluoranthene ND 10 206-44-0 8270D ug/L 1 Fluorene 86-73-7 8270D ND 10 ug/L 1 ND 193-39-5 8270D 10 ug/L 1 Indeno(1,2,3-c,d)pyrene Naphthalene 91-20-3 8270D ND 10 ug/L 1 85-01-8 8270D ND Phenanthrene 10 ug/L 1 Pyrene 129-00-0 8270D ND 10 ug/L 1 Run 1 Acceptance % Recovery Surrogate Q Limits 58 Nitrobenzene-d5 38-127 2-Fluorobiphenyl 49 37-129

10-148

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies, Description: MW-22 Date Sampled:06/14/2017 0735 Date Received: 06/14/2017	LLC					Laboratory ID: SF14079-008 Matrix: Aqueous	3	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	5	is Date Analyst 017 1605 ALL	Prep Date	Batch 44463		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-	-04-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	-20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %1	Run 1 Recovery	Accepta Limi					
1,2-Dichloroethane-d4		88	70-13	0				
Bromofluorobenzene		105	70-13	0				
Toluene-d8		104	70-13	0				

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the LOQ
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%

 H = Out of holding time
 W = Reported on wet weight basis
 P = The RPD between two GC columns exceeds 40%

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Description: MW-22

Date Sampled:06/14/2017 0735

Laboratory ID: SF14079-008

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch
1	3520C	8270D	1	06/30/2017 0022 JCG	06/15/2017 1620 44317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	73 38-1	27				
2-Fluorobiphenyl	57 37-1	29				
Terphenyl-d14	62 10-1	48				

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies,	, LLC					Laboratory ID: SF14079-00	9	
Description: CMW-01						Matrix: Aqueous		
Date Sampled:06/14/2017 0915								
Date Received: 06/14/2017								
Run Prep Method	Analytical Method	Dilution	Anal	ysis Date Analyst	Prep Date	Batch		
1 5030B	8260B	1	06/16	/2017 1630 ALL		44463		
			CAS	Analytical				
Parameter		Nu	mber	Method	Result Q	LOQ	Units	Run
Benzene		71	-43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	-41-4	8260B	ND	5.0	ug/L	1
Toluene		108-	-88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330	-20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accep Lir	tance mits				
1,2-Dichloroethane-d4		91	70-1	130				
Bromofluorobenzene		109	70-1	130				
Toluene-d8		105	70-1	130				

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the LOQ
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%

 H = Out of holding time
 W = Reported on wet weight basis
 File

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Description: CMW-01

Laboratory ID: SF14079-009 Matrix: Aqueous

Date Sampled:06/14/2017 0915

Date Received: 06/14/2017

1

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 3520C 8270D 1 06/30/2017 2130 JCG 06/15/2017 1620 44317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	62 38-1	27				
2-Fluorobiphenyl	49 37-1	29				
Terphenyl-d14	65 10-1	48				

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies, Description: CMW-02 Date Sampled:06/14/2017 0850 Date Received: 06/14/2017	LLC					Laboratory ID: SF14079-0 Matrix: Aqueous	10	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1		ysis Date Analyst 2017 1655 ALL	Prep Date	Batch 44463		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	6.9	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	-20-7	8260B	18	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accept Lin	ance nits				
1,2-Dichloroethane-d4		89	70-1	30				
Bromofluorobenzene		112	70-1	30				
Toluene-d8		104	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: CMW-02 Date Sampled:06/14/2017 0850 Laboratory ID: SF14079-010

Matrix: Aqueous

Date Received: 06/14/2017

Run 1

Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch
3520C	8270D	10	06/30/2017 0338 JCG	06/15/2017 1620 44317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	8.0	ug/L	1
Acenaphthylene	208-96-8	8270D	38	8.0	ug/L	1
Anthracene	120-12-7	8270D	ND	8.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	8.0	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	8.0	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	8.0	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	8.0	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	8.0	ug/L	1
Chrysene	218-01-9	8270D	ND	8.0	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	8.0	ug/L	1
Fluoranthene	206-44-0	8270D	ND	8.0	ug/L	1
Fluorene	86-73-7	8270D	21	8.0	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	8.0	ug/L	1
Naphthalene	91-20-3	8270D	420	8.0	ug/L	1
Phenanthrene	85-01-8	8270D	34	8.0	ug/L	1
Pyrene	129-00-0	8270D	ND	8.0	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	58 38-1	27				
2-Fluorobiphenyl	47 37-1	29				
Terphenyl-d14	61 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, Description: CMW-03 Date Sampled:06/14/2017 0835 Date Received: 06/14/2017	LLC					Laboratory ID: SF14079-01 Matrix: Aqueous	1	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 5		ysis Date Analyst 2017 1859 ALL	Prep Date	Batch 44463		
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71	-43-2	8260B	130	25	ug/L	1
Ethylbenzene		100	-41-4	8260B	35	25	ug/L	1
Toluene		108	-88-3	8260B	450	25	ug/L	1
Xylenes (total)		1330	-20-7	8260B	550	25	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accept Lin	ance nits				
1,2-Dichloroethane-d4		89	70-1	30				
Bromofluorobenzene		117	70-1	30				
Toluene-d8		103	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: CMW-03 Date Sampled:06/14/2017 0835 Laboratory ID: SF14079-011

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Ba	atch
1	3520C	8270D	50	06/30/2017 0451 JCG	06/15/2017 1620 44	317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	40	ug/L	1
Acenaphthylene	208-96-8	8270D	55	40	ug/L	1
Anthracene	120-12-7	8270D	ND	40	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	40	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	40	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	40	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	40	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	40	ug/L	1
Chrysene	218-01-9	8270D	ND	40	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	40	ug/L	1
Fluoranthene	206-44-0	8270D	ND	40	ug/L	1
Fluorene	86-73-7	8270D	ND	40	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	40	ug/L	1
Naphthalene	91-20-3	8270D	2400	40	ug/L	1
Phenanthrene	85-01-8	8270D	ND	40	ug/L	1
Pyrene	129-00-0	8270D	ND	40	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance nits				
Nitrobenzene-d5	52 38-1	27				
2-Fluorobiphenyl	47 37-1	29				
Terphenyl-d14	62 10-1	48				

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies Description: CMW-04 Date Sampled:06/14/2017 1000 Date Received: 06/14/2017	LLC					Laboratory ID: SF14079-01 Matrix: Aqueous	2	
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 5	5	vsis Date Analyst 2017 1924 ALL	Prep Date	Batch 44463		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	25	ug/L	1
Ethylbenzene		100-4	41-4	8260B	26	25	ug/L	1
Toluene		108-8	88-3	8260B	210	25	ug/L	1
Xylenes (total)		1330-	20-7	8260B	400	25	ug/L	1
Surrogate		Run 1 Recovery	Accept Lin	ance hits				
1,2-Dichloroethane-d4		88	70-1	30				
Bromofluorobenzene		115	70-1	30				
Toluene-d8		103	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: CMW-04

Date Sampled:06/14/2017 1000

Laboratory ID: SF14079-012

Matrix: Aqueous

Date Received: 06/14/2017Run Prep MethodAnalytical Method Dilution13520C8270D5006/30/2017 0516 JCG0

Analyst Prep Date Batch 6 JCG 06/15/2017 1620 44317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	40	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	40	ug/L	1
Anthracene	120-12-7	8270D	ND	40	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	40	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	40	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	40	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	40	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	40	ug/L	1
Chrysene	218-01-9	8270D	ND	40	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	40	ug/L	1
Fluoranthene	206-44-0	8270D	ND	40	ug/L	1
Fluorene	86-73-7	8270D	46	40	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	40	ug/L	1
Naphthalene	91-20-3	8270D	2000	40	ug/L	1
Phenanthrene	85-01-8	8270D	55	40	ug/L	1
Pyrene	129-00-0	8270D	ND	40	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	48 38-1	27				
2-Fluorobiphenyl	44 37-1	29				
Terphenyl-d14	54 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies,	LLC					Laboratory ID: SF14079-01	3	
Description: CMW-07						Matrix: Aqueous		
Date Sampled:06/14/2017 1045								
Date Received: 06/14/2017								
Run Prep Method	Analytical Method	Dilution	Anal	ysis Date Analyst	Prep Date	Batch		
1 5030B	8260B	1	06/16	/2017 1720 ALL		44463		
			CAS	Analytical				
Parameter		Nur	nber	Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	7.1	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Accept Lir	tance mits				
1,2-Dichloroethane-d4		87	70-1	130				
Bromofluorobenzene		108	70-1	130				
Toluene-d8		103	70-1	130				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, LLC Description: CMW-07

Date Sampled:06/14/2017 1045

Laboratory ID: SF14079-013

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Ba	itch
1	3520C	8270D	1	06/30/2017 0047 JCG	06/15/2017 1620 443	317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance nits				
Nitrobenzene-d5	65 38-1	27				
2-Fluorobiphenyl	51 37-1	29				
Terphenyl-d14	62 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies,	LLC					Laboratory ID: SF14079-01	4	
Description: CMW-12						Matrix: Aqueous		
Date Sampled:06/14/2017 1045								
Date Received: 06/14/2017								
Run Prep Method	Analytical Method	Dilution	Anal	ysis Date Analyst	Prep Date	Batch		
1 5030B	8260B	1	06/16	/2017 1745 ALL		44463		
			CAS	Analytical				
Parameter		Nur	nber	Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Accept Lir	tance mits				
1,2-Dichloroethane-d4		90	70-1	130				
Bromofluorobenzene		109	70-1	130				
Toluene-d8		106	70-1	130				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: CMW-12 Date Sampled:06/14/2017 1045 Laboratory ID: SF14079-014

Matrix: Aqueous

Date Received: 06/14/2017

						-
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Bate	ch
1	3520C	8270D	1	06/30/2017 0111 JCG	06/15/2017 1620 443	17

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance nits				
Nitrobenzene-d5	70 38-1	27				
2-Fluorobiphenyl	58 37-1	29				
Terphenyl-d14	64 10-1	48				
r cipitetty-u t+	04 10-1	40				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies,	LLC					Laboratory ID: SF14079-01	5	
Description: CMW-08						Matrix: Aqueous		
Date Sampled:06/14/2017 0940								
Date Received: 06/14/2017								
Run Prep Method	Analytical Method	Dilution	Analy	ysis Date Analyst	Prep Date	Batch		
1 5030B	8260B	1	06/16/	2017 1512 TML		44453		
			CAS	Analytical				
Parameter		Nur	nber	Method	Result Q	LOQ	Units	Run
Benzene		71-	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	41-4	8260B	ND	5.0	ug/L	1
Toluene		108-	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Accept Lin	ance nits				
1,2-Dichloroethane-d4		89	70-1	30				
Bromofluorobenzene		92	70-1	30				
Toluene-d8		98	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Description: CMW-08 Date Sampled:06/14/2017 0940 Laboratory ID: SF14079-015

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date E	Batch
1	3520C	8270D	1	06/30/2017 0135 JCG	06/15/2017 1620 4	4317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	11	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lir	ance nits				
Nitrobenzene-d5	78 38-1	27				
2-Fluorobiphenyl	63 37-1	29				
Terphenyl-d14	66 10-1	48				

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis

Client: Apex Companies	, LLC					Laboratory ID: SF14079-01	6	
Description: MW-19						Matrix: Aqueous		
Date Sampled:06/14/2017 1310								
Date Received: 06/14/2017								
Run Prep Method 1 5030B	Analytical Methoc 8260B			ysis Date Analyst /2017 1751 TML	Prep Date	Batch 44453		
			CAC	Analutiaal				
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71	-43-2	8260B	15	5.0	ug/L	1
Ethylbenzene		100-	-41-4	8260B	13	5.0	ug/L	1
Toluene		108-	-88-3	8260B	9.0	5.0	ug/L	1
Xylenes (total)		1330	-20-7	8260B	47	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accep Lir	tance mits				
1,2-Dichloroethane-d4		88	70-1	130				
Bromofluorobenzene		94	70-1	130				
Toluene-d8		98	70-1	130				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, LLC

Description: MW-19

Date Sampled:06/14/2017 1310

Laboratory ID: SF14079-016

Matrix: Aqueous

Date Received: 06/14/2017

Run 1

Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date B	atch
3520C	8270D	10	06/30/2017 2106 JCG	06/15/2017 1620 44	4317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	28	8.0	ug/L	1
Acenaphthylene	208-96-8	8270D	57	8.0	ug/L	1
Anthracene	120-12-7	8270D	ND	8.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	8.0	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	8.0	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	8.0	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	8.0	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	8.0	ug/L	1
Chrysene	218-01-9	8270D	ND	8.0	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	8.0	ug/L	1
Fluoranthene	206-44-0	8270D	ND	8.0	ug/L	1
Fluorene	86-73-7	8270D	19	8.0	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	8.0	ug/L	1
Naphthalene	91-20-3	8270D	340	8.0	ug/L	1
Phenanthrene	85-01-8	8270D	21	8.0	ug/L	1
Pyrene	129-00-0	8270D	ND	8.0	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance hits				
Nitrobenzene-d5	59 38-1	27				
2-Fluorobiphenyl	50 37-1	29				
Terphenyl-d14	60 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

# Volatile Organic Compounds by GC/MS

Client: Apex Companies	, LLC					Laboratory ID: SF14079-01	7	
Description: MW-21						Matrix: Aqueous		
Date Sampled:06/14/2017 1410								
Date Received: 06/14/2017								
Run Prep Method	Analytical Method			ysis Date Analyst	Prep Date	Batch		
1 5030B	8260B	I	06/16	/2017 1534 TML		44453		
			CAS	Analytical				
Parameter		Nu	mber	Method	Result Q	LOQ	Units	Run
Benzene		71	-43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100	-41-4	8260B	ND	5.0	ug/L	1
Toluene		108	-88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330	-20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accep Lii	tance mits				
1,2-Dichloroethane-d4		90	70-	130				
Bromofluorobenzene		94	70-	130				
Toluene-d8		99	70-	130				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, LLC

Description: MW-21

Date Sampled:06/14/2017 1410

Laboratory ID: SF14079-017

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Ba	atch
1	3520C	8270D	1	06/30/2017 0224 JCG	06/15/2017 1620 44	1317

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lin	ance nits				
Nitrobenzene-d5	77 38-1	27				
2-Fluorobiphenyl	62 37-1	29				
Terphenyl-d14	67 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

# Volatile Organic Compounds by GC/MS

Client: Apex Companies Description: MW-14 Date Sampled:06/14/2017 1510 Date Received: 06/14/2017	, LLC					Laboratory ID: SF14079- Matrix: Aqueous		
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	-	ysis Date Analyst /2017 1557 TML	Prep Date	Batch 44453		
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-	-43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-	-41-4	8260B	ND	5.0	ug/L	1
Toluene		108-	-88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330	-20-7	8260B	ND	5.0	ug/L	1
Surrogate		Run 1 Recovery	Accept Lir	tance mits				
1,2-Dichloroethane-d4		90	70-1	130				
Bromofluorobenzene		94	70-1	130				
Toluene-d8		98	70-1	130				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Laboratory ID: SF14079-018

Matrix: Aqueous

Client: Apex Companies, LLC

Description: MW-14

Date Sampled:06/14/2017 1510

Date Received: 06/14/2017

1

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 3520C 8270D 06/30/2017 0249 JCG 06/15/2017 1620 44317 1

CAS Analytical Parameter Result Q LOQ Units Run Number Method Acenaphthene 83-32-9 8270D ND 10 ug/L 1 Acenaphthylene 208-96-8 8270D ND 10 ug/L 1 Anthracene 120-12-7 8270D ND 10 ug/L 1 Benzo(a)anthracene 56-55-3 8270D ND 10 ug/L 1 Benzo(a)pyrene 50-32-8 8270D ND 10 ug/L 1 Benzo(b)fluoranthene 205-99-2 8270D ND 10 ug/L 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 10 ug/L 1 Benzo(k)fluoranthene 207-08-9 8270D ND 10 ug/L 1 Chrysene 218-01-9 8270D ND 10 ug/L 1 Dibenzo(a,h)anthracene 53-70-3 8270D ND 10 ug/L 1 Fluoranthene ND 10 206-44-0 8270D ug/L 1 Fluorene 86-73-7 8270D ND 10 ug/L 1 ND 193-39-5 8270D 10 ug/L 1 Indeno(1,2,3-c,d)pyrene Naphthalene 91-20-3 8270D ND 10 ug/L 1 85-01-8 8270D ND Phenanthrene 10 ug/L 1 Pyrene 129-00-0 8270D ND 10 ug/L 1 Run 1 Acceptance % Recovery Surrogate Q Limits Nitrobenzene-d5 71 38-127 2-Fluorobiphenyl 55 37-129 Terphenyl-d14 62 10-148

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% H = Out of holding time W = Reported on wet weight basis Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

# Volatile Organic Compounds by GC/MS

Client: Apex Companie	es, LLC					La	aboratory ID: SF14079-01	9	
Description: MW-13							Matrix: Aqueous		
Date Sampled:06/14/2017 1410	)								
Date Received: 06/14/2017									
Run Prep Method	Analytical Method	Dilution	Analysis	Date Analys	st Prep	Date	Batch		
1 5030B	8260B	1	06/16/201	7 1620 TML			44453		
2 5030B	8260B	5	06/19/201	7 1639 JM1			44588		
			CAS	Analytical					
Parameter		Nu	mber	Method	Result	Q	LOQ	Units	Run
Benzene		71	-43-2	8260B	ND		5.0	ug/L	1
Ethylbenzene		100-	-41-4	8260B	53		5.0	ug/L	1
Toluene		108-	-88-3	8260B	120		5.0	ug/L	1
Xylenes (total)		1330	-20-7	8260B	420		25	ug/L	2
Surrogate	Q %1	Run 1 Recovery	Acceptanc Limits		un 2 Ac ecovery	ceptance Limits	e		
1,2-Dichloroethane-d4		89	70-130		100	70-130			
Bromofluorobenzene		91	70-130		99	70-130			
Toluene-d8		98	70-130		97	70-130			

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, LLC

Description: MW-13

1

Date Sampled:06/14/2017 1410

Laboratory ID: SF14079-019

Matrix: Aqueous

Date Received: 06/14/2017 Run Prep Method Anal

In Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
3520C	8270D	50	06/30/2017 0540 JCG	06/15/2017 1620	44317

	CAS	Analytical				
Parameter	Number	Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	40	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	40	ug/L	1
Anthracene	120-12-7	8270D	ND	40	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	40	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	40	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	40	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	40	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	40	ug/L	1
Chrysene	218-01-9	8270D	ND	40	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	40	ug/L	1
Fluoranthene	206-44-0	8270D	ND	40	ug/L	1
Fluorene	86-73-7	8270D	ND	40	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	40	ug/L	1
Naphthalene	91-20-3	8270D	2200	40	ug/L	1
Phenanthrene	85-01-8	8270D	45	40	ug/L	1
Pyrene	129-00-0	8270D	ND	40	ug/L	1
	Run 1 Accept	ance				
Surrogate	Q % Recovery Lin	nits				
Nitrobenzene-d5	48 38-1	27				
2-Fluorobiphenyl	52 37-1	29				
Terphenyl-d14	47 10-1	48				

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the LOQ
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%

 H = Out of holding time
 W = Reported on wet weight basis
 File

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

# Volatile Organic Compounds by GC/MS

Client: Apex Companies, Description: MW-20 Date Sampled:06/14/2017 1335	LLC					Laboratory ID: SF14079-0. Matrix: Aqueous	20	
Date Received: 06/14/2017								
Run Prep Method 2 5030B	Analytical Method 8260B	Dilution 1	5	vsis Date Analyst 2017 1416 JM1	Prep Date	Batch 44588		
Parameter		Nu	CAS mber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71	-43-2	8260B	90	5.0	ug/L	2
Ethylbenzene		100	-41-4	8260B	ND	5.0	ug/L	2
Toluene		108	-88-3	8260B	ND	5.0	ug/L	2
Xylenes (total)		1330	-20-7	8260B	ND	5.0	ug/L	2
Surrogate	Q %	Run 2 Recovery	Accept Lin	ance nits				
1,2-Dichloroethane-d4		103	70-1	30				
Bromofluorobenzene		109	70-1	30				
Toluene-d8		101	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, LLC

Description: MW-20

Date Sampled:06/14/2017 1335 Date Received:06/14/2017 Laboratory ID: SF14079-020

Matrix: Aqueous

Run 1	Prep Method 3520C	Analytical Methor 8270[	5	5	Prep Date 06/20/2017 0947	Batch 44664	
			<u> </u>	and all all and			

	CAS	Analytical				
Parameter	Number	Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	13	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accepta Q % Recovery Lim					
Nitrobenzene-d5	70 38-1	27				
2-Fluorobiphenyl	61 37-1	29				
Terphenyl-d14	72 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

# Volatile Organic Compounds by GC/MS

Client: Apex Companies	s, LLC					Laboratory ID: SF1407	9-021	
Description: MW-3						Matrix: Aqueou	S	
Date Sampled:06/14/2017 1245								
Date Received: 06/14/2017								
Run Prep Method 1 5030B	Analytical Methoo 8260B			vsis Date Analyst 2017 1643 TML	Prep Date	Batch 44453		
Parameter			CAS nber	Analytical Method	Result Q	LOQ	Units	Run
Benzene		71-4	43-2	8260B	ND	5.0	ug/L	1
Ethylbenzene		100-4	41-4	8260B	ND	5.0	ug/L	1
Toluene		108-8	88-3	8260B	ND	5.0	ug/L	1
Xylenes (total)		1330-2	20-7	8260B	ND	5.0	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accept Lim	ance hits				
1,2-Dichloroethane-d4		88	70-1	30				
Bromofluorobenzene		92	70-1	30				
Toluene-d8		97	70-1	30				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Client: Apex Companies, LLC

Description: MW-3

Date Sampled:06/14/2017 1245

Laboratory ID: SF14079-021

Matrix: Aqueous

Date Received: 06/14/2017

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	3520C	8270D	1	06/28/2017 1208 JCG	06/20/2017 0947	44664

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
Acenaphthene	83-32-9	8270D	ND	10	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	10	ug/L	1
Anthracene	120-12-7	8270D	ND	10	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	10	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	10	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	10	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	10	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	10	ug/L	1
Chrysene	218-01-9	8270D	ND	10	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	10	ug/L	1
Fluoranthene	206-44-0	8270D	ND	10	ug/L	1
Fluorene	86-73-7	8270D	ND	10	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	10	ug/L	1
Naphthalene	91-20-3	8270D	ND	10	ug/L	1
Phenanthrene	85-01-8	8270D	ND	10	ug/L	1
Pyrene	129-00-0	8270D	ND	10	ug/L	1
Surrogate	Run 1 Accept Q % Recovery Lir	ance nits				
Nitrobenzene-d5	72 38-1	27				
2-Fluorobiphenyl	62 37-1	29				
Terphenyl-d14	76 10-1	48				

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

QC Summary

Sample ID: SQ44333-001 Batch:44333 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Result	Q Dil	LOQ	Units	Analysis Date				
Benzene	ND	1	5.0	ug/L	06/15/2017 1005				
Ethylbenzene	ND	1	5.0	ug/L	06/15/2017 1005				
Methyl tertiary butyl ether (MTBE)	ND	1	5.0	ug/L	06/15/2017 1005				
Toluene	ND	1	5.0	ug/L	06/15/2017 1005				
Xylenes (total)	ND	1	5.0	ug/L	06/15/2017 1005				
Surrogate	Q % Rec	Acceptance Limit							
1,2-Dichloroethane-d4	102	70-130							
Bromofluorobenzene	104	70-130							
Toluene-d8	107	70-130							

# Volatile Organic Compounds by GC/MS - LCS

Sample ID: SQ44333-002 Batch:44333 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	43		1	87	70-130	06/15/2017 0908			
Ethylbenzene	50	45		1	90	70-130	06/15/2017 0908			
Methyl tertiary butyl ether (MTBE)	50	42		1	84	70-130	06/15/2017 0908			
Toluene	50	44		1	88	70-130	06/15/2017 0908			
Xylenes (total)	100	86		1	86	70-130	06/15/2017 0908			
Surrogate	Q % Rec	Accepta Limit								
1,2-Dichloroethane-d4	100	70-13	0							
Bromofluorobenzene	108	70-13	0							
Toluene-d8	108	70-13	0							

Sample ID: SQ44453-001 Batch:44453 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q Dil	LOQ	Units	Analysis Date						
Benzene	ND	1	5.0	ug/L	06/16/2017 1029						
Ethylbenzene	ND	1	5.0	ug/L	06/16/2017 1029						
Toluene	ND	1	5.0	ug/L	06/16/2017 1029						
Xylenes (total)	ND	1	5.0	ug/L	06/16/2017 1029						
Surrogate	Q % Rec	Acceptance Limit									
1,2-Dichloroethane-d4	89	70-130									
Bromofluorobenzene	96	70-130									
Toluene-d8	99	70-130									

# Volatile Organic Compounds by GC/MS - LCS

Sample ID: SQ44453-002 Batch:44453 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	52		1	104	70-130	06/16/2017 0930			
Ethylbenzene	50	52		1	103	70-130	06/16/2017 0930			
Toluene	50	52		1	105	70-130	06/16/2017 0930			
Xylenes (total)	100	110		1	108	70-130	06/16/2017 0930			
Surrogate	Q % Rec	Acceptan Limit	ice							
1,2-Dichloroethane-d4	87	70-130	)							
Bromofluorobenzene	97	70-130	)							
Toluene-d8	101	70-130	)							

Sample ID: SQ44463-001 Batch:44463 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Result	Q Dil	LOQ	Units	Analysis Date				
Benzene	ND	1	5.0	ug/L	06/16/2017 1052				
Ethylbenzene	ND	1	5.0	ug/L	06/16/2017 1052				
Methyl tertiary butyl ether (MTBE)	ND	1	5.0	ug/L	06/16/2017 1052				
Toluene	ND	1	5.0	ug/L	06/16/2017 1052				
Xylenes (total)	ND	1	5.0	ug/L	06/16/2017 1052				
Surrogate	Q % Rec	Acceptance Limit							
1,2-Dichloroethane-d4	91	70-130							
Bromofluorobenzene	110	70-130							
Toluene-d8	107	70-130							

# Volatile Organic Compounds by GC/MS - LCS

Sample ID: SQ44463-002 Batch:44463 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	44		1	88	70-130	06/16/2017 0950			
Ethylbenzene	50	51		1	103	70-130	06/16/2017 0950			
Methyl tertiary butyl ether (MTBE)	50	42		1	84	70-130	06/16/2017 0950			
Toluene	50	53		1	105	70-130	06/16/2017 0950			
Xylenes (total)	100	99		1	99	70-130	06/16/2017 0950			
Surrogate	Q % Rec	Accepta Limit								
1,2-Dichloroethane-d4	84	70-13	0							
Bromofluorobenzene	109	70-13	0							
Toluene-d8	99	70-13	0							

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

# Volatile Organic Compounds by GC/MS - MS

Sample ID: SF14079-005M Batch:44463 Analytical Method: 8260B	IS Matrix: Aqueous Prep Method: 5030B							
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	ND	50	48		1	95	70-130	06/16/2017 1950
Ethylbenzene	ND	50	56		1	111	70-130	06/16/2017 1950
Methyl tertiary butyl ether (MTBE)	ND	50	51		1	103	70-130	06/16/2017 1950
Toluene	ND	50	56		1	113	70-130	06/16/2017 1950
Xylenes (total)	ND	100	110		1	105	70-130	06/16/2017 1950
Surrogate	Q % Re	Ac	ceptance Limit					
1,2-Dichloroethane-d4	84		70-130					
Bromofluorobenzene	112		70-130					
Toluene-d8	101		70-130					

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

# Volatile Organic Compounds by GC/MS - MSD

Sample ID: SF14079-005MD Batch:44463 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B								
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	ND	50	46		1	92	3.2	70-130	20	06/16/2017 2014
Ethylbenzene	ND	50	53		1	107	4.0	70-130	20	06/16/2017 2014
Methyl tertiary butyl ether (MTBE)	ND	50	50		1	100	2.9	70-130	20	06/16/2017 2014
Toluene	ND	50	55		1	109	3.4	70-130	20	06/16/2017 2014
Xylenes (total)	ND	100	100		1	101	3.9	70-130	20	06/16/2017 2014
Surrogate	Q % Re		eptance _imit							
1,2-Dichloroethane-d4	84	7	0-130							
Bromofluorobenzene	110	7	0-130							
Toluene-d8	99	7	0-130							

Sample ID: SQ44588-001 Batch:44588 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Result	Q Dil	LOQ	Units	Analysis Date				
Benzene	ND	1	5.0	ug/L	06/19/2017 1002				
Ethylbenzene	ND	1	5.0	ug/L	06/19/2017 1002				
Toluene	ND	1	5.0	ug/L	06/19/2017 1002				
Xylenes (total)	ND	1	5.0	ug/L	06/19/2017 1002				
Surrogate	Q % Rec	Acceptance Limit							
1,2-Dichloroethane-d4	100	70-130							
Bromofluorobenzene	105	70-130							
Toluene-d8	99	70-130							

# Volatile Organic Compounds by GC/MS - LCS

Sample ID: SQ44588-002 Batch:44588 Analytical Method: 8260B			Pr	Matrix ep Method:	: Aqueous 5030B		
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	52		1	103	70-130	06/19/2017 0906
Ethylbenzene	50	50		1	101	70-130	06/19/2017 0906
Toluene	50	50		1	100	70-130	06/19/2017 0906
Xylenes (total)	100	99		1	99	70-130	06/19/2017 0906
Surrogate	Q % Rec	Accepta Limit					
1,2-Dichloroethane-d4	91	70-13	0				
Bromofluorobenzene	99	70-13	0				
Toluene-d8	95	70-13	0				

# Semivolatile Organic Compounds by GC/MS - MB

Sample ID: SQ44317-001	Matrix: Aqueous
Batch:44317	Prep Method: 3520C
Analytical Method: 8270D	Prep Date: 06/15/2017 1620

Parameter	Result	Q Dil	LOQ	Units	Analysis Date
Acenaphthene	ND	1	10	ug/L	06/21/2017 0939
Acenaphthylene	ND	1	10	ug/L	06/21/2017 0939
Anthracene	ND	1	10	ug/L	06/21/2017 0939
Benzo(a)anthracene	ND	1	10	ug/L	06/21/2017 0939
Benzo(a)pyrene	ND	1	10	ug/L	06/21/2017 0939
Benzo(b)fluoranthene	ND	1	10	ug/L	06/21/2017 0939
Benzo(g,h,i)perylene	ND	1	10	ug/L	06/21/2017 0939
Benzo(k)fluoranthene	ND	1	10	ug/L	06/21/2017 0939
Chrysene	ND	1	10	ug/L	06/21/2017 0939
Dibenzo(a,h)anthracene	ND	1	10	ug/L	06/21/2017 0939
Fluoranthene	ND	1	10	ug/L	06/21/2017 0939
Fluorene	ND	1	10	ug/L	06/21/2017 0939
Indeno(1,2,3-c,d)pyrene	ND	1	10	ug/L	06/21/2017 0939
Naphthalene	ND	1	10	ug/L	06/21/2017 0939
Phenanthrene	ND	1	10	ug/L	06/21/2017 0939
Pyrene	ND	1	10	ug/L	06/21/2017 0939
Surrogate	Q % Rec	Acceptance Limit			
Nitrobenzene-d5	96	38-127			
2-Fluorobiphenyl	82	37-129			
Terphenyl-d14	94	10-148			

# Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: SQ44317-002 Batch:44317 Analytical Method: 8270D			Prep Method:	: Aqueous 3520C : 06/15/2017 16:	20	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	40	32	1	81	30-130	06/21/2017 1004
Acenaphthylene	40	35	1	88	30-130	06/21/2017 1004
Anthracene	40	39	1	98	30-130	06/21/2017 1004
Benzo(a)anthracene	40	38	1	95	30-130	06/21/2017 1004
Benzo(a)pyrene	40	36	1	90	30-130	06/21/2017 1004
Benzo(b)fluoranthene	40	34	1	84	30-130	06/21/2017 1004
Benzo(g,h,i)perylene	40	40	1	100	30-130	06/21/2017 1004
Benzo(k)fluoranthene	40	38	1	96	30-130	06/21/2017 1004
Chrysene	40	42	1	105	30-130	06/21/2017 1004
Dibenzo(a,h)anthracene	40	27	1	66	30-130	06/21/2017 1004
Fluoranthene	40	37	1	91	30-130	06/21/2017 1004
Fluorene	40	39	1	99	30-130	06/21/2017 1004
Indeno(1,2,3-c,d)pyrene	40	34	1	84	30-130	06/21/2017 1004
Naphthalene	40	31	1	77	30-130	06/21/2017 1004
Phenanthrene	40	39	1	98	30-130	06/21/2017 1004
Pyrene	40	38	1	94	30-130	06/21/2017 1004
Surrogate	Q % Rec	Acceptance Limit	<u> </u>			
Nitrobenzene-d5	92	38-127				
2-Fluorobiphenyl	88	37-129				
Terphenyl-d14	96	10-148				

# Semivolatile Organic Compounds by GC/MS - MS

Sample ID: SF14079-0021 Batch:44317 Analytical Method: 8270D	MS		Pre	p Metho	ix: Aqueou d: 3520C ite: 06/15/2			
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	ND	40	28		1	69	30-130	06/29/2017 2130
Acenaphthylene	ND	40	29		1	72	30-130	06/29/2017 2130
Anthracene	ND	40	31		1	76	30-130	06/29/2017 2130
Benzo(a)anthracene	ND	40	30		1	76	30-130	06/29/2017 2130
Benzo(a)pyrene	ND	40	34		1	85	30-130	06/29/2017 2130
Benzo(b)fluoranthene	ND	40	33		1	83	30-130	06/29/2017 2130
Benzo(g,h,i)perylene	ND	40	15		1	39	30-130	06/29/2017 2130
Benzo(k)fluoranthene	ND	40	34		1	84	30-130	06/29/2017 2130
Chrysene	ND	40	31		1	78	30-130	06/29/2017 2130
Dibenzo(a,h)anthracene	ND	40	24		1	61	30-130	06/29/2017 2130
Fluoranthene	ND	40	32		1	79	30-130	06/29/2017 2130
Fluorene	ND	40	29		1	71	30-130	06/29/2017 2130
Indeno(1,2,3-c,d)pyrene	ND	40	20		1	50	30-130	06/29/2017 2130
Naphthalene	ND	40	26		1	65	30-130	06/29/2017 2130
Phenanthrene	ND	40	30		1	76	30-130	06/29/2017 2130
Pyrene	ND	40	29		1	73	30-130	06/29/2017 2130
Surrogate	Q % Re	Ac	ceptance Limit					
Nitrobenzene-d5	69		38-127					
2-Fluorobiphenyl	60		37-129					
Terphenyl-d14	64		10-148					

# Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: SF14079-002M Batch:44317 Analytical Method: 8270D	D		F	Prep M	etho	ix: Aqueo d: 3520C te: 06/15/2				
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Acenaphthene	ND	40	23		1	56	20	30-130	40	06/29/2017 2155
Acenaphthylene	ND	40	23		1	58	22	30-130	40	06/29/2017 2155
Anthracene	ND	40	28		1	69	9.5	30-130	40	06/29/2017 2155
Benzo(a)anthracene	ND	40	29		1	73	3.3	30-130	40	06/29/2017 2155
Benzo(a)pyrene	ND	40	33		1	83	2.5	30-130	40	06/29/2017 2155
Benzo(b)fluoranthene	ND	40	33		1	82	0.93	30-130	40	06/29/2017 2155
Benzo(g,h,i)perylene	ND	40	15		1	38	0.81	30-130	40	06/29/2017 2155
Benzo(k)fluoranthene	ND	40	33		1	81	2.8	30-130	40	06/29/2017 2155
Chrysene	ND	40	30		1	76	3.2	30-130	40	06/29/2017 2155
Dibenzo(a,h)anthracene	ND	40	18		1	45	30	30-130	40	06/29/2017 2155
Fluoranthene	ND	40	30		1	76	4.8	30-130	40	06/29/2017 2155
Fluorene	ND	40	24		1	59	18	30-130	40	06/29/2017 2155
Indeno(1,2,3-c,d)pyrene	ND	40	18		1	46	7.6	30-130	40	06/29/2017 2155
Naphthalene	ND	40	25		1	62	3.9	30-130	40	06/29/2017 2155
Phenanthrene	ND	40	27		1	68	10	30-130	40	06/29/2017 2155
Pyrene	ND	40	28		1	70	5.4	30-130	40	06/29/2017 2155
Surrogate	Q % Re	c Ac	ceptance Limit							
Nitrobenzene-d5	62		38-127							
2-Fluorobiphenyl	50		37-129							
Terphenyl-d14	62		10-148							

# Semivolatile Organic Compounds by GC/MS - MB

Sample ID: SQ44664-001	Matrix: Aqueous
Batch:44664	Prep Method: 3520C
Analytical Method: 8270D	Prep Date: 06/20/2017 947

Parameter	Result	Q Dil	LOQ	Units	Analysis Date
Acenaphthene	ND	1	10	ug/L	06/26/2017 1351
Acenaphthylene	ND	1	10	ug/L	06/26/2017 1351
Anthracene	ND	1	10	ug/L	06/26/2017 1351
Benzo(a)anthracene	ND	1	10	ug/L	06/26/2017 1351
Benzo(a)pyrene	ND	1	10	ug/L	06/26/2017 1351
Benzo(b)fluoranthene	ND	1	10	ug/L	06/26/2017 1351
Benzo(g,h,i)perylene	ND	1	10	ug/L	06/26/2017 1351
Benzo(k)fluoranthene	ND	1	10	ug/L	06/26/2017 1351
Chrysene	ND	1	10	ug/L	06/26/2017 1351
Dibenzo(a,h)anthracene	ND	1	10	ug/L	06/26/2017 1351
Fluoranthene	ND	1	10	ug/L	06/26/2017 1351
Fluorene	ND	1	10	ug/L	06/26/2017 1351
Indeno(1,2,3-c,d)pyrene	ND	1	10	ug/L	06/26/2017 1351
Naphthalene	ND	1	10	ug/L	06/26/2017 1351
Phenanthrene	ND	1	10	ug/L	06/26/2017 1351
Pyrene	ND	1	10	ug/L	06/26/2017 1351
Surrogate	Q % Rec	Acceptance Limit			
Nitrobenzene-d5	88	38-127			
2-Fluorobiphenyl	73	37-129			
Terphenyl-d14	79	10-148			

# Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: SQ44664-002 Batch:44664 Analytical Method: 8270D			Prep Method:	: Aqueous 3520C :: 06/20/2017 94	7	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	40	35	1	88	30-130	06/26/2017 1416
Acenaphthylene	40	34	1	86	30-130	06/26/2017 1416
Anthracene	40	35	1	89	30-130	06/26/2017 1416
Benzo(a)anthracene	40	34	1	86	30-130	06/26/2017 1416
Benzo(a)pyrene	40	34	1	85	30-130	06/26/2017 1416
Benzo(b)fluoranthene	40	36	1	90	30-130	06/26/2017 1416
Benzo(g,h,i)perylene	40	21	1	52	30-130	06/26/2017 1416
Benzo(k)fluoranthene	40	35	1	87	30-130	06/26/2017 1416
Chrysene	40	35	1	87	30-130	06/26/2017 1416
Dibenzo(a,h)anthracene	40	18	1	46	30-130	06/26/2017 1416
Fluoranthene	40	38	1	94	30-130	06/26/2017 1416
Fluorene	40	35	1	87	30-130	06/26/2017 1416
Indeno(1,2,3-c,d)pyrene	40	22	1	56	30-130	06/26/2017 1416
Naphthalene	40	32	1	79	30-130	06/26/2017 1416
Phenanthrene	40	36	1	89	30-130	06/26/2017 1416
Pyrene	40	34	1	86	30-130	06/26/2017 1416
Surrogate	Q % Rec	Acceptance Limit	9			
Nitrobenzene-d5	86	38-127				
2-Fluorobiphenyl	72	37-129				
Terphenyl-d14	72	10-148				

# Semivolatile Organic Compounds by GC/MS - MS

Sample ID: SF14079-021MS Batch:44664 Analytical Method: 8270D				p Metho	ix: Aqueou d: 3520C te: 06/20/2			
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	ND	40	28		1	70	30-130	06/28/2017 1233
Acenaphthylene	ND	40	29		1	73	30-130	06/28/2017 1233
Anthracene	ND	40	32		1	79	30-130	06/28/2017 1233
Benzo(a)anthracene	ND	40	31		1	79	30-130	06/28/2017 1233
Benzo(a)pyrene	ND	40	33		1	82	30-130	06/28/2017 1233
Benzo(b)fluoranthene	ND	40	28		1	71	30-130	06/28/2017 1233
Benzo(g,h,i)perylene	ND	40	38		1	95	30-130	06/28/2017 1233
Benzo(k)fluoranthene	ND	40	29		1	73	30-130	06/28/2017 1233
Chrysene	ND	40	31		1	77	30-130	06/28/2017 1233
Dibenzo(a,h)anthracene	ND	40	21		1	52	30-130	06/28/2017 1233
Fluoranthene	ND	40	31		1	79	30-130	06/28/2017 1233
Fluorene	ND	40	30		1	74	30-130	06/28/2017 1233
Indeno(1,2,3-c,d)pyrene	ND	40	34		1	85	30-130	06/28/2017 1233
Naphthalene	ND	40	26		1	64	30-130	06/28/2017 1233
Phenanthrene	ND	40	31		1	78	30-130	06/28/2017 1233
Pyrene	ND	40	33		1	84	30-130	06/28/2017 1233
Surrogate	Q % Red	Acc	ceptance Limit					
Nitrobenzene-d5	71	:	38-127					
2-Fluorobiphenyl	63	:	37-129					
Terphenyl-d14	72		10-148					

# Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: SF14079-021MD Batch:44664 Analytical Method: 8270D			Ρ	rep Me	thoo	ix: Aqueo d: 3520C te: 06/20/2				
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Acenaphthene	ND	40	29		1	73	4.4	30-130	40	06/28/2017 1258
Acenaphthylene	ND	40	30		1	76	3.1	30-130	40	06/28/2017 1258
Anthracene	ND	40	34		1	84	6.3	30-130	40	06/28/2017 1258
Benzo(a)anthracene	ND	40	32		1	79	0.60	30-130	40	06/28/2017 1258
Benzo(a)pyrene	ND	40	33		1	83	1.5	30-130	40	06/28/2017 1258
Benzo(b)fluoranthene	ND	40	29		1	73	2.9	30-130	40	06/28/2017 1258
Benzo(g,h,i)perylene	ND	40	38		1	96	1.1	30-130	40	06/28/2017 1258
Benzo(k)fluoranthene	ND	40	29		1	73	0.069	30-130	40	06/28/2017 1258
Chrysene	ND	40	32		1	80	3.3	30-130	40	06/28/2017 1258
Dibenzo(a,h)anthracene	ND	40	21		1	52	0.084	30-130	40	06/28/2017 1258
Fluoranthene	ND	40	33		1	84	6.1	30-130	40	06/28/2017 1258
Fluorene	ND	40	32		1	79	7.2	30-130	40	06/28/2017 1258
Indeno(1,2,3-c,d)pyrene	ND	40	35		1	87	2.1	30-130	40	06/28/2017 1258
Naphthalene	ND	40	26		1	66	3.2	30-130	40	06/28/2017 1258
Phenanthrene	ND	40	33		1	82	5.7	30-130	40	06/28/2017 1258
Pyrene	ND	40	35		1	88	5.5	30-130	40	06/28/2017 1258
Surrogate	Q % Red	Ac	ceptance Limit							
Nitrobenzene-d5	69		38-127							
2-Fluorobiphenyl	63		37-129							
Terphenyl-d14	72		10-148							

Chain of Custody and Miscellaneous Documents

The ALL Chain of Custooy Hecord Telephon Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Address Addres	106 Varitage Point Drive • West Columbia, SC 29172       Telephone No. 803-791-9700 Fax No. 803-791-9111       Www.shealylah.com       Fisport to Contact       Karylc       Sampler's Signature       Printed Name       Printed Name       O. 303-791-9700 Fax No. 803-791-9111       Www.shealylah.com       Printed Name       Matrix       Judy       O. 300-00-10       Printed Name       O. 300-10       Printed Name       O. 300-10       Printed Name       O. 1       O. 20-1       D. 20-1       Printed Name       O. 20-1       Printed Name       O. 20-1       Printed Name       O. 20-1       Printed Name       O. 20-1       Printed Name       D. 20-1 </th <th>Telephone No. 803-791-9700 Fax No. 803-791-9111 www.sheatylah.com Key Lc Jones Maature C e d e loc Loc Le Talephone Jone C e d e loc Loc Le Maatix he free free free Maatix he free free free free Loc Loc Le Loc Le Maatix he free free free free he free free free free free free Loc Le Loc Le Loc Le Maatix he free free free free free Loc Le Loc Le Loc Le Loc Le Le Loc Le Loc Le Loc Le Le Le Le Le Le Loc Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le L</th> <th>С 29172 791-9111 791-9111 732-91-9111 732-929-9620 / 412 7700 Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х</th> <th>Number</th> <th>Number 73727</th>	Telephone No. 803-791-9700 Fax No. 803-791-9111 www.sheatylah.com Key Lc Jones Maature C e d e loc Loc Le Talephone Jone C e d e loc Loc Le Maatix he free free free Maatix he free free free free Loc Loc Le Loc Le Maatix he free free free free he free free free free free free Loc Le Loc Le Loc Le Maatix he free free free free free Loc Le Loc Le Loc Le Loc Le Le Loc Le Loc Le Loc Le Le Le Le Le Le Loc Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le Le L	С 29172 791-9111 791-9111 732-91-9111 732-929-9620 / 412 7700 Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х	Number	Number 73727
6-13-17 17:05 6 6-13-17 17:05 6 6-12-17 17:05 6		0 N N 0 0			
Turn Around Time Required (Prior lab approval required for exception TAL) Semple Disposal Standard	empte Disposal Return to Citent 1   Disposal by Lab	Possible Hazard Mentification Lab 📋 Non-Hazard 🖂 Remmable	uñon bite 🗆 Skin Iaritant 🔤 Poleon III Unknown		OC Requirements (Specify)
6 Be	6-14-17 11053	1. Received by		Date	Tane
Det o	Time	2. Received by		Date	Time
Dete	Time	3. Heselved by		Dafe	Time
Date	Time	4. Laboratory received	2	CI-M/-D	Tuns / 453
Note: All samples are retained for four weeks from receipt	receipt	LAB USE ONLY Beneficial for the Pack		ASSILASI	2,5, 2 3,4 °C

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.shealylab.com	LC Report in Cantanal Jones	Samphar's Surfadure Analysis (Atach Not if more space is needed) Page of	P Code X X X V V Or X - N V V V V V V V V V V V V V V V V V V	5 Gender OTENL	a Mathia by Preservative Type 20		10-14-17 09.15 GX 2 3 XX	se k	X 2	GX 2	IDigs GN	2	6-14-17 69-40 G X 2 3 X X		of for expedited TAL) Sample Disposal Possible Hazard Identification OC Fiequinements (Specify) Constraints (Specify)	Date Ture 1. Received by	Date Time 2. Received by Date Time	Date Time 3 Received by Date Time	Dete Time & Laboratory received by Control Control (153	
SHEALLY Chain of Custody Record	Citer ADar (moniter LCC	Address Addres	CIV Tra (the ind PA 15005	Martine 6/2017 Guss	Project No.	Semptor ID / Decemption Containers for each sempte may be combined on one life.)				LI-H-9		CMN-12 6-14-11			Turn Around Time Required (Prior lab appraval required for expedited ML) Sample Disposal	1. Relinquished (	2. Reinquished by	3. Reinquished by	4. Relinquished by	

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page 67 of 69

Number 73728	Oucle No.	Pageof		SF14079		Remarks / Cooler (.U.								OC Requirements (Specify)	Time	Time	Terra	00:14.17 Ime 1053	J. H. & P. J. S'P. 1.	Document Number: F-AD-133 Effective Date: 08-01-2014
SHEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.shealylab.com	a Jones 1412-829-9650/112-379-4350	Analys	DC lot		Matrick No of Containers	83 39 CODS HORW 10H 80944 NOSSON 1004 NOSSON AVS	2	X X 2 3		2		X Z Z Z X		Possible Heizerd (demploration) ⊡ Mon-Heizerd Infantenable ⊡Skin Inflant. ⊟ Poison © Unknown	1. Received by	Time 2. Received by	Time 3. Received by	Tame & Laborationy recurring by Cherry	LAB USE CINLY Received on ice (Circle) (Yes) No Ice Pack Receipt Temper 1 875.11, 21,5	
SHEALY EN Chain of Custody Record Telephone N	Heport & Contest	Sempler's Signal	PA 20 COM Y PANED Name	on Gus Gordon	5	Interesting Contraction Contra	6-14-17 (3113 GX	6-14-17 [4110 6]		14.10	6-14-17 13:35 61	121456		Turn Around Time Required (Prior iab approvel regularing for experition 101.) Sample Disposal Denominations in Claim Concerning to Lab	CINI ON D	•	Date	Caste	Note: All samples are retained for four weeks from receipt unlose other strannements are made.	Return to laborationy with Stampla(s); PMMC FleiddCffant Cony
SHEALY Chain of C	Cherr And Can an ac	Address ( An Concerned of Conce	* Tretting	Project Name C/2017 GWS	Project No.	Sample ID / Description (Containers for each sample may be combined on one lite.)	MW-19	ML1-21	M.1-14	ML1-13	02-MW	Mw- 3		Turn Around Time Required (Prior lab.	1. Relinquished by	2. Relinquished by	3. Relinquished by	4. Refingulated by	Note: All sample	DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s).

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Shealy Environmental Services, Inc. Document Number, ME0018C-08 Page 1 of 1 Effective Date: 03/07/2017 Expiry Date: 03/07/2022

Means of receipt: □ SESI        Client □ UPS □ FedEx □ Other				Sample Receipt Checklist (SRC)
Yes       No       I. Were custody seals present, were they intact and unbroken?         Yes       No       NA       I. If custody seals were present, were they intact and unbroken?         pH strip ID:       A/A       C. It strip ID:       C. It strip ID:         Coder ID: Criginal temperature upon receipt:       C. It strip ID:       C. It strip ID:         Method: / Temperature Bink □ Against Bottles       IR Gun ID:       IR Gun Correction Factor:       °C         Method: / Temperature Bink □ Against Bottles       IR Gun ID:       IR Gun Correction Factor:       °C         Method: / Temperature Bink □ Against Bottles       IR Gun ID:       IR Gun Correction Factor:       °C         Yes □       No □       NA       3. If temperature Gi any cooler exceeded 6.0°C, was Project Manager Notified?       PM was Notified by: phone / email / Gace-to-face (Circle one).         Yes □       No □       NA       4. Is the commercial courier's packing slip attached to this form?         Yes □       No □       6. Were sample IDs listed on the COC?       ?         Yes □       No □       8. Was collection date & time listed on all sample containers?         Yes □       No □       10. Did all container label information (ID, date, time) agree with the COC?         Yes □       No □       13. Were astop the phone remail / the holding time or 48 hours, whichever comes first?	Clie	nt:	Dex_	Cooler Inspected by/date: CCT/G/14/PEut #: SF1 4079
Yes       No       I. Were custody seals present, were they intact and unbroken?         Yes       No       NA       2. If custody seals were present, were they intact and unbroken?         pH strip ID:       A/A       Cl strip ID:       Cl strip ID:         Coder ID:       Signal temperature lands Classified Corrected) temperature upon receipt;       Cl strip ID:       Cl strip ID:         Arbody       Signal temperature Bink Classified Corrected) temperature upon receipt;       Cl strip ID:       Cl strip ID:         Coder ID:       No C       Signal temperature Bink Classified Corrected) temperature of any cooler exceeded 6.0°C, was Project Manager Notified?         PM       Was Notified by: phone / email / face-to-face (circle one).       PM was Notified by: phone / email / face-to-face (circle one).         Yes       No C       S. Were proper custody procedures (relinquished/received) followed?         Yes       No C       6. Were sample IDs listed on the COC?         Yes       No C       8. Was collection date & time listed on all sample containers?         Yes       No C       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No C       11. Were tests to be performed listed on the COC?         Yes       No C       12. Did all samples containers?         Yes       No C       13. Was adequate sample received within b	Means of	receipt:	SESI	Client 🗆 UPS 🗆 FedEx 💷 Other
Yes       NA       2. If custody seals were present, were they intact and unbroken?         PH strip ID:       Clstrip ID:       Clstrip ID:         Cooler ID/Ciginal-temperature upon receipt?       Clstrip ID:       INCOMPTOTES         Wethod of Coolant; Wether Le ID Blue Le Corrected) temperature upon receipt?       Sector	<u> </u>			
pH strip ID:       Cl strip ID:         Cooler ID/Original Jemperature upon receipt:       Cl strip ID:         Cooler ID/Original Jemperature upon receipt:       Cl strip ID:         Cooler ID/Original Jemperature Blank □ Against Bottles       IR Gun ID:       IR Gun Correction Factor:       Or Cl strip ID:         Method of coolant:       Wet Ice       □ Blue Ice       □ Dry Ice       No       No       Or         Yes □       No □       NA #       3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?         Yes □       No □       NA #       4. Is the commercial courier's packing slip attached to this form?         Yes □       No □       6. Were sample IDs listed on all sample containers?         Yes □       No □       7. Were sample IDs listed on all sample containers?         Yes □       No □       8. Was collection date & time listed on all sample containers?         Yes □       No □       10. Did all container Iabel information (ID, date, time) agree with the COC?         Yes □       No □       11. Were tests to be performed listed on the COC?         Yes □       No □       13. Was adequate sample volume available?         Yes □       No □       13. Was adequate sample volume available?         Yes □       No □       14. Were all samples received within ½ the holding time or 48 hours, whichever				
Cooler [D/Original temperature upon receipt]       C       D/Original temperature upon receipt]         Original temperature Blank D Against Bottles       R Gun ID.       IR Gun Correction Factor: $^{\circ}$ C         Method, 5 Temperature Blank D Against Bottles       R Gun Correction Factor: $^{\circ}$ C         Method, 5 Temperature Blank D Against Bottles       IR Gun Correction Factor: $^{\circ}$ C         Method, 5 Temperature of any cooler exceeded 6.0°C, was Project Manager Notified?       PM was Notified by: phone / email / face-to-face (circle one).         Yes D       No D       NA#       4. Is the commercial courier's packing slip attached to this form?         Yes Z       No D       6. Were sample IDs listed on all sample containers?         Yes Z       No D       8. Was collection date & time listed on the COC?         Yes Z       No D       8. Was collection date & time listed on the COC?         Yes Z       No D       10. Did all container label Information (ID, date; time) agree with the COC?         Yes Z       No D       11. Were tests to be performed listed on the COC?         Yes Z       No D       12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, itiks on, etc.)?         Yes Z       No D       13. Was adequate sample volume available?         Yes Z       No D       14. Were all samples received within ½ the holding t			<u> </u>	
$b_1   b_2   c_2   c_2   b_1   b_1   c_2   b_1   b_1   c_2   b_1   b_2   c_2   b_1   b_2   c_2   b_1   b_2   c_2   b_1   b_2   c_2   b_1   b_1   c_2   b_1   c_2   c_2   b_1   c_2   c_2   c_2   b_1   c_2   c_2   c_2   b_1   c_2   $	Cooler U	Original	temperat	
Method: / Temperature Blank       Against Bottles       IR Gun ID:       IR Gun Correction Factor: $\bigcirc \circ c$ Method of coolant:       Wet let $\Box$ Blue lee $\Box$ by lee $\Box$ None         Yes       No       NA       3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?         Yes       No       NA       4. Is the commercial courier's packing slip attached to this form?         Yes       No       A       5. Were proper custody procedures (relinquished/received) followed?         Yes       No       6. Were sample IDs listed on all sample containers?         Yes       No       7. Were sample IDs listed on all sample containers?         Yes       No       8. Was collection date & time listed on the COC?         Yes       No       9. Was collection date & time listed on the COC?         Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       13. Was adequate sample volume available?         Yes       No       13. Was adequate sample scellawed within ½ the holding time or 48 hours, whichever comes first?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?	6 b	,82,8	°C	SILSI'C 2525°C, BHB4 °C
Method of coolant:       Wet Ice       D Blue Ice       D ry Ice       None         Yes       No       NA       3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified? PM was Notified by: phone / email / face to-face (circle one).         Yes       No       NA       4. Is the commercial courier's packing slip attached to this form?         Yes       No       6. Were sample IDs listed on the COC?         Yes       No       6. Were sample IDs listed on all sample containers?         Yes       No       8. Was collection date & time listed on the COC?         Yes       No       9. Was collection date & time listed on the COC?         Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       13. Was adequate sample volume available?         Yes       No       13. Was adequate sample volume available?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       13. Was adequate sample scolutainers in any VOA vials?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       NA for the were all DRO/me				
Yes □       No □       NA       3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified? PM was Notified by: phone / email / face-to-face (circle one).         Yes □       No □       NA       4. Is the commercial courier's packing slip attached to this form?         Yes □       No □       5. Were proper custody procedures (relinquished/received) followed?         Yes □       No □       6. Were sample IDs listed on all sample containers?         Yes □       No □       7. Were sample IDs listed on all sample containers?         Yes □       No □       8. Was collection date & time listed on the COC?         Yes □       No □       10. Did all container label information (ID, date, time) agree with the COC?         Yes □       No □       11. Were tests to be performed listed on the COC?         Yes □       No □       11. Were tests to be performed listed on the COC?         Yes □       No □       13. Was adequate sample volume available?         Yes □       No □       13. Was adequate sample volume available?         Yes □       No □       13. Was adequate sample sceleved within ½ the holding time or 48 hours, whichever comes first?         Yes □       No □       13. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes □       No □       NA □       16. Were any samples vontiate a period at a pH of <2? </td <td></td> <td></td> <td></td> <td></td>				
YesNoNAPM was Notified by: phone / email / face-to-face (circle one).YesNoNA4Is the commercial courier's packing slip attached to this form?YesNoS. Were proper custody procedures (relinquished/received) followed?YesNo6Were sample IDs listed on the COC?YesNo7Were sample IDs listed on all sample containers?YesNo8Was collection date & time listed on the COC?YesNo9Was collection date & time listed on the COC?YesNo9Was collection date & time listed on the COC?YesNo10Did all container label information (ID, date, time) agree with the COC?YesNo11. Were tests to be performed listed on the COC?YesNo12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?YesNo13. Was adequate sample volume available?YesNo14. Were all samples containers missing/excess (circle one) samples Not listed on COC?YesNo16. Were bubbles precent >* pea-size" (¼" or 6mm in diameter) in any VOA vials?YesNoNA16. Were all DRO/metals/nutrient samples received at a pH of <2?	<u> </u>	7		
Yes       No       NA       4. Is the commercial courier's packing slip attached to this form?         Yes       No       5. Were proper custody procedures (relinquished/received) followed?         Yes       No       6. Were sample IDs listed on the COC?         Yes       No       8. Was collection date & time listed on all sample containers?         Yes       No       9. Was collection date & time listed on all sample containers?         Yes       No       9. Was collection date & time listed on all sample containers?         Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       13. Was adequate sample volume available?         Yes       No       13. Was adequate sample volume available?         Yes       No       13. Was adequate sample social mers missing/excess (circle one) samples Not listed on COC?         Yes       No       14. Were all samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       Na       16. Were all polymetals/mutrient samples received at a pH of < 2?         Yes       No       Na       17. Were all DRO/metals/mutrient samples received at a pH > 9?         Yes       No       NA       17. Were all paplicable NH3/TKN	Yes 🗆	No 🗆	NAD	
Yes       No       S. Were proper custody procedures (relinquished/received) followed?         Yes       No       6. Were sample IDs listed on the COC?         Yes       No       7. Were sample IDs listed on all sample containers?         Yes       No       8. Was collection date & time listed on the COC?         Yes       No       9. Was collection date & time listed on all sample containers?         Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       13. Was adequate sample volume available?         Yes       No       13. Was adequate sample volume available?         Yes       No       16. Were all samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       Na       16. Were all samples preceived within ½ the holding time or 48 hours, whichever comes first?         Yes       No       Na       16. Were all applicable NH3/TKN/cyanide/phenol/BNA (< 0.5mg/L) samples free of residual chlorine?         Yes       No       NA       18. Were all cyanide samples received at a pH of < 2?	Yes 🗆	No 🗆	NAD	
YesNo6. Were sample IDs listed on the COC?YesNo7. Were sample IDs listed on all sample containers?YesNo8. Was collection date & time listed on all sample containers?YesNo9. Was collection date & time listed on all sample containers?YesNo10. Did all container label information (ID, date, time) agree with the COC?YesNo11. Were tests to be performed listed on the COC?YesNo11. Were tests to be performed listed on the COC?YesNo13. Was adequate sample volume available?YesNo13. Was adequate sample volume available?YesNo14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?YesNo16. Were bubbles present) >* pea-size" (¼'or of mm in diameter) in any VOA vials?YesNoNA16. Were all container tasing/excess (circle one) samples Not listed on COC?YesNoNA16. Were all container samples received at a pH of <2?		No 🗆	-/	5. Were proper custody procedures (relinquished/received) followed?
YesNo7. Were sample IDs listed on all sample containers?YesNo8. Was collection date & time listed on the COC?YesNo9. Was collection date & time listed on all sample containers?YesNo10. Did all container label information (ID, date, time) agree with the COC?YesNo11. Were tests to be performed listed on the COC?YesNo11. Were tests to be performed listed on the COC?YesNo12. Did all container label information (ID, date, time) agree with the COC?YesNo13. Was adequate sample volume available?YesNo14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?YesNo16. Were ault samples received within ½ the holding time or 48 hours, whichever comes first?YesNo16. Were ault samples received within ½ the holding time or 48 hours, whichever comes first?YesNoNo16. Were all samples received at a pH of <2?		No 🗆		
Yes       No       8. Was collection date & time listed on the COC?         Yes       No       9. Was collection date & time listed on all sample containers?         Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?         Yes       No       13. Was adequate sample volume available?         Yes       No       13. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       16. Were any samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       16. Were bubbles present >* peu-size" (¼ or 6mm in diameter) in any VOA vials?         Yes       No       18. Were all conide samples received at a pH of < 2?         Yes       No       NA //>20. Ne all applicable NH3/TKN/cyanide/phenol/BNA (< 0.5mg/L) samples free of residual chlorine?         Yes       No       NA //<20. Were collection temperatures documented on the COC for NC samples?         Yes       No //       22. Were collection temperatures documented on the container label?       Sample(s)      <	- 10	No 🗆		7. Were sample IDs listed on all sample containers?
Yes       No       9. Was collection date & time listed on all sample containers?         Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?         Yes       No       13. Was adequate sample volume available?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       15. Were any samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       16. Were bubbles present >**pen-size" (¼*or 6mm in diameter) in any VOA vials?         Yes       No       NA       17. Were all DRO/metals/nutrient samples received at a pH of <2?		No 🗆		<ol><li>Was collection date &amp; time listed on the COC?</li></ol>
Yes       No       10. Did all container label information (ID, date, time) agree with the COC?         Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?         Yes       No       13. Was adequate sample volume available?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       15. Were any samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       16. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       16. Were all samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       NA       16. Were all paper containers missing/excess (circle one) samples Not listed on COC?         Yes       No       NA       17. Were all DRO/metals/nutrient samples received at a pH of <2?				9. Was collection date & time listed on all sample containers?
Yes       No       11. Were tests to be performed listed on the COC?         Yes       No       12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?         Yes       No       13. Was adequate sample volume available?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       15. Were any samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       NA       16. Were bubbles present >*pen-size" (½"or 6mm in diameter) in any VOA vials?         Yes       No       NA       17. Were all DRO/metals/nutrient samples received at a pH of <2?				10. Did all container label information (ID, date, time) agree with the COC?
Yes       No       12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?         Yes       No       13. Was adequate sample volume available?         Yes       No       14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?         Yes       No       15. Were all samples containers missing/excess (circle one) samples Not listed on COC?         Yes       No       NA       16. Were bubbles present >* pea-size" (¼"or 6mm in diameter) in any VOA vials?         Yes       No       NA       17. Were all DRO/metals/nutrient samples received at a pH of < 2?	-10			
YesNo(unbroken, lids on, etc.)?YesNo13. Was adequate sample volume available?YesNo14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?YesNo15. Were any samples containers missing/excess (circle one) samples Not listed on COC?YesNoNA16. Were bubbles present >*pea-size" (¼"or 6mm in diameter) in any VOA vials?YesNoNA16. Were all DRO/metals/nutrient samples received at a pH of <2?YesNoNA17. Were all DRO/metals/nutrient samples received at a pH > 12 and sulfide samples received at a pH > 9?YesNoNA18. Were all cyanide samples received at a pH > 12 and sulfide samples free of residual chlorine?YesNoNA20. Were collection temperatures documented on the COC for NC samples?YesNoNA21. Were client remarks/requests (i.c. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?YesNoNa22. Was the quote number used taken from the container label?Sample receiving with(H ₂ SO4, HNO3, HCI, NaOH) using SR # samples(s) were received with Bubbles >6 mm in diameter.Sample(s)were received with Molely 1D: SCD inking Water Project Sample(s) pH verified to he <2 by were were adjusted accordingly using SR# were adjusted accordingly using SR# were neceived with Bisely 1D: SCD inking Water Project Sample(s) pH verified to he <2 by were were adjusted accordingly using SR# 				
YesNo14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?YesNo15. Were any samples containers missing/excess (circle one) samples Not listed on COC?YesNoNA16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?YesNoNA17. Were all DRO/metals/nutrient samples received at a pH of < 2?	Yes	No 🗆		
YesNo14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?YesNo15. Were any samples containers missing/excess (circle one) samples Not listed on COC?YesNoNA16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?YesNoNA17. Were all DRO/metals/nutrient samples received at a pH of <2?YesNoNA18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?YesNoNA19. Were all applicable NH3/TKN/cyanide/phenol/BNA (<0.5mg/L) samples free of residual chlorine?YesNoNA20. Were collection temperatures documented on the COC for NC samples?YesNoNA21. Were client remarks/requests (i.c. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?YesNoNoNA22. Was the quote number used taken from the container label?Sample(s)	Yes	No 🗆		13. Was adequate sample volume available?
YesNo15. Were any samples containers missing/excess (circle one) samples Not listed on COC?YesNoNA16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?YesNoNA17. Were all DRO/metals/nutrient samples received at a pH of < 2?		No 🗆		14. Were all samples received within 1/2 the holding time or 48 hours, whichever comes first?
YesNoNA16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?YesNoNA17. Were all DRO/metals/nutrient samples received at a pH of < 2?		Not		15. Were any samples containers missing/excess (circle one) samples Not listed on COC?
YesNoNAI7. Were all DRO/metals/nutrient samples received at a pH of < 2?YesNoNAI8. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?YesNoNAI9. Were all applicable NH3/TKN/cyanide/phenol/BNA (< 0.5mg/L) samples free of residual chlorine?YesNoNAI9. Were collection temperatures documented on the COC for NC samples?YesNoNAI20. Were collection temperatures documented on the COC for NC samples?YesNoNAI21. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?YesNoNAI22. Was the quote number used taken from the container label?Sample (s)were received incorrectly preserved or with headspace.)Sample(s)were received with bubbles >6 mm in diameter.Sample(s)were received with TRC > 0.5 mg/L (If #21 is No) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na2S203) with Shealy ID:SC Drinking Water Project Sample(s) pH verified to be < 2 by	Yes 🗖		NA D	16. Were bubbles present >"pea-size" (1/4" or 6mm in diameter) in any VOA vials?
YesNoNA/Z18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?YesNoNA/Z19. Were all applicable NH3/TKN/cyanide/phenol/BNA (< 0.5mg/L) samples free of residual chlorine?YesNoNA/Z20. Were collection temperatures documented on the COC for NC samples?YesNoNA/Z21. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?YesNoNA/Z22. Was the quote number used taken from the container label?Sample Preservation(Must be completed for any sample(s) incorrectly preserved or with headspace.)Sample(s)		No 🗆	NA 🗸	17. Were all DRO/metals/nutrient samples received at a pH of < 2?
Yes       No       NA       19. Were all applicable NH3/TKN/cyanide/phenol/BNA (< 0.5mg/L) samples free of residual chlorine?	<u> </u>	No 🗆		18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
Yes       No       NA Z       20. Were collection temperatures documented on the COC for NC samples?         Yes       No       NA Z       21. Were client remarks/requests (i.c. requested dilutions, MS/MSD designations, etc)         Yes       No       NA Z       22. Were client remarks/requests (i.c. requested dilutions, MS/MSD designations, etc)         Yes       No       Z2. Was the quote number used taken from the container label?         Sample Preservation       (Must be completed for any sample(s) incorrectly preserved or with headspace.)         Sample(s)			11/2	19. Were all applicable NH3/TKN/cyanide/phenol/BNA (< 0.5mg/L) samples free of residual
Yes       No       NA       21. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?         Yes       No       Z2. Was the quote number used taken from the container label?         Sample Preservation       (Must be completed for any sample(s) incorrectly preserved or with headspace.)         Sample(s)       were received incorrectly preserved and were adjusted accordingly in sample receiving with       (H2SO4, HNO3, HCl, NaOH) using SR #         Sample(s)       were received with bubbles >6 mm in diameter.         Sample(s)       were received with TRC > 0.5 mg/L (If #21 is No) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na2S2O3) with Shealy ID:         SC Drinking Water Project Sample(s) pH verified to be < 2 by       Date:         Sample(s)       were Not received at a pH of < 2 and were adjusted accordingly using SR#	Yes 🗆	N0 D	NAZ	
Yes       No       NAZ       correctly transcribed from the COC into the comment section in LIMS?         Yes       No       22. Was the quote number used taken from the container label?         Sample Preservation       (Must be completed for any sample(s) incorrectly preserved or with headspace.)         Sample receiving with       (Must be completed for any sample(s) incorrectly preserved and were adjusted accordingly in sample receiving with       (H2SO4, HNO3, HCl, NaOH) using SR #         Sample(s)       were received with bubbles >6 mm in diameter.       were received with TRC > 0.5 mg/L (If #21 is No) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na2S2O3) with Shealy ID:         SC Drinking Water Project Sample(s) pH verified to be < 2 by	Yes 🗆	No 🗆	NÁ 🖉	
Yes       No       22. Was the quote number used taken from the container label?         Sample Preservation       (Must be completed for any sample(s) incorrectly preserved or with headspace.)         Sample(s)	Ver	No	NA	<ol> <li>Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)</li> </ol>
Sample Preservation       (Must be completed for any sample(s) incorrectly preserved or with headspace.)         Sample(s)	Iesu	NUL	100/	
Sample(s)	Yes 🗆	No 🗹		
sample receiving with       (H2SO4, HNO3, HCl, NaOH) using SR #         Sample(s)       were received with bubbles >6 mm in diameter.         Samples(s)       were received with TRC > 0.5 mg/L (If #21 is No) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na2S2O3) with Shealy ID:         SC Drinking Water Project Sample(s) pH verified to be < 2 by	Sample I	Preservati	on (Mu	st be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s)       were received with bubbles >6 mm in diameter.         Samples(s)       were received with TRC > 0.5 mg/L (If #21 is No) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na2S2O3) with Shealy ID:         SC Drinking Water Project Sample(s) pH verified to be < 2 by				
Samples(s)			g with	
adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃ ) with Shealy ID:         SC Drinking Water Project Sample(s) pH verified to be < 2 by Date:			0	
SC Drinking Water Project Sample(s) pH verified to be < 2 by	Samples(	s)		
Sample(s) were Not received at a pH of < 2 and were adjusted accordingly using SR#	adjusted	according]	y in samp	appla(c) pU verified to be $\leq 2$ by Date:
			Project S	vere Not received at a pH of $\leq 2$ and were adjusted accordingly using SR#
Sample labels applied by: (* ( Verified by: Date: Dat			THE R P. LEWIS CO., LANSING MICH.	(* (1 Verified by: Date:

Comments:

APPENDIX C

DATA EVALUATION MEMORANDUM

# **Apex Companies, LLC**

# Memo

To:	Bill Zeli
From:	James Dunmyre
Date:	August 18, 2017
Re:	Evaluation of Analytical Data for Groundwater Samples Collected in June 2017 Groundwater Monitoring Program SCE&G Huger Street Former Manufactured Gas Plant Site, Columbia, South Carolina

## Sample Identification

CMW-01	CMW-07	MW-03	MW-13	MW-20
CMW-02	CMW-08	MW-05S	MW-14	MW-21
CMW-03	CMW-12	MW-05M	MW-16	MW-22
CMW-04		MW-05D	MW-19	

## **Overview**

Eighteen groundwater samples were collected during the week of June 12, 2017, in support of the groundwater monitoring program at the Huger Street site.

The samples collected during the June groundwater sampling event were submitted to Shealy Environmental Services, Inc. (Shealy) located in West Columbia, South Carolina for the analyses of polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D and BTEX via EPA Method 8260B. Some samples were also analyzed for methyl tert-butyl ether by EPA Method 8260B. The analytical results were reported in one sample delivery group (SDG) – SF14079. The attached table summarizes the SDGs, the samples and analytical parameters. Level II data packages were provided for the SDGs.

Three quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples collected included one equipment blank (EB061317), one blind field duplicate (FD061317, duplicate of MW-05S) and one trip blank TB061317. Additional sample volume was collected at MW-5M for MS/MSD purposes.

## **Summary**

Quality control (QC) measures associated with the analytical data were reviewed following the U.S. EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017) to determine the accuracy and precision of the data reported. These QC measures included surrogate recoveries,

laboratory and field blank results, field duplicate results, MS/MSD results, and laboratory control sample (LCS) results.

The laboratory reported elevated detection limits due to laboratory sample dilutions at CMW-03, CMW-04 and MW-13. Data usability is presented below.

## **Recommendations for Data Usability**

The reviewed QC results did not indicate that any significant problems existed with data precision and accuracy, as reported. All BTEX, MTBE, and PAH data should be considered usable for intended data uses.

## Information Regarding Report Content

- 1. Attachment A Glossary of Data Qualifier Codes
- 2. Attachment B Summary of Groundwater Samples and Sample Delivery Groups June 2017

## ATTACHMENT A

## GLOSSARY OF DATA QUALIFIER CODES

The following definitions provide a brief explanation of the national qualifiers assigned to results in the data review process.

## CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds.)

- U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.
- (NO CODE) = Confirmed identification
- UR = The analyte was analyzed for, but not detected above the reported sample quantitation limit and the sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.
- R = Unusable Result. The sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- E = Quantitation of compound exceeded the calibration range.

## **CODES RELATED TO QUANTITATION**

(Can be used for positive results and sample quantitation limits.)

- J = The analyte was positively identified; the associated numerical value is approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- FRDP = The Relative Percent Difference (RPD) between the sample and its duplicate was greater than 20%.

#### ATTACHMENT B

## SUMMARY OF GROUND WATER SAMPLES BY SAMPLE DELIVERY GROUPS June 2017

## SCE&G Huger Street Former MGP Site Columbia, South Carolina

	Sample	SDGs for SVOC	SDGs for VOC	
Sample ID	Date	(8270D)	(8260B)	Comments
Parcel "A"				
MW-3	6/14/2017	SF14079	SF14079	
MW-13	6/14/2017	SF14079	SF14079	
MW-14	6/14/2017	SF14079	SF14079	
MW-16	6/14/2017	SF14079	SF14079	
MW-19	6/14/2017	SF14079	SF14079	
MW-20	6/14/2017	SF14079	SF14079	
MW-21	6/14/2017	SF14079	SF14079	
MW-22	6/14/2017	SF14079	SF14079	
Parcel "B"				
MW-5S	6/13/2017	SF14079	SF14079	
MW-5M	6/13/2017	SF14079	SF14079	
MW-5D	6/13/2017	SF14079	SF14079	
Parcel "C"				
CMW-01	6/14/2017	SF14079	SF14079	
CMW-02	6/14/2017	SF14079	SF14079	
CMW-02	6/14/2017	SF14079	SF14079	
CMW-04	6/14/2017	SF14079	SF14079	
CMW-07	6/14/2017	SF14079	SF14079	
CMW-08	6/14/2017	SF14079	SF14079	
CMW-12	6/14/2017	SF14079	SF14079	
QA/QC Samples				
EB061317	6/13/2017	SF14079	SF14079	
FD061317	6/13/2017	SF14079	SF14079	field duplicate of MW-05S (SVOC & VOC)
TB06/13/17	6/13/2017	*	SF14079	

## Note:

1) SDG - Sample Delivery Group

APPENDIX D

SUMMARY OF HISTORICAL GROUNDWATER QUALITY DATA

#### SUMMARY OF HISTORICAL GROUNDWATER QUALITY DATA

											inibia, South Ca											
		Benzene	Ethylbenzene	Toluene	Total Xylenes	Methyl-tert- Butyl-Ether	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3- cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Screening Lev	/el (µg/L) ⁽¹⁾	5	700	1,000	10,000	14	530	NL	1,800	0.03	0.2	0.25	NL	2.5	25	0.025	800	290	0.25	0.17	NL	120
Well	Date Sampled			,																		
GP-02	8/24/2009	1,400	200	320	280	NA	15	130	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	29	5.2 U	4,000	20	5.2 U
GP-03	8/24/2009	7,000	1,100	200 U	630	NA	460	5.1 U	110	49	48	33	16	18	49	5.1 U	130	230	13	9,600	510	160
0. 00	0/2 //2000	1,000	1,100	200 0				0.1 0		10	10		10		10	0.1 0	100	200		0,000	010	
GP-04	8/24/2009	590	35	25 U	35	NA	510	40	200	110	100	76	36	35	95	5.1 U	240	320	31	59	830	360
MW-1	11/4/1996	10 U	10 U	10 U	10 U	10 U	33	12 U	14 U	8 U	8 U	8.4 U	6.8 U	9.2 U	12 U	7.6 U	10 U	17	3.6 U	43	9.6 U	8.4 U
	6/23/1997	2.1	1 U	10 U	10 U	10 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	12 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/1998	10	5 U	5 U	5 U	34.2	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/13/2002	5 U	5 U	5 U	15 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U	10 U
	6/19/2003 4/9/2004	1 U 1.4	1 U 1 U	1 U 3.8	1 U 1 U	1 U 10.1	10 U 3 U	10 U 3 U	10 U 0.3 U	10 U 0.2 U	10 U 0.2 U	10 U 0.5 U	10 U 0.2 U	10 U 0.5 U	10 U 1 U	10 U 5 U	10 U 0.3 U	10 U 5 U	10 U 0.2 U	10 U 5 U	10 U 5 U	10 U 0.3 U
	7/1/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	1/31/2006	5 U	5 U	5 U	5 U	14	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	8/28/2009	5 U	5 U	5 U	5 U	19	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.4	5.2 U	5.2 U	5.2 U	5.2 U
	9/25/2013	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MW-2	11/4/1996	210	220	5.8	95	1 U	8.3 U	12 U	14 U	8 U	8 U	8.4 U	6.8 U	9.2 U	12 U	7.6 U	10 U	10 U	3.6 U	130	9.6 U	8.4 U
	6/20/1997	720	190	10 U	55	10 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	150	50 U	50 U
	4/9/1998	353	347	7.4	93.4	5 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	688	5 U	0.3 U
	6/13/2002 6/19/2003	20.1 1.3	5 U 1 U	5 U 1 U	6.5 1 U	5 U 1 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	5 U 10 U	10 U 10 U	10 U 10 U
	4/9/2003	10.2	13.9	10	1 U	1 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.5 U	0.2 U	0.5 U	10 U	5 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	7/1/2004	8.2	18	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	1/30/2006	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	8/28/2009	5 U	5 U	5 U	5 U	NA	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U
MW-3	11/4/1996	1 U	1 U	1 U	1 U	1 U	40	12 U	14 U	8 U	8 U	8.4 U	6.8 U	9.2 U	12 U	7.6 U	10 U	17	3.6 U	69	9.6 U	8.4 U
	6/20/1997	1 U	1 U	1 U	1 U	1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/1998	7.3	5 U	5 U	5 U	5 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	11.9	5 U	0.3 U
	6/13/2002	5 U	5 U	5 U	15 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U	10 U
	6/19/2003 4/9/2004	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	2 1 U	10 U 3 U	10 U 3 U	10 U 0.3 U	10 U 0.2 U	10 U 0.2 U	10 U 0.5 U	10 U 0.2 U	10 U 0.5 U	10 U 1 U	10 U 5 U	10 U 0.3 U	10 U 5 U	10 U 0.2 U	10 U 5 U	10 U 5 U	10 U 0.3 U
	7/1/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	1/30/2006	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	8/26/2009	5 U	5 U	5 U	5 U	NA	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U
	9/24/2013 5/28/2014	5 U 7.8	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
	2/11/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/11/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/29/2016	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	6/14/2017	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MW-4	11/13/1996	1 U	3,200	1 U	400	1 U	57	12 U	14 U	8 U	8 U	8.4 U	6.8 U	9.2 U	12 U	7.6 U	10 U	52	3.6 U	4,000	9.6 U	12
	6/20/1997	85	470	10 U	66	10 U	100 U	15	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	22	100 U	63	19	100 U
	4/9/1998	31.7	5 U	5 U	5 U	5 U	11.5	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	1.8	22.8	0.2 U	5 U	5 U	2.5
	6/19/2003 7/1/2004	6.6	8.7 310	6.9 5 U	10.4 34	1 U NA	10 U	10 U 5 U	10 U	10 U 5 U	10 U 5 U	10 U 5 U	10 U 5 U	10 U	10 U 5 U	10 U 5 U	10 U 5 U	32.6 6.9	10 U	10 U 550	10 U 5 U	10 U
	1/30/2006	6.7 6.6	10	5 U	5 U	NA	11 32	10 U	5 U 12	10 U	10 U	10 U	10 U	5 U 10 U	10 U	10 U	10 U	25	5 U 10 U	10 U	10 U	5 U 10 U
	8/26/2009	5 U	76	5 U	12	NA	10	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	6.8	5.1 U	15	5.1 U	5.1 U
MW-5S	6/24/1997 4/9/1998	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	4.8 33.6	10 U 3.6	10 U 3 U	10 U 0.3 U	10 U 0.2 U	10 U 0.2 U	10 U 0.2 U	10 U 0.2 U	10 U 0.5 U	10 U 5 U	10 U 0.2 U	10 U 0.3 U	10 U 5 U	10 U 0.2 U	10 U 5 U	10 U 5 U	10 U 2.1
	7/1/2004	5 U	5 U 5 U	5 U	5 U 5 U	NA	3.6 5 U	3 U 5 U	0.3 U 5 U	0.2 U 5 U	0.2 U 5 U	0.2 U 5 U	0.2 U 5 U	0.5 U 5 U	5 U 5 U	0.2 U 5 U	0.3 U 5 U	5 U 5 U	0.2 U 5 U	5 U	5 U 5 U	2.1 5 U
	1/31/2006	5 U	5 U	5 U	5 U	33	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	8/24/2009	5 U	5 U	5 U	5 U	49	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U
	9/25/2013 5/30/2014	5 U 5 U	5 U	5 U	5 U	90 90	10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U	10 U
	2/12/2015	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	90 58	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
	11/12/2015	5 U	5 U	5 U	5 U	58	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/30/2016	5 U	5 U	5 U	5 U	42	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	6/14/2017	5 U	5 U	5 U	5 U	33	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MW-5S DUP	6/14/2017	5 U	5 U	5 U	5 U	37	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
10100-33 DUP	0/14/2017	50	50	50	50	51	10.0	100	100	100	100	1 10 0	100	100	10.0	10.0	100	10.0	100	100	10.0	10.0

#### SUMMARY OF HISTORICAL GROUNDWATER QUALITY DATA

											imbia, South C											
		Benzene	Ethylbenzene	Toluene	Total Xylenes	Methyl-tert- Butyl-Ether	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3- cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Screening Lev	el (ug/L) ⁽¹⁾	5	700	1,000	10.000	14	530	NL	1,800	0.03	0.2	0.25	NL	2.5	25	0.025	800	290	0.25	0.17	NL	120
Well	Date Sampled			.,					.,000		0.2					0.020				••••		
MW-5M	6/24/1997	1 U	1 U	1 U	1 U	3	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/1998	5 U	5 U	5 U	5 U	19.8	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	7/1/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	8/24/2009 9/25/2013	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	16 20	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U
	5/30/2014	5 U	5 U	5 U	5 U	8.8	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	2/12/2015	5 U	5 U	5 U	5 U	7.2	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/12/2015	5 U	5 U	5 U	5 U	6.7	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/30/2016	5 U	5 U	5 U	5 U	5.4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	6/14/2017	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MW-5D	6/24/1997	1 U	1 U	1 U	1 U	5.7	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
10100-50	4/9/1998	5 U	5 U	5 U	5 U	8.1	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/13/2002	5 U	5 U	5 U	15 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U	10 U
	6/19/2003	1 U	1.6	7.2	9.4	1.6	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/2004	1 U	1 U	1 U	1 U	5.4	3 U	3 U	0.3 U	0.2 U	0.2 U	0.5 U	0.2 U	0.5 U	1 U	5 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	7/1/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	8/24/2009	5 U	5 U	5 U	5 U	13	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U
	9/25/2013 5/30/2014	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
	2/12/2015	5 U 5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/12/2015	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/30/2016	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	6/14/2017	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MW-6	6/24/1997	1 U	1 U	1 U	1 U	21	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/1998	5 U	5 U	5 U	5 U 15 U	5 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U 10 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	5 U 5 U	5 U 10 U	0.3 U
	6/13/2002 6/19/2003	5 U 1 U	5 U 1.3	5 U 7	8.4	5 U 1 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U 10 U
	4/9/2003	1 U	1.0	, 1 U	1 U	1 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.5 U	0.2 U	0.5 U	1 U	5 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/30/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
MW-7	6/24/1997	1 U	1 U	1 U	1 U	1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/1998	5 U	5 U	5 U	5 U	5 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/30/2004 1/31/2006	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U
	1/31/2006	50	50	50	50	INA	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10.0	10 0	10 0	10 0	10 0	10.0	10 0	10 0
MW-8	6/23/1997	1 U	1 U	1 U	1 U	1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
-	4/9/1998	5 U	5 U	5 U	5 U	5 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	5 U	0.2 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/13/2002	5 U	5 U	5 U	15 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U	10 U
-	6/19/2003	1 U	2.3	11.4	18.7	1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/2004	1 U	1 U	1 U	1 U	1 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.5 U	0.2 U	0.5 U	1 U	5 U	0.3 U	5 U	0.2 U	5 U	10.2	0.3 U
	6/30/2004 8/26/2009	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
	0/20/2009	50	50	50	50	INPA	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
MW-9	6/24/1997	12	10 U	10 U	10 U	10 U	12	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	230	19	10 U
	7/1/2004	5 U	5 U	5 U	5 U	NA	16	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.6	5.4 U	5.4 U
	1/31/2006	5 U	5 U	5 U	5 U	7.3	12	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	8/28/2009	5 U	5 U	5 U	5 U	5 U	12	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2	5.2 U	5.2 U
MW/ 10	6/00/4007	4 11	4.11	4 11	16	4.11	10.11	40.11	40.11	10.11	40.11	40.11	10.11	40.11	40.11	10.11	40.11	10.11	40.11	10.11	40.11	10.11
MW-10	6/23/1997 4/9/1998	1 U 5 U	1 U 5 U	1 U 5 U	1.6 5 U	1 U 5 U	10 U 3 U	10 U 3 U	10 U 0.3 U	10 U 0.2 U	10 U 0.2 U	10 U 0.2 U	10 U 0.2 U	10 U 0.5 U	10 U 5 U	10 U 0.2 U	10 U 0.3 U	10 U 5 U	10 U 0.2 U	10 U 5 U	10 U 5 U	10 U 0.3 U
	6/13/2002	5 U	5 U	5 U	15 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U	10 U
	6/19/2002	1 U	1.4	6.5	9.1	1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/2004	1 U	1 U	1 U	1 U	1 U	3 U	3 U	0.3 U	0.2 U	0.2 U	0.5 U	0.2 U	0.5 U	1 U	5 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/30/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
																						L
MW-11	6/24/1997	1 U	1 U	1 U	1 U	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/1998 6/13/2002	5 U 5 U	5 U 5 U	5 U 5 U	5 U 15 U	5 U 5 U	3 U 10 U	3 U 10 U	0.3 U 10 U	0.2 U 10 U	0.2 U 10 U	0.2 U 10 U	0.2 U 10 U	0.5 U 10 U	5 U 10 U	0.2 U 10 U	0.3 U 10 U	5 U 10 U	0.2 U 10 U	5 U 5 U	5 U 10 U	0.3 U 10 U
	6/13/2002	5 U 1 U	1.9	8.9	15.0	5 U 1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	4/9/2003	1 U	1.9 1 U	0.9 1 U	1 U	10	3 U	3 U	0.3 U	0.2 U	0.2 U	0.5 U	0.2 U	0.5 U	100 1 U	5 U	0.3 U	5 U	0.2 U	5 U	5 U	0.3 U
	6/30/2004	5 U	5 U	5 U	5 U	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	-	-		-		•	-	•											•			

#### SUMMARY OF HISTORICAL GROUNDWATER QUALITY DATA

		Benzene	Ethylbenzene	Toluene	Total Xylenes	Methyl-tert- Butyl-Ether	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3- cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Screening Le	evel (µg/L) ⁽¹⁾	5	700	1,000	10,000	14	530	NL	1,800	0.03	0.2	0.25	NL	2.5	25	0.025	800	290	0.25	0.17	NL	120
Well	Date Sampled																					
MW-12	1/6/2006	10	7.8	5 U	21	NA	6	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	240	7.9	5.3 U
10100-12	1/30/2006	5 U	7.8 5 U	5 U 5 U	16	NA	6 10 U	5.3 U 15	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	5.3 U 10 U	240	7.9 10 U	5.3 U 10 U
	8/26/2009	5 U	5 U	5 U	5 U	NA	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U
1.0.4	4/5/0000	05.11	15					5.0.11		5.0.11	50.11	50.11	50.11	50.11	5.0.11	5.0.11	5.0.11	5.0.11	50.11	4.000		
MW-13	1/5/2006 1/31/2006	25 U 50 U	45 50 U	260 260	670 720	NA NA	20 31	5.2 U 10 U	6.2 11	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 10 U	5.2 U 95	5.2 U 10 U	1,900 3,400	54 83	5.2 U 10 U
	8/26/2009	25 U	52	150	760	NA	38	9.6	16	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	110	5.1 U	4,200	120	5.9
	9/25/2013	25 U	32	65	300	NA	38	10 U	17	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U	2,300	120	10 U
	5/27/2014 2/11/2015	50 U 5 U	50 U 35	91 73	450 330	NA NA	30 32	10 U 10 U	14 13	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	84 80	10 U 10 U	2,400 3,100	110 110	10 U 10 U
	11/12/2015	NA	NA	NA	NA	NA	24	10 U	13	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	80	10 U	2,200	110	10 U
	9/29/2016	25 U	37	49	250	NA	25	10 U	12	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	74	10 U	2,900	110	10 U
	6/14/2017	5 U	53	120	420	NA	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	2,200	45	40 U
MW-13DUP	9/25/2013	100 U	100 U	100 U	290	NA	39	10 U	16	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U	2,200	120	10 U
	5/27/2014	250 U	250 U	250 U	400	NA	31	10 U	15	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	87	10 U	2,600	110	10 U
MW-14	1/5/2006	5 U	5 U	5 U	5 U	NA	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U
	1/31/2006 8/27/2009	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U
	9/25/2013	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	5/29/2014	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	2/12/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/12/2015 9/30/2016	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
	6/14/2017	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
																						<u> </u>
MW-15	1/6/2006 1/30/2006	16 13	5 U 5 U	5 U 5 U	13 11	5 U 5 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U	5.2 U 11 U
	8/27/2009	5 U	5 U	5 U	5 U	5 U	11 0	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	13	5.1 U	5.1 U	5.1 U	5.1 U
MW-16	1/6/2006	5 U	5 U	5 U	5 U	38	14	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.3	11	5 U
	1/30/2006 8/27/2009	5 5 U	5 U 5 U	5 U 5 U	5 U 5 U	31 16	21 28	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	10 U 5.1 U	16 19	10 U 5.1 U	10 U 5.1 U	16 5.1 U	10 U 5.1 U
	9/25/2013	5 U	5 U	5 U	5 U	8.2	23	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	16	10 U	10 U	10 U	10 U
	5/29/2014	5 U	5 U	5 U	5 U	5.3	16	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10	10 U	10 U	10 U	10 U
	2/12/2015	5 U	5 U	5 U	5 U	5.9	16	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10	10 U	10 U	10 U	10 U
	11/12/2015 6/14/2017	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5.0 5 U	16 11	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
																		hh				
MW-16 DUP	5/29/2014	5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/12/2015 11/12/2015	NA NA	NA NA	NA NA	NA NA	5.9 5 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
	11/12/2013	INA	INA	NA	NA .	50	NA .	NA .	NA .	INA .	INA	INA	INA	INA	NA .	INA	NA .	INA	INA	NA .	NA .	INA
MW-17	1/6/2006	240	65	5 U	26	NA	140	5.2 U	8.5	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	120	52	5.2 U
	1/31/2006	190	51	5 U	20	5 U	140	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	58	10 U	90	52	10 U
	8/27/2009	27	5 U	5 U	5 U	5 U	29	5.2 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	9	5.1 U	5.1 U	5.1 U	5.1 U
MW-18	1/5/2006	5 U	5 U	5 U	5 U	NA	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U
	1/31/2006	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	8/28/2009	5 U	5 U	5 U	5 U	5 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U
	9/25/2013	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MW-19	9/26/2013	50 U	50 U	50 U	63	NA	27	110	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	35	10 U	900	39	10 U
	5/27/2014	32	25	25	70	NA	13	90	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	25	10 U	900	25	10 U
	2/11/2015 11/11/2015	25 17	31 35	30 26	86 86	NA NA	10 U 21	60 95	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	19 35	10 U 10 U	1,100 1,400	19 35	10 U 10 U
	9/29/2016	6.6	15	26 5 U	39	NA	14	95 80	8 U	10 U 8 U	8 U	8 U	8 U	10 U 8 U	8 U	10 U 8 U	8 U	35 37	10 U 8 U	470	35 39	8 U
	6/14/2017	15	13	9	47	NA	28	57	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	19	8 U	340	21	8 U
					··																	<u> </u>
MW-20	9/26/2013 5/28/2014	290 230	25 U 5 U	25 U 5 U	25 U 5 U	NA NA	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	85 78	10 U 10 U	10 U 10 U
	2/11/2015	260	25 U	25 U	25 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	62	10 U	10 U

#### SUMMARY OF HISTORICAL GROUNDWATER QUALITY DATA

							-				·											
		Benzene	Ethylbenzene	Toluene	Total Xylenes	Methyl-tert- Butyl-Ether	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3- cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Screening Lev	vel (µg/L) ⁽¹⁾	5	700	1,000	10,000	14	530	NL	1,800	0.03	0.2	0.25	NL	2.5	25	0.025	800	290	0.25	0.17	NL	120
Well	Date Sampled																					
	11/11/2015	170	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	44	10 U	10 U
L	9/30/2016	130	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	28	10 U	10 U
┣────	6/14/2017	90	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13	10 U	10 U
MW-21	9/26/2013	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	5/29/2014	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	2/12/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/13/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/30/2016 6/14/2017	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
	0/14/2017	50	50	50	50	INA	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10.0	10 0	10 0
MW-22	9/26/2013	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	5/29/2014	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
<b></b>	2/12/2015	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/13/2015	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U 10 U
	9/30/2016 6/14/2017	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U
	0/14/2011	00	00	00		00	10 0	10.0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	
MW-22 DUP	9/30/2016	NA	NA	NA	NA	5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0101104	0/40/0044	<b>5</b> 11	5.11	5.11			10.11	40.11	40.11	40.11	40.11	40.11	40.11	40.11	10.11	10.11	10.11	40.11	40.11	40.11	10.11	40.11
CMW-01	9/16/2011 10/19/2011	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 28	10 U 10 U	10 U 10 U
	12/15/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	29	10 U	10 U
	7/19/2012	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	27	10 U	10 U
	9/24/2013	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	5/28/2014	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	2/11/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/10/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/29/2016 6/14/2017	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	NA NA	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
CMW-02	9/16/2011	45	5.4	50	85	NA	10 U	49	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	22	10 U	770	34	10 U
	10/19/2011	46 34	5 U	42	90	NA	13	88	12 10 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U 10 U	10 U	36 26	10 U	960	59 41	10 U 10 U
	12/15/2011 7/19/2012	66	5 U 5 U	23 68	60 69	NA NA	10 U 10 U	71 58	10 U 10 UJ	10 U 10 UJ	10 U 10 UJ	10 UJ	10 U 10 UJ	10 U 10 UJ	10 U 10 UJ	10 U 10 UJ	10 U 10 UJ	26 22 J	10 U 12 UJ	1,100 810	41 40 J	10 U 16 UJ
	9/24/2013	25 U	25 U	25 U	25 U	NA	13	80	10 00	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	37	12 00 10 U	640	60	10 U
	5/28/2014	9.9	5 U	5 U	18	NA	10 U	67	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	29	10 U	400	47	10 U
	2/11/2015	6.9	5 U	5 U	16	NA	10 U	47	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	30	10 U	490	50	10 U
	11/10/2015	9.7	5 U	5 U	23	NA	10 U	64	11	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	33	10 U	680 J	59	10 U
<b></b>	9/29/2016	5 U	5 U	5 U	15	NA	10 U	60	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	33	10 U	400	53	10 U
	6/14/2017	6.9	5 U	5 U	10	NA	8 U	38	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	21	8 U	420	34	8 U
CMW-03	9/16/2011	47	23	140	320	NA	15	61	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	37	10 U	690	41	10 U
	10/19/2011	64	28	190	360	NA	22	110	11	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	58	10 U	1,600	65	10 U
	12/15/2011	73	30	260	470	NA	14	79	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	38	10 U	2,700	40	10 U
	7/19/2012	95	23	230	320	NA	12	72	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	31	11 U	1,900	30	11 U
	9/24/2013 5/28/2014	97 100	50 U 50 U	270 310	420 420	NA NA	19 18	93 110	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	47 43	10 U 10 U	2,000 2,300	49 45	10 U 10 U
	2/11/2015	120	27	320	420	NA	21	83	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	43 54	10 U	2,800	53	10 U
	11/10/2015	110	26	300	420	NA	12	76	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	42	10 U	2,900	47	10 U
	9/29/2016	160	37	480	580	NA	15	98	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	46	10 U	3,100	51	10 U
	6/14/2017	130	35	450	550	NA	40 U	55	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	2,400	40 U	40 U
CMW-04	12/1/2011	99	72	730	1,100	NA	35 J, FRPD	230	23 UJ	12 UJ	10 UJ	12 UJ	16 UJ	21 UJ	14 UJ	27 UJ	29 UJ	84 J	47 UJ	4,700 FRPD	81 J	64 UJ
0/////	12/1/2011	99	67	730	1,000	NA	22	170 J	10 U	12 UJ 10 U	10 UJ	12 UJ 10 U	10 U	10 U	14 UJ 10 U	10 U	10 U	58	10 U	5,800	51	10 U
	7/19/2012	83	44	530	700	NA	16 FRPD	54 FRPD	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	42 FRPD		2,800	41 FRPD	
	9/24/2014	100 U	100 U	380	580	NA	34	92	11	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	87	10 U	2,400	84	10 U
	5/28/2014	44	30	300	500	NA	30	81	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	79	10 U	2,100	82	10 U
	2/10/2015	57	23	350	510	NA	25 FRPD	35 FRPD	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	67	10 U	1,700	76	10 U
	11/11/2015	24	22	120	330	NA	28	58	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	82	10 U	3,300	87	10 U
	9/26/2016	36	31	280	460	NA	23	47	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	71	10 U	3,100	77	10 U 40 U
<u> </u>		25 11	26	210	400	NΔ	40 11	40 11	<u></u> (1   1	2011	4011	2011	2011			20111		4h	20 11			
	6/14/2017	25 U	26	210	400	NA	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	46	40 U	2,000	55	40 0

#### SUMMARY OF HISTORICAL GROUNDWATER QUALITY DATA

Huger Street Former MGP Site Columbia, South Carolina

		Benzene	Ethylbenzene	Toluene	Total Xylenes	Methyl-tert- Butyl-Ether	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3- cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Screening Le	evel (µg/L) ⁽¹⁾	5	700	1,000	10,000	14	530	NL	1,800	0.03	0.2	0.25	NL	2.5	25	0.025	800	290	0.25	0.17	NL	120
Well	Date Sampled																					
	11/11/2015	24	22	140	320	NA	26	60	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	83	10 U	3,700	88	10 U
	9/29/2016	36	31	280	460	NA	24	27	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	70	10 U	3,100	78	10 U
																						1
CMW-05	11/30/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	12/14/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	7/19/2012	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
																						<b>I</b>
CMW-06	11/30/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	12/15/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	7/19/2012	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
																						<b> </b>
CMW-07	11/30/2011	15	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	29	10 U	10 U
	12/15/2011	13	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	29	10 U	10 U
	7/19/2012	8	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/24/2013	16	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	46	10 U	10 U
	5/29/2014	19	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	2/10/2015	26	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/11/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/29/2016	6.7	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	6/14/2017	7.1	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CMW-08	12/1/2011	32	5 U	5 U	73	NA	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	15 J	12 UJ	1.000	20 J	16 UJ
	12/15/2011	170	18	35	320	NA	10 U	10 UJ	10 UJ	10 UJ	10 UJ	10 U	10 UJ	10 U	10 UJ 10 U	10 U	10 UJ	15 J	12 UJ 10 U	2.600	20 J	10 U
	7/19/2012	130	15	23	220	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15	10 U	1,200	23	10 U
	9/24/2013	64	25 U	25 U	100	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15	10 U	810	27	10 U
	5/27/2014	7.6	5 U	5 U	11	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	130	10 U	10 U
	2/10/2015	6.4	5 U	5 U	9.3	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	170	10 U	10 U
	11/10/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20	10 U	10 U
	9/29/2016	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	26	10 U	10 U
	6/14/2017	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11	10 U	10 U
CMW-09	11/30/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	12/14/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	7/18/2012	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
			1 İ																			1
CMW-10	11/30/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	12/14/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	7/18/2012	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CMW-12	11/30/2011	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/23/2013	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	5/29/2014	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	2/10/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	11/11/2015	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	9/29/2016	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	6/14/2017	5 U	5 U	5 U	5 U	NA	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U

#### Notes:

1. (1) Groundwater screening levels are the SCDHEC Maximum Contaminant Levels (MCL) in drinking water (R.61-58, 2009). If a SCDHEC drinking water standard is not available for a particular constituent, the groundwater screening level is the U.S. EPA Region 9 Regional Screening Level (RSL [November 2014])

for tapwater where carcinogens are based on a 1x10⁶ risk and non-carcinogens are based on a hazard quotient of 1.
2. ______- Detections exceeding screening value.
3. FRPD - Failed Relative Percent Difference. Difference between sample result and its duplicate result for the constituent was greater than 20%.

4. J - Indicates an estimated value.

5. U - Indicates that the constituent was not detected at the reported detection limit.

6. UJ - Indicates the constituent was not detected at the reported detection limit; however, the result is qualified as estimated based on the data evaluation.

7. NA - Not Analyzed

8. NL - Not Listed