

Catherine B. Templeton, Director Promoting and protecting the health of the public and the environment

April 23, 2012

Mr. Robert Apple Environmental Division South Carolina Electric and Gas Company 4077 Haywood Road Mills River NC 28759

RE:

Project Delineation Report

SCE&G Huger Street Former MGP

March 29, 2012

Dear Mr. Apple,

The Department has reviewed the Project Delineation Report for the SCE&G Huger Street Former MGP Congaree River Project. The Department approves the assessment report and requests that an Engineering Evaluation Cost Analysis (EE/CA) be conducted for this site.

If you have any questions or comments please contact Lucas Berresford at (803)896-4071.

Sincerely

Lucas Berresford, Project Manager

State Remediation Section

Bureau of Land and Waste Management

CC: Gary Stewart

File 52561

John Ansel, Region 3

PROJECT DELINEATION REPORT

CONGAREE RIVER SEDIMENTS INVESTIGATION COLUMBIA, SOUTH CAROLINA

March 2012

Prepared for:

SCANA Services, Inc. 220 Operation Way Cayce, Carolina 29033

Prepared by:

Management and Technical Resources, Inc.

TABLE OF CONTENTS

1.0	INTR	ODUCTION AND BACKGROUND	1
	1.1 1.2 1.3 1.4	Introduction Regulatory Overview Project Background Report Purpose and Objective	1 1
2.0	DELI	NEATION ACTIVITIES	2
	2.1 2.2 2.3	Preliminary Activities Geophysical Surveys TLM Delineation Activities 2.3.1 Sampling Locations 2.3.2 Sampling Techniques 2.3.3 Sample Processing 2.3.4 Decontamination and IDW Management 2.3.5 Location Control and Surveying	2 4 4 7
3.0	DELI	9	
	3.1 3.2 3.3	Geophysical Survey TLM Findings 3.2.1 TLM Observations – Congaree River 3.2.2 Analytical Results Bathymetry	9 10 13
4.0		MARY	
	4.1 4.2 4.3 4.4	Objectives of the DWP Delineation Phases Overall Findings TLM Extent: Current Understanding	16 16

TABLES

	1-1	Timeline of	of Proied	ct Activitie
--	-----	-------------	-----------	--------------

- 2-1 Summary of Sediment and Soil Parameters and Methods
- 3-1 Sediment and Soil Sensory Observations
- 3-2 SCDHEC and SCE&G Preliminary and Delineation Sediment Analytical Results with TLM
- 3-3 Sediment Analytical Results Congaree River: 1 to 3 Lines
- 3-4 Sediment Analytical Results Western Boundary Mid-Point Congaree River: 3 to 19 Lines
- 3-5 Sediment Analytical Results Eastern Boundary Congaree River Shoreline: 1 to 19 Lines
- 3-6 Soil Analytical Results Top of the Congaree River Eastern Bank: 3 to 19 Lines
- 3-7 Sediment Analytical Results in the Congaree River: 19 to 36 Lines
- 3-8 Sediment Analytical Results Within the Congaree River: 36 to 80 Lines

FIGURES

- 1-1 Congaree River Features, Investigative Extent, and Approximate SCDHEC June 2010 Sampling Locations
- 2-1 Congaree River Investigation Extent and Extent of Reconnaissance and Delineation Activities
- 2-2a Investigation Point Locations From the 1 to 20 Lines
- 2-2b Investigation Point Locations From the 26 to 36 Lines
- 2-3 Investigation Locations From the 36 to 91.5 Lines
- 2-4 Congaree River Bathymetry From the 1 to 37 Lines
- 3-1 Observations and Sediment Analytical Results from the 1 to 36 Lines
- 3-2 Observations and Sediment Analytical Results from the 36 to 91.5 Lines
- 4-1 TLM Extent and Spatial Distribution in the Congaree River

APPENDICES

- A Photographs
- B Sediment Coring and Soil Boring Logs
- C Manifests
- D Summary of Sediment and Soil Analytical Results by Phases
- E Conceptual TLM Depositional Model
- F Laboratory Analytical Data and Data Validation

1.0 INTRODUCTION AND BACKGROUND

1.1 Introduction

This Project Delineation Report (PDR) presents a summary of the activities completed by South Carolina Electric and Gas Company (SCE&G) to delineate the approximate extent of a tar-like material (TLM) that exists within a stretch of the Congaree River located in Columbia, South Carolina, as shown on Figure 1-1. The delineation activities extended from the Gervais Street Bridge (referred to as the 1 Line) downriver approximately 9,050 feet to the area near the abandoned lock and dam (91.5 Line) and extended approximately 200 feet into the river from the eastern shoreline.

1.2 Regulatory Overview

The South Carolina Department of Health and Environmental Control (SCDHEC) and SCE&G have executed a Voluntary Cleanup Contract (VCC) for the former manufactured gas plant (MGP) site located at 1409 Huger St. SCE&G and SCDHEC have been working proactively and cooperatively to complete the delineation activities within the Congaree River under the existing VCC. The primary objective of the investigative work is to determine the vertical and horizontal extent of the TLM within the river.

This project also involves potential historic and cultural resource management issues and SCE&G has been working closely the South Carolina Institute of Archeology and Anthropology (SCIAA) to develop an appropriate approach to complete the delineation. Due to the potential presence of objects of historical interest in the river, additional screening activities in the form of magnetometer and side scan sonar studies were completed by SCE&G.

Numerous other regulatory agencies as well as various stakeholder groups will have input into the project as details for addressing the TLM are developed.

1.3 Project Background

In June 2010, the occurrence of a tar-like material (TLM) within the Congaree River was reported to SCDHEC. Three sediment samples were collected by SCDHEC at the approximate locations shown on Figure 1-1. Preliminary testing conducted on the material by SCDHEC and SCE&G indicated that the material may be attributable to the former Manufactured Gas Plant[s] (MGP) that operated in Columbia beginning in the mid-1800s and ending in the 1950's. Predecessor companies to SCE&G operated a former MGP site at 1409 Huger St. Therefore, SCE&G has been working with SCDHEC to develop a plan to address the TLM within the Congaree River. A Delineation Work Plan (DWP) was submitted to the SCDHEC on September 16, 2010. The DWP was approved by SCDHEC on September 24, 2010. The objectives of the DWP were to:

- Delineate the vertical and lateral extent of TLM in the target area by visual observations of sediments obtained by coring;
- Collect a sufficient number of sediment samples, which were not visually impacted by TLM, for laboratory analysis to define the limit of impacts; and
- Complete the work in a safe and efficient manner.

1.4 Report Purpose and Objective

The purpose of this report is to provide a summary of the findings of the various delineation activities completed by SCE&G from June 2010 through February 2012. The information includes physical observations, chemical analyses, lithologic logs and bathymetric survey data. The objective is to describe the various sampling techniques and supporting data used to determine the extent of TLM within the Congaree River. As currently envisioned and subject to regulatory approval, the extent of TLM as defined by this PDR, will become the target area for a future evaluation.

2.0 DELINEATION ACTIVITIES

The following presents an overview of the delineation activities performed from June 2010 through February 2012 to delineate the extent of TLM within the Congaree River. A total of five separate phases (Phase I through Phase V) of field activities and many reconnaissance efforts were conducted during this period. Table 2-1 presents a list of the various phases and reconnaissance activities and Figure 2-1 shows the corresponding areas. Table 2-1 also provides a summary of delineation activity reports submitted to SCDHEC following each phase of fieldwork.

2.1 Preliminary Activities

In June 2010, the occurrence of a tar-like material (TLM) within the Congaree River was reported to SCDHEC. On June 28, 2010, SCDHEC began investigating the area of the river around the Senate Street Extension, south of the Gervais Street Bridge, to assess the presence or absence of the TLM (Figure 1-1). Three sediment samples (S-1 through S-3) were collected in the vicinity of an "alluvial fan" or mounded sand area and the approximate locations are shown on Figure 1-1. The SCDHEC samples were split with SCE&G for laboratory analyses and the actual sampling results are discussed in Section 3.0.

Preliminary testing conducted on the material by SCDHEC indicated that the material may be attributable to former Manufactured Gas Plant (MGP) operations. Predecessor companies to SCE&G operated a former MGP site at 1409 Huger St.

In July 20, 2010, SCE&G performed reconnaissance activities from the Senate Street extension alluvial fan north to the Gervais Street Bridge to gain a better understanding of the potential TLM presence and extent. The reconnaissance activities were performed using rudimentary hand investigative procedures referred to as "wade and spade techniques". SCDHEC was present for some of the reconnaissance activities. The observations and findings are presented in the attached tables and figures.

2.2 Geophysical Surveys

Due to the potential presence of historical objects within the project area, geophysical surveys were performed prior to any intrusive work being completed. The geophysical surveys consisted of magnetic remote sensing (magnetometer) and acoustic (side scan sonar) studies to identify magnetic anomalies

that could be associated with historical objects. Tidewater Atlantic Research of Washington, North Carolina performed the geophysical surveys.

A total of four separate surveys were performed prior to conducting intrusive sampling activities, which consist of using direct push technology (DPT) or vibra-core drilling to collect the sediment samples. Table 2-1 lists the survey events. In addition, a side scan sonar survey was performed during the Phase I activities but given the shallow river conditions, the sonar survey was of limited value and not required in subsequent surveys. The magnetic anomaly surveys were performed by a combination of methods that included:

- From the water surface with the geophysical equipment mounted in a boat (Boston Whaler),
- Within the water by wading and pushing the equipment in a rubber raft, and
- On land by foot.

Appendix A provides photographs of the different techniques.

The magnetometer surveys were generally run on north-south trending lines and were controlled via a differential global positioning system (DGPS) using a Trimble AgCPS 132 navigation system. HYPACK navigation software was used to translate the DGPS data into real-time data that was used to direct the survey along a predetermined grid or transects. In general, the magnetometer transects lines were located approximately 20 feet apart. In some areas of the river where obstructions were encountered and navigation had to be altered, the distance between the transect lines varied and could be decreased to less than 10 feet.

The magnetometer survey was performed with an EG&G Geometrics G-858 cesium magnetometer that is capable of +/- 0.001 gamma resolution. The magnetic data was collected at a frequency of six samples per second. The locations of the magnetic readings were determined from the DGPS.

The side scan sonar survey was performed from approximately the 4 to 16 Lines and boulders and shallow water prevented performing the survey above the 4 Line. A 445/900 kHz Klein System 3900 digital side scan sonar was employed. The side scan sonar data was horizontally tied to the DGPS and reconciled with the HYPACK survey software. Where navigation was possible, a total of five side scan sonar survey passes were made on a 50-foot transect spacing.

A magnetometer detects changes in earth's magnetic field that may be attributed to buried anthropogenic influences (e.g., metal debris, electrical cables, etc.) or naturally occurring geologic features (e.g., remnant thermal magnetism, ore bodies, etc.). Once the magnetometer data was collected it was systematically analyzed to identify potential obstructions. The results are discussed in Section 3.1.

2.3 TLM Delineation Activities

A number of different delineation activities and investigative techniques were used to determine the presence or absence TLM within the river sediment and subsurface soil samples. The actual investigative technique employed was dictated by physical factors encountered in the field that included:

- The water level;
- · The velocity of river current; and
- The sample location with respect to boulder fields and access limitations (or other obstructions).

The TLM delineation activities will be discussed by:

- Sample locations;
- Sampling subcontractors and techniques; and
- Sample processing;

2.3.1 Sampling Locations

Generally, a sampling grid was established beginning at the Gervais Street Bridge and extending southward. During the various phases of work, the sampling pattern evolved and was dependent upon the findings of the previous phase of work. The following items generally summarize the sampling locations, which are shown on Figures 2-2a, 2-2b and 2-3.

- <u>1 to 19 Lines:</u> Grid nodes were established on 50 feet west to east (designated by a letter) and 100 feet north to south (designated by a number and downriver direction) grid spacing. The 50' x 100' grid spacing was generally used during:
 - Phase I;
 - Phase II:
 - Phase III landside soil borings; and
 - Phase V shoreline soil borings.
- <u>20 to 36 Lines:</u> Grid nodes were expanded to 100 feet west to east and 200 feet north to south. The grid spacing was used for the Phase III waterside activities.
- 43 to 89.5 Lines: Transect lines were designated with a number, lettered grid lines were utilized during Phase V activities.
- <u>Reconnaissance and Other Locations:</u> Other locations were selected to gain additional data and included Unnamed Tributary #1 (UT #1) and the alluvial fan at the mouth of UT #1.
 Designations included (UT unnamed tributary, CR Congaree River, and AB alluvial fan).

In general, delineation points were labeled with an alphanumeric designation representing the grid node location.

2.3.2 Sampling Techniques

The intent of this section is to provide a brief overview of the investigative techniques used to delineate the TLM. Two subcontractors were utilized to complete the work:

- Geologic Exploration, Inc. of Statesville, North Carolina was used to complete the Geoprobe coring, soil borings and jackhammer activities (Whacker BH24);
- Athena Technologies, Inc. of McClellanville, South Carolina provided the pontoon boat and crew and performed the vibra-core drilling on the water and shoreline.

Sediment Coring: Pontoon Boat and DPT Drilling

A pontoon boat was equipped with a DPT drill (Geoprobe 420M) and was used to obtain core samples from approximately the 4 to 19 Lines when the Congaree River conditions (lower current and general absence of boulders) were suitable for navigation. Above the 4 and below the 19 Lines, the presence of boulders, swift current, and/or low water prevented use of the pontoon boat. Appendix A provides photographs of the DPT equipment on the pontoon boat.

State plane coordinates for each coring location were defined prior to mobilizing to the field and a map depicting the targeted locations was incorporated into the HYPACK navigation software. The location of the pontoon boat was tracked with a Trimble AgCPS 132, which provided guidance to the proposed sample location. Once the pontoon boat was anchored (via spuds and at times idling the engine), the actual coring location was then recorded using the navigation system. The actual sample location was adjusted based on the presence of magnetic anomalies, boulders, and/or river current, where required. Some proposed coring locations could not be evaluated because of these physical constraints.

Sediment cores were obtained via the DPT by driving a 3-foot macrocore containing a dedicated acetate liner until refusal was encountered. Refusal generally occurred at shallow sediment depths of less than 1 to 2 feet. The total depth and sample length were recorded and the percent recovery was calculated. At many sample locations, a second or third sample run was completed if sample recovery was generally less than 80%. Generally, three sample attempts were made at locations where recovery was limited. Observations of TLM were noted (either within the sample or on the macrocore barrel), the acetate liner ends were capped, and the top, bottom and coring location were recorded on the acetate liner. The samples were then transported to the Huger Street site for processing. A log for each sediment sampling location is provided in Appendix B.

Whacker/Macrocore

A gas-powered jackhammer (Whacker BH24) was modified to drive a 3-foot long macrocore barrel and was used at some locations along the 2 and 3 Lines, and the UT #1 alluvial fan. The jackhammer was used to drive the macrocore barrel and a winch was used to retrieve the sample. Similar to DPT drilling, a dedicated acetate liner was used for each macrocore barrel. The same procedures discussed in Section 2.3.2 were followed for acetate liner labeling and preparation for processing at the Huger Street site.

Wade and Spade

The "wade and spade" investigative technique was used in the shallower stretches of the Congaree River that were not accessible by watercraft and represented a common technique for reconnaissance. Generally, wade and spade was used for delineation activities at various locations:

- From the 1 to 3 Lines;
- Between the 19 to 36 Lines;
- Between the 45 and 71.5 Lines; and
- From the 80 to 91.5 Lines.

The wade portion of this sampling technique actually involved wading into the Congaree River to access the sample location. The spade part involved use of a narrow bladed shovel, referred to as a "sharp-shooter", that was used to dig and retrieve the sediment. Because of the ease of sample collection, the

wade and spade technique afforded the opportunity to inspect multiple locations within close proximity to a proposed investigation point. The sharp shooter was generally advanced until refusal was encountered (most locations) or when the depth became too great (e.g., near the shoreline and in finer grained sediments). For all samples, the maximum depth penetrated was recorded. It should be noted that this method was very similar to the original sampling methods used by SCDHEC.

Photographic examples of the wade and spade technique are provided in Appendix A.

Vibra-Coring

Vibra-core drilling was performed during the Phase V activities and included obtaining sediment corings along transect Lines 43, 49, 57, 64, 70, 80, and 89.5. Soil borings at grid nodes from the 6 through 11.5 Lines near the Senate Street extension alluvial fan and along the eastern Congaree River shoreline were also collected using the vibra-core method.

For the Congaree River transects, two john boats were physically joined together to provide the base for the tripod that supported the aluminum tube and a winch that was used to extract the sediment-filled tubes. A tripod was also used for the soil borings. The power source was contained in a backpack unit that used vibratory oscillations to drive the aluminum tube into the sediment. The vibrating aluminum tube liquefies the sediment, which allows the tube to advance. Once refusal was encountered, the depth was recorded, the aluminum tube was extracted, the ends were capped, and labeling was completed and the sample was transported to the Huger Street site for processing.

Variability associated with coarse-grained material within the actual sediment sample reduced recovery with the vibra-core in many locations. When the sediment was too coarse (e.g., very coarse sands and coarser grain size sediment), the material would not expand in the aluminum tube and drop out during retrieval. When cobbles or boulder size material were encountered, the material would not liquefy and the downward movement of the sampling device would be stopped. These lithologic conditions were encountered at a number of locations along the 43 to 89.5 Lines during Phase V. Therefore, in lieu of collecting an actual sediment sample at these locations, only observations of TLM on the aluminum tube were noted, if present. Given the physical nature of the TLM, it would have been obviously observed on the aluminum tube. Photographs of the water and land based vibra-coring unit are shown in Appendix A.

Soil Boring Drilling

A total of 15 soil borings (J3, K4 through K6, J7 through J13, I14 and I15, and H16 and H17) were drilled on the top of the eastern bank of the Congaree River with a track mounted DPT (Figure 2-2a). Five-foot long macrocore sample barrels with dedicated acetate liners were used. The soil borings were continuously sampled to refusal. The acetate liners were capped, labeled (identification, top and bottom) and transported back to the Huger Street site for processing. The soil borings were abandoned by poring hole plug into the annular opening. A pin flag was placed in the hole plug. The location of the soil borings were determined at the time of drilling using a hand held GPS or documented at a later date by the surveyor.

A hand-held, underwater, metal detector was also used as a screening tool at many sampling locations.

2.3.3 Sample Processing

Logging

Sample material contained in the acetate liners and aluminum tubes were transported to the Huger Street site for processing. Processing included:

- Opening the acetate liner or aluminum tube;
- Screening the sample with a photo-ionization detector (PID);
- Recording the estimated volume of sample material recovered;
- Lithologically describing the sample, defining intervals with visual and olfactory observations, which generally included a descriptor such as;
 - TLM;
 - Other weathered material (OWM); or
 - · TLM fragments.

Other weathered material (OWM) refers to a substance encountered that has the physical appearance of a cinder-like material, notably different than TLM. Similar to TLM fragments, OWM is not interpreted to be widespread.

The total depth was based on depth penetrated at the sediment coring or soil boring location. The information described above was used to develop sediment coring and soil boring logs, which are contained in Appendix B. Intervals with obvious TLM were usually photographed. Once logging was completed, the sample material, along with the acetate liner and aluminum tube was placed in a 55-gallon drum for proper disposal.

Sediment samples collected from the wade and spade activities were logged at the point of collection and included similar information to that noted above. The length of sediment contained on the sharp shooter was measured and for logging purposes the depth penetrated and amount recovered was considered the same and noted on the coring logs as 100% recovery. In general, PID screening was not performed for samples collected via wade and spade since water and moisture would negatively impact the PID and provide erroneous readings or damage to the PID. After logging was completed, the sediment sample was returned to the river.

Sample Collection for Laboratory Analyses

The three preliminary investigation samples (S-1 through S-3) split with SCDHEC were analyzed by META Environmental, Inc. of Watertown, Massachusetts. Table 2-1 lists the preliminary investigation parameters, which were analyzed by Method 8270 SIM.

A total of 40 delineation samples (32 sediment and eight soil samples) were collected for laboratory analyses of total benzene, toluene, ethylbenzene, and total xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAH) and are listed on Table 2-1. The analytical parameters were specified in the approved DWP and were selected for delineation purposes since these parameters are representative indicators of MGP constituents (Table 2-1). Shealy Environmental Services, Inc. of West Columbia analyzed the BTEX samples by EPA Method 8260B and PAH samples by EPA Method 8270D.

Representative samples of the sediment corings and soil borings were collected for laboratory analyses. Soil samples from soil borings located on top of the Congaree River bank, were collected at deeper intervals that were believed to be laterally equivalent in elevation to the Congaree River.

For BTEX and PAH analyses, equal aliquots of sediment or soil were obtained (to the extent practicable) over the recovered length in the acetate liner or aluminum tube. BTEX and PAH samples collected via wade and spade were either collected directly from the sharp shooter or placed in stainless steel bowl and then collected. Care was taken when collecting the sharp shooter samples in that only sediment that was not in contact with the metal was collected. BTEX samples were collected with a "T" handle sampler and PAH samples were collected with dedicated sampling scoops. The sediment or soil was placed in laboratory supplied sample containers, labeled with the appropriate identifiers, and stored in a refrigerator. The samples were then placed in a cooler with ice and were maintained under standard chain of custody procedures, while being transported to Shealy for analysis.

2.3.4 Decontamination and IDW Management

The various sampling techniques required specific decontamination procedures. For the Geoprobe and vibra-core methods, the cutting shoe was decontaminated between each use and the macrocore barrel between each investigation point by washing with a non-phosphate detergent solution and rinsing with tap water. The aluminum tubes were dedicated to each sediment coring or soil boring and therefore did not require decontamination. Occasionally, TLM was noted on the sampling implements and was removed using an acetone rinse, prior to re-use. At some locations, the sharp shooter was decontaminated using these procedures, while at other locations. As discussed previously, care was maintained while collecting sediment samples form the sharp shooter to collect sediment that was not in contact with the metal blade.

Solid, investigative-derived waste (IDW) included sediment, soil, acetate liners, aluminum tubes, gloves, etc. The solid IDW was placed in labeled 55-gallon drums and staged at the Huger Street site. Liquid IDW, consisting primarily of decontamination water, was also placed in labeled 55-gallon drums and staged at the Huger Street site.

The solid and liquid IDW was transported and managed for proper disposal by A&D Environmental. Liquids were disposed at VLR/RS located in Mauldin, South Carolina and solids were disposed at Waste Management's Richland Landfill in Elgin, South Carolina. Appendix C provides the waste manifests.

2.3.5 Location Control and Surveying

Bathymetric Survey

The Congaree River bathymetry (underwater topographic features) was surveyed by GEL Engineering, LLC (GEL) from approximately the 1 to 37 Lines, and from the eastern shoreline to approximately midriver. The survey work also included a portion of the shoreline and UT #1 bathymetry. The bathymetric survey map from the 1 to 37 Line is provided as Figure 2-4. Horizontal control was based on the state plane coordinate system and vertical control was based on the North American Vertical Datum 1988 (NAVD '88). No bathymetric surveying was completed below the 37 Line.

Delineation Points

Delineation points or sampling locations (also referred to as investigation points) were predetermined prior to mobilizing to the field. Coordinates for the predetermining determined points were obtained from

the survey map and provided a means to accurately locate the investigation points in the water. The delineation points were completed as close as possible to the proposed location with consideration for the presence of magnetic anomalies, boulders, water levels, current, etc.

Investigation points on the 1 through 3 Lines were located with a hand held GPS, via triangulation, or field located from known points (e.g., 1 Line corings along the Gervais Street Bridge). Sediment coring and soil boring locations drilled from the pontoon boat or vibra-cored were located with a DGPS. Phase III and Phase IV sediment coring and soil boring delineation points and some reconnaissance points were located with a hand held GPS. Investigation points on the UT #1 alluvial fan at the mouth, within UT #1, along the 32 Line (bridge decking disrupted the GPS signal), and the Phase I reconnaissance points were field located.

3.0 DELINEATION FINDINGS

3.1 Geophysical Survey

A geophysical survey using the methods discussed above was completed within various sections of the project area to screen for potential magnetic anomalies or obstructions, prior to completing the sampling work. Based on this screening, a total of 570 potential obstructions were detected from the 1 through 36 Lines and within UT #1 and sampling locations were adjusted accordingly. Other documented magnetic anomalies were further described as geologic features or consisted of various man-made debris including hubcaps, a washing machine, a lamppost, etc.

3.2 TLM Findings

The overall objective of the delineation activities was to define the extent of TLM within the Congaree River. The use of sensory observations (visual and olfactory) proved to yield the most conclusive evidentiary data to determine the presence or absence of TLM. The readily identifiable characteristics of TLM included:

- A distinctive odor that differs from naturally occurring sediment;
- A distinctive color (black) that generally differs from coarser grained sediments observed in the Congaree River;
- Tends to be highly weathered with a consistency ranging from near solid to taffy-like.
 [Occasionally less viscous TLM was noted, displaying a more "fluid like" appearance, and was generally found in deeper sediment that was less likely exposed to weathering];
- When contacted, tends to stain and is fairly resistant to removal.

Sediment samples were also collected for laboratory analysis to augment and confirm the visual and olfactory observations. Originally, the objective for analyzing sediment samples was to provide confirmation of the absence of TLM at the delineation boundary locations. As the delineation activities expanded downriver and the spatial extent of the project area increased, the analytical objective evolved into obtaining data at logical and representative sampling locations. As a result, some of these down river sampling locations may have contained TLM or TLM fragments.

The following discusses the TLM findings based on sensory observations and the analytical results.

3.2.1 TLM Observations – Congaree River

The following sections summarize the observations completed over the stretch of the Congaree River evaluated. Appendix E provides a conceptual TLM depositional model that graphically depicts a number of variables that may have contributed to the location and occurrence of TLM in the Congaree River and relies primarily on empirical data. The cross-sectional view of the river shows the sediment deposits with TLM impacts and conceptually displays the transport mechanism for deposition.

It should be noted that the vertical thickness of TLM and lithologic intervals noted in this report are approximate due to the inherent problems of sediment sampling (i.e. sample recovery, estimated depths etc.). Therefore, all thickness and interval measurements should be considered approximate. A summary of the visual observations is provided on Table 3-1 and the coring / soil boring log for each delineation point is included in Appendix B.

TLM Overview

As currently understood, the TLM observed within the Congaree River is likely a coal tar material that is potentially attributable to former MGP operations. Coal tar is also referred to as a DNAPL (dense, non-aqueous phase liquid). Characteristics of a coal tar / DNAPL include:

- A specific gravity greater (heavier) than water;
- When in an aqueous system, will settle (due to specific gravity);
- Immiscible (or will not mix homogenously) with water;
- Can migrate in saturated porous media when the DNAPL pool height exceeds the pore entry pressure of the media (can move within the media);
- Can "weather" through various attenuative means such as volatilization, dilution, degradation, etc.

UT #1 and Congaree River 1 to 3 Lines

Figure 3-1 provides the approximate sampling locations, analytical data and physical observations. Investigative activities in UT #1 (wade and spade) did not indicated visual evidence of TLM in sediment and the only evidence of TLM occurred at UT4, as noted by one or two blebs on the water surface. TLM was not noted in sediment at the UT4 location.

TLM was generally absent from the 1 to 3 Line. TLM was noted in sediment that comprises the alluvial fan (AB series boring) located to the north of the confluence and one coring location (K3) located along the shore (Figure 3-1). Vertically, TLM was found to occur at depth of approximately 0.3 to 1.1 feet below ground surface (bgs) or river bottom and attained a maximum interval thickness of 0.6 feet (Table 3-1 and Appendix B).

For the northern boulder field, the delineation points and analytical data did not indicate the presence of TLM. Reconnaissance in the northern boulder field indicated only potential residual evidence of TLM such as a light gray sheen occurring on a limited number of boulders. Generally, TLM was absent between the 1 to 3 Lines with the exception of the areas discussed.

4 Line South to the 19 Line

TLM was generally noted from north to south (downriver direction) from the approximate 4 Line to near the 19 Line as shown on Figure 3-1. The 4 Line is situated just south of the northern boulder field and the 19 Line represents a transitional boundary where continuous TLM appears to dissipate. From west to the east, the boundary is a little more variable but generally falls on the O to N Lines and with distance, tends to narrow in the vicinity of the 17 to 19 Lines (Figure 3-1). Within the 4 to 19 Lines, TLM is considered to be continuous because of the density and proximity of coring locations showing visual evidence of TLM. However, the TLM and sediment thickness can vary within this general area.

The western boundary of TLM within this area was likely the result of the hydraulic influence from the Saluda River, which enters the Congaree River at the Gervais Street Bridge. The current velocity and southern flow direction likely prevented more westerly migration of TLM.

Based on the visual observations, the extent of TLM appears to end within the Congaree River, adjacent to the eastern shoreline, as noted by a number of corings/borings completed (Figure 3-1). Corings defining the eastern extent where TLM was not visually noted include L4, L6, L7, K7, K8, K9, K10, J11.5, I17, and I18. Also, findings from soil borings drilled on the Senate Street extension alluvial fan indicate TLM was not visually observed, supporting a hypothesis that the alluvial fan existed prior to the time of TLM deposition. The absence of TLM (both visual and olfactory) was supported by soil borings drilled on the top of the Congaree River bank and includes J3, K4, K5, K6, J7, J8, J9, J10, J11, J12, J13, I14, I15, H16, and H17.

For discussion purposes, other common attributes of the 4 to 19 Line area include:

- Sediment thickness;
- TLM Thickness:
- TLM Absence; and
- Eastern Shoreline Odors.

Sediment Thickness

As would be expected, the thickest sediment is found along the eastern shoreline and Senate Street extension alluvial fan. Within the Congaree River, sediment thickness can be quite variable (ranging from 0 to 6 feet in thickness). The sediment can be absent where boulders are present, but was most commonly found at minimal thickness (approximately 0 to 2 feet thick). The maximum sediment thickness noted was six feet at the O11 location. The sediment thickness variability is attributed to the irregular surface of the Congaree River bottom, which is influenced by the granite bedrock expression and boulders. In addition, current velocity also influences sediment thickness with greater scouring and less deposition in stretches of the river exhibiting higher velocities.

TLM Thickness

The estimated thickness of TLM in the Congaree River is highly variable. In summary, the thickest interval of TLM observed was approximately 4.9 feet at the M6 location, which was virtually impacted with over the entire sediment depth. At a number of locations, the TLM thickness was less than 1 foot. In general, TLM was typically found below a "veneer" of visibly un-impacted sediment and when encountered, the TLM was observed to be highly weathered with a taffy-like consistency. Some

"flowable" TLM was encountered at the L16, N16 and N7 locations, at a deeper interval and generally below some highly weathered TLM. At some locations, TLM was found to decrease with depth in the sediment column.

TLM Absence

At a number of locations within the 4 to 19 Lines, TLM was not visually observed, which may be attributed to hydraulic influences of the Congaree River, sediment thickness or sample volume recovered. Delineation points with some variability as to the occurrence of TLM includes:

- O14 where sediment from three cores indicated TLM absence [although a TLM bleb was noted on one acetate liner]; and
- M11-O11, L15, and M15 absence of TLM [although investigation points north and south show visual presence of TLM].

Odors

It should be noted that some of the corings and soil borings drilled on the eastern shoreline of this area exhibited mild or faint TLM odors. Along the shoreline, the sediments tend to be finer grained which may have acted to retain or adsorb TLM. Also, naturally occurring organic matter (i.e., vegetative material) would have a greater affinity to adsorb TLM constituents. The shoreline is likely oxygen deficient (presence of vegetative material) and given the sediment type (silts and clay) does not permit a high degree of flushing and subsequently attenuative processes may be limited. Therefore, the presence of TLM odors in shoreline sediments is not unexpected.

19 Line South to the 36 Line

This Congaree River stretch is characterized by the general absence of TLM (exception L34, N34, N36, and N36.5 grid nodes) as shown on Figure 3-1. The dominant sediment observation from this area was absence of visual TLM and limited TLM-like odors. There were occurrences of TLM fragments and other weathered material (OWM). The source of OWM is not known. The TLM fragments are believed to have originated up river were transported down river via scouring and re-deposited. Some TLM-like odors were noted in sediment samples generally located along the shoreline.

An isolated and discontinuous apparent deposit of TLM was found at grid nodes L34, N34, N36, and N36.5 (Figure 3-1). Factors contributing to this apparent TLM deposition area are not fully known or understood since TLM was not observed over an up river distance of approximately 1,500 feet. Turbulent flow as depicted on the conceptual TLM deposition model presented in Appendix E provides a potential hypothesis to explain TLM occurrence at this location.

36 Line South to the 91.5 Line

This area includes the stretch of the Congaree River below the 36 Line and south to just up river of the abandoned lock and dam at the 91.5 Line (Figure 3-2). Because of the extended length of the delineation area, these reference lines are considered approximate.

In general, TLM was not noted in the Congaree River sediment in the main channel or along the riverbank from the 43 Line down river to the 87.5 Line. For the accessible areas between the 87.5 Line and 91.5 Line, visual evidence of TLM in sediment was not noted. In the backwater channel, located along the

eastern shoreline between the 56 and 64 Lines, no TLM was observed. TLM-like odors were noted in one shoreline sample (CR-10).

Some TLM fragments were observed at a few locations, likely emanating from upriver TLM scouring, transport and deposition.

A total of seven locations (CR2/CR28, and CR18-CR23) of discontinuous TLM "deposits" were noted in the southern boulder field and between the 47 and 53 Lines (Figure 3-2). Each of these locations were noted while traversing the boulder field in an effort to thoroughly inspect as much of the Congaree River as practical. Due to the low Congaree River level, the CR2/CR28 TLM "deposit" was visible above the water line whereas the other locations were submerged and covered with a veneer of sediment. The TLM deposits were highly weathered, spongy under foot, or were "solidified" (CR2/CR28) and were found at various approximate dimensions as noted on Table 3-1 and photographs provided in Appendix A.

3.2.2 Analytical Results

The sediment and soil analytical results are provided on Tables 3-2 through 3-8 (organized by river area) and shown spatially on Figures 3-1 and 3-2. Appendix D provides sediment and soil analytical results by phases. The analytical data was evaluated and no major issues regarding data quality objectives were noted. The laboratory reporting limits are provided.

A total of 37 sediment and soil samples were collected for laboratory analysis. The primary objective for collecting the samples was to provide laboratory data to confirm the visual observations. Initially, a sample was collected at a perimeter location where visual observations indicated the absence of TLM. As the various phases of delineation progressed down river, samples were collected at locations that were logical and feasible.

The following sections discuss the sediment analytical results, which have been segregated into various areas based on TLM observations. It should be noted that the Congaree River receives runoff from the City of Columbia and intuitively it could be expected that analytical data discussed below may include contributions from other potential sources. The constituents of interest (COI) for the TLM (benzene and various polynuclear aromatic hydrocarbons [PAHs]) are common to road materials (i.e., asphalt), petroleum-based products from motor vehicles, and a host of other non-point source materials. No allocation from other anthropogenic source was attempted.

Preliminary Results and Samples Containing TLM

Table 3-2 provides the SCDHEC and SCE&G preliminary analytical results that were used to assess the initial TLM, when first noted in June 2010. The S-1 through S-3 samples were collected in a stretch of the Congaree River where TLM was noted and TLM was present in the sample submitted for analysis. As a result, these three samples exhibited the highest concentrations of COI from the entire study area. For comparison purposes, Table 3-2 also includes three additional sediment samples that contained TLM (with one sample collected at the 19 Line and two samples collected at the 36 Line). Only the sample from N36.5 yielded comparable results. Based on visual observations, the sample collected from the 19 Line indicated staining and blebs whereas the more highly weathered TLM was present in the N36.5 sample and may explain the difference in the analytical results between these two locations.

Congaree River: 1 to 3 Lines

Three sediment samples (I1, K1, and M1) were collected at the 1 Line, which is located at the Gervais Street Bridge and upriver from where the TLM was first observed. One sample was collected from the western boundary along the 2 Line (O2) and one sample (L3) from within the northern boulder field. The 1 Line and O2 samples indicated non-detect results and provide a northern boundary and start of the western boundary of the TLM Area (Table 3-3 and Figure 3-1). TLM (odors or visual) was not observed in the L3 sediment sample but reconnaissance in July 2010 indicated a slight gray sheen at some locations in the northern boulder field and may help explain the analytical results from L3.

Western Boundary – Mid-Point Congaree River: 3 to 19 Lines

A total of eight sediment samples were collected along a "north-south" trending Line (L-P Lines), along the western boundary where TLM was generally absent, on approximately 300-foot centers, and along the length of the Congaree River to the 19 Line (Figure 4-2 and Table 3-4). Sediment samples were collected along this western boundary since the Phase I and Phase II activities suggested the presence of TLM was diminishing below the 18 to the 19 Line. The vast majority of the analytical results indicated COI were not detected and the relatively low level concentration of COI detected at O14 (some BTEX constituents) and L19 (some PAH constituents) may be attributed to general quality of the river sediments from non-point sources and/or residual impacts from TLM. Visual observations of the sediment indicate an absence of TLM except at O14 where a bleb was noted on the acetate liner (absent in three sediment cores). No PAHs were detected. Therefore, the analytical data coupled with visual observations were used to define the western extent of TLM.

Eastern Boundary - Congaree River Shoreline: 1 to 19 Lines

The eastern Congaree River sediments are characterized as finer grained silts and clays and can contain various amounts of naturally organic material. On many occasions, TLM-like odors were noted in these sediments although visual TLM was absent. It is believed that the organic matter acts to adsorb TLM COI and the environment may be oxygen limited, which slows attenuation. In addition, because these sediments have a low hydraulic conductivity due to their particle size and are located along the shoreline, flushing is reduced, which will also serve to further reduce attenuative processes. Therefore, the constituents concentrations observed in the sediment samples collected along the eastern shoreline are not unexpected.

Table 3-5 provides the results. In general, COI were detected with PAHs typically yielding higher concentrations than BTEX. Three of the samples (L7, K8, J11.5) were non-detect for BTEX and one sample (I17) indicated very low levels of BTEX. Total PAHs ranged from 3.78 mg/Kg (J11.5) to 630.1 mg/Kg (I17).

Top of Congaree River Eastern Bank: 1 to 19 Lines

A total of five soil samples were collected from soil borings drilled on the top of the Congaree River bank. The soil samples were collected from depth intervals that were believed to be similar to the level of the Congaree River sediments. Table 3-6 provides the soil analytical results and indicates COI were not detected.

In the Congaree River: 19 to 36 Lines

A total of nine sediment samples were collected from the 19 to the 36 Line. [From the approximate 4 to 19 Lines, a high density of TLM bearing sediments were noted and based on reconnaissance activities it

appeared that TLM diminishes below the 19 Line.] Therefore, the purpose of the sediment samples collected between the 19 and 36 Lines was to provide analytical data to support visual observations.

Eight of the nine sediment samples collected indicated BTEX was not detected. Minimal BTEX concentrations were present in sample L24 (Table 3-7). Three samples, M20, L30, and P36 showed PAHs were not detected whereas the remaining six samples (K19, I20, K20, H24, L24, and I30) indicated the presence of PAH, with total PAH concentrations ranging from 3.5 mg/Kg (I20) to 27.5 mg/Kg (K19) as noted on Table 3-7. The sediment analytical results for I19 (Table 3-2) and L19 (Table 3-4) collected along the 19 Line were discussed previously.

Sample K19 is located at the transitional line and along a line segment where TLM was visually noted and therefore the analytical results would not be unexpected. A very faint odor was noted as well as TLM and OWM fragments at the K20 location and these observations may confirm the analytical results. Samples I20, H24 and I30 were collected along the shoreline and only very slight TLM odors were noted; no visual TLM was observed. Factors potentially contributing to the presence of TLM COI in silty material comprising the shoreline samples were discussed previously. I20 was collected near the shoreline. And finally, a TLM fragment was noted adjacent to sediment comprising the L24 sample. The fragment was not included in the sample but was in close proximity and therefore was included in the recorded observations.

Within the Congaree River: Below the 36 to 80 Line

A total of eight sediment samples were collected below the 36 to 80 Line (Figure 3-2 and Table 3-8). Analytical results from the eight sediment samples indicated BTEX was not detected. Six (CR4, CR7, CR9, AM70, AQ70, and AK80) of the eight PAH analytical results indicated PAH were not detected. Low level PAH concentrations were detected in CR-1 and Y57 with total PAHs of 1.53 mg/Kg and 0.98 mg/Kg, respectively.

3.3 Bathymetry

A bathymetric survey (an underwater topographic survey) was performed from the 1 Line to near the 36 Line and from the approximate mid-point of the river to the eastern shoreline (Figure 2-4). For this area, the river bottom can be variable due to the granite outcropping and differential erosion of the bedrock surface by the Congaree River. From the Gervais Street Bridge to near the 4 Line, boulders are present with a pronounced boulder field (i.e., northern boulder field) from approximately the 2 to 4 Lines. From the 4 Line to 19 Line, the Congaree River shows an irregular surface with some deeper sections and generally an absence of rocks above the normal surface water level. Boulders and boulder assemblages are present in this stretch of the river, but typically below the waterline. Near the 19 Line, the bathymetric surface rises and represents the start of the central boulder field, which extends to approximately the 30 Line. A channel exists through the eastern part of the central boulder field. The channel can have deeper pools and the current is relatively swift through this section of the river. Below the 30 Line to near the 36 Line, exposed boulders are generally absent and the presence of the Blossom Street Bridge piers has likely contributed to underwater depositional fans of sediment and channeling.

4.0 Summary

This section provides a concise summary of the following items:

- Objectives of the approved Delineation Work Plan (DWP);
- The delineation phases, (work dates, areas and SCDHEC submittal date);
- The overall findings of the delineation work; and
- The extent of TLM within the Congaree River.

4.1 Objectives of the DWP

The objectives of the approved DWP were to:

- Delineate vertical and lateral extent of TLM in the Congaree River using visual observations of sediments collected from corings;
- Collect a sufficient number of sediment samples that are not visually impacted with TLM for laboratory analysis to confirm the impact limits; and
- Complete the work in a safe and efficient manner.

4.2 Delineation Phases

These objectives were successfully achieved by completing a total of five different delineation phases (Phase I through Phase V) and a number of other reconnaissance activities. In summary the work that included:

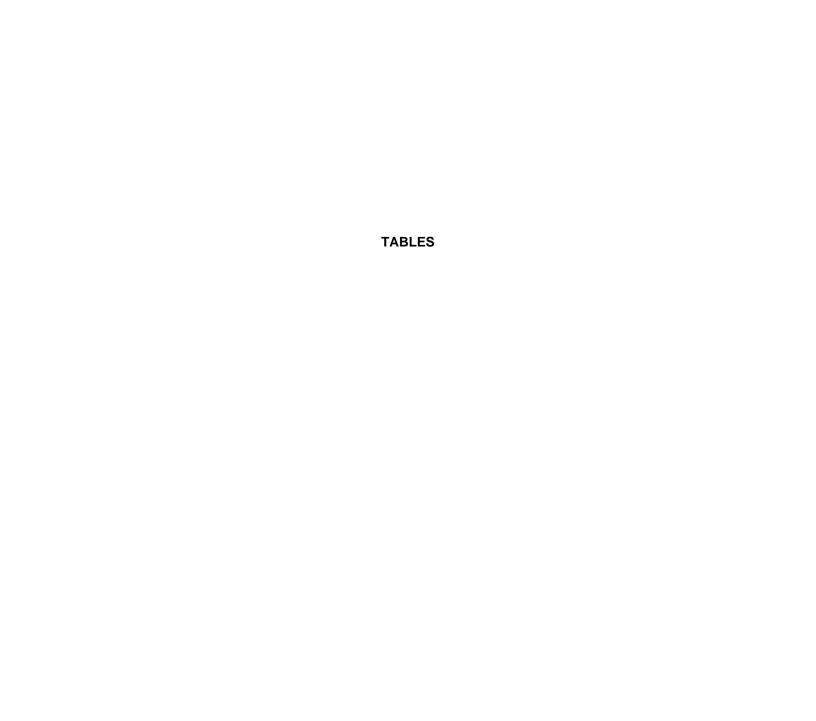
- Phase I September and October 2010: Investigated from the 1 Line (established at the Gervais Street Bridge) to the 16 Line. The findings were reported to SCDHEC on December 29, 2010;
- Phase II January and February 2011: Investigated from the 17 Line to the 19 Line and UT #1.
 The findings were reported to SCDHEC on June 6, 2011;
- Phase III June and July 2011: Investigated from the 20 Line to the 36 Line and drilled 15 landside soil borings on the top of the eastern riverbank. The findings were reported to SCDHEC on August 3, 2011;
- Phase IV August 2011: Investigated the area downriver from the 36 Line to the 71.5 Line (i.e., railroad trestles). The findings were reported to SCDHEC on September 27, 2011;
- Phase V January and February 2012: Investigated from the 43 Line to the 87.5 Line, and Senate Street extension alluvial fan on accessible shoreline. The findings from the Phase V activities are provided herein; and
- Numerous "reconnaissance activities" were also completed in conjunction with the various delineation phases to provide data to develop the overall scope of work for the project.

All work was safely completed by adhering to the project health and safety plans and procedures.

4.3 Overall Findings

Based on the delineation work, the overall findings consist of:

- Defined numerous potential obstructions or debris locations within the project area;
- Completing 244 sediment corings and soil borings using various investigation techniques with documented lithology and TLM observations;
- Collecting and analyzing 37 sediment and soil samples for COI;
- Determining the Congaree River bathymetry from the 1 to the 36 Line;


Based on the activities discussed above, the following summary is provided.

4.4 TLM Extent: Current Understanding

The TLM lateral extent is shown on Figure 4-1. The spatial extent of TLM is characterized as either "continuous" or "discontinuous" and the distinction is determined by the continuity of the visual TLM observations. In summary, the following characterizes the spatial extent:

- River hydraulics and bathymetry likely influenced deposition and spatial extent.
- TLM (2 to 4 Lines); TLM was noted on the alluvial fan at the confluence of UT#1 at one boring located along the shoreline of the Congaree River. The horizontal extent is assumed to be continuous from the alluvial fan, along the shoreline to the 4 Line. TLM thickness was found to range from approximately 0.25 to 1.1 feet. Investigation points in the further west in the Congaree River did not indicated the presence of TLM.
- Continuous TLM (4 to 18 Lines): Extending from north to south (downriver direction), from the 4 to 18 Lines. Continuous TLM is characterized by the visual presence of TLM at multiple contiguous or near-contiguous investigative points. Within the continuous TLM area, it is possible that the spatial continuity of TLM may be disrupted. The western boundary extends approximately 200 feet into the Congaree River and inflects eastward near the 18 Line. The eastern boundary may be characterized by the shoreline.
- The vertical thickness of TLM can be variable and is likely influenced by sediment thickness, the amount of TLM present during deposition, and river hydraulics.
- Discontinuous TLM (34, 36, 47, 49, and 53 Lines): Noted at several locations below the Blossom Street Bridge. Discontinuous TLM is sporadic in occurrence and is characterized by limited spatial continuity. The discontinuous TLM thickness may range from 0.2 to 1.5 feet.
- For both the continuous and discontinuous TLM areas, the TLM exhibits similar physical characteristics that generally includes a highly viscous and taffy-like consistency, typically has sediment as part of the matrix, and has a distinct tar-like odor. Some less viscous TLM was encountered between the 4 and 18 Lines and is generally found below the highly weathered TLM.
- An apparent transition zone is noted at the 19 Line and likely represents the end of continuous TLM.

In addition, other observations noted while completing the fieldwork included TLM fragments and OWM. TLM fragments represent that fraction of TLM that was likely eroded (by fluvial action) from the continuous TLM area, transported downstream, and deposited. When encountered, the quantity of TLM fragments was typically limited, did not exhibit spatial continuity, and tended to have a more solidified consistency. Therefore, TLM fragments were noted when observed but are not considered to have spatial continuity or aerial extent.

TABLE 1-1

TIMELINE OF PROJECT ACTIVITIES

Congaree River Sediments Columbia, South Carolina

Date	Description of Activity	Areas Investigated
June 2010 - September 2010	Preliminary Act	ivities
June 28, 2010	SCDHEC split sediment sampling with SCE&G	Three discrete locations near shore between the 4 and 8 Lines
July 20, 2010	SCDHEC and SCE&G performed field reconnaissance	Senate Street Extension alluvial fan area north to the Gervais Sreet Bridge
September 15, 2010	Delineation Work Plan submitted to SCDHEC	
September 24, 2010	Delineation Work Plan approved by SCDHEC	
August - October 2010	Phase I Activi	111
August 25-26, 2010	Geophysical (i.e., magnetometer) and side scan sonar survey.	North to south from the 1 Line to near the 16 Line and west to east from near mid-river to eastern shoreline.
September 29 - October 7, 2010	Sediment coring using direct push technology (DPT) drill mounted on a pontoon boat. Wade and spade utilized in stretches of the Congaree River that could not be accessed with the pontoon boat due to low water and/or boulders, and at the down river reconnaissance locations.	North to south from the 1 Line to near the 16 Line, and west to east from near mid-river to eastern shoreline. Reconnaissance at approximately the 19, 23, and 29 Lines. The approximate 1/3 eastern extent of the river was investigated at the 19 and 23 Lines whereas, location specific was investigated at the 29 Line.
December 14 and 29, 2010	Phase I Delineation - Summary and Phase II Delineation - Proposed Activities submitted to SCDHEC	-
January - February 2011	Phase II - Activ	vities
January 4, 2011	Magnetometer survey in the river and Unnamed Tributary (UT) #1	Performed magnetometer survey from approximately the 16 Line to near the 20 Line, and west to east from near mid-river to eastern shoreline. Magnetometer survey from near the mouth of UT #1 to near the falls.
February 22 and 23, 2011	Sediment coring using direct push technology (DPT) drill mounted on a pontoon boat. Wade and spade in the UT #1.	North to south from the 17 Line to the 19 Line and west to east from near mid-river to eastern shoreline. In UT #1 from near the mouth and east to the falls.
June 6, 20102	Phase II Delineation - Summary and Phase III Delineation - Proposed Activities submitted to SCDHEC	
June - August 2011	Phase III Activ	rities
June 9, 2011	Used a motorized john boat to evaluate the potential to navigate the pontoon boat from the public boat launch (end of Rosewood Street) through the abandoned lock in order to investigate in the 20 to 36 Line area.	
June 30, 2011	Performed magnetometer survey	Performed magnetometer survey down river from near the 19 Line to near the 36 Line and west to east from near mid-river to the eastern shoreline. Continuity of the magnetometer survey at some stretches of the river was interrupted due to low water and/or presence of boulders.
July 19-21, 2011	Sediment investigation performed via wade and spade due to low Congaree River levels, which resulted in access constraints for the pontoon boat.	North to south from the 20 Line to near the 36 Line and west to east from near mid-river to the eastern shoreline.
July 21, 2011	Reconnaissance activities to assess sediment conditions and utilizing wade and spade techniques.	Performed preliminary reconnaissance below the 36 Line.
July 27 and July 28, 2011	Landside soil boring drilling using DPT.	North to south from the 3 to 17 Lines and at the top of the river bank.
August 3, 2011	Phase III Delineation - Preliminary Findings and Phase IV Delineation Proposed Activities submitted to SCDHEC	
August and September 2011	Phase IV Activ	rities
August 10, 2011	Based on Phase III reconnaissance findings, utilized wade and spade techniques to investigate sediments down river from the 36 Line. This investigative activity was designed to maximize coverage over a broad area to gain an understanding of potential TLM occurrence.	North to south below the 36 Line and starting near the 45 Line and extending down river to the 71.5 Line. West-east, general width of river assessed where wading was possible.
September 1, 2011	Based on August 10, 2011 findings and where wading was possible, delineation performed with goal of maximizing aerial coverage using rapid spading and logging techniques to assess potential TLM occurrence.	North to south from near the 80 Line to near the 91.5 Line and just up river of the abandoned lock and dam. West to east generally from mid-river to the shoreline.
September 27, 2010	Phase IV Delineation - Preliminary Findings and Phase V Delineation - Proposed Activities submitted to SCDHEC	
October 2011 - February 2012	Phase V Activ	ities
October - December 2011	Monitored river levels to determine when levels would raise and sustain 3 feet or greater, permitting navigation of the john boat through the abandoned lock to access the coring locations.	
January 10-12, 2012	Used two john boats rigged side-by-side and equipped with a vibra-core to obtain cores at the Phase V proposed investigation locations.	North to south from the 43 Line to the 87.5, and west to east across the river width where the boulder field was absent (i.e., 43 and 49 Lines).
January 12, 2012	Performed magnetometer survey on the eastern shoreline to clear locations for vibra-coring and provide additional data for potential UXO locations.	North to south from near the 6 Line to approximately the 11 Line and along the eastern shoreline.
February 1, 2012	Vibra-core locations along the eastern shoreline to further refine TLM horizontal extent.	North to south from near the 6 to approximately the 11 Line and along the eastern shoreline.

Project Delineation Report/Tables\Table 1-1.xls 3/27/2012

TABLE 2-1
SUMMARY OF SEDIMENT AND SOIL ANALYTICAL PARAMETERS AND METHODS

Congaree River Sediments Columbia, South Carolina

Parameter	Preliminary Activity Methods	Delineation Methods
Volatile Organic Compounds		
Benzene	8270 SIM	8260B
Ethylbenzene	8270 SIM	8260B
Toluene	8270 SIM	8260B
Total Xylenes	8270 SIM	8260B
1,2,4 - Trimethylbenzene	8270 SIM	NA ⁽¹⁾
1,3,5 - Trimethylbenzene	8270 SIM	NA
Isoporpoylbenzene	8270 SIM	NA
p - isopropylbenzene	8270 SIM	NA
Styrene	8270 SIM	NA
Semi-Volatile Organic Compo	unds	
Acenaphthene	8270 SIM	8270D
Acenaphthylene	8270 SIM	8270D
Anthracene	8270 SIM	8270D
Benz(a)anthracene	8270 SIM	8270D
Benzo(a)pyrene	8270 SIM	8270D
Benzo(b)fluoranthene	8270 SIM	8270D
Benzo(k)fluoranthene	8270 SIM	8270D
Benzo(g,h,i)perylene	8270 SIM	8270D
Chrysene	8270 SIM	8270D
Dibenz(a,h)anthracene	8270 SIM	8270D
Fluoranthene	8270 SIM	8270D
Fluorene	8270 SIM	8270D
Indeno(1,2,3-cd)pyrene	8270 SIM	8270D
Naphthalene	8270 SIM	8270D
Phenanthrene	8270 SIM	8270D
Pyrene	8270 SIM	8270D
1 - Methynaphthalene	8270 SIM	NA
2 - Methylnaphthalene	8270 SIM	NA
Biphenyl	8270 SIM	NA

Notes:

(1) NA - not analyzed and represents additional parameters analyzed by Meta Environmental, Inc. during the preliminary activities and were not incorporated into the delineation analytical program.

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Point Number	Coring or Boring ID ⁽¹⁾	Approximate Sediment Thickness (feet brb) ⁽²⁾	Tar-Like Material (TLM) Observed ⁽³⁾	Top of TLM (feet brb) ⁽⁴⁾	Bottom of TLM (feet brb) ⁽⁴⁾	Approximate TLM Thickness (feet brb) ⁽⁴⁾	TLM Odor and Depth Interval(s) (feet brb) ⁽⁴⁾	TLM Sheens or Staining Interval(s) (feet brb) ⁽⁴⁾	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
1	UT1	1.4	•						
2	UT2	1.8	•				-		
3	UT3	1.4	•						
4	UT4	2.5	• •						TLM was not noted in sediment but was observed while wading
5	UT5	1.9	•						
6	UT6	0.7	•						
7	UT7	0.25	•				1		
8	UT8	2.0	•						Minor amounts of light gray sheen noted as digging
9	AB1	1.0	•						
10	AB2	1.0	•	0.55	0.8	0.25	0.25-0.80		
11	AB3	2.3	•	1.2	2.3	1.1	1.2-2.3		
12	AB4	0.9	•						
13	AB5				See Note				Located on rocks, no recovery
14	AB6/I2	1.5	•	0.5	0.8	0.3		0.5-0.8	Co-located with I2
15	G1	1.5	•						
16	H1	1.1	•				-		
17	I1	0.5	•						
18	J1	1.25	•						
19	K1	0.25	•						
20	L1	0.25	•						
21	M1	1.0	•						
22	N1	0.5	•						
23	01	0.42	•						
24	12	1.5	•	0.5	0.8	0.3		0.5-0.8	Co-located with AB6
25	J2		•	•	See Note	•		•	Located in and on boulders, not investigated
26	K2	0.6	•						
27	L2	0.9	•						
28	M2	0.75	•						
29	N2	0.8	•						
30	02	1.4	•						
31	J3	15.0	•						
32	K3	1.0	•	0.3	0.9	0.6	0.3-1.0		
33	L3	0.25	•						
34	М3	0.25	•						

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Point Number	Coring or Boring ID ⁽¹⁾	Approximate Sediment Thickness (feet brb) ⁽²⁾	Tar-Like Material (TLM) Observed ⁽³⁾	Top of TLM (feet brb) ⁽⁴⁾	Bottom of TLM (feet brb) ⁽⁴⁾	Approximate TLM Thickness (feet brb) ⁽⁴⁾	TLM Odor and Depth Interval(s) (feet brb) ⁽⁴⁾	TLM Sheens or Staining Interval(s) (feet brb) ⁽⁴⁾	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
35	N3	0.20	•				-		
36	K4	14.0	•		-		-		
37	L4	1.0	•		-		-		
38	M4	1.5	•	1.3	1.5	0.2	0.6-1.3	1.3-1.5	
39	N4	1.0	•	1.0	1.0	~0.01	0.75-1.0		
40	04	2.9	•		-		-		
41	K5	11.5	•						
42	L5	2.0	•	0.2	0.4		0.2-0.4		
43	M5	1.5	•						
44	N5	4.0	•	0.5	4.0	3.5	0.5-4.0		
45	O5	1.8	•	0.0	1.8	1.8	1.0-1.8		
46	P5	1.1	•						
47	K6	14.25	•						
48	L6	5.9	•				3.5-5.9		
49	M6	5.1	•	0.2	5.1	4.9	0.2-5.1	0.2-2.0, 4.25-4.75	Clinker noted at top of interval
50	N6	1.0	•	0.5	1.0	0.5	0.5-1.0		
51	O6	2.25	•	0.4	2.25	1.85			
52	P6	0.5	•						
53	J7	20.5	•						
54	K7	8.8	•				6.7-8.75		
55	L7	2.1	•						
56	N7	1.1	•	0.0	1.1	1.1	0-1.1		
57	07	0.6	•				0.6		
58	J8	23.0	•						
59	K8	6.1	•				0.2-6.1		
60	L8		•		See Note				Too may anomolies
61	M8	4.0	•	0.0	3.5	3.5	0-3.4	0-3.4	
62	N8	1.25	•						
63	O8	1.3	•						
64	J9	23.0	•						
65	K9	7.3	•				1.7-2.4		
66	L9	3.0	•	1.25	2.0	0.75	1.25-2.0		
67	M9	1.6	•						
68	N9	0.75	•	0.55	0.75	0.25		0.55 - 0.75	

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Point Number	Coring or Boring ID ⁽¹⁾	Approximate Sediment Thickness (feet brb) ⁽²⁾	Tar-Like Material (TLM) Observed ⁽³⁾	Top of TLM (feet brb) ⁽⁴⁾	Bottom of TLM (feet brb) ⁽⁴⁾	Approximate TLM Thickness (feet brb) ⁽⁴⁾	TLM Odor and Depth Interval(s) (feet brb) ⁽⁴⁾	TLM Sheens or Staining Interval(s) (feet brb) ⁽⁴⁾	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
69	O9	1.1	•						
70	J10	21.0	•						
71	K10	7.7	•						
72	L10	4.5	•	1.5	4.5	3.0	1.5-3.0	3.5 - 4.5	Odors likely at TLM layers, TLM layers grouped
73	M10	1.25	• •	0.5	0.6	0.1	0.5-0.6		
74	N10	1.5	•						
75	O10	2.9	•						
76	J11	21.0	•						
77	J11.5	6.3	•						
78	K11	0.7	•	0.5	0.6	0.1	0.5-0.6	0.5-0.6	
79	L11	1.0	•	0.05	1.0	0.95	0.05-1.0	0.05-1.0	
80	M11	0.8	•						
81	N11	0.33	•				-		
82	O11	6.0	•						
83	J12	21.0	•						
84	K12	1.0	•	0.3	0.5	0.2	0.5-1.0	0.3-0.5	
85	L12	0.7	•				-		
86	M12	0.5	•	0.0	0.5	0.5			Blebs on rock fragments
87	N12	0.8	•		-		0-0.8		TLM on cutting shoe, not in sample
88	O12	1.5	•				-		
89	J13	19.0	•						
90	K13				See Note				Water was too shallow to access location with pontoon boat
91	L13	0.40	•	0.20	0.28	0.08	0.2-0.28		
92	M13	0.65	•	0.0	0.55	0.55	0-0.55	0-0.3	
93	N13	0.5	•	0.25	0.5	0.3	0-0.25	0.25-0.5	
94	O13	1.0	•						
95	l14	22.0	•						
96	J14	3.0	•						No recovery and no evidence of TLM on liner or core barrel
97	K14	0.16	•						
98	L14	0.2	•						TLM noted on cutting shoe, no recovery
99	M14	0.8	•	0.0	0.8	0.8	0-0.8		
100	N14	0.6	•	0.6	0.62	0.02	0.60	0.62	Represents TLM observations from second sample event
101	O14	0.7	•						Three cores obtained and did not indicate presence of TLM except one bleb on one of the three acetate liners

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Point	Coring or Boring	Approximate Sediment Thickness	Tar-Like Material (TLM)	Top of TLM	Bottom of TLM	Approximate TLM Thickness	TLM Odor and Depth Interval(s)	TLM Sheens or Staining Interval(s)	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
Number	ID ⁽¹⁾	(feet brb) ⁽²⁾	Observed ⁽³⁾	(feet brb) ⁽⁴⁾	(feet brb) ⁽⁴⁾	(feet brb) ⁽⁴⁾	(feet brb) ⁽⁴⁾	(feet brb) ⁽⁴⁾	(12m Fragments , Ovim , Omders/Omikers)
102	l15	21.0	•						
103	J15				See Note				Multiple sample attempts and no recovery due to rocks
104	K15	0.75	•	0.0	0.37	0.37	0-0.37	0-0.37	
105	L15	0.5	•						
106	M15	0.75	•				0.5-0.75		
107	H16	27.0	•					1	
108	J16	0.25	•	0.0	0.25	0.25	0-0.25	1	
109	K16	0.75	•	0.25	0.75	0.5		1	
110	L16	1.1	•	0.0	1.1	1.1		0.65-1.1	Odors likely in TLM intervals
111	M16	1.0	•	0.0	0.5	0.5	0-0.5	0.75-1.0	Odors likely in other TLM intervals
112	N16	1.2	•	0.45	1.2	0.75	0-0.45, 0.70-1.20		Odors likely in other TLM intervals
113	O16	1.0	•					1	
114	H17	27.0	•					1	
115	l17	2.8	•				0.5-2.0	1	
116	J17	1.4	•	0	1.4	1.4	0-1.4		
117	K17	1.0	•	0.8	1.0	0.2	0.8-1.0	0.8-1.0	
118	L17	1.5	•						
119	M17	1.7	•	0, 0.6, 1.0	0.6, 0.85, 1.7	0.25, 0.25, 0.70	1.0-1.7		Odors likely in other TLM intervals
120	N17	2.6	•						
121	017	1.4	•						
122	l18	2.0	•				1.4-2.0		
123	J18	1.6	•	0.5	1.6	1.1	0.5-1.6		
124	K18	0.25	•	0	0.01	0.01	0-0.25		Couple of TLM "balls" noted on top of sample matrix
125	L18	0.35	•						
126	M18	1.0	•						
127	N18	0.75	•						
128	O18	0.5	•						
129	P18	1.5	•						
130	J19	2.0	•	1.75	2.00	0.25	1.75-2.0	1.75-2.0	Blebs in interval
131	K19	0.6	•						
132	L19	0.5	• •						Bleb noted on one fragment in one of three cores
133	M19	0.3	•						
134	а	1.5	•						
135	b	1.5	•						

SEDIMENT AND SOIL SENSORY OBSERVATIONS

	Coring or	Approximate Sediment	Tar-Like	Тор	Bottom of	Approximate TLM	TLM Odor and Depth	TLM Sheens or Staining	Other Observations/Notes
Point Number	Boring ID ⁽¹⁾	Thickness (feet brb) ⁽²⁾	Material (TLM) Observed ⁽³⁾	of TLM (feet brb) ⁽⁴⁾	TLM (feet brb) ⁽⁴⁾	Thickness (feet brb) ⁽⁴⁾	Interval(s) (feet brb) ⁽⁴⁾	Interval(s) (feet brb) ⁽⁴⁾	(TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
136	С	0.5	•						
137	d	0.3	•						Interpreted to be OWM fragments
138	е	0.75	•						Cinders present in very minor amounts
139	f	0.75	•						
140	g	1.0	• •						Interpreted to be OWM fragments, amount limited
141	h	1.0	•						Interpeted to be OWM fragments
142	i	1.0	•						
143	j	NR	0						TLM fragments and cinders
144	120	0.7	•						
145	J20	0.5	•				0-0.5		One to two pieces of OWM
146	K20	0.8	O •				0.4		OWM or TLM fragment
147	L20	1.0	•						
148	M20	0.6	•						
149	N20	0.5	•						
150	O20	0.6	•						
151	H22	1.1	•				0.8-1.1		
152	J22	0.6	•						One fragment of TLM and one fragment of OWM at depth of 0.2' to 0.3'
153	L22	0.9	•						
154	N22	0.7	•						
155	H24	0.7	•				0-0.7		Depth not specifically defined and may be less than noted
156	J24	0.5	•						OWM fragment noted ~3" in diameter
157	L24	0.5	<u></u>						TLM fragment
158	N24	0.7	•						
159	H26	1.5	•						
160	J26	0.75	•						Noticed one clinker while inspecting samples
161	L26	0.7	•						
162	N26	0.5	•						
163	H28	1.0	•						
164	J28	0.6	•						
165	L28	0.7	•						
166	N28	0.7	•						
167	130	1.0	•				0-1.0		
168	J30	1.0	•				1.0		
169	L30	0.7	•						

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Point Number	Coring or Boring ID ⁽¹⁾	Approximate Sediment Thickness (feet brb) ⁽²⁾	Tar-Like Material (TLM) Observed ⁽³⁾	Top of TLM (feet brb) ⁽⁴⁾	Bottom of TLM (feet brb) ⁽⁴⁾	Approximate TLM Thickness (feet brb) ⁽⁴⁾	TLM Odor and Depth Interval(s) (feet brb) ⁽⁴⁾	TLM Sheens or Staining Interval(s) (feet brb) ⁽⁴⁾	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
170	N30	1.0	•						Noted two fragments that resembled cinders/clinkers and one that appeared to be OWM
171	132	1.5	•		1		1		
172	J32	0.5	•						
173	L32	0.4	•				-		
174	N32	0.4	•		1		1		
175	P32	0.5	<u></u>				-		Several TLM fragments ranging in size from ~1/4" to 1/2" in diameter and were likey transported down river
176	R32	0.75	•				-		
177	J34	0.4	•		1		0.33-0.4		
178	L34	0.5	•	0.2	0.5	0.3	0.2-0.5		
179	L34 1/2	NR ⁽⁷⁾	•				-		
180	N34	0.9	•	0.5	0.8	0.3	0.5 - 0.8		
181	P34	1.1	<u></u>				-		Very weathered TLM fragments noted and was not within sample matrix
182	L36	3.0	•				-		
183	N36	0.5	•	NR	NR	NR			
184	N36 1/2	0.5	•	0.2	0.5	0.3	0.2-0.5		
185	P36	NR	•				-		
186	R36	NR	•						
187	T43	0.3	•						No recovery, TLM was not noted on core barrel
188	V43	0.7	•						
189	X43	1.5	•						
190	Z43	2.0	•						
191	AD49	2.0	•						
192	AF49	4.0	•						
193	Y57	0.7	•						
194	AA57	0.0	•						No recovery, TLM was not noted on core barrel
195	AC57	0.2	•						No recovery, TLM was not noted on core barrel
196	AE57	1.3	•						
197	AJ57	2.1	•						
198	AL57	1.7	•						
199	AE64	1.1	•						
200	AG64	1.2	<u></u>						Two TLM fragments at ~1.1'
201	Al64	2.6	<u></u>						Potential TLM fragment observed at 1.3'

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Point Number	Coring or Boring ID ⁽¹⁾	Approximate Sediment Thickness (feet brb) ⁽²⁾	Tar-Like Material (TLM) Observed ⁽³⁾	Top of TLM (feet brb) ⁽⁴⁾	Bottom of TLM (feet brb) ⁽⁴⁾	Approximate TLM Thickness (feet brb) ⁽⁴⁾	TLM Odor and Depth Interval(s) (feet brb) ⁽⁴⁾	TLM Sheens or Staining Interval(s) (feet brb) ⁽⁴⁾	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
202	AK64	1.7	•						One clinker observed at 0.1'
203	AM64	1.9	•						
204	AO64	2.1	•	1	1				
205	AK70	0.6	•	1	1				
206	AM70	3.0	•	1	1				
207	AO70	1.0	•	1	1				
208	AQ70	0.75	•						
209	AG80	4.0	•						
210	Al80	1.0	•						
211	AK80	2.5	•						
212	AM80	3.0	•						
213	AO80	0.0	•	1	1				No recovery, TLM was not noted on core barrel
214	AD87.5	1.0	•						No recovery, TLM was not noted on core barrel
215	AF87.5	1.0	•						No recovery, TLM was not noted on core barrel
216	AH87.5	1.6	•						No recovery, TLM was not noted on core barrel
217	AJ87.5	0.0	•						No recovery, TLM was not noted on core barrel
218	CR1	1.5	•						
219	CR2/CR28	NR	•			See Note			TLM "deposition" above water and approxmately 10' long and 3' wide
220	CR3	1.5	•						
221	CR4	1.0	•		-				
222	CR5	2.5	•	1	1				
223	CR6	NR	•	1	1				One clinker noted
224	CR7	0.5	•	1	1				Noted one clinker, one cinder and one coal fragment
225	CR8	1.0	•	1	1				One asphaltic-like fragment noted
226	CR9	0.75	•						
227	CR10	1.0	•				0.5-1.0		
228	CR11	1.5	•						
229	CR12	NR	•						
230	CR13	0.5	•						
231	CR14	0.75	•						
232	CR15	NR	•						Brick found with unknown black coating
233	CR16	NR	•						
234	CR17	NR	•						

SEDIMENT AND SOIL SENSORY OBSERVATIONS

Congaree River Sediment Site Columbia, South Carolina

Point Number	Coring or Boring ID ⁽¹⁾	Approximate Sediment Thickness (feet brb) ⁽²⁾	Tar-Like Material (TLM) Observed ⁽³⁾	Top of TLM (feet brb) ⁽⁴⁾	Bottom of TLM (feet brb) ⁽⁴⁾	Approximate TLM Thickness (feet brb) ⁽⁴⁾	TLM Odor and Depth Interval(s) (feet brb) ⁽⁴⁾	TLM Sheens or Staining Interval(s) (feet brb) ⁽⁴⁾	Other Observations/Notes (TLM Fragments ⁽⁵⁾ , OWM ⁽⁶⁾ , Cinders/Clinkers)
235	CR18	1.0	•		Se	e other observa	tions	TLM "deposition" approximately 20' long, 20' wide (discontinuous) and approximately 1' thick	
236	CR19	NR	•		Se	e other observa	tions	TLM "deposition" - dimensions not recorded	
237	CR20	NR	•		Se	e other observa	tions	TLM "deposition" approximately 30' long, 10' wide and 0.5' thick	
238	CR21	NR	•		Se	e other observa	tions	TLM "deposition" approximately 15' long, 5' wide and 0.5' thick	
239	CR22	NR	•		Se	e other observa	tions		TLM "deposition" approximately 30' long, 8' wide and 1.5' thick
240	CR23	NR	•		Se	e other observa	tions		TLM "deposition" approximately 8' long, 3' wide and 0.2' thick
241	CR24	NR	•						
242	CR25	NR	<u> </u>						TLM fragments (size and number not noted)
243	CR26	NR	•						
244	CR27	NR	<u> </u>						Several TLM fragments at a depth of 0.3'

Notes:

- (1) Corings represent those points in the Congaree River or UT #1 and were generally submerged. Borings represent those points investigated on land and were generally above water.
- (2) brb below river bottom. Based on total depth penetrated with direct push technology (DPT), whacker/macrocore, vibra-core, or maximum depth penetrated by hand digging.
- (3) Dot color guide:
 - Green no visual tar-like material (TLM)
 - Red visual TLM
 - Yellow TLM fragments
 - Orange other weathered material (OWM)
- (4) TLM top, bottom, and thickness was adjusted when recovery to total or maximum depth penetrated was less than 100% and is therefore, approximated. Subsequently, the TLM measurements shown may or may not be reflective of actual TLM vertical extent.
- (5) TLM fragments are fragmented and solid pieces of TLM that are believed to have originated upstream, were eroded, and transported downstream. The TLM fragments occur as distinct fragments and found in the sediment matrix but are not part of the sediment matrix. When encountered, the number of fragments and length (or diameter) were typically limited and small. TLM fragments can have TLM odors.
- (6) OWM has characteristics that could potentially be MGP-like material or other material and the OWM is distinctly different from TLM.
- (7) NR Not recorded or not noted.

SCDHEC AND SCE&G PRELIMINARY AND DELINEATION SEDIMENT ANALYTICAL RESULTS WITH TLM

Congaree River Sediments Columbia, South Carolina

General Area						
Source	SCE&G	SCE&G	SCDHEC	SCE&G	SCDHEC	
(Line) Location of Sample	S-1	S-1 Dup	S-1	S-2	S-2	
Date Sampled	6/28/2010	6/28/2010	6/28/2010	6/28/2010	6/28/2010	
Sample Interval (feet brb) ⁽¹⁾	(2)	(2)	(2)	(2)	(2)	
Parameters						
Volatiles (mg/Kg)						
1,2,4-Trimethylbenzene	90.2 B ⁽³⁾	52 B	NA ⁽⁵⁾	4.31 B	NA	
1,3,5-Trimethylbenzene	28.8 B	16.6 B	NA	1.84 B	NA	
Benzene	43.9 B	22.1 B	16	1.22 B	0.97	
Ethylbenzene	214 B	124 B	150	6.64 B	10	
Isopropylbenzene	22.2	12.8	14	1.25	2.2	
p-Isopropyltoluene	11.7	6.78	NA	0.965	NA	
Styrene	11.7 B	4.04 B	5.7 U ⁽⁶⁾	0.807 B	0.35 U	
Toluene	6.43 B	1.47 B	5.7 U	0.555 B	0.35 U	
Total Xylenes	124.3 B	74.5 B	79	2.773	4.1	
Semi-Volatiles (mg/Kg)						
1-Methylnaphthalene	1,170 E ⁽⁴⁾ B	666 B	NA	134 B	NA	
2-Methylnaphthalene	1,870 EB	1,070 EB	1,700	231 B	400	
Acenaphthene	644	371	730	194	380	
Acenaphthylene	146	72	170	10.5	44 U	
Anthracene	385	222	450	142	300	
Benz(a)anthracene	270	154	340	40.2	130	
Benzo(a)pyrene	320 B	179 B	380	60 B	130	
Benzo(b)fluoranthene	123 B	70.9 B	220	29.1 B	110	
Benzo(g,h,i)perylene	159 B	89.5 B	140 U	27.1 B	47	
Benzo(j/k)fluoranthene ⁽⁷⁾	153 B	84.8 B	140 U	38 B	44 U	
Biphenyl	302 B	172 B	300	33.3 B	64	
Chrysene	287	163	340	54.1	110	
Dibenz(a,h)anthracene	47	26.1	140 U	7.8	44 U	
Fluoranthene	417	244	530	145	320	
Fluorene	405	229	490	98.8	220	
Indeno(1,2,3-cd)pyrene	116	65.1	140 U	23.6	44 U	
Naphthalene	3,710 EB	2,140 EB	3,100	291 B	470	
Phenanthrene	1,510 E	869	1,600	365	710	
Pyrene	737 B	432 B	900	178 B	380	
Totals (mg/Kg) ⁽¹⁰⁾						
Total BTEX	389	222	245	11.2	15.1	
Total PAH ⁽¹¹⁾	9,429	5,411	9,250	1,704	3,307	

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) Depth of sample is not known
- (3) B Analyte detected in the blank.
- (4) E Estimate, result detected above calibration range.
- (5) NA Not analyzed
- (6) U Indicates that the constituent was not detected at the reported detection limit.
- (7) Delineation samples were analyzed for benzo(k)fluoranthene only.
- (8) J Indicates an estimated value.
- (9) Indicates that the constituent was not detected at the reported detection limit; however the result is qualified as estimated based on the data evaluation.
- (10) Total BTEX and total PAH includes only detected results and PAHs are those analyzed during the delineation phases.
- (11) Includes only those PAH compounds comprising the semi-volatiles.

SCDHEC AND SCE&G PRELIMINARY AND DELINEATION SEDIMENT ANALYTICAL RESULTS WITH TLM

Congaree River Sediments Columbia, South Carolina

General Area	Preliminary (Cont.)		Delineation - Various in River			
Source	SCE&G	SCDHEC	SCE&G	SCE&G	SCE&G	
(Line) Location of Sample	S-3	S-3	J19	N36	N36.5	
Date Sampled	6/28/2010	6/28/2010	2/22/2011	7/19/2011	7/19/2011	
Sample Interval (feet brb) ⁽¹⁾	(2)	(2)	0 - 2.0	0 - 0.5	0 - 0.5	
Parameters						
Volatiles (mg/Kg)						
1,2,4-Trimethylbenzene	49.9 B	NA	NA	NA	NA	
1,3,5-Trimethylbenzene	16 B	NA	NA	NA	NA	
Benzene	17 B	8	0.037 U	0.005 U	0.067 J	
Ethylbenzene	113 B	90	2.2	0.005 U	4.7	
Isopropylbenzene	12.5	8	NA	NA	NA	
p-Isopropyltoluene	6.67	NA	NA	NA	NA	
Styrene	9.44 B	3.2 U	NA	NA	NA	
Toluene	4.33 B	3.2 U	0.0081	0.005 U	0.19 J	
Total Xylenes	26.42	19	0.19	0.005 U	1.7	
Semi-Volatiles (mg/Kg)						
1-Methylnaphthalene	792 B	NA	NA	NA	NA	
2-Methylnaphthalene	1,320 EB	1,200	NA	NA	NA	
Acenaphthene	642	740	58	3.1	660	
Acenaphthylene	85.8	100	4.5	0.94 J ⁽⁸⁾	1.6 UJ ⁽⁹⁾	
Anthracene	355	430	41	6.2	460	
Benz(a)anthracene	207	290	29	7.7	370	
Benzo(a)pyrene	232 B	310	34	8.2	390	
Benzo(b)fluoranthene	92.3 B	180	18	7.9	320	
Benzo(g,h,i)perylene	115 B	110	9.5	3.2	150	
Benzo(j/k)fluoranthene ⁽⁷⁾	117 B	94	0.42 UJ	0.40 UJ	3.4 UJ	
Biphenyl	209 B	220	NA	NA	NA	
Chrysene	216	280	34	8.6	360	
Dibenz(a,h)anthracene	33	82 U	2.4	0.40 UJ	33 J	
Fluoranthene	350	480	51	13.0	590	
Fluorene	336	420	35	3.7	450	
Indeno(1,2,3-cd)pyrene	84.6	82 U	7.2	2.5	97	
Naphthalene	2,240 EB	2,000	82	0.40 UJ	690	
Phenanthrene	1,250 E	1,400	150	19.0	1,800	
Pyrene	607 B	800	92	23.0	1,000	
Totals (mg/Kg) ⁽⁹⁾						
Total BTEX	160.8	117.0	2.4	0.005 U	6.7	
Total PAH ⁽¹⁰⁾	6,963	7,634	647.6	107.0	7,370	

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) Depth of sample is not known
- (3) B Analyte detected in the blank.
- (4) E Estimate, result detected above calibration range.
- (5) NA Not analyzed
- (6) U Indicates that the constituent was not detected at the reported detection limit.
- (7) Delineation samples were analyzed for benzo(k)fluoranthene only.
- (8) J Indicates an estimated value.
- (9) Indicates that the constituent was not detected at the reported detection limit; however the result is qualified as estimated based on the data evaluation.
- (10) Total BTEX and total PAH includes only detected results and PAHs are those analyzed during the delineation phases.
- (11) Includes only those PAH compounds comprising the semi-volatiles.

SEDIMENT ANALYTICAL RESULTS CONGAREE RIVER: 1 TO 3 LINES

Congaree River Sediments Columbia, South Carolina

General Area	Ge	rvais Street Brid	Northern Boulder Field		
Line Location of Sample	1 Line			2 Line	3 Line
Sample Identification	l1	K1	M1	02	L3
Date Sampled	10/6/2010	10/6/2010	10/6/2010	10/6/2010	10/7/2010
Sample Interval (feet brb) ⁽¹⁾	0 - 0.5	0 - 0.25	0 - 1.0	0 - 0.5	0 - 0.25
Parameters					
Volatiles (mg/Kg)					
Benzene	0.005 U ⁽²⁾	0.005 U	0.005 U	0.0046 U	0.0048 U
Ethylbenzene	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U
Toluene	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U
Total Xylenes	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U
Semi-Volatiles (mg/Kg) ⁽³⁾					
Acenaphthene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Acenaphthylene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Anthracene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Benzo(a)anthracene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Benzo(a)pyrene	0.41 U	0.39 U	0.41 U	0.37 U	0.91
Benzo(b)fluoranthene	0.41 U	0.39 U	0.41 U	0.37 U	0.92
Benzo(g,h,i)perylene	0.41 U	0.39 U	0.41 U	0.37 U	0.60
Benzo(k)fluoranthene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Chrysene	0.41 U	0.39 U	0.41 U	0.37 U	0.67
Dibenz(a,h)anthracene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Fluoranthene	0.41 U	0.39 U	0.41 U	0.37 U	0.95
Fluorene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Indeno(1,2,3-cd)pyrene	0.41 U	0.39 U	0.41 U	0.37 U	0.45
Naphthalene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Phenanthrene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U
Pyrene	0.41 U	0.39 U	0.41 U	0.37 U	1.10
Totals (mg/Kg) ⁽⁴⁾					
Total BTEX	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U
Total PAH	0.41 U	0.39 U	0.41 U	0.37 U	5.6

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) U Indicates the consitutent was not detected at the reported detection limit.
- (3) The semi-volatiles analyzed were polynuclear aromatic hydrocarbons.
- (4) Total BTEX and total PAH includes only detected results.

The laboratory may have reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.

SEDIMENT ANALYTICAL RESULTS WESTERN BOUNDARY - MID-POINT CONGAREE RIVER: 3 TO 19 LINES

Congaree River Sediments Columbia, South Carolina

General Area	Mid-Congaree River					
Line Location of Sample	5 Line	8 Line	11 Line	14 Line	17 Line	19 Line
Sample Identification	P5	08	011	014	017	L19
Date Sampled	10/4/2010	10/04/2010	10/4/2010	10/5/2010	2/23/2011	2/22/2011
Sample Interval (feet brb) ⁽¹⁾	0 - 1.1	0 - 1.1	0 - 6	0 - 0.7	0 - 1.4	0 - 0.5
Parameters						
Volatiles (mg/Kg)						
Benzene	0.0054 U ⁽²⁾	0.0049 U	0.0052 U	0.0048 U	0.0055 U	0.0051 U
Ethylbenzene	0.0054 U	0.0049 U	0.0052 U	0.0055	0.0055 U	0.0051 U
Toluene	0.0054 U	0.0049 U	0.0052 U	0.0048 U	0.0055 U	0.0051 U
Total Xylenes	0.0054 U	0.0049 U	0.0052 U	0.0057	0.0055 U	0.0051 U
Semi-Volatiles (mg/Kg) ⁽³⁾						
Acenaphthene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Acenaphthylene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Anthracene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Benzo(a)anthracene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Benzo(a)pyrene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Benzo(b)fluoranthene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Benzo(g,h,i)perylene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Benzo(k)fluoranthene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Chrysene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Dibenz(a,h)anthracene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Fluoranthene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.45
Fluorene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Indeno(1,2,3-cd)pyrene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Naphthalene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.37 U
Phenanthrene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.94
Pyrene	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	0.75
Totals (mg/Kg) ⁽⁴⁾						
Total BTEX	0.0054 U	0.0049 U	0.0052 U	0.0112	0.0055 U	0.0051 U
Total PAH	0.36 U	0.35 U	0.36 U	0.35 U	0.37 U	2.1

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) U Indicates the consitutent was not detected at the reported detection limit.
- (3) The semi-volatiles analyzed were polynuclear aromatic hydrocarbons.
- (4) Total BTEX and total PAH includes only detected results.

The laboratory may have reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.

SEDIMENT ANALYTCIAL RESULTS EASTERN BOUNDARY - CONGAREE RIVER SHORELINE: 1 TO 19 LINES

Congaree River Sediments Columbia, South Carolina

General Area		Eastern	Shoreline	
Line Location of Sample	7 Line	8 Line	11 Line	17 Line
Sample Identification	L7	K8	J11.5	I17
Date Sampled	2/1/2012	2/1/2012	2/1/2012	2/23/2011
Sample Interval (feet brb) ⁽¹⁾	0 - 1.55	0 - 5.1	0 - 5.25	0 - 2.8
Parameters				
Volatiles (mg/Kg)				
Benzene	0.0076 U	0.0060 U	0.0097 U	0.0084 U
Ethylbenzene	0.0076 U	0.0060 U	0.0097 U	0.0084 U
Toluene	0.0076 U	0.0060 U	0.0097 U	0.0084 U
Total Xylenes	0.0076 U	0.0060 U	0.0097 U	0.058
Semi-Volatiles (mg/Kg) ⁽³⁾				
Acenaphthene	0.41 U	3.7	0.52 U	59
Acenaphthylene	0.41 U	0.89	0.52 U	4.7
Anthracene	0.41 U	1.2	0.52 U	65
Benzo(a)anthracene	0.68	4.3	0.56	28
Benzo(a)pyrene	0.86	4.7	1.0	27
Benzo(b)fluoranthene	0.79	4.2	0.97	17
Benzo(g,h,i)perylene	0.50	1.9	0.60	7.4
Benzo(k)fluoranthene	0.41 U	1.6	0.52 U	6.6
Chrysene	0.70	4.0	0.52 U	26
Dibenz(a,h)anthracene	0.41 U	0.44	0.52 U	1.8
Fluoranthene	0.95	8.2	0.52 U	76
Fluorene	0.41 U	2.4	0.52 U	37
Indeno(1,2,3-cd)pyrene	0.41 U	1.5	0.52 U	6.8
Naphthalene	0.41 U	0.41 U	0.52 U	0.79
Phenanthrene	0.41 U	9.8	0.52 U	170
Pyrene	1.4	9.1	0.65	97
Totals (mg/Kg) ⁽⁴⁾				
Total BTEX	0.0076 U	0.0060 U	0.0097 U	0.058
Total PAH	5.88	57.93	3.78	630.1

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) U Indicates the consitutent was not detected at the reported detection limit.
- (3) The semi-volatiles analyzed were polynuclear aromatic hydrocarbons.
- (4) Total BTEX and total PAH includes only detected results.

The laboratory may have reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.

SOIL ANALYTICAL RESULTS TOP OF THE CONGAREE RIVER EASTERN BANK: 1 TO 19 LINES

Congaree River Sediments Columbia, South Carolina

General Area	Top of the Congaree River Eastern Bank					
Line Location of Sample	4 Line	8 Line	11 Line	14 Line	17 Line	
Sample Identification	K4	J8	J11	l14	H17	
Date Sampled	7/28/2011	7/27/2011	7/27/2011	7/27/2011	7/28/2011	
Sample Interval (feet bgs) ⁽¹⁾	12 - 14	20 - 23	17 - 21	17.5 - 22	22 - 26	
Parameters						
Volatiles (mg/Kg)						
Benzene	0.006 U ⁽²⁾	0.005 U	0.006 U	0.006 U	0.006 U	
Ethylbenzene	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U	
Toluene	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U	
Total Xylenes	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U	
Semi-Volatiles (mg/Kg) ⁽³⁾						
Acenaphthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Acenaphthylene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Anthracene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Benzo(a)anthracene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Benzo(a)pyrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Benzo(b)fluoranthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Benzo(g,h,i)perylene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Benzo(k)fluoranthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Chrysene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Dibenz(a,h)anthracene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Fluoranthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Fluorene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Indeno(1,2,3-cd)pyrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Naphthalene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Phenanthrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Pyrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	
Totals (mg/Kg) ⁽⁴⁾						
Total BTEX	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U	
Total PAH	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U	

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) U Indicates the consitutent was not detected at the reported detection limit.
- (3) The semi-volatiles analyzed were polynuclear aromatic hydrocarbons.
- (4) Total BTEX and total PAH includes only detected results.

The laboratory may have reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.

SEDIMENT ANALYTICAL RESULTS IN THE CONGAREE RIVER: 19 TO 36 LINES

Congaree River Sediments Columbia, South Carolina

General Area				In th	e Congaree I	River			
Line Location of Sample			20 Line		24 I	Line	30 I	_ine	36 Line
Sample Identification	K19	120	K20	M20	H24	L24	130	L30	P36
Date Sampled	2/22/2011	7/21/2011	7/21/2011	7/21/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/19/11
Sample Interval (feet brb) ⁽¹⁾	0 - 0.6	0 - 0.6	0 - 0.7	0 - 0.8	0 - 0.7	0 - 0.5	0 - 1.0	0 - 0.7	0 - 0.5
Parameters									
Volatiles (mg/Kg)									
Benzene	0.0052 U ⁽²⁾	0.005 U	0.005 U	0.005 U	0.005 U	0.009	0.006 U	0.005 U	0.004 U
Ethylbenzene	0.0052 U	0.005 U	0.005 U	0.005 U	0.005 U	0.062	0.006 U	0.005 U	0.004 U
Toluene	0.0052 U	0.005 U	0.005 U	0.005 U	0.005 U	0.009	0.006 U	0.005 U	0.004 U
Total Xylenes	0.0052 U	0.005 U	0.005 U	0.005 U	0.005 U	0.026	0.006 U	0.005 U	0.004 U
Semi-Volatiles (mg/Kg) ⁽³⁾									
Acenaphthene	0.89	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.38 U
Acenaphthylene	0.41	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.38 U
Anthracene	1.8	0.38 U	0.40 U	0.39 U	0.41 U	0.43	0.47 U	0.36 U	0.38 U
Benzo(a)anthracene	1.9	0.39	0.83	0.39 U	0.57	1.10	0.47	0.36 U	0.38 U
Benzo(a)pyrene	1.9	0.38 U	0.92	0.39 U	0.71	1.30	0.59	0.36 U	0.38 U
Benzo(b)fluoranthene	1.4	0.63	0.74	0.39 U	0.92	1.30	0.85	0.36 U	0.38 U
Benzo(g,h,i)perylene	0.65	0.38 U	0.40 U	0.39 U	0.41 U	0.61	0.47 U	0.36 U	0.38 U
Benzo(k)fluoranthene	0.54	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.38 U
Chrysene	2.1	0.42	0.77	0.39 U	0.72	1.30	0.64	0.36 U	0.38 U
Dibenz(a,h)anthracene	0.42	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.38 U
Fluoranthene	3.6	0.77	1.20	0.39 U	1.00	1.60	0.90	0.36 U	0.38 U
Fluorene	0.81	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.38 U
Indeno(1,2,3-cd)pyrene	0.5	0.38 U	0.40 U	0.39 U	0.41 U	0.46	0.47 U	0.36 U	0.38 U
Naphthalene	0.34 U	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.48	0.38 U
Phenanthrene	4.8	0.49	0.49	0.39 U	0.65	1.70	0.71	0.36 U	0.38 U
Pyrene	5.8	0.77	1.70	0.39 U	1.40	3.00	1.10	0.36 U	0.38 U
Totals (mg/Kg) ⁽⁴⁾									
Total BTEX	0.0052 U	0.005 U	0.005 U	0.005 U	0.005 U	0.11	0.006 U	0.005 U	0.004 U
Total PAH	27.5	3.5	6.7	0.39 U	6.0	12.8	5.3	0.48	0.38 U

Notes:

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) $\ensuremath{\mathsf{U}}$ Indicates the consitutent was not detected at the reported detection limit.
- (3) The semi-volatiles analyzed were polynuclear aromatic hydrocarbons.
- (4) Total BTEX and total PAH includes only detected results.

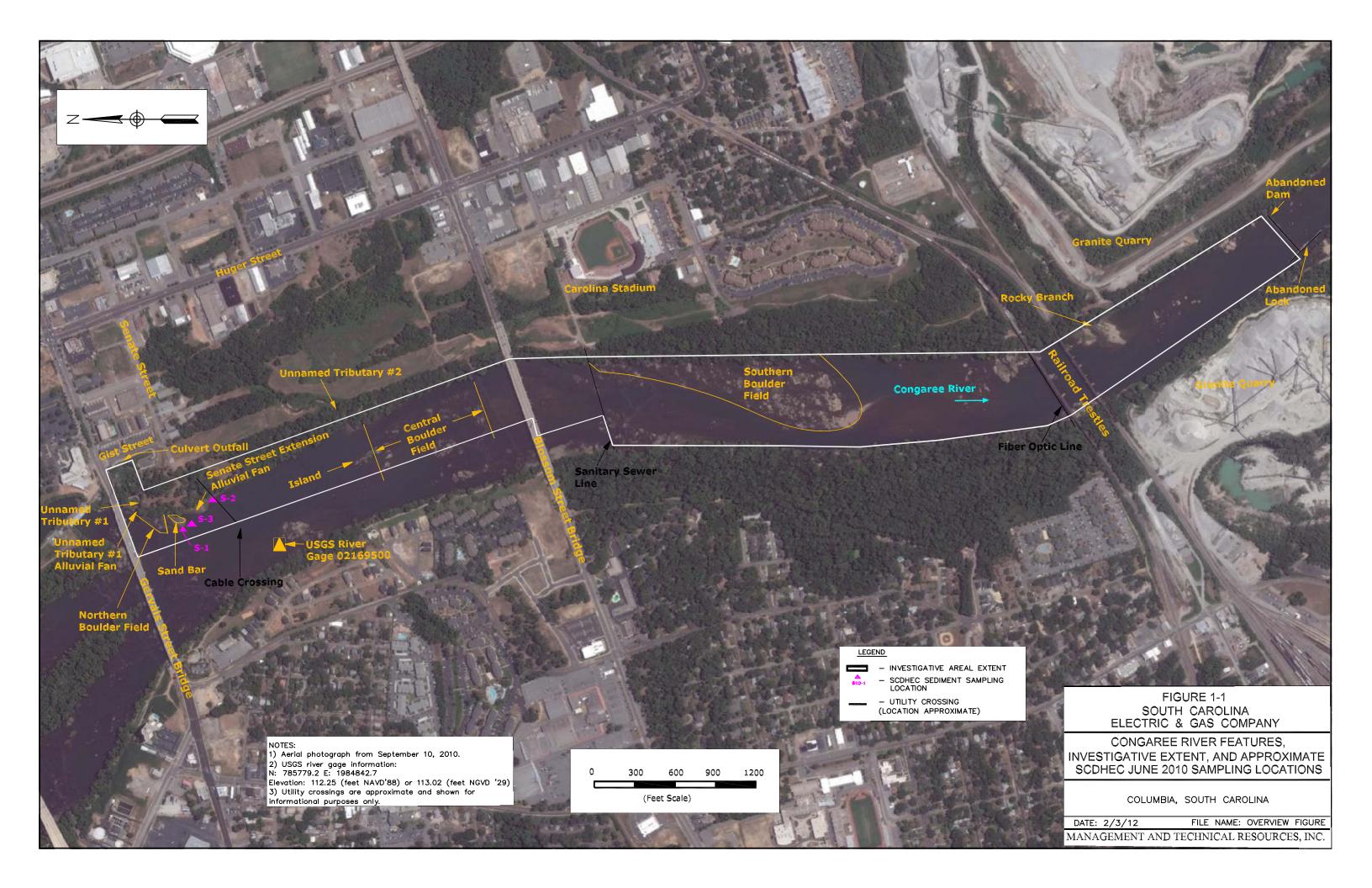
The laboratory may have reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.

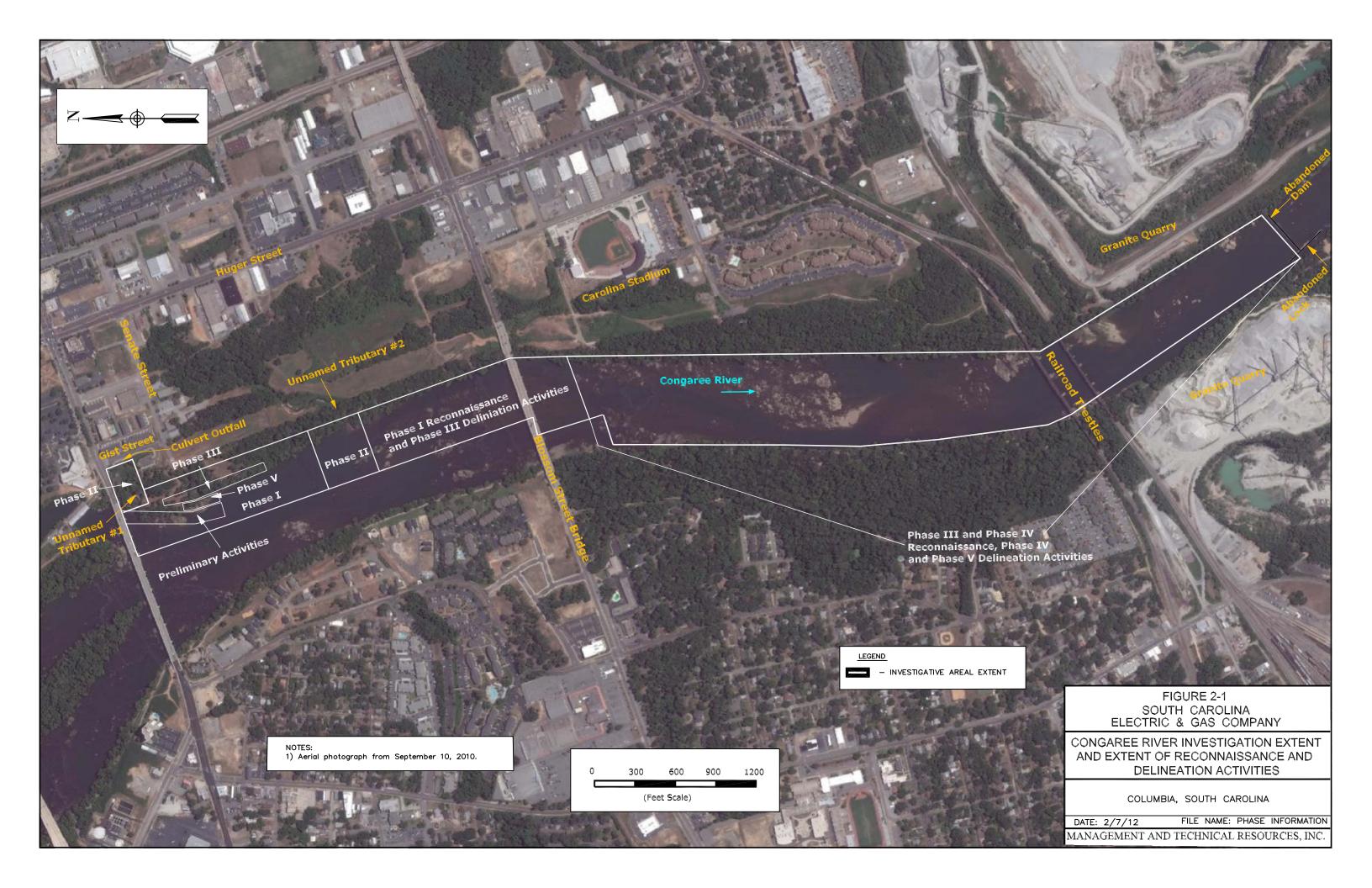
Delineation Report\Tables\Tables 3-2 thru 3-8.xls 3/27/2012

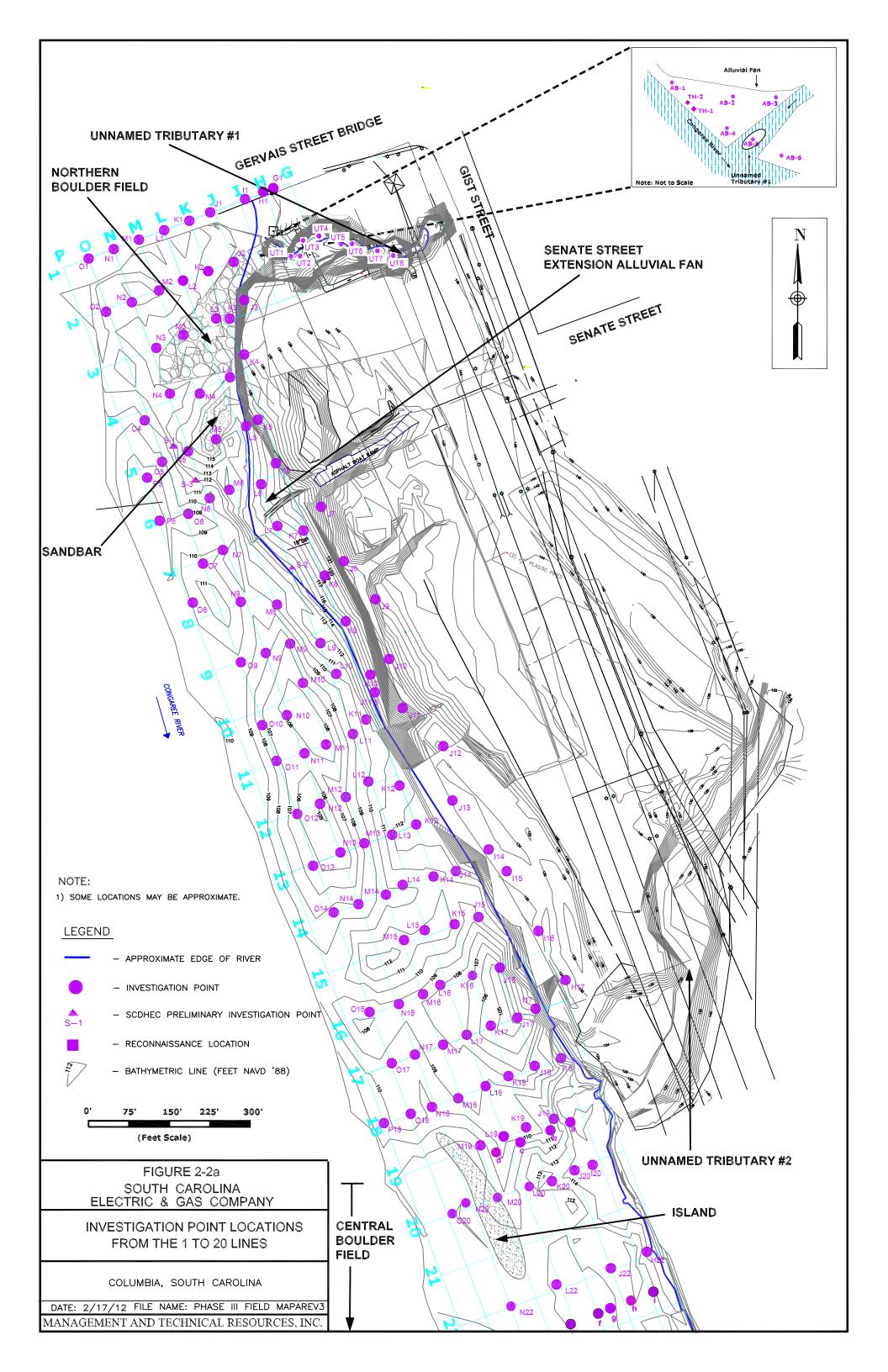
SEDIMENT ANALYTICAL RESULTS WITHIN THE CONGAREE RIVER BELOW THE 36 TO 80 LINES

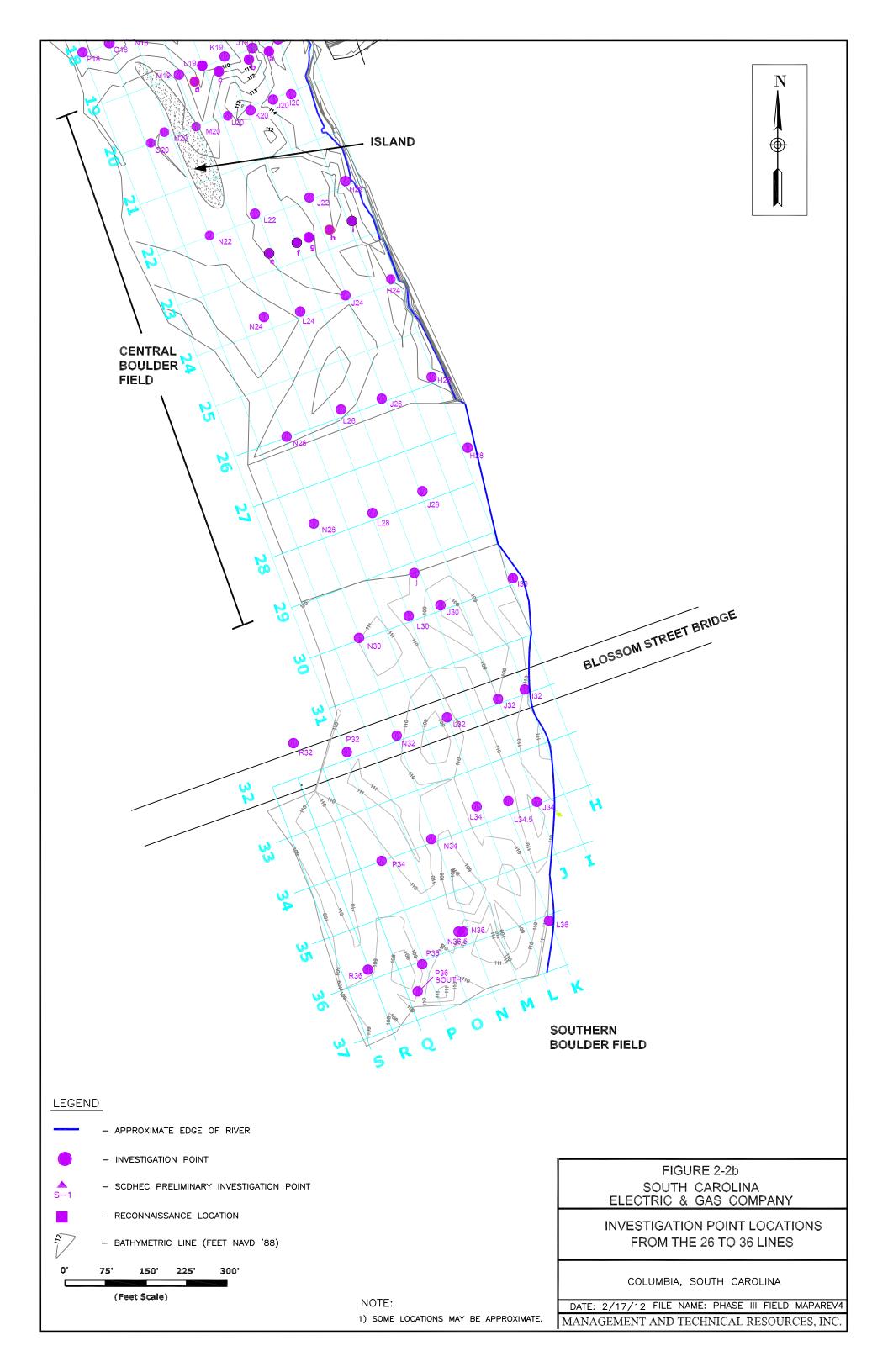
Congaree River Sediments Columbia, South Carolina

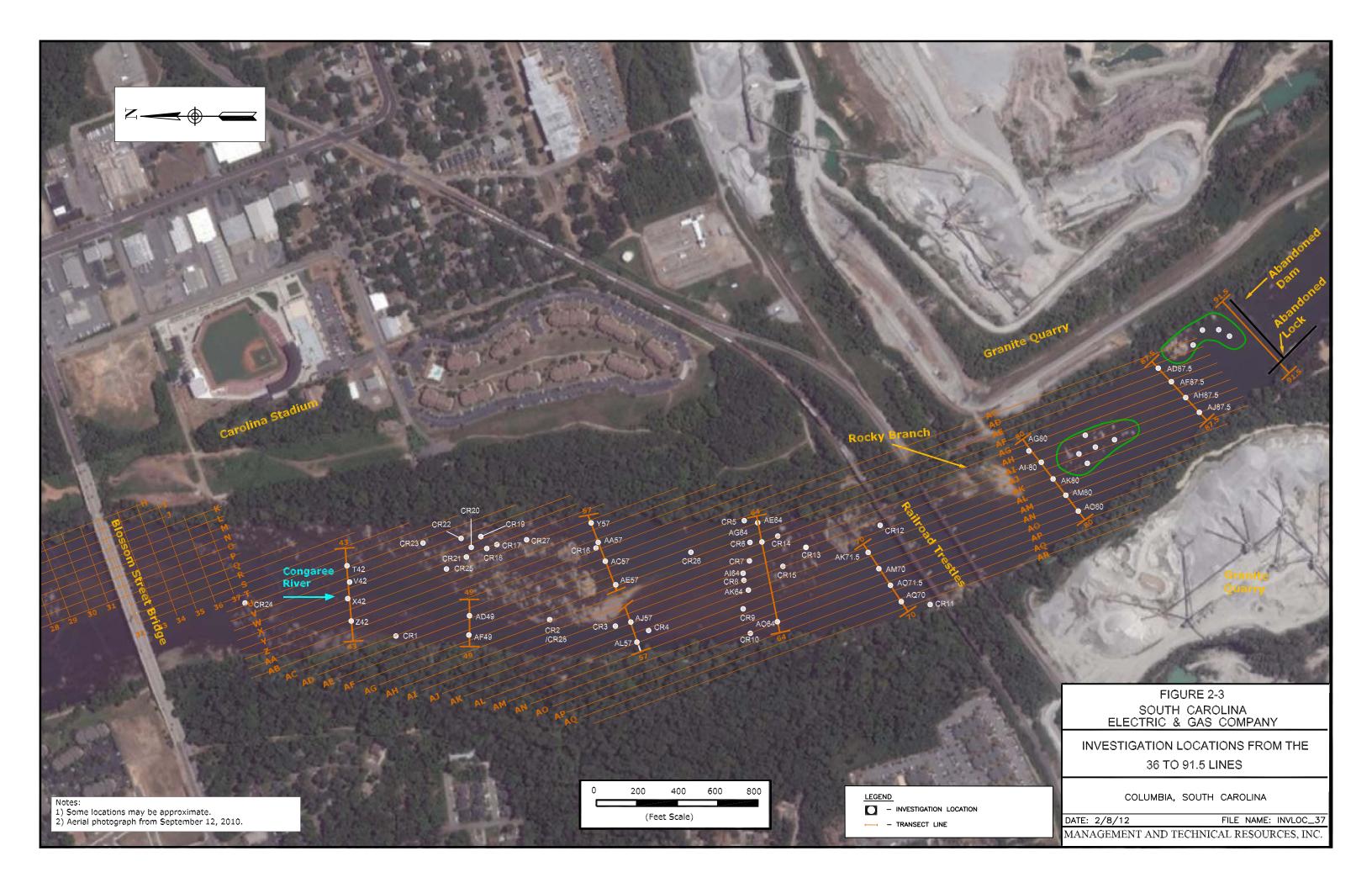
General Area		Soutl	n of Blossom	Street Bridg	t Bridge to South of Railroad Trestles			
Line Location of Sample	45 Line	57	Line	63 Line	64 Line	70	Line	80 Line
Sample Identification	CR1	CR4	Y57	CR7	CR9	AM70	AQ70	AK80
Date Sampled	8/10/2011	8/10/2011	1/12/2012	8/10/2011	8/10/2011	1/10/2012	1/20/2012	1/10/2012
Sample Interval (feet brb) ⁽¹⁾	0 - 1.5	0 - 1.0	0 - 0.7	0 - 0.5	0 - 0.75	0 - 3.0	0 - 0.75	0 - 2.5
Parameters								
Volatiles (mg/Kg)								
Benzene	0.008 U ⁽²⁾	0.009 U	0.0052 U	0.008 U	0.009 U	0.0054 U	0.0051 U	0.0056 U
Ethylbenzene	0.008 U	0.009 U	0.0052 U	0.008 U	0.009 U	0.0054 U	0.0051 U	0.0056 U
Toluene	0.008 U	0.009 U	0.0052 U	0.008 U	0.009 U	0.0054 U	0.0051 U	0.0056 U
Total Xylenes	0.008 U	0.009 U	0.0052 U	0.008 U	0.009 U	0.0054 U	0.0051 U	0.0056 U
Semi-Volatiles (mg/Kg) ⁽³⁾								
Acenaphthene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Acenaphthylene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Anthracene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Benzo(a)anthracene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Benzo(a)pyrene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Benzo(b)fluoranthene	0.41	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Benzo(g,h,i)perylene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Benzo(k)fluoranthene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Chrysene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Dibenz(a,h)anthracene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Fluoranthene	0.64	0.40 U	0.36	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Fluorene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Indeno(1,2,3-cd)pyrene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Naphthalene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Phenanthrene	0.40 U	0.40 U	0.36 U	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Pyrene	0.48	0.40 U	0.62	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U
Totals (mg/Kg) ⁽⁴⁾								
Total BTEX	0.008 U	0.009 U	0.0052 U	0.008 U	0.009 U	0.0054 U	0.0051 U	0.0056 U
Total PAH	1.53	0.40 U	0.98	0.40 U	0.37 U	0.37 U	0.35 U	0.36 U

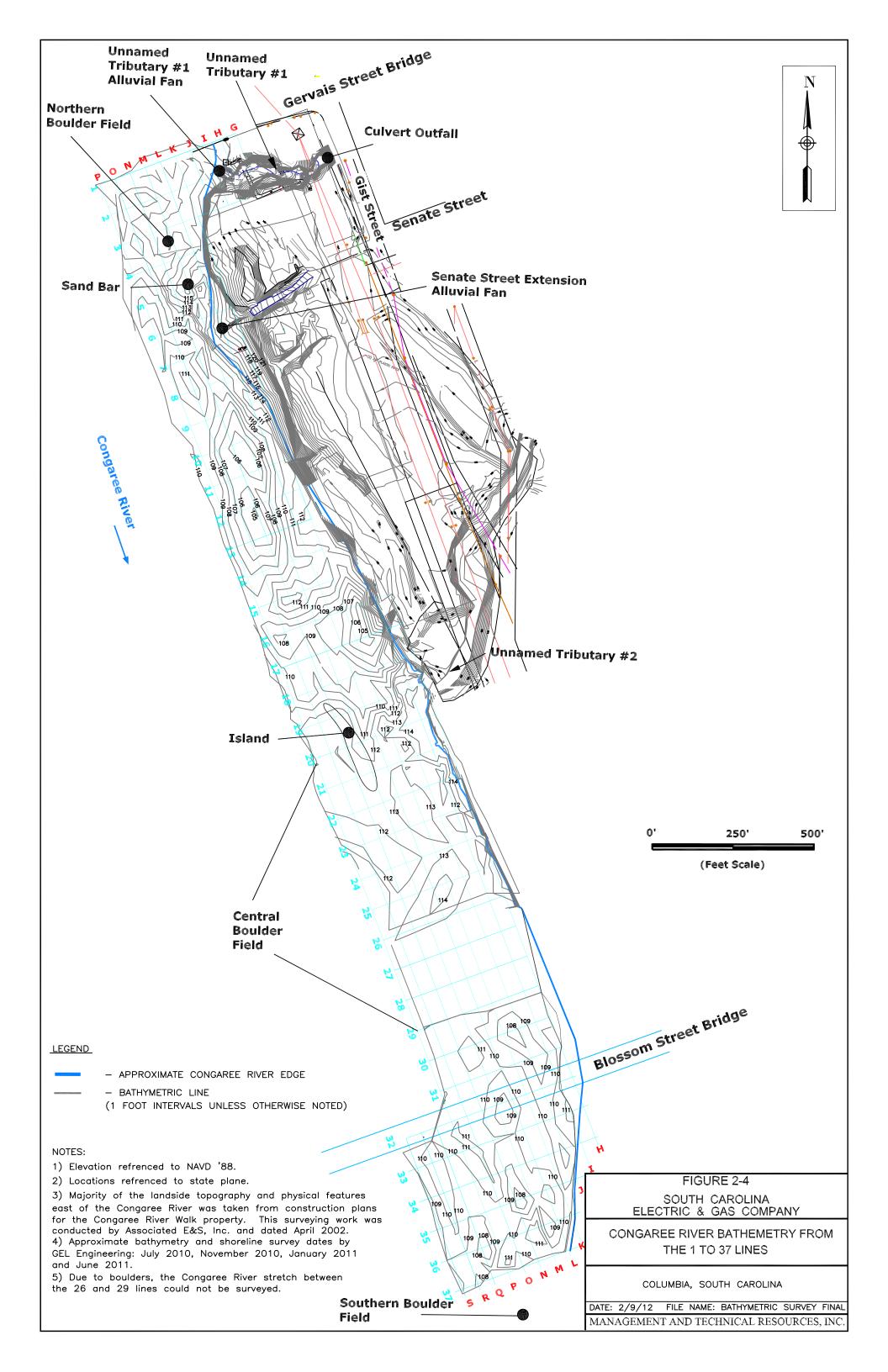

Notes:

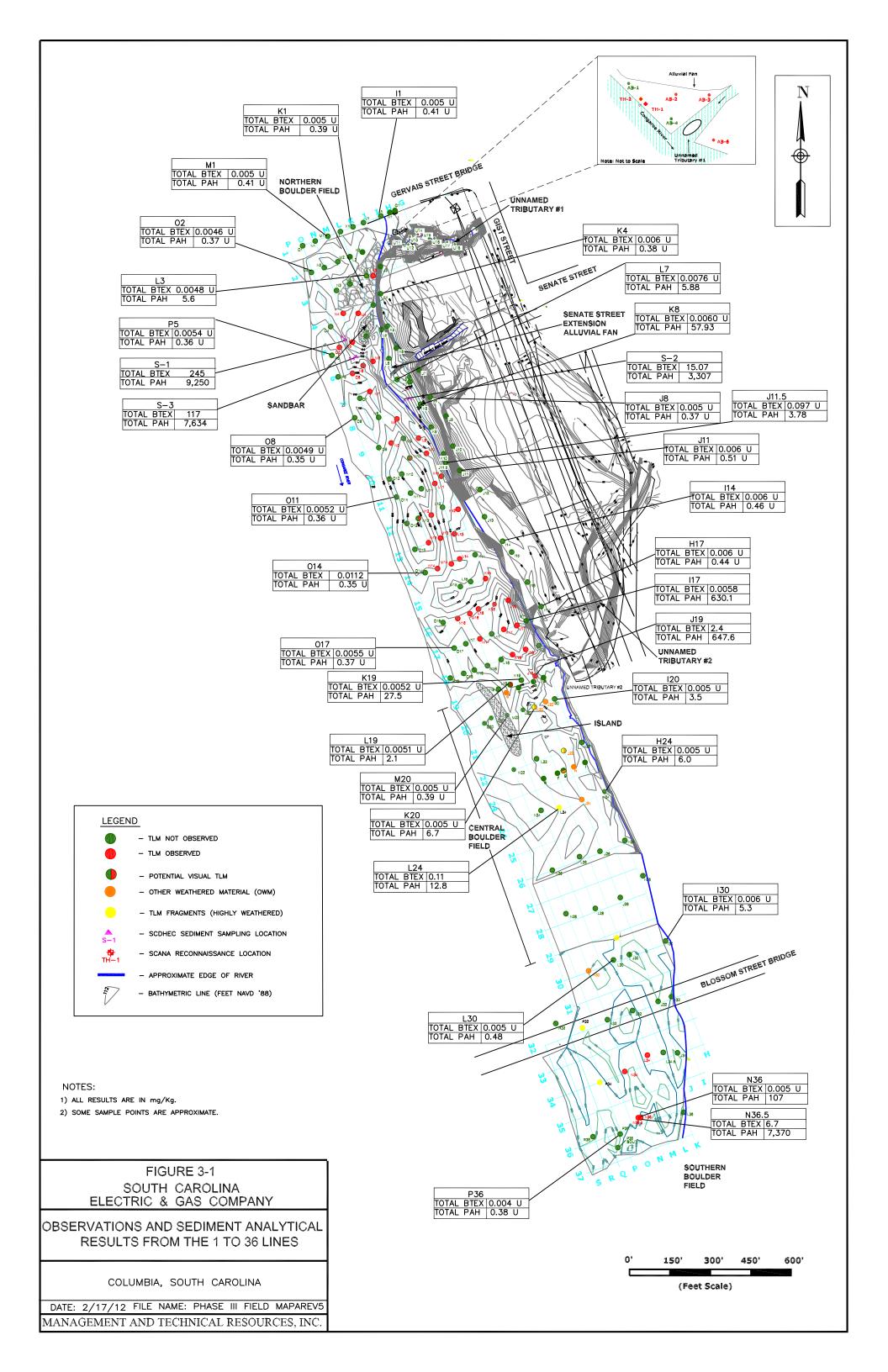

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) U Indicates the consitutent was not detected at the reported detection limit.
- (3) The semi-volatiles analyzed were polynuclear aromatic hydrocarbons.
- (4) Total BTEX and total PAH includes only detected results.

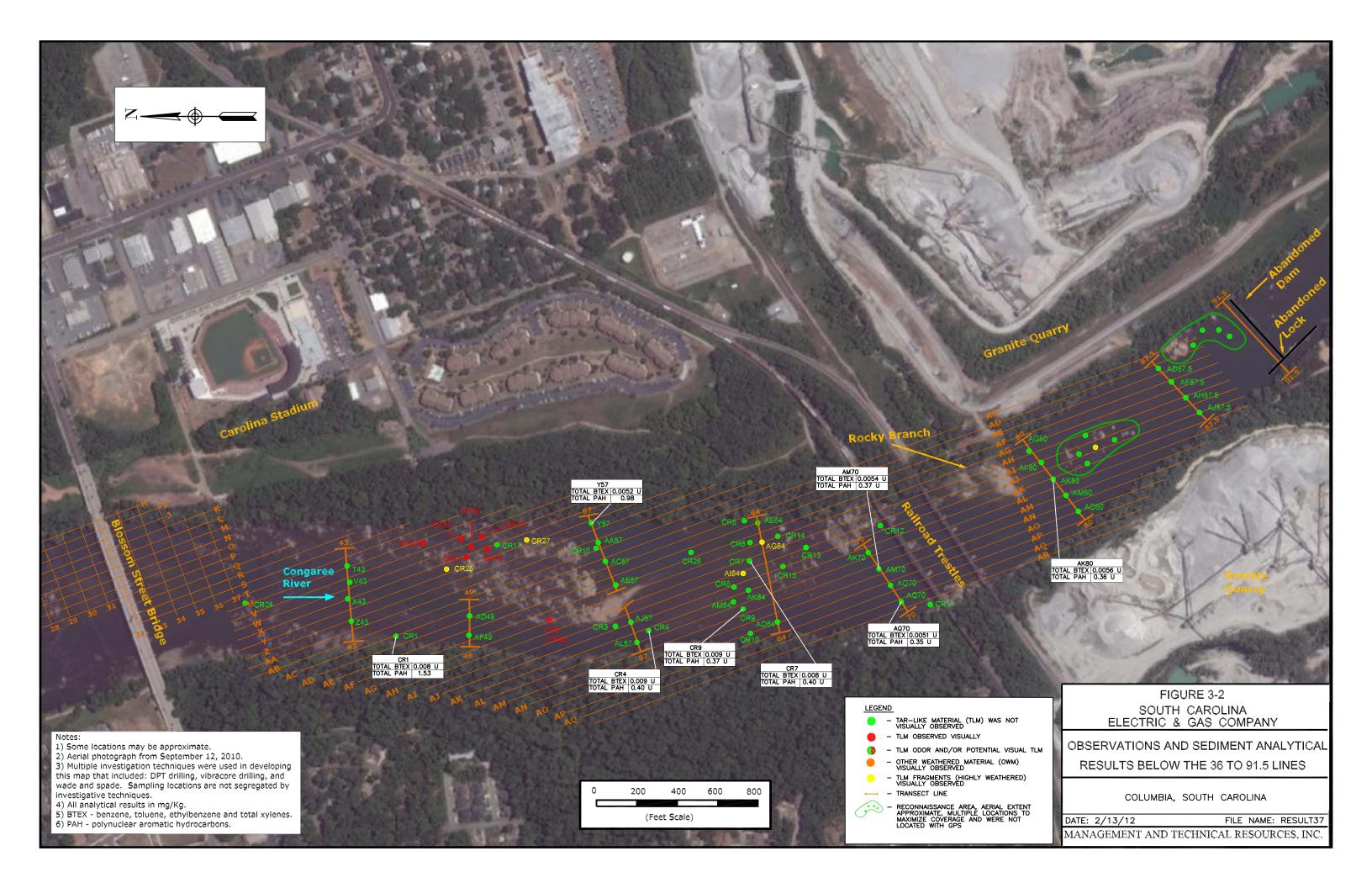

The laboratory may have reported some results between the method detection limit (MDL) and reporting limit (RL).

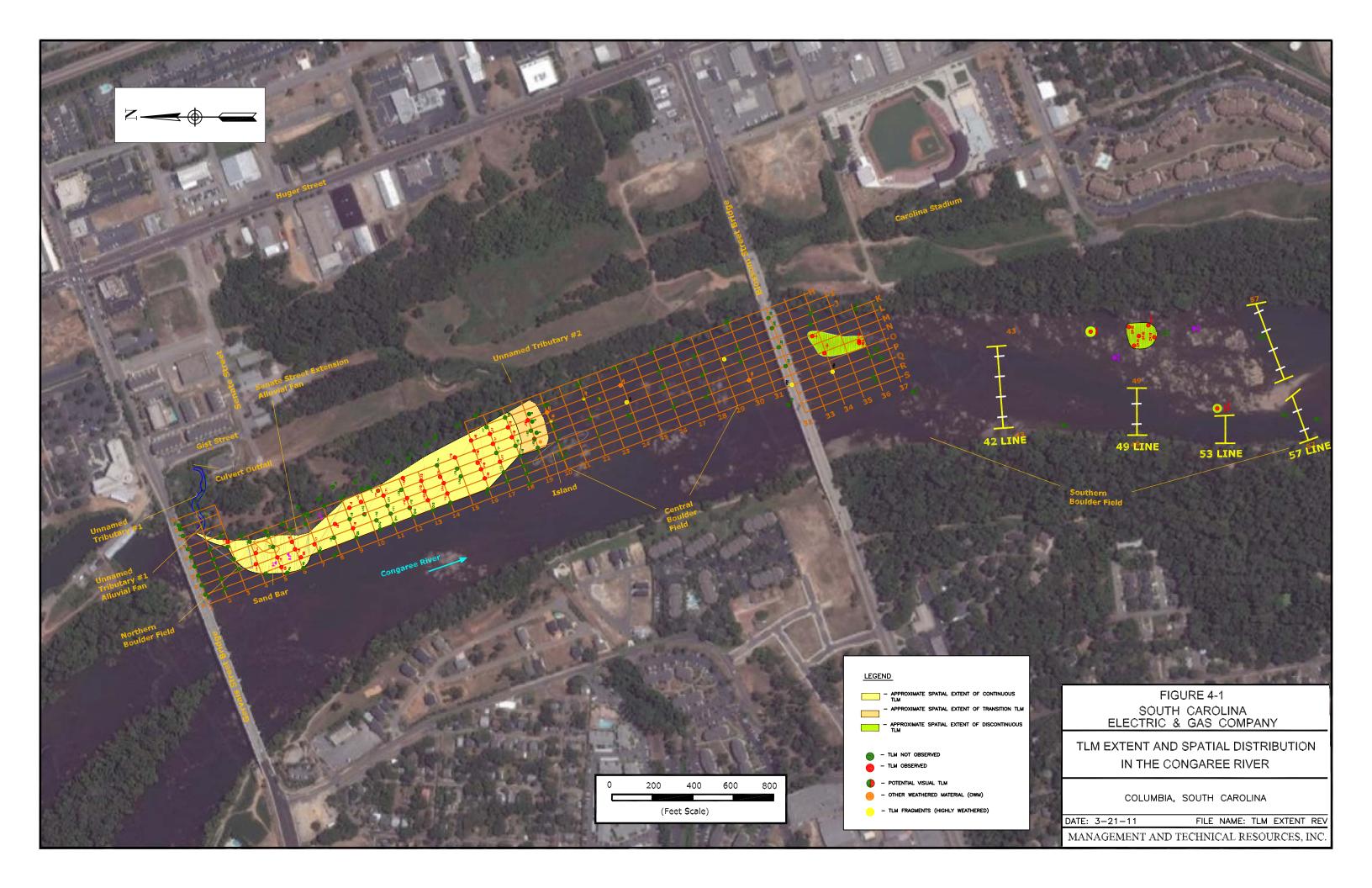

For purposes of this reporting, the results are shown at the RL.







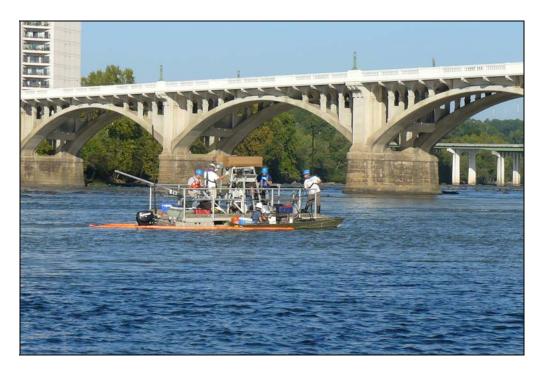


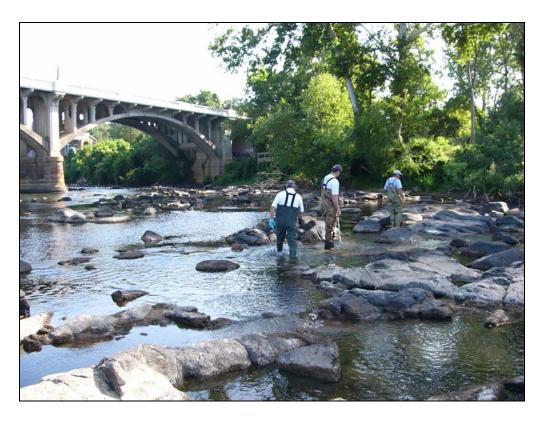


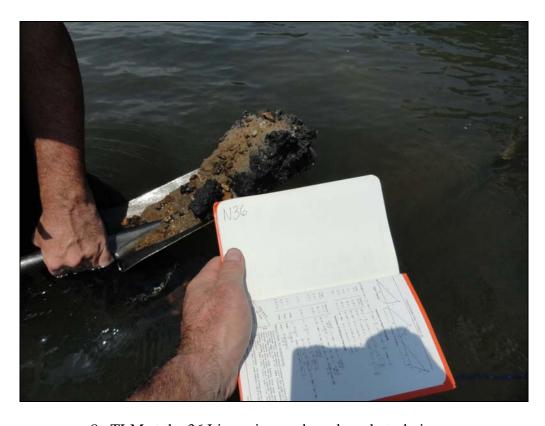
APPENDIX A PHOTOGRAPHS

1. Rubber raft containing geophysical equipment.

2. Performing geophysical survey from the Boston Whaler.


3. Performing geophysical survey via wading with equipment contained in a rubber raft.


4. Preparing pontoon boat and sidecar for launch.


5. Moving pontoon boat and sidecar to a coring location.

6. Pontoon boat and sidecar set up at a coring location.

7. Example of wade and spade activities.

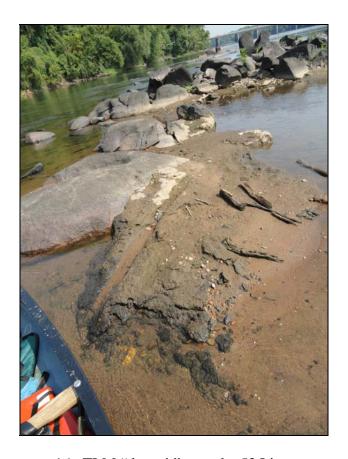
8. TLM at the 36 Line using wade and spade techniques.

9. TLM at the 34 Line using wade and spade techniques.

10. Jon boats rigged together for vibracoring on the water.

11. Vibracore head and tripod on eastern Congaree River shoreline.

12. Sediment core sample N13 showing TLM.


13. Sediment core sample M16 showing TLM.

14. Sediment core sample K17 showing unimpacted sediment above TLM layer.

15. Sediment core sample J18 showing unimpacted sediment above TLM layer.

16. TLM "deposit" near the 53 Line.

17. Example of TLM "deposit" at the CR18 through CR23 locations.

APPENDIX B SEDIMENT CORING AND SOIL BORING LOGS

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 117.70

Northing: 786851.1

Easting: 1985174.1

Total Depth (feet): 1.4

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.4/1.4	NR		0-1.4 ft: gray, fine to coarse sand, fine to coarse gravel, vegetative matter.	0-1.4 ft: no TLM odor, no visual TLM
				Maximum Depth: 1.4 feet Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey map.	
2-					

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: February 23, 2011 Date Completed: February 23, 2011

Logged by: M. Ferlin Drilled by: Not Applicable Bathymetric Elevation (feet, NAVD '88): 115.90

Northing: 786851.8 Easting: 1985190.9 Total Depth (feet): 1.8

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.8/1.8	NR		0-1.8 ft: brown, medium to coarse sand and fine gravels.	0-1.8 ft: no TLM odor, no visual TLM
2-				Maximum Depth: 1.8 feet. Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey map.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 116.30

Northing: 786880.5

Easting: 1985196.6

Total Depth (feet): 1.4

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-	washing the first of the second			Bathymetric Surface	
				0-0.5 ft: coarse sand, fine to coarse gravels.	
1-	1.4/1.4	NR		0.5-1.4 ft: gray, silt and very fine sand, muscovite flakes. (likely saprolite)	0-1.4 ft: no TLM odor, no visual TLM
1 1				Maximum Depth: 1.4 feet.	
				Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and mositure would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey map.	
2-					- :

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 116.00

Northing: 786888.8

Easting: 1985225.4

Total Depth (feet): 2.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	2.5/2.5	NR		0-2.5 ft: light gray to brown, medium to very coarse sand and fine to coarse gravels.	0-2.5 ft: no TLM odor, no visual TLM (see note #4)
				Maximum Depth: 2.5 feet	
3-				Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey. 4. TLM was not noted in sample but one or two blebs were noted on water surface when walking in stream. Gray sheen was also noted around bleb. 5. Depth range from 0.7 to 2.5 feet and at multiple locations.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 117.80

Northing: 786873.7

Easting: 1985267.2

Total Depth (feet): 1.9

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.9/1.9	NR		0-1.9 ft: light brown to light gray silt and clay (saprolite).	0-1.9 ft: no TLM odor, no visual TLM
2-				Maximum Depth: 1.9 feet	
_				Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey map.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 119.90

Northing: 786874.4

Easting: 1985287.6

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.7/0.7	NR		0-0.5 ft: brown, very coarse sand, fine to coarse gravels, boulders. 0.5-0.7 ft. saprolite	0-0.7 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.7 feet	
1-				Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey map.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 121.80

Northing: 786861.2

Easting: 1985334.9

Total Depth (feet): 0.25

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.25/0.25	NR		0-0.25 ft: brown, medium to very coarse sand, gravels, boulders.	0-0.25 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.25 feet Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and elevation determined from bathymetric survey map.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 124.80

Northing: 786852.4

Easting: 1985364.0

Total Depth (feet): 2.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	2.0/2.0	NR		0-2.0 ft: brown, silt and clay (saprolite).	0-2.0 ft: no TLM odor, no visual TLM, minor amounts of light gray sheen noted as digging
_				Notes: 1. Coring located in unnamed tributary (UT) #1. 2. NR - Not recorded since wading in water and moisture would negatively impact PID. 3. The coring was field located and location and allocation determined from both washing and provided and location determined from both washing and location.	
3-				elevation determined from bathymetric survey map.	

Sediment Coring: AB1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: note #1
Easting: note #1
Total Porth (foot):

Total Depth (feet): 1.0

Drilling Method: Whacker/Macrocore

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			7.0° 7.0° 7.0° 7.0° 7.0°	Ground Surface	
	0.85/1.0	0.2		 0-0.9 ft: brown grading to gray, medium to very coarse sand and fine to coarse gravels. - larger gravels at 0.75-0.90. 	0-1.0 ft: no TLM odor, no visual TLM
1-			2.0 tg 2.	0.9-1.0 ft: gray, silt and fine to medium sand, some mica. Total Depth: 1.0 feet. Notes: 1. The alluvial fan area north of the confluence of the Congaree River and Unnamed Tributary #1, and the	
_				coring location were not surveyed. Therefore an elevation and location were not defined. The approximate location of the coring on the alluvial fan is shown on the coring location figure. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (85%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AB2

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: note #1
Easting: note #1

Total Depth (feet): 1.0

Drilling Method: Whacker/Macrocore

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	
_				0-0.25 ft: brown, fine to medium sand.	0-0.25 ft: no TLM odor, no visual TLM
_	0.8/1.0	11.5		0.25-0.55 ft: gray, silt with some fine sand.	0.25-0.55 ft: slight to moderate TLM odor, no visual TLM
1-				0.55-1.0 ft: gray, medium to coarse sand and fine gravels, trace silt.	0.55-0.8 ft: indication of TLM odor was not recorded but based on visual observation likely existed, minor occurrence of TLM blebs
7 -				Total Depth: 1.0 feet. Notes: 1. The alluvial fan area north of the confluence of the Congaree River and Unnamed Tributary #1, and the coring location were not surveyed. Therefore an elevation and location were not defined. The approximate location of the coring on the alluvial fan is shown on the coring location figure. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AB3

Client: SCANA Services, Inc. Site Location:

Date Started:

Date Completed:

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: note #1 Easting: note #1

Total Depth (feet): 2.3

Drilling Method: Whacker/Macrocore

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			y	Ground Surface	
1-		3.4		 0-2.3 ft: brown to gray, medium to very coarse sand and fine to coarse gravels. - fine to coarse gravels and color change to gray at 0.6 feet 	0-1.2 ft: no TLM odor, no visual TLM
2-	1.1/2.3	10.1			1.2-2.3 ft: slight to moderate TLM odor, minor occurrence (<5%) of TLM blebs
_				Total Depth: 2.3 feet.	
3-				Notes: 1. The alluvial fan area north of the confluence of the Congaree River and Unnamed Tributary #1, and the coring location were not surveyed. Therefore an elevation and location were not defined. The approximate location of the coring on the alluvial fan is shown on the coring location figure. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 49%) and vertical extent of TLM may or mat not be reflective of depths and intervals noted.	

Sediment Coring: AB4

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: note #1
Easting: note #1

Total Depth (feet): 0.9

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	
	0.9/0.9	0		0-0.9 ft: brown, medium to coarse sand and fine to coarse gravels.	0-0.9 ft: no TLM odor, no visual TLM
				Total Depth: 0.9 feet.	
1-				Note: 1. The alluvial fan area north of the confluence of the Congaree River and the Unnamed Tributary #1, and the coring location were not surveyed. Therefore an elevation and location were not defined. The approximate location of the coring on the alluvial fan is shown on the coring location figure.	

Sediment Coring: AB5

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: note #1
Easting: note #1

Total Depth (feet): no recovery

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
0-				Boulders were present at and in the near vicinty of AB5 and therefore, samples of the sediment could not be obtained.	
1-				Note: 1. The alluvial fan area north of the confluence of the Congaree River and Unnamed Tributary #1, and the coring location were not surveyed. Therefore, an elevation and location were not defined. The approximate location of the coring is shown on the coring location figure.	

Sediment Coring: AB6/I2

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 116.00

Northing: 786858.7 Easting: 1985114.2 Total Depth (feet): 1.5

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	
	0.95/1.5	0.2		0-0.85 ft: brown to black, medium to very coarse sand and fine to coarse gravels.	0-0.5 ft: no TLM odor, no visual TLM 0.5-0.8 ft: TLM odor was not noted, stained black and sheen, no real apparent TLM noted but rather staining and sheen
1-				0.85-1.5 ft: gray, fine to medium sand with some silt and gravels.	
					0.8-1.5 ft: no TLM odor, no visual TLM
_		0.7			
-				Total Depth: 1.5 feet. Notes: 1. For lithologies and TLM observations, depths adjusted based on recovery. 2. Recovery was limited (approximately 68%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
2-					

Sediment Coring: G1

Client: SCANA Services, Inc. Site Location: Columbia, SC

Date Started: October 6, 2010 Date Completed: October 6, 2010

Logged by: M. Ferlin Drilled by: Not Applicable Bathymetric Elevation (feet, NAVD '88): (see note #1)

Northing: 786977.8

Easting: 1985141.3 Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.5/1.5	NR		0-1.5 ft: gray, silt and clay with some fine sand.	0-1.5 ft: no TLM odor, no visual TLM
				Maximum Depth: 1.5 feet.	
				Note: 1. Located on the shoreline and survey did not extend to this location. 2. NR-Not recorded since wading in water and moisture would negatively impact PID.	
2-					

Sediment Coring: H1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 115.52

Northing: 786970.9

Easting: 1985122.5

Total Depth (feet): 1.1

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
				0-0.4 ft: brown, medium to very coarse sand and fine gravels.	
-			8 0 80 80 80 8	0.4-1.1 ft: brown, gray, silt and fine to medium	
1-	1.1/1.1	NR		sand, mica.	0-1.1 ft: no TLM odor, no visual TLM
				Maximum Depth: 1.1 feet.	
				Note: 1. The coring was field located on the basemap and the northing and easting was determined from "the basemap paper space." 2. Depths are approximate. 3. NR-Not recorded since wading in river and	
				moisture would negatively impact PID. 4. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	

Sediment Coring: 11

Bathymetric Elevation (feet, NAVD '88): 114.27

Client: SCANA Services, Inc.

Site Location:
Date Started:
Date Completed:
Logged by: M. Ferlin

Northing: 786957.3

Easting: 1985088.8

Total Depth (feet): 0.5

Drilling Method: Hand dug

Drilled by: Not Applicable

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	NR		0-0.5 ft: brown, medium to very coarse sand and fine to coarse gravels.	0-0.5 ft: sensory observations not recorded but was likely no TLM odor, no visual TLM
1-				Maximum Depth: 0.5 feet. Note: 1. NR- Not recorded since wading in river and moisture would negatively impact PID. 2. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	

Sediment Coring: J1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.64

Northing: 786947.5

Easting: 1985004.9

Total Depth (feet): 1.25

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	1.25/1.25	NR		0-0.4 ft: brown, medium to very coarse sand and fine to coarse gravels, mica. 0.4-1.25 ft: gray, silt and fine sand, trace gravels, mica.	0-0.4 ft: no TLM odor, no visual TLM 0.4-1.25 ft: no TLM odor, no visual TLM
2-				Maximum Depth: 1.25 feet. Note: 1. Depth intervals approximate. 2. NR-Not recorded since wading in river and moisture would negatively impact PID. 3. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	

Sediment Coring: K1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.54

Northing: 186917.1

Easting: 1984985.3

Total Depth (feet): 0.25

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.25/0.25	NR		0-0.25 ft: brown, medium to very coarse sand with trace of fine gravels. -at bottom: dark gray, silt with some wood fragments.	0-0.25 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.25 feet. Note: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	

Sediment Coring: L1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.12

Northing: 786899.5

Easting: 1984938.5

Total Depth (feet): 0.25

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.25/0.25	NR		0-0.25 ft: brown, sand, and some gravels.	0-0.25 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.25 feet. Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from suvey laser level shot since bathymetric survey did not extend to this location.	

Sediment Coring: M1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.98

Northing: 786882.0 Easting: 1984891.7 Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	1.0/1.0	NR		0-0.5 ft: brown, medium sand. 0.5-1.0 ft: gray, silt with wood fragments.	0-0.5 ft: no TLM odor, no visual TLM 0.5-1.0 ft: no TLM odor,
1-				Maximum Depth: 1.0 feet. Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	no visual TLM

Sediment Coring: N1

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.82

Northing: 786846.4

Easting: 19848844.9

Total Depth (feet): 0.5

Drilling Method: Hand dug

Bathymetric Surface 0-0.5 ft: brown, very coarse sand with some gravels. 0.5/0.5 NR 0-0.5 ft: no TLM odor, no visual TLM Maximum Depth: 0.5 feet. Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0.5/0.5 NR O-0.5 ft: no TLM odor, no visual TLM Maximum Depth: 0.5 feet. Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from survey laser level shot since	_				Bathymetric Surface	
Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from survey laser level shot since	0-	0.5/0.5	NR		0-0.5 ft: brown, very coarse sand with some gravels.	0-0.5 ft: no TLM odor, no visual TLM
					Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from survey laser level shot since	

Sediment Coring: 01

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.04

Northing: 786846.8

Easting: 1984798.0

Total Depth (feet): 0.42

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.42/0.42	NR		0-0.42 ft: brown, coarse sand, trace to some gravels.	0-0.42 ft: no TLM odor, no visual TLM
			0.00.00.00.00.00	Maximum Depth: 0.42 feet.	
				Note: 1. NR-Not recorded since wading in river and moisture could negatively impact PID. 2. Elevation from survey laser level shot since bathymetric survey did not extend to this location.	
1-					

Sediment Coring: K2

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.30

Northing: 786823.5

Easting: 1985020.4

Total Depth (feet): 0.6

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.6/0.6	NR		0-0.45 ft: brown, medium to very coarse sand and fine to coarse gravel. 0.45-0.6 ft: brown, medium to very coarse sand	0-0.6 ft: no TLM odor, no visual TLM
_				and fine to coarse gravels, some weathered schist. Maximum Depth: 0.6 feet.	
				Notes: 1. NR- Not recorded due to PID malfunctioning. 2. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: L2

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started:
Date Completed:
Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.50

Northing: 786805.9

Easting: 1984973.6

Total Depth (feet): 0.9

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
-	0.9/0.9	NR		0-0.55 ft: brown, medium to very coarse sand and fine gravels. 0.55-0.9 ft: brown, medium to very coarse sand	0-0.9 ft: no TLM odor, no visual TLM
-				and fine gravels with some silt, trace weathered schist.	
1-				Maximum Depth: 0.9 feet. Notes: 1. NR-Not recorded due to PID malfunctioning. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: M2

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.70

Northing: 786787.5

Easting: 1984929.0

Total Depth (feet): 0.75

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
-				0-0.35 ft: brown, medium to very coarse sand and fine gravels.	
	0.75/0.75	NR		0.35-0.75 ft: dark gray, silt to weathered angular schist.	0-0.75 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.75 feet.	
				Notes: 1. NR- Not recorded due to PID malfunctioning. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: N2

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.00

Northing: 786765.6

Easting: 1984878.5

Total Depth (feet): 0.8

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				0-0.8 ft: brown, medium to very coarse sand and fine to coarse gravels. -at 0.4-0.8 feet: trace of silt.	
	0.8/0.8	NR			0-0.8 ft: no TLM odor, no visual TLM
1-			A STATE OF THE STA	Maximum Depth: 0.8 feet. Notes: 1. NR- Not recorded due to PID malfunctioning. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: O2

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 6, 2010

Date Completed: October 6, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.80

Northing: 786747.9

Easting: 1984830.7

Total Depth (feet): 1.4

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.4/1.4	NR		0-1.4 ft: brown, medium to very coarse sand and fine to coarse gravel. -silt content increasing from ~0.7 to 1.4 feet to trace to some .	0-1.4 ft: no TLM odor, no visual TLM
2-				Maximum Depth: 1.4 feet. Notes: 1. NR- Not recorded due to PID malfunctioning. 2. Core elevation based on bathymetric survey map.	

Soil Boring: J3

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 28, 2011 Date Completed: July 28, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 130.00

Northing: 786769.6 Easting: 1985087.3 Total Depth (Ft.): 15.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	
1 - 2 - 3 - 3 - 3 - 3 3 3 3 3 3 3 3 3 3 3 - 3 - 3 3 3 3 3 3 3 3 3 3 3 - 3 3 3 3 3 3 3 3 3 3 3 - 3	3.1/5.0	0		0-3.5 ft: brown, clay with some silt, dry. 3.5-10 ft: brown, very fine to medium sand and silt,	
4-				dry.	
5 6 7 8 9	2.5/5.0	NR		- 5.0-5.5 ft: trace clay layers, dry to moist	0-15 ft: no TLM odor, no visual TLM
11 12 13	2.6/5.0			 10.0-12.5 ft: brown, fine to medium sand, trace to some silt, moist. 12.5-13.8 ft: tan, fine to coarse sand, trace gravels, moist to wet. 13.8-15.0 ft: gray, fine to very coarse sand, trace to 	
15			``````````````````````````````````````	some fine to medium gravels and trace silt, wet.	
16				Total Depth: 15.0 feet. Notes:	
17				Elevation is based on bathymetric survey map and located to closest contour line. NR- Not recorded due to PID malfunctioning.	
19 -					

Sediment Coring: K3

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 115.70

Northing: 786735.2

Easting: 1985060.4

Total Depth (feet): 1.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			2522522525252	Bathymetric Surface	
	0.9/1.0	8.0		0-1.0 ft: gray, medium to very coarse sand and fine to coarse gravels.	0-0.3 ft: no TLM odor, no visual TLM 0.3-1.0 ft: moderate TLM odor, intermittent TLM blebs (less than 5% of interval)
1-				Refusal: 1.0 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was 90% and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: L3

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.80

Northing: 786735.3

Easting: 1985035.1

Total Depth (feet): 0.25

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.25/0.25	NR		0-0.25 ft: brown, sand and gravels. Maximum Depth: 0.25 feet.	0-0.25 ft: no TLM odor, no visual TLM
				Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: M3

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.20

Northing: 786705.0

Easting: 1984974.5

Total Depth (feet): 0.25

Drilling	Method:	Hand dug	J
----------	---------	----------	---

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.25/0.25	NR		Refusal: 0.25 feet. Notes: 1. NR- Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	0-0.25 ft: no TLM odor, no visual TLM

Sediment Coring: N3

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.50

Northing: 786680.7

Easting: 1984924.0

Total Depth (feet): 0.20

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.2/0.2	NR		0-0.2 ft: brown, fine to coarse sand, with some gravel.	0-0.2 ft: no TLM odor, no visual TLM
-				Maximum Depth: 0.2 feet.	
				Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevations based on bathymetric survey map.	

Soil Boring: K4

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 28, 2011 Date Completed: July 28, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 128.00

Northing: 786668.5 Easting: 1985087.3 Total Depth (Ft.): 14.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	
1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	3.4/5.0			0-3.5 ft: brown, clay with trace silt.	
4- 5-				3.5-9.3 ft: brown-orange, very fine to fine sand and silt, dry.	
6	2.8/5.0	NR			0-14 ft: no TLM odor, no visual TLM
10				9.3-10.0 ft: tan , fine to medium sand, dry.	
10	0.044.0			10.0-12.0 ft: brown, clay with some silt, moist.	
13-	2.0/4.0			12.0-13.6 ft: tan to light orange, fine to medium sand, moist to wet. 13.6-14.0 ft: gray, silt and very fine sand,	
14				micaceous, wet.	
15				Total Depth: 14.0 feet.	
16 -				Notes: 1. Elevation is based on bathymetric survey map and located to closest contour line.	
18				NR- Not recorded due to PID malfunctioning.	
19					
20					

Sediment Coring: L4

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2011

Date Completed: October 7, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 115.10

Northing: 786626.1

Easting: 1985060.8

Total Depth (feet): 1.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	0.8/1.0	O		O-1.0 ft: brown, fine to very coarse sand and fine to coarse gravel. Refusal: 1.0 feet. Notes:	0-1.0 ft: no TLM odor, no visual TLM
				Core elevation based on bathymetric survey map. For lithologies and TLM observations, depths adjusted based on recovery. Recovery was limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: M4

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 114.10

Northing: 786595.8 Easting: 1985004.7

Total Depth (feet): 1.5

14.6 Bathymetric Surface 0-1.5 ft: brown to gray, medium to very coarse sand and fine to coarse gravel. 0-0.6 ft: no TL visual T 0.6-1.3 ft: smoderate TLI visual T	tions
14.6 1.5/1.5 1.5/1.5 1.5/1.5	
ୀ – ା ୍ରିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡିଡ	M odor, no LM
-	M odor, no LM
odor, TLM blet	s and sheen
Refusal noted at 1.5 feet but had 1.7 feet recovery. Adjusted depths to refusal depth.	
Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: N4

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.50

Northing: 786595.8
Easting: 1984949.2
Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.0/1.0	NR		0-1.0 ft: brown, sand with gravel. Maximum Depth: 1.0 feet.	0-0.75 ft: no TLM odor, no visual TLM 0.75-1.0 ft: slight TLM odor, TLM observed at 1.0 foot
				Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: 04

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 4, 2010 Date Completed: October 4, 2010

Logged by: M. Ferlin

Northing: 786546.1

Easting: 1984902.3 Total Depth (feet): 2.9

Drilling Method: Direct Push Technology

Bathymetric Elevation (feet, NAVD '88): 110.80

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0			V 800 800 800 800 8	Bathymetric Surface	
				0-0.3 ft: large gravels. 0.3-0.8 ft: brown, medium to very coarse sand, fine to coarse gravels.	0-0.3 ft: no TLM odor, no visual TLM
1-				0.8-2.9 ft: saprolite.	0.3-0.8 ft: no TLM odor, no visual TLM
-	1.2/2.9	NR			
2-					0.8-3.0 ft: no TLM odor, no visual TLM
2			=======================================	DPT Refusal: 2.9 feet.	
3-		÷		Notes: 1. NR-Not Recorded 2. Core elevation based on bathymetric survey map. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (approximately 41%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: K5

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 28, 2011 Date Completed: July 28, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 124.00

Northing: 786547.2 Easting: 1985112.5 Total Depth (Ft.): 11.5

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	
1-				0-3.5 ft: brown, clay with some silt, moist.	
2	2.5/5.0				
3-					
4-				3.5-6.0 ft: brown, very fine to fine sand and silt, moist.	
5					
6-		NR		6.0-9.25 ft: brown, clay, trace silt. moist to very	0-11.5 ft: no TLM odor, no visual TLM
7-				moist.	
8-	3.5/5.0				
9-					
10				9.25-10.3 ft: tan, fine to medium sand, trace to some silt, wet.	
11	1.2/1.5			10.3-11.5 ft: gray, silt, clay, very fine to fine sand, trace fine gravel, wet.	
12				Total Depth: 11.5 feet.	
13-				Notes: 1. Elevation is based on bathymetric survey map and located to closest contour line. 2. NR- Not recorded due to PID malfunctioning.	
14				·	
15					

Sediment Coring: L5

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 115.80

Northing: 786535.1 Easting: 1985090.6 Total Depth (feet): 2.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			0 0 00 0 00 0 0 0 0 0 0	Bathymetric Surface	0-0.2 ft: no TLM odor, no
1-	1.1/2.0	0.4		0-2.0 ft: brown to tan, fine to coarse sand, trace very coarse sand.	0-0.2 ft: no TLM odor, no visual TLM 0.2-0.4 ft: slight TLM odor, no visual TLM
2-				-	0.4-2.0 ft: no TLM odor, no visual TLM
2				Refusal: 2.0 feet.	
-				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (55%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: M5

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 116.20

Northing: 786510.9 Easting: 1985035.0 Total Depth (feet): 1.5

	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
	0-				Bathymetric Surface	
	1-	1.2/1.5	3.9		0-1.1 ft: brown, medium to very coarse sand and fine to coarse gravels.	0-1.5 ft: no TLM odor, no visual TLM
	2				1.1-1.5 ft: dark gray, fine to coarse sand, trace gravels. Refusal: 1.5 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
L						

Sediment Coring: N5

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 114.30

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Northing: 786488.7

Easting: 1984983.0

Total Depth (feet): 4.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0	+,4× 4× 4× 10× 10× 10× 10× 10× 10× 10× 10× 10× 10		7,07,07,07	Bathymetric Surface	
1_				0-4.0 ft: gray to black, medium to very coarse sand and fine gravels.	0-0.5 ft: no TLM odor, no visual TLM
-					0.5-4.0 ft: moderate to strong TLM odor, weathered TLM, acting as a "binder" for sand grains and present in residual amounts. Also, lower viscosity and less
2-	1.85/4.0	8.4			weathered TLM noted in some layers.
3-					
4			**************************************		
4				DPT Refusal: 4.0 feet.	
5-				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 46%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: O5

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.90

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Northing: 786469.1

Easting: 1984934.7

Total Depth (feet): 1.8

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
-				0-1.0 ft: black, medium to very coarse sand and fine to coarse gravel.	0-0.3 ft: weathered, very viscous TLM throughout interval
1-	0.7/1.8	36.0		1.0-1.8 ft: brown, silt , sand, and fine gravels.	0.3-1.0 ft: TLM blebs in interval, blebs found in approximately 25 to 30% of interval
-					1.0-1.8 ft: moderate to strong TLM odor, minor amount of TLM blebs, where saturation in sample, TLM blebs appear to float
2-				DPT Refusal: 1.8 feet. Notes: 1. Core elevations based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 39%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: P5

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.25

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Northing: 786439.6

Easting: 1984906.9

Total Depth (feet): 1.1

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	_
1-	0.5/1.1	0.2		0-1.0 ft: brown, medium to very coarse sand and fine to coarse gravels.	0-1.0 ft: no TLM odor, no visual TLM
,				1.0-1.1 ft: saprolite	1.0-1.1 ft: no TLM odor, no visual TLM
				DPT Refusal: 1.1 feet. Notes: 1. Core elevations based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 45%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: K6

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 28, 2011 Date Completed: July 28, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 126.00

Northing: 786466.4 Easting: 1985146.1

Total Depth (Ft.): 14.25

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	
				0-1.0 ft: brown, topsoil grading to very fine sand and silt, moist.	
1-		•		1.0-4.3 ft: brown, clay with some silt, moist.	
2	0.0/5.0				
3-	3.0/5.0				
4-			主主主主		
				4.3-5.0 ft: brown, silt and very fine to fine sand,	
5				moist.	
6				5.0-8.0 ft: brown, silt, clay with some very fine to fine sand, mica, moist.	
7		NR			0-14.25 ft: no TLM odor,
	2.8/5.0	INIT			no visual TLM
8-				8.0-10.5 ft: tan, fine to medium sand, very moist to	
9 =				wet.	
10				-8.0-8.5 ft: some clay	
11-				10.5-14.25 ft: gray to black, silt and clay with some	
				mica, wood fragmets, wet.	
12	4.0/4.25			-13.75-14.25 ft: medium to very coarse sand with some fine to coarse gravels, wet.	
13				-	
14				-14.25 ft: granite fragments	
				Total Depth: 14.25 feet.	
15				Notes:	
16				Elevation is based on bathymetric survey map and located to closest contour line.	
17				NR-Not recorded due to PID malfunctioning.	
18					
]					
19					
20 –					

Soil Boring: L6

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: February 1, 2012

Date Completed: February 1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 117.20

Northing: 786427.2 Easting: 1985118.8 Total Depth (Ft.): 5.9

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	
-				0-2.3 ft: brown to red to orange, very fine to fine sand, silt and clay, micaceous.	
1-		0		-vegetative material (roots, leaves)	
2-					0-3.5 ft: no TLM odor, no visual TLM
		0.6		2.3-3.5 ft: brown to gray, fine to medium sand and silt, micaceous.	
3-	5.25/5.9	0.5		-vegetative material -cobbles at 3.1 feet.	
4-				3.5-4.8 ft: gray to dark gray, very fine to fine sand and silt, micaceous. -vegetative material, wood fragments	
_		2.5			3.5-5.9 ft: very faint TLM odor, no visual TLM
5-				4.8-5.6 ft: gray to tan, medium sand and trace of gravels, micaceous.	Oddi, 110 Visual 1 Livi
		12.7		5.6-5.9 ft: Dark brown to gray, very fine sand and silt, micaceous.	
6-				Total Depth: 5.9 feet.	
7-				Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjust based on recovery. 3. Recovery was limited (approximately 88%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
8-					

Sediment Coring: M6

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 114.00

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Northing: 786417.1

Easting: 1985059.5

Total Depth (feet): 5.1

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			0 0 0 0 0 0 0 0 0	Bathymetric Surface	0-0.2 ft: no TLM odor, no
1-		1.3		0-3.0 ft: gray, fine to coarse sandclinker noted at top of interval.	visual TLM 0.2-0.8 ft: slight to moderate TLM odor, residual TLM and TLM stained grains
2-	NR	1.8			0.8-2.0 ft: slight to moderate TLM odor, TLM blebs to thin layering to staining in interval
-		11.6			3.0-4.0 ft: moderate to
3-4-	1.2/2.1			3.0-5.1 ft: gray to black, fine to coarse sand.	strong TLM odor, thin layers and blebs of TLM 4.25-4.75 ft: moderate to strong TLM odor, weathered TLM staining grains
5-		28.2		DPT Refusal: 5.1 feet.	4.75-5.1 ft: moderate to strong TLM odor, thin layers of TLM and blebs
6-				Notes: 1. NR-Not recorded 2. Core elevation based on bathymetric survey map. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (not recorded for the first 3 foot run and 57% for 3.0-5.1 feet) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
7-					·

Sediment Coring: N6

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.90

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Total Depth (feet): 1.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/1.0	NR		0-1.0 ft: brown to gray, fine to very coarse sand and fine gravels.	0-0.5 ft: no TLM odor, no visual TLM 0.5-1.0 ft: moderate to strong TLM odor, approximately 50% of interval had residual TLM, TLM floating in water contained in macrocore cap
1 -				DPT Refusal: 1.0 feet, rods were kicking out on rock. Notes: 1. NR- Not recorded 2. Core elevation based on bathymetric survey map. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (50%) and vertical extent of TLM may or may not be reflective of depths or intervals noted.	

Sediment Coring: 06

Client: SCANA Services, Inc.

Bathymetric Elevation (feet, NAVD '88): 108.90

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Easting: 1984983.6
Total Depth (feet): 2.25

Northing: 786372.4

Logged by: M. Ferlin

Drilling Method: Direct Push Technology

Lithologic Description Description Description Description Description						
O-0.3 ft: brown, medium to very coarse sand, fine gravels O.30-2.25 ft: brown, medium to very coarse sand, gravels and cobbles O.30-2.25 ft: brown, medium to very coarse sand, gravels and cobbles O.4-2.25 ft: TLM blebs to some residual development in layers throughout interval DPT Refusal: 2.25 feet. Notes: 1. Core elevation based on bathymetric survey. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol		Observations
DPT Refusal: 2.25 feet. Notes: 1. Core elevation based on bathymetric survey. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.					Bathymetric Surface	0.03 ft: no TLM odor, no
DPT Refusal: 2.25 feet. Notes: 1. Core elevation based on bathymetric survey. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.		1.6/2.25	18.1		0-0.3 ft: brown, medium to very coarse sand, fine gravels 0.30-2.25 ft: brown, medium to very coarse sand,	visual TLM 0.3-0.4 ft: weathered residual TLM 0.4-2.25 ft: TLM blebs to some residual development in layers
3-	2-				Notes: 1. Core elevation based on bathymetric survey. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of	
	3-					

Sediment Coring: P6

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.30

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Total Depth (feet): 0.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0	0.45/0.5	0.1		0-0.5 ft: brown, medium to very coarse sand and fine to coarse gravels.	0-0.5 ft: no TLM odor, no visual TLM
1-				DPT Refusal: 0.5 feet. Note: 1. Core elevation based on bathymetric survey map.	

Soil Boring: J7

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 27, 2011 Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 132.00

Northing: 786385.5 Easting: 1985230.2 Total Depth (Ft.): 20.5

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	
1 =				0-0.6 ft: brown. clay	
1-				0.6-5.0 ft: brown, fine sand, trace clay layers, micaceous, moist.	
2-	2.3/5.0	0			
3-					
4					
5=				5.0-10 ft: brown, fine sand, with trace to some clay	
6				and silt.	
7				-9-10 ft: clay more prevalent	
8-	2.6/5.0	0		o to it day more present	
9-					
10				10-12.8 ft: tan to brown, clay and silt and very fine to	0-20.5 ft: no TLM odor, no visual TLM
11				fine sand.	110 Visual I Livi
12	4.5/5.0	0		-wet at 12 feet.	
13	4.5/5.0	0	.44.44.44.44.	12.8-16.8 ft: brown to tan, very fine to fine sand, with	
14				trace silt, wet.	
15				-15-16.8 ft: silt content from trace to some, wet	
16					
17					
	4.5/5.0	0		16.8-20.1 ft: gray, very fine sand and silt , trace clay, micaceous, wet.	
18					
19					
20		0		20.1-20.5 ft: gray, medium to very coarse sand and	
21				fine gravels.	
22				-gravels are angular to subangular	
23				Total Depth: 20.5 feet.	
24					
25				Note: 1. Elevation is based on bathymetric survey map and	
				located to closest contour line.	
26					

Soil Boring: K7

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 1, 2012

Date Completed: February 1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 119.10

Northing: 786341.2
Easting: 1985197.1
Total Depth (Ft.): 8.8

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	
			排 排排 班班班班	0-0.8 ft: brown to orange to red, clay and silt, micaceous.	
1-				-vegetative material (roots, leaves)	
2-		0		0.8-2.8 ft: brown to orange to red, very fine to fine sand, clay and silt, micaceous. -vegetative material noted in interval -3.25 to 3.7 ft: weathered mica fragment	
3-		0		2.8-5.0 ft: brown to tan, fine to medium sand with trace of clay and silt, micaceous.	0-6.7 ft: no TLM odor, no visual TLM
4-	5.3/8.8				
5 - 6		0.3		5.0-6.7 ft: dark gray, very fine to fine sand, silt and clay, trace gravels, micaceous.	
_		6.2			C 7 9 75 ft. von foint TIM
7-		0.2		6.7-8.75 ft: dark gray to tan, fine to coarse sand, trace silt and clay, micaceous.	6.7-8.75 ft: very faint TLM odor, no visual TLM
8-		0.5			
9_			<u> </u>	8.75-8.8 ft: tan, gravels and fine to medium sand.	8.75-8.8 ft: no TLM odor, no visual TLM
-				Total Depth: 8.8 feet.	
10-				Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery.	
11-		The state of the s		3. Recovery was limited (approximately 60%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: L7

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 1, 2012

Date Completed: February 1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 117.30

Northing: 786349.8

Easting: 1985149.0

Total Depth (Ft.): 2.1

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
1-	1.55/2.1	0		Ground Surface 0-2.1 ft: brown to red, fine to medium sand and gravels, micaceous. -vegetative material throughout - 2-2.1 ft: coarse gravels and cobbles Total Depth: 2.1 feet. Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted	0-2.1 ft: no TLM odor, no visual TLM
_				based on recovery. 3. Recovery was limited (approximately 74%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: N7

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.90

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Total Depth (feet): 1.1

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	0.7/1.1	21.5		0-1.1 ft: medium to very coarse sand and fine gravel. DPT Refusal: 1.1 feet.	0-0.5 ft: moderate to strong TLM odor, very viscous and weathered TLM binding grains together 0.5-1.1 ft: moderate to strong TLM odor, TLM throughout interval and appears to be less viscous
-				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 64%) and vertical extent of TLM may or may not be reflective of depths or intervals noted.	

Sediment Coring: 07

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 110.30

Site Location: Columbia, SC

Date Started: September 30, 2010

Easting: 1985010.7

Total Depth (feet): 0.6

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
	0.45/0.6	0.1		0-0.6 ft: brown, fine to very coarse sand, fine to coarse gravels	0-0.6 ft: no TLM odor , no visual TLM in sample logged (see note #1)
1-				DPT Refusal: 0.6 feet. Notes: 1. Three sample runs and logged third since it had the greatest recovery. Assessed others for sensory observations and noted very slight TLM odors at tip of sample and immediately upon retrieval. 2. Core elevation based on bathymetric survey map. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (75%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: K8

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 1, 2012

Date Completed: February 1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 118.50

Northing: 786257.7 Easting: 1985236.5 Total Depth (Ft.): 6.1

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	0-0.2 ft: no TLM odor, no
1-		0		0-0.2 ft: brown to gray to black, very fine to fine sand, silt and clay, micaceous. -vegetative material (i.e., roots, twigs) 0.2-1.5 ft: brown to gray to black, very fine to fine sand, silt and clay, micaceous, moist.	visual TLM
2-		0.1		1.5-5.4 ft: brown to gray to black, very fine to medium sand, silt and clay, trace gravel, micaceous, wet. -vegetative material throughout interval	
3-	5.1/6.1	0.1		-3.5 ft: large fragment of wood	0.2-6.1 ft: very faint TLM odor, no visual TLM
4- 5-		1.5			
6-		0.1		5.4-6.1 ft: brown to gray to black, medium to coarse sand and coarse gravels and cobbles.	
7-				Total Depth: 6.1 feet. Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 84%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

APPENDIX F

LABORATORY ANALYTICAL REPORTS AND DATA EVALUATION MEMOS (Please refer to CD in Appendix B)

Sediment Coring: M8

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 110.10

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Total Depth (feet): 4.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	0.8/3.0	79.6		0-3.0 ft: dark gray to black, fine to coarse sand, trace of gravel.	0-3.0 ft: strong TLM odor; weathered TLM, staining grains and within pores
2-					
3	1.0/1.0	17.6		3.0-4.0 ft: dark tan, fine to coarse sand.	3.0-3.4 ft: slight TLM odor, some TLM blebs with gray sheen 3.5-4.0 ft: no TLM odor, no visual TLM
5				DPT Refusal: 4.0 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 27% in 0 to 3 foot sample) and vertical extent of TLM may or may not be reflective of interval noted.	

Sediment Coring: N8

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 110.00

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Date Completed: September 29, 2010

Total Depth (feet): 0.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.45/0.50	0.3		0-0.50 ft: brown, fine to very coarse sand and gravel DPT Refusal: 0.5 feet. Note: 1. Core elevation based on bathymetric survey map.	0-0.5 ft: no TLM odor, no visual TLM
1-				1. Core elevation based on bathymetric survey map.	

Sediment Coring: O8

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 110.00

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Northing: 786207.4

Easting: 1984991.8

Total Depth (feet): 1.25

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.85/1.25	0		0-0.9 ft: brown, medium to very coarse sand and fine gravel. 0.9-1.25 ft: brown, silt and saprolite.	0-0.9 ft: no TLM odor, no visual TLM
1-				DPT Refusal: 1.25 feet. Notes: 1. Coring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (68%) and vertical extent of TLM may or may not be reflective of depths or intervals noted.	0.9-1.25 ft: no TLM odor, no visual TLM

Soil Boring: K9

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: February 1, 2012 Date Completed: February1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 116.95

Northing: 786172.4 Easting: 1985275.9 Total Depth (Ft.): 7.3

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Ground Surface	0-1.7ft: no TLM odor, no
1-		1.0		0-1.7 ft: brown to red to orange, very fine to fine sand, silt and clay, micaceousvegetative material	visual TLM
2-		14.7		1.7-2.4 ft: dark gray to gray to tan, fine to medium sand, silt and clay, micaceous. -vegetative material 2.4-7.3 ft: dark brown to tan to gray, very fine to fine	1.7-2.4 ft: slight TLM odor, no visual TLM
3-	6.26/7.3	2.7		sand, silt and clay, micaceous, wood fragments5.9 ft: sediment changes to dark gray	
4-	5. <u>2</u> 6/116	3.0		-6.9-7.3 ft: medium to fine sand	
5-		0.5			2.4-7.3 ft: no TLM odor, no visual TLM
7-		0			
8-				Total Depth: 7.3 feet. Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery.	
9_				3. Recovery was limited(approximately 86%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: J9

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 27, 2011

Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 139.00

Northing: 786213.6 Easting: 1985331.2 Total Depth (Ft.): 23

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations			
0				Ground Surface				
1				0-1.4 ft: tan to light gray, clay and silt, trace mica, wet.				
2 - 3 - 4	4.3/5.0	0		1.4-8 ft: brown, silt and very fine to fine sand, trace to some clay, moist.				
5 6 7 8	3.2/5.0	0		8.0-13.5 ft: brown, clay. with trace to some silt, moist.				
1 =				most.				
10 11 12 13 14	3.9/5.0	NR		13.5-17.9 ft: brown, very fine to fine sand and silt,	0-23 ft: no TLM odor, no visual TLM			
				slight mica.				
15 16 17	3.4/5.0 NR	NR	NR	NR	3.4/5.0 NR		-14 ft: wet -17.0-17.9 ft: several thin clay layers	
18 -					17.9-20.0 ft: brown to light brown, very fine to medium sand with trace to some silt, mica, wet.			
20 21 22 22 23	2.3/3.0	NR		20.0-23.0 ft: light gray, fine to medium sand, trace silt, wet.				
23				Total Depth: 23 feet.				
24				Notes:				
25				Elevation is based on bathymetric survey map and				
26				located to closest contour line. 2. NR-Not recorded due to PID malfunctioning.				
27								

Sediment Coring: L9

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 111.90

Site Location:Columbia, SCNorthing: 786132.0Date Started:September 29, 2010Easting: 1985228.9Date Completed:September 29, 2010Total Depth (feet): 3.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	2.1/3.0	4.8		0-3.0 ft; dark tan to light gray, fine to coarse sand.	1.25 ft: slight TLM odor. thin layer (~1/2-inch) of weathered TLM 1.25-2.0 ft: slight TLM odor, weathered TLM blebs to ganglia
3				DPT Refusal: 3.0 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (70%) and vertical extent of TLM may or may not be reflective of depths and thickness noted.	2.0-3.0 ft: no TLM odor, no visual TLM

Sediment Coring: M9

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 107.50

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Northing: 786131.0

Easting: 1985172.6

Total Depth (feet): 1.6

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			0 0 60 0 60 0 60 0 60 0	Bathymetric Surface	
1-	1.6/1.6	0		0.1.6 ft: dark tan to light gray, fine to coarse sand 0.1-0.2 ft: 1 foot thick gravel layer 1.5 ft: approximately 0.1 to 0.2 foot thick gravel layer. DPT Refusal: 1.6 feet. Note: 1. Core elevation based on bathymetric surveys map.	0-1.6 ft: no TLM odor, no visual TLM
2-					

Sediment Coring: N9

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.30

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Northing: 786113.7

Easting: 1985127.4

Total Depth (feet): 0.75

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.55/0.75	5.6		0-0.75 ft: brown to black, medium to very coarse sand, fine gravel.	0-0.55 ft: no TLM odor, no visual TLM 0.55-0.75 ft: Residual TLM and staining noted in about 50% of the interval (see note #2)
				DPT Refusal: 0.75 feet.	
1-				Notes: 1. Core elevation based on bathymetric survey map. 2. A second core was collected at this location and indicated TLM odors and visual was not present. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (approximately 73%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: 09

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 28, 2010

Date Completed: September 28, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 109.50

Northing: 786096.7

Easting: 1985081.1
Total Depth (feet): 1.1

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	0.8/1.1	0.1		0-0.9 ft: brown, fine to coarse sand. 0.9-1.1 ft: olive green, silt and clay, trace of sand.	0-0.9 ft: no TLM odor, no visual TLM 0.9-1.1 ft: no TLM odor, no visual TLM
2-				DPT Refusal: 1.1 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 73%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: J10

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July, 27, 2011 Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 134.00

Northing: 786102.4 Easting: 1985356.4 Total Depth (Ft.): 21.0

Drilling Method: Direct Push Technology

Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
			Ground Surface	
3.2/5.0	0		0-10.0 ft: brown, very fine to fine sand, silt and clay to trace clay, moist.-2.5 ft: coal fragment	
3.2/5.0	0			
4.5/5.0	0		10-15 ft: brown, silt and clay, trace of very fine sand, trace mica.14 ft: wet	0-23 ft: no TLM odor, no visual TLM
4.1/5.0	0		15-19.1 ft: brown, clay with some silt, trace mica. -18.7 ft: turning gray -16.0-18.0 ft: peat-like material	
0.5/0.5	0		19.1-20.3 ft: gray, very fine to fine sand, silt and clay, micaceous, wet. 20.3-21.0 ft: fine to coarse sand, some fine gravels and some fine silt, wet.	
			Total Depth: 21 feet Note: 1. Elevation is based on bathymetric survey map and located to closest contour line.	
	3.2/5.0 3.2/5.0 4.5/5.0	3.2/5.0 0 3.2/5.0 0 4.5/5.0 0	3.2/5.0 0 3.2/5.0 0 4.5/5.0 0	3.2/5.0 0 3.2/5.0 0 3.2/5.0 0 3.2/5.0 0 10-15 ft: brown, silt and clay, trace of very fine sand, trace mica 14 ft: wet 15-19.1 ft: brown, clay with some silt, trace mica 18.7 ft: turning gray - 16.0-18.0 ft: peat-like material 19.1-20.3 ft: gray, very fine to fine sand, silt and clay, micaceous, wet. 20.3-21.0 ft: fine to coarse sand, some fine gravels and some fine silt, wet. Total Depth: 21 feet Note: 1. Elevation is based on bathymetric survey map and

Soil Boring: K10

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: Februray 1,2012

Date Completed: February 1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 117.50

Northing: 786073.3 Easting: 1985321.7 Total Depth (Ft.): 7.7

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			on to make to make to look the or	Ground Surface	
1-		0.6		0-1.0 ft: brown to red to orange, very fine to fine sand, silt and clay, micaceous. -vegetative material 1.0-6.6 ft: dark gray to gray to tan, fine to medium sand, silt and clay, micaceous.	
2-		0		- vegetative material	
3-	6.9/7.7	0			0-7.7 ft: no TLM odor, no visual TLM
5-		0			
6-		0			
7-		U		6.6-7.7 ft: gray to tan, medium to coarse sand. - vegetative material	
8-				Total Depth: 7.7 feet. Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted	
9_				based on recovery. 3. Recovery was limited (approximately 90%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: L10

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 110.10

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Total Depth (feet): 4.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-1.5 ft: no TLM odors, no
-		3.1		0-3.0 ft: brown, fine to coarse sand.	visual TLM
1-	1.6/3.0	7.4			1.5-3.0 ft: slight to moderate TLM odor. At
2-		1.6			1.5 to 1.65 feet highly weathered TLM layer, staining and TLM binding grains
3				3.0-4.5 ft: gray, medium to coarse sand with gravels (at top)	2.8-2.82 ft: thin, highly weathered TLM layer
4-	1.1/1.5	NR			3.5 ft: TLM blebs 4.0-4.5 ft: TLM blebs with greater occurrence at 4.2
-				DPT Refusal: 4.5 feet. Notes:	to 4.5 feet, blebs have a less viscous and more fluid like appearance, grains are stained.
5-				 Core elevation based on bathymetric survey map. For lithologies and TLM observations, depths adjusted based on recovery. Recovery in the 0 to 3 foot interval was limited (53%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. NR-Not recorded 	

Sediment Coring: M10

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 106.70

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Northing: 786058.0

Easting: 1985196.3

Total Depth (feet): 1.25

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-0.5 ft: no TLM odor, no
	0.7/1.25	NR		0-1.25 ft: brown to dark gray, medium to very coarse sand and gravels.	visual TLM 0.5-0.6 ft: very slight TLM odor, very minor amount of TLM blebs (if any) and barely distinguishable
1-				DPT Refusal: 1.25 feet. Notes: 1. NR-Not recorded 2. Core elevation based on bathymetric survey map. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (56%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	0.6-1.25 ft: no TLM odor, no visual TLM
2-					

Sediment Coring: N10

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 105.43

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Northing: 785998.2

Easting: 1985166.5

Total Depth (feet): 1.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	1.4/1.5	0		0-1.2 ft: brown grading to gray, medium to very coarse sand, some fine gravels	0-1.2 ft: no TLM odor, no visual TLM
				1.2-1.5 ft: dark gray, silt, sand and gravels. DPT Refusal: 1.5 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3.Recovery was approximately 93% and vertical extent of TLM may or may not be reflective of depths and intervals noted.	1.2-1.5 ft: no TLM odor, no visual TLM
2-					

Sediment Coring: O10

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 107.50

Site Location: Columbia, SC

Date Started: September 28, 2010

Date Completed: September 28, 2010

Total Depth (feet): 2.9

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.0/2.9	0.2		0-2.9 ft: brown grading to brown gray, fine to coarse sand with some rounded gravels.	0-2.9 ft: no TLM odor, no visual TLM
3-				DPT Refusal: 2.9 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. Represents sample from 4th core run since others had less to no recovery. 3. For lithologies and TLM observations, depths adjusted based on recovery.	
4-		THE PART AND THE P		4. Recovery was limited (approximately 34%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Soil Boring: J11

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 27, 2011

Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 132.00

Northing: 786011.4 Easting: 1985381.6 Total Depth (Ft.): 21

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	
1 - 1 - 2 - 3 - 4 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	3.5/5.0			0-12.4 ft: brown, fine sand, silt and clay, moist.	
6-1-1-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3.6/5.0	NR			
11 12 13 14	3.8/5.0			12.4-13.9 ft: brown, clay with some silt, moist. 13.9-17.0 ft: brown to light gray, very fine sand and silt, moist to wet.	0-21ft: no TLM odor, no visual TLM
15 16 17 18 19 19 20 1	5.0/6.0	0		-16.0 ft: wet 17-20.1 ft: gray, very fine to fine sand and silt, some to trace clay layers, some mica, wet.	
21			0 6 7 0 6 7	ille gravers, siit, wet.	
22				Total Depth: 21.0 feet.	
23				Notes:	
24 <u>-</u> 25 <u>-</u>				Elevation based on bathymetric survey map and located to closest contour line. NR- Not recorded due to PID malfunctioning.	

Soil Boring: J11.5

Client: SCANA Services, Inc.

Site Location: Columbia, SC
Date Started: February 1, 2012
Date Completed: February 1, 2012

Logged by: K. Jones

Drilled by: Athena Technologies, Inc.

Ground Elevation (feet, NAVD '88): 116.85

Northing: 786040.66
Easting: 1985330.15
Total Depth (Ft.): 6.3

Drilling Method: Vibra-core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0			oda dav lauksta dav lauksta dav lauksta davi	Ground Surface	
-				0-0.1 ft: brown to orange to red, very fine sand , silt and clay, micaceous, vegetative material.	
				0.1-1.4 ft: brown to orange to red, very fine sand, silt and clay, micaceous.	
1-		0			
2-				1.4-5.8 ft: dark gray to brown, fine to medium sand, silt and clay, micaceous,	
		0.6		-wood fragments throughout5.0 ft: large wood fragment	
3-	5.25/6.3	0.3			0-6.3 ft: no TLM odor, no visual TLM
4-		0.0			
5-		0			
6-		0		5.8-6.3 ft: dark gray to tan, fine to medium sand and silt, micaceous.	
				Total Depth: 6.3 feet.	
7-				Notes: 1. Boring elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 83%) and vertical extent of TLM may or may not be reflective of depths and	
8-				intervals noted.	

Sediment Coring: K11

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 5, 2010

Date Completed: October 5, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 110.60

Northing: 785990.1 Easting: 1985313.6 Total Depth (feet): 0.7

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface 0-0.7 ft: dark gray, silt, fine to medium sand, with	
	0.7/0.7	0.2		some gravels.	0-0.5 ft: no TLM odor, no visual TLM 0.5-0.6 ft: slight TLM odor, visual TLM staining to some separate TLM 0.6-0.7 ft: no TLM odor, no visual TLM (see note)
				DPT Refusal: 0.7 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. Multiple sample attempts. The 5th sample run had minimal evidence of TLM in sediment.	
1-					

Sediment Coring: L11

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 28, 2010
Date Completed: September 28, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 109.00

Northing: 785963.2

Easting: 1985289.2 Total Depth (feet): 1.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.8/1.0	63.1		0-0.05 ft: brown, fine to medium sand. 0.05-1.0 ft: black, fine to coarse sandgrains are stained black.	0-0.05 ft: no TLM odor, no visual TLM 0.05-1.0 ft: moderate to strong TLM odor, weathered TLM in interval and occurring as residual amounts, staining grains, and in some cases filling pore spaces
1 -				1.0 ft: rock fragments DPT Refusal: 1.0 feet. Notes: 1. Core elevations based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: M11

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 105.10

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Northing: 785943.6

Easting: 1985239.3

Total Depth (feet): 0.8

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.5/0.8	O		0-0.8 ft: tan to brown, medium to very coarse sand and gravel.	0-0.8 ft: no TLM odor, no visual TLM
1-				DPT Refusal: 0.8 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 63%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: N11

Client: SCANA Services, Inc.

Bathymetric Elevation (feet, NAVD '88): 106.30

Site Location: Columbia, SC

Northing: 785927.3
Easting: 1985199.3

Date Started: September 30, 2010

Date Completed: September 30, 2010

Total Depth (feet): 0.33

Logged by: M. Ferlin

Drilling Method: Direct Push Technology

	T	T			***
Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.33/0.33	NR		0-0.33 ft: brown, medium to coarse sand with some fine gravels.	0-0.33 ft: no TLM odor, no visual TLM
	The state of the s		200 200 200 200 200	DPT Refusal: 0.33 feet.	
				Note: 1. PID was not recorded because PID was not working properly. 2. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: O11

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 107.60

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Northing: 785913.1

Easting: 1985147.1

Total Depth (feet): 6.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0			7,07,07,07,07,07,0	Bathymetric Surface	_
1-	0.75/3.0	0		0-5.5 ft: brown, medium to very coarse sand, fine gravels, some brachiopod shells	
2-					0-5.5 ft: no TLM odor, no visual TLM
4-	1.3/3.0	0			
				5.5-6.0 ft: light gray, fine to medium sand with	5.5-6.0 ft: no TLM odor,
6				some silt and fine to coarse gravels.	no visual TLM
7-				DPT Refusal: 6.0 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 25% and 43%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
8-					

Soil Boring: J12

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 27, 2011

Date Completed:

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 134.00

Northing: 785940.7 Easting: 1985457.3 Total Depth (Ft.): 21

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0 1 2 3 4	2.6/5.0			Ground Surface 0-9.0 ft: brown, layered fine to medium sand, to fine to medium sand and silt, moist.	
6 - 7 - 8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10	3.0/5.0			9.0-10.0 ft: brown, clay and silt, moist.	
11 12 13 14	2.3/5.0	NR		10.0-20.5 ft: brown, fine to medium sand to fine to medium sand with some silt, moist to wet. -14.5 ft: wet -15-20.5 ft: silt content decreasing to trace	0-21ft: no TLM odor, no visual TLM
16 17 18 19	2.2/6.0				
21 - 22 - 23 - 24 - 25 - 26 - 26 - 26 - 26 - 26 - 26 - 26				20.5-21.0 ft: gray, fine to medium sand, trace silt, wet, wood fragment. Total Depth: 21.0 feet. Notes: 1. Elevation is based on bathymetric survey map and located to closest contour line. 2. NR-Not recorded due to PID malfunctioning.	

Sediment Coring: K12

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 111.50

Northing: 785867.3

Easting: 1985375.9
Total Depth (feet): 1.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0.02 ft; no TI Madara na
	0.8/1.0	2.1		0-1.0 ft: brown to black, fine to coarse sand. 0.8-1.0 ft: trace gravel.	0.3-0.5 ft: TLM layer, weathered, staining grains, and in residual amounts 0.5-1.0 ft: slight TLM odor, no visual TLM
1				DPT Refusal: 1.0 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: L12

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 110.00

Northing: 785874.9

Easting: 1985317.9
Total Depth (feet): 0.7

Drilling Method: Direct Push Technology

Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
			Bathymetric Surface	
0.65/0.70	0		0-0.7 ft: brown, fine to very coarse sand, some gravel and cobbles.	0-0.7 ft: no TLM odor, no visual TLM
			DPT Refusal: 0.7 feet. Note: 1. Core elevation based on bathymetric survey map.	
				0-0.7 ft: brown, fine to very coarse sand, some gravel and cobbles. 0.65/0.70 0 DPT Refusal: 0.7 feet. Note:

Sediment Coring: M12

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.00

Site Location:Columbia, SCNorthing: 785846.0Date Started:September 29, 2010Easting: 1985276.2Date Completed:September 29, 2010Total Depth (feet): 0.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	-
	0.5/0.5	1.4		0-0.5 ft: gray, fine to very coarse sand, gravels and granite fragments.	0-0.5 ft: noted weathered TLM fragments and blebs on granite rock fragments and core liner
				DPT Refusal: 0.5 feet. Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: N12

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 30, 2010 Date Completed: September 30, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 105.00

Northing: 785833.5

Easting: 1985228.2

Total Depth (feet): 0.8

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.8/0.8	0.3		0-0.8 ft: brown, fine to very coarse sand, fine to coarse gravels, trace of silt.	0-0.8 ft: very slight TLM odor, no visual TLM (see note #2
				DPT Refusal: 0.8 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. Visual TLM was not noted within the sample matrix but was noted on the cutting shoe from the first core run.	
1-					

Sediment Coring: O12

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 106.30

Site Location: Columbia, SC

Date Started: September 28, 2010

Date Completed: September 28, 2010

Total Depth (feet): 1.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
Dep	Rec (fee	PID (pp	Syn		
0				Bathymetric Surface	
1-	1.0/1.5	1.8		0-1.5 ft: brown, fine to coarse sand.	0-1.5 ft: no TLM odor, no visual TLM
2-				DPT Refusal: 1.5 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 67%) and vertical extent of TLM may or may not be reflective of depths or intervals noted.	

Soil Boring: J13

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 27, 2011

Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 132.56

Northing: 785838.1 Easting: 1985481.4 Total Depth (Ft.): 19

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface 0-1.0 ft: brown-black top soil.	
1 - 2 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	2.8/5.0			1.0-14.0 ft: brown, very fine to fine sand and silt to some silt, dry to moist.	
6 - 7 - 8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10	2.0/5.0	NR			0-19 ft: no TLM odor, no
11 - 12 - 13 - 14 -	2.4/5.0			14.0-15.0 ft: brown, very fine to fine sand and clay,	visual TLM
15 =				moist to very moist.	
16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18	1.7/4.0			-clay is occurring as layers 15.0-17.5 ft: brown, very fine to fine sand, moist. 17.5-19.0 ft: tan to light gray, medium to coarse sand, trace coarse gravels, wet.	
19 20 21				Total Depth: 19.0 feet. Notes: 1. Elevation and location is from survey. 2. NR- not recorded due to PID malfunctioning.	
22 - 23 - 24 - 25 -				and the state of the manufactioning.	

Sediment Coring: L13

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 28, 2010

Date Completed: September 28, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 111.80

Northing: 785775.9

Easting: 1985362.0

Total Depth (feet): 0.40

Drilling Method: Direct Push Technology

O-0.4 ft: brown, medium to coarse sand, trace to some gravel.	0-0.2 ft: no TLM odor, no visual TLM 0.2-0.28 ft: very slight TLM odor, thin (approximately 0.08 feet) weathered TLM layer 0.28-0.4 ft: no TLM odor,
U-0.4 ft: brown, medium to coarse sand, trace to some gravel.	visual TLM 0.2-0.28 ft: very slight TLM odor, thin (approximately 0.08 feet) weathered TLM layer 0.28-0.4 ft: no TLM odor,
	no visual TLM
DPT Refusal: 0.4 feet.	
Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: M13

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.20

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Date Completed: September 30, 2010

Total Depth (feet): 0.65

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.65/0.65	1.0		0-0.55 ft: black to brown, medium to very coarse sand and gravel	0-0.3 ft: slight TLM odor, weathered TLM staining grains and throughout interval 0.3-0.55 ft: moderate TLM odor, bleb like TLM in interval
				0.55-0.65 ft: gray to red, silt, (likely saprolite)	0.55-0.65 ft: no visual TLM, odor not recorded
				DPT Refusal: 0.65 feet. Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: N13

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 105.50

Site Location: Columbia, SC

Date Started: September 28, 2010

Date Completed: September 28, 2010

Total Depth (feet): 0.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
				0-0.25 ft: brown, fine to coarse sand.	0-0.25 ft: slight TLM odor, no visual TLM
	0.4/0.5	233		0.25-0.5 ft: black, fine to coarse sand.	0.25-0.5 ft: visual weathered TLM throughout interval, grains are stained
				DPT Refusal: 0.5 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: O13

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 106.50

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Northing: 785718.3

Easting: 1985215.3

Total Depth (feet): 1.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1	0.95/1.0	0.1		0-1.0 ft: brown to tan, fine to very fine sand and some gravelsrock fragments at tip. DPT Refusal: 1.0 feet.	0-1.0 ft: no TLM odor, no visual TLM
				Note: 1. Core elevation based on bathymetric survey map.	

Soil Boring: 114

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 27, 2011

Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologogic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 132.85

Northing: 785764.0 Easting: 1985534.2 Total Depth (Ft.): 22.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations			
0_				Ground Surface				
1 - 2 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	2.6/5.0			0-0.2 ft: topsoil 0.2-13.8 ft: brown, fine sand with trace to some silt, dry.				
6 7 8 9	NR	NR	NR					
11 - 12 - 13 - 14 - 14 - 1	2.5/5.0			NR	NR	NR 1 1 1 1 1 1 1 1 1		13.8-16.75 ft: brown, clay, trace to some fine sand and silt, moist.
15 16 17 18 19	NR			16.75-22.0 ft: gray, silt and very fine sand, trace clay, mica, wet17.5 ft: wet				
21	2.0/2.0							
22 23 24 25 26				Total Depth: 22 feet. Notes: 1. Elevation and location is from survey. 2. NR- Not recorded due to PID malfunctioning.				

Sediment Coring: K14

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 110.80 Northing: 785698.3

Northing: 785698.3 Easting: 1985439.0

Total Depth (feet): 0.16

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			কালে কালে কালে কালে সাক্ষা কৰা কালে সাক্ষা	Bathymetric Surface	
	0	NR		0-0.16 ft: granite fragment	0-0.16 ft: no TLM odor, no visual TLM
				DPT Refusal: 0.16 feet.	
				Notes: 1. NR-Not recorded 2. Core elevation based on bathymetric survey map.	
_					
1-					

Sediment Coring: L14

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Bathymetric Elevation (feet, NAVD '88): 110.10

Northing: 785682.7 Easting: 1985381.8 Total Depth (feet): 0.2

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0/0.2	NR		0-0.2 ft: no recovery due to presence of rocks	TLM noted on cutting shoe
1-				DPT Refusal: 0.2 feet. Notes: 1. NR-Not recorded 2. Core elevation based on bathymetric survey map.	

Sediment Coring: M14

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.50

Site Location: Columbia, SC

Date Started: September 29, 2010

Date Completed: September 29, 2010

Easting: 1985350.7

Total Depth (feet): 0.8

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.4/0.8	0		0-0.8 ft: black, medium to coarse sand with some gravel.	0-0.8 ft: slight TLM odor, weathered TLM throughout interval recovered
1-				DPT Refusal: 0.8 feet Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (50%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: N14

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.00

Site Location:Columbia, SCNorthing: 785645.9Date Started:September 30, 2010Easting: 1985295.3Date Completed:September 30, 2010Total Depth (feet): 0.6

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.6/0.6	0		0-0.6 ft: brown, fine to coarse sand.	0-0.6 ft: no TLM odor, no visual TLM (see note #2)
1-				DPT Refusal: 0.6 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. N14 was re-cored on October 5, 2010 to gain sample volume for laboratory analyses. TLM was noted at approximately 0.6 feet, was approximately 0.01 to 0.02 feet thick and had very slight TLM odor. Based on observations, location O-14 was sampled for laboratory analyses.	

Sediment Coring: 014

Client: SCANA Services, Inc.

Bathymetric Elevation (feet, NAVD '88): 108.30

Site Location: Columbia, SC Date Started: October 5, 2010

Northing: 785630.0 Easting: 1985254.7

Date Completed:

Total Depth (feet): 0.7

Logged by: M. Ferlin

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.7/0.7	0.2		0-0.7 ft:brown, fine to very coarse sand and fine to coarse gravels.	0-0.7 ft: no TLM odor, no visual TLM (see note #2)
				Refusal: 0.7 feet.	
_				Notes: 1. Core elevation based on bathymetric survey map. 2. Total of three sample runs so adequate sample volume could be collected for analyses. Two of the three runs indicated absence of TLM and the third indicated one bleb on the acetate liner.	
1-					

Soil Boring: 115

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 27, 2011 Date Completed: July 27, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 131.33

Northing: 785669.0 Easting: 1985580.7 Total Depth (Ft.): 21

Drilling Method: Direct Push Technology

O Ground Surface	
O-1.5 ft: brown to black topsoil	
1	
2 1.5-14.0 ft: brown, very fine to fine sand with some silt, dry to moist.	
3-	
-7-8 ft: clay layer 410-14 ft: some clay occuring as layers	
5	
3.2/5.0	
8 = 3.275.0	
9=	
10	
NR	0-21 ft: no TLM odor, no
	visual TLM
2.9/5.0	
13 = 2.575.5	
14	
14.0-16.25 ft: tan, fine to medium sand, trace silt, moist to very moist.	
-15.0-16.25 ft: silt content increases to some 16.25-20.0 ft: gray silt, clay and very fine to fine	
17 3.1/5.0 16.25-20.0 π: gray silt, clay and very fine to fine sand, mica, wet.	
18clay is layered and within matrix towards 20 feet.	
19	
20	
1.0/1.0 20.0-21.0 ft: gray, medium to coarse sand, fine gravels, wet.	
T.U.D. W. O.C.	
Notes: 1. Elevation and location is from survey.	
24 2.NR- Not recorded due to PID malfunctioning.	
25-	

Sediment Coring: K15

Client: SCANA Services, Inc.

Bathymetric Elevation (feet, NAVD '88): 110.90

Site Location: Columbia, SC

Northing: 785609.6

Date Started: September 30, 2010

Date Completed: September 30, 2010

Easting: 1985478.1
Total Depth (feet): 0.75

Logged by: M. Ferlin

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			0 0 0 0 0 0 0 0 0 0 0 0	Bathymetric Surface	0-0.37 ft: slight TLM odor,
	0.2/0.75	1.2		0.37-0.75 ft: brown, medium to very coarse sand	weathered TLM throughout interval and staining grains 0.37-0.75 ft: no TLM odor, no TLM visual
				DPT Refusal: 0.75 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (27%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
1-					

Sediment Coring: L15

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 111.30

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Total Depth (feet): 0.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	0		0-0.5 ft: brown, medium to very coarse sand with some silt and fine to coarse gravels.	0-0.5 ft: no TLM odor, no visual TLM
				DPT Refusal: 0.5 feet. Note: 1. Core elevation based on bathymetric survey map.	
1-		The state of the s			

Sediment Coring: M15

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 111.40

Site Location: Columbia, SC

Date Started: September 30, 2010

Date Completed: September 30, 2010

Easting: 1985384.2

Total Depth (feet): 0.75

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.55/0.75	0.6		0.5-0.75 ft: weathered granite with black and white silt, (likely saprolite).	0-0.5 ft: no TLM odor, no visual TLM (see note #3) 0.5-0.75 ft: slight TLM odor, no visual TLM
1-				DPT Refusal: 0.75 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 73%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 4. First run of M15 contained a piece of gravel with tar on it. Noted to be on top of the sample run or on the river bed surface.	

Soil Boring: H16

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July, 28, 2011 Date Completed: July 28, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 132.91

Northing: 785587.6 Easting: 1985631.6 Total Depth (Ft.): 27.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Ground Surface	_
1 2 3 4	2.5/5.0			0-0.5 ft: topsoil, moist. 0.5-8.75 ft: brown, very fine to fine sand, with trace to some silt, dry.	
6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.0/5.0	NR		8.75-15.0 ft: brown, clay with trace to some silt, moist.	
10 11 12 13 14	3.4/5.0		##### ##### NR ##### ######	-10-15 ft: silt content increases, trace very fine sand -14.25-14.75 ft: layers of tan, fine to medium sand -15 ft: wood fragments	0-27 ft: no TLM odor, no visual TLM
15 16 17 18 19	1.6/5.0			15.0-22.0 ft: brown grading to tan, very fine to fine sand, moist. -17.5 and 19.5 feet: 0.1 foot thick clay layers -21.5 ft: grading into silty, very fine to fine sand, moist to wet	
21 22 23 24 25	2.6/5.0			22.0-25.9 ft: gray to black, silt and clay, trace very fine sand, mica, wet, organic matter. -25-25.9 ft: sand content increasing, wet	
26 27	2.0/2.0		%0°6%0°6%0°6%0°6%0°6%0°6%0°6%0°6%0°6%0°6	-black color is from vegetative material	
28 - 29 - 30 - 31 - 32 - 32 - 32 - 32 - 33 - 34 - 34 - 34				Total Depth: 27.0 feet. Notes: 1. Elevation and location is from survey. 1. NR- Not recorded due to PID malfunctioning.	

Sediment Coring: J16

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 106.00

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Easting: 1985562.3

Total Depth (feet): 0.25

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Lithologic Description Observations Description Observations Lithologic Description Observations Observations Observations Observations Description Observations Observations Observations Observations Description Observations Observations Observations			1			
0-0.25 ft: brown, medium to coarse sand and fine to coarse gravels. 0-0.25 ft: slight TLM odd 5-10% of interval contain TLM blebs DPT Refusal: 0.25 feet. Note:	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol		Observations
0-0.25 ft: slight TLM odd 5-10% of interval contain TLM blebs DPT Refusal: 0.25 feet. Note:	0				Bathymetric Surface	
Note:	-	0.25/0.25	1.6		0-0.25 ft: brown, medium to coarse sand and fine to coarse gravels.	0-0.25 ft: slight TLM odor, 5-10% of interval contains TLM blebs
					Note:	

Sediment Coring: K16

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 107.20

Site Location: Columbia, SC

Date Started: October 1, 2010

Date Completed: October 1, 2010

Easting: 1985511.3

Total Depth (feet): 0.75

Logged by: M. Ferlin Drilling Method: Direct Push Technology

	I	1			
Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0_				Bathymetric Surface	
0-	0.55/0.75	1.7		0-0.75 ft: tan, medium to very coarse sand, trace gravels.	0-0.25 ft: no TLM odor, no visual TLM 0.25-0.55 ft: TLM blebs in interval
1-				DPT Refusal:0.75 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3.Recovery was limited (approximately 73%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 4. First core run also had TLM noted at the 0 to 0.2 foot and 0.2 to 1.0 foot intervals.	

Sediment Coring: L16

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.20

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Total Depth (feet): 1.1

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	0.85/1.1	66.5		0-1.1 ft: gray to black medium to coarse sand with some fine gravels at tip.	0-0.65 ft: weathered TLM and towards 0.5 feet weathering is less 0.65-1.1 ft: TLM present in residual amount (~80 to 90%) throughout interval and staining, more fluid-like appearance towards 1.0-1.1 ft and observed to float on water in core sample
				DPT Refusal: 1.1 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (77%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: M16

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.50

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Total Depth (feet): 1.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0			7	Bathymetric Surface	
1	0.8/1.0	NR (see note #1)		0-1.0 ft: tan, medium to very coarse sand, some fine gravels.	0-0.5 ft: moderate TLM odor, no visual TLM 0.5-1.0 ft: TLM occurrence increasing with depth. At 0.5 to 0.75 feet, TLM bleb like appearance. At 0.75 to 1.0 feet, highly weathered TLM (approximately 80-90% of interval), staining grains
-				DPT Refusal: 1.0 feet. Notes: 1. NR- Not recorded but first core run indicated a PID reading of 5.6 ppm. 2. First core run also indicated presence of TLM with notable exception found in the 0 to 0.25 foot interval. 3. For lithology and TLM observations, depth adjusted based on recovery. 4. Recovery limited (80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: N16

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.70

Site Location:Columbia, SCNorthing: 785461.3Date Started:October 4, 2010Easting: 1985374.6Date Completed:October 4, 2010Total Depth (feet): 1.2

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	0 0 45 ft - U-l-4 TI M I -
1-	0.8/1.2	21.2		0-1.0 ft: brown to black, medium to very coarse sand, gravel at bottom.	0.45-0.70 ft: weathered TLM acting to bind grains together. At 0.55 to 0.70 feet, less viscous and less weathered and more flowable 0.70-1.20 ft: slight to moderate TLM odor, no to very minor blebs of TLM
1				1.0-1.2 ft: green gray, silt and sand, trace of gravel. DPT Refusal:1.2 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 69%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: O16

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 4, 2010

Date Completed: October 4, 2010

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 108.30

Northing: 785446.4

Easting: 1985320.1

Total Depth (feet): 1.0

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			2 000 000 000 000 000 000 000 000 000 0	Bathymetric Surface	
_			\$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0	0-0.4 ft: gravels	
1	0.7/1.0	0	Pan Can Can Can Can Can Can Can Can Can C	0.4-1.0 ft: brown, medium to very coarse sand, some fine gravels	0-1.0 ft: no TLM odor, no visual TLM
				DPT Refusal: 1.0 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Second core run from O16 also indicated absence of TLM.	

Soil Boring: H17

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 28, 2011

Date Completed: July 28, 2011

Logged by: M. Ferlin

Drilled by: Geologic Exploration, Inc.

Ground Elevation (feet, NAVD '88): 133.96

Northing: 785501.6 Easting: 1985683.6 Total Depth (Ft.): 27

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations	
0				Ground Surface		
1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.9/5.0			0-0.5 ft: dark brown, topsoil 0.5-11.5 ft: brown to tan, very fine to fine sand and silt, trace clay, dry5-10 ft: clay as layers		
6 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.0/5.0					
11	3.5/5.0	NR		11.5-15.0 ft: brown, clay with trace to some silt, moist, trace mica, wood frags.	0-27 ft: no TLM odor, no visual TLM	
16 17 18 19 19	1.1/5.0			15.0-22.0 ft: brown to tan, fine to medium sand, trace to some silt, moist. -20-22 ft: mica, wet		
21 = 22 = 23 = 24 = 25 = 25	2.7/5.0			22.0-25.0 ft: gray to black, silt and grading with depth to fine to medium sand. -black color is from vegetative material		
26	2.0/2.0			25.0-27.0 ft: gray, medium to coarse sand, wet.		
27 28 29 30 31 31 32 33 34 35			0,000,000,000,00	Total Depth: 27.0 feet. Notes: 1. Elevation and location is from survey. 1. NR-Not recorded due to PID malfunctioning.		

Sediment Coring: 117

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 112.0

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Northing: 785447.2

Easting: 1985627.8

Total Depth (feet): 2.8

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
-				0-0.7 ft: dark gray, silt with some fine sand and clay, muscovite flakes. 0.7-2.8 ft: dark gray, silt and clay, some muscovite	0-0.5 ft: no TLM odor, no visual TLM
1-		0		flakesplant fragments throughout interval.	0.5-2.0 ft: slight TLM odor, no visual TLM
2-	2.0/2.8	0			
-		0			2.0-2.8 ft: no TLM odor, no visual TLM
3-				DPT Refusal: 2.8 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
4-					

Sediment Coring: J17

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 106.00

Site Location:Columbia, SCNorthing: 785435.82Date Started:February 23, 2011Easting: 1985594.63Date Completed:February 23, 2011Total Depth (feet): 1.4

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	very feet)	PID Screen (ppm)	.	Lithologic Description	Observations
Depth	Recovery (feet/feet)	mdd)	Symbol		
0-				Bathymetric Surface	
				0-1.4 ft: dark gray to black fine to medium sand.	
1-	0.85/1.4	0			0-1.4 ft: slight to moderate TLM odor, weathered TLM throughout interval, acting as a binder for grains
2-				DPT Refusal: 1.4 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithology and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 61%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: K17

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 105.50

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Northing: 785420.98

Easting: 1985545.56

Total Depth (feet): 1.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
-	0.5/1.0	0		0-0.8 ft: brown, fine to coarse sand. 0.8-1.0 ft: black, fine to coarse sand.	0-0.8 ft: no TLM odor, no visual TLM - 0.8-1.0 ft: slight to moderate TLM odor,
1-				DPT Refusal: 1.0 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (50%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 4. Second core run indicated no TLM odor and no visual TLM.	interval is stained black with visual TLM, acting as a binder with sand grains (see note #4)

Sediment Coring: L17

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: Date Completed:

Logged by: M. Ferlin

Drilled by: Geologic Exploration Inc.

Bathymetric Elevation (feet, NAVD '88): 107.10

Northing: 785404.10
Easting: 1985500.77
Total Depth (feet): 1.5

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			0 0 0 0 0 0 0 0 0 0 0 0 0	Bathymetric Surface	
1-	0.8/1.5	0		 0-1.5 ft: brown, medium to very coarse sand and trace to some fine to medium gravels. - silt content increasing at 1.3 to 1.5 feet. 	0-1.5 ft: no TLM odor, no visual TLM
				DPT Refusal: 1.5 feet.	
2-				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologhies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 53%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: M17

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.20

Site Location:Columbia, SCNorthing: 785385.68Date Started:February 23, 2011Easting: 1985456.92Date Completed:February 23, 2011Total Depth (feet): 1.7

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-0.25 ft: thin weathered
				0-1.0 ft: gray to black, medium to very coarse sand.	0.60-0.85 ft: thin weathered TLM layer acting as binder for sand
1-	0.7/1.7	0		1.0-1.7 ft: gray, medium to coarse sand and fine to coarse gravels.	- 1.0-1.7 ft: moderate TLM odor, very minor TLM noted
2-				DPT Refusal: 1.7 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recoveries. 3. Recovery was limited (approximately 41%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: N17

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.20

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Total Depth (feet): 2.6

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	1.5/2.6	0		0-2.6 ft: brown, medium to very coarse sand, fine to coarse gravels.	0-2.6 ft: no TLM odor, no visual TLM
3-				DPT Refusal: 2.6 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 52%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 4. Two other cores were collected and TLM odor and visual was not noted.	

Sediment Coring: 017

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.40

Site Location: Columbia, SC

Date Started: February 23, 2011

Date Completed: February 23, 2011

Northing: 785351.36

Easting: 1985361.41

Total Depth (feet): 1.4

Logged by: M. Ferlin Drilling Method: Direct Push Method

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	0.4/1.4	0		0-1.4 ft: brown, medium to very coarse sand with some fine to coarse gravelsgravels more prevalent at tip.	0-1.4 ft: no TLM odor, no visual TLM
				DPT Refusal: 1.4 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 29%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
2-					

Sediment Coring: 118

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 112.20

Site Location: Columbia, SC

Date Started: February 22, 2011

Date Completed: February 22, 2011

Northing: 785360.62

Easting: 1985675.92

Total Depth (feet): 2.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0			0 0 60 0 00 0 00 0 00 0	Bathymetric Surface	
		0		0-2.0 ft: brown, medium to coarse sand with trace of muscovite flakesvegetative material at 0-0.3 ftgravel at tip.	
		0			0-1.4 ft: no TLM odor, no visual TLM
1-	1.45/2.0	0			4.4.2.0 % -1:
2-		U			1.4-2.0 ft: slight TLM odor, no visual TLM
2.				Refusal: 2.0 feet.	
3-				Notes: 1. Three cores were drilled. The first two were inspected for TLM only due to poor recovery. Third coring had greatest recovery and therefore was logged. 2. Core elevations based on bathymetric survey maps. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (approximately 73%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 5. Noted very slight odor at ~0.7-0.9 feet in second core.	

Sediment Coring: J18

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: February 22, 2011

Date Completed: February 22, 2011

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 108.10

Northing: 785346.34 Easting: 1985626.98

Total Depth (feet): 1.6

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0-0.5 ft: no odor, no visual
_				0-0.5 ft: brown, fine to coarse sand with some shells. 0.5-1.6 ft: black, fine to coarse sand.	- 0.5-1.6 ft: moderate TLM
1-	0.95/1.6	10.6		-gravel at tip	odor, highly weathered TLM occurs as coating on grains that act as binding, more prevalent with depth
		27.5			
2-		21.0		Refusal: 1.6 feet. Notes: 1. Core elevations based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 59%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 4. Three cores recovered and logged third since it had the most recovery.	

Sediment Coring: K18

Northing: 785327.23

Easting: 1985578.24

Total Depth (feet): 0.25

Bathymetric Elevation (feet, NAVD '88): 108.00

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 22, 2011

Date Completed: February 22, 2011

Date Completed: February 22, 2011

Logged by: M. Ferlin Drilling Method: Direct Push Technology

		T			
Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.2/0.25	0		0-0.25 ft: brown, fine to medium sand and fine to coarse gravels.	0-0.25 ft: slight TLM odor, couple of TLM "balls" noted on top of sample matrix
				Refusal: 0.25 feet. Notes: 1. Core elevations based on bathymetric survey map. 2. Two cores were collected. One core indicated visual TLM was not present and the other core (2nd) indicated visual TLM balls.	

Sediment Coring: L18

Client: SCANA Services, Inc.

Site Location:

Date Completed:

Date Started:

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 109.10

Northing: 785308.64 Easting: 1985535.84

Total Depth (feet): 0.35

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0-0.35 ft: no TLM odor, no
	0.35/0.35	0		0-0.35 ft: brown, medium to coarse sand with trace gravels.	- 0-0.35 ft: no TLM odor, no visual TLM
				Refusal: 0.35 feet.	
				Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: M18

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 108.90

Site Location: Columbia, SC

Date Started: February 22, 2011

Date Completed: February 22, 2011

Northing: 785286.06

Easting: 1985484.95

Total Depth (feet): 1.0

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	MA A B
1	1.0/1.0	0		0-1.0 ft: brown, medium to very coarse sand, and fine to coarse gravelslarger gravels more prevalent from 0-0.4 feet.	0-1.0 ft: no TLM odor, no visual TLM
				Refusal: 1.0 feet. Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: N18

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 110.20

Site Location: Columbia, SC

Date Started: February 22, 2011

Date Completed: February 22, 2011

Northing: 785269.97

Easting: 1985435.99

Total Depth (feet): 0.75

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.65/0.75	0		0-0.75 ft: brown, medium to very coarse sand, trace fine gravels Refusal: 0.75 feet. Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths	0-0.75 ft: no TLM odor, no visual TLM
1-				adjusted based on recovery.	

Sediment Coring: O18

Client: SCANA Services, Inc. Bathymetric Elevation (feet, NAVD '88): 109.80

Site Location: Columbia, SC

Date Started: February 22, 2011

Date Completed: February 22, 2011

Northing: 785257.24

Easting: 1985396.72

Total Depth (feet): 0.5

Logged by: M. Ferlin Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	0		0-0.5 ft: brown, medium to coarse sand and fine gravels.	0-0.5 ft: no TLM odor, no visual TLM
1-				Refusal: 0.5 feet. Notes: 1. Core elevations based on bathymetric survey map. 2. Three cores were collected and each indicated no TLM odor and no visual TLM. 3. Total depth based on recovered amount which was 0.5 feet.	

Sediment Coring: P18

Client: SCANA Services, Inc.

Bathymetric Elevation (feet, NAVD '88): 110.50 Northing: 785239.97

Site Location: Columbia, SC Date Started: February 22, 2011 Date Completed: February 22, 2011

Easting: 1985347.01 Total Depth (feet): 1.5

Logged by: M. Ferlin

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	0.8/1.5	NR		0-0.4 ft: gray-green, clay with some silt, appears to be more saprolitic. 0.4-1.5 ft: brown, medium to very coarse sand with some fine to medium gravels.	0-1.5 ft: no TLM odor, no visual TLM
			૿ૺ _૱ ૹ૽૽૿ૺૢૹૼઌૢ૽ૹ૿ઌ૾ૢ૽ૹ૿ઌ૿૽ૢૹૼૺ૽ૹૼ	Refusal: 1.5 feet.	
				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 53%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
2-					

Sediment Coring: J19

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: February 22, 2011

Date Completed: February 22, 2011

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 111.70

Northing: 785247.97 Easting: 1985662.53 Total Depth (feet): 2.0

Drilling Method: Direct Psuh Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0				0-0.3 ft: gravel on surface then brown fine to coarse sand 0.3-0.5 ft: brown to light gray silt and clay.	
-				• • • • • • • • • • • • • • • • • • • •	
			++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	0.5-0.6 ft: brown fine to coarse sand.	
				0.6-0.8 ft: brown to light gray silt and clay.	
1-	1.25/2.0	12.3		O.8-2.0 ft: brown, fine to coarse sand with trace gravels. -vegetative matter (leaves) at bottom of interval.	0-1.75 ft: no odor, no visual
2				Refusal: 2.0 feet.	1.75-2.0 ft: slight to moderate TLM odor, stained black, trace of
-				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depth adjusted based on recovery. 3. Recovery was limited (approximately 63%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	what appears to be blebs of TLM on leaves
3-					

Sediment Coring: K19

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: February 22, 2011

Date Completed: February 22, 2011

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 109.80

Northing: 785228.24

Easting: 1985621.59
Total Depth (feet): 0.6

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-0.6 ft: no TLM odor, no
	0.5/0.6	0		0-0.6 ft: brown, fine to very coarse sand and fine to coarse gravels.	visual TLM
			200000000000000000000000000000000000000	Refusal: 0.6 feet.	
				Note: 1. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: L19

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 22, 2011

Date Completed: February 22, 2011

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 109.90

Northing: 785215.33

Easting: 1985569.42

Total Depth (feet): 0.5

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.35/0.5	0		0-0.5 ft: brown, medium to very coarse sand, fine to very coarse gravels and cobbles.	0-0.5 ft: no TLM odor, no visual TLM (see note # 4)
1-				Notes: 1. Core elevation based on bathymetric survey map. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (70%) and vertical extent of TLM may or may not be reflective of depths and intervals noted. 4. Three cores collected. On second core, TLM bleb noted on a gravel and potentially on a large cobble.	

Sediment Coring: M19

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: February 22, 2011
Date Completed: February 22, 2011

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 111.50

Northing: 785198.7

Easting: 1985526.12
Total Depth (feet): 0.3

Drilling Method: Direct Push Technology

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.3/0.3	0		0-0.3 ft: brown, fine to coarse sand.	0-0.3 ft: no TLM odor, no visual TLM
				Refusal: 0.3 feet. Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: a

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.70

Northing: 785241.7

Easting: 1985693.3

Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1 -	1.5/1.5			0-1.5 ft: brown to tan, fine to coarse sand and fine to coarse gravel Maximum Depth: 1.5 feet.	0-1.5 ft: no TLM odor, no visual TLM
_				Note: 1. Core elevation based on bathymetric survey map.	
2-					

Sediment Coring: b

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.8

Northing: 785226.6

Easting: 1985656.3

Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
-				Not recorded, though likely similar to Sediment Coring a.	
1-	1.5/1.5				0-1.5 ft: no TLM odor, no visual TLM
_					
_				Maximum Depth: 1.5 feet. Note: 1. Core elevation based on bathymetric survey map.	
2-					

Sediment Coring: c

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.9

Northing: 785204.3

Easting: 1985600.4

Total Depth (feet): 0.5

Drilling Method: Hand dug

Bathymetric Surface O-0.5 ft: brown, medium to very coarse sand and fine to coarse gravel.						
0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5 0.5/0.5	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0.5/0.5 0.5/0.5 0.5/0.5 0.0.5 ft: brown, medium to very coarse sand and fine to coarse gravel. 0.5/0.5 0-0.5 ft: no TLM odd visual TLM Maximum Depth: 0.5 feet. Note:	0				Bathymetric Surface	
Note:		0.5/0.5			0-0.5 ft: brown, medium to very coarse sand and fine to coarse gravel.	0-0.5 ft: no TLM odor, no visual TLM
1-					Note:	

Sediment Coring: d

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.5

Northing: 785185.5

Easting: 198555.3

Total Depth (feet): 0.3

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.3/0.3			-0.3- ft: gray, fine to coarse sand, trace silt Maximum Depth: 0.3 feet. Note: 1. Core elevation based on bathymetric survey map.	0-0.25 ft: Fragment, faint TLM odor; very minor amount of highly weathered, black, friable asphaltic like TLM. Sand grains appeared to be bound by potential TLM. Interpreted to be representative of other weathered material (OWM).

Sediment Coring: e

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.10

Northing: 784866.4

Easting: 1985693.8

Total Depth (feet): 0.75

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
0-	0.75/0.75			O-0.75 ft: tan to brown, medium to very coarse sand and fine to coarse gravel. Maximum Depth: 0.75 feet. Note: 1. Core elevation based on bathymetric survey map.	0-0.75 ft: no TLM odor, dark gray cinder like material was present in very minor amounts
1-					

Sediment Coring: f

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.60

Northing: 784886.1

Easting: 1985745.1

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
1-	1.0/1.0			Bathymetric Surface 0-1.0 ft: brown to gray (with depth), medium to very coarse sand, fine to coarse gravel, some vegetative material. Maximum Depth: 1.0 feet. Note: 1. Core elevation based on bathymetric survey.	0-1.0ft: no TLM odor, no visual TLM

Sediment Coring: g

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.20

Northing: 784895.6

Easting: 1985768.3

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet) Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0	<u> </u>		Bathymetric Surface	
1.0/1.0		1	O-1.0 ft: brown, medium to very coarse sand with some fine to coarse gravels. Maximum Depth: 1.0 feet. Note: 1. Core elevation based on bathymetric survey map.	0-1.0 ft: Fragments interpreted to be representative of other weathered material (OWM), though present in very limited amounts,very faint TLM odor in fragment.

Sediment Coring: h

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.20

Northing: 784910.1

Easting: 1985805.9

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
-	1.0/1.0			0-1.0 ft: brown to tan, medium to very coarse sand and fine to coarse gravels.	0-1.0 ft: Fragments interpreted to be representative of other weathered material (OWM), faint TLM odor, some were pliable.
-				Maximum Depth: 1.0 feet. Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: i

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.80

Northing: 784926.4
Easting: 1985847.7
Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetirc Surface	
	0.5/0.5			0-0.5 ft: brown to tan, medium to very coarse sand and fine to coarse gravel.	0-0.5 ft: no TLM odor, no visual TLM
1-				Maximum Depth: 0.5 feet. Note: 1. Core elevation based on bathymetric survey map.	

Sediment Coring: j

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: October 7, 2010

Date Completed: October 7, 2010

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): see

Northing: 784281.9

note #1

Easting: 1985970.2

Total Depth (feet): Not Recorded

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	Cinders noted Between
0-				Bathymetric Surface brown to tan, medium to very coarse sand and fine gravels. Maximum Depth: Not recorded Note: 1. Due to boulders, this location could not be surveyed and therefore a bathymetric elevation is not provided.	Cinders noted. Between boulders: very faint TLM odor, noted highly weathered TLM fragment that was approximately 0.75 feet long and 0.2 feet wide. The TLM fragment was brittle and when broken open, felt pliable. Sand grains in TLM fragment. Also noted some cinders.
1-					

Sediment Coring: 120

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011 Date Completed: July 21, 2011

Logged by: M. Ferlin

Bathymetric Elevation (feet, NAVD '88): 114.50

Northing: 785162.3 Easting: 1985734.8 Total Depth (feet): 0.7 Drilling Method: Hand dug

Drilled by:

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.7/0.7	0		O-0.7 ft: gray, medium to very coarse sand, fine to very coarse gravels. Maximum Depth: 0.7 feet. Note: 1. Core elevation based on bathymetric survey map.	0-0.7 ft: no TLM odor, no visual TLM
1-					

Sediment Coring: J20

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011 Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.30

Northing: 785152.2

Easting: 1985701.1

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-0.5 ft: no TLM odor, one
-	0.5/0.5	NR		0-0.5 ft: tan to gray, fine to medium sand with some silt and gravels. Refusal: 0.5 feet	or two small pieces of other weathered material (OWM) 0.5 ft: very faint TLM odor, no visual TLM
1-				Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: K20

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 21, 2011

Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.20

Northing: 785132.0

Easting: 1985659.0

Total Depth (feet): 0.8

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0-0.4 ft: no TLM odor, no
	0.8/0.8	NR		O-0.8 ft: grading with depth brown to gray, fine to coarse sand and fine gravels, trace of silt, and some plant fragments. Maximum Depth: 0.8 feet. Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	visual TLM except: very faint TLM odor at 0.4 feet and other weathered material (OWM) or TLM fragment (~3/4-inch in length) at 0.3 feet 0.4-0.8 ft: no TLM odor, no visual TLM
1-					

Sediment Coring: L20

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 21, 2011

Date Completed: July 21, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.70

Northing: 785121.9

Easting: 1985616.9

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1 —	1.0/1.0	NR		0-1.0 ft: brown, medium to very coarse sand, trace to some fine to coarse gravel, trace silt.	0-1.0 ft: no TLM odor, no visual TLM
-				Maximum Depth: 1.0 feet. Notes: 1. NR- Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: M20

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011 Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 111.50

Northing: 785101.7

Easting: 1985558.0

Total Depth (feet): 0.6

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.6/0.6	NR		0-0.6 ft: brown to gray to orange, medium to very coarse sand and fine to coarse gravels	0-0.6 ft: no TLM odor, no visual TLM
			200 200 200 200	Maximum Depth: 0.6 feet.	
				Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: N20

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011 Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.80

Northing: 785091.6

Easting: 1985499.0

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	NR		0-0.5 ft: brown, medium to coarse sand and fine gravels.	0-0.5 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.5 feet. Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: O20

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011 Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.80

Northing: 785071.5

Easting: 1985473.8

Total Depth (feet): 0.6

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.6/0.6	NR		0-0.6 ft: brown, medium to very coarse sand, fine gravels.	0-0.6 ft: no TLM odor, no visual TLM
1-				Maximum Depth: 0.6 feet. Notes: 1. NR-Not recorded since wading in river and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: H22

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.50

Northing: 785000.5

Easting: 1985835.7

Total Depth (feet): 1.1

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0-0.8 ft: no TLM odor, no
1-	1.1/1.1	NR		O-1.1 ft: gray, very fine sand and silt, vegetative material, plastic. Maximum Depth: 1.1 feet.	0.8-1.1ft: slight diesel like to faint TLM odor, no visual TLM, odor decreased with depth
				Notes:	
_				NR-Not recorded since PID malfunctioned and likely from water and humidity. Core elevation based on bathymetric survey map.	

Sediment Coring: J22

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.00

Northing: 784970.2

Easting: 1985768.4

Total Depth (feet): 0.6

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0-0.6 ft: no TLM odor, no
	0.6/0.6	NR		0-0.6 ft: gray to tan, fine to coarse sand with trace to some fine gravelsareas of gray are likely silt and plant fragments.	visual TLM. One fragment of TLM and one fragment of other weathered material (OWM) at depth of 0.2 to 0.3 feet. Neither fragment had an odor.
_			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Maximum Depth: 0.6 feet.	
1-				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: L22

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.80

Northing: 784940.0

Easting: 1985667.3

Total Depth (feet): 0.9

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.9/0.9	NR		O-0.9 ft: brown, medium to very coarse sand, fine to coarse gravel, some plant fragments. -0.9 feet: gray and silt content increasing	0-0.9 ft: no TLM odor, no visual TLM
1-				Maximum Depth: 0.9 feet. Notes: 1. NR- Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: N22

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011

Date Completed:
Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.70

Northing: 784899.6

Easting: 1985583.1

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			0 6 0 0 0 0 0 0 0 0 0 0	Bathymetric Surface	
	0.7/0.7	NR		0-0.7 ft: brown, medium to very coarse sand, fine to coarse gravels, some cobbles.	0-0.7 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.7 feet.	
1-				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: H24

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 114.20

Northing: 784818.6

Easting: 1985919.8

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0-0.7 ft: potentially very
	0.7/0.7	NR		0-0.7 ft: gray, very fine sand and silt, micaceous and vegetative material.	slight TLM odor, no visual TLM. Specific depth of TLM odor is not defined and may be less than noted
				Maximum Depth: 0.7 feet.	
1-				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: J24

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.60

Northing: 784788.3

Easting: 1985835.6

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
	Management and the state of the			Bathymetric Surface	O O E ft: no TI M odor no
0-	0.5/0.5	NR		0-0.5 ft: brown, medium to very coarse sand, fine to coarse gravels, cobbles, plant fragments.	0-0.5 ft: no TLM odor, no visual TLM. One other weathered material (OWM) fragment noted and approximately 3-inches in diameter
				Maximum Depth: 0.5 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: L24

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.40

Northing: 784758.0

Easting: 1985751.4

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	0-0.5 ft: discontinuous and
0-	0.5/0.5	NR		0-0.5 ft: brown to gray, medium to very coarse sand and some fine gravels, wood fragments.	pliable (i.e. highly weathered) TLM fragment that had a slight to moderate odor encountered in a shovel sample. Other samples yielded no TLM odors and no visual TLM
1-				Maximum Depth: 0.5 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: N24

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.90

Northing: 784747.9 Easting: 1985684.1 Total Depth (feet): 0.7 Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.7/0.7	NR		0-0.7 ft: brown, medium to very coarse sand and fine to very coarse gravel, cobbles, slight mica. Maximum Depth: 0.7 feet.	0-0.7 ft: no TLM odor, no visual TLM
-				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: H26

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Aplplicable

Bathymetric Elevation (feet, NAVD '88): 114.50

Northing: 784636.6

Easting: 1985995.5
Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	0.8/1.5	NR		0-1.5 ft: gray, silt and very fine sand, micaceous, vegetative matter. Maximum Depth: 1.5 feet,	0-1.5 ft: no TLM odor, no visual TLM
2-				Notes: 1. NR-not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map. 3. For lithologies and TLM observations, depths adjusted based on recovery. 4. Recovery was limited (approximately 53%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: J26

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.50

Northing: 784596.2

Easting: 1985902.9

Total Depth (feet): 0.75

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.75/0.75	NR		0-0.75 ft: brown, medium to very coarse sand and fine to coarse gravels, some cobbles. -0.75 feet: more orange and silty	0-0.75 ft: no TLM odors, no visual TLM. Noted one clinker while inspecting samples.
				Maximum Depth: 0.75 feet. Notes: 1. NR-Not recorded since PID malfunctioned and was likely from water and humidity. 2. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: L26

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 112.80

Northing: 784576.1

Easting: 1985827.1

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
	0.7/0.7	NR		0-0.7 ft: brown, medium to very coarse sand and fine to coarse gravel.	0-0.7 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.7 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey maps.	

Sediment Coring: N26

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 113.70

Northing: 784525.6

Easting: 1985726.1

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	NR		0-0.5 ft: brown, medium to very coarse sand, and fine to very coarse gravels, some cobbles.	0-0.5 ft: no TLM odor, no TLM visual
1-				Maximum Depth: 0.5 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: H28

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): (see note #2)

Northing: 784505.2

Easting: 1986062.8
Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description Bathymetric Surface	Observations
0				0-1.0 ft: gray, silt and very fine sand, micaceous, some vegetative matter.	
1-	1.0/1.0	NR			0-1.0 ft: no TLM odor, no visual TLM
				Maximum Depth: 1.0 feet. Notes:	
-				NR-Not recorded since PID malfunctioned and likely from water and humidity. Due to boulders, the 28 line could not be surveyed and therefore a bathymetric elevation is not provided.	

Sediment Coring: J28

Client: SCANA Services, Inc.

Site Location:

Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin Drilled by: Not Applicable Bathymetric Elevation (feet, NAVD '88): (see note #2)

Northing: 784424.4

Easting: 1985978.6

Total Depth (feet): 0.6 Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.6/0.6	NR		0-0.6 ft: brown, medium to very coarse sand, fine to very coarse gravel, trace cobbles.	0-0.6 ft: no TLM odor, no visual TLM
-			.02.00.00.00	Maximum Depth: 0.6 feet.	
1-				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Due to boulders, the 28 line could not be surveyed and therefore a bathymetric elevation is not provided.	

Sediment Coring: L28

Client: SCANA Services, Inc. Site Location: Columbia, SC Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M.Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): (see note #2)

Northing: 784384.0

Easting: 1985886.0

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.7/0.7	NR		0-0.7 ft: brown, medium to very coarse sand, medium to very coarse gravels, some cobbles.	0-0.7 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.7 feet.	
-				Notes: 1. NR-Not recorded since PID malfunctioned and likley from water and humidity. 2. Due to boulders, the 28 line could not be surveyed and therefore a bathymetric elevation is not provided.	
1 -					

Sediment Coring: N28

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): (see note #2)

Northing: 784363.8

Easting: 1985776.5

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet) PID Screen Recovery (feet/feet) **Observations Lithologic Description** Symbol Bathymetric Surface 0 0-0.7 ft: brown to gray, medium to very coarse sand and fine to coarse gravels, trace cobbles, some mica 0-0.7 ft: no TLM odor, no NR 0.7/0.7 visual TLM Maximum Depth: 0.7 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Due to boulders, the 28 line could not be surveyed and therefore a bathymetric elevation is not provided.

1

Sediment Coring: 130

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): (see note #3)

Northing: 784262.6

Easting: 1986146.9 Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	1.0/1.0	NR		0-1.0 ft: gray, very fine to fine sand and silt, micaceous, vegetative material.	0-0.5 ft: very slight TLM odor, no visual TLM 0.5-1.0 ft: potentially very slight TLM odor, no visual TLM
1-				Maximum Depth: 1.0 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map. 3. Located outside survey and for purposes of identifying an elevation is assumed to be 114.00 feet since downstream of other locations along the rivers edge.	

Sediment Coring: J30

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 109.70

Northing: 784212.1

Easting: 1986012.2

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	1.0/1.0	NR		0-1.0 ft: gray, medium to very coarse sand, micaceous.	0-1.0 ft: no TLM odor, no visual TLM 1.0 ft: potentially very faint TLM odor, no visual
_				Maximum Depth: 1.0 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	TLM TLM

Sediment Coring: L30

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 108.50

Northing: 784191.9

Easting: 1985953.2

Total Depth (feet): 0.7

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0	0.7/0.7	NR		Maximum Depth: 0.7 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map.	0-0.7 ft: no TLM odor, no visual TLM

Sediment Coring: N30

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 111.10

Northing: 784151.5

Easting: 1985860.6

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	1.0/1.0	NR		0-1.0 ft: brown to tan, medium to very coarse sand and fine to very coarse gravels.	0-1.0 ft: no TLM odor, no visual TLM. Noted two fragments that resembled cinders and clinkers and a third that appeared to be other weathered material (OWM).
1-				Maximum Depth: 1.0 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely	
-				from water and humidity. 2. Core elevation based on bathymetric survey map.	·

Sediment Coring: 132

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 111.20

Northing: 784055.7

Easting: 1986168.8

Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
_				0-0.5 ft: very coarse gravels to fine boulders 0.5-1.5 ft: gray, very fine sand and silt with mica.	
1-	1.5/1.5	0		Maximum Depth: 1.5 feet.	0-1.5 ft: no TLM odor, no visual TLM
2-				Notes: 1. Core elevation based on extrapolation of contour lines on the bathymetric survey map and therefore is approximate. 2. The coring was located under Blossom Street Bridge and the GPS could not connect with the satellites. Therefore, the northing and easting were determined from the bathymetric survey map.	

Sediment Coring: J32

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011

Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.00

Northing: 784038.1

Easting: 1986119.1

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
)			Bathymetric Surface	
	0.5/0.5	0		0-0.5 ft: brown to gray, very fine to medium sand, come vegetative material.	0-0.5 ft: no TLM odor, no visual TLM
				Notes: 1. Core elevation based on bathymetric survey map. 2. The coring was located under Blossom Street Bridge and the GPS could not connect with the satellites. Therefore, the northing and easting were determined from the bathymetric survey map.	
	1-				

Sediment Coring: L32

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.40

Northing: 784004.1

Easting: 1986024.3

Total Depth (feet): 0.4

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.4/0.4	NR		0-0.4 ft: brown, medium to coarse sand, trace gravels.	0-0.4 ft: no TLM odor, no visual TLM
			7. B 7. B 7. B 7. B. Y. B.	Maximum Depth: 0.4 feet.	
				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map. 3. The coring was located under the Blossom Street Bridge and the GPS could not connect to the satellites. Therefore, the northing and easting were determined from the bathymetric survey map.	
1-					

Sediment Coring: N32

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin

Drilled by: Not Applicabel

Bathymetric Elevation (feet, NAVD '88): 109.20

Northing: 783970.0 Easting: 1985930.8 Total Depth (feet): 0.4

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
	and the second s			Bathymetric Surface	
0-	0.4/0.4	NR		0-0.41 ft: brown, medium to very coarse sand and fine to coarse gravels.	0-0.4 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.4 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map. 3. The coring was located under the Blossom Street Bridge and the GPS could not connect with the satellites. Therefore, the northing and easting were determined from the bathymetric survey map.	

Sediment Coring: P32

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 20, 2011 Date Completed: July 20, 2011

Logged by: M. Ferlin
Drilled by: Not applicable

Bathymetric Elevation (feet, NAVD '88): 110.60

Northing: 783939.4

Easting: 1985838.2

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	0-0.5 ft: no TLM odor, no
0-	0.5/0.5	NR		0-0.5 ft: brown, medium to very coarse sand and fine to coarse gravels.	0.2-0.3 ft: several TLM fragments ranging in size from approximately 1/4 to 1/2-inch in diameter. Likely transported
1-				Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on bathymetric survey map. 3. The coring was located under the Blossom Street Bridge and the GPS could not connect with the satellites. Therefore, the northing and easting were determined from the bathymetric survey map.	downriver.

Sediment Coring: R32

Client: SCANA Services, Inc.

Site Location:
Date Started:
Date Completed:
Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.20

Northing: 783955.9

Easting: 1985738.8

Total Depth (feet): 0.75

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0-	0.75/0.75	NR		0-0.75 ft: brown, medium to very coarse sand, fine to coarse gravels.	0-0.75 ft: no TLM odor, no visual TLM
1-				Maximum Depth: 0.75 feet. Notes: 1. NR-Not recorded since PID malfunctioned and likely from water and humidity. 2. Core elevation based on extrapolation of contour lines on the bathymetric survey map and therefore is approximate. 3. The coring was located under the Blossom Street Bridge and the GPS could not connect with the satellites. Therefore, the northing and easting were determined from the bathymetric survey map.	

Sediment Coring: J34

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.20

Northing: 783838.1 Easting: 1986079.4

Total Depth (feet): 0.4

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.4/0.4	NR		0-0.4 ft: brown to gray, silt and fine sand.	0-0.33 ft: no TLM odor, no visual TLM 0.33-0.4 ft: very faint TLM odor, no visual TLM
				Maximum Depth: 0.4 feet Notes: 1. NR - not recorded since wading in water and moisture would negatively impact PID. 2. Horizontal coordinates are the same as L34 though J34 was located along river bank. 3. Assumed total depth since notes do not clearly define maximum depth. 4. Core elevation based on extrapolation of contour lines on the bathymetric survey map and therefore is approximate.	

Sediment Coring: L34

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 19, 2011 Date Completed: July 19, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.30

Northing: 783838.1

Easting: 1986079.4

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
0	0.5/0.5	NR		0-0.5 ft: tan-brown, medium to coarse sand, fine to coarse gravel. Maximum Depth: 0.5 feet.	0-0.2 ft: no TLM odors, no visual TLM 0.2 ft: odors not recorded but likely existed, some TLM globules ~ 1/2 inch in diameter and sheen 0.25-0.5 ft: moderate to strong TLM odor, weathered TLM
1-				Notes: 1. NR - not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map. 3. Horizontal coordinates are the same as J34 though J34 was located along the river's edge and L34 was located in the river.	

Sediment Coring: L34 1/2

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.60

Northing: 783848.2 Easting: 1986138.3

Total Depth (feet): See notes Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				See notes below	
				Notes: 1. Location investigated for sole purpose of assessing horizontal extent of TLM and therefore depths were not recorded. 2. Core elevation based on bathymetric survey map.	Visual presence of TLM was noted closer to L34; other locations in vicinity of L34 1/2 did not indicate visual TLM.
-					
1-					

Sediment Coring: N34

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 109.30

Northing: 783777.5

Easting: 1985995.1

Total Depth (feet): 0.9

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0	0.9/0.9	NR		0-0.9 ft: brown to tan, medium to very coarse sand, fine to coarse gravels.	0-0.5 ft: no TLM odor, no visual TLM 0.5 -0.8 ft: odors not recorded and likely were odors, highly weathered TLM 0.8-0.9 ft: not recorded
1-				Maximum Depth: 0.9 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	

Sediment Coring: P34

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.70

Northing: 783737.1

Easting: 1985902.5

Total Depth (feet): 1.1

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1,1/1.1	NR		0-1.1 ft: tan to orange, medium to very coarse sand and fine to coarse gravels.	0-1.1 ft: no TLM odor, no visual TLM Very weathered TLM fragments noted and was not within sample matrix
				Maximum Depth: 1.1 feet. Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	
_					

Sediment Coring: L36

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.00

Northing: 783625.8

Easting: 1986214.0

Total Depth (feet): 3.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
2-	3.0/3.0	NR			0-3.0 ft: no TLM odor, no visual TLM
_				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on extrapolation of contour lines on the bathymetric survey map and therefore is approximate.	

Sediment Coring: N36

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 19, 2011 Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.80

Northing: 783605.7

Easting: 1986054.0

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.5/0.5	NR		0-0.5 ft: tan, fine to very coarse sand, gravels and cobbles.	0-0.5 ft: no TLM odor, very weathered TLM but depth and thickness were not noted.
				Maximum Depth: 0.5 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map.	
1-					

Sediment Coring: N36 1/2

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 19, 2011 Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.10

Northing: 783605.7

Easting: 1986045.6

Total Depth (feet): ~0.5

Drilling Method: Hand dug

0.2-0.5 ft: slight to moderate TLM odor, ve viscous and weathered	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
Maximum Depth: ~0.5 feet Notes: 1. Lithology was not recorded since intent of this location was to assess presence or absence of TLM. 2. Total depth refers to bottom depth of TLM noted.	0-				Bathymetric Surface	- 0-0.2 ft: no TLM odor, no visual TLM
					Notes: 1. Lithology was not recorded since intent of this location was to assess presence or absence of TLM. 2. Total depth refers to bottom depth of TLM noted.	0.2-0.5 ft: slight to moderate TLM odor, very viscous and weathered TLM, contains sand grains

Sediment Coring: P36

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 110.10

Northing: 783545.1 Easting: 1985978.2

Total Depth (feet): Not noted Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
1 —	Not noted	NR		Brown, fine to very coarse sand, trace silt and gravels.	0-1.0 ft: no TLM odor, no visual TLM
-				Notes: 1. NR- Not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map. 3. Depth was not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Sediment Coring: R36

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 19, 2011

Date Completed: July 19, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): 108.00

Northing: 783535.0 Easting: 1985877.2

Total Depth (feet): Not noted Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
1-	Not noted	NR		Tan to orange, fine to coarse sand.	0-1.0 ft: no TLM odor, no visual TLM
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. Core elevation based on bathymetric survey map. 3. Depth was not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Sediment Coring: T43

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 782835.1 Easting: 1985989.0 Total Depth (feet): 0.3

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0-				•	No recovery, TLM was not noted on core barrel
	0.0/0.3				
				Total Depth: 0.3 feet Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Sediment Coring: V43

Client: SCANA Services, Inc.

Site Location: Columbia, SC
Date Started: January 12, 2012
Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 782822.0

Easting: 1985908.0

Total Depth (feet): 0.7

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.4/0.7	0		0-0.7 ft: brown, medium to very coarse sand and fine to medium gravels Total Depth: 0.7 feet	0-0.7 ft: No TLM odor, no visual TLM
_				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be	
1-				provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 64%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: X43

Client: SCANA Services, Inc.

Site Location: Columbia, SC
Date Started: January 12, 2012
Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 782831.6

Easting: 1985825.8

Total Depth (feet): 1.5

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0-	1.1/1.5	0		0-0.8 ft. brown, medium to very coarse sand and fine to coarse gravels 0.8-1.5 ft. brown, medium to very coarse sand	- 0-1.5 ft: No TLM odor, no visual TLM
1-				Total Depth: 1.5 feet	
2-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 75%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: Z43

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 782814.2
Easting: 1985715.0
Total Depth (feet): 2.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0.2.0.#. no TIM odor, no
1-	1.6/2.0	0		0-1.1 ft: dark brown grading to brown, medium to very coarse sand and fine to coarse gravels 0-0.2 ft: roots and trace silt	0-2.0 ft: no TLM odor, no visual TLM
2-				1.1-2.0 ft: brown, medium to very coarse sand and few fine gravels	
2-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AD49

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 782228.1

Easting: 1985741.4

Total Depth (feet): 2.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-2.0 ft: No TLM odor, no
1-	1.5/2.0	0		0-0.8 ft: dark brown to brown, medium to very coarse sand and fine to medium gravels 0.8-2.0 ft: orange-brown, medium to very coarse sand, few gravels	visual TLM
				Total Depth: 2.0 feet	
-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 75%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AF49

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 782230.9 Easting: 1985645.5 Total Depth (feet): 4.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-4.0 ft: no TLM odor, no
1-		0		0-1.5 ft: dark brown to brown, medium to very coarse sand and fine to medium gravels	visual TLM
-		0	GR 10	1.5-4.0 ft: brown, medium to very coarse sand and few gravels	
2-	3.1/4.0	0			
3-					
-					
4-			200000000000000000000000000000000000000	Total Depth: 4.0 feet Notes: 1. The river was not surveyed for bathymetry below	
5-				the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 78%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: Y57

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 781624.7

Easting: 1986201.0
Total Depth (feet): 0.7

Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
Affective			Bathymetric Surface	
0.5/0.7	0		0-0.7 ft: brown grading brown-gray, fine to very coarse sand and some fine to very coarse gravels 0-0.1 ft: silt and vegetative material	0-0.7 ft: no TLM odor, no visual TLM
			Total Depth: 0.7 feet	
_			Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	
		0.5/0.7 0	0.5/0.7	Depth: 0.7 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.

Sediment Coring: AA57

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 781590.2 Easting: 1986104.8

Total Depth (feet): 0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
					Core barrel could not be advanced and therefore no recovery.TLM was not noted on core barrel
	0.0/0.0				
1-				Total Depth: 0 feet Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Sediment Coring: AC57

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 781554.8

Easting: 1986011.2

Total Depth (feet): 0.2

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
U					No recovery, TLM was not noted on core barrel
	0.0/0.2				
				Total Depth: 0.2 feet Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Sediment Coring: AE57

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 781503.1 Easting: 1985894.6 Total Depth (feet): 1.3

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	1.0/1.3	0		0-1.3 ft: brown, medium to very coarse sand and few fine gravels 0.6 ft: vegetative material	0-1.3 ft: no TLM odor, no visual TLM
1-				Total Depth: 1.3 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 77 %) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AJ57

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 781428.3 Easting: 1985709.8 Total Depth (feet): 2.1

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0-2.1 ft: no TLM odor, no
		0		0-0.5 ft: brown, medium to coarse sand with trace fine gravels	visual TLM
1-	1.6/2.1	0		0.5-2.1 ft: orange-brown, medium to coarse sand with trace to some fine to medium gravels	
2-				Tatal Dorathy 2.4 foot	
3-				Total Depth: 2.1 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 76%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AL57

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 781398.2 Easting: 1985610.6 Total Depth (feet): 1.7

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0.476
				0-1.7 ft: brown, medium to very coarse sand	01.7 ft: no TLM odor, no visual TLM
				0-0.4 ft: trace fine to medium gravels noted in this interval	
				1.4-1.7 ft: trace fine to medium gravels noted in this interval	
	1.2/1.7	0			
	1.2/1./				
1-					
-					
				Total Depth: 1.7 feet	
2-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 71 %) and vertical extent may or may not be reflective of depths and intervals noted.	

Sediment Coring: AE64

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: January 11, 2012

Date Completed: January 11, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780800.0 Easting: 1986201.4 Total Depth (feet): 1.1

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1-	0.85/1.1	0		0-1.1 ft: tan gray, medium to very coarse sand and fine to medium gravels, trace shells at top of interval	0-1.1 ft: faint odor (undefined) that did not smell like TLM or of river, no visual TLM
			-	Total Depth: 1.1 feet	
				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 77%) and vertical extent of TLM may or may not be reflective of depth and intervals noted.	

Sediment Coring: AG64

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780778.5 Easting: 1986106.7 Total Depth (feet): 1.2

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.0/1.2	0		O-1.2 ft: brown-gray, medium to very coarse sand, trace fine gravels - gravels more prevalent towards 1.2 feet	0-1.2 ft: no TLM odor, no visual TLM. Noted two TLM fragments at approximately 1.1 feet with one fragment ~1/8" to 1/4" in diameter and the second fragment ~3/4" to 1" in diameter. The larger fragment had a slight TLM odor.
-				Total Depth: 1.2 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 83%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: Al64

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780871.9

Easting: 1985951.5

Total Depth (feet): 2.6

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0			************************	Bathymetric Surface	0-2.6 ft: no TLM odor, no
		0.1		0-2.3 ft: brown, medium to very coarse sand with trace to some fine gravels, a few shells	visual TLM
1-	2.0/2.6	0.1			1.3 ft: potential TLM fragment
2-			ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	2.3-2.6 ft: brown-gray, medium to very coarse sand, few fine gravels	
3-				Total Depth: 2.6 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 77%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AK64

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780845.6 Easting: 1985868.1 Total Depth (feet): 1.7

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0	A Marian Marian Control of the Contr			Bathymetric Surface 0-0.6 ft: brown, medium to coarse sand, some silt,	0-1.7 ft: no TLM odor, no
-				trace mica, vegetative material	visual TLM 0.1 ft: one clinker
_			\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1} \) \(\fr	0.6-1.7 ft: brown, medium to very coarse sand and some fine gravels	
1-	1.4/1.7	0			
_				Total Depth: 1.7 feet	
2-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 82%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AM64

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 12, 2012

Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780719.9
Easting: 1985810.3
Total Depth (feet): 1.9

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	0.4.0.6 TIM adam
1-	1.4/1.9	0		0-1.9 ft: dark brown, medium to very coarse sand and fine to medium gravels	0-1.9 ft: no TLM odor, no visual TLM
2				Total Depth: 1.9 feet	
2-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 74%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AO64

Client: SCANA Services, Inc.

Site Location: Columbia, SC
Date Started: January 12, 2012
Date Completed: January 12, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780701.8

Easting: 1985711.3

Total Depth (feet): 2.1

0-2.1 ft. no TLM ode visual TLM 1.6/2.1 0 1.8-2.1 ft. light gray, medium to coarse sand, trace very coarse sand and few gravels 1.8-2.1 ft. light gray, medium to coarse sand, trace very coarse sand and few gravels Total Depth: 2.1 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 76%) and	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
1.8-2.1 ft. light gray, medium to coarse gravels at 0 to 0.5 feet 1.8-2.1 ft. light gray, medium to coarse sand, trace very coarse sand and few gravels Total Depth: 2.1 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 76%) and	0				Bathymetric Surface	0.0.4 ft. no TI Moder no
Total Depth: 2.1 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 76%) and	-	1.6/2.1	0		sand and fine to medium gravels, coarser gravels at 0 to 0.5 feet	visual TLM
Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 76%) and	2-				very coarse sand and few gravels	
depths and intervals noted.	-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 76%) and vertical extent of TLM may or may not be reflective of	

Sediment Coring: AK70

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: January 10, 2012 Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780252.1 Easting: 1986054.8 Total Depth (feet): 0.6

		T			
Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0-	0.5/0.6	0		0-0.6 ft: brown, medium to very coarse sand and fine to coarse gravels 0.4 to 0.6 ft: coarse to very coarse gravels noted in this interval	0-0.6 ft: no TLM odor, no visual TLM
1-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 83%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AM70

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780199.0

Easting: 1985974.1

Total Depth (feet): 3.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	0.2.0 ft: no TI Miodor, no
1-	2.0/3.0	0		0-2.7 ft: brown, medium to very coarse sand with some fine to medium gravels	0-3.0 ft: no TLM odor, no visual TLM
3-4-				2.7-3.0 ft: brown, medium to very coarse sand, trace fine gravels Total Depth: 3.0 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 67%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AO70

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780141.4 Easting: 1985892.0 Total Depth (feet): 1.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	0.75/1.0	0.1		0-1.0 ft: brown, medium to very coarse sand and fine to coarse gravels 0-0.2 ft: gravel is more prevalent in this interval 0.9-1.0 ft: trace gravel noted in this interval	0-1.0 ft: no TLM odor, no visual TLM
				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 75%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AQ70

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 780088.1

Easting: 1985810.6

Total Depth (feet): 0.75

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
	0.6/0.75	0		0-0.75 ft: brown, medium to very coarse sand and fine to coarse gravels 0-0.25 ft: wood fragments	0-0.75 ft: no TLM odor, no visual TLM
				Total Depth: 0.75 feet	
1-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (approximately 80%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AG80

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 779455.1

Easting: 1986577.9

Total Depth (feet): 4.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0	1			Bathymetric Surface	0-4.0 ft: no TLM odor, no
1— 2— 3—	1.4/4.0	0		0-3.4 ft: brown-gray, medium to very coarse sand with some fine gravels, trace medium gravels	visual TLM
4				3.4-4.0 ft: brown-gray, fine to medium sand, trace silt	
5-				Total Depth: 4.0 feet Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (35%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: Al80

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 779393.9 Easting: 1986501.6 Total Depth (feet): 1.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
_				0-1.0 ft: brown, medium to coarse sand 0-0.2 ft: fine to coarse gravels noted in this interval	0-1.0 ft: no TLM odor, no visual TLM
	0.6/1.0	0			
1-				Total Depth: 1.0 foot Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (60%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AK80

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 779355.5 Easting: 1986418.9

Total Depth (feet): 2.5
Drilling Method: Vibra-Core

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			, , , , , , , , , , , , , , , , , , ,	Bathymetric Surface	0-2.5 ft: no TLM odor, no
1-	1.6/2.5	0		0-1.4 ft: brown, medium to very coarse sand, trace to some fine gravels, shell fragments 1.4-2.0 ft: tan-brown, medium to coarse sand, trace very coarse sand	visual TLM
2-			y 0 y 0 y 0 y 0 y 0 y 0 y 0 y 0 y 0 y 0	2.0-2.5 ft: tan-brown, medium to coarse sand and	
-				fine to medium gravels	
-				Total Depth: 2.5 feet	
3-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (64%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AM80

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 779272.2 Easting: 1986338.3

Total Depth (feet): 3.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	0.000 a. TIM adam as
1-	2.1/3.0	0		0-1.5 ft: brown, medium to very coarse sand, and fine to medium gravels 1.5-3.0 ft: brown, medium to very coarse sand, trace gravels	0-3.0 ft: no TLM odor, no visual TLM
3-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For lithologies and TLM observations, depths adjusted based on recovery. 3. Recovery was limited (70%) and vertical extent of TLM may or may not be reflective of depths and intervals noted.	

Sediment Coring: AO80

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athen Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 779210.4

Easting: 1986260.0

Total Depth (feet): 0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
	And the second s			Bathymetric Surface	
1-	0.0/0.0				No recovery. TLM was not noted on core barrel
-				Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Sediment Coring: AD87.5

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 778814.1 Easting: 1986967.7 Total Depth (feet): 1.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
	0.0/1.0				No recovery, TLM was not noted on the core barrel
-				Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Sediment Coring: AF87.5

Client: SCANA Services, Inc. Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 778749.0 Easting: 1986900.8 Total Depth (feet): 1.0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
_					No recovery, TLM was not noted on core barrel
	0.0/1.0				
-				Total Depth: 1.0 foot Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	-

Sediment Coring: AH87.5

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies, Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 778678.1 Easting: 1986822.1 Total Depth (feet): 1.6

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	No recovery TI M was
					No recovery, TLM was not noted on core barrel
-	0.0/1.6				
1-					
-					
-					
				Total Depth: 1.0 foot	
_				Note: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	
2-					

Sediment Coring: AJ87.5

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: January 10, 2012

Date Completed: January 10, 2012

Logged by: M. Ferlin

Drilled by: Athena Technologies Inc.

Bathymetric Elevation (feet, NAVD '88): note #1

Northing: 778610.8 Easting: 1986749.4 Total Depth (feet): 0

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
	1			Bathymetric Surface	
0-					No recovery, TLM was not noted on core barrel
_	0.0/0.0		·		
1-				Total Depth: 0 feet	
-				Notes: 1. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 2. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782645.7

Easting: 1985590.5

Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	-
1 —	1.5/1.5	NR		0-1.5 ft: tan, medium to coarse sand with trace of fine gravel.	0-1.5 ft: no TLM odor, no visual TLM
				Maximum Depth: 1.5 feet	
-				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Client: SCANA Services, Inc. Site Location: Columbia, SC

Date Started: July 21, 2011 and August 10, 2011

Date Completed: July 21, 2011 and August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 781877.6 Easting: 1985716.4

Total Depth (feet): Not noted Drilling Method: Hand dug

	, ,				
Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Notes: 1. The river was not surveyed for bathmetry below the 37 line and therefore an elevation cannot be provided. 2. Intended to provide TLM observation findings at this location. 3. Noted above water and did not determine thickness.	Discontinuous solidified TLM approximately 10 foot long and 3 foot wide, slight to moderate TLM odor.
_					
1-					

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 781503.6

Easting: 1985707.8

Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.5/1.5	NR		0-1.5 ft: medium to very coarse sand, fine to very coarse gravels.	0-1.5 ft: no TLM odor, no visual TLM
-				Maximum Depth: 1.5 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID.	
2-				2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	
	L				

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 781362.1

Easting: 1985632.0

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			200000000000000000000000000000000000000	Bathymetric Surface	
	1.0/1.0	NR		0-0.1 ft: gravels and cobbles. 0.1-1.0 ft: brown, medium to coarse sand, and very fine gravels.	0-1.0 ft: no TLM odor, no visual TLM
1 -				Maximum Depth: 1.0 foot Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011 Date Completed: August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780886.9 Easting: 1986238.0 Total Depth (feet): 2.5 Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	:
1-	2.5/2.5	NR		0-2.5 ft: dark gray, silt and very fine sand, micaceous, some vegetative material.	0-2.5 ft: no TLM odor, no
2-					visual TLM
				Maximum Depth: 2.5 feet	
3-				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780897.0 Easting: 1986120.1

Total Depth (feet): Not noted Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
1	Not noted	NR		Brown, fine to coarse sand, trace of fine gravels gray at bottom.	No TLM odor, no visual TLM, one clinker noted
				Maximum Depth: Not noted Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Depth is not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780897.1 Easting: 1986002.3

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	NR		0-0.5 ft: brown to gray, medium to coarse sand, trace to some fine to coarse gravels.	0-0.5 ft: no TLM odor, no visual TLM, noted one each of a clinker, cinder, and coal fragment
1-				Maximum Depth: 0.5 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011
Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780917.3

Easting: 1985884.4
Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Bathymetric Surface	
1	1.0/1.0	NR		0-1.0 ft: brown, fine to very coarse sand, fine to coarse gravels.	0-1.0 ft: no TLM odor, no visual TLM, one asphaltic like fragment noted
-				Maximum Depth: 1.0 foot Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780877.0

Easting: 1985699.1

Total Depth (feet): 0.75

Drilling Method: Hand dug

Maximum Depth: 0.75 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID.	Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0.25-0.75 ft: brown, medium to very coarse sand, and fine to very coarse gravels. 0.75/0.75 NR 0-0.75 ft: no TLM odd visual TLM Maximum Depth: 0.75 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID.	0				Bathymetric Surface	
Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID.		0.75/0.75	NR		0.25-0.75 ft: brown, medium to very coarse sand,	0-0.75 ft: no TLM odor, no visual TLM
Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID.				\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Maximum Depth: 0.75 feet	-
the 37 line and therefore an elevation cannot be provided.	_				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780846.7

Easting: 1985614.9

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	1.0/1.0	NR		0-1.0 ft: dark gray, silt and very fine sand, micaceous, plant and vegetative material.	0.0.5 ft: no TLM odor, no visual TLM 0.5-1.0 ft: very faint to faint TLM to diesel like odor ("sweet" like odor), no visual TLM
1-				Maximum depth: 1.0 foot	
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannnot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC
Date Started: August 10, 2011
Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 779977.4

Easting: 1985774.5

Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	1.5/1.5	NR		0-0.4 ft: gray, silt to very fine sand, micaceous, vegetative matter. 0.4-1.5 ft: gray, silt, medium to coarse sand and very fine to medium gravels, glass shard, decaying matter.	0-0.4 ft: no TLM odor, no visual TLM 0.4-1.5 ft: no TLM odor, no visual TLM
				Maximum Depth: 1.5 feet	
2-				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannnot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780219.8 Easting: 1986204.0

Total Depth (feet): Not noted Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	-
1-	Not noted	NR		Gray, silt and very fine sand, micaceous, vegetative material.	0-1.0 ft: no TLM odor, no visual TLM
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Depth is not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780624.2 Easting: 1986052.7

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
	0.5/0.5	NR		0-0.5 ft: brown, medium to very coarse sand, fine gravels.	0-0.5 ft: no TLM odor, no visual TLM
				Maximum Depth: 0.5 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780715.1

Easting: 1986120.1

Total Depth (feet): 0.75

Drilling Method: Hand dug

Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
			Bathymetric Surface	
0.75/0.75	NR		0-0.75 ft: brown to gray, fine to coarse sand.	0-0.75 ft: no TLM odor, no visual TLM
			Maximum Depth: 0.75 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed below the 37 line and therefore an elevation cannnot be provided.	
				Notes: 1. NR - Not recorded since wading in water and

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 780735.4 Easting: 1986002.2

Total Depth (feet): Not noted Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1	Not noted	NR		Brown-orange, fine to coarse sand, trace gravels.	No TLM odor, no visual TLM. Also, brick found with unknown black coating.
				Maximum Depth: Not noted Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Depth was not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 781604.5 Easting: 1986095.2

Total Depth (feet): Not noted Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-	Not noted	NR		Gray, silt, fine to coarse sand and fine gravels, vegetative matter, mica.	No TLM odor, no visual TLM
_				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Depth was not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782120.0 Easting: 1986061.8

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			***************************************	Bathymetric Surface	
1-	Not noted	NR		Brown-orange, fine to coarse sand.	No TLM odor, no visual TLM
_				Maximum Depth: Not noted Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Depth was not noted. 4. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011 Date Completed: August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782170.5

Easting: 1986053.4

Total Depth (feet): 1.0

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-	1.0/1.0	NR		Bathymetric Surface	Discontinuous deposition of highly weathered TLM approximately 20 feet long and 20 feet wide (width is discontinuous) and approximately 1 foot thick
1-				Maximum Depth: 1.0 feet Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782200.8 Easting: 1986070.2

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0				Bathymetric Surface	
0-		NR			Area of TLM deposition and dimensions were not recorded.
1-				Maximum Depth: Not noted Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782221.0

Easting: 1986053.4

Total Depth (feet): 0.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
					Area of TLM deposition with approximate dimensions of 30 feet long, 10 feet wide, and 0.5 feet thick.
		NR			
_				Maximum Depth: 0.5 feet	
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location.	
1-					

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782251.4

Easting: 1986036.6

Total Depth (feet): 0.5

Drilling Method:	Hand dug
------------------	----------

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
					Area of TLM deposition with approximate dimensions of 15 feet long, 5 feet wide, and 0.5 feet thick
		NR			
_				Maximum Depth: 0.5 feet	
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Intended to provided TLM observation findings at this location.	
1-					`

Client: SCANA Services, Inc.

Site Location: Columbia, SC

Date Started: August 10, 2011

Date Completed: August 10, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782291.8
Easting: 1986045.0
Total Depth (feet): 1.5

Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	Area of TI M deposition
		NR			Area of TLM deposition with approximate dimensions of 30 feet long, 8 feet wide, and 1.5 feet thick
1-					
_					
				Maximum Depth: 1.5 feet	
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location.	
2-			and the second s		

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: August 10, 2011 Date Completed: August 10, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782483.8 Easting: 1986062.0 Total Depth (feet): 0.2 Drilling Method: Hand dug

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
		NR			Area of TLM deposition with approximate dimensions of 8 feet long, 3 feet wide, and 0.2 feet thick
-					
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011

Date Completed: July 21, 2011

Logged by: M. Ferlin

Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 783353.1 Easting: 1985784.5

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
1-		NR			No TLM odor, no visual TLM
				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location. 4. Depth was not noted. 5. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011

Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 782362.6 Easting: 1985935.5

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-			AA00	Bathymetric Surface	
					No TLM odor, no visual TLM, TLM fragments (size and number not noted)
_		NR			
_					
1-				Notes:	
_				 NR - Not recorded since wading in water and moisture would negatively impact PID. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. Intended to provide TLM observation findings at this location. Depth was not noted. For illustrative purposes, a one-foot depth is shown. 	
			4		

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011

Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 781079.0 Easting: 1986010.8

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
0-				Bathymetric Surface	
		NR			No TLM odor, no visual TLM
1-				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location. 4. Depth was not noted. 5. For illustrative purposes, a one-foot depth is shown.	

Client: SCANA Services, Inc.

Site Location: Columbia, SC Date Started: July 21, 2011

Date Completed: July 21, 2011

Logged by: M. Ferlin
Drilled by: Not Applicable

Bathymetric Elevation (feet, NAVD '88): note #2

Northing: 781958.2 Easting: 1986120.6

Depth (feet)	Recovery (feet/feet)	PID Screen (ppm)	Symbol	Lithologic Description	Observations
				Bathymetric Surface	
0-				bautymetric Surface	No TLM odor, no visual TLM, several TLM fragments at a depth of 0.3 feet
1		NR			
_				Notes: 1. NR - Not recorded since wading in water and moisture would negatively impact PID. 2. The river was not surveyed for bathymetry below the 37 line and therefore an elevation cannot be provided. 3. Intended to provide TLM observation findings at this location. 4. Depth was not noted. 5. For illustrative purposes, a one-foot depth is shown.	

APPENDIX C

MANIFESTS

1 1101111111111111111111111111111111111	1. Generator ID Number								
NON-HAZARDOUS WASTE MANIFEST	1. Generator io Number		2. Page 1 of 3. Em		3-057-91	. 1	racking Nu		
5. Generator's Name and Ma		SCAMA		ator's Site Addres		nan mailing addi	ress)		
	olo !	MTR 1600 Commerc					eeg.		
The second section of the section of	k de skillere, districte, describilità	Trafford, PA 1508					ree fliv nbiz, S		
Generator's Phone: 6. Transporter 1 Company N	(412) 828-9650					U.S. EPA ID		<u>V</u>	
o. Hansporter i Company N		and a second				U.S. EPA ID		Mile and the second	min man -
7. Transporter 2 Company N	ame AGU EN	vironme <u>ntal Serv</u>	nces (SC). LL	L.		U.S. EPA ID		<u> </u>	331
8. Designated Facility Name	and Site Address		VLSRG			U.S. EPA ID	Number		
			vi.arca 335 South Mair						
		į	Wandin, S		•	1 .		the same proper has a	
Facility's Phone:	1-502-2013	<u>.</u>		10. Cont	ainers	1	1	SCR0007624	163
9. Waste Shipping Na				No.	Type	11. Total Quantity	12. Unit Wt./Vol.		
1.		T. J.		110	.,,,,		1		
146	DN+AZARDOUS	NON-REGIE ATE	È MATERIAI	-					
		iment Profile\$137		2	DM	-			
2.									
					1.				
3.						M	<u> </u>		
J.									
								wall an	
		,							
4.					. 1		1	Lance Control of the	
4.									
	ions and Additional Information	CINTACT ARG E	Sengagi gryssensens sosené mi	San	845 0	57.&47A	857463	én Ta as	444
13. Special Handling Instruct	EMERGENCY C	CONTACT: ASD E							***************************************
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec	EMERGENCY C	declare that the contents of this	s consignment are fully a	nd accurately des	scribed above b	by the proper shi			packaged,
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's Offeror's Printed/I	EMERGENCY C R'S CERTIFICATION: I hereby I, and are in all respects in proper	declare that the contents of this	s consignment are fully a	nd accurately des	scribed above b	by the proper shi		e, and are classified, p	
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generators/Offeror's Printed/1	EMERGENCY C R'S CERTIFICATION: I hereby a land are in all respects in property of Name	declare that the contents of this	s consignment are fully a ding to applicable interna Signature	nd accurately destronal and govern	scribed above to	by the proper shi		e, and are classified, pa	
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/offeror's Printed/7 15. International Shipments	EMERGENCY C R'S CERTIFICATION: I hereby on the company of the com	declare that the contents of this	s consignment are fully a	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi		e, and are classified, p	
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardet Generators/offeror's Printed/1 25. International Shipments Transporter Signature (for exp	EMERGENCY C R'S CERTIFICATION: I hereby on the company of the com	declare that the contents of this	s consignment are fully a ding to applicable interna Signature	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi		e, and are classified, p	
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/offeror's Printed/15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm	EMERGENCY C R'S CERTIFICATION: I hereby on the company of the com	declare that the contents of this	s consignment are fully a ding to applicable interna Signature	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi		o, and are classified, p. Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/Offefor's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N	R'S CERTIFICATION: I hereby of and are in all respects in property bed Name POPP Import to U.S. orts only): ent of Receipt of Materials larme	declare that the contents of this	s consignment are fully adding to applicable internal Signature Export from U.S. Signature	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi		Month D	Day Y
14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/Total Shipments Transporter Signature (for exp 16. Transporter 1 Printed/Typed N	R'S CERTIFICATION: I hereby of and are in all respects in property bed Name POPP Import to U.S. orts only): ent of Receipt of Materials larme	declare that the contents of this	s consignment are fully a ding to applicable interna Signature Export from U.S.	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi		Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N	R'S CERTIFICATION: I hereby of and are in all respects in property bed Name POPP Import to U.S. orts only): ent of Receipt of Materials larme	declare that the contents of this	s consignment are fully adding to applicable internal Signature Export from U.S. Signature	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi		Month D Month D Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO narked and labeled/placarded Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N 7. Discrepancy	R'S CERTIFICATION: I hereby it, and are in all respects in property ded Narrie Import to U.S. orts only): ent of Receipt of Materials aame	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature	Port of er Date leav	scribed above to amental regulation	by the proper shi	pping name	Month D Month D Month D Month D Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO narked and labeled/placarded Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N 7. Discrepancy	R'S CERTIFICATION: I hereby of the design of	declare that the contents of this	s consignment are fully adding to applicable internal Signature Export from U.S. Signature	nd accurately destronal and govern	scribed above to amental regulation	by the proper shi	pping name	Month D Month D Month D Month D Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N Transporter 3 Printed/Typed N	R'S CERTIFICATION: I hereby it, and are in all respects in property ded Narrie Import to U.S. orts only): ent of Receipt of Materials aame	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N 17. Discrepancy 17. Discrepancy Indication Sp	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/T 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N 17. Discrepancy 17. Discrepancy Indication Sp	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Month D	Day Y
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/offeror's Printed/ 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N 17. Discrepancy 17a. Discrepancy Indication Sp 17b. Alternate Facility (or Generations) 17b. Alternate Facility (or Generations)	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day You
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/offeror's Printed/ 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N 17. Discrepancy 17a. Discrepancy Indication Sp 17b. Alternate Facility (or Generacility's Phone:	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/offeror's Printed/ 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N 17. Discrepancy 17a. Discrepancy Indication Sp 17b. Alternate Facility (or Generacility's Phone:	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/Offeror's Printed/	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/offeror's Printed/ 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N 17. Discrepancy 17a. Discrepancy Indication Sp 17b. Alternate Facility (or Generacility's Phone:	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport accord	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/1 15. International Shipments Transporter Signature (for exp 16. Transporter Signature (for exp 16. Transporter 1 Printed/Typed N 17. Discrepancy 17. Discr	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport according to the	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature Mar	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placarded Generator's/Offeror's Printed/1 15. International Shipments Transporter Signature (for exp 16. Transporter Signature (for exp 16. Transporter 1 Printed/Typed N 17. Discrepancy 17. Discr	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport according to the	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Signature Mar	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye
13. Special Handling Instruct 14. GENERATOR'S/OFFERO marked and labeled/placardec Generator's/offeror's Printed/1 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N 17. Discrepancy 17a. Discrepancy Indication Sp 17b. Alternate Facility (or Generative Phone: 17c. Signature of Alternate Facility Sphone: 17c. Signature of Alternate Facility Owner	R'S CERTIFICATION: I hereby on the property of	declare that the contents of this er condition for transport according to the	s consignment are fully adding to applicable internal Signature Export from U.S. Signature Mar	Port of er Date leav	scribed above to amental regular to try/exit	by the proper shi	pping name	Month D Month D Month D Month D Full F	Day Ye

A	1	NON-HAZARDOUS WASTF MANIFEST	1. Generator ID Numb	er	2. Pa	ge 1 of 3. Eme				Fracking No	umber 3 2 9
		Generator's Name and Mail	•		SCANA			03-957-9 ess (if different	than mailing add	ress)	
			•		10 Commerce Cir ord, PA 15085	cle				CE&G aree Ris	ver
	-		(412) 829-9650	118111	randa a a anderena			****	Colu	mbia, S	
	6.7	Fransporter 1 Company Nar							U.S. EPA ID	Number	
	7.1	Fransporter 2 Company Nar	A&D ne	Environn	ental Services	(SC), LL			U.S. EPA ID	Number	SCD987598331
	8. [Designated Facility Name at	nd Site Address	***************************************		VLS/RS			U.S. EPA ID	Number	
						v Laina iouth Main Mauldin, S			1		
	Fac	cility's Phone:	-962-9953			meulum, a		ntainers	dd Talal		SCR000762468
		9. Waste Shipping Nam					No.	Type	11. Total Quantity	12. Unit Wt./Vol.	
GENERATOR -		1. NC			REGULATED M	ATERIAL		DM	400	lbs llg	
SEN CEN		1	N-HAZARDO	US NON-F	REGULATED M		The second secon	DM	400	105/	
		3. Purge	:, Well Devel c	pment & I	Decon Water P i	ofile#137	77			1.25	
		4.									
	13.	Special Handling Instruction	ns and Additional Inform	ation							
											•
			EMERGENO	Y CONTA	CT: A&D Envir	onmental	Service	es 803-6	957-9175	JOE	3 # 15703
		GENERATOR'S/OFFEROF								ipping name	e, and are classified, packaged,
	L	nerator's/Offeror's Printed/Ty	/ped Name	- A		Signature		- Per	ations.		Month Day Year
V		International Shipments	cole /ton	- 60 b	Apple	100	Solve	70	Look	- T-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1	6 29 11
I,L		international Shipments hsporter Signature (for expo	Import to U.S. orts only):		L Expor	t from U.S.		entry/exit: aving U.S.:			
1	16.	Transporter Acknowledgme	nt of Receipt of Materials			Signature		×	Λ		Morett D. V
PORT	i	nsporter 1 Printed/Typed Na				Signature	Ū. O. A	Ali,	L		Month Day Year
TRANSPORTER	Trar	nsporter 2 Printed/Typed Na	ume			Signature					Month Day Year
F	17. 1	Discrepancy									
$ \uparrow$. Discrepancy Indication Sp	ace Quantity		Туре		Residue		Partial Rej	ection	Full Rejection
						Mon	fest Reference	Number			
<u>_</u>	17b.	. Alternate Facility (or Gene	rator)			IVIALII	real reference	- 14UIIIDEI.	U.S. EPA ID	Number	
ACIL	Ecc:	ility's Phone:									
DESIGNATED FACILITY		Signature of Alternate Fac	lity (or Generator)								Month Day Year
SIGN											
DE											
		Designated Facility Owner of	or Operator: Certification	of receipt of materi	als covered by the manifes		in Item 17a		9		Month Day Vo-
¥	Print	ted/Typeor Name	11/6	lu		Signature	19	+1	7		Month Day Year
169	-BI	C-O 6 10498 (Rev.	9/09)				C. Parker	\J _b	ESIGNATE	ED FAC	ILITY TO GENERATOR

APPENDIX D

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS BY PHASES

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS: PRELIMINARY PHASE

Congaree River Sediments Columbia, South Carolina

General Area					Fan and San	d Bar	
Source	SCE&G	SCE&G	SCDHEC	SCE&G	SCDHEC	SCE&G	SCDHEC
(Line) Location of Sample	S-1	S-1 Dup	S-1	S-2	S-2	S-3	S-3
Date Sampled	6/28/2010	6/28/2010	6/28/2010	6/28/2010	6/28/2010	6/28/2010	6/28/2010
Sample Interval (feet brb) ⁽¹⁾	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Parameters							
Volatiles (mg/Kg)							
1,2,4-Trimethylbenzene	90.2 B ⁽³⁾	52 B	NA ⁽⁵⁾	4.31 B	NA	49.9 B	NA
1,3,5-Trimethylbenzene	28.8 B	16.6 B	NA	1.84 B	NA	16 B	NA
Benzene	43.9 B	22.1 B	16	1.22 B	0.97	17 B	8
Ethylbenzene	214 B	124 B	150	6.64 B	10	113 B	90
Isopropylbenzene	22.2	12.8	14	1.25	2.2	12.5	8
p-Isopropyltoluene	11.7	6.78	NA	0.965	NA	6.67	NA
Styrene	11.7 B	4.04 B	5.7 U ⁽⁶⁾	0.807 B	0.35 U	9.44 B	3.2 U
Toluene	6.43 B	1.47 B	5.7 U	0.555 B	0.35 U	4.33 B	3.2 U
Total Xylenes	124.3 B	74.5 B	79	2.773	4.1	26.42	19
Semi-Volatiles (mg/Kg)							
1-Methylnaphthalene	1,170 E ⁽⁴⁾ B	666 B	NA	134 B	NA	792 B	NA
2-Methylnaphthalene	1,870 EB	1,070 EB	1,700	231 B	400	1,320 EB	1,200
Acenaphthene	644	371	730	194	380	642	740
Acenaphthylene	146	72	170	10.5	44 U	85.8	100
Anthracene	385	222	450	142	300	355	430
Benz(a)anthracene	270	154	340	40.2	130	207	290
Benzo(a)pyrene	320 B	179 B	380	60 B	130	232 B	310
Benzo(b)fluoranthene	123 B	70.9 B	220	29.1 B	110	92.3 B	180
Benzo(g,h,i)perylene	159 B	89.5 B	140 U	27.1 B	47	115 B	110
Benzo(j/k)fluoranthene ⁽⁷⁾	153 B	84.8 B	140 U	38 B	44 U	117 B	94
Biphenyl	302 B	172 B	300	33.3 B	64	209 B	220
Chrysene	287	163	340	54.1	110	216	280
Dibenz(a,h)anthracene	47	26.1	140 U	7.8	44 U	33	82 U
Fluoranthene	417	244	530	145	320	350	480
Fluorene	405	229	490	98.8	220	336	420
Indeno(1,2,3-cd)pyrene	116	65.1	140 U	23.6	44 U	84.6	82 U
Naphthalene	3,710 EB	2,140 EB	3,100	291 B	470	2,240 EB	2,000
Phenanthrene	1,510 E	869	1,600	365	710	1,250 E	1,400
Pyrene	737 B	432 B	900	178 B	380	607 B	800
Totals (mg/Kg) ⁽⁹⁾							
Total BTEX	389	222	245	11.2	15.1	160.8	117.0
Total PAH ⁽¹⁰⁾	9,429	5,411	9,250	1,704	3,307	6,963	7,634

- (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- (2) Depth of sample is not known
- (3) B Analyte detected in the blank.
- (4) E Estimate, result detected above calibration range.
- (5) NA Not analyzed
- (6) U Indicates that the constituent was not detected at the reported detection limit.
- (7) Delineation samples were analyzed for benzo(k)fluoranthene only.
- (8) J Indicates an estimated value.
- (9) Total BTEX and total PAH includes only detected results and PAHs are those analyzed during the delineation phases.
- (10) Includes only those PAH compounds comprising the semi-volatiles.

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS - PHASE I

Congaree River Sediments Columbia, South Carolina

Area	Froi	From Gervais Street Bridge to Boulder Field					nd Bar to Nea		
Line Location of Sample		1 Line		2 Line	3 Line	5 Line	8 Line	11 Line	14 Line
Sample Identification	I1	K 1	M1	02	L3	P5	08	011	014
Date Sampled	10/6/2010	10/6/2010	10/6/2010	10/6/2010	10/7/2010	10/4/2010	10/04/2010	10/4/2010	10/5/2010
Sample Interval (feet brb) ⁽¹⁾	0 - 0.5	0 - 0.25	0 - 1.0	0 - 0.5	0 - 0.25	0 - 1.1	0 - 1.1	0 - 6	0 - 0.7
Parameters									
Volatiles (mg/Kg)									
Benzene	0.005 U ⁽³⁾	0.005 U	0.005 U	0.0046 U	0.0048 U	0.0054 U	0.0049 U	0.0052 U	0.0048 U
Ethylbenzene	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U	0.0054 U	0.0049 U	0.0052 U	0.0055
Toluene	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U	0.0054 U	0.0049 U	0.0052 U	0.0048 U
Total Xylenes	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U	0.0054 U	0.0049 U	0.0052 U	0.0057
Semi-Volatiles (mg/Kg)									
Acenaphthene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Acenaphthylene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Anthracene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Benzo(a)anthracene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Benzo(a)pyrene	0.41 U	0.39 U	0.41 U	0.37 U	0.91	0.36 U	0.35 U	0.36 U	0.35 U
Benzo(b)fluoranthene	0.41 U	0.39 U	0.41 U	0.37 U	0.92	0.36 U	0.35 U	0.36 U	0.35 U
Benzo(g,h,i)perylene	0.41 U	0.39 U	0.41 U	0.37 U	0.60	0.36 U	0.35 U	0.36 U	0.35 U
Benzo(k)fluoranthene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Chrysene	0.41 U	0.39 U	0.41 U	0.37 U	0.67	0.36 U	0.35 U	0.36 U	0.35 U
Dibenz(a,h)anthracene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Fluoranthene	0.41 U	0.39 U	0.41 U	0.37 U	0.95	0.36 U	0.35 U	0.36 U	0.35 U
Fluorene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Indeno(1,2,3-cd)pyrene	0.41 U	0.39 U	0.41 U	0.37 U	0.45	0.36 U	0.35 U	0.36 U	0.35 U
Naphthalene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Phenanthrene	0.41 U	0.39 U	0.41 U	0.37 U	0.39 U	0.36 U	0.35 U	0.36 U	0.35 U
Pyrene	0.41 U	0.39 U	0.41 U	0.37 U	1.10	0.36 U	0.35 U	0.36 U	0.35 U
Totals (mg/Kg) ⁽²⁾									
Total BTEX	0.005 U	0.005 U	0.005 U	0.0046 U	0.0048 U	0.0054 U	0.0049 U	0.0052 U	0.0112
Total PAH	0.41 U	0.39 U	0.41 U	0.37 U	5.6	0.36 U	0.35 U	0.36 U	0.35 U

- 1. TLM tar like material
- 2. The laboratory reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.
- 3. (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- 4. (2) Total BTEX and total PAH includes only detected results.
- 5. (3) U Indicates the constituent was not detected at the reported detection limit.

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS - PHASE II

Congaree River Sediments Columbia, South Carolina

Area	From Sand Bar to Near the Confluence with Unnamed Tributary #2 (UT #2)							
Line Location of Sample	17 L	_ine		19 Line				
Sample Identification	017	l17	J19 K19 L19					
Date Sampled	2/23/2011	2/23/2011	2/22/2011	2/22/2011	2/22/2011			
Sample Interval (feet brb) ⁽¹⁾	0 - 1.4	0 - 2.8	0 - 2.0	0 - 0.6	0 - 0.5			
Parameters								
Volatiles (mg/Kg)								
Benzene	0.0055 U ⁽³⁾	0.0084 U	0.037	0.0052 U	0.0051 U			
Ethylbenzene	0.0055 U	0.0084 U	2.2	0.0052 U	0.0051 U			
Toluene	0.0055 U	0.0084 U	0.0081	0.0052 U	0.0051 U			
Total Xylenes	0.0055 U	0.058	0.19	0.0052 U	0.0051 U			
Semi-Volatiles (mg/Kg)								
Acenaphthene	0.37 U	59	58	0.89	0.37 U			
Acenaphthylene	0.37 U	4.7	4.5	0.41	0.37 U			
Anthracene	0.37 U	65	41	1.8	0.37 U			
Benzo(a)anthracene	0.37 U	28	29	1.9	0.37 U			
Benzo(a)pyrene	0.37 U	27	34	1.9	0.37 U			
Benzo(b)fluoranthene	0.37 U	17	18	1.4	0.37 U			
Benzo(g,h,i)perylene	0.37 U	7.4	9.5	0.65	0.37 U			
Benzo(k)fluoranthene	0.37 U	6.6	0.42 UJ ⁽⁴⁾	0.54	0.37 U			
Chrysene	0.37 U	26	34	2.1	0.37 U			
Dibenz(a,h)anthracene	0.37 U	1.8	2.4	0.42	0.37 U			
Fluoranthene	0.37 U	76	51	3.6	0.45			
Fluorene	0.37 U	37	35	0.81	0.37 U			
Indeno(1,2,3-cd)pyrene	0.37 U	6.8	7.2	0.5	0.37 U			
Naphthalene	0.37 U	0.79	82	0.34 U	0.37 U			
Phenanthrene	0.37 U	170	150	4.8	0.94			
Pyrene	0.37 U	97	92	5.8	0.75			
Totals (mg/Kg) ⁽²⁾								
Total BTEX	0.0055 U	0.058	2.4	0.0052 U	0.0051 U			
Total PAH	0.37 U	630.1	647.6	27.5	2.1			

- 1. TLM tar like material
- 2. The laboratory reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.
- 3. (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- 4. (2) Total BTEX and total PAH includes only detected results.
- 5. (3) U Indicates the consitutent was not detected at the reported detection limit.
- 6. (4) UJ Indicates that the constituent was not detected and the result was qualified as estimated due to a dilution of the sample.

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS - PHASE III

Congaree River Sediments Columbia, South Carolina

Area		South of UT #2 to South of the Blossom Street Bridge								
Line Location of Sample		20 Line			24 Line 30 Line			36 Line		
Sample Identification	120	K20	M20	H24	L24	130	L30	N36	N36.5	P36
Date Sampled	7/21/2011	7/21/2011	7/21/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/19/2011	7/19/2011	7/19/11
Sample Interval (feet brb) ⁽¹⁾	0 - 0.6	0 - 0.7	0 - 0.8	0 - 0.7	0 - 0.5	0 - 1.0	0 - 0.7	0 - 0.5	0 - 0.5	0 - 0.5
Parameters										
Volatiles (mg/Kg)										
Benzene	0.005 U ⁽³⁾	0.005 U	0.005 U	0.005 U	0.009	0.006 U	0.005 U	0.005 U	0.067 J	0.004 U
Ethylbenzene	0.005 U	0.005 U	0.005 U	0.005 U	0.062	0.006 U	0.005 U	0.005 U	4.7	0.004 U
Toluene	0.005 U	0.005 U	0.005 U	0.005 U	0.009	0.006 U	0.005 U	0.005 U	0.19 J	0.004 U
Total Xylenes	0.005 U	0.005 U	0.005 U	0.005 U	0.026	0.006 U	0.005 U	0.005 U	1.7	0.004 U
Semi-Volatiles (mg/Kg)										
Acenaphthene	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	3.10	660	0.38 U
Acenaphthylene	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.94 J ⁽⁴⁾	1.6 UJ	0.38 U
Anthracene	0.38 U	0.40 U	0.39 U	0.41 U	0.43	0.47 U	0.36 U	6.20	460	0.38 U
Benzo(a)anthracene	0.39	0.83	0.39 U	0.57	1.10	0.47	0.36 U	7.70	370	0.38 U
Benzo(a)pyrene	0.38 U	0.92	0.39 U	0.71	1.30	0.59	0.36 U	8.20	390	0.38 U
Benzo(b)fluoranthene	0.63	0.74	0.39 U	0.92	1.30	0.85	0.36 U	7.90	320	0.38 U
Benzo(g,h,i)perylene	0.38 U	0.40 U	0.39 U	0.41 U	0.61	0.47 U	0.36 U	3.20	150	0.38 U
Benzo(k)fluoranthene	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.40 UJ ⁽⁵⁾	3.4 UJ	0.38 U
Chrysene	0.42	0.77	0.39 U	0.72	1.30	0.64	0.36 U	8.60	360	0.38 U
Dibenz(a,h)anthracene	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	0.40 UJ	33 J	0.38 U
Fluoranthene	0.77	1.20	0.39 U	1.00	1.60	0.90	0.36 U	13.00	590	0.38 U
Fluorene	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.36 U	3.70	450	0.38 U
Indeno(1,2,3-cd)pyrene	0.38 U	0.40 U	0.39 U	0.41 U	0.46	0.47 U	0.36 U	2.50	97	0.38 U
Naphthalene	0.38 U	0.40 U	0.39 U	0.41 U	0.43 U	0.47 U	0.48	0.40 UJ	690	0.38 U
Phenanthrene	0.49	0.49	0.39 U	0.65	1.70	0.71	0.36 U	19.00	1,800	0.38 U
Pyrene	0.77	1.70	0.39 U	1.40	3.00	1.10	0.36 U	23.00	1,000	0.38 U
Totals (mg/Kg) ⁽²⁾										
Total BTEX	0.005 U	0.005 U	0.005 U	0.005 U	0.11	0.006 U	0.005 U	0.005 U	6.7	0.004 U
Total PAH	3.5	6.7	0.39 U	6.0	12.8	5.3	0.48	107	7,370	0.38 U

- 1. TLM tar like material
- 2. The laboratory reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.
- 3. (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- 4. (2) Total BTEX and total PAH includes only detected results.
- 5. (3) U Indicates the consitutent was not detected at the reported detection limit.
- 6. (4) J Indicates that the constituent was detected at a concentration between the the diluted method detection limit and the diluted reporting limit.
- 7. (5) UJ Indicates that the constituent was not detected and the result was qualified as estimated due to a dilution of the sample.

TABLE D-4 (Cont.)

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS - PHASE III

Congaree River Sediments Columbia, South Carolina

Area	Top of	Congaree Rive	er Bank from S	and Bar to Nea	r UT #2
Line Location of Sample	4 Line	8 Line	11 Line	14 Line	17 Line
Sample Identification	K4	J8	J11	l14	H17
Date Sampled	7/28/2011	7/27/2011	7/27/2011	7/27/2011	7/28/2011
Sample Interval (feet brb) ⁽¹⁾	12 - 14	20 - 23	17 - 21	17.5 - 22	22 - 26
Parameters					
Volatiles (mg/Kg)					
Benzene	0.006 U ⁽³⁾	0.005 U	0.006 U	0.006 U	0.006 U
Ethylbenzene	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U
Toluene	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U
Total Xylenes	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U
Semi-Volatiles (mg/Kg)					
Acenaphthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Acenaphthylene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Anthracene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Benzo(a)anthracene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Benzo(a)pyrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Benzo(b)fluoranthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Benzo(g,h,i)perylene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Benzo(k)fluoranthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Chrysene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Dibenz(a,h)anthracene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Fluoranthene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Fluorene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Indeno(1,2,3-cd)pyrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Naphthalene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Phenanthrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Pyrene	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U
Totals (mg/Kg) ⁽²⁾					
Total BTEX	0.006 U	0.005 U	0.006 U	0.006 U	0.006 U
Total PAH	0.38 U	0.37 U	0.51 U	0.46 U	0.44 U

- 1. TLM tar like material
- 2. The laboratory reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.
- 3. (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- 4. (2) Total BTEX and total PAH includes only detected results.
- 5. (3) U Indicates the constituent was not detected at the reported detection limit.

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS - PHASE IV

Congaree River Sediments Columbia, South Carolina

Area	South of Blossom Street Bridge to South of Railroad Trestles							
Line Location of Sample	Random							
Sample Identification	CR1 CR4 CR7 C							
Date Sampled	8/10/2011	8/10/2011	8/10/2011	8/10/2011				
Sample Interval (feet brb) ⁽¹⁾	0 - 1.5	0 - 1.0	0 - 0.5	0 - 0.75				
Parameters								
Volatiles (mg/Kg)								
Benzene	0.008 U ⁽³⁾	0.009 U	0.008 U	0.009 U				
Ethylbenzene	0.008 U	0.009 U	0.008 U	0.009 U				
Toluene	0.008 U	0.009 U	0.008 U	0.009 U				
Total Xylenes	0.008 U	0.009 U	0.008 U	0.009 U				
Semi-Volatiles (mg/Kg)								
Acenaphthene	0.40 U	0.40 U	0.40 U	0.37 U				
Acenaphthylene	0.40 U	0.40 U	0.40 U	0.37 U				
Anthracene	0.40 U	0.40 U	0.40 U	0.37 U				
Benzo(a)anthracene	0.40 U	0.40 U	0.40 U	0.37 U				
Benzo(a)pyrene	0.40 U	0.40 U	0.40 U	0.37 U				
Benzo(b)fluoranthene	0.41	0.40 U	0.40 U	0.37 U				
Benzo(g,h,i)perylene	0.40 U	0.40 U	0.40 U	0.37 U				
Benzo(k)fluoranthene	0.40 U	0.40 U	0.40 U	0.37 U				
Chrysene	0.40 U	0.40 U	0.40 U	0.37 U				
Dibenz(a,h)anthracene	0.40 U	0.40 U	0.40 U	0.37 U				
Fluoranthene	0.64	0.40 U	0.40 U	0.37 U				
Fluorene	0.40 U	0.40 U	0.40 U	0.37 U				
Indeno(1,2,3-cd)pyrene	0.40 U	0.40 U	0.40 U	0.37 U				
Naphthalene	0.40 U	0.40 U	0.40 U	0.37 U				
Phenanthrene	0.40 U	0.40 U	0.40 U	0.37 U				
Pyrene	0.48	0.40 U	0.40 U	0.37 U				
Totals (mg/Kg) ⁽²⁾								
Total BTEX	0.008 U	0.009 U	0.008 U	0.009 U				
Total PAH	1.5	0.40 U	0.40 U	0.37 U				

- 1. TLM tar like material
- 2. The laboratory reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.
- 3. (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- 4. (2) Total BTEX and total PAH includes only detected results.
- 5. (3) U Indicates the constituent was not detected at the reported detection limit.

SUMMARY OF SEDIMENT AND SOIL ANALYTICAL RESULTS - PHASE V

Congaree River Sediments Columbia, South Carolina

Area	South of Blos	som Street Bridg	e to South of Rai	Iroad Trestles	Shore	Area	
Line Location of Sample	57 Line	70 Line	70 Line	80 Line	7 Line	8 Line	11 Line
Sample Identification	Y57	AM70	AQ70	AK80	L7	K8	J11.5
Date Sampled	1/12/2012	1/10/2012	1/20/2012	1/10/2012	2/1/2012	2/1/2012	2/1/2012
Sample Interval (feet brb) (1)	0 - 0.7	0 - 3.0	0 - 0.75	0 - 2.5	0 - 1.55	0 - 5.1	0 - 5.25
Parameters							
Volatiles (mg/Kg)							
Benzene	0.0052 U ⁽³⁾	0.0054 U	0.0051 U	0.0056 U	0.0076 U	0.0060 U	0.0097 U
Ethylbenzene	0.0052 U	0.0054 U	0.0051 U	0.0056 U	0.0076 U	0.0060 U	0.0097 U
Toluene	0.0052 U	0.0054 U	0.0051 U	0.0056 U	0.0076 U	0.0060 U	0.0097 U
Total Xylenes	0.0052 U	0.0054 U	0.0051 U	0.0056 U	0.0076 U	0.0060 U	0.0097 U
Semi-Volatiles (mg/Kg)							
Acenaphthene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	3.7	0.52 U
Acenaphthylene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	0.89	0.52 U
Anthracene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	1.2	0.52 U
Benzo(a)anthracene	0.36 U	0.37 U	0.35 U	0.36 U	0.68	4.3	0.56
Benzo(a)pyrene	0.36 U	0.37 U	0.35 U	0.36 U	0.86	4.7	1.0
Benzo(b)fluoranthene	0.36 U	0.37 U	0.35 U	0.36 U	0.79	4.2	0.97
Benzo(g,h,i)perylene	0.36 U	0.37 U	0.35 U	0.36 U	0.50	1.9	0.60
Benzo(k)fluoranthene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	1.6	0.52 U
Chrysene	0.36 U	0.37 U	0.35 U	0.36 U	0.70	4.0	0.52 U
Dibenz(a,h)anthracene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	0.44	0.52 U
Fluoranthene	0.36	0.37 U	0.35 U	0.36 U	0.95	8.2	0.52 U
Fluorene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	2.4	0.52 U
Indeno(1,2,3-cd)pyrene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	1.5	0.52 U
Naphthalene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	0.41 U	0.52 U
Phenanthrene	0.36 U	0.37 U	0.35 U	0.36 U	0.41 U	9.8	0.52 U
Pyrene	0.62	0.37 U	0.35 U	0.36 U	1.4	9.1	0.65
Totals (mg/Kg) ⁽²⁾							
Total BTEX	0.0052 U	0.0054 U	0.0051 U	0.0056 U	0.0076 U	0.0060 U	0.0097 U
Total PAH	1.0	0.37 U	0.35 U	0.36 U	5.88	57.93	3.78

- 1. TLM tar like material
- 2. The laboratory reported some results between the method detection limit (MDL) and reporting limit (RL). For purposes of this reporting, the results are shown at the RL.
- 3. (1) brb below river bottom. Interval is based on depth from top of sediment to refusal.
- 4. (2) Total BTEX and total PAH includes only detected results.
- 5. (3) U Indicates the constituent was not detected at the reported detection limit.

APPENDIX E CONCEPTUAL TLM DEPOSITIONAL MODEL

APPENDIX E

CONCEPTUAL TLM DEPOSITIONAL MODEL

CHARACTERISTICS OF THE SURFACE WATER BODIES

Congaree River

The Congaree River bottom likely developed on resistant geologic media and given the geologic setting is likely granite and/or in some places saprolite. Based on exposures (e.g., boulder field) in the Congaree River, it is likely that the granite surface is irregular and subsequently varying sediment thickness is expected. The dominant sediment types in the "main" Congaree River channel are sands, gravels, cobbles, boulders, and is expected given the higher current velocity. Along the Congaree River shoreline, finer grained particles, such as silt and very fine sands were encountered and would be expected since this is an area of lower current velocity. In general, the unconsolidated sediment thickness was limited and the presence of a resistive layer (granite, saprolite, boulders, etc.) prevented coring deep with the majority of the cores advanced to a depth of approximately 1-foot (+/-). Of the 77 locations cored (with direct push technology [DPT]), only one core could be advanced to a depth of 6 feet, and seven cores could be advanced to a depth ranging from 3 to 5 feet.

The Congaree River depth is a function of the bathymetric surface. Excluding the river stretch from the boulder field north, three bathymetric lows and three bathymetric highs have been identified and are shown on Figure 1 and includes:

- Bathymetric lows: approximate 5 to 6.5 lines, approximate 9.25 to 13.75 lines, and approximate 16 to 18 lines; and
- Bathymetric highs: approximate 6.5 to 9.25 lines, approximate 13.75 to 16 lines, and approximate 18 to 20 lines.

The present day bathymetric surface down river of the boulder field to approximately the 7 Line and along the shoreline may have been altered by anthropogenic activities. Soil borings drilled on the Senate Street extension alluvial fan suggests the alluvial fan existed at the time of tar like material (TLM) deposition. The depositional history (natural or anthropogenic) of the sandbar is not known and if anthropogenic, the period of development and intended function is not known. During low Congaree River levels, TLM was noted on the northern side of the sandbar suggesting that the sandbar was present prior to the time of deposition.

The bathymetric highs represent resistive granite outcrops and/or granite boulder assemblages and is analogous to the boulder field except the bathymetric highs are submerged. When the Congaree River level is low (river gauge level of about 2.5 feet), a bathymetric high near the 7 line can be seen. The bathymetric high surface is expected to be irregular with varying sediment thickness. The bathymetric lows represent Congaree River stretches where the granite was less resistant and therefore, more prone to erosive action. At one location (P5), saprolite was noted and therefore, leads to the potential that saprolite may exist under some stretches of the Congaree River and is overlain by coarser grained sediments. Saprolite was observed in the unnamed tributary and will be discussed below.

The highest current velocities are expected at Congaree River stretches with the highest bathymetric surfaces since increased velocity would be required to move the same unit volume of water when compared to the lower bathymetric areas. During base flow conditions, surface water flow is expected to be laminar, whereas turbulent flow would be expected during storm events or periods of increased precipitation. These two flows and speculated influence on TLM transport and deposition will be discussed later.

Unnamed Tributary #1

Unnamed Tributary (UT) #1 is found in a cut that was likely formed by the erosive action of surface water flow in UT #1. Erosion is responsible for the downcutting and upstream progradation. The tributary bottom is relatively flat from the mouth (with the Congaree River) to approximately UT5 at which point the tributary bottom begins to steepen. At UT5, saprolite was encountered and likely represents a more resistive layer but since comprised of clay is expected to further erode with time. Downstream of UT5, sands, silts, and gravels were encountered and likely represent depositional material from UT #1 and/or the Congaree River. It is unknown whether the saprolite has been completely eroded or just covered downstream of UT5. In addition, and near the mouth of UT #1, boulders were noted and may be indicative of the granite bedrock surface or represents depositional features.

The highest current velocities are found at the steep stretches of the UT #1 from UT5 upstream to near the falls. Lower current velocity occurs below UT5 where the tributary bottom widens and is less shallow.

TLM VERTICAL PROFILE AND PROCESSES

The discussion focuses only on TLM in the Congaree River since TLM was not noted in UT #1, other than minor blebs on the water surface while investigating location UT4.

TLM Vertical Profile

The very coarse nature and limited sediment thickness generally prohibited recovering core length that consistently and unequivocally defined the sediment and TLM stratification. At many locations, multiple cores were driven in an attempt to maximize recovery. Sufficient recovery was obtained in some cores that permits developing the following generalized stratification sequence:

- Unimpacted sediments overlying visually continuous TLM;
- Distinct visually continuous TLM layer that was generally highly weathered with embedded sediment particles; and
- Below the visually continuous TLM layer, decrease in TLM that could range from thin distinct visually continuous TLM layers, to blebs, to TLM absence.

To illustrate stratification, the following observations from N16 are provided:

0 to 0.35 feet (below river bottom [brb]): Medium to very coarse sand. Visually continuous TLM was absent;

- <u>0.35 to 0.55 feet brb:</u> Medium to very coarse sand, grading to gravel. Visually continuous and highly weathered TLM at 0.35 to 0.45 feet brb, grading into a less weathered TLM layer at 0.45 to 0.55 feet brb; and
- 0.55 to 0.80 feet brb: Medium to very coarse sand and gravel grading to finer grained sand and silt, trace gravel. Visually continuous TLM is not noted, however very minor amounts of TLM blebs are noted.

TLM Vertical Migration Hypothesis

The ability of TLM to vertically migrate in the Congaree River unconsolidated sediments uses concepts of dense non-aqueous phase liquid (DNAPL) migration in porous media (i.e., groundwater system). A DNAPL is a liquid whose specific gravity (or density) is greater than and is generally immiscible in water. When placed in water, a DNAPL will sink and form a distinct layer. The DNAPL analogy is used since the visually continuous TLM is believed to have originated as coal tar from the Huger Street former manufactured gas plant (MGP) site. Coal tar has a specific gravity greater than water.

DNAPL will migrate vertically in porous media when sufficient DNAPL volume exists to provide a driving head adequate to overcome pore entry pressures of the geologic media. Vertical DNAPL migration is impeded or stopped when DNAPL volume is reduced or the pore entry pressures exceed the DNAPL head. Coarser grained geologic media, such as sands and gravels, exhibit lower pore entry pressures whereas silts and clays have higher pore entry pressures. The higher pore entry pressures of silts and clays typically result in DNAPL being impeded through these finer grained sediments (e.g., shoreline). The same concepts apply to TLM vertical migration in the Congaree River and the following provides an example of the concept.

TLM when released was believed to have characteristics similar to coal tar, which includes a density greater than water and a low viscosity (i.e., not weathered). TLM input to the Congaree River likely occurred intermittently and may have been distributed over a broad area, versus an input that was continuous and location specific. Given the assumed intermittent input and broad distribution, the TLM volume deposited on a unit area basis was likely minimal, manifesting in reduced TLM driving head, and therefore, limiting TLM vertical migration. However, the coarse grained sediments comprising the Congaree River bottom likely have lower pore entry pressures and therefore, some vertical migration would be expected. Visual observation from coring N16 (discussed above) provides a good example of this concept. The aforementioned concept is more applicable to laminar flow than turbulent flow. As will be discussed, the higher current velocities associated with turbulent flow are not conducive for TLM deposition.

The Congaree River shoreline sediments are predominantly silts and clay. The silts and clay have higher pore entry pressures (than sands and gravels) and as a result, may have minimized TLM migration into these sediments.

TLM INPUTS TO THE CONGAREE RIVER

The UT #1 input scenario originates TLM from the Huger Street MGP site. It is believed that TLM was introduced into UT #1 and then flowed downstream and discharged to the Congaree River at the

confluence. Once TLM entered the Congaree River, the river current acted as the transport mechanism and deposition occurred when TLM mass exceeded the water's buoyancy capacity. For purposes of the model, buoyancy is a function of the Congaree River current velocity with higher velocity able to maintain TLM in suspension longer than at lower velocities. River water density (temperature), entrained sediment during turbulent flow are also factors acting on TLM suspension.

SIMPLIFIED DESCRIPTIVE TLM DEPOSITIONAL MODEL – LAMINAR FLOW

Assumptions

The following establishes the base assumptions for the laminar flow descriptive TLM depositional model:

- The TLM originated as coal tar from the Huger Street former MGP site and entered UT #1;
- The UT #1 current velocity and depth was sufficient to maintain TLM in suspension, was transported via surface water flow to the Congaree River, and entered the Congaree River at the confluence near the 2 line;
- The TLM had specific gravity greater than water, was immiscible, and for that reason maintained as a separate phase; and
- The TLM input volume is unknown and frequency is believed to be intermittent.

Congaree River: 2 to 3 Lines

TLM was input to the Congaree River at the confluence with UT #1. Lateral TLM movement from UT #1 and into the Congaree River was likely impeded by the Congaree River current that formed a hydraulic barrier confining TLM to the eastern shoreline. The suspended TLM was then directed down river. While traveling along this flow path, TLM began to fall out of suspension as evidenced by the presence of some TLM found along the eastern shoreline. Furthermore, it is possible that TLM flowed through a portion of the boulder field since observations from the July 2010 reconnaissance suggested the possible presence of TLM indicators (e.g., limited faint grey sheens, very faint odors, etc.). The general absence of TLM in the boulder field could be associated with the Congaree River flow patterns and/or influences of the Congaree River bathymetry, velocity, and scouring and is discussed later.

Congaree River: 4 to 5 Lines

The first notable deposition of visually continuous TLM occurs near the 4 line, which is south of the northern boulder field. The current velocity near the 4 line wanes with respect to those up river (1 to 4 lines). A sandbar exists near shore and between the 4 and 5 lines and is assumed to be present at the time TLM was deposited. The net affect of the waning current velocity and sandbar includes commencement of TLM deposition, a localized barrier to down river TLM movement, and defection of surface water flow to the southwest and towards the middle of the Congaree River where higher current velocities were encountered that acted as a hydraulic barrier. The hydraulic barrier would have the positive benefit of terminating westerly TLM movement but conversely would act as a TLM transport mechanism. Based on coring observations along the 4 and 5 lines, it appears the hydraulic barrier occurs in the general vicinity of the O to P lines.

With respect to the sandbar, if this feature was not present during TLM deposition, TLM would be distributed down river and along the shoreline in the general vicinity of the boat launch area and would be

found under the sandbar. Due to the coarse grained material and manual drilling technique (gas powered jackhammer [Whacker BH24] with macrocore barrel), drilling depth (1.5 feet - location M5) was limited and therefore, sediments representative of the Congaree River bottom could not be collected.

Bathymetry and Obtuse Settling

The potential influences of bathymetry and obtuse TLM settling is introduced prior to discussing TLM deposition below the 5 line. The original model speculated TLM deposition would be prevalent in low bathymetric (or deep water) areas since current velocity wanes and TLM would settle vertically because its specific gravity is greater than water. The hypothesis appears to have been met at the 16 to 18 lines, but fails at the 9.25 to 13.75 lines and consequently leads to a modified model (Figure 1). The modified model more closely evaluates the role of bathymetry and obtuse settling on TLM deposition.

Starting near the 5 line, three bathymetric lows and three bathymetric highs were identified. The bathymetric highs and lows are believed to have the following characteristics and influences on TLM deposition:

- Bathymetric highs: surface water cross sectional area is reduced requiring increased current velocity to move a unit volume of water. These areas are more prone to scouring than deposition; and
- Bathymetric lows: surface water cross sectional area is reduced requiring decreased current velocity to move a unit volume of water. These areas are more prone to deposition than scouring.

TLM is denser than and immiscible in water and therefore would sink vertically in the absence of a current. A current would help maintain TLM in suspension (i.e., buoyancy) and would also act as the transporting force. Under the laminar flow assumption, it is expected that TLM settling will occur, but the settling would occur obtuse surface water flow to account for current velocity. The conceptualized obtuse settling is shown on Figure 2. It should be noted that other variables such as the temperature and viscosity of the surface water and TLM, as well as TLM dilution, physical separation etc., would also have to be considered and is beyond the scope of the simplified TLM depositional model.

Congaree River: 5 to 18 Lines

The current velocity in the middle of the Congaree River appears to have formed a hydraulic barrier confining TLM deposition to the east of the N Line starting near the 7 Line and extending down river to the 16 Line (Figure 1). Down river from the 16 Line, the western limits of TLM inflects and is ultimately defined by the M Line in the general vicinity of the 18 to 21 lines. The presence of the island appears to bifurcate the Congaree River flow with that volume of surface water that historically had the higher probability of containing suspended TLM directed to the east of the island.

Figure 2 is a cross section that shows bathymetry and the assumed horizontal surface water flowpaths. The assumed horizontal flowpaths are intended to provide a relative perspective of current velocity with closer spaced flow lines at bathymetric highs indicative of higher current velocity and the further spaced flow lines at bathymetric lows indicative of lower current velocity. Vertically, higher flow velocities are expected closer to the surface and lower flow velocities are expected near the surface water/river bottom interface. Therefore, the probability of maintaining TLM in suspension is greatest in the upper to mid-

water column levels at the bathymetric highs, and the highest probability of TLM settling occurs at the bottom of the water column at the bathymetric lows.

Pulling together the aforementioned concepts, the descriptive TLM depositional model is presented and is believed to be applicable from the "5" Line down river to approximately the "18" Line. While TLM is being transported, the combined opposing forces of density and buoyancy (attributed to current velocity) are interacting. Density is assumed to remain constant whereas current velocity induced buoyancy effects changes with distance and depth due to the bathymetric surface. At bathymetric highs, TLM deposition is not expected since current velocity may be sufficient to maintain TLM in suspension and/or could act to scour TLM. At the bathymetric lows, the current velocity (horizontal and vertical) acting as the buoyant force, decreases and TLM settling obtuse to surface water flow commences. TLM deposition on the down-river side of the bathymetric lows and upsloping sides of the bathymetric highs is believed to occur because of:

- The relative current velocities with respect to the bathymetric highs and lows and the subsequent ability and inability to maintain TLM in suspension;
- The rising bathymetry (upslope side of the bathymetric highs) has the effect of concentrating the
 obtusely settling TLM, promotes TLM settling since current velocity is decreased because the
 velocity must overcome resistance (near the river bottom/surface water interface) and gravity,
 and
- Using analogous liquid separation concepts, the rising bathymetry acts as an inclined separator.

Using TLM observations only at the 9.25 to 13.75 lines, it appears bathymetry can influence TLM deposition approximately 300 feet up river from a bathymetric high. The lateral extent of the bathymetric low at the 16 to 18 lines is less than that at the 9.25 to 13.75 lines, and therefore, cannot be used to confirm the up river distance.

The general absence of TLM on the down river side of the bathymetric high is expected since the majority of the TLM would have settled out on the up river side and the current velocity may be sufficient to maintain buoyancy. That portion of TLM that is suspended will then be transported down river with settling occurring obtuse to surface water flow as described above.

Congaree River: 18 to 20 Lines

The 18 to 20 Lines is an area that represent a transition from deposition to non-deposition and is based on TLM observations along the 19 Line and subsequent reconnaissance and investigation observations. Evidence of TLM blebs were noted along the 19 Line and visually continuous TLM was absent. It is believed that the up river physical features promoted TLM settling and limited suspended TLM was available for deposition at this stretch of the Congaree River. In addition, the higher bathymetric surface (and shallower water) increased current velocity, which would be less favorable for TLM deposition and more favorable to scouring. Other weathered material (OWM) was found near the 19 line and generally behind boulders where current velocity would be diminished.

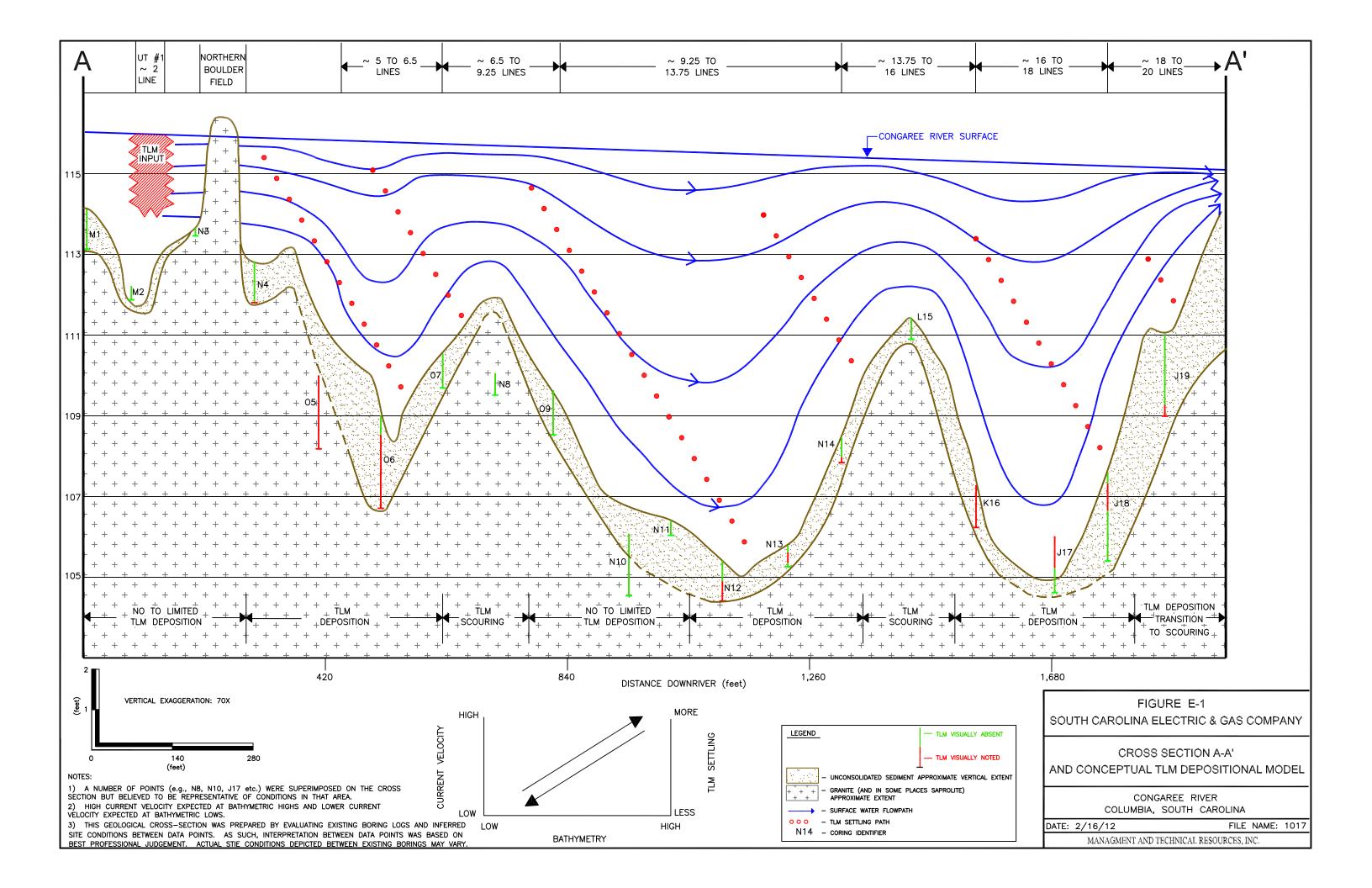
SIMPLIFIED DESCRITPIVE TLM DEPOSITIONAL MODEL – TURBULENT FLOW

The following presents the simplified descriptive TLM depositional model for turbulent flow. It is believed that turbulent flow in UT #1 is more influenced by localized storm events and of shorter duration since the drainage area of UT #1 is smaller than the Congaree River. The drainage area of the Congaree River is larger, influenced more by regional meteorological events, and subsequently turbulent flow can likely differ from that noted in UT #1. Intuitively, the probability of turbulent flow to occur would be greatest during the winter and spring months and/or during increased precipitation associated with summertime thunderstorms, mega storms, remnants of hurricanes, etc.

During turbulent flow, the physical character of the surface water would differ from that described for laminar flow. Turbulent flow is typically associated with higher current velocities and increased volumetric flow. Turbulent flow typically manifests as ripples, waves, eddies, etc. on the water surface and is dependent on the bathymetric surface. The higher current velocity associated with turbulent flow, would have the ability to scour the riverbed and entrain sediment particles in suspension or contribute to particle saltation (moving/bouncing along the river bottom). The net result is surface water density and viscosity increases due to the increased suspended particle load.

When TLM is introduced into turbulent water, a number of interactions/processes are expected to occur. The current velocity would be sufficiently high to effectively increase TLM buoyancy and therefore, keep TLM in suspension. The relative density difference between TLM and the surface water would decrease and help to maintain TLM in suspension. The increased volumetric flow would have the effect of diluting and separating TLM. The net effect is TLM suspension will dominate over deposition and TLM would be transported down river until current velocity waned sufficiently to promote settling and deposition. Because of the aforementioned, it is expected TLM deposition would be spatially limited with minimal vertical development and when found, would occur sporadically.

Particle suspension and saltation represents two "processes" that may contribute to TLM deposition. TLM has the unique characteristic of being highly adhesive when contacted. When the suspended or saltated particles contacted TLM, it is possible that a thin TLM layer coated the particles. As current velocity wanes, the TLM coated particles can drop from suspension (or could no longer be moved) and deposited on the Congaree River bottom. The net result would be a thin veneer of TLM coated sediment deposited on the Congaree River bottom. The ability for particles to settle and deposit is a function of the sediment particle geometry, density (i.e., mineral composition), and current velocity. Finally, turbulent flow could also scour and/or re-work sediments impacted with TLM. These sediments could then be redeposited as current energies waned.


The turbulent flow model may explain discontinuous TLM observed at the N34 and N36 nodes, and the various locations within the southern boulder field.

SUMMARY

The aforementioned provided a descriptive TLM depositional model for laminar and turbulent flow. The laminar flow model discussed a number of variables that may contribute to settling and deposition and

identified favorable bathymetric conditions for TLM deposition. The final analyses attributes up river bathymetric lows bounded by down river bathymetric high conditions favorable for TLM accumulation under laminar flow conditions. Conversely, areas of high bathymetry (boulder field and down river of the 20 line) would be less conducive to TLM accumulation since current velocity would be too high for deposition and scouring would dominate.

Turbulent flow would act to suspend and dilute TLM, scour and re-deposit TLM-containing sediments, and if contacted, coat suspended particles with TLM. Transport and deposition of the aforementioned is dependent on current velocity with suspended separate phase TLM likely be transported furthest down river than reworked or coated sediments which will settle faster.

APPENDIX F

LABORATORY ANALYTICAL REPORTS AND DATA EVALUATION MEMOS

Environmental Forensic Report

Congaree River

SDG: SG100629

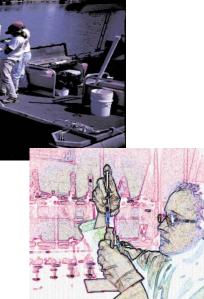
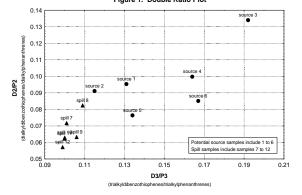



Figure 1. Double Ratio Plot

Report To:

SCANA 1426 Main Street MC 158 Columbia, SC 29218

Report By:

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472

July 2, 2010

Identifying and allocating sources of pollutants in complex environments.

Final Laboratory Report

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472 Phone: 617-923-4662

Fax: 617-923-4610

E-Mail meta@metaenv.com

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

New York Certification Number: 11886

Certification

This certifies that this package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed herein. The results included in this data report relate only to the samples as received and analyzed by the laboratory.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and Quality Assurance Officer, as verified by the following signatures.

James A. Roush

Environmental Scientist, Laboratory Manager

July 2, 2010

Date

David M. Mauro

Senior Scientist, Quality Assurance Officer

July 2, 2010

Date

Sample Delivery Group Narrative

Project: Congaree River

Client SCANA

1426 Main Street

MC 158

Columbia, SC 29218

Report Contact: Robert Apple

Dates of Receipt: June 29, 2010

Sample Summary: The samples received for this project are summarized in the

attached sample login forms in Appendix A.

META Project Number: S08005

SDG No.: SG100629

Total Pages in Report: 85

Chain of Custody

There sediment samples were received in good condition. The internal temperature of the shipping container was within the recommended 0-6°C range and was as follows:

Samples received: 06/29/2010 4.6°C Ice present

Internal chain of custody procedures were followed after sample receipt. Samples were stored in a locked refrigerator. A sample custody logbook contains the record of sample removal from the secure sample storage area to the sample preparation laboratory. The custody record for the sample extracts is present on the sample extraction logbook page.

The disposal of samples and extracts will be authorized one month after the release of this data report. Sample disposal will be documented.

Methods

The sediment samples were prepared by solvent extraction (EPA 3570) using dichloromethane (DCM). The extracts were spiked with internal standard and analyzed by GC/FID (EPA 8100M) for fingerprinting and by GC/MS/SIM (EPA 8270M) for mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs), alkyl PAH homologues and other selected compounds.

Results

Sample results are presented in several appendices which follow this narrative.

Appendix B: GC/FID Fingerprints

Appendix C: MAH/PAH Concentrations

Appendix D: Extended MAH/PAH Profiles - Histograms Appendix E: Extracted Ion Current Profiles (EICPs)

Quality Control

Analyte Flags

The detection limits were determined as the sample equivalent of the lowest linear initial calibration standard. Analytes measured between 50% and 100% of the lowest standard were reported as "estimated" and flagged with the letter "J." Undetected analytes were reported as null and flagged with the letter, "U." Analytes marked with a "B" were detected in the associated blank and should be reviewed for a possible positive bias. No deviations were thought significant enough to compromise the integrity of the reported values.

Holding Times

All samples were extracted within holding times. The samples and extracts were stored at $4^{\circ}C \pm 2^{\circ}C$ prior to extraction and analysis. The extracts were analyzed within 40 days of sample preparation.

Surrogate Spikes

Extraction surrogates were added to all samples prior to extraction. All surrogate compounds were recovered within the 50%-120% acceptable criterion with the following exceptions; perylene-d12 was over-recovered in sample Congaree Sed-2; toluene-d8, phenanthrene-d10, and benzo(a)pyrene-d12 were under-recovered in sample Duplicate of Congaree Sed-1. The recovery issues were due to the high dilution (100x) that was performed on the extracts prior to analysis.

Blanks

Various MAHs and PAHs were detected below or just above the reporting limit (RL) in soil blank QC100630-SB. As these compounds were detected in the field sample at much higher relative concentrations (greater than 10x the blank levels) positive bias does not appear to be significant.

Blank Spikes

A blank spike sample was extracted with each analytical batch. Several MAHs and PAHs were over-recovered. The cause of the over-recovery was due to a low internal standard response in the QC sample.

Duplicates

Sample Congaree Sed-1 was extracted and analyzed in duplicate. Relative percent differences are reported with the sample results in Appendix C.

Internal Standards

Internal standards were recovered within acceptable QC limits (50%-200%) relative to the continuing calibration standards.

Other Sample-Specific QC

Even at 100x dilution, several compounds were detected above the calibration limit in samples Congaree Sed-1 and Congaree Sed-3. Those results have been flagged with "E".

Interpretation

Introduction

Three sediment samples were received by META from the Congaree River in South Carolina site on June 29, 2010. The samples were analyzed for hydrocarbon fingerprints and an expanded list of MAHs and PAHs.

This report summarizes the findings and compares the samples.

Composition of Pyrogenic and Petrogenic Materials

MAHs and PAHs are one group of hydrocarbons that are present at high relative amounts in crude oil, coal, coal tar, and many of their products. In environmental forensic chemistry and geochemistry, MAHs and PAHs are placed in subgroups according to their origins. These groups include diagenic, or recently produced, petrogenic, produced at relatively low temperatures over long periods of time, and pyrogenic, produced at high temperatures with a shortage of oxygen. Petrogenic PAHs are those found in crude oil and similar materials. Pyrogenic PAHs are those found in coal tar and related substances, and from the incomplete combustion of organic matter.

Both pyrogenic and petrogenic sources of PAHs have been found to contain hundreds of individual MAHs and PAH compounds in generally predictable patterns. For example, it is known that the temperature of formation of MAHs and PAHs largely determines the distribution of the various parent and alkylated PAHs. Variations in these MAH and PAH distributions are measured using gas chromatography (GC) methods, particularly GC/MS. The visual interpretation of the results from GC/MS testing is a chromatogram. Variations in chromatograms are used to identify the sources of those MAH and PAHs.

Of particular importance to environmental forensic chemistry is the fact that petrogenic and pyrogenic substances from different sources can have measurably different amounts of MAHs and PAHs. For example, crude oils from different reservoirs can exhibit notably different ratios of trialkylated dibenzothiophenes to trialkylated phenanthrenes. Similarly, the ratio of

dialkylated chrysene to chrysene varies among certain pyrogenic sources. Consequently, the determination of PAH profiles forms an important component of environmental forensic studies where hydrocarbon releases, either petrogenic or pyrogenic, are known or suspected to be involved.

In addition to MAHs and PAHs, pyrogenic and petrogenic substances can contain paraffinic hydrocarbons, olefinic hydrocarbons, naphthenic hydrocarbons, and other types of compounds. The presence and relative amounts of these compounds also is used to identify the nature and source of hydrocarbon-based materials in environmental samples.

Description of Chemical Fingerprinting Methodology

PAHs commonly form the basis for source attribution and allocation at sites involving petrogenic or pyrogenic materials. Studies have shown that the pattern of PAHs clearly distinguishes petrogenic from pyrogenic substances and can be used to identify and classify petrogenic or pyrogenic substances of different origins. For example, ASTM Method D 5739-95 is the method used extensively by the U.S. Coast Guard to determine the source of oil spilled in public waterways. That method relies on the determination of selected PAHs in oil, soil, or water samples by gas chromatography with mass spectrometric detection (GC/MS) and the use of the qualitative patterns and quantitative ratios of those PAHs to determine which oil samples have a common origin. Similarly, work by META Environmental, Inc. (META) has shown that the same methodology can be used to identify the sources of PAHs at former MGP sites, coke plants, tar refineries and wood treating facilities. Further, META has modified the typical sample preparation and analysis procedures for hydrocarbon fingerprinting to include MAHs as well as PAHs.

An approach based on MAH/PAH profiling has been used to investigate the sources of hydrocarbons at the Congaree River site, which is the topic of this report. Therefore, a more detailed discussion of the forensic methods used is presented in the next subsection as background.

GC/FID Fingerprinting

All soil, water, and NAPL samples in this study were analyzed by gas chromatography with flame ionization detection (GC/FID). With GC/FID, organic compounds in a sample are vaporized and then separated in a long, narrow fused silica capillary column. Separation follows boiling point approximately with the most volatile compounds exiting the column first followed by increasingly less volatile compounds. Therefore, certain refined petroleum products, generated by the distillation of crude oil and which differ in their boiling point ranges, are distinguishable by where they appear on a chromatogram. Once they exit the column, the compounds are detected using the flame ionization technique. As the compounds exit and are detected, their responses are recorded and shown as peaks on a continuous plot. The height and area of a peak are proportional to the concentration of that compound in the sample. When done in a controlled and reproducible manner, the GC/FID method produces a "fingerprint" of a sample where the presence and relative amounts of the compounds are immediately visible as peaks of varying height appearing at different times. GC/FID fingerprints for the samples analyzed are provided in Appendix B.

GC/FID methods are commonly used for fingerprinting in a number of forensic fields. The patterns of individual peaks and the sizes and shapes of any baseline features are examined qualitatively for similarities and differences among samples.

The instrumental conditions for the GC/FID analyses in this study were adjusted so that compounds with boiling points between about hexane (C6) and n-tetracontane (C40) were detectable in one analytical run. This range includes most of the VOCs and all of the SVOCs commonly measured in environmental investigations. In particular, it includes benzene, toluene, ethylbenzene, xylenes, and the 16 priority pollutant PAHs that comprise a major portion of MGP tars and other pyrogenic substances. It also includes the range of compounds that are measurable in pyrogenic substances by gas chromatographic methods. Finally, META's GC/FID conditions detect most of the constituents of gasoline, as well as all of the constituents of higher boiling petroleum products (e.g., kerosene, diesel, refined oils).

Source identification using GC/FID is mostly qualitatively applied. An experienced chemist examines the chromatograms, compares them to those of reference materials, and makes a judgment regarding the nature and source of the contamination in the sample. The chemist might go "peak-by-peak" looking for similarities and differences, comparing peak ratios, and looking for indicator compounds.

For some samples, GC/FID fingerprinting is accurate and sufficient. However, the reliability of GC/FID fingerprinting decreases when multiple sources are present in a sample and when the sample composition becomes extensively altered by environmental weathering processes. Other testing methods, such as GC/MS, are complementary for source identification under these conditions.

Extended PAH Profiles (EPPs) by GC/MS

Samples from the Congaree River site also were analyzed by GC/MS for an expanded list of MAHs and PAHs (EPPs). Separation was accomplished with gas chromatography using a method similar to the GC/FID method discussed previously. However, in GC/MS, once compounds exit the column, they are detected using a mass spectrometer. In the mass spectrometer, the molecules of each compound are ionized at high temperature and vacuum. The ionic fragments are unstable and fragment into smaller ions. The ions are then counted and the mass spectrum recorded. Thus, the mass spectrum for a compound is the pattern of ionic fragments that forms when that compound is ionized. Mass spectra vary widely and are characteristic of their source compound. For example, the mass spectrum of hexane is very different from the mass spectrum of benzene even though both compounds contain six carbon atoms plus hydrogen atoms.

In GC/MS, one obtains both a chromatogram of peaks and additional compound-specific information in the mass spectrum. When executed in a controlled and reproducible manner, the GC/MS method produces multiple "fingerprints" of a sample when specific fragment ions are isolated.

GC/MS is utilized in two general ways in environmental forensic chemistry. First, samples are analyzed under the conditions required by various standard methods, particularly EPA Methods 8260 and 8270 (U.S. EPA SW-846). The concentrations of certain target compounds are

determined and the mass spectrum of each peak in the chromatogram is generated and stored. These mass spectra can be used to identify non-target compounds or to generate extracted ion current profiles (EICPs). Second, various specialty methods are utilized where the GC/MS operating conditions are setup to measure only certain groups of compounds. For example, the method described in 40 CFR Subchapter J Part 300 Subpart L Appendix C for PAHs, alkylated PAHs, and biomarkers is used extensively in oil spill and UST release analyses. This method is similar to ASTM Method D 5739-95, "Standard Practice for Oil Spill Source Identification by Gas Chromatography and Positive Ion Electron Impact Low Resolution Mass Spectrometry."

GC/MS data are used both qualitatively and quantitatively. An experienced chemist examines the chromatograms, compares them to those of reference materials, and makes judgments regarding the nature and source of the contamination in the sample. The chemist might go "peak-by-peak" looking for similarities and differences, comparing peak ratios, and looking for indicator compounds. This process is described in detail in ASTM Method D 5739-95.

GC/MS data are more commonly used quantitatively by calculating the concentrations of selected compounds, by comparing peak area ratios, or by applying chemometric or pattern recognition techniques to the raw or adjusted data. These data analysis methods are used extensively with extended PAH profiles (MAHs, PAHs and alkylated PAHs) and with biomarker compound data. Various degrees of statistical confidence can be achieved by examining chemical concentrations and compound ratios or patterns from multiple samples and replicate samples. This characteristic of GC/MS quantitative data is particularly valuable when assessing the degree of similarity or difference between samples, particularly when multiple sources of hydrocarbons are present in the sample or when environmental weathering has altered the original distributions of hydrocarbons.

Finally, the mass spectra of selected compounds also can be examined to determine whether any diagnostic or indicator chemicals are present in the sample. For example, the PAH retene (1-methyl-7-isopropylphenanthrene) is present in significant concentrations in coal, but at much lower concentrations in coal tar or petroleum products. Thus, the ratio of retene to chrysene can be used to determine whether coal fines are present in a soil sample and to explain some of the hydrocarbon patterns observed at sites where coal was used extensively. Further, unknown compounds can be identified and their presence used as clues to the source(s) of the chemicals.

The GC/MS data in this study were reported and utilized both qualitatively and quantitatively. First, the concentrations of MAHs, PAHs and alkylated PAHs were calculated and included in Appendix C. These concentrations were utilized to estimate contaminant levels in samples, to generate bar graphs (Appendix D) and compare compound ratios. The ratios were used to generate plots for identifying samples with similar compositions.

The GC/MS data also were used qualitatively by generating extracted ion current profiles (EICPs) for selected compounds and compound groups of forensic value (Appendix E). For example, the EICPs for selected "biomarker" compounds including normal alkanes, isoprenoid hydrocarbons, alkylcyclohexanes, triterpanes and steranes are shown on the first page of the EICP report for each sample. These compound groups are commonly used in hydrocarbon source identifications and weathering evaluations. For example, the estimated boiling point range of a refined petroleum product, as indicated by the location of the alkanes and unresolved complex mixture (UCM) on the chromatogram, can be used to determine whether the material is kerosene,

kerosene, diesel, No. 6 fuel oil, or some other product. Similarly, triterpanes and steranes are known to be present in crude oils and some refined petroleum products, but not found in coke oven tars and rarely found in MGP tars. Therefore, the presence of triterpanes and steranes is monitored to confirm and refine the petrogenic verses pyrogenic assessment conducted with the PAH profiles.

Sample-Specific Observations

Congaree Sed-1

Sample Congaree Sed-1 contained pyrogenic material (see definitions). The pyrogenic material was indicated by the wide range distribution of unsubstituted mono- and polycyclic aromatic hydrocarbons (MAHs & PAHs), with the 2 and 3 ring PAHs most abundant. The concentration of total 16 priority pollutant PAHs (PAH16) was 9,430. Materials with PAH concentrations in this range include coal tar and coal tar products, such as cresosote and road tar.

The abundance of naphthalene relative to the heavier PAHs suggests that this material has not experienced substantial weathering.

The ratio of fluoranthene to pyrene (0.566 – Table 1) as well as the double ratio plots of dibenzofuran/fluorene (D/F) to Fl/Py (Figure 1) and benzofluorenes/methylpyrenes (BF/MP) to Fl/Py (Figure 2) show that this sample is very similar to tars in META's reference library that were formed from manufactured gas plants (MGPs) utilizing carbureted water gas processes.

There were no indications of petrogenic materials in either the GC/FID fingerprint (Appendix B) nor the extracted ion current profiles for alkanes, cyclic alkanes, and petroleum biomarkers (Appendix D).

The duplicate analysis of Congaree Sed-1 was similar.

Congaree Sed-2

Sample Congaree Sed-2 contained a pyrogenic substance similar to Congaree Sed-1. The concentration of total PAHs(16) was 1,700 mg/kg. Naphthalene was present at a lower concentration than phenanthrene, and MAHs were nearly absent, suggesting the material was more weathered than Sample Congaree Sed-1, likely from water washing of the more soluble compounds.

The PAH ratios of sample Congaree Sed-2 shown in Table 1 are different from those of samples Congaree Sed-1 and Congaree Sed-3. For example, the ratios of fluoranthene to pyrene (0.815) and benzofluorenes to methylpyrenes were higher than the range of the other two samples and the duplicate. Other ratios showed a similar trend. These ratios are similar to some tars in META's reference library that were formed from manufactured gas plants (MGPs) utilizing coal carbonization processes. However, many coal carbonization tar have even higher ratios; in particular, tar sample T157 was collected from the Huger St site in 1996 and exhibited substantially higher Fl/Py and BF/MP ratios (Figure 2).

Congaree Sed-3

Sample Congaree Sed-3 contained a pyrogenic material very similar to Congaree Sed-1.

Discussion

All three sediment samples showed similar pyrogenic characteristics in both the GC/FID fingerprints (Appendix B) and the diagnostic ratios (Table 1) with some variations. All three samples contained PAHs at high relative amounts (greater than 1,000 mg/kg) which together with visual observations indicated that the samples contained tar or a tar product. The pyrogenic material in sample Congaree Sed-2 was different from Congaree Sed-1 and Congaree Sed-3, as indicated by the various PAH ratios in Table 1.

None of the samples exhibit compounds or features characteristic of petrogenic (petroleum-derived) materials.

Table 1. Selected Source and Weathering Ratios

Field ID	Lab ID	Fl/Py	D/F	C17/Pri	C18/Phy	Pri/Phy	C3D/C3PA	C2D/C2PA	BF/MP	(FI+Py)/Total PP HPAHs
Congaree Sed-1	SG100629-01	0.566	0.092	NC	NC	1.729	1.302	0.851	0.317	0.439
Dup of Congaree Sed-1	SG100629-01DUP	0.565	0.092	0.791	2.119	1.687	1.344	0.870	0.306	0.448
Congaree Sed-2	SG100629-02	0.815	0.310	0.789	NC	2.705	0.608	0.330	0.528	0.536
Congaree Sed-3	SG100629-03	0.577	0.099	NC	NC	2.266	1.109	0.737	0.336	0.466

Ratios:

Fl/Py fluoranthene/pyrene
D/F dibenzofuran/fluorene
C17/Pris heptadecane/pristane
C18/Phy octadecane/phytane
Pris/Phy pristane/phytane

C3D/C3PA trialkyldibenzothiophenes/trialkylphenanthrenes/anthracenes C2D/C2PA dialkyldibenzothiophenes/dialkylphenanthrenes/anthracenes

BF/MP benzofluorenes/methylpyrenes

NC Not calculable

1.6 T202 1.4 1.2 T203 T201O T178 Dibenzofuran/Fluorene T049 T0685 - Crude Coal Tar T157 - Huger St tar T009 O P066, Prudhoe Bay Crude Oil Middle Coal Tar Distillates
Crude Coal Tar coal ar 1 T174 P064, Arabian Light Crude Oil P065, Bunker C Residual Oil T125 Heavy OI T175 P223, Home #teating Oil T198 0.4 P260, #6 P263 #6 Oib262, #6 Oil T204 O Coal Tar Pitch 0.2 P259, #6 Oil

0.6

Fluoranthene/Pyrene

8.0

Figure 1. Selected Diagnostic Ratios – Dibenzofuran/Fluorene v. Fluoranthene/Pyrene

TXXX Tar Sample from META's in house source library Field Samples

0.0

P154, #6 Oil

0.4

0.2

1.0

Scatterplot (Forensic Ratio Calculator - SG100629 63v*161c)

1.4

1.6

1.2

0.0 └ -0.2

2.0 Middle Coal Tar Distillates T049 - Oal tar distillat 1.8 Crude Coal Tar 1.6 T185 - crude coal tar 1.4 Heavy Oi Benzofluorene/Methylpyrenes Coal Tar Pitch T157 - Huger St tarT203 T202 Congaree Sed-2 T045 T009 0.4 P066, Prudhoe Bay Crude Oil P1542 2 Pil Oil CA-7 CA-3 O OCA-5 0.2 P064, Arabian Light Crude 6 CA-2 lampblack

0.6

Fluoranthene/Pyrene

8.0

Figure 2. Selected Diagnostic Ratios – Benzofluorenes/Methylpyrenes v. Fluoranthene/Pyrene

TXXX Tar Sample from META's in house source library Field Samples

0.2

0.4

0.0

1.0

Scatterplot (Forensic Ratio Calculator - SG100629 63v*161c)

1.4

1.6

1.2

0.0

-0.2 L -0.2

Definitions

Pyrogenic substances are complex mixtures of primarily hydrocarbons produced from organic matter subjected to high temperatures but with insufficient oxygen for complete combustion. Pyrogenic materials are produced by fires, internal combustion engines, and furnaces. They also are formed when coke or gas are produced from coal or oil. Coal-tar based products, such as roofing, pavement sealers, waterproofing, pesticides, and some shampoos contain pyrogenic materials.

Petrogenic substances include crude oil and crude oil derivatives such as gasoline, heating oil, and asphalt.

Pitch is the semi-solid or solid material consisting of high molecular weight hydrocarbons that remain following coal tar distillation.

References

"Chemical Fingerprinting of Hydrocarbons," in: Introduction to Environmental Forensics. B.L. Murphy and R.D. Morrison editors, Academic Press, San Diego, CA 2002.

Mauro, D.M., "Chemical Source Attribution at former MGP Sites," EPRI Report 1000728, December 2000.

Appendix A Chain of Custody

SHEALY Chain of Custody Record

SHEALY ENVIRONMENTAL SERVICES, INC.

106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number 109636

Client MTQ	Report to Contact	shinsti	Telephone No. / Fax No. / E-mail 412-829-96.50 / 412 Waybill No.	-349-0350 Quote No.
Address 1600 Connerce Ciela Cita fond PA 150 35	Sampler's Signature	1	Waybill No.	Page of
Cinta fford Stage Zip Code 35	X Printed Name		Analysis (Attach list if mo	ore space is needed.)
Project Name Hucer Sediments	Lucas Bevo	estord	/m////	
Project No. P.O. No.	9 Matrix	No. of Containers v Preservative Type		Lot No.
Sample ID / Description Date (Containers for each sample may be combined on one line.)	Solid Non-	H2SO4 HNO3 HCI NaOH 5035 Kit	/90%\\ / / / / /	Remarks / Cooler I.D.
Congare Sed-1 628-1014			XX	56100629-01
Congaree Sed-2 629-10 K			XX	56 100629-02
Congarex Sed-3 628-0 15	7226 XX		XX	56100629-03
			2	
Possible Hazard Identification	Sample Disposal	= 0:	Note: All samples are retained for six w	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison ☐ Unknown Turn Around Time Required (Prior lab approval required for expedited TAT.)	☐ Return to Client	☐ Disposal by Lab QC Requirements (S)	unless other arrangements an	e made.
☐ Standard ☐ Rush (Specify)		Go rioganomento (o)	333.197	
1. Relinquished by Bull	Date Time 16 17	1. Received by	> Cook	Date Time
2. Relinquished by Conda Mando	0/28/10 17:20	2. Received by	× ×	Date Time
3. Relinquished by	Date Time	3. Laboratory received	dby	Date Time 6.29/10 9.00 A
Comments		LAB USE ONLY Received on ice (Circ	le) Yes No Ice Pack	Receipt Temp. 4.6 °C

META Environmental, Inc.

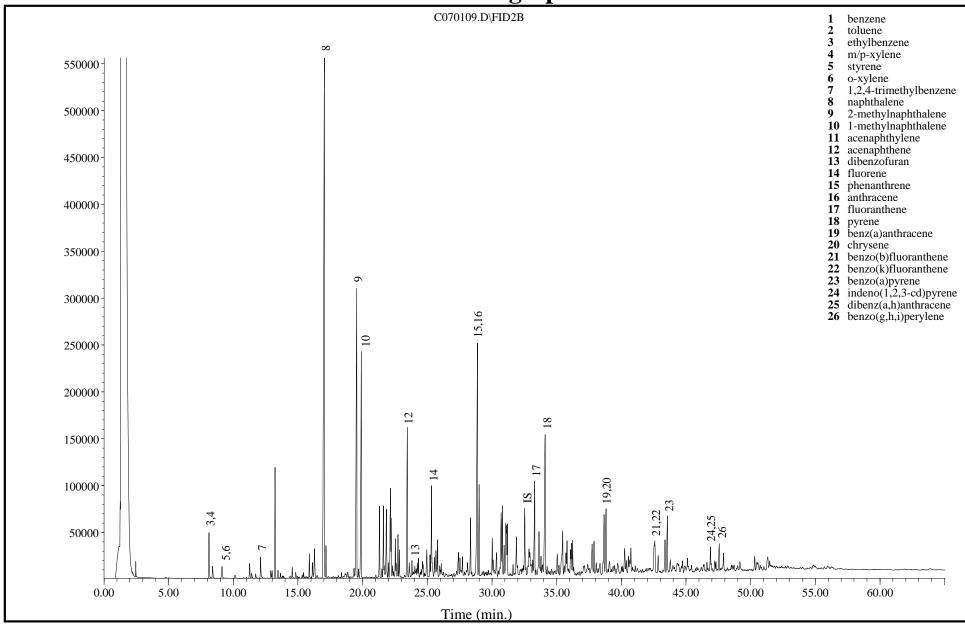
Sample Receipt Log

							T	I	
			Date	Date					
Lab ID	Field ID	Matrix	Sampled	Received	Project #	Container	Comments	Client Name	Project Name
SG100629-01	Congarce Sed-1	Sediment	6/28/2010	6/29/2010	S08005-60	Lx 2oz & Ex 8oz jar		SCANA/MTR	Huger Sediments
SG100629-02	Congaree Sed-2	Sediment	6/28/2010	6/29/2010	S08005-60	2 x 4oz jar		SCANA/MTR	Huger Sediments
SG100629-03	Congaree Sed-3	Sediment	6/28/2010	6/29/2010	S08005-60	2 x 4oz jar	1	SCANA/MTR	Huger Sediments

Logged By: By

Reviewed By 100 Date: 6/30/10

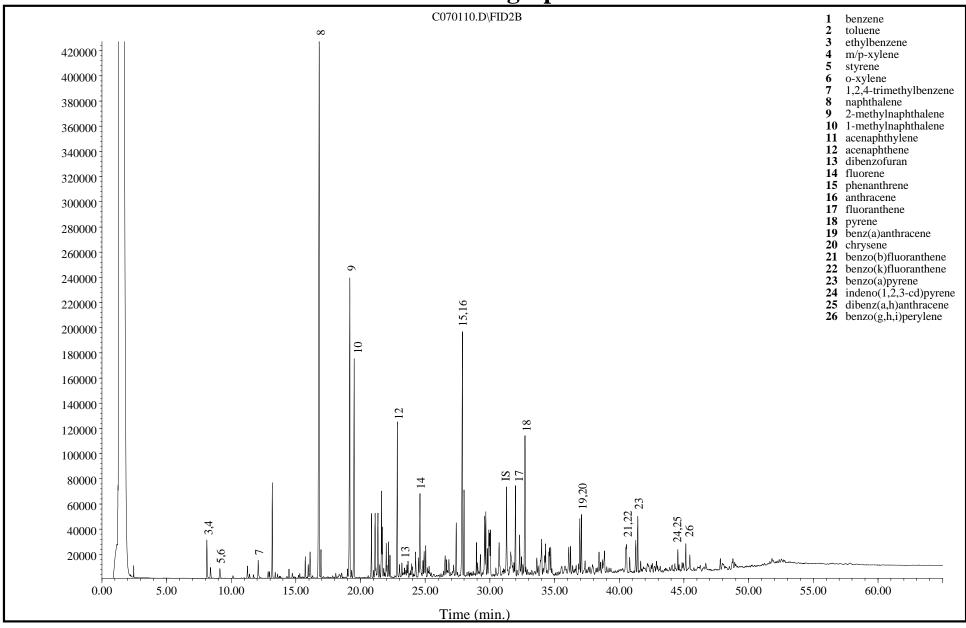
META Environmental, Inc. Sample Receipt Checklist


Receipt date: 6/29110
Login date: 6/29//0
Login personnel: Bryno Massa
Client Information:.
Company Name: MTR
Project Manager: Chery Yushinski
Project Name: Huger Sezimento
Shipping Information:
How were samples received? UPS FedEx DHL Other:
Number of coolers:
Internal temperature of coolers: 4, 6
Was ice present? Yes / No
Note: if cooler is outside the 2-6° range, META's project manager should be notified.
Documentation:
Was a Chain of Custody present? (Yes / No
Was it signed? Yes / No
Was all project information present on the COC? (Yes / No
Was a bill of lading or shipping label retained? Yes / No
Sample Information: 6/29/10 Kim
Number of sample containers: $\frac{\cancel{2} \cancel{6}}{\cancel{6}}$
Does this match the COC? Yes / No
Were all sample containers Intact? Yes / No
If no, list samples and problems: If of Davs, Not 11545 On COC. Note: if samples are damaged, META's project manager should be notified.
For aqueous 40ml Voas; was headspace present? Yes / No / NA
Comments:

Custodian

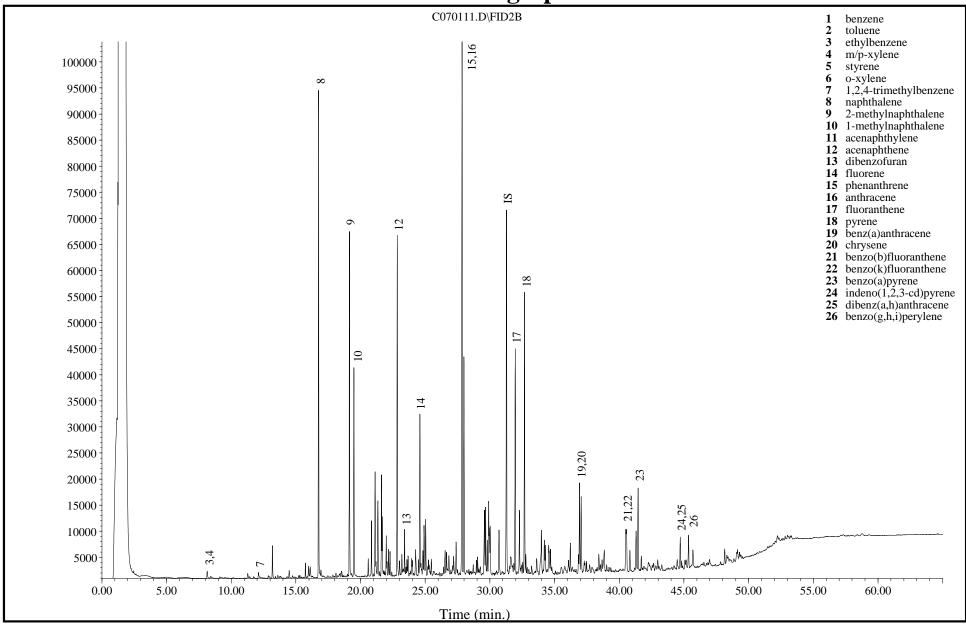
Project Manager

Login Checklist1


Appendix B GC/FID Fingerprints

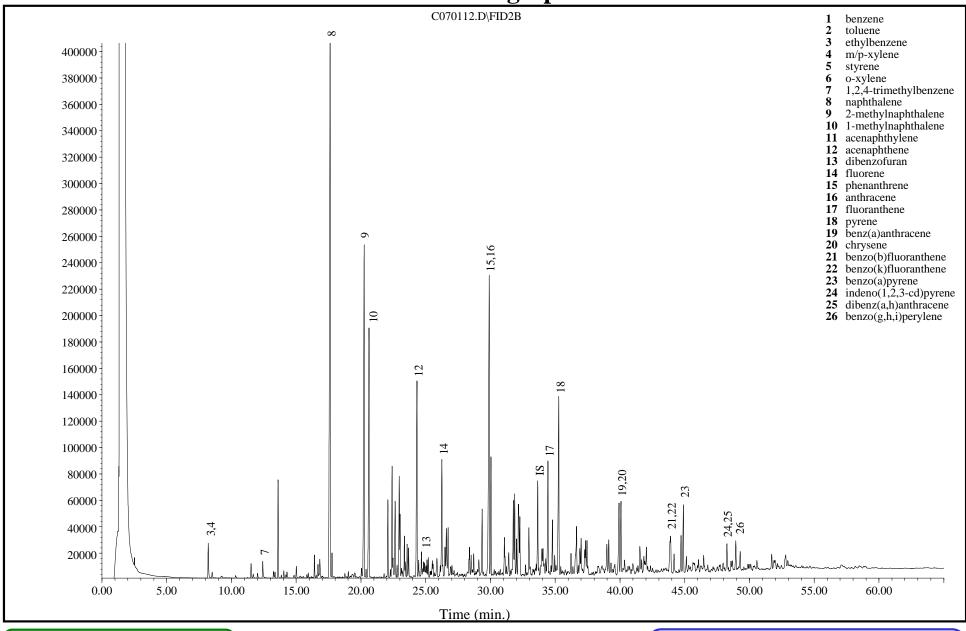
Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-1


Laboratory ID: SG100629-01A-D

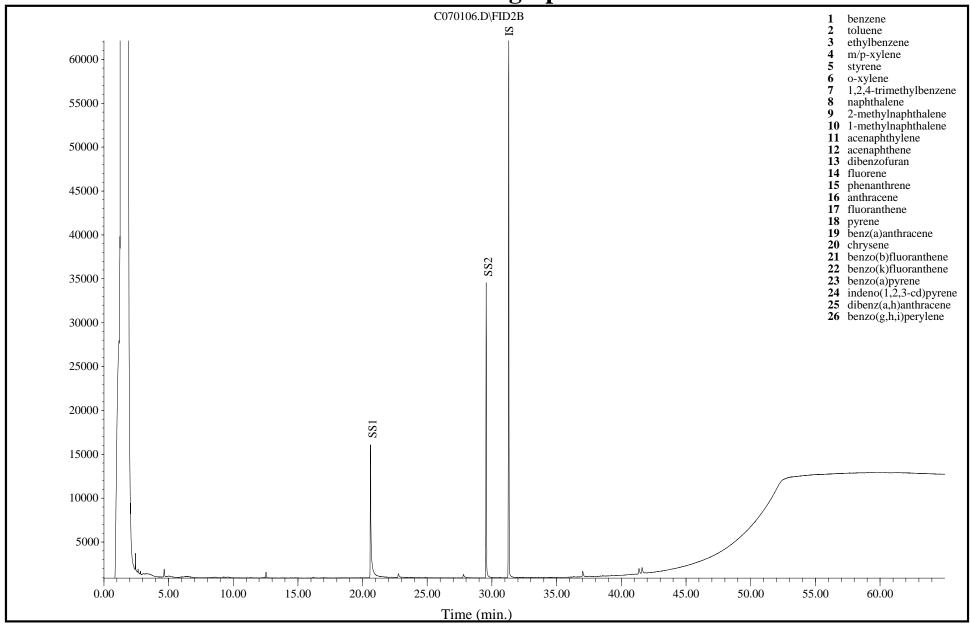
Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-1


Laboratory ID: SG100629-01ADUP-D

Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-2


Laboratory ID: SG100629-02A-D

Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-3

Laboratory ID: SG100629-03A-D

Extraction Date: 06/30/2010 Analysis Date: 07/01/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Soil Blank

Laboratory ID: QC100630-SB

Appendix C MAH/PAH Concentrations

Soil

Field ID: Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M

Lab ID SG100629-01A-D2
File ID: E070112.D Matrix:

Preservation: None

Date Sampled: 6/28/2010 Decanted: None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.06 Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF:

Operator: ERL Analysis DF: 100 Injection Volume (μI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	43.9 B	0.246	0.123	
Toluene	6.43 B	0.246	0.123	
Ethylbenzene	214 B	0.246	0.123	
m/p-Xylenes	65.4 B	0.246	0.123	
Styrene	11.7 B	0.246	0.123	
o-Xylene	58.9 B	0.246	0.123	
Isopropylbenzene	22.2	0.246	0.123	
n-Propylbenzene	4.7 B	0.246	0.123	
1,3,5-Trimethylbenzene	28.8 B	0.246	0.123	
1,2,4-Trimethylbenzene	90.2 B	0.246	0.123	
t-Butylbenzene	U	0.246	0.123	
sec-Butylbenzene	0.223 J	0.246	0.123	
p-Isopropyltoluene	11.7	0.246	0.123	
n-Butylbenzene	2.27 B	0.246	0.123	
C1 - Benzene	5.05 B	0.246	0.123	
C2 - Benzene	218 B	0.246	0.123	
C3 - Benzene	171 B	0.246	0.123	
C4 - Benzene	106	0.246	0.123	
C5 - Benzene	17.6	0.246	0.123	
trans-Decalin	0.405	0.246	0.123	
cis-Decalin	0.357	0.246	0.123	
Naphthalene	3,710 EB	0.246	0.123	
2-Methylnaphthalene	1,870 EB	0.246	0.123	
1-Methylnaphthalene	1,170 EB	0.246	0.123	
C1 - Naphthalene	1,920 EB	0.246	0.123	
C2 - Naphthalene	862	0.246	0.123	
C3 - Naphthalene	212	0.246	0.123	
C4 - Naphthalene	43.0	0.246	0.123	
Acenaphthylene	146	0.246	0.123	
Acenaphthene	644	0.246	0.123	
Dibenzofuran	37.2	0.246	0.123	
Fluorene	405	0.246	0.123	
C1 - Fluorene	218	0.246	0.123	
C2 - Fluorene	88.7	0.246	0.123	
C3 - Fluorene	36.8	0.246	0.123	
Phenanthrene	1,510 E	0.246	0.123	
Anthracene	385	0.246	0.123	

Field ID: **Congaree Sed-1**

SCANA/MTR Preparation Method: Client: EPA 3570 Project: Huger St. Cleanup Method(s): NA EPA 8270M

Analysis Method: Lab ID SG100629-01A-D2

File ID: E070112.D Matrix: Soil Preservation: None

Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.06

Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 **ERL** Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte Concentration (mg/kg dry wt.) RL EDL Comm	
C1 - Phenanthrene/Anthracene 801 0.246 0.123	
C2 - Phenanthrene/Anthracene 282 0.246 0.123	
C3 - Phenanthrene/Anthracene 68.8 0.246 0.123	
C4 - Phenanthrene/Anthracene 20.4 0.246 0.123	
Dibenzothiophene 299 0.246 0.123	
C1 - Dibenzothiophene 358 0.246 0.123	
C2 - Dibenzothiophene 240 0.246 0.123	
C3 - Dibenzothiophene 89.6 0.246 0.123	
C4 - Dibenzothiophene 20.1 0.246 0.123	
Benzo(b)naphtho(2,1-d)thiophene 114 0.246 0.123	
Fluoranthene 417 0.246 0.123	
Pyrene 737 B 0.246 0.123	
C1 - Fluoranthene/Pyrene 641 0.246 0.123	
C2 - Fluoranthene/Pyrene 209 0.246 0.123	
C3 - Fluoranthene/Pyrene 60.8 0.246 0.123	
Benz(a)anthracene 270 0.246 0.123	
Chrysene* 287 0.246 0.123	
C1 - Benz(a)anthracene/Chrysene 224 0.246 0.123	
C2 - Benz(a)anthracene/Chrysene 82.7 0.246 0.123	
C3 - Benz(a)anthracene/Chrysene 26.0 0.246 0.123	
C4 - Benz(a)anthracene/Chrysene 11.4 0.246 0.123	
Benzo(b)fluoranthene 123 B 0.246 0.123	
Benzo(j/k)fluoranthene 153 B 0.246 0.123	
Benzo(e)pyrene 171 B 0.246 0.123	
Benzo(a)pyrene 320 B 0.246 0.123	
Perylene 54.0 0.246 0.123	
Indeno(1,2,3-cd)pyrene 116 0.246 0.123	
Dibenz(a,h)anthracene 47.0 0.246 0.123	
Benzo(g,h,i)perylene 159 B 0.246 0.123	
Coronene 39.8 0.246 0.123	
Retene U 0.246 0.123	
Benzo(b/c)fluorenes 84.6 0.246 0.123	
2-Methylpyrene 85.7 0.246 0.123	
4-Methylpyrene 84.5 0.246 0.123	
1-Methylpyrene 96.9 0.246 0.123	
Heptadecane BU 0.246 0.123	
Pristane 7.07 0.246 0.123	
Octadecane BU 0.246 0.123	
Phytane 4.09 0.246 0.123	

Field ID: Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Analysis Method: EPA 827
Lab ID SG100629-01A-D2

File ID: E070112.D Matrix: Soil

Preservation: None
Date Sampled: 6/28/2010 Decanted: None
Date Received: 6/29/2010

Date Prepared: 6/30/2010 Sample Size (g): 4.06 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 100

Injection Volume (μΙ): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	1.99	0.246	0.123	
2,6,10-trimethyltridecane	3.84	0.246	0.123	
Norpristane	3.82	0.246	0.123	
Total PAH (16)	9,430	0.246	0.123	
Total PAH (42)	16,500	0.246	0.123	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	82	50 - 120		
Phenanthrene-d10	80	50 - 120		
Benzo(a)pyrene-d12	83	50 - 120		
Perylene-d12	83	50 - 120		

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: **Congaree Sed-2**

SCANA/MTR Preparation Method: Client: EPA 3570 Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M

Lab ID SG100629-02A-D2 File ID: E070114.D Matrix: Soil

Preservation: None Date Sampled: Decanted: 6/28/2010 None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.34 Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000

Instrument: El Camino Prep DF: Analysis DF: Operator: 100 **ERL** 1.00

Injection Volume (µI): Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	1.22 B	0.230	0.115	
Toluene	0.555 B	0.230	0.115	
Ethylbenzene	6.64 B	0.230	0.115	
m/p-Xylenes	1.82 B	0.230	0.115	
Styrene	0.807 B	0.230	0.115	
o-Xylene	0.953 B	0.230	0.115	
Isopropylbenzene	1.25	0.230	0.115	
n-Propylbenzene	0.477 B	0.230	0.115	
1,3,5-Trimethylbenzene	1.84 B	0.230	0.115	
1,2,4-Trimethylbenzene	4.31 B	0.230	0.115	
t-Butylbenzene	U	0.230	0.115	
sec-Butylbenzene	U	0.230	0.115	
p-Isopropyltoluene	0.965	0.230	0.115	
n-Butylbenzene	0.708 B	0.230	0.115	
C1 - Benzene	0.467 B	0.230	0.115	
C2 - Benzene	6.11 B	0.230	0.115	
C3 - Benzene	10.4 B	0.230	0.115	
C4 - Benzene	12.3	0.230	0.115	
C5 - Benzene	4.26	0.230	0.115	
trans-Decalin	0.238	0.230	0.115	
cis-Decalin	U	0.230	0.115	
Naphthalene	291 B	0.230	0.115	
2-Methylnaphthalene	231 B	0.230	0.115	
1-Methylnaphthalene	134 B	0.230	0.115	
C1 - Naphthalene	231 B	0.230	0.115	
C2 - Naphthalene	141	0.230	0.115	
C3 - Naphthalene	42.2	0.230	0.115	
C4 - Naphthalene	10.4	0.230	0.115	
Acenaphthylene	10.5	0.230	0.115	
Acenaphthene	194	0.230	0.115	
Dibenzofuran	30.6	0.230	0.115	
Fluorene	98.8	0.230	0.115	
C1 - Fluorene	29.7	0.230	0.115	
C2 - Fluorene	13.2	0.230	0.115	
C3 - Fluorene	4.49	0.230	0.115	
Phenanthrene	365	0.230	0.115	
Anthracene	142	0.230	0.115	

Injection Volume (µI):

1.00

Field ID: Congaree Sed-2

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-02A-D2

 File ID:
 E070114.D
 Matrix:
 Soil

 Preservation:
 None

 Date Sampled:
 6/28/2010
 Decanted:
 None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.34 Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 **ERL**

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	121	0.230	0.115	
C2 - Phenanthrene/Anthracene	34.5	0.230	0.115	
C3 - Phenanthrene/Anthracene	7.47	0.230	0.115	
C4 - Phenanthrene/Anthracene	1.99	0.230	0.115	
Dibenzothiophene	22.6	0.230	0.115	
C1 - Dibenzothiophene	18.7	0.230	0.115	
C2 - Dibenzothiophene	11.4	0.230	0.115	
C3 - Dibenzothiophene	4.54	0.230	0.115	
C4 - Dibenzothiophene	1.24	0.230	0.115	
Benzo(b)naphtho(2,1-d)thiophene	6.14	0.230	0.115	
Fluoranthene	145	0.230	0.115	
Pyrene	178 B	0.230	0.115	
C1 - Fluoranthene/Pyrene	96.5	0.230	0.115	
C2 - Fluoranthene/Pyrene	21.6	0.230	0.115	
C3 - Fluoranthene/Pyrene	6.72	0.230	0.115	
Benz(a)anthracene	40.2	0.230	0.115	
Chrysene*	54.1	0.230	0.115	
C1 - Benz(a)anthracene/Chrysene	23.6	0.230	0.115	
C2 - Benz(a)anthracene/Chrysene	8.18	0.230	0.115	
C3 - Benz(a)anthracene/Chrysene	2.61	0.230	0.115	
C4 - Benz(a)anthracene/Chrysene	1.58	0.230	0.115	
Benzo(b)fluoranthene	29.1 B	0.230	0.115	
Benzo(j/k)fluoranthene	38.0 B	0.230	0.115	
Benzo(e)pyrene	29.5 B	0.230	0.115	
Benzo(a)pyrene	60.0 B	0.230	0.115	
Perylene	11.4	0.230	0.115	
Indeno(1,2,3-cd)pyrene	23.6	0.230	0.115	
Dibenz(a,h)anthracene	7.8	0.230	0.115	
Benzo(g,h,i)perylene	27.1 B	0.230	0.115	
Coronene	7.61	0.230	0.115	
Retene	0.623	0.230	0.115	
Benzo(b/c)fluorenes	18.0	0.230	0.115	
2-Methylpyrene	11.9	0.230	0.115	
4-Methylpyrene	9.6	0.230	0.115	
1-Methylpyrene	12.6	0.230	0.115	
Heptadecane	2.39 B	0.230	0.115	
Pristane	3.03	0.230	0.115	
Octadecane	BU	0.230	0.115	
Phytane	1.12	0.230	0.115	

Field ID: Congaree Sed-2

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Cleanup Method(s): Huger St. NA Analysis Method: **EPA 8270M** Lab ID SG100629-02A-D2 File ID: E070114.D Matrix: Soil Preservation: None Date Sampled: 6/28/2010 Decanted: None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.34 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 ERL

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	0.952	0.230	0.115	
2,6,10-trimethyltridecane	1.62	0.230	0.115	
Norpristane	1.39	0.230	0.115	
Total PAH (16)	1,700	0.230	0.115	
Total PAH (42)	2,630	0.230	0.115	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	101	50 - 120		
Phenanthrene-d10	101	50 - 120		
Benzo(a)pyrene-d12	113	50 - 120		
Perylene-d12	155	50 - 120		

Injection Volume (µI):

1.00

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: Congaree Sed-3

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M Lab ID SG100629-03A-D2

File ID: E070115.D Matrix: Soil

Date Sampled: 6/28/2010 Decanted: None
Date Received: 6/29/2010

Date Prepared: 6/30/2010 Sample Size (g): 4.18 Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 **ERL**

Injection Volume (μl): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	17.0 B	0.239	0.120	
Toluene	4.33 B	0.239	0.120	
Ethylbenzene	113 B	0.239	0.120	
m/p-Xylenes	20.3 B	0.239	0.120	
Styrene	9.44 B	0.239	0.120	
o-Xylene	6.12 B	0.239	0.120	
Isopropylbenzene	12.5	0.239	0.120	
n-Propylbenzene	2.91 B	0.239	0.120	
1,3,5-Trimethylbenzene	16.0 B	0.239	0.120	
1,2,4-Trimethylbenzene	49.9 B	0.239	0.120	
t-Butylbenzene	U	0.239	0.120	
sec-Butylbenzene	0.198 J	0.239	0.120	
p-Isopropyltoluene	6.67	0.239	0.120	
n-Butylbenzene	4.17 B	0.239	0.120	
C1 - Benzene	3.52 B	0.239	0.120	
C2 - Benzene	87.4 B	0.239	0.120	
C3 - Benzene	102 B	0.239	0.120	
C4 - Benzene	83.6	0.239	0.120	
C5 - Benzene	16.7	0.239	0.120	
trans-Decalin	0.422	0.239	0.120	
cis-Decalin	U	0.239	0.120	
Naphthalene	2,240 EB	0.239	0.120	
2-Methylnaphthalene	1,320 EB	0.239	0.120	
1-Methylnaphthalene	792 B	0.239	0.120	
C1 - Naphthalene	1,330 B	0.239	0.120	
C2 - Naphthalene	652	0.239	0.120	
C3 - Naphthalene	165	0.239	0.120	
C4 - Naphthalene	30.6	0.239	0.120	
Acenaphthylene	85.8	0.239	0.120	
Acenaphthene	642	0.239	0.120	
Dibenzofuran	33.4	0.239	0.120	
Fluorene	336	0.239	0.120	
C1 - Fluorene	111	0.239	0.120	
C2 - Fluorene	56.4	0.239	0.120	
C3 - Fluorene	23.6	0.239	0.120	
Phenanthrene	1,250 E	0.239	0.120	
Anthracene	355	0.239	0.120	

Injection Volume (µI):

1.00

Field ID: Congaree Sed-3

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-03A-D2

 File ID:
 E070115.D
 Matrix:
 Soil

 Preservation:
 None

 Date Sampled:
 6/28/2010
 Decanted:
 None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.18 Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 **ERL**

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	623	0.239	0.120	
C2 - Phenanthrene/Anthracene	194	0.239	0.120	
C3 - Phenanthrene/Anthracene	44.0	0.239	0.120	
C4 - Phenanthrene/Anthracene	11.8	0.239	0.120	
Dibenzothiophene	224	0.239	0.120	
C1 - Dibenzothiophene	240	0.239	0.120	
C2 - Dibenzothiophene	143	0.239	0.120	
C3 - Dibenzothiophene	48.8	0.239	0.120	
C4 - Dibenzothiophene	9.89	0.239	0.120	
Benzo(b)naphtho(2,1-d)thiophene	75.4	0.239	0.120	
Fluoranthene	350	0.239	0.120	
Pyrene	607 B	0.239	0.120	
C1 - Fluoranthene/Pyrene	481	0.239	0.120	
C2 - Fluoranthene/Pyrene	139	0.239	0.120	
C3 - Fluoranthene/Pyrene	36.0	0.239	0.120	
Benz(a)anthracene	207	0.239	0.120	
Chrysene*	216	0.239	0.120	
C1 - Benz(a)anthracene/Chrysene	154	0.239	0.120	
C2 - Benz(a)anthracene/Chrysene	54.4	0.239	0.120	
C3 - Benz(a)anthracene/Chrysene	13.9	0.239	0.120	
C4 - Benz(a)anthracene/Chrysene	6.62	0.239	0.120	
Benzo(b)fluoranthene	92.3 B	0.239	0.120	
Benzo(j/k)fluoranthene	117 B	0.239	0.120	
Benzo(e)pyrene	125 B	0.239	0.120	
Benzo(a)pyrene	232 B	0.239	0.120	
Perylene	39.8	0.239	0.120	
Indeno(1,2,3-cd)pyrene	84.6	0.239	0.120	
Dibenz(a,h)anthracene	33.0	0.239	0.120	
Benzo(g,h,i)perylene	115 B	0.239	0.120	
Coronene	29.1	0.239	0.120	
Retene	1.55	0.239	0.120	
Benzo(b/c)fluorenes	65.4	0.239	0.120	
2-Methylpyrene	64.3	0.239	0.120	
4-Methylpyrene	60.6	0.239	0.120	
1-Methylpyrene	69.6	0.239	0.120	
Heptadecane	BU	0.239	0.120	
Pristane	6.3	0.239	0.120	
Octadecane	BU	0.239	0.120	
Phytane	2.78	0.239	0.120	

Field ID: Congaree Sed-3

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Cleanup Method(s): Huger St. NA Analysis Method: **EPA 8270M** Lab ID SG100629-03A-D2 File ID: E070115.D Matrix: Soil Preservation: None Date Sampled: 6/28/2010 Decanted: None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.18 Date Cleanup: Percent Solid: 100.0% NA

Date Cleanup: NA Percent Solid: 100.0

Date Analyzed: 7/2/2010 Extract Volume (μl): 2000 Instrument: El Camino Prep DF: 1

Operator: ERL Analysis DF: 100 Injection Volume (μl): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	1.99	0.239	0.120	
2,6,10-trimethyltridecane	3.4	0.239	0.120	
Norpristane	3.88	0.239	0.120	
Total PAH (16)	6,960	0.239	0.120	
Total PAH (42)	12,000	0.239	0.120	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	75	50 - 120		
Phenanthrene-d10	77	50 - 120		
Benzo(a)pyrene-d12	91	50 - 120		
Perylene-d12	103	50 - 120		

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

1.00

Fie	hla	ID:	Soil Blank
1 10	7IU	ID.	JUII DIAIIK

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M Lab ID QC100630-SB

File ID: E070110.D Matrix: Soil

Preservation: None Date Sampled: NA Decanted: None

Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: NA Percent Solid: 100.0% Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Prep DF: Instrument: El Camino Analysis DF: Operator: **ERL** 1

Injection Volume (μl):
Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	0.002	0.002	0.001	
Toluene	0.002	0.002	0.001	
Ethylbenzene	0.001 J	0.002	0.001	
m/p-Xylenes	0.001 J	0.002	0.001	
Styrene	0.002 J	0.002	0.001	
o-Xylene	0.001 J	0.002	0.001	
Isopropylbenzene	U	0.002	0.001	
n-Propylbenzene	0.001 J	0.002	0.001	
1,3,5-Trimethylbenzene	0.001 J	0.002	0.001	
1,2,4-Trimethylbenzene	0.001 J	0.002	0.001	
t-Butylbenzene	U	0.002	0.001	
sec-Butylbenzene	U	0.002	0.001	
p-Isopropyltoluene	U	0.002	0.001	
n-Butylbenzene	0.001 J	0.002	0.001	
C1 - Benzene	0.002	0.002	0.001	
C2 - Benzene	0.002	0.002	0.001	
C3 - Benzene	0.004	0.002	0.001	
C4 - Benzene	U	0.002	0.001	
C5 - Benzene	U	0.002	0.001	
trans-Decalin	U	0.002	0.001	
cis-Decalin	U	0.002	0.001	
Naphthalene	0.001 J	0.002	0.001	
2-Methylnaphthalene	0.001 J	0.002	0.001	
1-Methylnaphthalene	0.001 J	0.002	0.001	
C1 - Naphthalene	0.001 J	0.002	0.001	
C2 - Naphthalene	U	0.002	0.001	
C3 - Naphthalene	U	0.002	0.001	
C4 - Naphthalene	U	0.002	0.001	
Acenaphthylene	U	0.002	0.001	
Acenaphthene	U	0.002	0.001	
Dibenzofuran	U	0.002	0.001	
Fluorene	U	0.002	0.001	
C1 - Fluorene	U	0.002	0.001	
C2 - Fluorene	U	0.002	0.001	
C3 - Fluorene	U	0.002	0.001	
Phenanthrene	Ū	0.002	0.001	
Anthracene	U	0.002	0.001	

Field ID: Soil Blank

SCANA/MTR Preparation Method: Client: EPA 3570 Project: Huger St. Cleanup Method(s): NA Analysis Method: EPA 8270M Lab ID QC100630-SB File ID: E070110.D Matrix: Soil Preservation: None Date Sampled: Decanted: NA None Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Prep DF: Instrument: El Camino

Operator: ERL Analysis DF: 1
Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	U	0.002	0.001	
C2 - Phenanthrene/Anthracene	Ü	0.002	0.001	
C3 - Phenanthrene/Anthracene	Ū	0.002	0.001	
C4 - Phenanthrene/Anthracene	Ū	0.002	0.001	
Dibenzothiophene	Ü	0.002	0.001	
C1 - Dibenzothiophene	U	0.002	0.001	
C2 - Dibenzothiophene	U	0.002	0.001	
C3 - Dibenzothiophene	U	0.002	0.001	
C4 - Dibenzothiophene	U	0.002	0.001	
Benzo(b)naphtho(2,1-d)thiophene	U	0.002	0.001	
Fluoranthene	U	0.002	0.001	
Pyrene	0.001 J	0.002	0.001	
C1 - Fluoranthene/Pyrene	U	0.002	0.001	
C2 - Fluoranthene/Pyrene	U	0.002	0.001	
C3 - Fluoranthene/Pyrene	U	0.002	0.001	
Benz(a)anthracene	U	0.002	0.001	
Chrysene*	U	0.002	0.001	
C1 - Benz(a)anthracene/Chrysene	U	0.002	0.001	
C2 - Benz(a)anthracene/Chrysene	U	0.002	0.001	
C3 - Benz(a)anthracene/Chrysene	U	0.002	0.001	
C4 - Benz(a)anthracene/Chrysene	U	0.002	0.001	
Benzo(b)fluoranthene	0.001 J	0.002	0.001	
Benzo(j/k)fluoranthene	0.001 J	0.002	0.001	
Benzo(e)pyrene	0.001 J	0.002	0.001	
Benzo(a)pyrene	0.001 J	0.002	0.001	
Perylene	U	0.002	0.001	
Indeno(1,2,3-cd)pyrene	U	0.002	0.001	
Dibenz(a,h)anthracene	U	0.002	0.001	
Benzo(g,h,i)perylene	0.001 J	0.002	0.001	
Coronene	U	0.002	0.001	
Retene	U	0.002	0.001	
Benzo(b/c)fluorenes	U	0.002	0.001	
2-Methylpyrene	U	0.002	0.001	
4-Methylpyrene	U	0.002	0.001	
1-Methylpyrene	U	0.002	0.001	
Heptadecane	0.002	0.002	0.001	
Pristane	U	0.002	0.001	
Octadecane	0.003	0.002	0.001	
Phytane	U	0.002	0.001	

Field ID: Soil Blank

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Cleanup Method(s): Huger St. NA Analysis Method: **EPA 8270M** Lab ID QC100630-SB File ID: E070110.D Matrix: Soil Preservation: None Date Sampled: NA Decanted: None Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 1

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments	
2,6,10-trimethyldodecane	U	0.002	0.001		
2,6,10-trimethyltridecane	U	0.002	0.001		
Norpristane	U	0.002	0.001		
Total PAH (16)	0.006	0.002	0.001		
Total PAH (42)	0.008	0.002	0.001		
Extraction Surrogate Recoveries (%)		Limits			
Toluene-d8	98	50 - 120			
Phenanthrene-d10	88	50 - 120			
Benzo(a)pyrene-d12	112	50 - 120			
Perylene-d12	110	50 - 120			

Injection Volume (µI):

1.00

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: Soil Blank Spike

SCANA/MTR Client: Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA Analysis Method: EPA 8270M Lab ID QC100630-SBS File ID: E070111.D Matrix: Soil Preservation: None Date Sampled: Decanted: None NA Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF:

Analysis DF:

Injection Volume (µI):

1

1.00

Batch QC: QC100630-SB

ERL

Operator:

Analyte	Concentration (mg/kg dry wt.)		RL	EDL	Comments
MAH & PAH COMPOUNDS:	Spike Amount				% Recovery
Benzene	2.00	2.48 B	0.002	0.001	124
Toluene	2.00	2.47 B	0.002	0.001	124
Ethylbenzene	2.00	2.18 B	0.002	0.001	109
m/p-Xylenes	2.00	2.14 B	0.002	0.001	107
Styrene	2.00	2.44 B	0.002	0.001	122
o-Xylene	2.00	2.25 B	0.002	0.001	113
Isopropylbenzene	2.00	2.29	0.002	0.001	115
n-Propylbenzene	2.00	2.37 B	0.002	0.001	119
1,3,5-Trimethylbenzene	2.00	2.38 B	0.002	0.001	119
1,2,4-Trimethylbenzene	2.00	2.31 B	0.002	0.001	116
t-Butylbenzene		U	0.002	0.001	
sec-Butylbenzene	2.00	2.36	0.002	0.001	118
p-Isopropyltoluene	2.00	2.38	0.002	0.001	119
n-Butylbenzene	2.00	2.41 B	0.002	0.001	121
C1 - Benzene		BU	0.002	0.001	
C2 - Benzene		BU	0.002	0.001	
C3 - Benzene		BU	0.002	0.001	
C4 - Benzene		U	0.002	0.001	
C5 - Benzene		U	0.002	0.001	
trans-Decalin		U	0.002	0.001	
cis-Decalin		U	0.002	0.001	
Naphthalene	2.00	2.46 B	0.002	0.001	123
2-Methylnaphthalene	2.00	2.52 B	0.002	0.001	126
1-Methylnaphthalene	2.00	2.45 B	0.002	0.001	123
C1 - Naphthalene		BU	0.002	0.001	
C2 - Naphthalene		U	0.002	0.001	
C3 - Naphthalene		U	0.002	0.001	
C4 - Naphthalene		U	0.002	0.001	
Acenaphthylene	2.00	2.54	0.002	0.001	127
Acenaphthene	2.00	2.52	0.002	0.001	126
Dibenzofuran	2.00	2.56	0.002	0.001	128
Fluorene	2.00	2.58	0.002	0.001	129
C1 - Fluorene		U	0.002	0.001	
C2 - Fluorene		Ü	0.002	0.001	
C3 - Fluorene		Ü	0.002	0.001	
Phenanthrene	2.00	2.48	0.002	0.001	124
Anthracene	2.00	2.35	0.002	0.001	118

Field ID: Soil Blank Spike

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

 Lab ID
 QC100630-SBS

 File ID:
 E070111.D
 Matrix:
 Soil

Preservation: None
Date Sampled: NA Decanted: None
Date Received: NA

Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Prep DF: Instrument: El Camino Analysis DF: Operator: **ERL** 1 Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)		RL	EDL	Comments
C1 - Phenanthrene/Anthracene		U	0.002	0.001	
C2 - Phenanthrene/Anthracene		Ü	0.002	0.001	
C3 - Phenanthrene/Anthracene		Ü	0.002	0.001	
C4 - Phenanthrene/Anthracene		Ü	0.002	0.001	
Dibenzothiophene	2.00	2.53	0.002	0.001	127
C1 - Dibenzothiophene		U	0.002	0.001	
C2 - Dibenzothiophene		Ü	0.002	0.001	
C3 - Dibenzothiophene		Ü	0.002	0.001	
C4 - Dibenzothiophene		Ü	0.002	0.001	
Benzo(b)naphtho(2,1-d)thiophene		Ü	0.002	0.001	
Fluoranthene	2.00	2.5	0.002	0.001	125
Pyrene	2.00	2.45 B	0.002	0.001	123
C1 - Fluoranthene/Pyrene		U	0.002	0.001	
C2 - Fluoranthene/Pyrene		Ü	0.002	0.001	
C3 - Fluoranthene/Pyrene		Ü	0.002	0.001	
Benz(a)anthracene	2.00	2.5	0.002	0.001	125
Chrysene*	2.00	2.58	0.002	0.001	129
C1 - Benz(a)anthracene/Chrysene		U	0.002	0.001	. = 0
C2 - Benz(a)anthracene/Chrysene		Ü	0.002	0.001	
C3 - Benz(a)anthracene/Chrysene		Ü	0.002	0.001	
C4 - Benz(a)anthracene/Chrysene		Ü	0.002	0.001	
Benzo(b)fluoranthene	2.00	2.72 B	0.002	0.001	136
Benzo(j/k)fluoranthene	2.00	2.73 B	0.002	0.001	137
Benzo(e)pyrene	2.00	2.61 B	0.002	0.001	131
Benzo(a)pyrene	2.00	2.64 B	0.002	0.001	132
Perylene		U	0.002	0.001	-
Indeno(1,2,3-cd)pyrene	2.00	2.8	0.002	0.001	140
Dibenz(a,h)anthracene	2.00	2.85	0.002	0.001	143
Benzo(g,h,i)perylene	2.00	2.71 B	0.002	0.001	136
Coronene		U	0.002	0.001	
Retene		U	0.002	0.001	
Benzo(b/c)fluorenes		U	0.002	0.001	
2-Methylpyrene		U	0.002	0.001	
4-Methylpyrene		U	0.002	0.001	
1-Methylpyrene		U	0.002	0.001	
Heptadecane		BU	0.002	0.001	
Pristane		U	0.002	0.001	
Octadecane		BU	0.002	0.001	
Phytane		U	0.002	0.001	

Field ID: Soil Blank Spike

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M

1.00

Lab ID QC100630-SBS

File ID: E070111.D Matrix: Soil Preservation: None

Date Sampled: NA Decanted: None Date Received: NA

Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 1

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	U	0.002	0.001	
2,6,10-trimethyldodecane	Ü	0.002	0.001	
Norpristane	Ü	0.002	0.001	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	112	50 - 120		
Phenanthrene-d10	114	50 - 120		
Benzo(a)pyrene-d12	136	50 - 120		
Perylene-d12	130	50 - 120		

Injection Volume (µI):

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Injection Volume (µI):

1.00

Field ID: Duplicate of Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-01DUPA-D2

File ID: E070113.D Matrix: Soil Preservation: None

Date Sampled: 6/28/2010 Decanted: None

Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.13 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 100

Batch QC: QC100630-SB

Benzene 22.1 B 0.242 0.121 66.1 Toluene 1.47 B 0.242 0.121 125.6 Ethylbenzene 124 B 0.242 0.121 53.3 Styrene 40.4 B 0.242 0.121 47.3 Styrene 40.4 B 0.242 0.121 97.3 Styrene 40.4 B 0.242 0.121 97.3 Styrene 34.1 B 0.242 0.121 53.3 Styrene 34.1 B 0.242 0.121 53.7 stopytopylbenzene 12.8 0.242 0.121 53.7 stopytopylbenzene 12.8 0.242 0.121 53.7 stopytopylbenzene 16.6 B 0.242 0.121 57.2 1.3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 stellutylbenzene 0.135 J 0.242 0.121 53.2 stellutylbenzene 1.22 B 0.242 0.121 53.2 stellutylbenzene 1.22 B 0.242 0.121 53.2 stellutylbenzene 1.22 B 0.242 0.121 52.2 c2 - Benzene 1.22 B 0.242 0.121 122.2 c3 - Benzene 1.22 B 0.242 0.121 52.2 c3 - Benzene 1.22 B 0.242 0.121 52.2 c3 - Benzene 1.22 B 0.242 0.121 52.2 c3 - Benzene 1.24 B 0.242 0.121 52.2 c3 - Benzene 1.25 B 0.242 0.121 52.2 c4 - Benzene 1.26 B 0.242 0.121 52.2 c5 - Benzene 1.27 B 0.242 0.121 52.2 c3 - Benzene 1.28 B 0.242 0.121 52.2 c4 - Benzene 1.29 B 0.242 0.121 52.2 c5 - Benzene 1.29 B 0.242 0.121 52.2 c6 - Benzene 1.29 B 0.242 0.121 53.1 stopytopytopytopytopytopytopytopytopytopy	Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
Toluene	MAH & PAH COMPOUNDS:				RPD
Ethylbenzene 124 B 0.242 0.121 53.3 m/p-Xylenes 40.4 B 0.242 0.121 47.3 Styrene 4.04 B 0.242 0.121 97.3 o-Xylene 34.1 B 0.242 0.121 53.3 stopropylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 10 0.242 0.121 53.7 Ethylylbenzene 0 0.135 J 0.242 0.121 53.7 Ebutylbenzene 0 0.135 J 0.242 0.121 53.7 Debutylbenzene 0 0.135 J 0.242 0.121 53.2 n-Butylbenzene 0 0.135 J 0.242 0.121 53.2 n-Butylbenzene 0 0.135 J 0.242 0.121 53.2 ch-Butylbenzene 1.22 B 0.242 0.121 53.2 C1 - Benzene 1.22 B 0.242 0.121 53.2 C2 - Benzene 1.22 B 0.242 0.121 52.2 C3 - Benzene 1.28 B 0.242 0.121 52.2 C3 - Benzene 1.29 B 0.242 0.121 52.2 C4 - Benzene 1.20 B 0.242 0.121 53.1 C4 - Benzene 1.20 B 0.242 0.121 54.2 C5 - Benzene 1.20 0.242 0.121 54.2 C5 - Benzene 1.20 0.242 0.121 54.2 C5 - Benzene 1.20 0.242 0.121 54.2 C6 - Benzene 1.20 0.242 0.121 54.4 1-Methylnaphthalene 1.070 EB 0.242 0.121 54.4 1-Methylnaphthalene 1.070 EB 0.242 0.121 54.4 1-Methylnaphthalene 1.070 EB 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.4 C4 - Naphthalene 1.00 0.242 0.121 55.4 C4 - Naphthalene 1.00 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.5 C4 - Fluorene 1.00 0.242 0.121 55.5 C1 - Fluorene 1.00 0.242 0.121 55.5 C1 - Fluorene 1.00 0.242 0.121 55.5 C1 - Fluorene 1.00 0.242 0.121 55.5 C3 - Fluorene 1.00 0.242 0.121 55.5	Benzene	22.1 B	0.242	0.121	66.1
mp-Xylenes 40.4 B 0.242 0.121 47.3 styrene 6-Xylene 4.04 B 0.242 0.121 97.3 o-Xylene 18spropylbenzene 12.8 0.242 0.121 53.3 styrene 12.8 0.242 0.121 53.7 n-Propylbenzene 12.8 0.242 0.121 57.2 1.35-Timethylbenzene 13,5-Timethylbenzene 16.6 B 0.242 0.121 53.7 1.2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1.2,4-Trimethylbenzene 8ce-Butylbenzene 0 0.135 J 0.242 0.121 NA 53.7 1.2,4-Trimethylbenzene 0.135 J 0.242 0.121 NA 8ce-Butylbenzene 0 0.135 J 0.242 0.121 49.2 0.121 53.2 0.121 NA 9c-Isopropyltoluene 6.78 0.242 0.121 49.2 0.121 53.2 0.121 49.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.2 0.121 60.2 0.121 53.3 0.121 60.2 0.121 53.3 0.121 60.2 0.121	Toluene	1.47 B	0.242	0.121	125.6
Styrene 4.04 B 0.242 0.121 97.3 o-Xylene 34.1 B 0.242 0.121 53.3 lsopropylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 2.61 B 0.242 0.121 57.2 1.3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,24-Trimethylbenzene 52.0 B 0.242 0.121 53.7 t-Butylbenzene 0.135 J 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 MA p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 53.2 c1 - Benzene 1.22 B 0.242 0.121 52.2 C3 - Benzene	Ethylbenzene	124 B	0.242	0.121	53.3
o-Xylene 34.1 B 0.242 0.121 53.3 Isopropylbenzene 12.8 n-Propylbenzene 12.8 n.242 0.121 53.7 n-Propylbenzene 2.61 B 0.242 0.121 57.2 1,3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1,24-Trimethylbenzene 0.135 J 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 49.2 p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 53.2 C1 - Benzene 1.22 B 0.242 0.121 60.2 C2 - Benzene 1.22 B 0.242 0.121 52 C3 - Benzene 1.28 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 99.3 B 0.242 0.121 53.1 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 53.7 - Maphthalene 1,070 EB 0.242 0.121 54.4 C1 - Naphthalene </td <td>m/p-Xylenes</td> <td>40.4 B</td> <td>0.242</td> <td>0.121</td> <td>47.3</td>	m/p-Xylenes	40.4 B	0.242	0.121	47.3
Sepropylbenzene	Styrene	4.04 B	0.242	0.121	97.3
n-Propylbenzene 2.61 B 0.242 0.121 57.2 1,3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,3,5-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 0.135 J 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 49.2 p-lsopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 52.2 C2 - Benzene 128 B 0.242 0.121 52. C3 - Benzene 128 B 0.242 0.121 52. C3 - Benzene 128 B 0.242 0.121 52. C5 - Benzene 10.8 0.242 0.121 53.1 C4 - Benzene 10.8 0.242 0.121 54.2 C5 - Benzene 10.8 0.242 0.121 54.2 C5 - Benzene 10.8 0.242 0.121 54.2 C6 - Benzene 10.240 J 0.242 0.121 57.1 trans-Decalin 10.	o-Xylene	34.1 B	0.242	0.121	53.3
1,3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 I-Butylbenzene U 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 49.2 p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 122.2 C2 - Benzene 1.28 B 0.242 0.121 122.2 C3 - Benzene 128 B 0.242 0.121 52. C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 53.1 C4 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin 0.240 J 0.242 0.121 53.7 2-Methylnaphthalene	Isopropylbenzene	12.8	0.242	0.121	53.7
1,2,4-Trimethylbenzene	n-Propylbenzene	2.61 B	0.242	0.121	57.2
Butylbenzene U 0.242 0.121 NA	1,3,5-Trimethylbenzene	16.6 B	0.242	0.121	53.7
sec-Butylbenzene	1,2,4-Trimethylbenzene	52.0 B	0.242	0.121	53.7
Sec-Butylbenzene 0.135 J 0.242 0.121 49.2	t-Butylbenzene	U	0.242	0.121	NA
p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 60.2 C2 - Benzene 1.22 B 0.242 0.121 122.2 C2 - Benzene 128 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 52 C3 - Benzene 60.8 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 57.1 trans-Decalin U 0.242 0.121 57.2 cis-Decalin U 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 53.7 C2-Methylnaphthalene 2,140 EB 0.242 0.121 53.7 C2-Methylnaphthalene 666 B 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 54.3 C2 - Naphthalene 120 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.5 C2 - Fluorene 50.4 0.242 0.121 55.5 C3	sec-Butylbenzene	0.135 J	0.242	0.121	49.2
1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 122.2 C2 - Benzene 1.28 B 0.242 0.121 122.2 C3 - Benzene 128 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 99.8 B 0.242 0.121 53.1 C4 - Benzene 9.78 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 Itrans-Decalin 0.240 J 0.242 0.121 51.2 Itrans-Decalin U 0.242 0.121 53.7 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 1,100 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 55.4 C4 - Naphthalene 371 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C2 - Fluorene 15.4 0.242 0.121 55.5 C3 - Fluorene 10.242 0.121 55.	•	6.78	0.242	0.121	53.2
C2 - Benzene 128 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 55.4 C4 - Naphthalene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.5 C3 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 50.4 0.242 0.121	n-Butylbenzene	1.22 B	0.242	0.121	60.2
C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.1	C1 - Benzene	1.22 B	0.242	0.121	122.2
C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.1	C2 - Benzene	128 B	0.242	0.121	52
C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.9 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C3 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 <	C3 - Benzene	99.3 B	0.242	0.121	53.1
trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin Naphthalene 2,140 EB 0.242 0.121 53.7 cash 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 cash 1-Methylnaphthalene 666 B 0.242 0.121 54.9 cash C1 - Naphthalene 1,100 B 0.242 0.121 54.3 cash C2 - Naphthalene 488 0.242 0.121 55.4 cash C3 - Naphthalene 120 0.242 0.121 55.4 cash C4 - Naphthalene 24.8 0.242 0.121 53.7 cash Acenaphthylene 72.0 0.242 0.121 67.9 cash Acenaphthene 371 0.242 0.121 53.8 cash Dibenzofuran 21.1 0.242 0.121 55.2 cash Fluorene 229 0.242 0.121 55.5 cash C1 - Fluorene 116 0.242 0.121 55.1 cash C2 - Fluorene 50.4 0.242 0.121 55.1 cash C3 - Fluorene 21.5 0.242 0.121 55.1 cash	C4 - Benzene	60.8	0.242	0.121	54.2
cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 120 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.1 C2 - Fluorene 50.4 0.242 0.121 55.1 </td <td>C5 - Benzene</td> <td>9.78</td> <td>0.242</td> <td>0.121</td> <td>57.1</td>	C5 - Benzene	9.78	0.242	0.121	57.1
Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	trans-Decalin	0.240 J	0.242	0.121	51.2
2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 50.4 0.242 0.121 55.1	cis-Decalin	U	0.242	0.121	NA
1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	Naphthalene	2,140 EB	0.242	0.121	53.7
C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	2-Methylnaphthalene	1,070 EB	0.242	0.121	54.4
C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	1-Methylnaphthalene	666 B	0.242	0.121	54.9
C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C1 - Naphthalene	1,100 B	0.242	0.121	54.3
C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C2 - Naphthalene	488	0.242	0.121	55.4
Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C3 - Naphthalene	120	0.242	0.121	55.4
Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C4 - Naphthalene	24.8	0.242	0.121	53.7
Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Acenaphthylene	72.0	0.242	0.121	67.9
Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Acenaphthene	371	0.242	0.121	53.8
C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Dibenzofuran	21.1	0.242	0.121	55.2
C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Fluorene	229	0.242	0.121	55.5
C3 - Fluorene 21.5 0.242 0.121 52.5	C1 - Fluorene	116	0.242	0.121	61.1
	C2 - Fluorene	50.4	0.242	0.121	55.1
Phenanthrene 869 0.242 0.121 53.9	C3 - Fluorene	21.5	0.242	0.121	52.5
. Hondituriono 0.272 0.121 00.3	Phenanthrene	869	0.242	0.121	53.9
Anthracene 222 0.242 0.121 53.7	Anthracene	222	0.242	0.121	53.7

Field ID: Duplicate of Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-01DUPA-D2

6/29/2010

 File ID:
 E070113.D
 Matrix:
 Soil

 Preservation:
 None

 Date Sampled:
 6/28/2010
 Decanted:
 None

Date Prepared: 6/30/2010 Sample Size (g): 4.13 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 100

Injection Volume (μI): 1.00

Batch QC: QC100630-SB

Date Received:

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	465	0.242	0.121	53.1
C2 - Phenanthrene/Anthracene	161	0.242	0.121	54.6
C3 - Phenanthrene/Anthracene	39.2	0.242	0.121	54.8
C4 - Phenanthrene/Anthracene	12.4	0.242	0.121	48.8
Dibenzothiophene	175	0.242	0.121	52.3
C1 - Dibenzothiophene	209	0.242	0.121	52.6
C2 - Dibenzothiophene	140	0.242	0.121	52.6
C3 - Dibenzothiophene	52.7	0.242	0.121	51.9
C4 - Dibenzothiophene	10.7	0.242	0.121	61
Benzo(b)naphtho(2,1-d)thiophene	66.2	0.242	0.121	53.1
Fluoranthene	244	0.242	0.121	52.3
Pyrene	432 B	0.242	0.121	52.2
C1 - Fluoranthene/Pyrene	371	0.242	0.121	53.4
C2 - Fluoranthene/Pyrene	120	0.242	0.121	54.1
C3 - Fluoranthene/Pyrene	33.9	0.242	0.121	56.8
Benz(a)anthracene	154	0.242	0.121	54.7
Chrysene*	163	0.242	0.121	55.1
C1 - Benz(a)anthracene/Chrysene	125	0.242	0.121	56.7
C2 - Benz(a)anthracene/Chrysene	46.6	0.242	0.121	55.8
C3 - Benz(a)anthracene/Chrysene	13.4	0.242	0.121	64
C4 - Benz(a)anthracene/Chrysene	7.23	0.242	0.121	44.8
Benzo(b)fluoranthene	70.9 B	0.242	0.121	53.7
Benzo(j/k)fluoranthene	84.8 B	0.242	0.121	57.4
Benzo(e)pyrene	96.8 B	0.242	0.121	55.4
Benzo(a)pyrene	179 B	0.242	0.121	56.5
Perylene	30.3	0.242	0.121	56.2
Indeno(1,2,3-cd)pyrene	65.1	0.242	0.121	56.2
Dibenz(a,h)anthracene	26.1	0.242	0.121	57.2
Benzo(g,h,i)perylene	89.5 B	0.242	0.121	55.9
Coronene	23.1	0.242	0.121	53.1
Retene	U	0.242	0.121	NA
Benzo(b/c)fluorenes	47.5	0.242	0.121	56.2
2-Methylpyrene	49.6	0.242	0.121	53.4
4-Methylpyrene	50.0	0.242	0.121	51.3
1-Methylpyrene	55.4	0.242	0.121	54.5
Heptadecane	3.36 B	0.242	0.121	#VALUE!
Pristane	4.25	0.242	0.121	49.8
Octadecane	5.34 B	0.242	0.121	#VALUE!
Phytane	2.52	0.242	0.121	47.5

Field ID: Duplicate of Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-01DUPA-D2

File ID: E070113.D Matrix: Soil Preservation: None

 Date Sampled:
 6/28/2010
 Decanted:
 None

 Date Received:
 6/29/2010
 Sample Size (g):
 4.13

 Date Cleanup:
 NA
 Percent Solid:
 100.0%

 Date Analyzed:
 7/2/2010
 Extract Volume (μl):
 2000

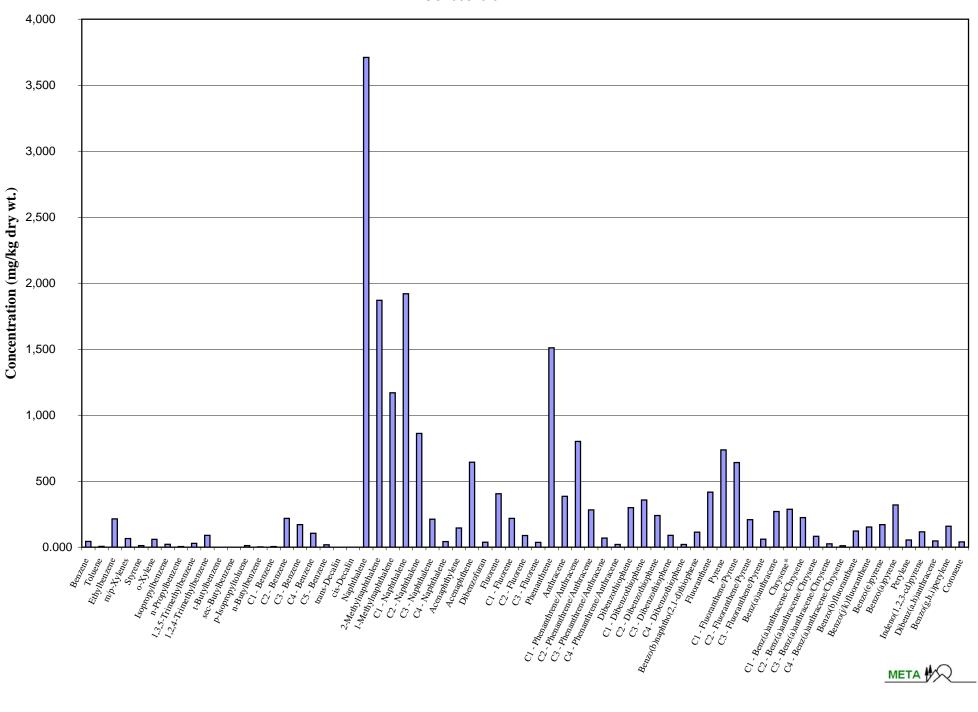
 Instrument:
 EI Camino
 Prep DF:
 1

 Operator:
 ERL
 Analysis DF:
 100

 Injection Volume (μl):
 1.00

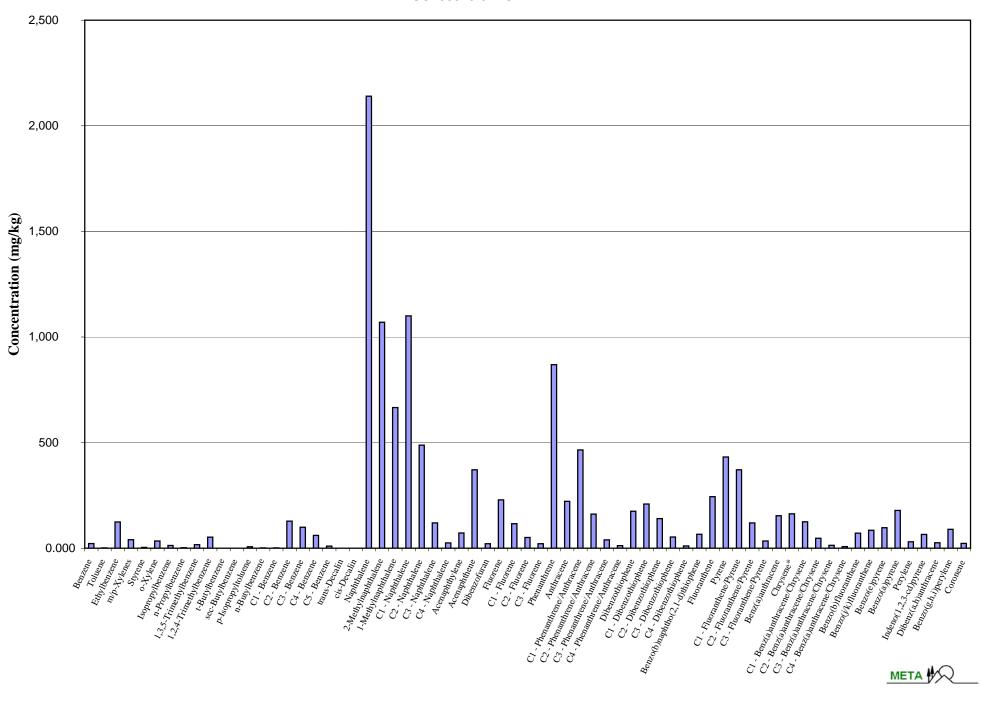
Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	1.09	0.242	0.121	58.4
2,6,10-trimethyltridecane	2.52	0.242	0.121	41.5
Norpristane	2.53	0.242	0.121	40.6
Total PAH (16)	5,410	0.242	0.121	54.2
Total PAH (42)	9,460	0.242	0.121	54.2
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	43	50 - 120		
Phenanthrene-d10	39	50 - 120		
Benzo(a)pyrene-d12	48	50 - 120		
Perylene-d12	80	50 - 120		

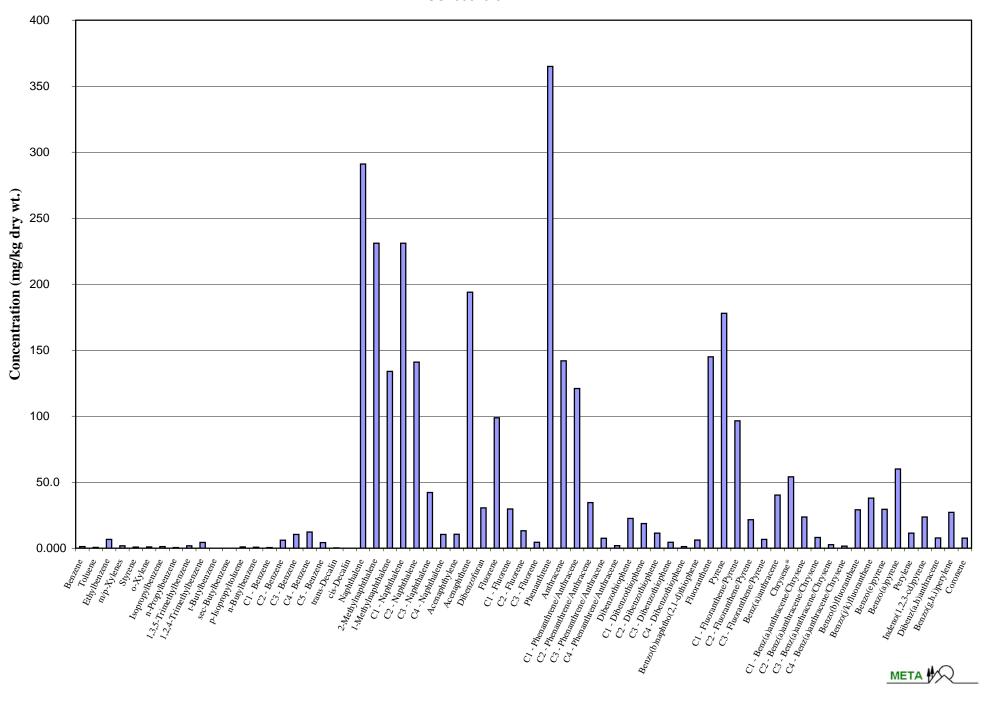

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

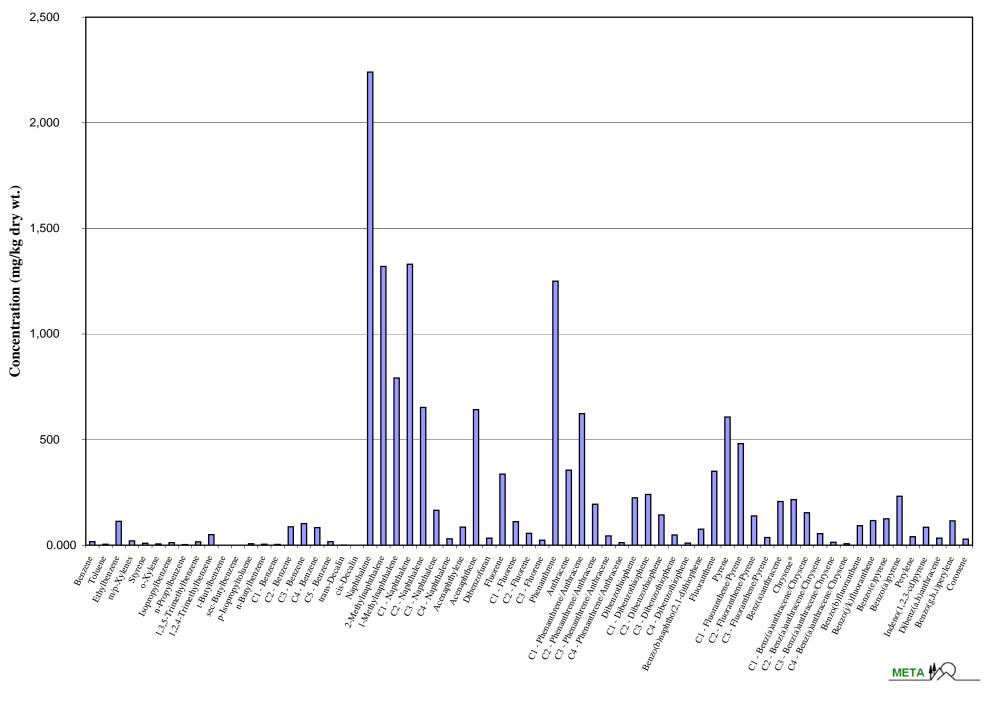
Appendix D Extended MAH/PAH Profiles – Histograms


Congaree Sed-1

SG100629-01A-D2


Duplicate of Congaree Sed-1

SG100629-01DUPA-D2


Congaree Sed-2

SG100629-02A-D2

Congaree Sed-3

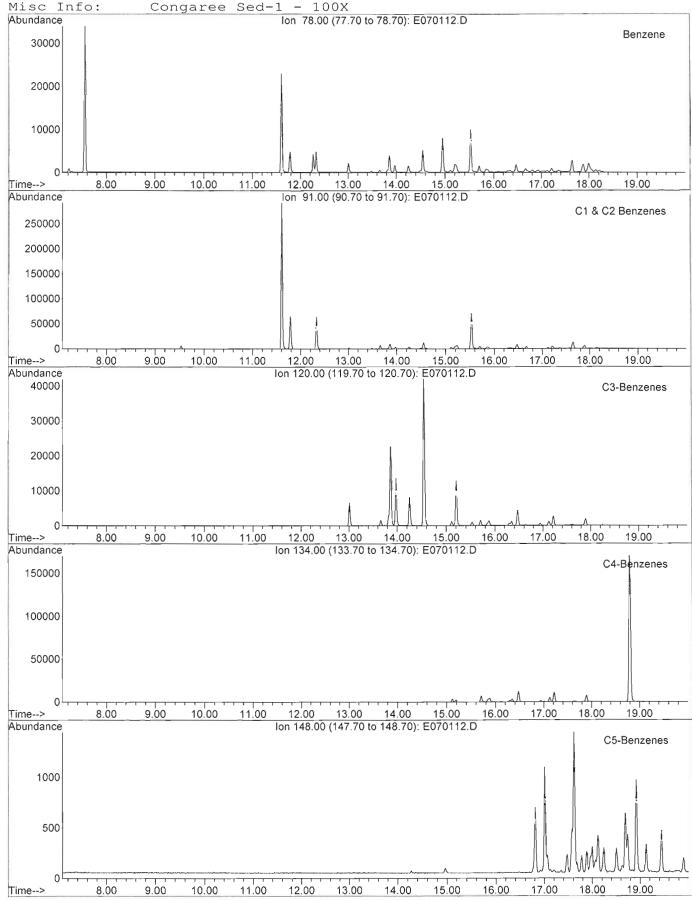
SG100629-03A-D2

Appendix E

Extracted Ion Current Profiles (EICPs)

GC/MS EXTRACTED ION CHROMATOGRAM

J:\1\DATA\E100701\E070112.D


File:

2 Jul 2010 Date Acquired: 3:49 am Sample Name: SG100629-01A-D2 Misc Info: Congaree Sed-1 - 100X Abundance Ion 85.00 (84.70 to 85.70): E070112.D Alkanes 20000 15000 10000 5000 15.00 25.00 45.00 50.00 55.00 60.00 10.00 20.00 30.00 35.00 40.00 Time--> Abundance Ion 83.00 (82.70 to 83.70): E070112.D 25000 Alkyl-cyclohexanes 20000 15000 10000 5000 10.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 Time--> 15.00 Abundance Ion 123.00 (122.70 to 123.70): E070112.D Sesquiterpanes 1000 500 26.50 Time--> 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 Ion 191.00 (190.70 to 191.70): E070112.D Abundance سيديا و صوبالمديوه ودوا فوجود به أو دارية و الحاب و المؤلوم و المؤ 800 Terpanes 400 200 Time--> 36.00 38.00 42.00 50.00 52.00 54.00 56.00 58.00 60.00 40.00 44.00 46.00 48.00 Ion 217.00 (216.70 to 217.70): E070112.D Abundance 600 Steranes 400 200 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

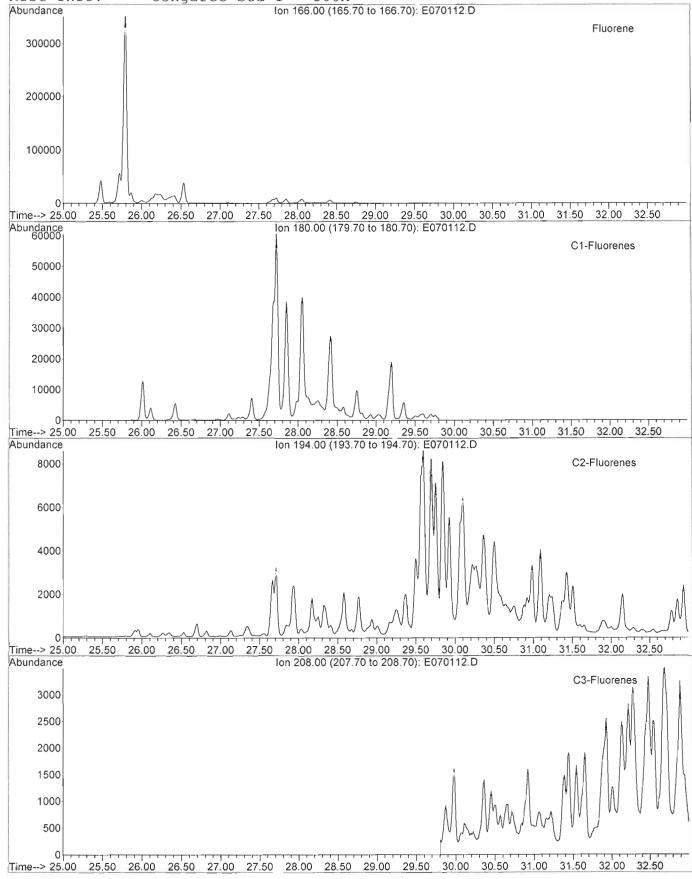
Date Acquired: 2 Jul 2010 3:49 am Sample Name: SG100629-01A-D2

GC/MS EXTRACTED ION CHROMATOGRAM

J:\1\DATA\E100701\E070112.D

File:

Date Acquired: 2 Jul 2010 3:49 am Sample Name: SG100629-01A-D2 Misc Info: Congaree Sed-1 - 100X Abundance Ion 128.00 (127.70 to 128.70): E070112.D Naphthalene 4000000 3000000 2000000 1000000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 142.00 (141.70 to 142.70): E070112.D C1-Naphthalenes 1000000 500000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 156.00 (155.70 to 156.70): E070112.D 250000 C2-Naphthalenes 200000 150000 100000 50000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 170.00 (169.70 to 170.70): E070112.D C3-Naphthalenes 40000 30000 20000 10000 25.50 26.00 Time--> 22.00 22.50 23.00 24.00 24.50 Abundance Ion 184.00 (183.70 to 184.70): E070112.D C4-Naphthalenes 6000 4000 2000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time-->


GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

Date Acquired: 2 Jul 2010 3:49 am

Sample Name: SG100629-01A-D2

Misc Info: Congaree Sed-1 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D 2 Jul 2010 Date Acquired: 3:49 am Sample Name: SG100629-01A-D2 Misc Info: Congaree Sed-1 - 100X Abundance Ion 178.00 (177.70 to 178.70): E070112.D Phenanthrene & Anthracene 1500000 1000000 500000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 192.00 (191.70 to 192.70): E070112.D C1-Phenanthrenes & Anthracenes 250000 200000 150000 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 206.00 (205.70 to 206.70): E070112.D 80000 C2-Phenanthrenes & Anthracenes 60000 40000 20000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Ion 220.00 (219.70 to 220.70): E070112.D Abundance C3-Phenanthrenes & Anthracenes 10000 5000 28.50 <u>29.00</u> <u>29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 <u>36.00 36.50 37.00 37.50</u></u> Time--> Ion 234.00 (233.70 to 234.70): E070112.D Abundance C4-Phenanthrenes & Anthracerles 2000 1500 1000 500 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D Date Acquired: 2 Jul 2010 3:49 am Sample Name: SG100629-01A-D2 Congaree Sed-1 - 100X Misc Info: Abundance Ion 184.00 (183.70 to 184.70): E070112.D Dibenzothiophene 300000 200000 100000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 198.00 (197.70 to 198.70): E070112.D 150000 C1-Dibenzothiophenes 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance 40000 Ion 212.00 (211.70 to 212.70): E070112.D C2-Dibenzothiophenes 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance 15000 Ion 226.00 (225.70 to 226.70): E070112.D C3-Dibenzothiophenes 10000 5000 Time--> 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 Abundance Ion 240.00 (239.70 to 240.70): E070112.D C4-Dibenzothiophenes 2000 1500 1000 500

28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

Date Acquired: 2 Jul 2010 3:49 am SG100629-01A-D2 Sample Name: Misc Info: Congaree Sed-1 - 100X Abundance Ion 202.00 (201.70 to 202.70): E070112.D 1000000 Fluoranthene & Pyrene 800000 600000 400000 200000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 216.00 (215.70 to 216.70): E070112.D C1-Fluoranthenes & Pyrenes 150000 100000 50000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Ion 230.00 (229.70 to 230.70): E070112.D Abundance C2-Fluoranthenes & Pyrenes 20000 15000 10000 5000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> lon 244.00 (243.70 to 244.70); E070112.D Abundance C3∯∏luoranthenes & Pyrenes 5000 4000 3000 2000 1000

33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50

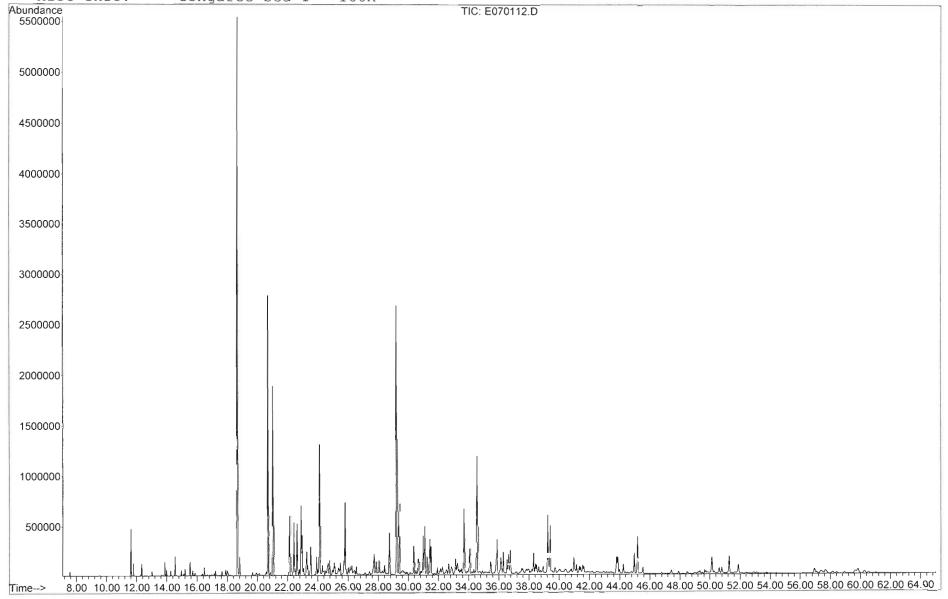
Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

J:\1\DATA\E100701\E070112.D

File:

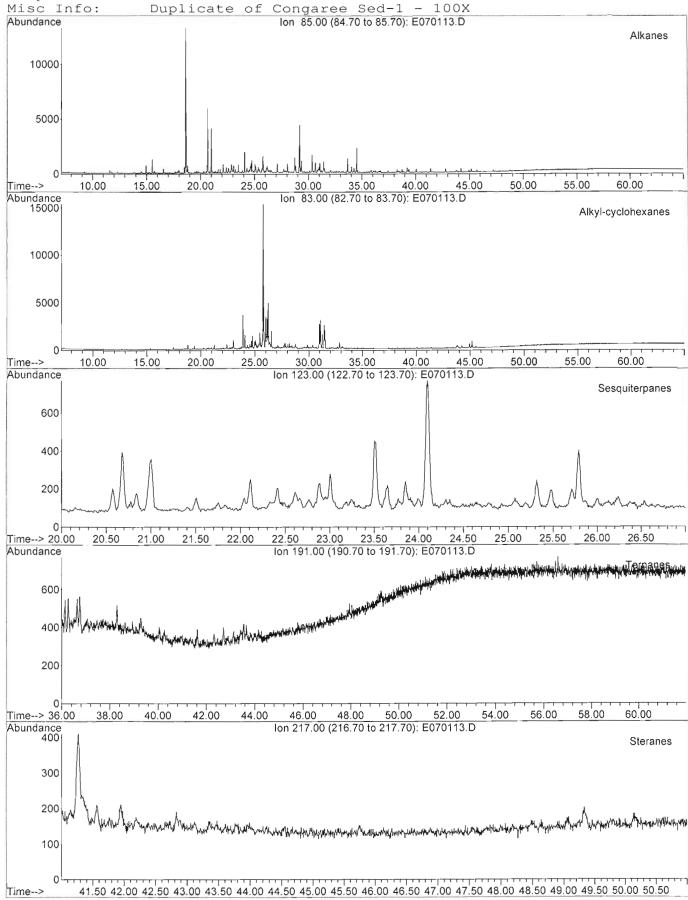
2 Jul 2010 Date Acquired: 3:49 am SG100629-01A-D2 Sample Name: Misc Info: Congaree Sed-1 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070112.D Benz(a)anthracene & Chrysene 300000 200000 100000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Ion 242.00 (241.70 to 242.70): E070112.D Abundance C1-Benz(a)anthracenes & Chrysenes 80000 60000 40000 20000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070112.D C2-Benz(a)anthracenes & Chrysenes 10000 8000 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 270.00 (269.70 to 270.70): E070112.D C3-Bena(a)anthracenes & Chrysenes 2000 1500 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 284.00 (283.70 to 284.70): E070112.D C4-Benz(a)anthracenes & Chrysenes 2000 1500 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50


GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

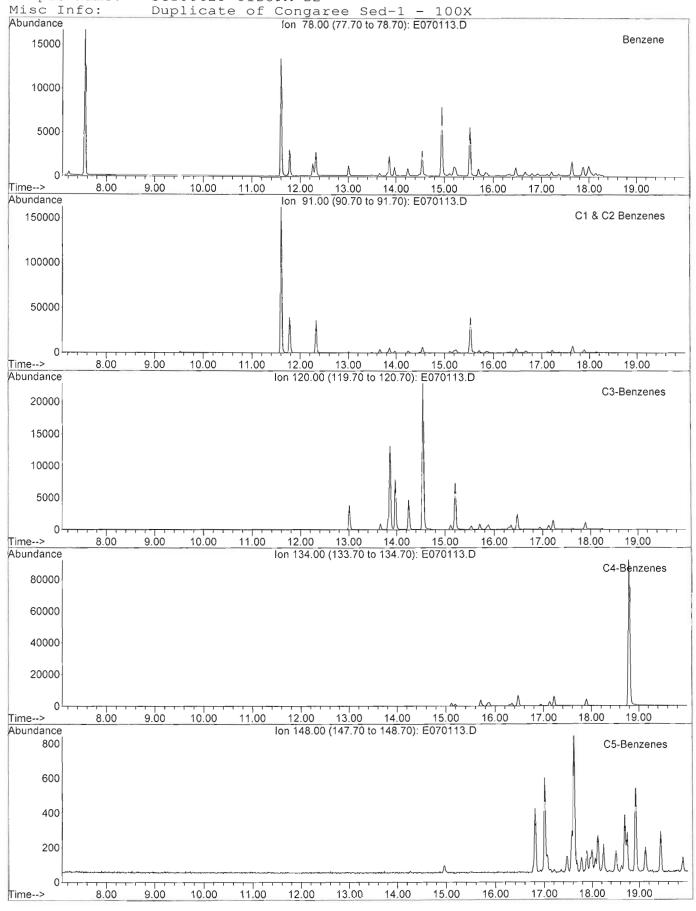
Date Acquired: 2 Jul 2010 3:49 am

Sample Name: SG100629-01A-D2


Misc Info: Congaree Sed-1 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D


Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 128.00 (127.70 to 128.70); E070113.D 2500000 Naphthalene 2000000 1500000 1000000 500000 Time--> <u>18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 </u> Abundance Ion 142.00 (141.70 to 142.70): E070113.D C1-Naphthalenes 800000 600000 400000 200000 $18.50\ 19.00\ 19.50\ 20.00\ 20.50\ 21.00\ 21.50\ 22.00\ 22.50\ 23.00\ 23.50\ 24.00\ 24.50\ 25.00\ \underline{25.50}\ 26.00\ \underline{26.50}\ 27.00\ \underline{27.50}\ 28.00$ Time--> lon 156.00 (155.70 to 156.70): E070113.D Abundance 150000 C2-Naphthalenes 100000 50000 $\underline{18.50} \,\, \underline{19.00} \,\, \underline{19.50} \,\, \underline{20.00} \,\, \underline{20.50} \,\, \underline{21.00} \,\, \underline{21.50} \,\, \underline{22.00} \,\, \underline{22.50} \,\, \underline{23.00} \,\, \underline{23.50} \,\, \underline{24.50} \,\, \underline{24.50} \,\, \underline{25.50} \,\, \underline{25.50} \,\, \underline{26.50} \,\, \underline{26.50} \,\, \underline{27.00} \,\, \underline{27.50} \,\, \underline{28.00}$ Time--> Ion 170.00 (169.70 to 170.70): E070113.D Abundance 25000 C3-Naphthalenes 20000 15000 10000 5000 25.50 Time--> 22.00 22.50 23.00 23.50 24.00 25.00 26.00 Ion 184.00 (183.70 to 184.70): E070113.D Abundance C4-Naphthalenes 3000 2000 1000

18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 166.00 (165.70 to 166.70): E070113.D 200000 Fluorene 150000 100000 50000 Time--> 25.00 25.50 26.00 <u>26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50</u> Abundance lon 180.00 (179.70 to 180.70): E070113.D C1-Fluorenes 30000 25000 20000 15000 10000 5000 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 Time--> 25.00 25.50 26.00 32.00 32.50 Abundance lon 194.00 (193.70 to 194.70): E070113.D C2-Fluorenes 4000 3000 2000 1000 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 Time--> 25.00 Abundance 2000 Ion 208.00 (207.70 to 208.70): E070113.D C3-Fluorenes 1500 1000 500 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 Time--> 25.00 25.50 26.00

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 178.00 (177.70 to 178.70): E070113.D Phenanthrene & Anthracene 1000000 800000 600000 400000 200000 Time--> 28:50 29:00 29:50 30:00 30:50 31:00 31:50 32:00 32:50 33:00 33:50 34:00 34:50 35:00 35:50 36:00 36:50 37:00 <u>37:50</u> Abundance Ion 192.00 (191.70 to 192.70): E070113.D C1-Phenanthrenes & Anthracenes 150000 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 206.00 (205.70 to 206.70): E070113.D C2-Phenanthrenes & Anthracenes 40000 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Ion 220.00 (219.70 to 220.70): E070113.D Abundance 8000 C3-Phenanthrenes & Anthracenes 6000 4000 2000 <u>28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50</u> 35.00 <u>35.50 36.00 36.50 37.00 37.50</u> Time--> Ion 234.00 (233.70 to 234.70): E070113.D Abundance C4-Phenanthrenes & Anthracerles 1000 500 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time -->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Duplicate of Congaree Sed-1 - 100X Misc Info: Abundance Ion 184.00 (183.70 to 184.70): E070113.D 200000 Dibenzothiophene 150000 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 198.00 (197.70 to 198.70): E070113.D C1-Dibenzothiophenes 80000 60000 40000 20000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 212.00 (211.70 to 212.70): E070113.D C2-Dibenzothiophenes 20000 15000 10000 5000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 226.00 (225.70 to 226.70): E070113.D C3-Dibenzothiophenes 8000 6000 4000 2000 35.50 Time--> 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 Abundance Ion 240.00 (239.70 to 240.70): E070113.D C4-Dibenzothiophenes 1000 500 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50

GC/MS EXTRACTED ION CHROMATOGRAM

J:\1\DATA\E100701\E070113.D

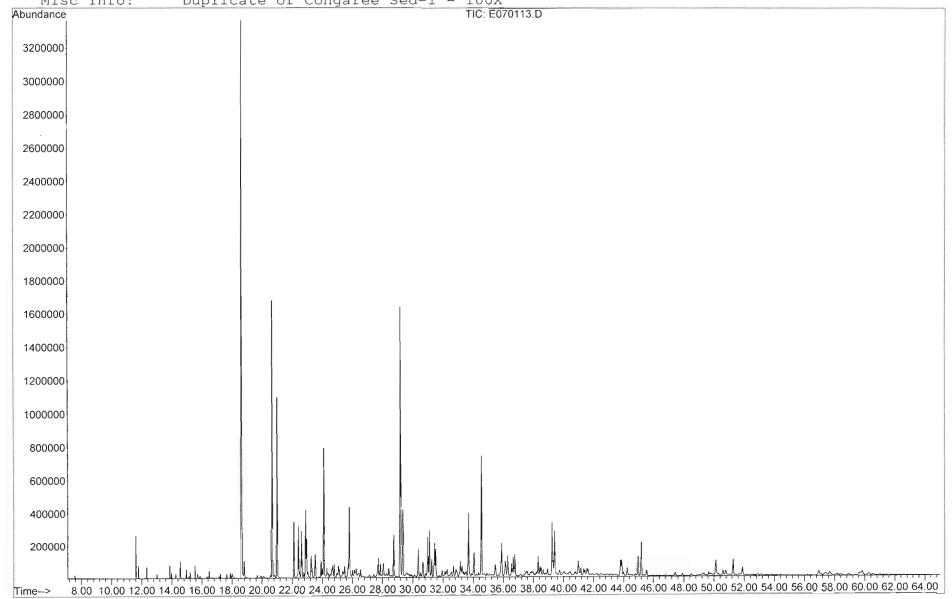
File:

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 202.00 (201.70 to 202.70): E070113.D 600000 Fluoranthene & Pyrene 500000 400000 300000 200000 100000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 216.00 (215.70 to 216.70): E070113.D C1-Fluoranthenes & Pyrenes 80000 60000 40000 20000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 230.00 (229.70 to 230.70): E070113.D C2-Fluoranthenes & Pyrenes 12000 10000 8000 6000 4000 2000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 244.00 (243.70 to 244.70): E070113.D 3000 C3+Fluoranthenes & Pyrenes 2500 2000 1500 1000 500 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

J:\1\DATA\E100701\E070113.D

File:

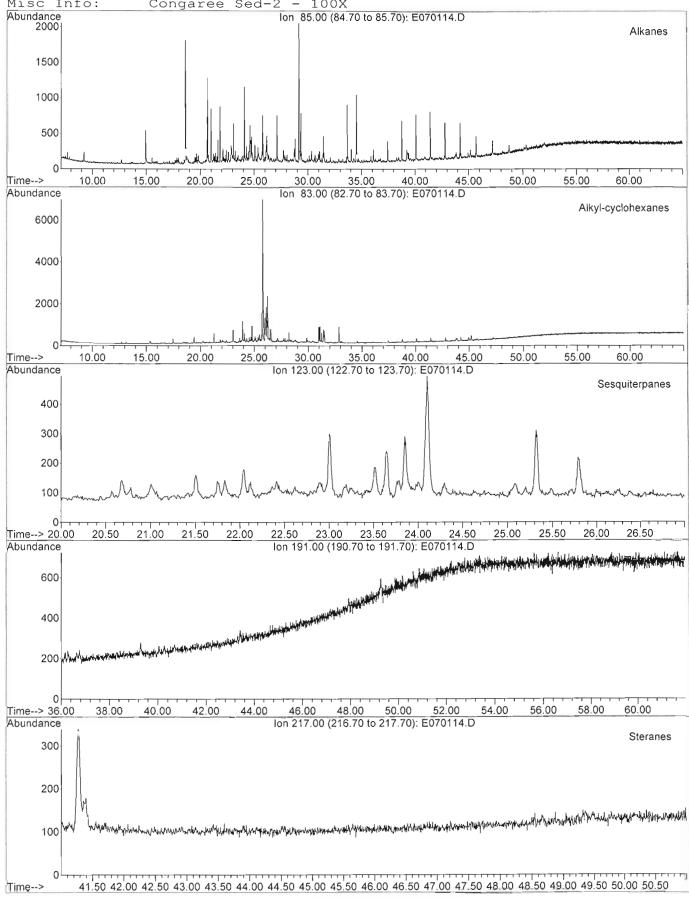

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070113.D 200000 Benz(a)anthracene & Chrysene 150000 100000 50000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 242.00 (241.70 to 242.70): E070113.D C1-Benz(a)anthracenes & Chrysenes 50000 40000 30000 20000 10000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070113.D C2-Benz(a)anthracenes & Chrysenes 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 270.00 (269.70 to 270.70): E070113.D C3-Benz (a) anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 lon 284.00 (283.70 to 284.70): E070113.D Abundance C4-Benz(a)anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50

GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

Misc Info: Duplicate of Congaree Sed-1 - 100X



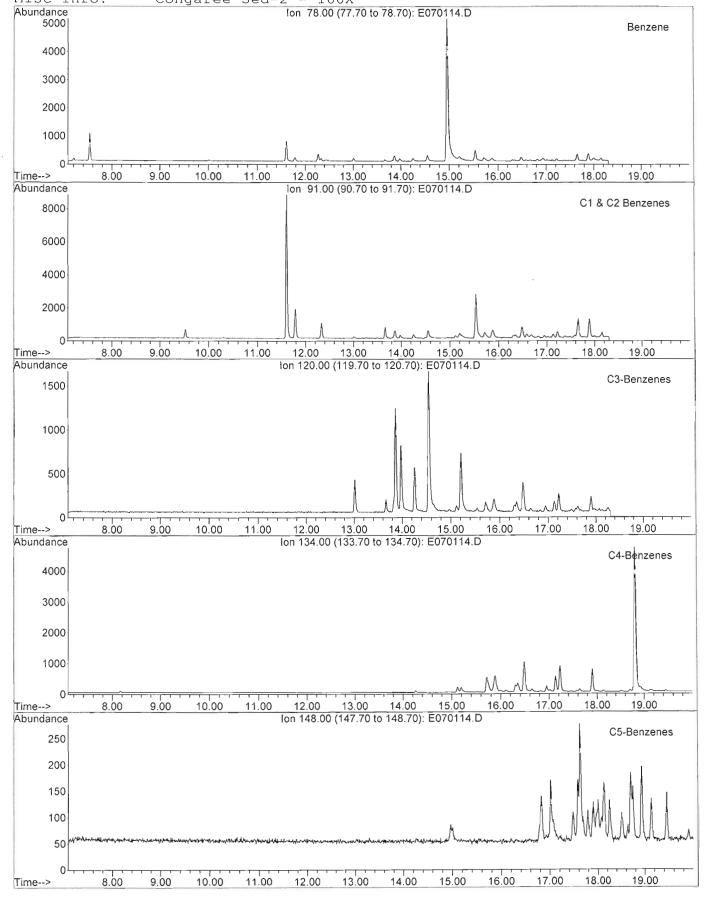
GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2

Misc Info: Congaree Sed-2 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM


File:

J:\1\DATA\E100701\E070114.D

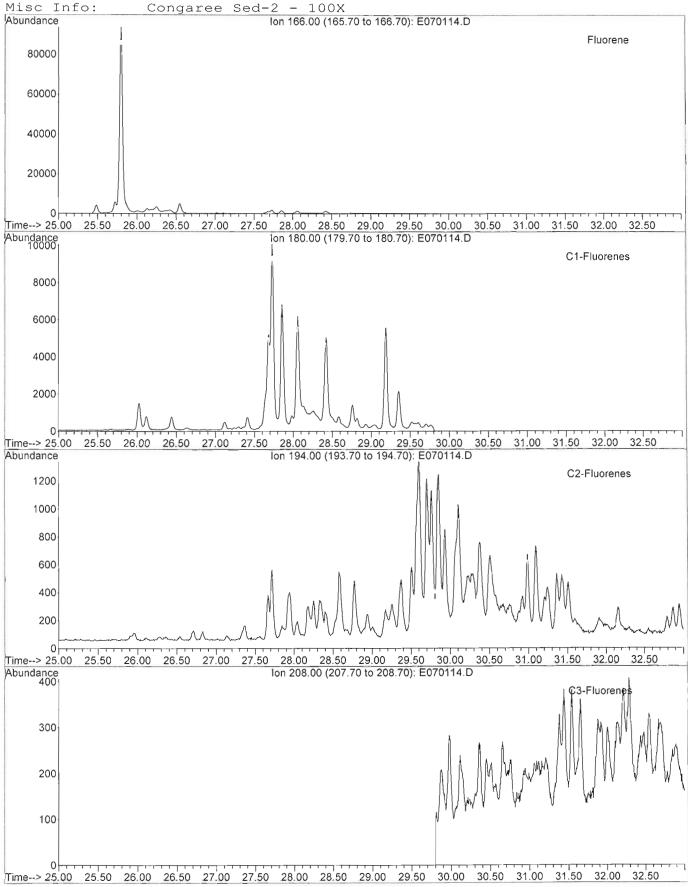
Date Acquired:

2 Jul 2010 6:23 am

Sample Name: SG100629-02A-D2
Misc Info: Congaree Sed-2 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2 Congaree Sed-2 - 100X Misc Info: Abundance Ion 128.00 (127.70 to 128.70): E070114.D Naphthalene 300000 200000 100000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 142.00 (141.70 to 142.70): E070114.D C1-Naphthalenes 150000 100000 50000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance 40000 Ion 156.00 (155.70 to 156.70): E070114.D C2-Naphthalenes 30000 20000 10000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 170.00 (169.70 to 170.70); E070114.D 8000 C3-Naphthalenes 6000 4000 2000 25.50 26.00 Time--> 22.00 22.50 23.00 24.00 24.50 Ion 184.00 (183.70 to 184.70); E070114.D Abundance C4-Naphthalenes 1000 500


18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00

Time-->

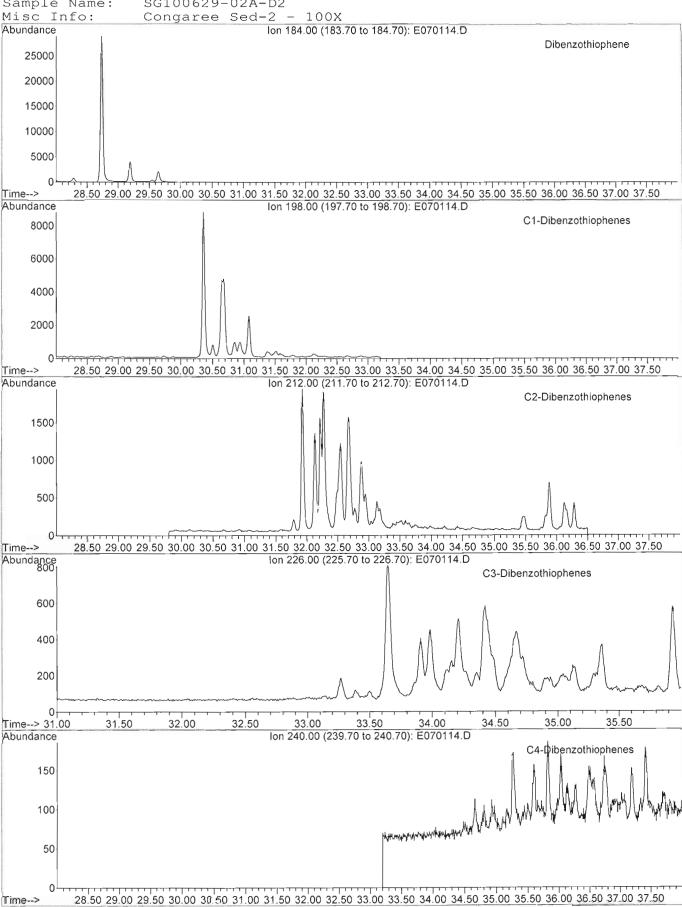
GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2

GC/MS EXTRACTED ION CHROMATOGRAM

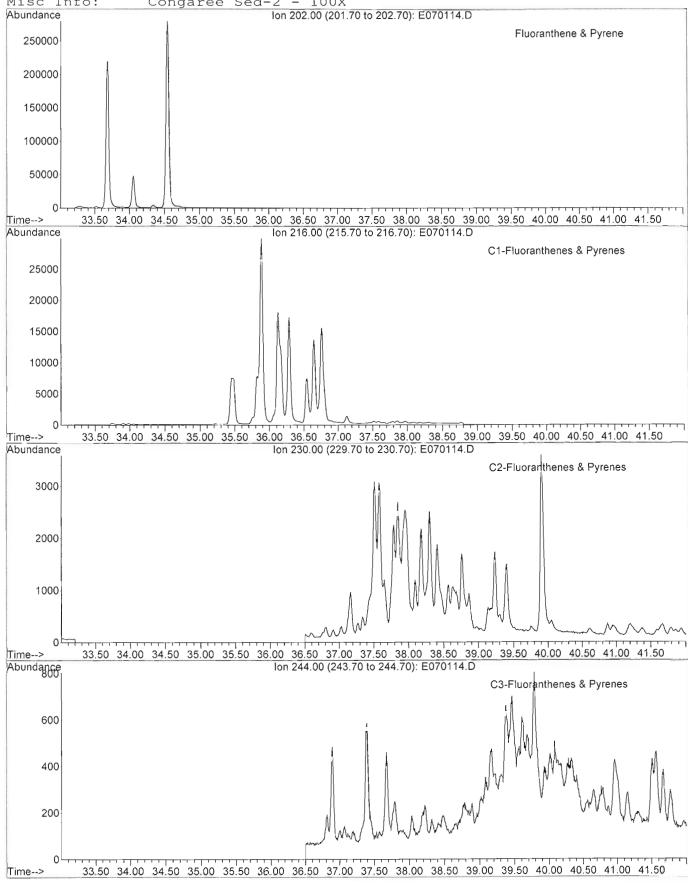
File: J:\1\DATA\E100701\E070114.D 2 Jul 2010 Date Acquired: 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X Ion 178.00 (177.70 to 178.70): E070114.D Abundance 500000 Phenanthrene & Anthracene 400000 300000 200000 100000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 192.00 (191.70 to 192.70): E070114.D 40000 C1-Phenanthrenes & Anthracenes 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Ion 206.00 (205.70 to 206.70): E070114.D Abundance C2-Phenanthrenes & Anthracenes 8000 6000 4000 2000 Time--> 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Ion 220.00 (219.70 to 220.70): E070114.D Abundance 1500 C3-Phenanthrenes & Anthracenes 1000 500 28,50 29,00 29,50 30,00 30,50 31,00 31,50 32,00 32,50 33,00 33,50 34,00 34,50 35,00 35,50 36,00 36,50 37,00 37,50 Time--> Abundance Ion 234.00 (233.70 to 234.70): E070114.D C4-Phenanthrenes & Anthraceres 250 200 150 100 50


28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D


Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2

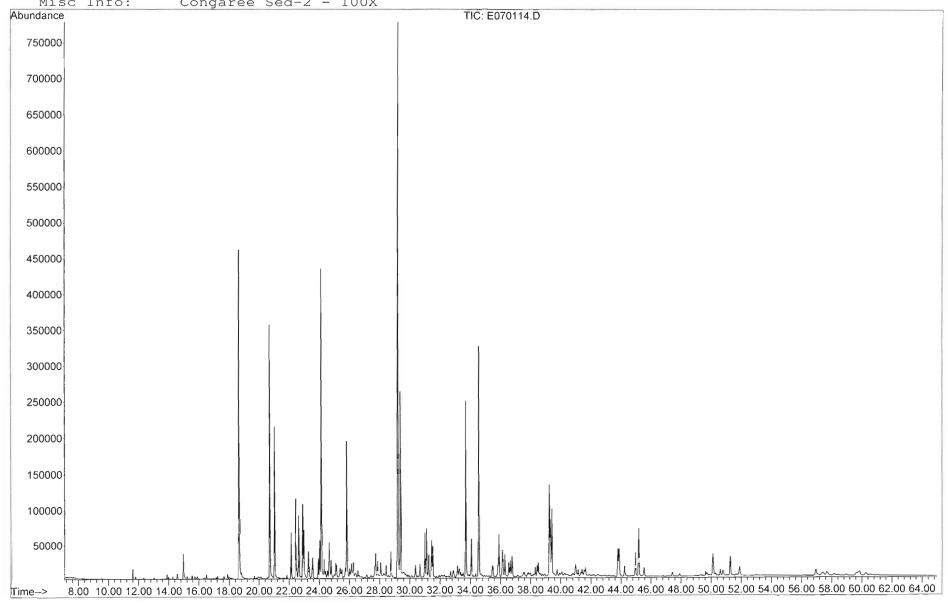
GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

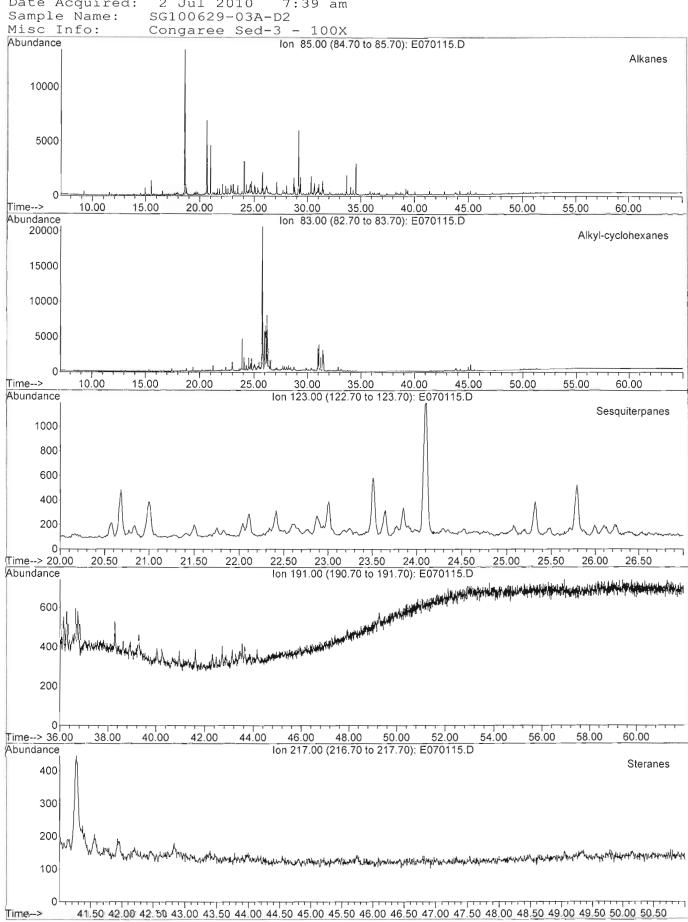
File: J:\1\DATA\E100701\E070114.D Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070114.D 80000 Benz(a)anthracene & Chrysene 60000 40000 20000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 242.00 (241.70 to 242.70): E070114.D 10000 C1-Benz(a)anthracenes & Chrysenes 8000 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070114.D 1000 C2-Benz(a)anthracenes & Chrysenes 800 600 400 200 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 270.00 (269.70 to 270.70): E070114.D 3-Be∯z(a)anthracenes & Chrysenes 300 200 100 time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 284.00 (283.70 to 284.70): E070114.D C4-Benz(a)anthracenes & Chrysenes 200 Hadretonapper of mental particular the deby of the year of the first o 150 100 50 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50


GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am

Sample Name: SG100629-02A-D2


Misc Info: Congaree Sed-2 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am

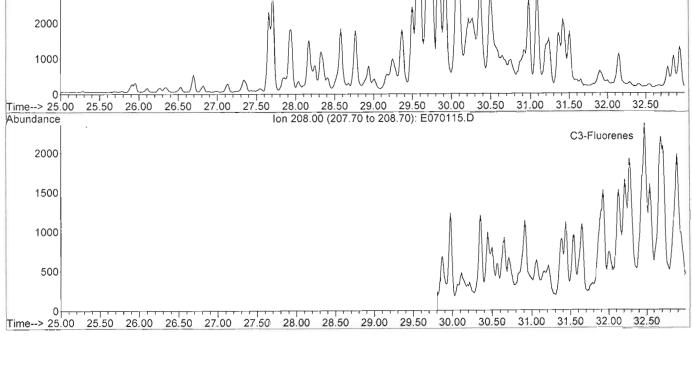
GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

7:39 am Date Acquired: 2 Jul 2010

Sample Name: SG100629-03A-D2

Misc Info: Congaree Sed-3 - 100X

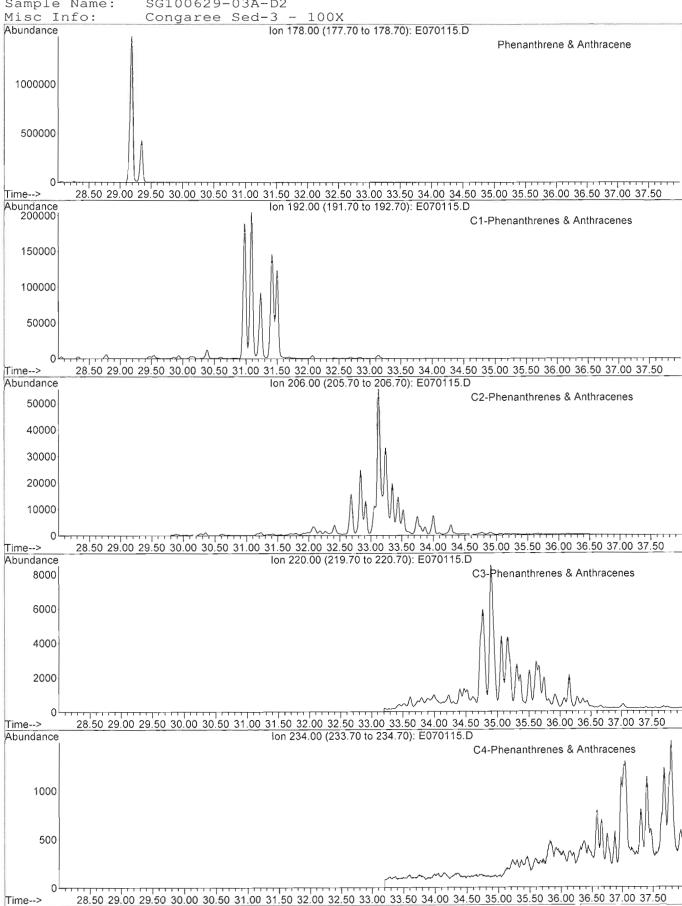

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D 2 Jul 2010 7:39 am Date Acquired: SG100629-03A-D2 Sample Name: Misc Info: Congaree Sed-3 - 100X Abundance Ion 128.00 (127.70 to 128.70): E070115.D Naphthalene 2500000 2000000 1500000 1000000 500000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 142.00 (141.70 to 142.70): E070115.D C1-Naphthalenes 800000 600000 400000 200000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> lon 156.00 (155.70 to 156.70): E070115.D Abundance C2-Naphthalenes 150000 100000 50000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Ion 170.00 (169.70 to 170.70): E070115.D Abundance 30000 C3-Naphthalenes 20000 10000 26.00 23.00 24.00 25.50 Time--> 22.00 22.50 23.50 24.50 lon 184.00 (183.70 to 184.70): E070115.D Abundance C4-Naphthalenes 4000 3000 2000 1000

18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM File: J:\1\DATA\E100701\E070115.D Date Acquired: 2 Jul 2010 7:39 am Sample Name: SG100629-03A-D2 Congaree Sed-3 - 100X Misc Info: Abundance Ion 166.00 (165.70 to 166.70): E070115.D Fluorene 250000 200000 150000 100000 50000 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 Time--> 25.00 lon 180.00 (179.70 to 180.70): E070115.D Abundance C1-Fluorenes 40000 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 26.50 27.00 27.50 32.00 32.50 Time--> 25.00 25.50 26.00 28.00 Abundance Ion 194.00 (193.70 to 194.70): E070115.D 5000 C2-Fluorenes 4000 3000 2000 1000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 Time--> 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Ion 208.00 (207.70 to 208.70): E070115.D Abundance



GC/MS EXTRACTED ION CHROMATOGRAM

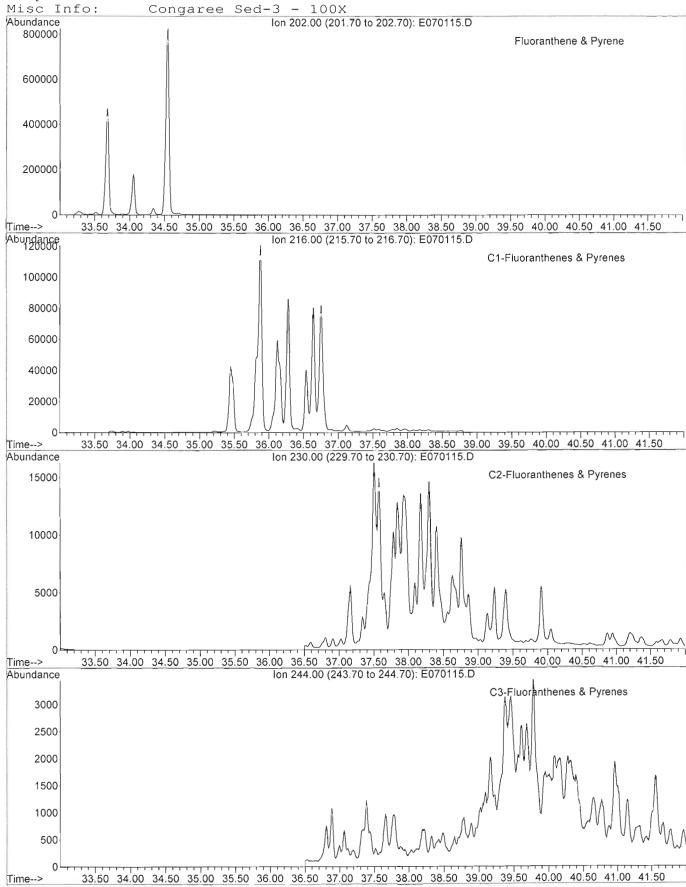
File: J:\1\DATA\E100701\E070115.D

2 Jul 2010 7:39 am Date Acquired:

Sample Name: SG100629-03A-D2

GC/MS EXTRACTED ION CHROMATOGRAM File: J:\1\DATA\E100701\E070115.D Date Acquired: 2 Jul 2010 7:39 am Sample Name: SG100629-03A-D2 Misc Info: Congaree Sed-3 - 100X Abundance Ion 184.00 (183.70 to 184.70): E070115.D Dibenzothiophene 200000 150000 100000 50000 <u>28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 36.00 36.50 37.00 37.50</u> Time--> Abundance Ion 198.00 (197.70 to 198.70); E070115.D C1-Dibenzothiophenes 80000 60000 40000 20000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 212.00 (211.70 to 212.70): E070115.D C2-Dibenzothiophenes 20000 15000 10000 5000 Time--> 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Abundance Ion 226.00 (225.70 to 226.70): E070115.D 8000 C3-Dibenzothiophenes 6000 4000 2000 Time--> 31.00 31.50 32.00 32.50 35.00 35.50 33.00 33.50 34.50 34.00 Ion 240.00 (239.70 to 240.70): E070115.D Abundance 1500 C4-Dibenzothiophenes 1000 500

28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50


Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am

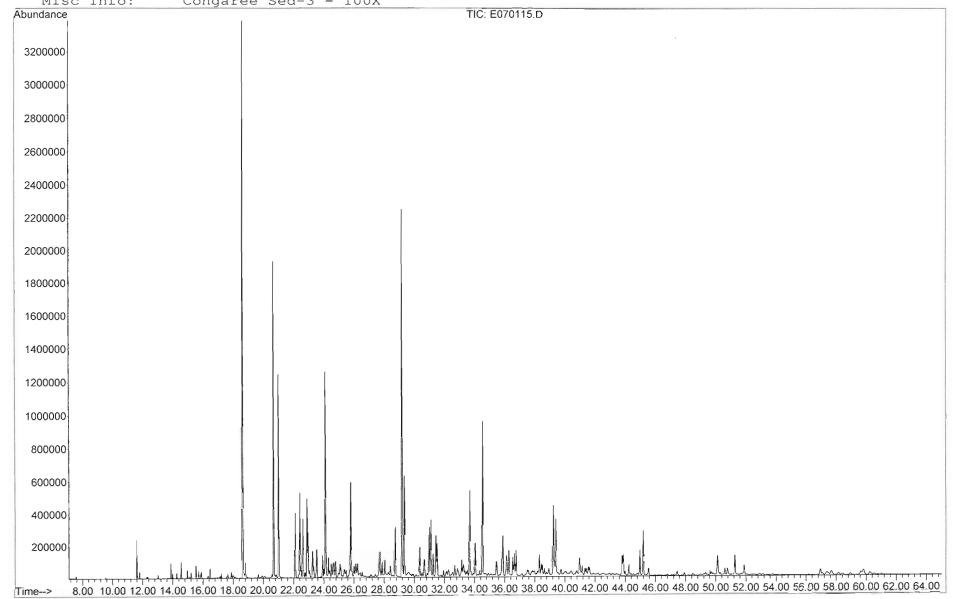
Sample Name: SG100629-03A-D2

GC/MS EXTRACTED ION CHROMATOGRAM

J:\1\DATA\E100701\E070115.D

File:

2 Jul 2010 Date Acquired: 7:39 am SG100629-03A-D2 Sample Name: Misc Info: Congaree Sed-3 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070115.D Benz(a)anthracene & Chrysene 250000 200000 150000 100000 50000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.5<u>0 46.00 48.50 47.00 47.50</u> Abundance Ion 242.00 (241.70 to 242.70): E070115.D C1-Benz(a)anthracenes & Chrysenes 60000 40000 20000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070115.D C2-Benz(a)anthracenes & Chrysenes 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Ion 270.00 (269.70 to 270.70): E070115.D Abundance C3-Bena(a)anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Ion 284.00 (283.70 to 284.70): E070115.D Abundance C4-Benz(a)anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50


GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am

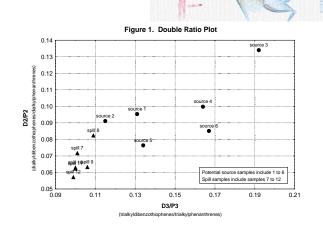
Sample Name: SG100629-03A-D2

Misc Info: Congaree Sed-3 - 100X

Environmental Laboratory Report

Congaree River

SDG: SG100629



1426 Main Street MC 158 Columbia, SC 29218

Report By:

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472

July 2, 2010

Identifying and allocating sources of pollutants in complex environments.

Final Laboratory Report

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472 Phone: 617-923-4662

Fax: 617-923-4610

E-Mail meta@metaenv.com

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

New York Certification Number: 11886

Certification

This certifies that this package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed herein. The results included in this data report relate only to the samples as received and analyzed by the laboratory.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and Quality Assurance Officer, as verified by the following signatures.

James A. Roush

Environmental Scientist, Laboratory Manager

July 2, 2010

Date

gary pre man-s

David M. Mauro

Senior Scientist, Quality Assurance Officer

July 2, 2010

Date

Sample Delivery Group Narrative

Project: Congaree River

Client SCANA

1426 Main Street

MC 158

Columbia, SC 29218

Report Contact: Robert Apple

Dates of Receipt: June 29, 2010

Sample Summary: The samples received for this project are summarized in the

attached sample login forms in Appendix A.

META Project Number: S08005

SDG No.: SG100629

Total Pages in Report: 76

Chain of Custody

There sediment samples were received in good condition. The internal temperature of the shipping container was within the recommended 0-6°C range and was as follows:

Samples received: 06/29/2010 4.6°C Ice present

Internal chain of custody procedures were followed after sample receipt. Samples were stored in a locked refrigerator. A sample custody logbook contains the record of sample removal from the secure sample storage area to the sample preparation laboratory. The custody record for the sample extracts is present on the sample extraction logbook page.

The disposal of samples and extracts will be authorized one month after the release of this data report. Sample disposal will be documented.

Methods

The sediment samples were prepared by solvent extraction (EPA 3570) using dichloromethane (DCM). The extracts were spiked with internal standard and analyzed by GC/FID (EPA 8100M) for fingerprinting and by GC/MS/SIM (EPA 8270M) for mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs), alkyl PAH homologues and other selected compounds.

Results

Sample results are presented in several appendices which follow this narrative.

Appendix B: GC/FID Fingerprints

Appendix C: MAH/PAH Concentrations

Appendix D: Extended MAH/PAH Profiles - Histograms Appendix E: Extracted Ion Current Profiles (EICPs)

Quality Control

Analyte Flags

The detection limits were determined as the sample equivalent of the lowest linear initial calibration standard. Analytes measured between 50% and 100% of the lowest standard were reported as "estimated" and flagged with the letter "J." Undetected analytes were reported as null and flagged with the letter, "U." Analytes marked with a "B" were detected in the associated blank and should be reviewed for a possible positive bias. No deviations were thought significant enough to compromise the integrity of the reported values.

Holding Times

All samples were extracted within holding times. The samples and extracts were stored at $4^{\circ}C \pm 2^{\circ}C$ prior to extraction and analysis. The extracts were analyzed within 40 days of sample preparation.

Surrogate Spikes

Extraction surrogates were added to all samples prior to extraction. All surrogate compounds were recovered within the 50%-120% acceptable criterion with the following exceptions; perylene-d12 was over-recovered in sample Congaree Sed-2; toluene-d8, phenanthrene-d10, and benzo(a)pyrene-d12 were under-recovered in sample Duplicate of Congaree Sed-1. The recovery issues were due to the high dilution (100x) that was performed on the extracts prior to analysis.

Blanks

Various MAHs and PAHs were detected below or just above the reporting limit (RL) in soil blank QC100630-SB. As these compounds were detected in the field sample at much higher relative concentrations (greater than 10x the blank levels) positive bias does not appear to be significant.

Blank Spikes

A blank spike sample was extracted with each analytical batch. Several MAHs and PAHs were over-recovered. The cause of the over-recovery was due to a low internal standard response in the QC sample.

Duplicates

Sample Congaree Sed-1 was extracted and analyzed in duplicate. Relative percent differences are reported with the sample results in Appendix C.

Internal Standards

Internal standards were recovered within acceptable QC limits (50%-200%) relative to the continuing calibration standards.

Other Sample-Specific QC

Even at 100x dilution, several compounds were detected above the calibration limit in samples Congaree Sed-1 and Congaree Sed-3. Those results have been flagged with "E".

Results

The GC/FID fingerprints are provided in Appendix B. All samples appear to be tar-like materials.

The concentrations of PAHs and alkylated PAHs and quality control results are provided on the data summary sheets in Appendix C and D.

Copies of extracted ion current profiles (EICPs) are in Appendix E.

Appendix A Chain of Custody

SHEALY Chain of Custody Record

SHEALY ENVIRONMENTAL SERVICES, INC.

106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number 109636

Client MTQ	Report to Contact	Loshinsti	Telephone No. / Fax No. / E-mail 412-829-96.50 / 412 Waybill No.	-349-0350 Quote No.
Address 1600 Commerce Circle Cipt of ford 15035	Sampler's Signature	11 1	Waybill No.	Page of
City Car fford PA Zip Code 35	- X - Printed Name	BUIL	Analysis (Attach list if n	nore space is needed.)
Project Name Huce Sedinents	Lycas !	bevoestord	\mu_\(\lambda \) \/ \/ \/	
Project No. P.O. No.	ejisodu Matrix	No. of Containers by Preservative Type	(3/3/////	Lot No.
Sample ID / Description Date (Containers for each sample may be combined on one line.)	C=Comp Solid Solid Aqueous	Med Hisoa Hisoa Hisoa Hisoa Hisoa Hisoa Hisoa Naoh Soos Kii	/20//20// / / / /	Remarks / Cooler I.D.
Congaree Sed-1 628-10		XX	XX	56100629-01
Consume Sed-2 629-10		X X	XX	56 100629-02
Conscrex Sed-3 628-10	15-20 G	XX	XX	56100629-03
			.7	
Possible Hazard Identification	Sample Dis	•	Note: All samples are retained for six unless other arrangements a	
Non-Hazard		O Client Disposal by Lab QC Requirements (Sp		are made.
☐ Standard ☐ Rush (Specify) 1. Relinquished by	Date 10/28/16 Time	e 1. Aeceived by	20 Corols	Date Time
2. Relinquished by		7:20 2. Heceived by	×	Date Time
3. Relinquished by	Date Time		d by	Date 10 17 00 A
Comments		LAB USE ONLY Received on ice (Circ.	le) Yes No Ice Pack	Receipt Temp. 4.6 ℃

Sample Receipt Log

			Date	Date					
Lab ID	Field ID	Matrix	Sampled	Received	Project #	Container	Comments	Client Name	Project Name
SG100629-01	Congarce Sed-1	Sediment	6/28/2010	6/29/2010	S08005-60	Lx 2oz & Ex 8oz jar		SCANA/MTR	Huger Sediments
SG100629-02	Conguree Sed-2	Sediment	6'28/2010	6/29/2010	\$08005-60	2 x 4oz jar		SCANA/MTR	Huger Sediments
SG100629-03	Congaree Sed-3	Sediment	6/28/2010	6/29/2010	S08005-60	2 x 4oz jar	I	SCANA/MTR	Huger Sediments

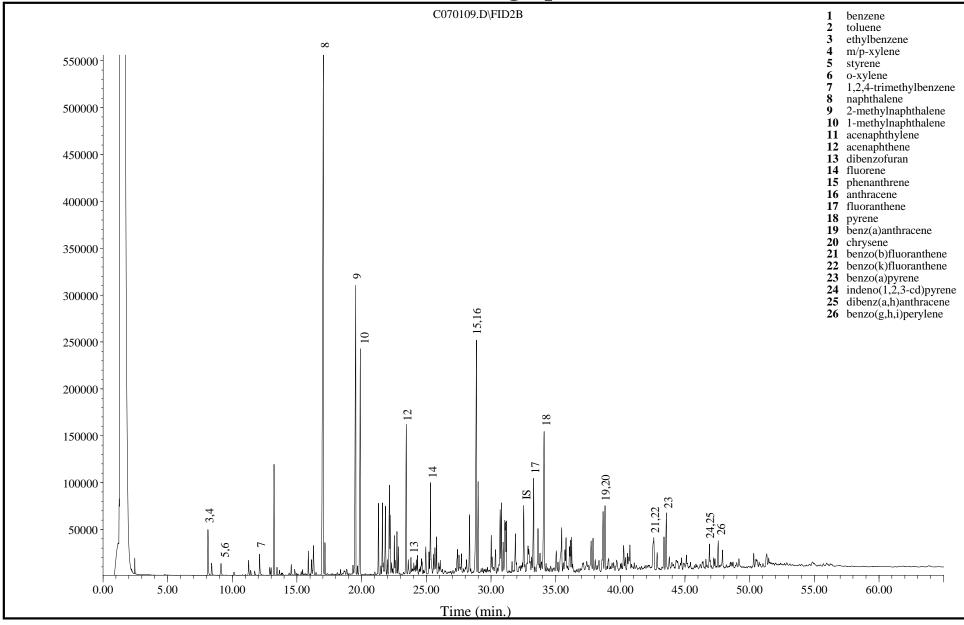
Logged By: B Date: 6/29/10

Reviewed By 100

Date: 6/30/10

META Environmental, Inc. Sample Receipt Checklist

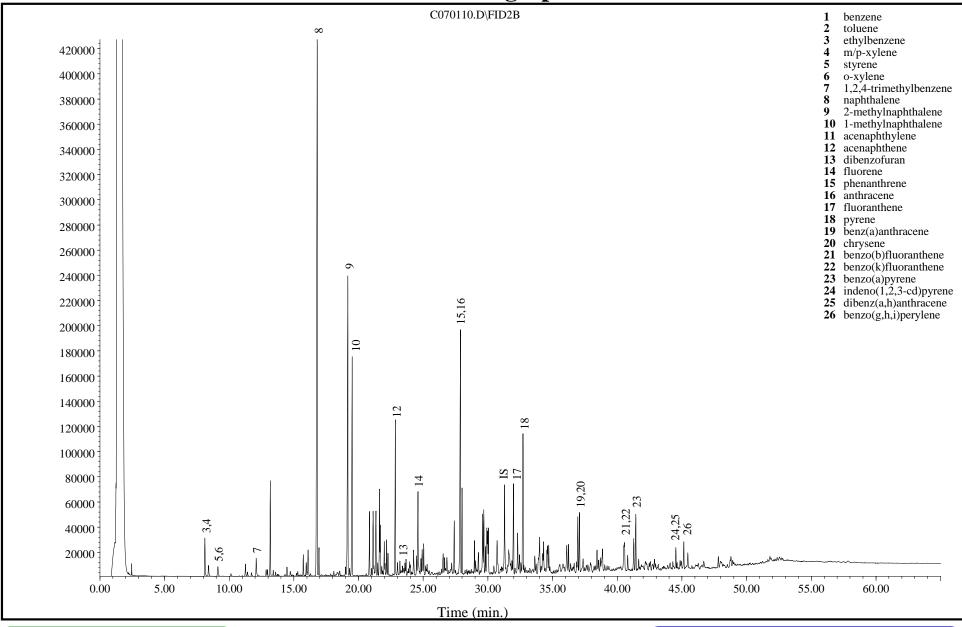
Receipt date: 6/29/10
Login date: 6/29//0
Login personnel: Bry Bo M4SSa
Client Information:.
Company Name: MTC
Project Manager: Chery Yushinski
Project Name: Huger Seziments
Shipping Information:
How were samples received? UPS FedEx DHL Other:
Number of coolers:
Internal temperature of coolers: 4,6
Was ice present? Yes / No
Note: if cooler is outside the 2-6° range, META's project manager should be notified.
Documentation:
Was a Chain of Custody present? (Yes / No
Was it signed? Yes / No
Was all project information present on the COC? (Yes / No
Was a bill of lading or shipping label retained? Yes / No
Sample Information: , 6/29/10 &M
Number of sample containers: 26
Does this match the COC? Yes / (No
Were all sample containers Intact? Yes / No
If no, list samples and problems: If of Javs No + 11542 On COC
Note: if samples are damaged, META's project manager should be notified.
For aqueous 40ml Voas; was headspace present? Yes / No / NA
Comments:


Custodian

Project Manager

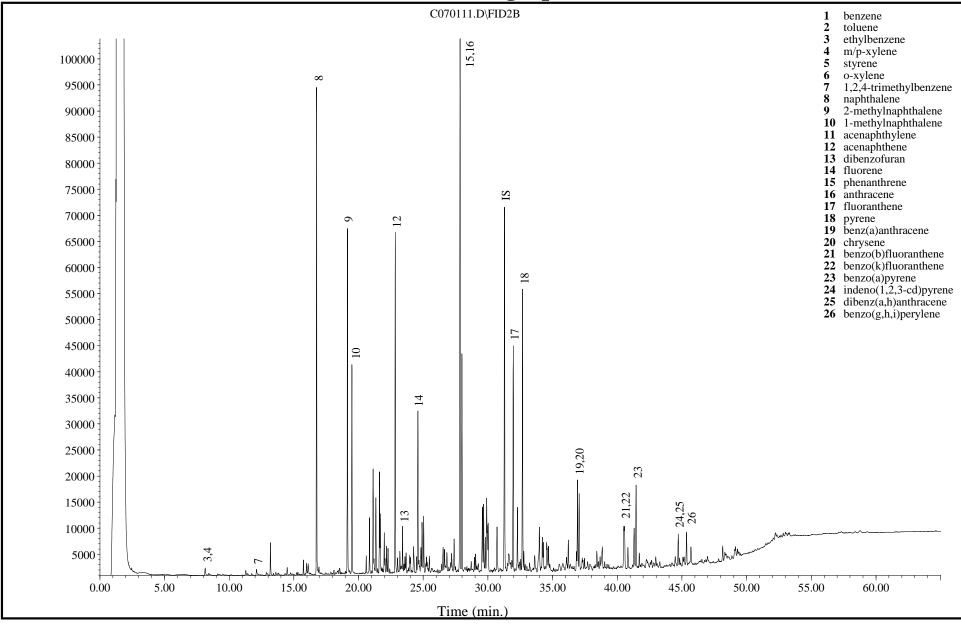
Login Checklist1

Appendix B GC/FID Fingerprints



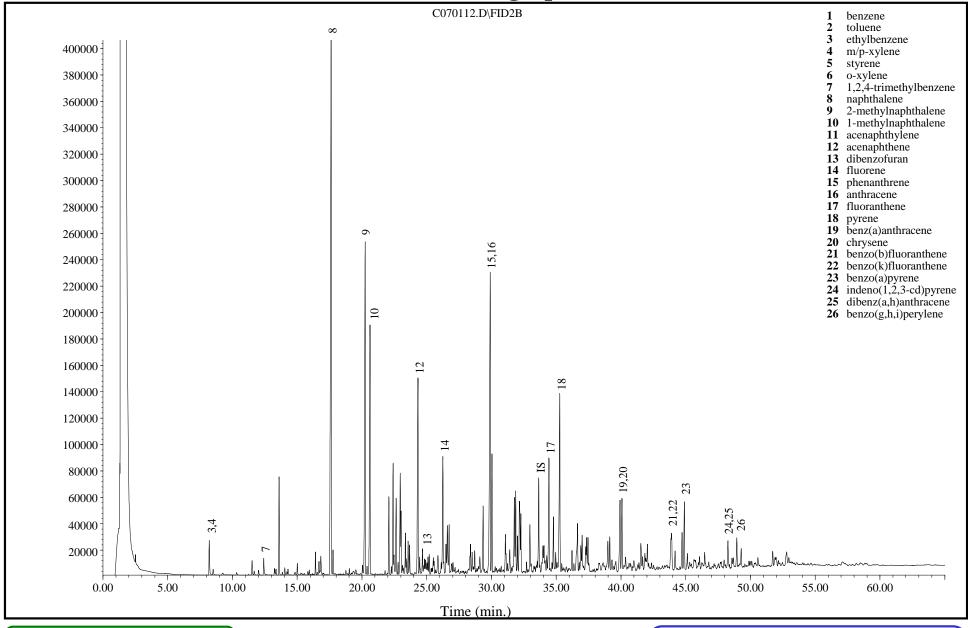
Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-1


Laboratory ID: SG100629-01A-D

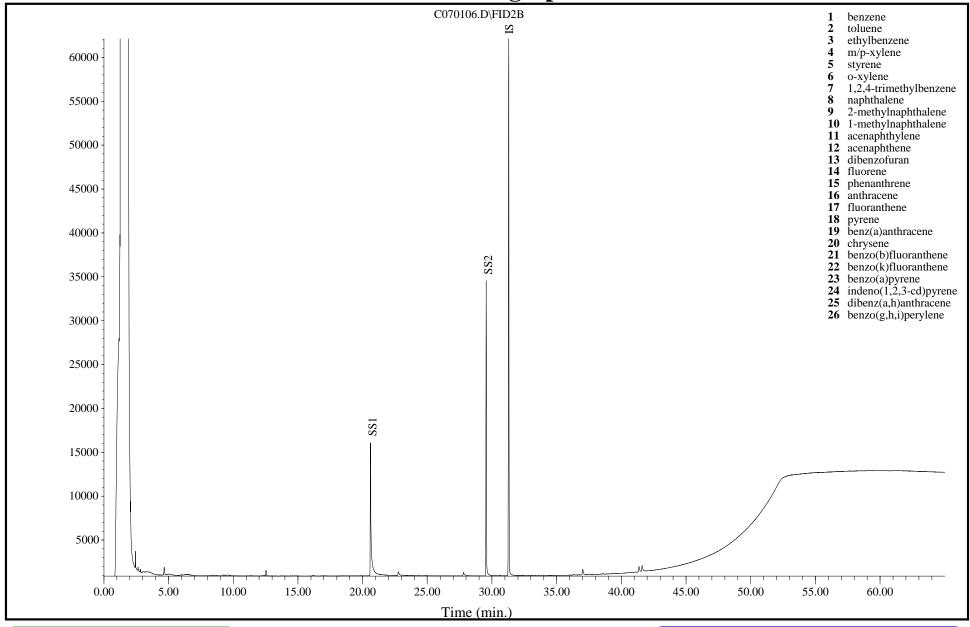
Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-1


Laboratory ID: SG100629-01ADUP-D

Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-2


Laboratory ID: SG100629-02A-D

Extraction Date: 06/30/2010 Analysis Date: 07/02/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Congaree Sed-3

Laboratory ID: SG100629-03A-D

Extraction Date: 06/30/2010 Analysis Date: 07/01/2010

IS – 5a-androstane SS1 – 2-fluorobiphenyl SS2 – o-terphenyl Field ID: Soil Blank

Laboratory ID: QC100630-SB

Appendix C MAH/PAH Concentrations

Field ID: **Congaree Sed-1**

SCANA/MTR Client: Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA EPA 8270M

Analysis Method: Lab ID SG100629-01A-D2

File ID: E070112.D Matrix: Soil Preservation: None

Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.06

Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: 100 Operator: **ERL** Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	43.9 B	0.246	0.123	
Toluene	6.43 B	0.246	0.123	
Ethylbenzene	214 B	0.246	0.123	
m/p-Xylenes	65.4 B	0.246	0.123	
Styrene	11.7 B	0.246	0.123	
o-Xylene	58.9 B	0.246	0.123	
Isopropylbenzene	22.2	0.246	0.123	
n-Propylbenzene	4.7 B	0.246	0.123	
1,3,5-Trimethylbenzene	28.8 B	0.246	0.123	
1,2,4-Trimethylbenzene	90.2 B	0.246	0.123	
t-Butylbenzene	U	0.246	0.123	
sec-Butylbenzene	0.223 J	0.246	0.123	
p-lsopropyltoluene	11.7	0.246	0.123	
n-Butylbenzene	2.27 B	0.246	0.123	
C1 - Benzene	5.05 B	0.246	0.123	
C2 - Benzene	218 B	0.246	0.123	
C3 - Benzene	171 B	0.246	0.123	
C4 - Benzene	106	0.246	0.123	
C5 - Benzene	17.6	0.246	0.123	
trans-Decalin	0.405	0.246	0.123	
cis-Decalin	0.357	0.246	0.123	
Naphthalene	3,710 EB	0.246	0.123	
2-Methylnaphthalene	1,870 EB	0.246	0.123	
1-Methylnaphthalene	1,170 EB	0.246	0.123	
C1 - Naphthalene	1,920 EB	0.246	0.123	
C2 - Naphthalene	862	0.246	0.123	
C3 - Naphthalene	212	0.246	0.123	
C4 - Naphthalene	43.0	0.246	0.123	
Acenaphthylene	146	0.246	0.123	
Acenaphthene	644	0.246	0.123	
Dibenzofuran	37.2	0.246	0.123	
Fluorene	405	0.246	0.123	
C1 - Fluorene	218	0.246	0.123	
C2 - Fluorene	88.7	0.246	0.123	
C3 - Fluorene	36.8	0.246	0.123	
Phenanthrene	1,510 E	0.246	0.123	
Anthracene	385	0.246	0.123	

Injection Volume (µI):

1.00

Field ID: **Congaree Sed-1**

SCANA/MTR Client: Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA EPA 8270M

Analysis Method: Lab ID SG100629-01A-D2

File ID: E070112.D Matrix: Soil Preservation: None Date Sampled: Decanted: 6/28/2010 None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.06 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 100

Batch QC: QC100630-SB

Analyte Concentration (mg/kg dry wt.) RL EDL Comm	
C1 - Phenanthrene/Anthracene 801 0.246 0.123	
C2 - Phenanthrene/Anthracene 282 0.246 0.123	
C3 - Phenanthrene/Anthracene 68.8 0.246 0.123	
C4 - Phenanthrene/Anthracene 20.4 0.246 0.123	
Dibenzothiophene 299 0.246 0.123	
C1 - Dibenzothiophene 358 0.246 0.123	
C2 - Dibenzothiophene 240 0.246 0.123	
C3 - Dibenzothiophene 89.6 0.246 0.123	
C4 - Dibenzothiophene 20.1 0.246 0.123	
Benzo(b)naphtho(2,1-d)thiophene 114 0.246 0.123	
Fluoranthene 417 0.246 0.123	
Pyrene 737 B 0.246 0.123	
C1 - Fluoranthene/Pyrene 641 0.246 0.123	
C2 - Fluoranthene/Pyrene 209 0.246 0.123	
C3 - Fluoranthene/Pyrene 60.8 0.246 0.123	
Benz(a)anthracene 270 0.246 0.123	
Chrysene* 287 0.246 0.123	
C1 - Benz(a)anthracene/Chrysene 224 0.246 0.123	
C2 - Benz(a)anthracene/Chrysene 82.7 0.246 0.123	
C3 - Benz(a)anthracene/Chrysene 26.0 0.246 0.123	
C4 - Benz(a)anthracene/Chrysene 11.4 0.246 0.123	
Benzo(b)fluoranthene 123 B 0.246 0.123	
Benzo(j/k)fluoranthene 153 B 0.246 0.123	
Benzo(e)pyrene 171 B 0.246 0.123	
Benzo(a)pyrene 320 B 0.246 0.123	
Perylene 54.0 0.246 0.123	
Indeno(1,2,3-cd)pyrene 116 0.246 0.123	
Dibenz(a,h)anthracene 47.0 0.246 0.123	
Benzo(g,h,i)perylene 159 B 0.246 0.123	
Coronene 39.8 0.246 0.123	
Retene U 0.246 0.123	
Benzo(b/c)fluorenes 84.6 0.246 0.123	
2-Methylpyrene 85.7 0.246 0.123	
4-Methylpyrene 84.5 0.246 0.123	
1-Methylpyrene 96.9 0.246 0.123	
Heptadecane BU 0.246 0.123	
Pristane 7.07 0.246 0.123	
Octadecane BU 0.246 0.123	
Phytane 4.09 0.246 0.123	

Field ID: Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570 Cleanup Method(s): Project: Huger St. NA Analysis Method: **EPA 8270M** Lab ID SG100629-01A-D2 File ID: E070112.D Matrix: Soil Preservation: None Date Sampled: 6/28/2010 Decanted: None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.06 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 ERL

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	1.99	0.246	0.123	
2,6,10-trimethyltridecane	3.84	0.246	0.123	
Norpristane	3.82	0.246	0.123	
Total PAH (16)	9,430	0.246	0.123	
Total PAH (42)	16,500	0.246	0.123	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	82	50 - 120		
Phenanthrene-d10	80	50 - 120		
Benzo(a)pyrene-d12	83	50 - 120		
Perylene-d12	83	50 - 120		

Injection Volume (µI):

1.00

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: Congaree Sed-2

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M Lab ID SG100629-02A-D2

File ID: E070114.D Matrix: Soil Preservation: None

Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.34 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF:

Operator: ERL Analysis DF: 100 Injection Volume (μI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	1.22 B	0.230	0.115	
Toluene	0.555 B	0.230	0.115	
Ethylbenzene	6.64 B	0.230	0.115	
m/p-Xylenes	1.82 B	0.230	0.115	
Styrene	0.807 B	0.230	0.115	
o-Xylene	0.953 B	0.230	0.115	
Isopropylbenzene	1.25	0.230	0.115	
n-Propylbenzene	0.477 B	0.230	0.115	
1,3,5-Trimethylbenzene	1.84 B	0.230	0.115	
1,2,4-Trimethylbenzene	4.31 B	0.230	0.115	
t-Butylbenzene	U	0.230	0.115	
sec-Butylbenzene	U	0.230	0.115	
p-lsopropyltoluene	0.965	0.230	0.115	
n-Butylbenzene	0.708 B	0.230	0.115	
C1 - Benzene	0.467 B	0.230	0.115	
C2 - Benzene	6.11 B	0.230	0.115	
C3 - Benzene	10.4 B	0.230	0.115	
C4 - Benzene	12.3	0.230	0.115	
C5 - Benzene	4.26	0.230	0.115	
trans-Decalin	0.238	0.230	0.115	
cis-Decalin	U	0.230	0.115	
Naphthalene	291 B	0.230	0.115	
2-Methylnaphthalene	231 B	0.230	0.115	
1-Methylnaphthalene	134 B	0.230	0.115	
C1 - Naphthalene	231 B	0.230	0.115	
C2 - Naphthalene	141	0.230	0.115	
C3 - Naphthalene	42.2	0.230	0.115	
C4 - Naphthalene	10.4	0.230	0.115	
Acenaphthylene	10.5	0.230	0.115	
Acenaphthene	194	0.230	0.115	
Dibenzofuran	30.6	0.230	0.115	
Fluorene	98.8	0.230	0.115	
C1 - Fluorene	29.7	0.230	0.115	
C2 - Fluorene	13.2	0.230	0.115	
C3 - Fluorene	4.49	0.230	0.115	
Phenanthrene	365	0.230	0.115	
Anthracene	142	0.230	0.115	
7 1111111111111111111111111111111111111	1 TZ	0.200	0.110	

Injection Volume (µI):

1.00

Field ID: Congaree Sed-2

 Client:
 SCANA/MTR
 Preparation Method:
 EPA 3570

 Project:
 Huger St.
 Cleanup Method(s):
 NA

 Analysis Method:
 EPA 8270M

 Lab ID
 SG100629-02A-D2

File ID: E070114.D Matrix: Soil Preservation: None

Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.34 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: 100 Operator: **ERL**

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	121	0.230	0.115	
C2 - Phenanthrene/Anthracene	34.5	0.230	0.115	
C3 - Phenanthrene/Anthracene	7.47	0.230	0.115	
C4 - Phenanthrene/Anthracene	1.99	0.230	0.115	
Dibenzothiophene	22.6	0.230	0.115	
C1 - Dibenzothiophene	18.7	0.230	0.115	
C2 - Dibenzothiophene	11.4	0.230	0.115	
C3 - Dibenzothiophene	4.54	0.230	0.115	
C4 - Dibenzothiophene	1.24	0.230	0.115	
Benzo(b)naphtho(2,1-d)thiophene	6.14	0.230	0.115	
Fluoranthene	145	0.230	0.115	
Pyrene	178 B	0.230	0.115	
C1 - Fluoranthene/Pyrene	96.5	0.230	0.115	
C2 - Fluoranthene/Pyrene	21.6	0.230	0.115	
C3 - Fluoranthene/Pyrene	6.72	0.230	0.115	
Benz(a)anthracene	40.2	0.230	0.115	
Chrysene*	54.1	0.230	0.115	
C1 - Benz(a)anthracene/Chrysene	23.6	0.230	0.115	
C2 - Benz(a)anthracene/Chrysene	8.18	0.230	0.115	
C3 - Benz(a)anthracene/Chrysene	2.61	0.230	0.115	
C4 - Benz(a)anthracene/Chrysene	1.58	0.230	0.115	
Benzo(b)fluoranthene	29.1 B	0.230	0.115	
Benzo(j/k)fluoranthene	38.0 B	0.230	0.115	
Benzo(e)pyrene	29.5 B	0.230	0.115	
Benzo(a)pyrene	60.0 B	0.230	0.115	
Perylene	11.4	0.230	0.115	
Indeno(1,2,3-cd)pyrene	23.6	0.230	0.115	
Dibenz(a,h)anthracene	7.8	0.230	0.115	
Benzo(g,h,i)perylene	27.1 B	0.230	0.115	
Coronene	7.61	0.230	0.115	
Retene	0.623	0.230	0.115	
Benzo(b/c)fluorenes	18.0	0.230	0.115	
2-Methylpyrene	11.9	0.230	0.115	
4-Methylpyrene	9.6	0.230	0.115	
1-Methylpyrene	12.6	0.230	0.115	
Heptadecane	2.39 B	0.230	0.115	
Pristane	3.03	0.230	0.115	
Octadecane	BU	0.230	0.115	
Phytane	1.12	0.230	0.115	

Field ID: Congaree Sed-2

Client: SCANA/MTR Preparation Method: EPA 3570 Cleanup Method(s): Project: Huger St. NA Analysis Method: **EPA 8270M** Lab ID SG100629-02A-D2 File ID: E070114.D Matrix: Soil Preservation: None Date Sampled: 6/28/2010 Decanted: None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.34 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 ERL

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	0.952	0.230	0.115	
2,6,10-trimethyltridecane	1.62	0.230	0.115	
Norpristane	1.39	0.230	0.115	
Total PAH (16)	1,700	0.230	0.115	
Total PAH (42)	2,630	0.230	0.115	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	101	50 - 120		
Phenanthrene-d10	101	50 - 120		
Benzo(a)pyrene-d12	113	50 - 120		
Perylene-d12	155	50 - 120		

Injection Volume (µI):

1.00

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: Congaree Sed-3

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-03A-D2

 File ID:
 E070115.D
 Matrix:
 Soil

 Preservation:
 None

 Date Sampled:
 6/28/2010
 Decanted:
 None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.18 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: 100 Operator: **ERL**

Injection Volume (μl): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	17.0 B	0.239	0.120	
Toluene	4.33 B	0.239	0.120	
Ethylbenzene	113 B	0.239	0.120	
m/p-Xylenes	20.3 B	0.239	0.120	
Styrene	9.44 B	0.239	0.120	
o-Xylene	6.12 B	0.239	0.120	
Isopropylbenzene	12.5	0.239	0.120	
n-Propylbenzene	2.91 B	0.239	0.120	
1,3,5-Trimethylbenzene	16.0 B	0.239	0.120	
1,2,4-Trimethylbenzene	49.9 B	0.239	0.120	
t-Butylbenzene	U	0.239	0.120	
sec-Butylbenzene	0.198 J	0.239	0.120	
p-Isopropyltoluene	6.67	0.239	0.120	
n-Butylbenzene	4.17 B	0.239	0.120	
C1 - Benzene	3.52 B	0.239	0.120	
C2 - Benzene	87.4 B	0.239	0.120	
C3 - Benzene	102 B	0.239	0.120	
C4 - Benzene	83.6	0.239	0.120	
C5 - Benzene	16.7	0.239	0.120	
trans-Decalin	0.422	0.239	0.120	
cis-Decalin	U	0.239	0.120	
Naphthalene	2,240 EB	0.239	0.120	
2-Methylnaphthalene	1,320 EB	0.239	0.120	
1-Methylnaphthalene	792 B	0.239	0.120	
C1 - Naphthalene	1,330 B	0.239	0.120	
C2 - Naphthalene	652	0.239	0.120	
C3 - Naphthalene	165	0.239	0.120	
C4 - Naphthalene	30.6	0.239	0.120	
Acenaphthylene	85.8	0.239	0.120	
Acenaphthene	642	0.239	0.120	
Dibenzofuran	33.4	0.239	0.120	
Fluorene	336	0.239	0.120	
C1 - Fluorene	111	0.239	0.120	
C2 - Fluorene	56.4	0.239	0.120	
C3 - Fluorene	23.6	0.239	0.120	
Phenanthrene	1,250 E	0.239	0.120	
Anthracene	355	0.239	0.120	

Injection Volume (µI):

1.00

Field ID: Congaree Sed-3

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-03A-D2

File ID: E070115.D Matrix: Soil Preservation: None Date Sampled: 6/28/2010 Decanted: None

Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.18 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: 100 Operator: **ERL**

Batch QC: QC100630-SB

C1 - Phenanthrene/Anthracene 623 0.239 0.120	Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C2 - Phenanthrene/Anthracene 194 0.239 0.120 C3 - Phenanthrene/Anthracene 44.0 0.239 0.120 C4 - Phenanthrene/Anthracene 11.8 0.239 0.120 C1 - Dibenzothiophene 240 0.239 0.120 C1 - Dibenzothiophene 143 0.239 0.120 C3 - Dibenzothiophene 48.8 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 Ebrazo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene/Pyrene 350 0.239 0.120 C1 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 154 0.239 0.120<	C1 - Phenanthrene/Anthracene	623	0.239	0.120	
C3 - Phenanthrene/Anthracene 44.0 0.239 0.120 C4 - Phenanthrene/Anthracene 11.8 0.239 0.120 Dibenzothiophene 224 0.239 0.120 C1 - Dibenzothiophene 143 0.239 0.120 C2 - Dibenzothiophene 143 0.239 0.120 C3 - Dibenzothiophene 9.89 0.239 0.120 C4 - Dibenzothiophene 75.4 0.239 0.120 Benzo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 8 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C1 - Fluoranthene/Pyrene 36.0 0.239 0.120 C2 - Eluoranthene/Pyrene 36.0 0.239 0.120					
C4 - Phenanthrene/Anthracene 11.8 0.239 0.120 Dibenzothiophene 224 0.239 0.120 C1 - Dibenzothiophene 240 0.239 0.120 C2 - Dibenzothiophene 143 0.239 0.120 C3 - Dibenzothiophene 48.8 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 Eenzo(b)naphtho(2,1-dythiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 8 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 154 0.239 0.120					
Dibenzothiophene 224 0.239 0.120 C1 - Dibenzothiophene 240 0.239 0.120 C2 - Dibenzothiophene 143 0.239 0.120 C3 - Dibenzothiophene 48.8 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 Benzo(lp)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 8 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C4 - Senz(a)anthracene/Chrysene 36.0 0.239 0.120 Chrysene* 216 0.239 0.120 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
C1 - Dibenzothiophene 240 0.239 0.120 C2 - Dibenzothiophene 143 0.239 0.120 C3 - Dibenzothiophene 48.8 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 Benzo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 B 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 <td>Dibenzothiophene</td> <td>224</td> <td></td> <td></td> <td></td>	Dibenzothiophene	224			
C2 - Dibenzothiophene 143 0.239 0.120 C3 - Dibenzothiophene 48.8 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 Benzo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 8 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C1 - Senz(a)anthracene/Chrysene 154 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 13.9 0.239		240			
C3 - Dibenzothiophene 48.8 0.239 0.120 C4 - Dibenzothiophene 9.89 0.239 0.120 Benzo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 B 0.239 0.120 C1 - Fluoranthene/Pyrene 139 0.239 0.120 C2 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 207 0.239 0.120 Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)(jk)fluoranthene 92.3 B 0.239 0.120 Benzo(jk)flyfuoranthene 117 B		143	0.239	0.120	
C4 - Dibenzothiophene 9.89 0.239 0.120 Benzo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 B 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 C4 - Benz(a)anthracene 207 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)filuoranthene 92.3 B 0.239 0.120 Benzo(b)filuoranthene 117 B 0.239 0.120 </td <td></td> <td>48.8</td> <td>0.239</td> <td>0.120</td> <td></td>		48.8	0.239	0.120	
Benzo(b)naphtho(2,1-d)thiophene 75.4 0.239 0.120 Fluoranthene 350 0.239 0.120 Pyrene 607 B 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 Benz(a)anthracene 207 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(jk)fluoranthene 92.3 B 0.239 0.120 Benzo(jk)fluoranthene 117 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene		9.89	0.239	0.120	
Fluoranthene					
Pyrene 607 B 0.239 0.120 C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 Benz(a)anthracene 207 0.239 0.120 Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 117 B 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(a)flyfluoranthene 117 B 0.239 0.120 Benzo(a)pyrene 33.8 0.239 0.120 Perylene 39.8 <td></td> <td>350</td> <td></td> <td></td> <td></td>		350			
C1 - Fluoranthene/Pyrene 481 0.239 0.120 C2 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 Benz(a)anthracene 207 0.239 0.120 Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(b)fluoranthene 117 B 0.239 0.120 Benzo(b)fluoranthene 125 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Indenot(1,2,3-cd)pyrene	Pyrene	607 B			
C2 - Fluoranthene/Pyrene 139 0.239 0.120 C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 Benz(a)anthracene 207 0.239 0.120 Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(b)fluoranthene 117 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Benzo(g,h,i)perylene 65.4 <td< td=""><td></td><td>481</td><td></td><td>0.120</td><td></td></td<>		481		0.120	
C3 - Fluoranthene/Pyrene 36.0 0.239 0.120 Benz(a)anthracene 207 0.239 0.120 Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(j/k)fluoranthene 117 B 0.239 0.120 Benzo(e)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene <td></td> <td></td> <td></td> <td></td> <td></td>					
Benz(a)anthracene 207 0.239 0.120 Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(a)pyrene 117 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(b/c)fluorene 115 B 0.239 0.120 Coronene 15 0.239 0.120 Retene 1.55 0.239 0.12					
Chrysene* 216 0.239 0.120 C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(a)pyrene 117 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 15 B 0.239 0.120 Retene 1.55 0.239 0.120 4-Methylpyrene 64.3					
C1 - Benz(a)anthracene/Chrysene 154 0.239 0.120 C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(j/k)fluoranthene 117 B 0.239 0.120 Benzo(e)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 39.8 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 60.6 0.239 0.120 4-Methylpyrene 69.6 0.239 0.120 Heptadecane BU					
C2 - Benz(a)anthracene/Chrysene 54.4 0.239 0.120 C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(p)prene 117 B 0.239 0.120 Benzo(a)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 84.6 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Prista					
C3 - Benz(a)anthracene/Chrysene 13.9 0.239 0.120 C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(j/k)fluoranthene 92.3 B 0.239 0.120 Benzo(e)pyrene 117 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Benzo(a)pyrene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Indenzo(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Retene 1.55 0.239 0.120 Rethylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU		54.4			
C4 - Benz(a)anthracene/Chrysene 6.62 0.239 0.120 Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(j/k)fluoranthene 117 B 0.239 0.120 Benzo(e)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120					
Benzo(b)fluoranthene 92.3 B 0.239 0.120 Benzo(j/k)fluoranthene 117 B 0.239 0.120 Benzo(e)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	. ,		0.239	0.120	
Benzo(j/k)fluoranthene 117 B 0.239 0.120 Benzo(e)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120		92.3 B			
Benzo(e)pyrene 125 B 0.239 0.120 Benzo(a)pyrene 232 B 0.239 0.120 Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120		117 B		0.120	
Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120		125 B	0.239	0.120	
Perylene 39.8 0.239 0.120 Indeno(1,2,3-cd)pyrene 84.6 0.239 0.120 Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Benzo(a)pyrene	232 B	0.239	0.120	
Dibenz(a,h)anthracene 33.0 0.239 0.120 Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Perylene	39.8	0.239	0.120	
Benzo(g,h,i)perylene 115 B 0.239 0.120 Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Indeno(1,2,3-cd)pyrene	84.6	0.239	0.120	
Coronene 29.1 0.239 0.120 Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120		33.0	0.239	0.120	
Retene 1.55 0.239 0.120 Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Benzo(g,h,i)perylene	115 B	0.239	0.120	
Benzo(b/c)fluorenes 65.4 0.239 0.120 2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Coronene	29.1	0.239	0.120	
2-Methylpyrene 64.3 0.239 0.120 4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Retene	1.55	0.239	0.120	
4-Methylpyrene 60.6 0.239 0.120 1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	Benzo(b/c)fluorenes	65.4	0.239	0.120	
1-Methylpyrene 69.6 0.239 0.120 Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	2-Methylpyrene	64.3	0.239	0.120	
Heptadecane BU 0.239 0.120 Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	4-Methylpyrene	60.6	0.239	0.120	
Pristane 6.3 0.239 0.120 Octadecane BU 0.239 0.120	1-Methylpyrene	69.6	0.239	0.120	
Octadecane BU 0.239 0.120		BU	0.239	0.120	
	Pristane	6.3	0.239	0.120	
Phytane 2.78 0.239 0.120	Octadecane	BU	0.239	0.120	
1 hydric 2.70 0.259 0.120	Phytane	2.78	0.239	0.120	

Field ID: Congaree Sed-3

Client: SCANA/MTR Preparation Method: EPA 3570 Cleanup Method(s): Project: Huger St. NA Analysis Method: **EPA 8270M** Lab ID SG100629-03A-D2 File ID: E070115.D Matrix: Soil Preservation: None Date Sampled: 6/28/2010 Decanted: None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.18 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 ERL Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	1.99	0.239	0.120	
2,6,10-trimethyltridecane	3.4	0.239	0.120	
Norpristane	3.88	0.239	0.120	
Total PAH (16)	6,960	0.239	0.120	
Total PAH (42)	12,000	0.239	0.120	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	75	50 - 120		
Phenanthrene-d10	77	50 - 120		
Benzo(a)pyrene-d12	91	50 - 120		
Perylene-d12	103	50 - 120		

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: Soil Blank

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M Lab ID QC100630-SB

File ID: E070110.D Matrix: Soil

Preservation: None
Date Sampled: NA Decanted: None
Date Received: NA

Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 1 Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:				
Benzene	0.002	0.002	0.001	
Toluene	0.002	0.002	0.001	
Ethylbenzene	0.001 J	0.002	0.001	
m/p-Xylenes	0.001 J	0.002	0.001	
Styrene	0.002 J	0.002	0.001	
o-Xylene	0.001 J	0.002	0.001	
Isopropylbenzene	U	0.002	0.001	
n-Propylbenzene	0.001 J	0.002	0.001	
1,3,5-Trimethylbenzene	0.001 J	0.002	0.001	
1,2,4-Trimethylbenzene	0.001 J	0.002	0.001	
t-Butylbenzene	U	0.002	0.001	
sec-Butylbenzene	U	0.002	0.001	
p-Isopropyltoluene	U	0.002	0.001	
n-Butylbenzene	0.001 J	0.002	0.001	
C1 - Benzene	0.002	0.002	0.001	
C2 - Benzene	0.002	0.002	0.001	
C3 - Benzene	0.004	0.002	0.001	
C4 - Benzene	U	0.002	0.001	
C5 - Benzene	U	0.002	0.001	
trans-Decalin	U	0.002	0.001	
cis-Decalin	U	0.002	0.001	
Naphthalene	0.001 J	0.002	0.001	
2-Methylnaphthalene	0.001 J	0.002	0.001	
1-Methylnaphthalene	0.001 J	0.002	0.001	
C1 - Naphthalene	0.001 J	0.002	0.001	
C2 - Naphthalene	U	0.002	0.001	
C3 - Naphthalene	U	0.002	0.001	
C4 - Naphthalene	U	0.002	0.001	
Acenaphthylene	U	0.002	0.001	
Acenaphthene	U	0.002	0.001	
Dibenzofuran	U	0.002	0.001	
Fluorene	U	0.002	0.001	
C1 - Fluorene	U	0.002	0.001	
C2 - Fluorene	U	0.002	0.001	
C3 - Fluorene	U	0.002	0.001	
Phenanthrene	U	0.002	0.001	
Anthracene	U	0.002	0.001	

Injection Volume (µI):

1.00

Field ID: Soil Blank

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Cleanup Method(s): NA

Analysis Method: EPA 8270M Lab ID QC100630-SB

File ID: E070110.D Matrix: Soil Preservation: None Date Sampled: NA Decanted: None

Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 1

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	U	0.002	0.001	
C2 - Phenanthrene/Anthracene	Ü	0.002	0.001	
C3 - Phenanthrene/Anthracene	Ū	0.002	0.001	
C4 - Phenanthrene/Anthracene	Ü	0.002	0.001	
Dibenzothiophene	Ü	0.002	0.001	
C1 - Dibenzothiophene	Ū	0.002	0.001	
C2 - Dibenzothiophene	Ü	0.002	0.001	
C3 - Dibenzothiophene	Ü	0.002	0.001	
C4 - Dibenzothiophene	Ü	0.002	0.001	
Benzo(b)naphtho(2,1-d)thiophene	Ū	0.002	0.001	
Fluoranthene	Ü	0.002	0.001	
Pyrene	0.001 J	0.002	0.001	
C1 - Fluoranthene/Pyrene	U	0.002	0.001	
C2 - Fluoranthene/Pyrene	Ü	0.002	0.001	
C3 - Fluoranthene/Pyrene	Ü	0.002	0.001	
Benz(a)anthracene	Ü	0.002	0.001	
Chrysene*	Ū	0.002	0.001	
C1 - Benz(a)anthracene/Chrysene	Ü	0.002	0.001	
C2 - Benz(a)anthracene/Chrysene	Ü	0.002	0.001	
C3 - Benz(a)anthracene/Chrysene	Ü	0.002	0.001	
C4 - Benz(a)anthracene/Chrysene	U	0.002	0.001	
Benzo(b)fluoranthene	0.001 J	0.002	0.001	
Benzo(j/k)fluoranthene	0.001 J	0.002	0.001	
Benzo(e)pyrene	0.001 J	0.002	0.001	
Benzo(a)pyrene	0.001 J	0.002	0.001	
Perylene	U	0.002	0.001	
Indeno(1,2,3-cd)pyrene	U	0.002	0.001	
Dibenz(a,h)anthracene	U	0.002	0.001	
Benzo(g,h,i)perylene	0.001 J	0.002	0.001	
Coronene	U	0.002	0.001	
Retene	U	0.002	0.001	
Benzo(b/c)fluorenes	U	0.002	0.001	
2-Methylpyrene	U	0.002	0.001	
4-Methylpyrene	U	0.002	0.001	
1-Methylpyrene	U	0.002	0.001	
Heptadecane	0.002	0.002	0.001	
Pristane	U	0.002	0.001	
Octadecane	0.003	0.002	0.001	
Phytane	U	0.002	0.001	

Field ID: Soil Blank

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA

Analysis Method: EPA 8270M

Lab ID QC100630-SB

File ID: E070110.D Matrix: Soil Preservation: None

Date Sampled: NA Decanted: None Date Received: NA

Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: ERL 1 Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	U	0.002	0.001	
2,6,10-trimethyltridecane	U	0.002	0.001	
Norpristane	U	0.002	0.001	
Total PAH (16)	0.006	0.002	0.001	
Total PAH (42)	0.008	0.002	0.001	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	98	50 - 120		
Phenanthrene-d10	88	50 - 120		
Benzo(a)pyrene-d12	112	50 - 120		
Perylene-d12	110	50 - 120		

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Injection Volume (µI):

1.00

Field ID: Soil Blank Spike

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA Analysis Method: EPA 8270M Lab ID QC100630-SBS File ID: E070111.D Matrix: Soil Preservation: None Date Sampled: Decanted: NA None Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 1

Batch QC: QC100630-SB

Analyte	Concentration	on (mg/kg dry wt.)	RL	EDL	Comments
MAH & PAH COMPOUNDS:	Spike Amount				% Recovery
Benzene	2.00	2.48 B	0.002	0.001	124
Toluene	2.00	2.47 B	0.002	0.001	124
Ethylbenzene	2.00	2.18 B	0.002	0.001	109
m/p-Xylenes	2.00	2.14 B	0.002	0.001	107
Styrene	2.00	2.44 B	0.002	0.001	122
o-Xylene	2.00	2.25 B	0.002	0.001	113
Isopropylbenzene	2.00	2.29	0.002	0.001	115
n-Propylbenzene	2.00	2.37 B	0.002	0.001	119
1,3,5-Trimethylbenzene	2.00	2.38 B	0.002	0.001	119
1,2,4-Trimethylbenzene	2.00	2.31 B	0.002	0.001	116
t-Butylbenzene		U	0.002	0.001	
sec-Butylbenzene	2.00	2.36	0.002	0.001	118
p-Isopropyltoluene	2.00	2.38	0.002	0.001	119
n-Butylbenzene	2.00	2.41 B	0.002	0.001	121
C1 - Benzene		BU	0.002	0.001	
C2 - Benzene		BU	0.002	0.001	
C3 - Benzene		BU	0.002	0.001	
C4 - Benzene		U	0.002	0.001	
C5 - Benzene		U	0.002	0.001	
trans-Decalin		U	0.002	0.001	
cis-Decalin		U	0.002	0.001	
Naphthalene	2.00	2.46 B	0.002	0.001	123
2-Methylnaphthalene	2.00	2.52 B	0.002	0.001	126
1-Methylnaphthalene	2.00	2.45 B	0.002	0.001	123
C1 - Naphthalene		BU	0.002	0.001	
C2 - Naphthalene		U	0.002	0.001	
C3 - Naphthalene		U	0.002	0.001	
C4 - Naphthalene		U	0.002	0.001	
Acenaphthylene	2.00	2.54	0.002	0.001	127
Acenaphthene	2.00	2.52	0.002	0.001	126
Dibenzofuran	2.00	2.56	0.002	0.001	128
Fluorene	2.00	2.58	0.002	0.001	129
C1 - Fluorene		U	0.002	0.001	
C2 - Fluorene		U	0.002	0.001	
C3 - Fluorene		U	0.002	0.001	
Phenanthrene	2.00	2.48	0.002	0.001	124
Anthracene	2.00	2.35	0.002	0.001	118

Field ID: Soil Blank Spike

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA Analysis Method: EPA 8270M Lab ID QC100630-SBS File ID: E070111.D Matrix: Soil Preservation: None Date Sampled: Decanted: None NA Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000

Instrument: El Camino Prep DF: 1
Operator: ERL Analysis DF: 1
Injection Volume (µI): 2000

Batch QC: QC100630-SB

Analyte	Concentration (m	g/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene		U	0.002	0.001	
C2 - Phenanthrene/Anthracene		Ü	0.002	0.001	
C3 - Phenanthrene/Anthracene		Ū	0.002	0.001	
C4 - Phenanthrene/Anthracene		Ü	0.002	0.001	
Dibenzothiophene	2.00	2.53	0.002	0.001	127
C1 - Dibenzothiophene		U	0.002	0.001	
C2 - Dibenzothiophene		U	0.002	0.001	
C3 - Dibenzothiophene		U	0.002	0.001	
C4 - Dibenzothiophene		U	0.002	0.001	
Benzo(b)naphtho(2,1-d)thiophene		U	0.002	0.001	
	2.00	2.5	0.002	0.001	125
Pyrene	2.00	2.45 B	0.002	0.001	123
C1 - Fluoranthene/Pyrene		U	0.002	0.001	
C2 - Fluoranthene/Pyrene		U	0.002	0.001	
C3 - Fluoranthene/Pyrene		U	0.002	0.001	
Benz(a)anthracene	2.00	2.5	0.002	0.001	125
Chrysene*	2.00	2.58	0.002	0.001	129
C1 - Benz(a)anthracene/Chrysene		U	0.002	0.001	
C2 - Benz(a)anthracene/Chrysene		U	0.002	0.001	
C3 - Benz(a)anthracene/Chrysene		U	0.002	0.001	
C4 - Benz(a)anthracene/Chrysene		U	0.002	0.001	
Benzo(b)fluoranthene	2.00	2.72 B	0.002	0.001	136
Benzo(j/k)fluoranthene	2.00	2.73 B	0.002	0.001	137
Benzo(e)pyrene	2.00	2.61 B	0.002	0.001	131
Benzo(a)pyrene	2.00	2.64 B	0.002	0.001	132
Perylene		U	0.002	0.001	
(/ / //)	2.00	2.8	0.002	0.001	140
· · /	2.00	2.85	0.002	0.001	143
Benzo(g,h,i)perylene	2.00	2.71 B	0.002	0.001	136
Coronene		U	0.002	0.001	
Retene		U	0.002	0.001	
Benzo(b/c)fluorenes		U	0.002	0.001	
2-Methylpyrene		U	0.002	0.001	
4-Methylpyrene		U	0.002	0.001	
1-Methylpyrene		U	0.002	0.001	
Heptadecane		BU	0.002	0.001	
Pristane		U	0.002	0.001	
Octadecane		BU	0.002	0.001	
Phytane		U	0.002	0.001	

Field ID: Soil Blank Spike

Client: SCANA/MTR Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA Analysis Method: **EPA 8270M** Lab ID QC100630-SBS File ID: E070111.D Matrix: Soil Preservation: None Date Sampled: NA Decanted: None Date Received: NA Date Prepared: 6/30/2010 Sample Size (g): 5.00 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF:

Batch QC: QC100630-SB

ERL

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
2,6,10-trimethyldodecane	U	0.002	0.001	
2,6,10-trimethyltridecane	Ü	0.002	0.001	
Norpristane	Ü	0.002	0.001	
Extraction Surrogate Recoveries (%)		Limits		
Toluene-d8	112	50 - 120		
Phenanthrene-d10	114	50 - 120		
Benzo(a)pyrene-d12	136	50 - 120		
Perylene-d12	130	50 - 120		

1

1.00

Analysis DF:

Injection Volume (µI):

NA - Not applicable.

Operator:

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

Field ID: Duplicate of Congaree Sed-1

Client: SCANA/MTR Preparation Method: EPA 3570
Project: Huger St. Cleanup Method(s): NA
Analysis Method: EPA 8270M

Lab ID SG100629-01DUPA-D2

 File ID:
 E070113.D
 Matrix:
 Soil

 Preservation:
 None

 Date Sampled:
 6/28/2010
 Decanted:
 None

 Date Received:
 6/29/2010

Date Prepared: 6/30/2010 Sample Size (g): 4.13 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: **ERL** 100 Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Benzene 22.1 B 0.242 0.121 66.1 Toluene 1.47 B 0.242 0.121 125.6 Ethylbenzene 124 B 0.242 0.121 53.3 Styrene 40.4 B 0.242 0.121 47.3 Styrene 40.4 B 0.242 0.121 97.3 Styrene 40.4 B 0.242 0.121 97.3 Styrene 34.1 B 0.242 0.121 53.3 Styrene 34.1 B 0.242 0.121 53.7 stopytopylbenzene 12.8 0.242 0.121 53.7 stopytopylbenzene 12.8 0.242 0.121 53.7 stopytopylbenzene 16.6 B 0.242 0.121 53.7 studylbenzene 16.6 B 0.242 0.121 53.7 studylbenzene 16.6 B 0.242 0.121 53.7 studylbenzene 0.135 J 0.242 0.121 53.2 studylbenzene 1.22 B 0.242 0.121 53.2 studylbenzene 1.22 B 0.242 0.121 53.2 studylbenzene 1.22 B 0.242 0.121 52.2 c - Benzene 1.22 B 0.242 0.121 122.2 c - Benzene 1.22 B 0.242 0.121 52.2 c - Benzene 1.22 B 0.242 0.121 52.2 c - Benzene 1.22 B 0.242 0.121 52.2 c - Benzene 1.24 B 0.242 0.121 52.2 c - Benzene 1.25 B 0.242 0.121 52.2 c - Benzene 1.26 B 0.242 0.121 52.2 c - Benzene 1.27 B 0.242 0.121 52.2 c - Benzene 1.28 B 0.242 0.121 52.2 c - Benzene 1.29 B 0.242 0.121 53.1 c - Benzene 1.29 B 0.242 0.121 53.1 c - Benzene 1.29 B 0.242 0.121 53.1 c - Benzene 1.29 B 0.242 0.121 53.4 c - Benzene 1.29 B 0	Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
Toluene	MAH & PAH COMPOUNDS:				RPD
Ethylbenzene 124 B 0.242 0.121 53.3 m/p-Xylenes 40.4 B 0.242 0.121 47.3 Styrene 4.04 B 0.242 0.121 97.3 o-Xylene 34.1 B 0.242 0.121 53.3 stopropylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 10 0.242 0.121 53.7 Ethylylbenzene 0 0.135 J 0.242 0.121 53.7 Ebutylbenzene 0 0.135 J 0.242 0.121 53.7 Debutylbenzene 0 0.135 J 0.242 0.121 53.2 n-Butylbenzene 0 0.135 J 0.242 0.121 53.2 n-Butylbenzene 0 0.135 J 0.242 0.121 53.2 ch-Butylbenzene 1.22 B 0.242 0.121 53.2 C1 - Benzene 1.22 B 0.242 0.121 53.2 C2 - Benzene 1.22 B 0.242 0.121 52.2 C3 - Benzene 1.28 B 0.242 0.121 52.2 C3 - Benzene 1.29 B 0.242 0.121 52.2 C4 - Benzene 1.20 B 0.242 0.121 53.1 C4 - Benzene 1.20 B 0.242 0.121 54.2 C5 - Benzene 1.20 0.242 0.121 54.2 C5 - Benzene 1.20 0.242 0.121 54.2 C5 - Benzene 1.20 0.242 0.121 54.2 C6 - Benzene 1.20 0.242 0.121 54.4 1-Methylnaphthalene 1.070 EB 0.242 0.121 54.4 1-Methylnaphthalene 1.070 EB 0.242 0.121 54.4 1-Methylnaphthalene 1.070 EB 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.4 C4 - Naphthalene 1.00 0.242 0.121 55.4 C4 - Naphthalene 1.00 0.242 0.121 55.4 C3 - Naphthalene 1.00 0.242 0.121 55.5 C4 - Fluorene 1.00 0.242 0.121 55.5 C1 - Fluorene 1.00 0.242 0.121 55.5 C1 - Fluorene 1.00 0.242 0.121 55.5 C1 - Fluorene 1.00 0.242 0.121 55.5 C3 - Fluorene 1.00 0.242 0.121 55.5	Benzene	22.1 B	0.242	0.121	66.1
mp-Xylenes 40.4 B 0.242 0.121 47.3 styrene 6-Xylene 4.04 B 0.242 0.121 97.3 o-Xylene 18spropylbenzene 12.8 0.242 0.121 53.3 styrene 12.8 0.242 0.121 53.7 n-Propylbenzene 12.8 0.242 0.121 57.2 1.35-Timethylbenzene 13.5-Timethylbenzene 16.6 B 0.242 0.121 53.7 1.2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1.2,4-Trimethylbenzene 8ce-Butylbenzene 0 0.135 J 0.242 0.121 NA sees-Butylbenzene 0.135 J 0.242 0.121 NA sees-Butylbenzene 8ce-Butylbenzene 0.135 J 0.242 0.121 49.2 0.121 53.2	Toluene	1.47 B	0.242	0.121	125.6
Styrene 4.04 B 0.242 0.121 97.3 o-Xylene 34.1 B 0.242 0.121 53.3 lsopropylbenzene 12.8 0.242 0.121 53.7 n-Propylbenzene 2.61 B 0.242 0.121 57.2 1.3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 t-Butylbenzene 0.135 J 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 MA p-Isopropylfolloure 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 53.2 c1 - Benzene 1.22 B 0.242 0.121 52.2 C3 - Benzene <td>Ethylbenzene</td> <td>124 B</td> <td>0.242</td> <td>0.121</td> <td>53.3</td>	Ethylbenzene	124 B	0.242	0.121	53.3
o-Xylene 34.1 B 0.242 0.121 53.3 Isopropylbenzene 12.8 n-Propylbenzene 12.8 n.242 0.121 53.7 n-Propylbenzene 2.61 B 0.242 0.121 57.2 1,3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1,24-Trimethylbenzene 0.135 J 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 49.2 p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 53.2 C1 - Benzene 1.22 B 0.242 0.121 60.2 C2 - Benzene 1.22 B 0.242 0.121 52 C3 - Benzene 1.28 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 99.3 B 0.242 0.121 53.1 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 53.7 - Maphthalene 1,070 EB 0.242 0.121 54.4 C1 - Naphthalene </td <td>m/p-Xylenes</td> <td>40.4 B</td> <td>0.242</td> <td>0.121</td> <td>47.3</td>	m/p-Xylenes	40.4 B	0.242	0.121	47.3
Sepropylbenzene	Styrene	4.04 B	0.242	0.121	97.3
n-Propylbenzene 2.61 B 0.242 0.121 57.2 1,3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,3,5-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 0.135 J 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 49.2 p-lsopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 52.2 C2 - Benzene 128 B 0.242 0.121 52. C3 - Benzene 128 B 0.242 0.121 52. C3 - Benzene 128 B 0.242 0.121 52. C5 - Benzene 10.8 0.242 0.121 53.1 C4 - Benzene 10.8 0.242 0.121 54.2 C5 - Benzene 10.8 0.242 0.121 54.2 C5 - Benzene 10.8 0.242 0.121 54.2 C6 - Benzene 10.240 J 0.242 0.121 57.1 trans-Decalin 10.	o-Xylene	34.1 B	0.242	0.121	53.3
1,3,5-Trimethylbenzene 16.6 B 0.242 0.121 53.7 1,2,4-Trimethylbenzene 52.0 B 0.242 0.121 53.7 I-Butylbenzene U 0.242 0.121 NA sec-Butylbenzene 0.135 J 0.242 0.121 49.2 p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 122.2 C2 - Benzene 1.28 B 0.242 0.121 122.2 C3 - Benzene 128 B 0.242 0.121 52. C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 53.1 C4 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin 0.240 J 0.242 0.121 53.7 2-Methylnaphthalene	Isopropylbenzene	12.8	0.242	0.121	53.7
1,2,4-Trimethylbenzene	n-Propylbenzene	2.61 B	0.242	0.121	57.2
Butylbenzene U 0.242 0.121 NA	1,3,5-Trimethylbenzene	16.6 B	0.242	0.121	53.7
sec-Butylbenzene	1,2,4-Trimethylbenzene	52.0 B	0.242	0.121	53.7
Sec-Butylbenzene 0.135 J 0.242 0.121 49.2	t-Butylbenzene	U	0.242	0.121	NA
p-Isopropyltoluene 6.78 0.242 0.121 53.2 n-Butylbenzene 1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 60.2 C2 - Benzene 1.22 B 0.242 0.121 122.2 C2 - Benzene 128 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 52 C3 - Benzene 60.8 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 57.1 trans-Decalin U 0.242 0.121 57.2 cis-Decalin U 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 53.7 C2-Methylnaphthalene 2,140 EB 0.242 0.121 53.7 C2-Methylnaphthalene 666 B 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 54.3 C2 - Naphthalene 120 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.5 C2 - Fluorene 50.4 0.242 0.121 55.5 C3	sec-Butylbenzene	0.135 J	0.242	0.121	49.2
1.22 B 0.242 0.121 60.2 C1 - Benzene 1.22 B 0.242 0.121 122.2 C2 - Benzene 1.28 B 0.242 0.121 122.2 C3 - Benzene 128 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 99.8 B 0.242 0.121 53.1 C4 - Benzene 9.78 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 Itrans-Decalin 0.240 J 0.242 0.121 51.2 Itrans-Decalin U 0.242 0.121 53.7 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 1,100 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 55.4 C4 - Naphthalene 371 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C2 - Fluorene 15.4 0.242 0.121 55.5 C3 - Fluorene 10.242 0.121 55.	•	6.78	0.242	0.121	53.2
C2 - Benzene 128 B 0.242 0.121 52 C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 55.4 C4 - Naphthalene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.5 C3 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 50.4 0.242 0.121	n-Butylbenzene	1.22 B	0.242	0.121	60.2
C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.1	C1 - Benzene	1.22 B	0.242	0.121	122.2
C3 - Benzene 99.3 B 0.242 0.121 53.1 C4 - Benzene 60.8 0.242 0.121 54.2 C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.1	C2 - Benzene	128 B	0.242	0.121	52
C5 - Benzene 9.78 0.242 0.121 57.1 trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.9 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C3 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 <	C3 - Benzene	99.3 B	0.242	0.121	53.1
trans-Decalin 0.240 J 0.242 0.121 51.2 cis-Decalin Naphthalene 2,140 EB 0.242 0.121 53.7 cash 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 cash 1-Methylnaphthalene 666 B 0.242 0.121 54.9 cash C1 - Naphthalene 1,100 B 0.242 0.121 54.3 cash C2 - Naphthalene 488 0.242 0.121 55.4 cash C3 - Naphthalene 120 0.242 0.121 55.4 cash C4 - Naphthalene 24.8 0.242 0.121 53.7 cash Acenaphthylene 72.0 0.242 0.121 67.9 cash Acenaphthene 371 0.242 0.121 53.8 cash Dibenzofuran 21.1 0.242 0.121 55.2 cash Fluorene 229 0.242 0.121 55.5 cash C1 - Fluorene 116 0.242 0.121 55.1 cash C2 - Fluorene 50.4 0.242 0.121 55.1 cash C3 - Fluorene 21.5 0.242 0.121 55.1 cash	C4 - Benzene	60.8	0.242	0.121	54.2
cis-Decalin U 0.242 0.121 NA Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 120 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.5 C1 - Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.1 C2 - Fluorene 50.4 0.242 0.121 55.1 </td <td>C5 - Benzene</td> <td>9.78</td> <td>0.242</td> <td>0.121</td> <td>57.1</td>	C5 - Benzene	9.78	0.242	0.121	57.1
Naphthalene 2,140 EB 0.242 0.121 53.7 2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	trans-Decalin	0.240 J	0.242	0.121	51.2
2-Methylnaphthalene 1,070 EB 0.242 0.121 54.4 1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 55.5 C1 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 50.4 0.242 0.121 55.1	cis-Decalin	U	0.242	0.121	NA
1-Methylnaphthalene 666 B 0.242 0.121 54.9 C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	Naphthalene	2,140 EB	0.242	0.121	53.7
C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	2-Methylnaphthalene	1,070 EB	0.242	0.121	54.4
C1 - Naphthalene 1,100 B 0.242 0.121 54.3 C2 - Naphthalene 488 0.242 0.121 55.4 C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 55.5	1-Methylnaphthalene	666 B	0.242	0.121	54.9
C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C1 - Naphthalene	1,100 B	0.242	0.121	54.3
C3 - Naphthalene 120 0.242 0.121 55.4 C4 - Naphthalene 24.8 0.242 0.121 53.7 Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C2 - Naphthalene	488	0.242	0.121	55.4
Acenaphthylene 72.0 0.242 0.121 67.9 Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C3 - Naphthalene	120	0.242	0.121	55.4
Acenaphthene 371 0.242 0.121 53.8 Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	C4 - Naphthalene	24.8	0.242	0.121	53.7
Dibenzofuran 21.1 0.242 0.121 55.2 Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Acenaphthylene	72.0	0.242	0.121	67.9
Fluorene 229 0.242 0.121 55.5 C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Acenaphthene	371	0.242	0.121	53.8
C1 - Fluorene 116 0.242 0.121 61.1 C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Dibenzofuran	21.1	0.242	0.121	55.2
C2 - Fluorene 50.4 0.242 0.121 55.1 C3 - Fluorene 21.5 0.242 0.121 52.5	Fluorene	229	0.242	0.121	55.5
C3 - Fluorene 21.5 0.242 0.121 52.5	C1 - Fluorene	116	0.242	0.121	61.1
	C2 - Fluorene	50.4	0.242	0.121	55.1
Phenanthrena 860 0.242 0.121 53.0	C3 - Fluorene	21.5	0.242	0.121	52.5
Heriantinione	Phenanthrene	869	0.242	0.121	53.9
Anthracene 222 0.242 0.121 53.7	Anthracene	222	0.242	0.121	53.7

Duplicate of Congaree Sed-1 Field ID:

SCANA/MTR Client: Preparation Method: EPA 3570 Project: Huger St. Cleanup Method(s): NA Analysis Method: EPA 8270M

Lab ID SG100629-01DUPA-D2

File ID: E070113.D Matrix: Soil Preservation: None Date Sampled: Decanted: 6/28/2010 None Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.13 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF:

Analysis DF: Operator: **ERL** 100 Injection Volume (µI): 1.00

Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments
C1 - Phenanthrene/Anthracene	465	0.242	0.121	53.1
C2 - Phenanthrene/Anthracene	161	0.242	0.121	54.6
C3 - Phenanthrene/Anthracene	39.2	0.242	0.121	54.8
C4 - Phenanthrene/Anthracene	12.4	0.242	0.121	48.8
Dibenzothiophene	175	0.242	0.121	52.3
C1 - Dibenzothiophene	209	0.242	0.121	52.6
C2 - Dibenzothiophene	140	0.242	0.121	52.6
C3 - Dibenzothiophene	52.7	0.242	0.121	51.9
C4 - Dibenzothiophene	10.7	0.242	0.121	61
Benzo(b)naphtho(2,1-d)thiophene	66.2	0.242	0.121	53.1
Fluoranthene	244	0.242	0.121	52.3
Pyrene	432 B	0.242	0.121	52.2
C1 - Fluoranthene/Pyrene	371	0.242	0.121	53.4
C2 - Fluoranthene/Pyrene	120	0.242	0.121	54.1
C3 - Fluoranthene/Pyrene	33.9	0.242	0.121	56.8
Benz(a)anthracene	154	0.242	0.121	54.7
Chrysene*	163	0.242	0.121	55.1
C1 - Benz(a)anthracene/Chrysene	125	0.242	0.121	56.7
C2 - Benz(a)anthracene/Chrysene	46.6	0.242	0.121	55.8
C3 - Benz(a)anthracene/Chrysene	13.4	0.242	0.121	64
C4 - Benz(a)anthracene/Chrysene	7.23	0.242	0.121	44.8
Benzo(b)fluoranthene	70.9 B	0.242	0.121	53.7
Benzo(j/k)fluoranthene	84.8 B	0.242	0.121	57.4
Benzo(e)pyrene	96.8 B	0.242	0.121	55.4
Benzo(a)pyrene	179 B	0.242	0.121	56.5
Perylene	30.3	0.242	0.121	56.2
Indeno(1,2,3-cd)pyrene	65.1	0.242	0.121	56.2
Dibenz(a,h)anthracene	26.1	0.242	0.121	57.2
Benzo(g,h,i)perylene	89.5 B	0.242	0.121	55.9
Coronene	23.1	0.242	0.121	53.1
Retene	U	0.242	0.121	NA
Benzo(b/c)fluorenes	47.5	0.242	0.121	56.2
2-Methylpyrene	49.6	0.242	0.121	53.4
4-Methylpyrene	50.0	0.242	0.121	51.3
1-Methylpyrene	55.4	0.242	0.121	54.5
Heptadecane	3.36 B	0.242	0.121	#VALUE!
Pristane	4.25	0.242	0.121	49.8
Octadecane	5.34 B	0.242	0.121	#VALUE!
Phytane	2.52	0.242	0.121	47.5

Field ID: Duplicate of Congaree Sed-1

 Client:
 SCANA/MTR
 Preparation Method:
 EPA 3570

 Project:
 Huger St.
 Cleanup Method(s):
 NA

 Analysis Method:
 EPA 8270M

 Lab ID
 SG100629-01DUPA-D2

 File ID:
 E070113.D
 Matrix:
 Soil

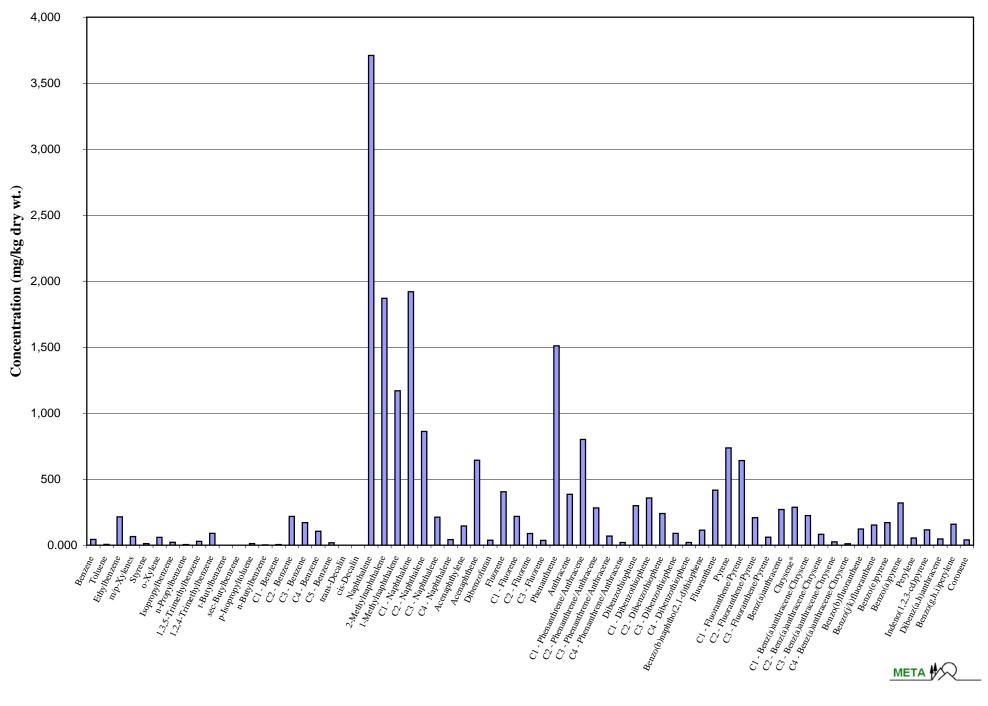
 Preservation:
 None

 Date Sampled:
 6/28/2010
 Decanted:
 None

Date Received: 6/29/2010 Date Prepared: 6/30/2010 Sample Size (g): 4.13 Date Cleanup: Percent Solid: 100.0% NA Date Analyzed: 7/2/2010 Extract Volume (µI): 2000 Instrument: El Camino Prep DF: Analysis DF: Operator: 100 ERL Injection Volume (µI): 1.00

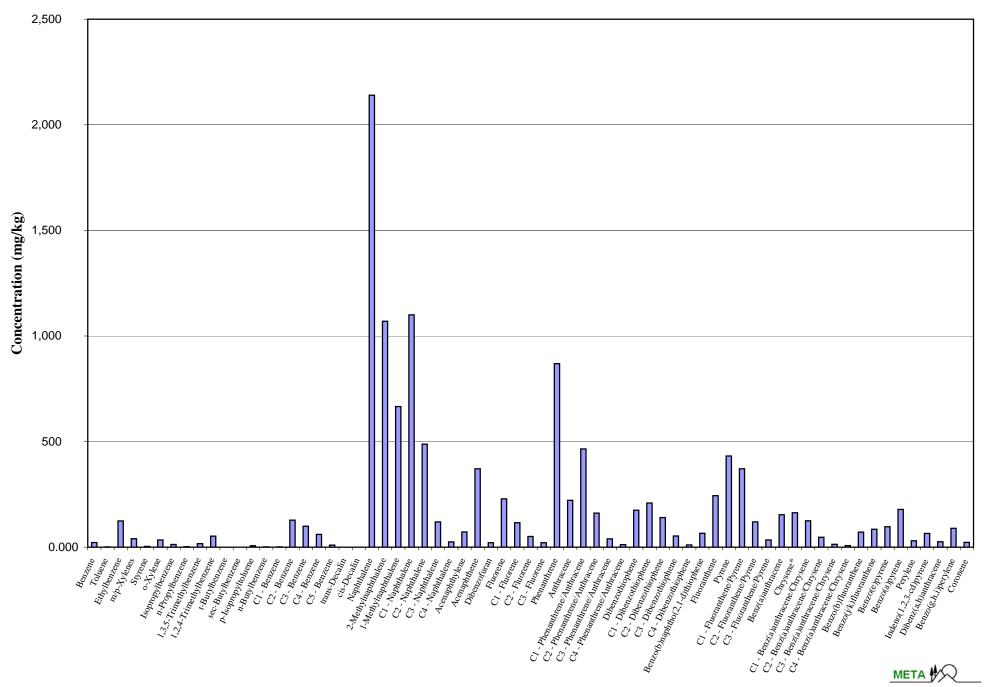
Batch QC: QC100630-SB

Analyte	Concentration (mg/kg dry wt.)	RL	EDL	Comments	
2,6,10-trimethyldodecane	1.09	0.242	0.121	58.4	
2,6,10-trimethyltridecane	2.52	0.242	0.121	41.5	
Norpristane	2.53	0.242	0.121	40.6	
Total PAH (16)	5,410	0.242	0.121	54.2	
Total PAH (42)	9,460	0.242	0.121	54.2	
Extraction Surrogate Recoveries (%)		Limits			
Toluene-d8	43	50 - 120			
Phenanthrene-d10	39 50 - 120				
Benzo(a)pyrene-d12	48 50 - 120				
Perylene-d12	80 50 - 120				

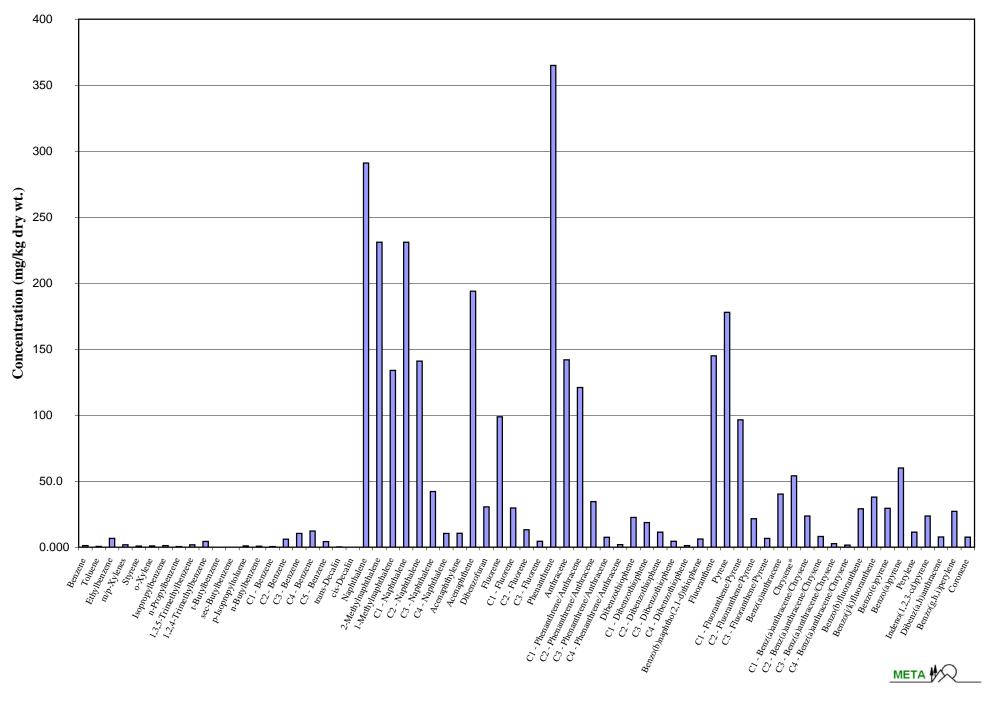

NA - Not applicable.

- B Analyte detected in the Blank.
- J Estimated value; detected between the RL and DL.
- U Analyte not detected above DL.
- D Analyte reported from a diluted extract.
- E Estimate, result detected above calibration range.
- I Concentration/Peak ID uncertain due to potential interference.
- RL Reporting limit is the sample equivalent of the lowest linear calibration concentration.
- EDL Estimated detection limit is 50% of RL.
- * Triphenylene is known to coelute with this compound.

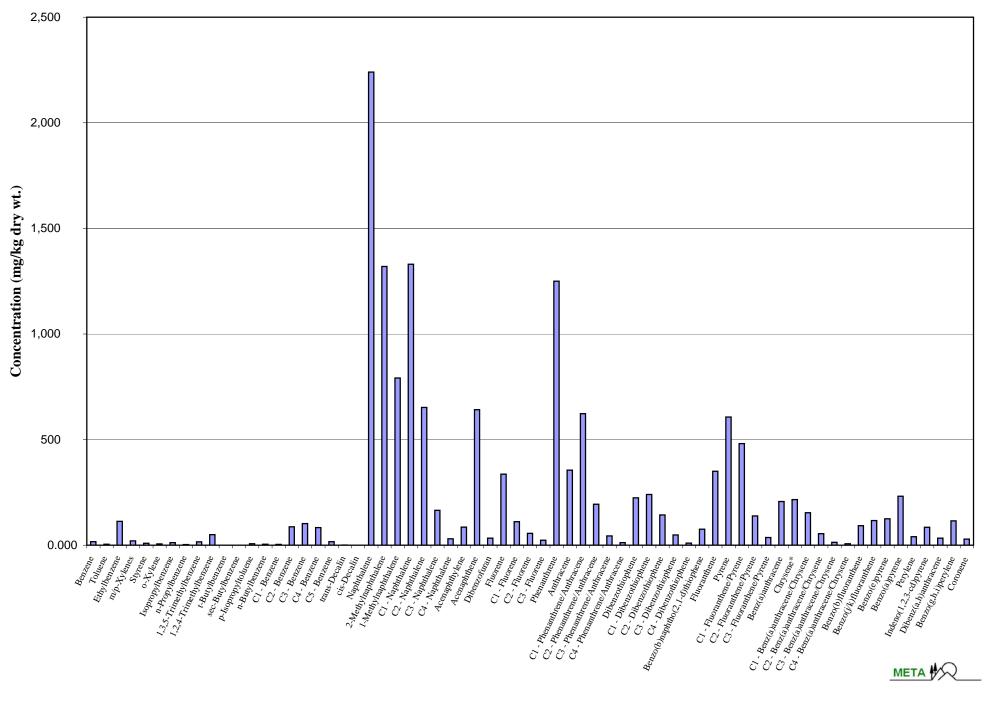
Appendix D Extended MAH/PAH Profiles – Histograms


Congaree Sed-1

SG100629-01A-D2


Duplicate of Congaree Sed-1

SG100629-01DUPA-D2


Congaree Sed-2

SG100629-02A-D2

Congaree Sed-3

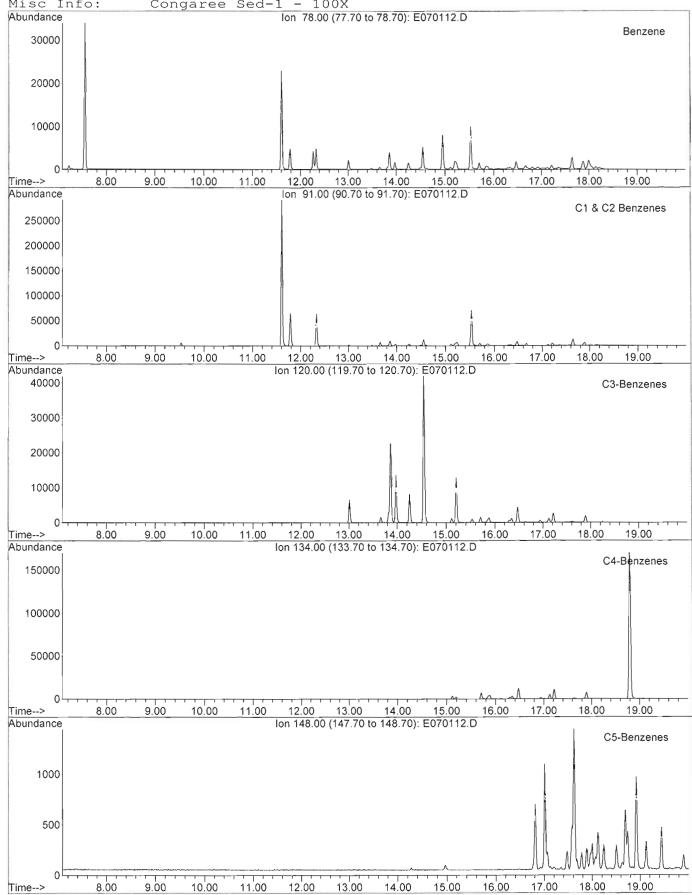
SG100629-03A-D2

Appendix E

Extracted Ion Current Profiles (EICPs)

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D 2 Jul 2010 Date Acquired: 3:49 am Sample Name: SG100629-01A-D2 Misc Info: Congaree Sed-1 - 100X Abundance Ion 85.00 (84.70 to 85.70): E070112.D Alkanes 20000 15000 10000 5000 15.00 25.00 45.00 50.00 55.00 60.00 10.00 20.00 30.00 35.00 40.00 Time--> Abundance Ion 83.00 (82.70 to 83.70): E070112.D 25000 Alkyl-cyclohexanes 20000 15000 10000 5000 10.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 Time--> 15.00 Abundance Ion 123.00 (122.70 to 123.70): E070112.D Sesquiterpanes 1000 500 26.50 Time--> 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 Ion 191.00 (190.70 to 191.70): E070112.D Abundance 800 Terpanes 400 200 Time--> 36.00 38.00 42.00 50.00 52.00 54.00 56.00 58.00 60.00 40.00 44.00 46.00 48.00 Ion 217.00 (216.70 to 217.70): E070112.D Abundance 600 Steranes 400 200 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 Time-->


GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

Date Acquired: 2 Jul 2010 3:49 am Sample Name: SG100629-01A-D2

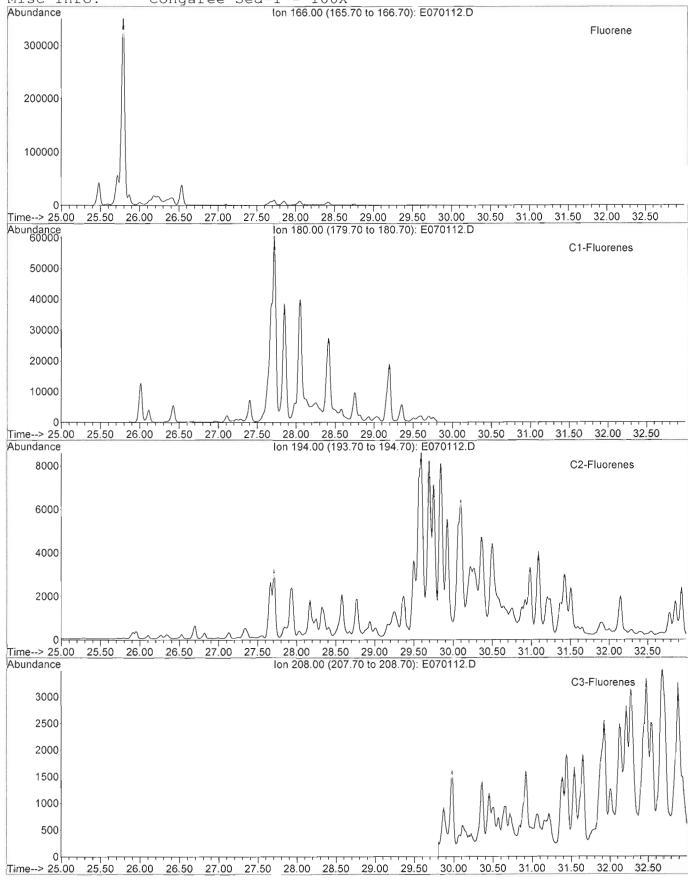
Misc Info: SG100829-01A-D2

Misc Info: Congaree Sed-1 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D Date Acquired: 2 Jul 2010 3:49 am Sample Name: SG100629-01A-D2 Congaree Sed-1 - 100X Misc Info: Abundance Ion 128.00 (127.70 to 128.70): E070112.D Naphthalene 4000000 3000000 2000000 1000000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 142.00 (141.70 to 142.70): E070112.D C1-Naphthalenes 1000000 500000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 156.00 (155.70 to 156.70): E070112.D 250000 C2-Naphthalenes 200000 150000 100000 50000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 170.00 (169.70 to 170.70): E070112.D C3-Naphthalenes 40000 30000 20000 10000 25.50 26.00 Time--> 22.00 22.50 23.00 24.00 24.50 Ion 184.00 (183.70 to 184.70): E070112.D Abundance C4-Naphthalenes 6000 4000 2000

18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00


GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

Date Acquired: 2 Jul 2010 3:49 am

Sample Name: SG100629-01A-D2

Misc Info: Congaree Sed-1 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM File: J:\1\DATA\E100701\E070112.D 2 Jul 2010 Date Acquired: 3:49 am Sample Name: SG100629-01A-D2 Misc Info: Congaree Sed-1 - 100X Abundance Ion 178.00 (177.70 to 178.70): E070112.D Phenanthrene & Anthracene 1500000 1000000 500000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 192.00 (191.70 to 192.70): E070112.D C1-Phenanthrenes & Anthracenes 250000 200000 150000 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 206.00 (205.70 to 206.70): E070112.D 80000 C2-Phenanthrenes & Anthracenes 60000 40000 20000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 38.50 37.00 37.50 Time--> Ion 220.00 (219.70 to 220.70): E070112.D Abundance C3-Phenanthrenes & Anthracenes 10000 5000 28.50 <u>29.00</u> <u>29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 <u>36.00 36.50 37.00 37.50</u></u> Time--> Ion 234.00 (233.70 to 234.70): E070112.D Abundance C4-Phenanthrenes & Anthracerles 2000 1500 1000

28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50

500

GC/MS EXTRACTED ION CHROMATOGRAM File: J:\1\DATA\E100701\E070112.D Date Acquired: 2 Jul 2010 3:49 am SG100629-01A-D2 Sample Name: Congaree Sed-1 Misc Info: - 100X Abundance Ion 184.00 (183.70 to 184.70): E070112.D Dibenzothiophene 300000 200000 100000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 198.00 (197.70 to 198.70): E070112.D 150000 C1-Dibenzothiophenes 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance 40000 Ion 212.00 (211.70 to 212.70): E070112.D C2-Dibenzothiophenes 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance 15000 Ion 226.00 (225.70 to 226.70): E070112.D C3-Dibenzothiophenes 10000 5000 Time--> 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 Ion 240.00 (239.70 to 240.70): E070112.D Abundance C4-Dibenzothiophenes 2000 1500 1000

28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50

500

GC/MS EXTRACTED ION CHROMATOGRAM

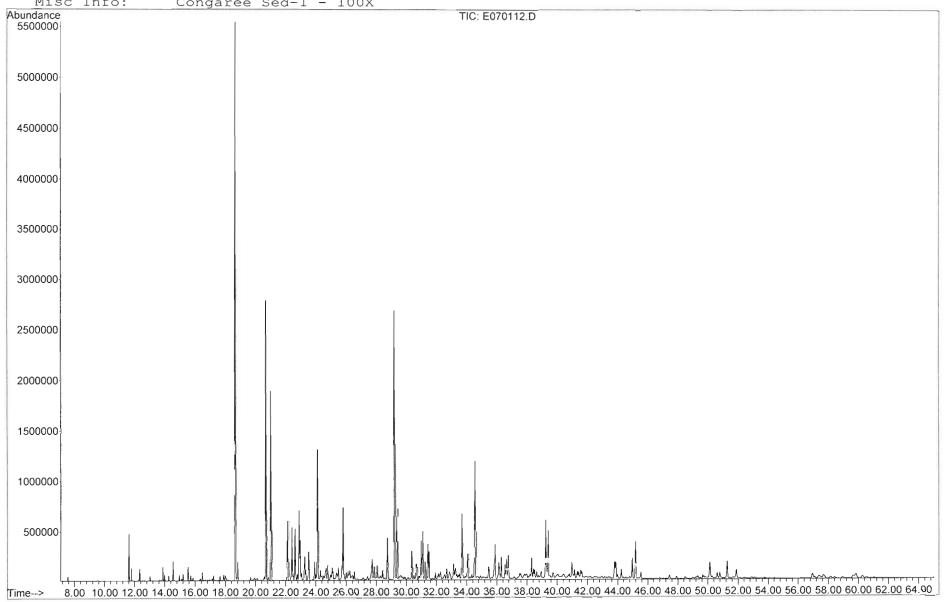
File: J:\1\DATA\E100701\E070112.D

Date Acquired: 2 Jul 2010 3:49 am SG100629-01A-D2 Sample Name: Misc Info: Congaree Sed-1 - 100X Abundance Ion 202.00 (201.70 to 202.70): E070112.D 1000000 Fluoranthene & Pyrene 800000 600000 400000 200000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 216.00 (215.70 to 216.70): E070112.D C1-Fluoranthenes & Pyrenes 150000 100000 50000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Ion 230.00 (229.70 to 230.70): E070112.D Abundance C2-Fluoranthenes & Pyrenes 20000 15000 10000 5000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> lon 244.00 (243.70 to 244.70); E070112.D Abundance C3∯∏luoranthenes & Pyrenes 5000 4000 3000 2000 1000

33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D 2 Jul 2010 Date Acquired: 3:49 am SG100629-01A-D2 Sample Name: Misc Info: Congaree Sed-1 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070112.D Benz(a)anthracene & Chrysene 300000 200000 100000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 242.00 (241.70 to 242.70): E070112.D C1-Benz(a)anthracenes & Chrysenes 80000 60000 40000 20000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070112.D C2-Benz(a)anthracenes & Chrysenes 10000 8000 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 270.00 (269.70 to 270.70): E070112.D C3-Bena(a)anthracenes & Chrysenes 2000 1500 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 284.00 (283.70 to 284.70): E070112.D C4-Benz(a)anthracenes & Chrysenes 2000 1500 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50


GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070112.D

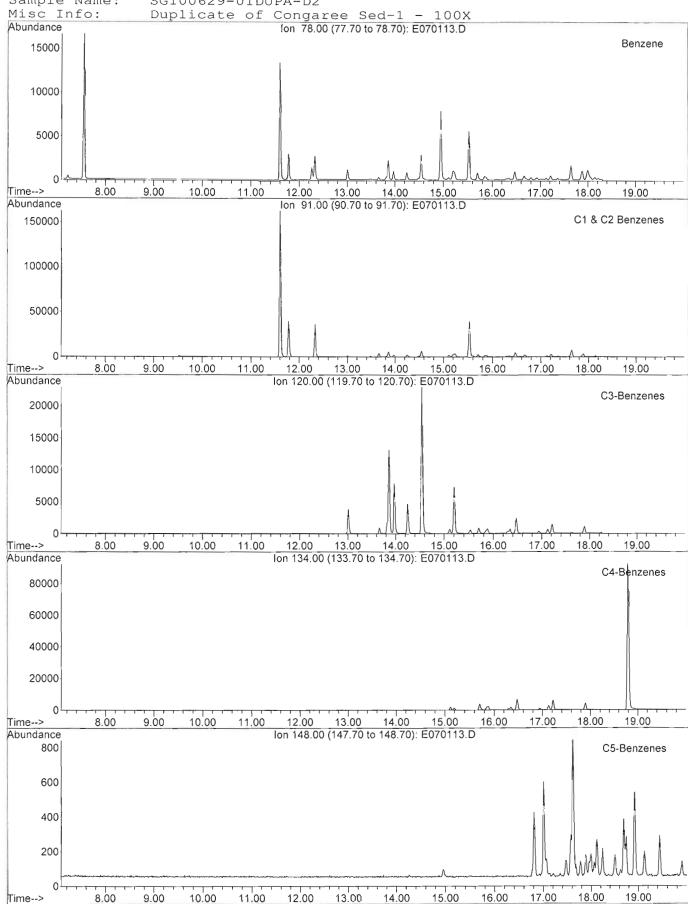
Date Acquired: 2 Jul 2010 3:49 am

Sample Name: SG100629-01A-D2

Misc Info: Congaree Sed-1 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D


Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 85.00 (84.70 to 85.70): E070113.D Alkanes 10000 5000 60.00 15.00 25.00 30.00 40.00 45.00 50.00 55.00 Time--> 10.00 20.00 35.00 Abundance 15000 lon 83.00 (82.70 to 83.70): E070113.D Alkyl-cyclohexanes 10000 5000 40.00 45.00 50.00 55.00 60.00 Time--> 10.00 15.00 20.00 25.00 30.00 35.00 Ion 123.00 (122.70 to 123.70): E070113.D Abundance Sesquiterpanes 600 400 200 Time--> 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 Ion 191.00 (190.70 to 191.70): E070113.D Abundance 600 200 46.00 54.00 56.00 58.00 60.00 Time--> 36.00 38.00 40.00 42.00 44.00 50.00 52.00 48.00 Abundance 400 Ion 217.00 (216.70 to 217.70); E070113.D Steranes 300 200 100 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2

Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 128.00 (127.70 to 128.70): E070113.D 2500000 Naphthalene 2000000 1500000 1000000 500000 Time--> <u>18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 </u> Ion 142.00 (141.70 to 142.70): E070113.D Abundance C1-Naphthalenes 800000 600000 400000 200000 $18.50\ 19.00\ 19.50\ 20.00\ 20.50\ 21.00\ 21.50\ 22.00\ 22.50\ 23.00\ 23.50\ 24.00\ 24.50\ 25.00\ \underline{25.50}\ 26.00\ \underline{26.50}\ 27.00\ \underline{27.50}\ 28.00$ Time--> Abundance lon 156.00 (155.70 to 156.70): E070113.D 150000 C2-Naphthalenes 100000 50000 $\underline{18.50} \,\, \underline{19.00} \,\, \underline{19.50} \,\, \underline{20.00} \,\, \underline{20.50} \,\, \underline{21.00} \,\, \underline{21.50} \,\, \underline{22.00} \,\, \underline{22.50} \,\, \underline{23.00} \,\, \underline{23.50} \,\, \underline{24.50} \,\, \underline{24.50} \,\, \underline{25.50} \,\, \underline{25.50} \,\, \underline{26.50} \,\, \underline{26.50} \,\, \underline{27.00} \,\, \underline{27.50} \,\, \underline{28.00}$ Time--> Ion 170.00 (169.70 to 170.70): E070113.D Abundance 25000 C3-Naphthalenes 20000 15000 10000 5000 25.50 Time--> 22.00 22.50 23.00 23.50 24.00 25.00 26.00 Ion 184.00 (183.70 to 184.70): E070113.D Abundance C4-Naphthalenes 3000 2000 1000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am

Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 166.00 (165.70 to 166.70): E070113.D 200000 Fluorene 150000 100000 50000 Time--> 25.00 25.50 26.00 <u>26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50</u> Abundance lon 180.00 (179.70 to 180.70): E070113.D C1-Fluorenes 30000 25000 20000 15000 10000 5000 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 Time--> 25.00 25.50 26.00 32.00 32.50 lon 194.00 (193.70 to 194.70): E070113.D Abundance C2-Fluorenes 4000 3000 2000 1000 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 Time--> 25.00 Abundance 2000 Ion 208.00 (207.70 to 208.70): E070113.D C3-Fluorenes 1500 1000 500 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 Time--> 25.00 25.50 26.00

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 178.00 (177.70 to 178.70): E070113.D Phenanthrene & Anthracene 1000000 800000 600000 400000 200000 Time--> 28:50 29:00 29:50 30:00 30:50 31:00 31:50 32:00 32:50 33:00 33:50 34:00 34:50 35:00 35:50 36:00 36:50 37:00 <u>37:50</u> Abundance Ion 192.00 (191.70 to 192.70): E070113.D C1-Phenanthrenes & Anthracenes 150000 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance lon 206.00 (205.70 to 206.70): E070113.D C2-Phenanthrenes & Anthracenes 40000 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Ion 220.00 (219.70 to 220.70): E070113.D Abundance 8000 C3-Phenanthrenes & Anthracenes 6000 4000 2000 <u>28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50</u> 35.00 <u>35.50 36.00 36.50 37.00 37.50</u> Time--> Ion 234.00 (233.70 to 234.70): E070113.D Abundance C4-Phenanthrenes & Anthracerles 1000 500 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time -->

GC/MS EXTRACTED ION CHROMATOGRAM

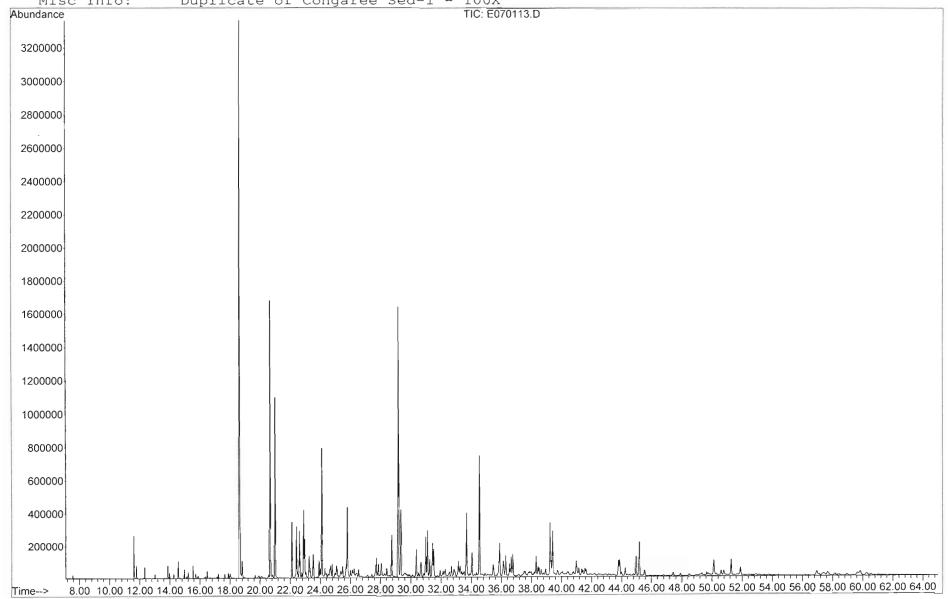
File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Duplicate of Congaree Sed-1 - 100X Misc Info: Abundance Ion 184.00 (183.70 to 184.70): E070113.D 200000 Dibenzothiophene 150000 100000 50000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 198.00 (197.70 to 198.70): E070113.D C1-Dibenzothiophenes 80000 60000 40000 20000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 212.00 (211.70 to 212.70): E070113.D C2-Dibenzothiophenes 20000 15000 10000 5000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 226.00 (225.70 to 226.70): E070113.D C3-Dibenzothiophenes 8000 6000 4000 2000 35.50 Time--> 31.00 31.50 32.00 32.50 33.00 33.50 34.50 35.00 Abundance Ion 240.00 (239.70 to 240.70): E070113.D C4-Dibenzothiophenes 1000 500

28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 202.00 (201.70 to 202.70): E070113.D 600000 Fluoranthene & Pyrene 500000 400000 300000 200000 100000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 216.00 (215.70 to 216.70): E070113.D C1-Fluoranthenes & Pyrenes 80000 60000 40000 20000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 230.00 (229.70 to 230.70): E070113.D C2-Fluoranthenes & Pyrenes 12000 10000 8000 6000 4000 2000 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time--> Abundance Ion 244.00 (243.70 to 244.70): E070113.D 3000 C3+Fluoranthenes & Pyrenes 2500 2000 1500 1000 500 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 Time-->

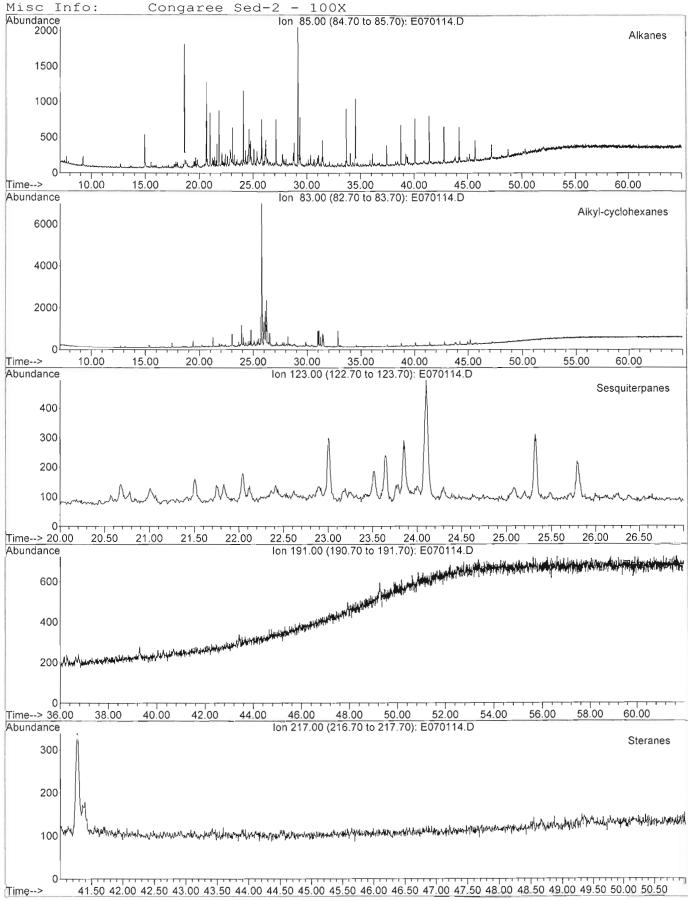
GC/MS EXTRACTED ION CHROMATOGRAM


File: J:\1\DATA\E100701\E070113.D Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2 Misc Info: Duplicate of Congaree Sed-1 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070113.D 200000 Benz(a)anthracene & Chrysene 150000 100000 50000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 242.00 (241.70 to 242.70): E070113.D C1-Benz(a)anthracenes & Chrysenes 50000 40000 30000 20000 10000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070113.D C2-Benz(a)anthracenes & Chrysenes 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 270.00 (269.70 to 270.70): E070113.D C3-Benz (a) anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 lon 284.00 (283.70 to 284.70): E070113.D Abundance C4-Benz(a)anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50

GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070113.D

Date Acquired: 2 Jul 2010 5:06 am Sample Name: SG100629-01DUPA-D2


Misc Info: Duplicate of Congaree Sed-1 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2

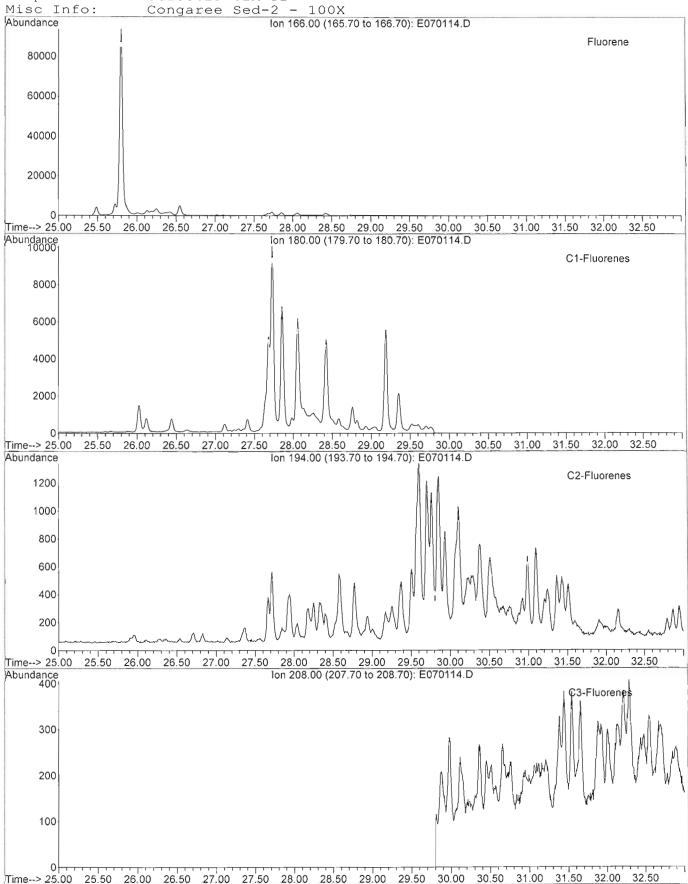
GC/MS EXTRACTED ION CHROMATOGRAM

File:

J:\1\DATA\E100701\E070114.D

2 Jul 2010 Date Acquired: 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X Abundance Ion 78.00 (77.70 to 78.70): E070114.D 5000 Benzene 4000 3000 2000 1000 17.00 Time--> 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 18.00 19.00 Abundance lon 91.00 (90.70 to 91.70): E070114.D C1 & C2 Benzenes 8000 6000 4000 2000 17.00 19.00 14.00 15.00 18.00 Time--> 8.00 9.00 10.00 11.00 12.00 13.00 16.00 Abundance ion 120.00 (119.70 to 120.70): E070114.D C3-Benzenes 1500 1000 500 17.00 18.00 19.00 Time--> 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 Ion 134.00 (133.70 to 134.70): E070114.D Abundance C4-Benzenes 4000 3000 2000 1000 10.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time--> 8.00 9.00 11.00 12.00 Ion 148.00 (147.70 to 148.70): E070114.D Abundance C5-Benzenes 250 200 150 100 50 15.00 16.00 17.00 18.00 19.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 Time-->

GC/MS EXTRACTED ION CHROMATOGRAM


File: J:\1\DATA\E100701\E070114.D Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X Abundance Ion 128.00 (127.70 to 128.70): E070114.D Naphthalene 300000 200000 100000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 142.00 (141.70 to 142.70): E070114.D C1-Naphthalenes 150000 100000 50000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 156.00 (155.70 to 156.70): E070114.D 40000 C2-Naphthalenes 30000 20000 10000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 170.00 (169.70 to 170.70); E070114.D 8000 C3-Naphthalenes 6000 4000 2000 25.50 26.00 Time--> 22.00 22.50 23.00 24.00 24.50 Ion 184.00 (183.70 to 184.70); E070114.D Abundance C4-Naphthalenes 1000 500

18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00

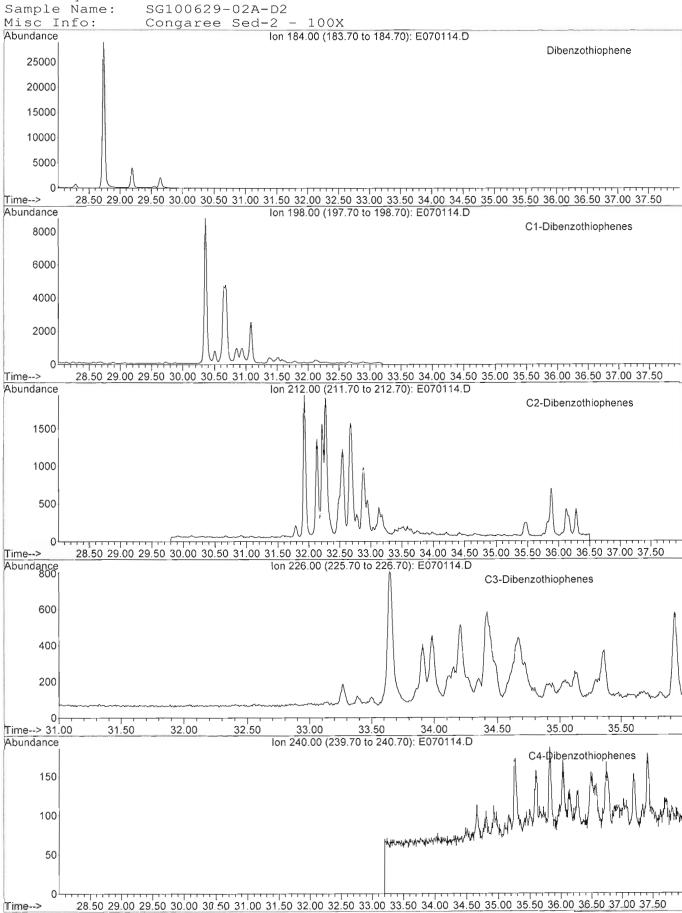
GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2

GC/MS EXTRACTED ION CHROMATOGRAM File: J:\1\DATA\E100701\E070114.D 2 Jul 2010 Date Acquired: 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X Ion 178.00 (177.70 to 178.70): E070114.D Abundance 500000 Phenanthrene & Anthracene 400000 300000 200000 100000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Abundance Ion 192.00 (191.70 to 192.70): E070114.D 40000 C1-Phenanthrenes & Anthracenes 30000 20000 10000 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Time--> Ion 206.00 (205.70 to 206.70): E070114.D Abundance C2-Phenanthrenes & Anthracenes 8000 6000 4000 2000 Time--> 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50 Ion 220.00 (219.70 to 220.70): E070114.D Abundance 1500 C3-Phenanthrenes & Anthracenes 1000 500 28,50 29,00 29,50 30,00 30,50 31,00 31,50 32,00 32,50 33,00 33,50 34,00 34,50 35,00 35,50 36,00 36,50 37,00 37,50 Time--> Abundance Ion 234.00 (233.70 to 234.70): E070114.D C4-Phenanthrenes & Anthraceres 250 200 150 100

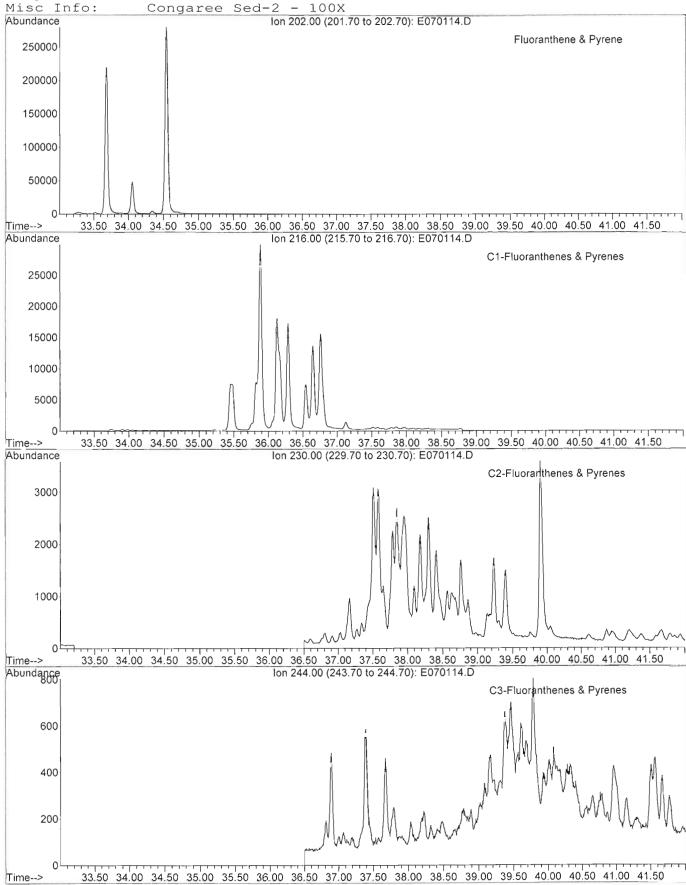
28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00 37.50


50

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D


Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2

GC/MS EXTRACTED ION CHROMATOGRAM

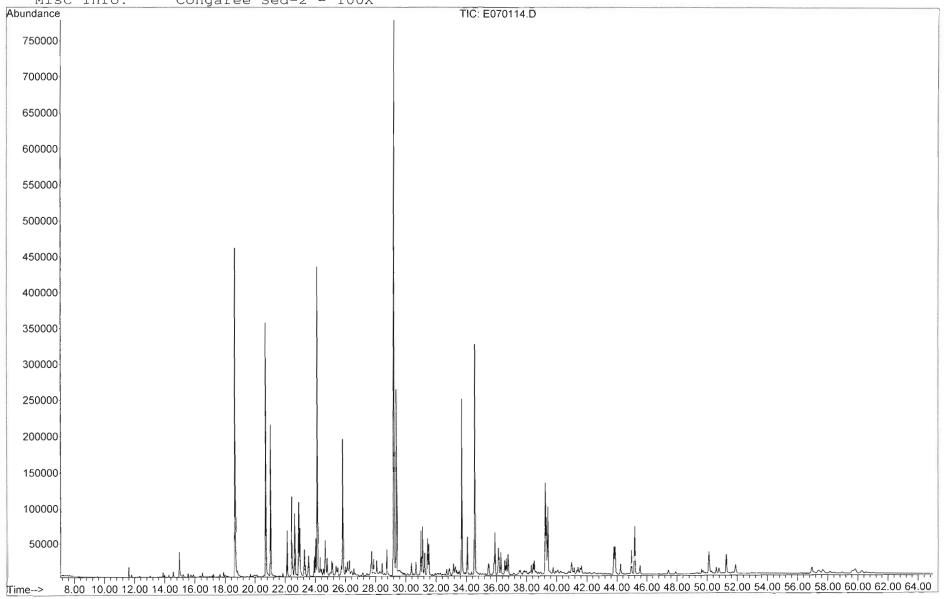
File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2
Misc Info: Congaree Sed-2 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D Date Acquired: 2 Jul 2010 6:23 am Sample Name: SG100629-02A-D2 Misc Info: Congaree Sed-2 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070114.D 80000 Benz(a)anthracene & Chrysene 60000 40000 20000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 242.00 (241.70 to 242.70): E070114.D 10000 C1-Benz(a)anthracenes & Chrysenes 8000 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070114.D 1000 C2-Benz(a)anthracenes & Chrysenes 800 600 400 200 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 270.00 (269.70 to 270.70): E070114.D 3-Be∯z(a)anthracenes & Chrysenes 300 war for the form was a successful for the form of the 200 100 time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 284.00 (283.70 to 284.70): E070114.D C4-Benz(a)anthracenes & Chrysenes 200 hadrateragely was one appointed to the large of the policy of the first of the large of the larg 150 100 50

Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50


GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070114.D

Date Acquired: 2 Jul 2010 6:23 am

Sample Name: SG100629-02A-D2

Misc Info: Congaree Sed-2 - 100X

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D Date Acquired: 2 Jul 2010 7:39 am Sample Name: SG100629-03A-D2 Misc Info: Congaree Sed-3 - 100X Abundance Ion 85.00 (84.70 to 85.70); E070115.D Alkanes 10000 5000 15.00 10.00 20.00 25.00 Time--> 30.00 35.00 40.00 45.00 50.00 55.00 60.00 Abundance Ion 83.00 (82.70 to 83.70): E070115.D 20000 Alkyl-cyclohexanes 15000 10000 5000 10.00 25.00 Time--> 15.00 20.00 30.00 35.00 40.00 50.00 55.00 60.00 Abundance Ion 123.00 (122.70 to 123.70): E070115.D Sesquiterpanes 1000 800 600 400 200 Time--> 20.00 20.50 21.00 21.50 22.00 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 22.50 Abundance Ion 191.00 (190.70 to 191.70): E070115.D 600 200 58.00 60.00 Time--> 36.00 38.00 40.00 42.00 44.00 50.00 52.00 54.00 56.00 46.00 48.00 Abundance Ion 217.00 (216.70 to 217.70); E070115.D Steranes 400 300 200 معرا تصدير كم كالتعدي أيسو وسدم العوازات بإدخاله والدمو الهدائه والإسلام البراي استقدامه ووير أواله يجدونه أوساله والمرابط والمرا 100

 $41.50\ 42.00\ 42.50\ 43.00\ 43.50\ 44.00\ 44.50\ 45.00\ 45.50\ 46.00\ 46.50\ 47.00\ 47.50\ 48.00\ 48.50\ 49.00\ 49.50\ 50.50$

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

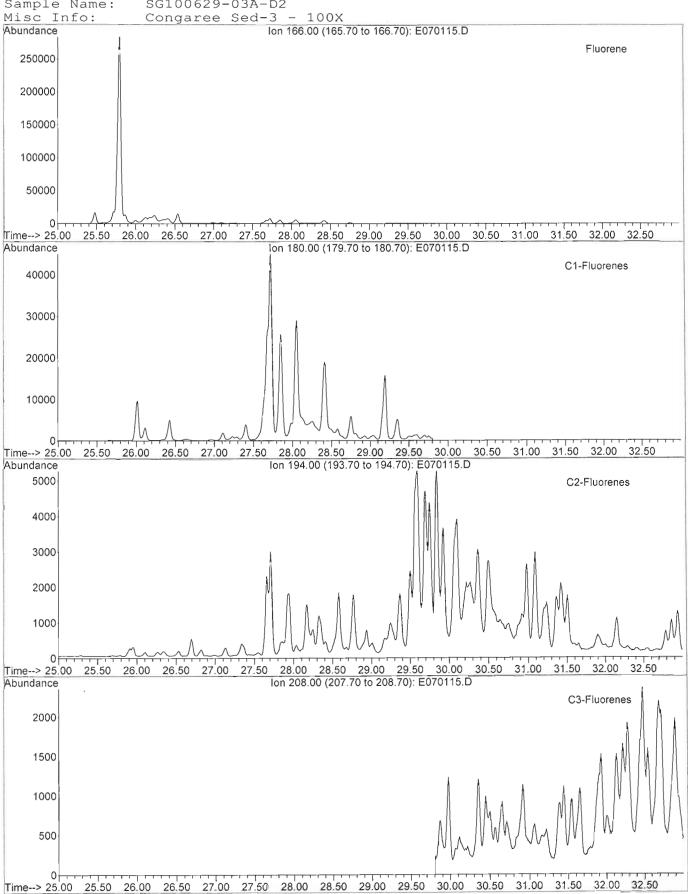
File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am

Sample Name: SG100629-03A-D2 Misc Info: Congaree Sed-3 - 100X Ion 78.00 (77.70 to 78.70): E070115.D Abundance Benzene 10000 5000 Time--> 8.00 9.00 10.00 11.00 12.00 16.00 13.00 14.00 15.00 17.00 18.00 19.00 Abundance Ion 91.00 (90.70 to 91.70): E070115.D C1 & C2 Benzenes 100000 50000 13.00 14.00 Time--> 8.00 10.00 11.00 16.00 17.00 18.00 9.00 12.00 15.00 19.00 Ion 120.00 (119.70 to 120.70): E070115.D Abundance C3-Benzenes 20000 15000 10000 5000 8.00 9.00 11.00 17.00 19.00 10.00 16.00 18.00 12.00 13.00 14.00 15.00 Time--> Abundance Ion 134.00 (133.70 to 134.70): E070115.D 80000 C4-Benzenes 60000 40000 20000 15.00 16.00 18.00 19.00 17.00 9.00 10.00 8.00 11.00 12.00 13.00 14.00 Time--> Abundance 1500 Ion 148.00 (147.70 to 148.70): E070115.D C5-Benzenes 1000 500 15.00 17.00 18.00 19.00 16.00 Time--> 8.00 9.00 1,0.00 11.00 12.00 13.00 14.00

GC/MS EXTRACTED ION CHROMATOGRAM

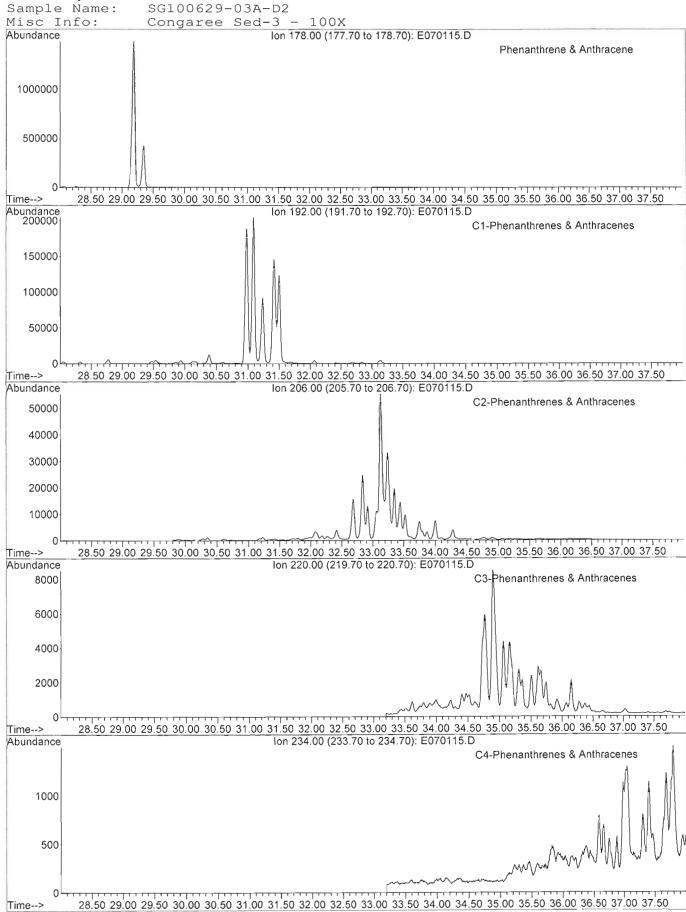
File: J:\1\DATA\E100701\E070115.D 2 Jul 2010 7:39 am Date Acquired: SG100629-03A-D2 Sample Name: Misc Info: Congaree Sed-3 - 100X Abundance Ion 128.00 (127.70 to 128.70): E070115.D Naphthalene 2500000 2000000 1500000 1000000 500000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Abundance Ion 142.00 (141.70 to 142.70): E070115.D C1-Naphthalenes 800000 600000 400000 200000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> lon 156.00 (155.70 to 156.70): E070115.D Abundance C2-Naphthalenes 150000 100000 50000 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 Time--> Ion 170.00 (169.70 to 170.70): E070115.D Abundance 30000 C3-Naphthalenes 20000 10000 26.00 23.00 24.00 25.50 Time--> 22.00 22.50 23.50 24.50 lon 184.00 (183.70 to 184.70): E070115.D Abundance C4-Naphthalenes 4000 3000 2000 1000


18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00

Time-->

GC/MS EXTRACTED ION CHROMATOGRAM

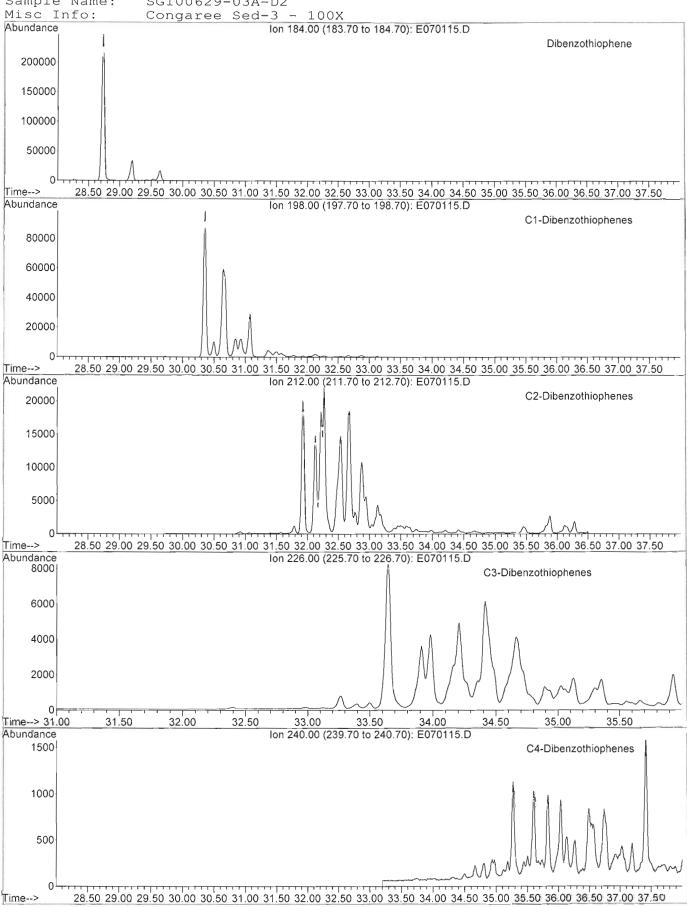
File: J:\1\DATA\E100701\E070115.D


Date Acquired: 2 Jul 2010 7:39 am Sample Name: SG100629-03A-D2

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

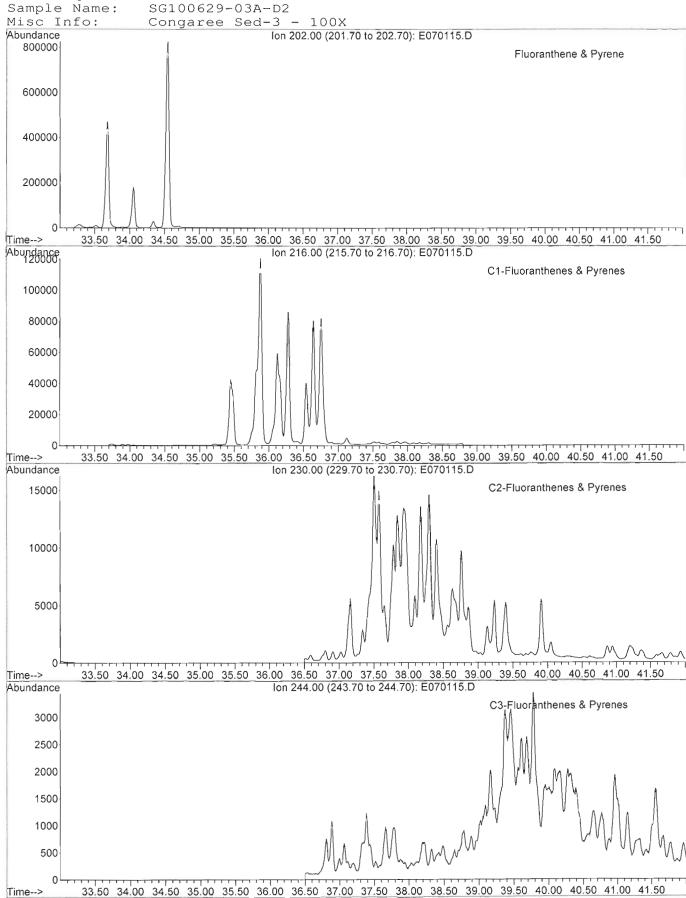
Date Acquired: 2 Jul 2010 7:39 am



GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am


Sample Name: SG100629-03A-D2

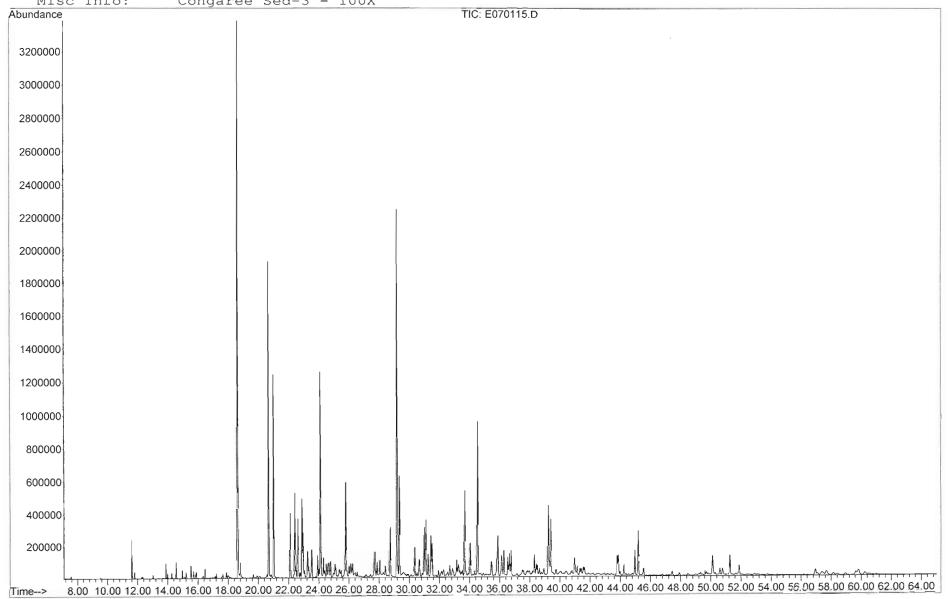
GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am

GC/MS EXTRACTED ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D 2 Jul 2010 Date Acquired: 7:39 am SG100629-03A-D2 Sample Name: Misc Info: Congaree Sed-3 - 100X Abundance Ion 228.00 (227.70 to 228.70): E070115.D Benz(a)anthracene & Chrysene 250000 200000 150000 100000 50000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.5<u>0 46.00 48.50 47.00 47.50</u> Abundance Ion 242.00 (241.70 to 242.70): E070115.D C1-Benz(a)anthracenes & Chrysenes 60000 40000 20000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Abundance Ion 256.00 (255.70 to 256.70): E070115.D C2-Benz(a)anthracenes & Chrysenes 6000 4000 2000 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Ion 270.00 (269.70 to 270.70): E070115.D Abundance C3-Bena(a)anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 Ion 284.00 (283.70 to 284.70): E070115.D Abundance C4-Benz(a)anthracenes & Chrysenes 1000 500 Time--> 38.00 38.50 39.00 39.50 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50


GC/MS TOTAL ION CHROMATOGRAM

File: J:\1\DATA\E100701\E070115.D

Date Acquired: 2 Jul 2010 7:39 am

Sample Name: SG100629-03A-D2

Misc Info: Congaree Sed-3 - 100X

Report of Analysis

AECOM

810 Dutch Square Blvd. Suite 202 Columbia, SC 29210 Attention: Scott Ross

Project Name: Congaree River

Lot Number: LF28025

Date Completed: 07/01/2010

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

LF28025

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative AECOM

Lot Number: LF28025

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Dilutions greater than 5X impact the surrogate recoveries, thus negating their usefulness concerning quality control. The sample results are reported and no corrective action is required.

Sample Summary AECOM

Lot Number: LF28025

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	Congaree Sed-1	Solid	06/28/2010 1430	06/28/2010
002	Congaree Sed-2	Solid	06/28/2010 1500	06/28/2010
003	Congaree Sed-3	Solid	06/28/2010 1520	06/28/2010

(3 samples)

Executive Summary AECOM

Lot Number: LF28025

Sample	Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	Congaree Sed-1	Solid	Benzene	8260B	16000		ug/kg	6
001	Congaree Sed-1	Solid	Ethylbenzene	8260B	150000		ug/kg	6
001	Congaree Sed-1	Solid	Isopropylbenzene	8260B	14000		ug/kg	6
001	Congaree Sed-1	Solid	Xylenes (total)	8260B	79000		ug/kg	7
001	Congaree Sed-1	Solid	Acenaphthene	8270D	730000		ug/kg	8
001	Congaree Sed-1	Solid	Acenaphthylene	8270D	170000		ug/kg	8
001	Congaree Sed-1	Solid	Anthracene	8270D	450000		ug/kg	8
001	Congaree Sed-1	Solid	Benzo(a)anthracene	8270D	340000		ug/kg	8
001	Congaree Sed-1	Solid	Benzo(a)pyrene	8270D	380000		ug/kg	8
001	Congaree Sed-1	Solid	Benzo(b)fluoranthene	8270D	220000		ug/kg	8
001	Congaree Sed-1	Solid	1,1'-Biphenyl	8270D	300000		ug/kg	8
001	Congaree Sed-1	Solid	Chrysene	8270D	340000		ug/kg	8
001	Congaree Sed-1	Solid	Fluoranthene	8270D	530000		ug/kg	8
001	Congaree Sed-1	Solid	Fluorene	8270D	490000		ug/kg	8
001	Congaree Sed-1	Solid	2-Methylnaphthalene	8270D	1700000		ug/kg	9
001	Congaree Sed-1	Solid	Naphthalene	8270D	3100000		ug/kg	9
001	Congaree Sed-1	Solid	Phenanthrene	8270D	1600000		ug/kg	9
001	Congaree Sed-1	Solid	Pyrene	8270D	900000		ug/kg	9
002	Congaree Sed-2	Solid	Benzene	8260B	970		ug/kg	10
002	Congaree Sed-2	Solid	Ethylbenzene	8260B	10000		ug/kg	10
002	Congaree Sed-2	Solid	Isopropylbenzene	8260B	2200		ug/kg	10
002	Congaree Sed-2	Solid	Xylenes (total)	8260B	4100		ug/kg	11
002	Congaree Sed-2	Solid	Acenaphthene	8270D	380000		ug/kg	12
002	Congaree Sed-2	Solid	Anthracene	8270D	300000		ug/kg	12
002	Congaree Sed-2	Solid	Benzo(a)anthracene	8270D	130000		ug/kg	12
002	Congaree Sed-2	Solid	Benzo(a)pyrene	8270D	130000		ug/kg	12
002	Congaree Sed-2	Solid	Benzo(b)fluoranthene	8270D	110000		ug/kg	12
002	Congaree Sed-2	Solid	Benzo(g,h,i)perylene	8270D	47000		ug/kg	12
002	Congaree Sed-2	Solid	1,1'-Biphenyl	8270D	64000		ug/kg	12
002	Congaree Sed-2	Solid	Chrysene	8270D	110000		ug/kg	12
002	Congaree Sed-2	Solid	Dibenzofuran	8270D	63000		ug/kg	12
002	Congaree Sed-2	Solid	Fluoranthene	8270D	320000		ug/kg	12
002	Congaree Sed-2	Solid	Fluorene	8270D	220000		ug/kg	12
002	Congaree Sed-2	Solid	2-Methylnaphthalene	8270D	400000		ug/kg	13
002	Congaree Sed-2	Solid	Naphthalene	8270D	470000		ug/kg	13
002	Congaree Sed-2	Solid	Phenanthrene	8270D	710000		ug/kg	13
002	Congaree Sed-2	Solid	Pyrene	8270D	380000		ug/kg	13
003	Congaree Sed-3	Solid	Benzene	8260B	8000		ug/kg	14
003	Congaree Sed-3	Solid	Ethylbenzene	8260B	90000		ug/kg	14
003	Congaree Sed-3	Solid	Isopropylbenzene	8260B	8000		ug/kg	14
003	Congaree Sed-3	Solid	Xylenes (total)	8260B	19000		ug/kg	15
003	Congaree Sed-3	Solid	Acenaphthene	8270D	740000		ug/kg	16
003	Congaree Sed-3	Solid	Acenaphthylene	8270D	100000		ug/kg	16
003	Congaree Sed-3	Solid	Anthracene	8270D	430000		ug/kg	16
003	Congaree Sed-3	Solid	Benzo(a)anthracene	8270D	290000		ug/kg	16
	-		• •				5 5	

Executive Summary (Continued)

Lot Number: LF28025

Sample	Sample ID	Matrix	Parameter	Method	Result	Q Units	Page
003	Congaree Sed-3	Solid	Benzo(a)pyrene	8270D	310000	ug/kg	16
003	Congaree Sed-3	Solid	Benzo(b)fluoranthene	8270D	180000	ug/kg	16
003	Congaree Sed-3	Solid	Benzo(g,h,i)perylene	8270D	110000	ug/kg	16
003	Congaree Sed-3	Solid	Benzo(k)fluoranthene	8270D	94000	ug/kg	16
003	Congaree Sed-3	Solid	1,1'-Biphenyl	8270D	220000	ug/kg	16
003	Congaree Sed-3	Solid	Chrysene	8270D	280000	ug/kg	16
003	Congaree Sed-3	Solid	Fluoranthene	8270D	480000	ug/kg	16
003	Congaree Sed-3	Solid	Fluorene	8270D	420000	ug/kg	16
003	Congaree Sed-3	Solid	2-Methylnaphthalene	8270D	1200000	ug/kg	17
003	Congaree Sed-3	Solid	Naphthalene	8270D	2000000	ug/kg	17
003	Congaree Sed-3	Solid	Phenanthrene	8270D	1400000	ug/kg	17
003	Congaree Sed-3	Solid	Pyrene	8270D	800000	ug/kg	17

(57 detections)

Volatile Organic Compounds by GC/MS

Client: AECOM

Description: Congaree Sed-1

Date Sampled: 06/28/2010 1430

Date Received: 06/28/2010

Laboratory ID: LF28025-001

Matrix: Solid

% Solids: 87.9 06/28/2010 1956

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1000	06/30/2010 0811	DLB		36704	5.00

Parameter	CAS Number	Analytical Method	Result	Q PQL	Units	Run
Acetone	67-64-1	8260B	ND	23000	ug/kg	1
Benzene	71-43-2	8260B	16000	5700	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND	5700	ug/kg	1
Bromoform	75-25-2	8260B	ND	5700	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	5700	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND	11000	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND	5700	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND	5700	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND	5700	ug/kg	1
Chloroethane	75-00-3	8260B	ND	5700	ug/kg	1
Chloroform	67-66-3	8260B	ND	5700	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	5700	ug/kg	1
Cyclohexane	110-82-7	8260B	ND	5700	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	5700	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND	5700	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	5700	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	5700	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	5700	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	5700	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND	5700	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND	5700	ug/kg	1
1.2-Dichloroethane	107-06-2	8260B	ND	5700	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND	5700	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	5700	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	5700	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND	5700	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	5700	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	5700	ug/kg	1
Ethylbenzene	100-41-4	8260B	150000	5700	ug/kg	1
2-Hexanone	591-78-6	8260B	ND	11000	ug/kg	1
Isopropylbenzene	98-82-8	8260B	14000	5700	ug/kg	1
Methyl acetate	79-20-9	8260B	ND	5700 5700	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	5700	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	11000	ug/kg ug/kg	1
Methylcyclohexane	108-10-1	8260B	ND	5700		1
Methylene chloride	75-09-2	8260B	ND	5700 5700	ug/kg	1
•	100-42-5	8260B	ND	5700 5700	ug/kg	1
Styrene 1,1,2,2-Tetrachloroethane					ug/kg	1
Tetrachloroethene	79-34-5 127-18-4	8260B 8260B	ND ND	5700 5700	ug/kg	1
Toluene	108-88-3	8260B	ND	5700 5700	ug/kg	1
					ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	5700 5700	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	5700	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	5700	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	5700	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Client: AECOM

Laboratory ID: LF28025-001

Description: Congaree Sed-1 Date Sampled: 06/28/2010 1430 Matrix: Solid

% Solids: 87.9 06/28/2010 1956

Date Received: 06/28/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1000	06/30/2010 0811	DLB		36704	5.00

Parameter		Nun	CAS nber	Analytical Method	Result	Q	PQL	Units	Run
Trichloroethene		79-0	01-6	8260B	ND		5700	ug/kg	1
Trichlorofluoromethane		75-6	69-4	8260B	ND		5700	ug/kg	1
Vinyl chloride		75-0	01-4	8260B	ND		5700	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	79000		5700	ug/kg	1
Surrogate	Q	Run 1 / % Recovery	Acceptan Limits						
1,2-Dichloroethane-d4	N	5.2	53-142)					
Bromofluorobenzene	N	5.9	47-138	3					
Toluene-d8	N	5.4	68-124	ļ					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Client: AECOM

Description: Congaree Sed-1

Date Sampled:06/28/2010 1430 % Solids: 87.9 06/28/2010 1956

Date Received: 06/28/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 3550C 8270D 400 07/01/2010 1435 JGH 06/29/2010 1010 36604

Parameter	CAS Number	Analytical Method	Result	Q PQL	Units	Run
Acenaphthene	83-32-9	8270D	730000	140000	ug/kg	1
Acenaphthylene	208-96-8	8270D	170000	140000	ug/kg	1
Acetophenone	98-86-2	8270D	ND	140000	ug/kg	1
Anthracene	120-12-7	8270D	450000	140000	ug/kg	1
Atrazine	1912-24-9	8270D	ND	140000	ug/kg ug/kg	1
Benzaldehyde	100-52-7	8270D	ND	360000	ug/kg ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	340000	140000	ug/kg ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	380000	140000	ug/kg ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	220000	140000	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	140000	ug/kg ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	140000	ug/kg ug/kg	1
	92-52-4	8270D	300000	140000 140000		1
1,1'-Biphenyl					ug/kg	
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	140000	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND	140000	ug/kg	1
Caprolactam	105-60-2 86-74-8	8270D	ND	360000	ug/kg	1
Carbazole		8270D	ND	140000	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	140000	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND	140000	ug/kg	1
ois(2-Chloroethoxy)methane	111-91-1	8270D	ND	140000	ug/kg	1
ois(2-Chloroethyl)ether	111-44-4	8270D	ND	140000	ug/kg	1
ois(2-Chloroisopropyl)ether	108-60-1	8270D	ND	140000	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND	140000	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND	140000	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	140000	ug/kg	1
Chrysene	218-01-9	8270D	340000	140000	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND	140000	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND	140000	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	140000	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND	140000	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	360000	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND	140000	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND	140000	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND	140000	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND	140000	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	360000	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	360000	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	140000	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	140000	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	140000	ug/kg	1
Fluoranthene	206-44-0	8270D	530000	140000	ug/kg	1
Fluorene	86-73-7	8270D	490000	140000	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND	140000	ug/kg	1
Hexachlorobetizette Hexachlorobutadiene	87-68-3	8270D	ND	140000	ug/kg ug/kg	1
IOAGOINOTODUIGUICITO	01-00-3	02100	ND	140000	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

Laboratory ID: LF28025-001

Matrix: Solid

ND = Not detected at or above the PQL

 $J = Estimated result < PQL and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: AECOM

Laboratory ID: LF28025-001

Description: Congaree Sed-1 Date Sampled: 06/28/2010 1430 Matrix: Solid

% Solids: 87.9 06/28/2010 1956

Date Received: 06/28/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 1 3550C 8270D 400 07/01/2010 1435 JGH 06/29/2010 1010 36604

Baranatar	CAS	Analytical	D 14	0 801	11-26-	D
Parameter	Number	Method	Result	Q PQL	Units	Run
Hexachloroethane	67-72-1	8270D	ND	140000	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	140000	ug/kg	1
Isophorone	78-59-1	8270D	ND	140000	ug/kg	1
2-Methylnaphthalene	91-57-6	8270D	1700000	140000	ug/kg	1
2-Methylphenol	95-48-7	8270D	ND	140000	ug/kg	1
3 & 4-Methylphenol	106-44-5	8270D	ND	290000	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	140000	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	140000	ug/kg	1
Naphthalene	91-20-3	8270D	3100000	140000	ug/kg	1
2-Nitroaniline	88-74-4	8270D	ND	140000	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND	140000	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND	140000	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND	140000	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND	140000	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND	360000	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND	360000	ug/kg	1
Phenanthrene	85-01-8	8270D	1600000	140000	ug/kg	1
Phenol	108-95-2	8270D	ND	140000	ug/kg	1
Pyrene	129-00-0	8270D	900000	140000	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	140000	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	140000	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi					

Surrogate	Q % Recovery Limits			
2,4,6-Tribromophenol	N	0.00	30-117	
2-Fluorobiphenyl		81	33-102	
2-Fluorophenol		42	28-104	
Nitrobenzene-d5		62	22-109	
Phenol-d5		43	27-103	
Terphenyl-d14		92	41-120	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Client: AECOM

Date Sampled: 06/28/2010 1500

Description: Congaree Sed-2

Laboratory ID: LF28025-002

Matrix: Solid

% Solids: 70.6 06/28/2010 1956

Date Received: 06/28/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date Batch** Sample Wt.(g) 5035 8260B 50 06/30/2010 0721 DLB 36704 5.00

Parameter	CAS Number	Analytical Method	Result	Q	PQL	Units	Run
Acetone	67-64-1	8260B	ND		1400	ug/kg	1
Benzene	71-43-2	8260B	970		350	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		350	ug/kg	1
Bromoform	75-25-2	8260B	ND		350	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		350	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		710	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		350	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		350	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		350	ug/kg	1
Chloroethane	75-00-3	8260B	ND		350	ug/kg	1
Chloroform	67-66-3	8260B	ND		350	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		350	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		350	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		350	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		350	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		350	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		350	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		350	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		350	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		350	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND		350	ug/kg	1
1.2-Dichloroethane	107-06-2	8260B	ND		350	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND		350	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		350	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND		350	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		350	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		350	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		350	ug/kg	1
Ethylbenzene	100-41-4	8260B	10000		350	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		710	ug/kg	1
Isopropylbenzene	98-82-8	8260B	2200		350	ug/kg	1
Methyl acetate	79-20-9	8260B	ND		350	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		350	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		710	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		350	ug/kg	1
Methylene chloride	75-09-2	8260B	ND		350	ug/kg	1
Styrene	100-42-5	8260B	ND		350	ug/kg ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		350	ug/kg ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND		350	ug/kg ug/kg	1
Toluene	108-88-3	8260B	ND		350	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		350	ug/kg ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		350	ug/kg ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		350	ug/kg ug/kg	1
i,i,i inomorodinano	7 1-33-0	02000	ND		550	ug/kg	'

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 10 of 28

Volatile Organic Compounds by GC/MS

Client: AECOM

Date Sampled: 06/28/2010 1500

Laboratory ID: LF28025-002

Description: Congaree Sed-2

Matrix: Solid

% Solids: 70.6 06/28/2010 1956

Date Received: 06/28/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	50	06/30/2010 0721	DLB		36704	5.00

Parameter	(Num	CAS iber	Analytical Method	Result	Q	PQL	Units	Run
Trichloroethene	79-0)1-6	8260B	ND		350	ug/kg	1
Trichlorofluoromethane	75-6	69-4	8260B	ND		350	ug/kg	1
Vinyl chloride	75-0)1-4	8260B	ND		350	ug/kg	1
Xylenes (total)	1330-2	20-7	8260B	4100		350	ug/kg	1
Surrogate	Run 1 A Recovery	Acceptan Limits						
1,2-Dichloroethane-d4	81	53-142)					
Bromofluorobenzene	77	47-138	3					
Toluene-d8	70	68-124	ļ					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: AECOM

Description: Congaree Sed-2

Matrix: Solid Date Sampled: 06/28/2010 1500 % Solids: 70.6 06/28/2010 1956

Date Received: 06/28/2010

Prep Date

Batch

Laboratory ID: LF28025-002

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst 1 3550C 8270D 100 06/30/2010 2240 JGH 06/29/2010 1010 36604

	CAS	Analytical					
Parameter	Number	Method	Result	Q	PQL	Units	Run
Acenaphthene	83-32-9	8270D	380000		44000	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		44000	ug/kg	1
Acetophenone	98-86-2	8270D	ND		44000	ug/kg	1
Anthracene	120-12-7	8270D	300000		44000	ug/kg	1
Atrazine	1912-24-9	8270D	ND		44000	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		110000	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	130000		44000	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	130000		44000	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	110000		44000	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	47000		44000	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		44000	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	64000		44000	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		44000	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		44000	ug/kg	1
Caprolactam	105-60-2	8270D	ND		110000	ug/kg	1
Carbazole	86-74-8	8270D	ND		44000	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		44000	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		44000	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		44000	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		44000	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		44000	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		44000	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		44000	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		44000	ug/kg	1
Chrysene	218-01-9	8270D	110000		44000	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		44000	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		44000	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		44000	ug/kg	1
Dibenzofuran	132-64-9	8270D	63000		44000	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		110000	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		44000	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		44000	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		44000	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		44000	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		110000	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		110000	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		44000	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		44000	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		44000	ug/kg	1
Fluoranthene	206-44-0	8270D	320000		44000	ug/kg	1
Fluorene	86-73-7	8270D	220000		44000	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		44000	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		44000	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		110000	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Client: AECOM

Laboratory ID: LF28025-002

Description: Congaree Sed-2

Matrix: Solid

Date Sampled: 06/28/2010 1500

% Solids: 70.6 06/28/2010 1956

Date Received: 06/28/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 1 3550C 8270D 100 06/30/2010 2240 JGH 06/29/2010 1010 36604

	CAS	Analytical					
Parameter	Number	Method	Result	Q I	PQL	Units	Run
Hexachloroethane	67-72-1	8270D	ND	4	4000	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	4	4000	ug/kg	1
Isophorone	78-59-1	8270D	ND	4	4000	ug/kg	1
2-Methylnaphthalene	91-57-6	8270D	400000	4	4000	ug/kg	1
2-Methylphenol	95-48-7	8270D	ND	4	4000	ug/kg	1
3 & 4-Methylphenol	106-44-5	8270D	ND	8	9000	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	4	4000	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	4	4000	ug/kg	1
Naphthalene	91-20-3	8270D	470000	4	4000	ug/kg	1
2-Nitroaniline	88-74-4	8270D	ND	4	4000	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND	4	4000	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND	4	4000	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND	4	4000	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND	4	4000	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND	11	0000	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND	11	0000	ug/kg	1
Phenanthrene	85-01-8	8270D	710000	4	4000	ug/kg	1
Phenol	108-95-2	8270D	ND	4	4000	ug/kg	1
Pyrene	129-00-0	8270D	380000	4	4000	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	4	4000	ug/kg	1
		8270D	ND		4000	ug/kg	_

Surrogate	Run 1 Acceptance Q % Recovery Limits	
2,4,6-Tribromophenol	64 30-117	
2-Fluorobiphenyl	77 33-102	
2-Fluorophenol	66 28-104	
Nitrobenzene-d5	69 22-109	
Phenol-d5	62 27-103	
Terphenyl-d14	87 41-120	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Client: AECOM

Description: Congaree Sed-3

Matrix: Solid Date Sampled: 06/28/2010 1520 % Solids: 77.5 06/28/2010 1956

Date Received: 06/28/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date Batch** Sample Wt.(g) 1 5035 8260B 500 06/30/2010 0749 DLB 36704 5.00

Parameter	CAS Number	Analytical Method	Result	Q	PQL	Units	Run
Acetone	67-64-1	8260B	ND		13000	ug/kg	1
Benzene	71-43-2	8260B	8000		3200	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		3200	ug/kg	1
Bromoform	75-25-2	8260B	ND		3200	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		3200	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		6500	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		3200	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		3200	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		3200	ug/kg	1
Chloroethane	75-00-3	8260B	ND		3200	ug/kg	1
Chloroform	67-66-3	8260B	ND		3200	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		3200	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		3200	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		3200	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		3200	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		3200	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		3200	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		3200	ug/kg	1
,4-Dichlorobenzene	106-46-7	8260B	ND		3200	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		3200	ug/kg	1
,1-Dichloroethane	75-34-3	8260B	ND		3200	ug/kg	1
,2-Dichloroethane	107-06-2	8260B	ND		3200	ug/kg	1
I,1-Dichloroethene	75-35-4	8260B	ND		3200	ug/kg	1
sis-1,2-Dichloroethene	156-59-2	8260B	ND		3200	ug/kg	1
rans-1,2-Dichloroethene	156-60-5	8260B	ND		3200	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		3200	ug/kg	1
sis-1,3-Dichloropropene	10061-01-5	8260B	ND		3200	ug/kg	1
rans-1,3-Dichloropropene	10061-02-6	8260B	ND		3200	ug/kg	1
Ethylbenzene	100-41-4	8260B	90000		3200	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		6500	ug/kg	1
sopropylbenzene	98-82-8	8260B	8000		3200	ug/kg	1
Methyl acetate	79-20-9	8260B	ND		3200	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		3200	ug/kg	1
1-Methyl-2-pentanone	108-10-1	8260B	ND		6500	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		3200	ug/kg	1
Methylene chloride	75-09-2	8260B	ND		3200	ug/kg	1
Styrene	100-42-5	8260B	ND		3200	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		3200	ug/kg	1
Fetrachloroethene	127-18-4	8260B	ND		3200	ug/kg	1
Foluene	108-88-3	8260B	ND		3200	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		3200	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		3200	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		3200	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		3200	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

Laboratory ID: LF28025-003

ND = Not detected at or above the PQL

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 14 of 28

Volatile Organic Compounds by GC/MS

Client: AECOM

Laboratory ID: LF28025-003

Description: Congaree Sed-3 Date Sampled: 06/28/2010 1520

Matrix: Solid

% Solids: 77.5 06/28/2010 1956

Date Received: 06/28/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	500	06/30/2010 0749	DLB		36704	5.00

Parameter		Num	CAS iber	Analytical Method	Result	Q	PQL	Units	Run
Trichloroethene		79-0)1-6	8260B	ND		3200	ug/kg	1
Trichlorofluoromethane		75-6	89-4	8260B	ND		3200	ug/kg	1
Vinyl chloride		75-0)1-4	8260B	ND		3200	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	19000		3200	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits						
1,2-Dichloroethane-d4	N	9.4	53-142)					
Bromofluorobenzene	N	11	47-138	3					
Toluene-d8	N	9.2	68-124	ļ					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: AECOM

Description: Congaree Sed-3

Date Sampled: 06/28/2010 1520

Matrix: Solid

Laboratory ID: LF28025-003

% Solids: 77.5 06/28/2010 1956

Date Received: 06/28/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 1 3550C 8270D 200 07/01/2010 1453 JGH 06/29/2010 1010 36604

Parameter	CAS	Analytical	Result	Q	PQL	Units	Run
	Number	Method		<u> </u>			
Acenaphthene	83-32-9	8270D	740000		82000	ug/kg	1
Acenaphthylene	208-96-8	8270D	100000		82000	ug/kg	1
Acetophenone	98-86-2	8270D	ND		82000	ug/kg	1
Anthracene	120-12-7	8270D	430000		82000	ug/kg	1
Atrazine	1912-24-9	8270D	ND		82000	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		210000	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	290000		82000	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	310000		82000	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	180000		82000	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	110000		82000	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	94000		82000	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	220000		82000	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		82000	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		82000	ug/kg	1
Caprolactam	105-60-2	8270D	ND		210000	ug/kg	1
Carbazole	86-74-8	8270D	ND		82000	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		82000	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		82000	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		82000	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		82000	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		82000	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		82000	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		82000	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		82000	ug/kg	1
Chrysene	218-01-9	8270D	280000		82000	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		82000	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		82000	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		82000	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		82000	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		210000	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		82000	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		82000	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		82000	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		82000	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		210000	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		210000	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		82000	ug/kg	1
2.6-Dinitrotoluene	606-20-2	8270D	ND		82000	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		82000	ug/kg	1
Fluoranthene	206-44-0	8270D	480000		82000	ug/kg	1
Fluorene	86-73-7	8270D	420000		82000	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		82000	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		82000	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		210000	ug/kg ug/kg	1
. Toxas morody dioportia diorio	11:41:4	321 OD	ND		210000	ug/Ng	•

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < PQL and \ge MDL$ Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: AECOM

_ _ _ . .

Laboratory ID: LF28025-003

Description: Congaree Sed-3
Date Sampled:06/28/2010 1520

Matrix: Solid

% Solids: 77.5 06/28/2010 1956

Date Received: 06/28/2010

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3550C
 8270D
 200
 07/01/2010 1453
 JGH
 06/29/2010 1010
 36604

	CAS	Analytical					
Parameter	Number	Method	Result	Q	PQL	Units	Run
Hexachloroethane	67-72-1	8270D	ND		82000	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND		82000	ug/kg	1
Isophorone	78-59-1	8270D	ND		82000	ug/kg	1
2-Methylnaphthalene	91-57-6	8270D	1200000		82000	ug/kg	1
2-Methylphenol	95-48-7	8270D	ND		82000	ug/kg	1
3 & 4-Methylphenol	106-44-5	8270D	ND		170000	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND		82000	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND		82000	ug/kg	1
Naphthalene	91-20-3	8270D	2000000		82000	ug/kg	1
2-Nitroaniline	88-74-4	8270D	ND		82000	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND		82000	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND		82000	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND		82000	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND		82000	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND		210000	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND		210000	ug/kg	1
Phenanthrene	85-01-8	8270D	1400000		82000	ug/kg	1
Phenol	108-95-2	8270D	ND		82000	ug/kg	1
Pyrene	129-00-0	8270D	800000		82000	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND		82000	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND		82000	ug/kg	1
	Run 1 Accept	ance					

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
2,4,6-Tribromophenol	N	25	30-117
2-Fluorobiphenyl		85	33-102
2-Fluorophenol		51	28-104
Nitrobenzene-d5		78	22-109
Phenol-d5		54	27-103
Terphenyl-d14		108	41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: LQ36704-001 Batch: 36704

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	Units	Analysis Date
Acetone	ND		50	1000	ug/kg	06/30/2010 0113
Benzene	ND		50	250	ug/kg	06/30/2010 0113
Bromodichloromethane	ND		50	250	ug/kg	06/30/2010 0113
Bromoform	ND		50	250	ug/kg	06/30/2010 0113
Bromomethane (Methyl bromide)	ND		50	250	ug/kg	06/30/2010 0113
2-Butanone (MEK)	ND		50	500	ug/kg	06/30/2010 0113
Carbon disulfide	ND		50	250	ug/kg	06/30/2010 0113
Carbon tetrachloride	ND		50	250	ug/kg	06/30/2010 0113
Chlorobenzene	ND		50	250	ug/kg	06/30/2010 0113
Chloroethane	ND		50	250	ug/kg	06/30/2010 0113
Chloroform	ND		50	250	ug/kg	06/30/2010 0113
Chloromethane (Methyl chloride)	ND		50	250	ug/kg	06/30/2010 0113
Cyclohexane	ND		50	250	ug/kg	06/30/2010 0113
1,2-Dibromo-3-chloropropane (DBCP)	ND		50	250	ug/kg	06/30/2010 0113
Dibromochloromethane	ND		50	250	ug/kg	06/30/2010 0113
1,2-Dibromoethane (EDB)	ND		50	250	ug/kg	06/30/2010 0113
1,4-Dichlorobenzene	ND		50	250	ug/kg	06/30/2010 0113
1,3-Dichlorobenzene	ND		50	250	ug/kg	06/30/2010 0113
1,2-Dichlorobenzene	ND		50	250	ug/kg	06/30/2010 0113
Dichlorodifluoromethane	ND		50	250	ug/kg	06/30/2010 0113
1,2-Dichloroethane	ND		50	250	ug/kg	06/30/2010 0113
1,1-Dichloroethane	ND		50	250	ug/kg	06/30/2010 0113
trans-1,2-Dichloroethene	ND		50	250	ug/kg	06/30/2010 0113
cis-1,2-Dichloroethene	ND		50	250	ug/kg	06/30/2010 0113
1,1-Dichloroethene	ND		50	250	ug/kg	06/30/2010 0113
1,2-Dichloropropane	ND		50	250	ug/kg	06/30/2010 0113
trans-1,3-Dichloropropene	ND		50	250	ug/kg	06/30/2010 0113
cis-1,3-Dichloropropene	ND		50	250	ug/kg	06/30/2010 0113
Ethylbenzene	ND		50	250	ug/kg	06/30/2010 0113
2-Hexanone	ND		50	500	ug/kg	06/30/2010 0113
Isopropylbenzene	ND		50	250	ug/kg	06/30/2010 0113
Methyl acetate	ND		50	250	ug/kg	06/30/2010 0113
Methyl tertiary butyl ether (MTBE)	ND		50	250	ug/kg	06/30/2010 0113
4-Methyl-2-pentanone	ND		50	500	ug/kg	06/30/2010 0113
Methylcyclohexane	ND		50	250	ug/kg	06/30/2010 0113
Methylene chloride	ND		50	250	ug/kg	06/30/2010 0113
Styrene	ND		50	250	ug/kg	06/30/2010 0113
1,1,2,2-Tetrachloroethane	ND		50	250	ug/kg	06/30/2010 0113
Tetrachloroethene	ND		50	250	ug/kg	06/30/2010 0113
Toluene	ND		50	250	ug/kg	06/30/2010 0113
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		50	250	ug/kg	06/30/2010 0113
1,2,4-Trichlorobenzene	ND		50	250	ug/kg	06/30/2010 0113
1,1,2-Trichloroethane	ND		50	250	ug/kg	06/30/2010 0113
1,1,1-Trichloroethane	ND		50	250	ug/kg	06/30/2010 0113
					3 0	

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: LQ36704-001

Batch: 36704 Analytical Method: 8260B Matrix: Solid Prep Method: 5035

Parameter Result Q **PQL** Units **Analysis Date** Dil Trichloroethene ND 50 250 ug/kg 06/30/2010 0113 50 Trichlorofluoromethane ND 250 ug/kg 06/30/2010 0113 Vinyl chloride ND 50 250 ug/kg 06/30/2010 0113 Xylenes (total) ND 50 250 06/30/2010 0113 ug/kg Acceptance Limit Surrogate Q % Rec Bromofluorobenzene 47-138 Ν 4370 1,2-Dichloroethane-d4 3950 53-142 Ν Toluene-d8 3860 Ν 68-124

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: LQ36704-002 Batch: 36704

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

	Spike						
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	5000	3900		50	78	42-149	06/30/2010 1844
Benzene	2500	1900		50	76	69-123	06/30/2010 1844
Bromodichloromethane	2500	2000		50	81	69-121	06/30/2010 1844
Bromoform	2500	2200		50	87	61-119	06/30/2010 1844
Bromomethane (Methyl bromide)	2500	1900		50	75	35-144	06/30/2010 1844
2-Butanone (MEK)	5000	3800		50	75	57-148	06/30/2010 1844
Carbon disulfide	2500	2000		50	79	58-122	06/30/2010 1844
Carbon tetrachloride	2500	1900		50	75	58-136	06/30/2010 1844
Chlorobenzene	2500	2200		50	87	59-129	06/30/2010 1844
Chloroethane	2500	1800		50	71	50-132	06/30/2010 1844
Chloroform	2500	1900		50	74	71-125	06/30/2010 1844
Chloromethane (Methyl chloride)	2500	1300		50	54	34-134	06/30/2010 1844
Cyclohexane	2500	1900		50	75	53-139	06/30/2010 1844
1,2-Dibromo-3-chloropropane (DBCP)	2500	2100		50	85	55-125	06/30/2010 1844
Dibromochloromethane	2500	2300		50	91	66-119	06/30/2010 1844
1,2-Dibromoethane (EDB)	2500	2100		50	84	74-124	06/30/2010 1844
1,4-Dichlorobenzene	2500	2300		50	93	52-133	06/30/2010 1844
1,3-Dichlorobenzene	2500	2300		50	91	51-134	06/30/2010 1844
1,2-Dichlorobenzene	2500	2200		50	90	57-131	06/30/2010 1844
Dichlorodifluoromethane	2500	830		50	33	10-157	06/30/2010 1844
1,2-Dichloroethane	2500	1900		50	74	67-129	06/30/2010 1844
1,1-Dichloroethane	2500	1900		50	76	71-127	06/30/2010 1844
trans-1,2-Dichloroethene	2500	1900		50	74	68-131	06/30/2010 1844
cis-1,2-Dichloroethene	2500	1800		50	74	70-122	06/30/2010 1844
1,1-Dichloroethene	2500	1800		50	73	69-138	06/30/2010 1844
1,2-Dichloropropane	2500	2000		50	79	72-124	06/30/2010 1844
trans-1,3-Dichloropropene	2500	2300		50	90	70-124	06/30/2010 1844
cis-1,3-Dichloropropene	2500	2100		50	85	70-126	06/30/2010 1844
Ethylbenzene	2500	2300		50	90	59-128	06/30/2010 1844
2-Hexanone	5000	4000		50	79	54-137	06/30/2010 1844
Isopropylbenzene	2500	2400		50	96	50-136	06/30/2010 1844
Methyl acetate	2500	2200		50	87	59-137	06/30/2010 1844
Methyl tertiary butyl ether (MTBE)	2500	1800		50	73	72-122	06/30/2010 1844
4-Methyl-2-pentanone	5000	3800		50	75 75	60-134	06/30/2010 1844
Methylcyclohexane	2500	2000		50	82	41-144	06/30/2010 1844
Methylene chloride	2500	1900	N	50	75	77-129	06/30/2010 1844
•	2500	2300	IN		92	54-136	06/30/2010 1844
Styrene 1,1,2,2-Tetrachloroethane	2500	2100		50 50	83	69-132	06/30/2010 1844
Tetrachloroethene Toluene	2500 2500	2300 2000		50 50	92 79	70-130 61-129	06/30/2010 1844 06/30/2010 1844
1,1,2-Trichloro-1,2,2-Trifluoroethane	2500	2200		50 50	86	49-136	06/30/2010 1844
1,2,4-Trichlorobenzene	2500	2400		50 50	95	34-145	06/30/2010 1844
1,1,2-Trichloroethane	2500	2000		50 50	82	55-128	06/30/2010 1844
1,1,1-Trichloroethane	2500	1900		50	75	63-128	06/30/2010 1844

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: LQ36704-002

Batch: 36704

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
2500	2000	50	80	62-126	06/30/2010 1844
2500	1600	50	64	45-138	06/30/2010 1844
2500	1300	50	51	42-132	06/30/2010 1844
5000	4500	50	91	58-128	06/30/2010 1844
Q % Rec	Acceptance Limit				
N 1030	47-138				
N 843	53-142				
N 903	68-124				
	Amount (ug/kg) 2500 2500 2500 5000 Q % Rec N 1030 N 843	Amount (ug/kg)	Amount (ug/kg) Result (ug/kg) Q Dil 2500 2000 50 2500 1600 50 2500 1300 50 5000 4500 50 Acceptance Limit Limit N 1030 47-138 N 843 53-142	Amount (ug/kg) Result (ug/kg) Q Dil % Rec 2500 2000 50 80 2500 1600 50 64 2500 1300 50 51 5000 4500 50 91 Acceptance Limit N 1030 47-138 N 843 53-142	Amount (ug/kg) Result (ug/kg) Q Dill % Rec Limit 2500 2000 50 80 62-126 2500 1600 50 64 45-138 2500 1300 50 51 42-132 5000 4500 50 91 58-128 Acceptance Limit N 1030 47-138 N 843 53-142

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: LQ36704-003 Batch: 36704 Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount	Result	Q	D:I	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Data
	(ug/kg)	(ug/kg)	<u>u</u>	Dil					Analysis Date
Acetone	5000	4600		50	92	17	42-149	20	06/30/2010 1907
Benzene	2500	2400	+	50	98	26	69-123	20	06/30/2010 1907
Bromodichloromethane	2500	2500	+	50	101	22	69-121	20	06/30/2010 1907
Bromoform	2500	2800	+	50	110	23	61-119	20	06/30/2010 1907
Bromomethane (Methyl bromide)	2500	2300		50	91	19	35-144	20	06/30/2010 1907
2-Butanone (MEK)	5000	4900	+	50	98	26	57-148	20	06/30/2010 1907
Carbon disulfide	2500	2500	+	50	100	24	58-122	20	06/30/2010 1907
Carbon tetrachloride	2500	2400	+	50	96	24	58-136	20	06/30/2010 1907
Chlorobenzene	2500	2700	+	50	110	23	59-129	20	06/30/2010 1907
Chloroethane	2500	2300	+	50	91	25	50-132	20	06/30/2010 1907
Chloroform	2500	2300	+	50	93	23	71-125	20	06/30/2010 1907
Chloromethane (Methyl chloride)	2500	1600		50	65	19	34-134	20	06/30/2010 1907
Cyclohexane	2500	2300	+	50	93	22	53-139	20	06/30/2010 1907
1,2-Dibromo-3-chloropropane (DBCP)	2500	2600		50	105	20	55-125	20	06/30/2010 1907
Dibromochloromethane	2500	2900	+	50	116	23	66-119	20	06/30/2010 1907
1,2-Dibromoethane (EDB)	2500	2700	+	50	106	23	74-124	20	06/30/2010 1907
1,4-Dichlorobenzene	2500	2900	+	50	118	24	52-133	20	06/30/2010 1907
1,3-Dichlorobenzene	2500	2900	+	50	117	25	51-134	20	06/30/2010 1907
1,2-Dichlorobenzene	2500	2800	+	50	114	24	57-131	20	06/30/2010 1907
Dichlorodifluoromethane	2500	990		50	40	18	10-157	20	06/30/2010 1907
1,2-Dichloroethane	2500	2300	+	50	94	23	67-129	20	06/30/2010 1907
1,1-Dichloroethane	2500	2400	+	50	96	23	71-127	20	06/30/2010 1907
trans-1,2-Dichloroethene	2500	2400	+	50	95	25	68-131	20	06/30/2010 1907
cis-1,2-Dichloroethene	2500	2400	+	50	96	26	70-122	20	06/30/2010 1907
1,1-Dichloroethene	2500	2300	+	50	93	24	69-138	20	06/30/2010 1907
1,2-Dichloropropane	2500	2400	+	50	98	21	72-124	20	06/30/2010 1907
trans-1,3-Dichloropropene	2500	2900	+	50	116	25	70-124	20	06/30/2010 1907
cis-1,3-Dichloropropene	2500	2700	+	50	107	24	70-126	20	06/30/2010 1907
Ethylbenzene	2500	2900	+	50	115	24	59-128	20	06/30/2010 1907
2-Hexanone	5000	5500	+	50	110	33	54-137	20	06/30/2010 1907
Isopropylbenzene	2500	3100	+	50	124	26	50-136	20	06/30/2010 1907
Methyl acetate	2500	2700	+	50	107	21	59-137	20	06/30/2010 1907
Methyl tertiary butyl ether (MTBE)	2500	2300	+	50	94	25	72-122	20	06/30/2010 1907
4-Methyl-2-pentanone	5000	5000	+	50	100	28	60-134	20	06/30/2010 1907
Methylcyclohexane	2500	2600	+	50	104	24	41-144	20	06/30/2010 1907
Methylene chloride	2500	2300	+	50	93	22	77-129	20	06/30/2010 1907
Styrene	2500	2900	+	50	116	22	54-136	20	06/30/2010 1907
1,1,2,2-Tetrachloroethane	2500	2700	+	50	108	27	69-132	20	06/30/2010 1907
Tetrachloroethene	2500	2900	+	50	114	22	70-130	20	06/30/2010 1907
Toluene	2500	2500	+	50	102	25	61-129	20	06/30/2010 1907
1,1,2-Trichloro-1,2,2-Trifluoroethane	2500	2700	+	50	108	22	49-136	20	06/30/2010 1907
1,2,4-Trichlorobenzene	2500	3000	+	50	120	23	34-145	20	06/30/2010 1907
1,1,2-Trichloroethane	2500	2600	+	50	104	24	55-128	20	06/30/2010 1907
1,1,1-Trichloroethane	2500	2300	+	50	94	23	63-128	20	06/30/2010 1907
i,i,i illomorocularic	2000	2000		30	J -1	20	00-120	20	00/00/2010 100/

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: LQ36704-003

Batch: 36704

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spik Amo (ug/	unt	Result (ug/kg)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	2500)	2500	+	50	101	23	62-126	20	06/30/2010 1907
Trichlorofluoromethane	2500)	2000	+	50	80	22	45-138	20	06/30/2010 1907
Vinyl chloride	2500)	1700	+	50	69	29	42-132	20	06/30/2010 1907
Xylenes (total)	5000)	5700	+	50	114	22	58-128	20	06/30/2010 1907
Surrogate	Q	% Rec		eptance Limit						
Bromofluorobenzene	N	1080	4	17-138						
1,2-Dichloroethane-d4	N	917	5	3-142						
Toluene-d8	N	951	6	8-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: LQ36604-001 Batch: 36604 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 06/29/2010 1010

Parameter	Result	Q	Dil	PQL	Units	Analysis Date
1,1'-Biphenyl	ND		1	330	ug/kg	06/30/2010 1902
2,4,5-Trichlorophenol	ND		1	330	ug/kg	06/30/2010 1902
2,4,6-Trichlorophenol	ND		1	330	ug/kg	06/30/2010 1902
2,4-Dichlorophenol	ND		1	330	ug/kg	06/30/2010 1902
2,4-Dimethylphenol	ND		1	330	ug/kg	06/30/2010 1902
2,4-Dinitrophenol	ND		1	830	ug/kg	06/30/2010 1902
2,4-Dinitrotoluene	ND		1	330	ug/kg	06/30/2010 1902
2,6-Dinitrotoluene	ND		1	330	ug/kg	06/30/2010 1902
2-Chloronaphthalene	ND		1	330	ug/kg	06/30/2010 1902
2-Chlorophenol	ND		1	330	ug/kg	06/30/2010 1902
2-Methylnaphthalene	ND		1	330	ug/kg	06/30/2010 1902
2-Methylphenol	ND		1	330	ug/kg	06/30/2010 1902
2-Nitroaniline	ND		1	330	ug/kg	06/30/2010 1902
2-Nitrophenol	ND		1	330	ug/kg	06/30/2010 1902
3 & 4-Methylphenol	ND		1	670	ug/kg	06/30/2010 1902
3,3'-Dichlorobenzidine	ND		1	830	ug/kg	06/30/2010 1902
3-Nitroaniline	ND		1	330	ug/kg	06/30/2010 1902
4,6-Dinitro-2-methylphenol	ND		1	830	ug/kg	06/30/2010 1902
4-Bromophenyl phenyl ether	ND		1	330	ug/kg	06/30/2010 1902
4-Chloro-3-methyl phenol	ND		1	330	ug/kg	06/30/2010 1902
4-Chloroaniline	ND		1	330	ug/kg	06/30/2010 1902
4-Chlorophenyl phenyl ether	ND		1	330	ug/kg	06/30/2010 1902
4-Nitroaniline	ND		1	330	ug/kg	06/30/2010 1902
4-Nitrophenol	ND		1	830	ug/kg	06/30/2010 1902
Acenaphthene	ND		1	330	ug/kg	06/30/2010 1902
Acenaphthylene	ND		1	330	ug/kg	06/30/2010 1902
Acetophenone	ND		1	330	ug/kg	06/30/2010 1902
Anthracene	ND		1	330	ug/kg	06/30/2010 1902
Atrazine	ND		1	330	ug/kg	06/30/2010 1902
Benzaldehyde	ND		1	830	ug/kg	06/30/2010 1902
Benzo(a)anthracene	ND		1	330	ug/kg	06/30/2010 1902
Benzo(a)pyrene	ND		1	330	ug/kg	06/30/2010 1902
Benzo(b)fluoranthene	ND		1	330	ug/kg	06/30/2010 1902
Benzo(g,h,i)perylene	ND		1	330	ug/kg	06/30/2010 1902
Benzo(k)fluoranthene	ND		1	330	ug/kg	06/30/2010 1902
bis(2-Chloroethoxy)methane	ND		1	330	ug/kg	06/30/2010 1902
bis(2-Chloroethyl)ether	ND		1	330	ug/kg	06/30/2010 1902
bis(2-Chloroisopropyl)ether	ND		1	330	ug/kg	06/30/2010 1902
bis(2-Ethylhexyl)phthalate	ND		1	330	ug/kg	06/30/2010 1902
Butyl benzyl phthalate	ND		1	330	ug/kg	06/30/2010 1902
Caprolactam	ND		1	830	ug/kg	06/30/2010 1902
Carbazole	ND		1	330	ug/kg	06/30/2010 1902
Chrysene	ND		1	330	ug/kg	06/30/2010 1902
Di-n-butyl phthalate	ND		1	330	ug/kg	06/30/2010 1902

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

 $J = Estimated result < PQL and <math>\geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: LQ36604-001 Batch: 36604 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 06/29/2010 1010

Parameter	Result	Q Dil	PQL	Units	Analysis Date
Di-n-octylphthalate	ND	1	330	ug/kg	06/30/2010 1902
Dibenzo(a,h)anthracene	ND	1	330	ug/kg	06/30/2010 1902
Dibenzofuran	ND	1	330	ug/kg	06/30/2010 1902
Diethylphthalate	ND	1	330	ug/kg	06/30/2010 1902
Dimethyl phthalate	ND	1	330	ug/kg	06/30/2010 1902
Fluoranthene	ND	1	330	ug/kg	06/30/2010 1902
Fluorene	ND	1	330	ug/kg	06/30/2010 1902
Hexachlorobenzene	ND	1	330	ug/kg	06/30/2010 1902
Hexachlorobutadiene	ND	1	330	ug/kg	06/30/2010 1902
Hexachlorocyclopentadiene	ND	1	830	ug/kg	06/30/2010 1902
Hexachloroethane	ND	1	330	ug/kg	06/30/2010 1902
Indeno(1,2,3-c,d)pyrene	ND	1	330	ug/kg	06/30/2010 1902
Isophorone	ND	1	330	ug/kg	06/30/2010 1902
N-Nitrosodi-n-propylamine	ND	1	330	ug/kg	06/30/2010 1902
N-Nitrosodiphenylamine (Diphenyl	amine) ND	1	330	ug/kg	06/30/2010 1902
Naphthalene	ND	1	330	ug/kg	06/30/2010 1902
Nitrobenzene	ND	1	330	ug/kg	06/30/2010 1902
Pentachlorophenol	ND	1	830	ug/kg	06/30/2010 1902
Phenanthrene	ND	1	330	ug/kg	06/30/2010 1902
Phenol	ND	1	330	ug/kg	06/30/2010 1902
Pyrene	ND	1	330	ug/kg	06/30/2010 1902
Surrogate	Q % Rec	Acceptance Limit			
2,4,6-Tribromophenol	67	30-117			
2-Fluorobiphenyl	71	33-102			
2-Fluorophenol	75	28-104			
Nitrobenzene-d5	69	22-109			
Phenol-d5	74	27-103			
Terphenyl-d14	70	41-120			

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

 $J = Estimated result < PQL and <math>\geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: LQ36604-002 Batch: 36604

Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 06/29/2010 1010

	Spike					0/ B	
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
2,4,5-Trichlorophenol	3300	3300		1	100	30-130	06/29/2010 1504
2,4,6-Trichlorophenol	3300	3000		1	89	30-130	06/29/2010 1504
2,4-Dichlorophenol	3300	2900		1	87	30-130	06/29/2010 1504
2,4-Dimethylphenol	3300	2800		1	84	30-130	06/29/2010 1504
2,4-Dinitrophenol	17000	17000		1	104	30-130	06/29/2010 1504
2,4-Dinitrotoluene	6700	6000		1	90	30-130	06/29/2010 1504
2,6-Dinitrotoluene	6700	5900		1	88	30-130	06/29/2010 1504
2-Chloronaphthalene	3300	2700		1	82	30-130	06/29/2010 1504
2-Chlorophenol	3300	2700		1	80	30-130	06/29/2010 1504
2-Methylnaphthalene	3300	2600		1	79	30-130	06/29/2010 1504
2-Methylphenol	3300	2300		1	70	30-130	06/29/2010 1504
2-Nitroaniline	6700	6200		1	93	30-130	06/29/2010 1504
2-Nitrophenol	6700	5600		1	85	30-130	06/29/2010 1504
3 & 4-Methylphenol	6700	5300		1	79	30-130	06/29/2010 1504
3-Nitroaniline	6700	6800		1	101	30-130	06/29/2010 1504
4,6-Dinitro-2-methylphenol	17000	17000		1	102	30-130	06/29/2010 1504
4-Bromophenyl phenyl ether	3300	2800		1	85	30-130	06/29/2010 1504
4-Chloro-3-methyl phenol	3300	3100		1	93	30-130	06/29/2010 1504
4-Chloroaniline	3300	1700		1	51	10-130	06/29/2010 1504
4-Chlorophenyl phenyl ether	3300	2800		1	83	30-130	06/29/2010 1504
4-Nitroaniline	6700	9900	N	1	149	30-130	06/29/2010 1504
4-Nitrophenol	17000	18000		1	108	30-130	06/29/2010 1504
Acenaphthene	3300	2700		1	81	30-130	06/29/2010 1504
Acenaphthylene	3300	3700		1	110	30-130	06/29/2010 1504
Anthracene	3300	2900		1	88	30-130	06/29/2010 1504
Benzo(a)anthracene	3300	3100		1	92	30-130	06/29/2010 1504
Benzo(a)pyrene	3300	3900		1	117	30-130	06/29/2010 1504
Benzo(b)fluoranthene	3300	3100		1	92	30-130	06/29/2010 1504
Benzo(g,h,i)perylene	3300	3200		1	97	30-130	06/29/2010 1504
Benzo(k)fluoranthene	3300	2800		1	85	30-130	06/29/2010 1504
bis(2-Chloroethoxy)methane	3300	2400		1	72	30-130	06/29/2010 1504
bis(2-Chloroethyl)ether	3300	2200		1	67	30-130	06/29/2010 1504
bis(2-Chloroisopropyl)ether	3300	2000		1	59	30-130	06/29/2010 1504
bis(2-Ethylhexyl)phthalate	3300	3300		1	100	30-130	06/29/2010 1504
Butyl benzyl phthalate	3300	3500		1	106	30-130	06/29/2010 1504
Carbazole	3300	5300	N	1	159	30-130	06/29/2010 1504
Chrysene	3300	3000		1	91	30-130	06/29/2010 1504
Di-n-butyl phthalate	3300	3200		1	97	30-130	06/29/2010 1504
Di-n-octylphthalate	3300	3000		1	91	30-130	06/29/2010 1504
Dibenzo(a,h)anthracene	3300	3600		1	109	30-130	06/29/2010 1504
Dibenzofuran	3300	2700		1	82	30-130	06/29/2010 1504
Diethylphthalate	3300	3000		1	89	30-130	06/29/2010 1504
Dimethyl phthalate	3300	2900		1	88	30-130	06/29/2010 1504
Fluoranthene	3300	3000		1	91	30-130	06/29/2010 1504

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: LQ36604-002 **Batch:** 36604

Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 06/29/2010 1010

Parameter	Spike Amou (ug/k	nt	Result (ug/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Fluorene	3300		2800		1	84	30-130	06/29/2010 1504
Hexachlorobenzene	3300		2700		1	82	30-130	06/29/2010 1504
Hexachlorobutadiene	3300		2400		1	72	30-130	06/29/2010 1504
Hexachlorocyclopentadiene	17000)	15000		1	89	30-130	06/29/2010 1504
Hexachloroethane	3300		2400		1	72	30-130	06/29/2010 1504
Indeno(1,2,3-c,d)pyrene	3300		3600		1	107	30-130	06/29/2010 1504
Isophorone	3300		2600		1	79	30-130	06/29/2010 1504
N-Nitrosodi-n-propylamine	3300		2400		1	71	30-130	06/29/2010 1504
N-Nitrosodiphenylamine (Diphenylamine)	3300		3200		1	96	39-148	06/29/2010 1504
Naphthalene	3300		2500		1	75	30-130	06/29/2010 1504
Nitrobenzene	3300		2500		1	74	30-130	06/29/2010 1504
Pentachlorophenol	17000)	15000		1	90	30-130	06/29/2010 1504
Phenanthrene	3300		2800		1	85	30-130	06/29/2010 1504
Phenol	3300		2600		1	79	30-130	06/29/2010 1504
Pyrene	3300		3100		1	92	30-130	06/29/2010 1504
Surrogate	Q	% Rec	Acceptanc Limit	е				
2,4,6-Tribromophenol		98	30-117					
2-Fluorobiphenyl		78	33-102					
2-Fluorophenol		84	28-104					
Nitrobenzene-d5		74	22-109					
Phenol-d5		83	27-103					
Terphenyl-d14		76	41-120					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the PQL

 $J = Estimated result < PQL and <math>\geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client AE COM	Report to Contect &	955	Telephone No. / Fax No. / E-mail 1072	Quote No.
h Square	1/2	alls	Wayou No.	Page / of
(0) was 50 29210	Punted Name		A low country seed in the	more apparer in resource.
Congaree River	Lucas	Dicestord	1/1/00	
	P.O. No.	No. of Containers by Preservative Type	1000	/// Las No.
Sample ID / Description (Containers for each cample may be combined on one (the.)	Sagning Sagnin Sagning Sagning Sagning Sagning Sagning Sagning Sagning Sagning	ION SEOS MORW IOH CONUH POSSIH	64	Pinnahs / Cooler I.D.
Pongarce sed- 1	6/18% 4306 X 2			
7	6/28/10 1500 6 X Z		· 1	
5-13	X 20021			
	-			
	-			
Possible Hazard foentification Mon-Hazard Flammable Skin Initiant Poison	Sangle Disposal	Coleposal by Lab	Note: All samples are retained for six weeks from receipt unless other arrangements are made.	k weeks from receipt are made.
Tum Around Time Requived (Phor lab approval regulard for expedited TAT), Standard Jeffush (Specify)	12	OC Requirements (Specily)		
1. Retruquished by from the first	1 Date 01 10 10 40	1. Received by		Date Time.
2 Re(inquished by		2. Received by	2	Darke Tyme
3. Relinquished by	Date Tune	3. Laboratory received by	of Jahr	98/ Time 160
Comments		CAB USE OWLY	At the Day	7.77

aly Environmental Services, Inc. ument Number: F-AD-016	Page 1 of 1 Replaces Date: 09/12/06 Effective Date: 05/29/07
ision Number: 6	Sample Receipt Checklist (SRC)
A IT a A	Cooler Inspected by/cate: (CCC 4/28/1) Lot #: LF 28025
ent: ALCOM.	Cooler Inspected by/cate: CCC 1/14/10 Lot in. 12002
eans of receipt: SESI	Client UPS FedEx Airborne Exp Other
es No NA	1. Were custody seals present on the cooler?
es No NA	2. If custody seals were present, were they intact and unbroken?
ooler ID/temperature upon	
fethod: Temperature	
	14, 15, 16), an explanation/resolution must be provided.
response is No (or Yes for	3. If temperature of any cooler exceeded 6.0°C, was Project Manage: notified?
res 🗆 No 🗆 NA 🗹	PM notified by SRC, phone, note (circle one), other:
es No NA	4 Is the commercial courier's packing slip attached to this form?
es No NA	Were proper custody procedures (relinquished/received) followed?
es No NA	6. Were sample IDs tissed?
es No NA	7 Was collection date & time listed?
es No NA	8. Were tests to be performed listed on the COC or was quote # provided?.
es No NA	9. Did all samples arrive in the proper containers for each test?
es No NA	10. Did all container label information (ID, date, time) agree with COC?
es Z No D NA D	11. Did all containers arrive in good condition (unbroken, lids on, etc.)?
es No NA	12. Was adequate sample volume available?
es 🔲 No 🖂 NA 🗀	13. Were all samples received within 1/2 the holding time or 48 hours, whichever comes first?
es No NA	14. Were any samples containers missing?
es No NA	15. Were there any excess samples not listed on COC?
es 🗌 No 🗆 NA 🗗	16. Were bubbles present >"pca-size" (1/4" or 6mm in diameter) in any VCA-vials?
res No NA	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?
res No Na	18. Were all cyanide and/or sulfide samples received at a pH >12?
res No No NA	19. Were all applicable NE3/TKN/cyanide/phenol/BNA/pest/PCB/herb (<0.2mg/L) and toxicity (<0.1mg/L) samples free of residual chlorine?
	20. Were collection temperatures documented on the COC for NC samples?
es No NA	20. Were conjection temperatures documented on the coop for the seadspace.)
	ist be completed for any sample(s) incorrectly preserved or with headspace.) were received incorrectly preserved and were adjusted
Sample(s) ccordingly in sample receiv	ving with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
1.73	were received with bubbles >6 mm in diameter.
Sample(s)	were received with TRC >0.2 mg/L for NH3/
ample(s) KN/ovanide/BNA/post/PC	B/harb
Coxicity sample(s)	were received with TRC >0.1 mg/L and were
malyzed by method 330.5.	
maryzad by themed view.	
orrective Action taken, if	necessary:
as client notified: Yes	No Did client respond: Yes 1 No L
ESI employee:	Co.
omments:	

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree Sediments

Project Number: SCE-07001-30

Lot Number: LJ05002 Date Completed: 10/12/2010

> Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

LJ05002

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: LJ05002

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: LJ05002

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	P-5	Solid	10/04/2010 1008	10/04/2010
002	0-8	Solid	10/04/2010 1045	10/04/2010
003	0-11	Solid	10/04/2010 1130	10/04/2010

(3 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: LJ05002

Sample Sample ID	Matrix Parameter	Method	Result	Q	Units	Page
------------------	------------------	--------	--------	---	-------	------

(0 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Matrix: Solid

Description: P-5

Laboratory ID: LJ05002-001

Date Sampled:10/04/2010 1008

% Solids: 89.9 10/05/2010 2141

Date Received: 10/04/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	10/08/2010 1322	DLB		44040	5.15

Parameter		(Num	CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Rur
Benzene		71-4	13-2	8260B	ND		5.4	1.2	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	ND		5.4	1.8	ug/kg	1
Toluene		108-88-3		8260B	ND		5.4 1	1.8	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		5.4	3.1	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptar Limits							
1,2-Dichloroethane-d4	_	92	53-142	2				•	•	•
Bromofluorobenzene		110	47-138	3						
Toluene-d8		108	68-124	1						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ05002-001

Description: P-5

Matrix: Solid

Date Sampled:10/04/2010 1008

% Solids: 89.9 10/05/2010 2141

Date Received: 10/04/2010

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 1 10/06/2010	,	Prep Da 10/06/201				
Parame	ter			CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaph	nthene			83-32-9	8270D	ND	360	11	ug/kg	1
Acenaph	nthylene		2	08-96-8	8270D	ND	360	14	ug/kg	1
Anthrace	ene		1	20-12-7	8270D	ND	360	16	ug/kg	1
Benzo(a)anthracene			56-55-3	8270D	ND	360	12	ug/kg	1
)pyrene			50-32-8	8270D	ND	360	26	ug/kg	1
)fluoranthene		2	05-99-2	8270D	ND	360	24	ug/kg	1
Benzo(g	ı,h,i)perylene		1	91-24-2	8270D	ND	360	24	ug/kg	1
_)fluoranthene		2	07-08-9	8270D	ND	360	29	ug/kg	1
Chrysen	ie		2	18-01-9	8270D	ND	360	11	ug/kg	1
Dibenzo	(a,h)anthracene			53-70-3	8270D	ND	360	24	ug/kg	1
Fluorant	hene		2	06-44-0	8270D	ND	360	11	ug/kg	1
Fluorene	Э			86-73-7	8270D	ND	360	14	ug/kg	1
ndeno(1	1,2,3-c,d)pyrene		1	93-39-5	8270D	ND	360	32	ug/kg	1
Naphtha	lene			91-20-3	8270D	ND	360	15	ug/kg	1
- Phenant	threne			85-01-8	8270D	ND	360	14	ug/kg	1
Pyrene			1	29-00-0	8270D	ND	360	15	ug/kg	1
Surroga	ate	Q	Run 1 % Recov	Accept ery Limi						
2-Fluoro	biphenyl	_	84	33-1	02					
	nzene-d5		78	22-1	09					
Terphen	ıvl-d14		82	41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ05002-002

Description: 0-8

Matrix: Solid

Date Sampled:10/04/2010 1045

% Solids: 88.1 10/05/2010 2141

Date Received: 10/04/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	10/08/2010 1344	DLB		44040	5.83

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	3-2	8260B	ND		4.9	1.1	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	ND		4.9	1.7	ug/kg	1
Toluene		108-8	8-3	8260B	ND		4.9	1.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		4.9	2.8	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptar Limits							
1,2-Dichloroethane-d4		93	53-142	2						
Bromofluorobenzene		108	47-138	8						
Toluene-d8		108	68-12	4						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: LJ05002-002

Description: 0-8

Terphenyl-d14

Run

Matrix: Solid

Batch

Analysis Date

Dilution

79

Date Received: 10/04/2010

Prep Method

1 3550C 8270D 10/06/2010 2228 JGH 10/06/2010 1000 43756 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Acenaphthene 83-32-9 8270D ND 350 11 ug/kg 1 350 Acenaphthylene 208-96-8 8270D ND 14 ug/kg 1 Anthracene 120-12-7 8270D ND 350 15 ug/kg 1 Benzo(a)anthracene 56-55-3 8270D ND 350 11 1 ug/kg 350 25 Benzo(a)pyrene 50-32-8 8270D ND ug/kg 1 Benzo(b)fluoranthene 205-99-2 ND 350 24 8270D ug/kg 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 350 24 ug/kg 1 Benzo(k)fluoranthene 207-08-9 8270D ND 350 29 ug/kg 1 Chrysene 218-01-9 8270D ND 350 11 ug/kg 1 53-70-3 ND 350 23 Dibenzo(a,h)anthracene 8270D ug/kg 1 Fluoranthene 206-44-0 8270D ND 350 11 ug/kg 1 Fluorene 86-73-7 8270D ND 350 13 ug/kg 1 193-39-5 8270D ND 350 31 Indeno(1,2,3-c,d)pyrene ug/kg 1 ND 350 15 Naphthalene 91-20-3 8270D ug/kg 1 Phenanthrene 85-01-8 8270D ND 350 14 ug/kg 1 8270D ND Pyrene 129-00-0 350 15 ug/kg 1 Run 1 Acceptance Surrogate % Recovery Q Limits 2-Fluorobiphenyl 79 33-102 Nitrobenzene-d5 77 22-109

41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\mathsf{ND} = \mathsf{Not} \ \mathsf{detected} \ \mathsf{at} \ \mathsf{or} \ \mathsf{above} \ \mathsf{the} \ \mathsf{MDL}$

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: 0-11

Date Sampled:10/04/2010 1130

Laboratory ID: LJ05002-003 Matrix: Solid

% Solids: 88.0 10/05/2010 2141

Date Received: 10/04/2010

Run 1	Prep Method 5035	Analytical Method 8260B		Analysis D 0/08/2010	,	Prep Da	ite	Batch 44040	Sample \ 5.45	107	
Param	neter		Nι	CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne		7	1-43-2	8260B	ND		5.2	1.1	ug/kg	1
Ethylb	enzene		100	0-41-4	8260B	ND		5.2	1.8	ug/kg	1
Toluer	ne		108	3-88-3	8260B	ND		5.2	1.8	ug/kg	1
Xylene	es (total)		1330	0-20-7	8260B	ND		5.2	3.0	ug/kg	1
Surro	gate	Q	Run 1 % Recover	Accepta y Limits							
1,2-Di	chloroethane-d4		94	53-14	2						
Bromo	fluorobenzene		110	47-13	8						
Toluer	ne-d8		107	68-12	4						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ05002-003

Description: 0-11

Matrix: Solid

Date Sampled: 10/04/2010 1130

% Solids: 88.0 10/05/2010 2141

Date Received: 10/04/2010

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3550C 8270D 10/06/2010 2246 JGH 10/06/2010 1000 43756 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Acenaphthene 83-32-9 8270D ND 360 11 ug/kg 1 Acenaphthylene 8270D ND 360 14 208-96-8 ug/kg 1 Anthracene 120-12-7 8270D ND 360 16 ug/kg 1 Benzo(a)anthracene 56-55-3 8270D ND 360 12 1 ug/kg 26 Benzo(a)pyrene 50-32-8 8270D ND 360 ug/kg 1 Benzo(b)fluoranthene 205-99-2 ND 24 8270D 360 ug/kg 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 360 25 ug/kg 1 Benzo(k)fluoranthene 207-08-9 8270D ND 360 30 ug/kg 1 Chrysene 218-01-9 8270D ND 360 11 ug/kg 1 53-70-3 ND 24 Dibenzo(a,h)anthracene 8270D 360 ug/kg 1 Fluoranthene 206-44-0 8270D ND 360 11 ug/kg 1 Fluorene 86-73-7 8270D ND 360 14 ug/kg 1 193-39-5 8270D ND 360 33 Indeno(1,2,3-c,d)pyrene ug/kg 1 15 Naphthalene 91-20-3 8270D ND 360 ug/kg 1 Phenanthrene 85-01-8 8270D ND 15 360 ug/kg 1 8270D Pyrene 129-00-0 ND 360 16 ug/kg 1 Run 1 Acceptance Surrogate % Recovery Q Limits 2-Fluorobiphenyl 75 33-102 Nitrobenzene-d5 70 22-109 Terphenyl-d14 78 41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: LQ44040-001 Batch: 44040

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	10/08/2010 1236
Ethylbenzene	ND		1	5.0	1.7	ug/kg	10/08/2010 1236
Toluene	ND		1	5.0	1.7	ug/kg	10/08/2010 1236
Xylenes (total)	ND		1	5.0	2.9	ug/kg	10/08/2010 1236
Surrogate	Q % Rec		ptance imit				
Bromofluorobenzene	107	4	7-138				
1,2-Dichloroethane-d4	92	53	3-142				
Toluene-d8	107	68	3-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: LQ44040-002

Batch: 44040

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	50	1	100	69-123	10/08/2010 1033
Ethylbenzene	50	58	1	116	59-128	10/08/2010 1033
Toluene	50	55	1	110	61-129	10/08/2010 1033
Xylenes (total)	100	110	1	113	58-128	10/08/2010 1033
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	111	47-138				
1,2-Dichloroethane-d4	87	53-142				
Toluene-d8	109	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: LQ44040-003

Batch: 44040

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	56	1	112	11	69-123	20	10/08/2010 1055
Ethylbenzene	50	63	1	127	9.1	59-128	20	10/08/2010 1055
Toluene	50	61	1	123	11	61-129	20	10/08/2010 1055
Xylenes (total)	100	120	1	124	9.9	58-128	20	10/08/2010 1055
Surrogate	Q % Rec	Acceptance Limit	:					
Bromofluorobenzene	115	47-138						
1,2-Dichloroethane-d4	93	53-142						
Toluene-d8	114	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: LQ43756-001 Batch: 43756

Analytical Method: 8270D

Phenanthrene

Pyrene

Matrix: Solid Prep Method: 3550C

Prep Date: 10/06/2010 1000

330

330

13

14

ug/kg

ug/kg

10/06/2010 1753

10/06/2010 1753

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date	
Acenaphthene	ND		1	330	10	ug/kg	10/06/2010 1753	
Acenaphthylene	ND		1	330	13	ug/kg	10/06/2010 1753	
Anthracene	ND		1	330	15	ug/kg	10/06/2010 1753	
Benzo(a)anthracene	ND		1	330	11	ug/kg	10/06/2010 1753	
Benzo(a)pyrene	ND		1	330	24	ug/kg	10/06/2010 1753	
Benzo(b)fluoranthene	ND		1	330	22	ug/kg	10/06/2010 1753	
Benzo(g,h,i)perylene	ND		1	330	23	ug/kg	10/06/2010 1753	
Benzo(k)fluoranthene	ND		1	330	27	ug/kg	10/06/2010 1753	
Chrysene	ND		1	330	10	ug/kg	10/06/2010 1753	
Dibenzo(a,h)anthracene	ND		1	330	22	ug/kg	10/06/2010 1753	
Fluoranthene	ND		1	330	10	ug/kg	10/06/2010 1753	
Fluorene	ND		1	330	13	ug/kg	10/06/2010 1753	
Indeno(1,2,3-c,d)pyrene	ND		1	330	30	ug/kg	10/06/2010 1753	
Naphthalene	ND		1	330	14	ug/kg	10/06/2010 1753	

1

1

Surrogate	Q	% Rec	Acceptance Limit
2-Fluorobiphenyl		89	33-102
Nitrobenzene-d5		85	22-109
Terphenyl-d14		82	41-120

ND

ND

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: LQ43756-002 Batch: 43756 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D Prep Date: 10/06/2010 1000

	Spike Amount	Result			% Rec	
Parameter	(ug/kg)	(ug/kg) C	Dil Dil	% Rec	Limit	Analysis Date
Acenaphthene	3300	3000	1	90	30-130	10/06/2010 1811
Acenaphthylene	3300	3800	1	115	30-130	10/06/2010 1811
Anthracene	3300	3100	1	93	30-130	10/06/2010 1811
Benzo(a)anthracene	3300	3000	1	89	30-130	10/06/2010 1811
Benzo(a)pyrene	3300	4000	1	119	30-130	10/06/2010 1811
Benzo(b)fluoranthene	3300	3100	1	94	30-130	10/06/2010 1811
Benzo(g,h,i)perylene	3300	3300	1	99	30-130	10/06/2010 1811
Benzo(k)fluoranthene	3300	3000	1	90	30-130	10/06/2010 1811
Chrysene	3300	3000	1	90	30-130	10/06/2010 1811
Dibenzo(a,h)anthracene	3300	3000	1	90	30-130	10/06/2010 1811
Fluoranthene	3300	2500	1	74	30-130	10/06/2010 1811
Fluorene	3300	2900	1	88	30-130	10/06/2010 1811
Indeno(1,2,3-c,d)pyrene	3300	3100	1	92	30-130	10/06/2010 1811
Naphthalene	3300	2800	1	84	30-130	10/06/2010 1811
Phenanthrene	3300	2900	1	88	30-130	10/06/2010 1811
Pyrene	3300	3000	1	90	30-130	10/06/2010 1811
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	90	33-102				
Nitrobenzene-d5	86	22-109				
Terphenyl-d14	81	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Number 103983	26.30 Residual de la companya del companya del companya de la comp	LOS NO. L. JUSTO OZ. Retroites Contre (D.	see asholved Table	PAHs.		SKA KRENS TIGOT CHANGEN.			Dare Time	134 / 10 Time 1811	Receipt Temp. 6 · 0 · 10	Document Number, F-ALP 012 — Effective Date: 08-04-92
RVICES, INC. a 29172 . (803) 791-9111	Telephane No. / Fax No. / E-mail 4(2 - 829 - 9650 Waphill No. Amulyaka (Attach list if		22			NOM: All sarrywes are relatived for six weeks from carryw Unless other arrangements are mistin.	(Sherally)		Č.	Come Come	LAB USE ONLY Received on the (Olicia) (Yes) No I ton Parck	Document
SHEALY ENVIRONMENTAL SERVICES, INC 106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111	Report to Conuect Chary WSMMSK; Sampler's Signature X Man W Fall M	Material And Andrease	45 7 7	30		Sample Disposar. Return to Client Disposar by Lab	M. M	10.141/0 HARD 1. Pecames oy	Date 2. Herawad by	Date Time 3 Laboratory receiver 35		WG-freikfichent Gray
SHEALY Chain of Custody Record	Thattend Fin Ison	.5	0-8 Notable 1008			Pussifine Hiszerid Menuhimatiknen Won-Hazserid III Flammable III Skiri Kritenit III Pouson III Unitrotum	from Apathal Time Required (Prior fab aparava) required for expedited TAT.) Standaro Plush (Specify)	Madle of Min.	2. Halvquished by	3. Revinquistreet by	Garwents	DISTRIBUTION: WHITE & YELLOW-Ratum to laboratory with SampleLBY, PliNK-TeakhOvent Cony

iment Normier Sam Nordber		Replaces Date: 09/22/06 Effective Date: 05/24/97	
CON STREET		Sample Receipt Checklist (SRC)	
ent	YTR .	Cooler Inspected by/date: the 10/4 N Lot #:	
eans of rec	ceipt: SESI	Client UPS FedEx Airborne Exp Other	
s D N	O PTNA []	Were custody seals present on the cooler?	
s N	C NA	2. If custody seals were present, were they intact and unbroken?	
oler ID/te	mperature upon	receipt 6-0 / °C _ / °C _ / °C	
	,		
ethod:	Temperature	Blank Against Bettles	
ethod of c			
response i	s No (or Yes for	14. 15, 16), an explanation/resolution must be provided.	
		3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified?	
es 🗌 N	lo [NA]	PM notified by SRC, phone, note (circle one), other: (For	
		coolers received via commercial courier. PMs are to be notified immediately.	
7000	O NA	4 Is the commercial courier's packing slip attached to this form?	
	Ve NA	5. Were proper custody procedures (relinquished/received) followed?	
Cont.	Ic NA	6. Were sample IDs listed?	
	10 NA	7. Was collection date & time listed? 8. Were tests to be performed listed on the COC or was quote # provided?	
-	JO NA I	Were tests to be performed listed on the Coc of was closely Did all samples arrive in the proper containers for each test?	
-	NA NA	10. Did all container label information (ID, date, time) agree with COC?	
	NA NA	11. Die all containers arrive in good condition (unbroken, lids on, etc. 1?	
=	No NA	12. Was advange sample volums available?	
	NA N	13. Were all samples received within Vythe holding time or 48 hours, whichever comes first?	
es 3	SO NAL	14. Were any samples containers missing?	
Annual Control	NA D	1 15 Were there any excess samples not listed on COC?	
	NO NA	15. Were bubbles present >"pea-size" (W"or 6mm in diameter) in any VOA	
es 🗍 D	Vel I NA	17. Were all metals/O&G/HEM/nutrient samples received at a pl- of <2?	
-	VOL NA D	18. Were all evanide stid/or sulfide samples received at a pH > 27	
		10 Ways all englished NH3/TKN/cyanide/phenol/BNA/pest/PCD/herb	
	NO NA E	(<0.1 mg/L) and toxicity (<0.1 mg/L) samples tree of residual colorina	
es 🔲 🗈	No NA	20. Were collection temperatures documented on the COC for NC samples?	
ample Pre	eservation (Ma	ist be completed for any sample(s) incorrectly preserved or with headspace.)	
ample(s)		were received incorrectly preserved and were adjusted	
ecordingly	in sample receiv	ing with(H2SO4,HNO3.HCl.NaOH) with the SR # (number)	
		were received with bubbles >6 mm in diameter.	
ample(s)		were received with TRC >0.2 mg/L for NH3/	
ample(s)_			-
	de/BNA/pest/PC	B/herb. were received with TRC >0.1 mg/L and were	
oxicity sa	mple(s)	NOTO TOWN THE STATE OF	
nalyzes by	y method 330.5.		
omeont bear	Action taken, if	necessary:	
as officer o	otified: Yes	Did client respond: Yes No	
ESI employ		• Date of response:	
	,		

PROPOSED SEDIMENT ANALYTICAL PARAMETERS AND ESTIMATED REPORTING LIMITS

Congaree River Sediments Investigation Columbia, South Carolina

Parameter	Method	Reporting Limit
Volatile Organic Compounds		7 1000
Benzene	8260B	5
Ethylbenzene	8260B	5
Toluene	8260B	5
Total Xylenes	8260B	5
Semi-Volatile Organic Compounds		
Acenaphthene	8270D	330
Acenaphthylene	8270D	330
Anthracene	8270D	330
Benz(a)anthracene	8270D	330
Benzo(a)pyrene	8270D	330
Benzo(b)fluoranthene	8270D	330
Benzo(k)fluoranthene	8270D	330
Benzo(g,h,i)perylene	8270D	330
Chrysene	8270D	330
Dibenz(a,h)anthracene	8270D	330
Fluoranthene	8270D	330
Fluorene	8270D	330
Indeno(1,2,3-cd)pyrene	8270D	330
Naphthalene	. 8270D	330
Phenanthrene •	8270D	330
Pyrene	8270D	330

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Sediments

Project Number: SCE-07001-30

Lot Number: LJ06079 Date Completed: 10/14/2010

> Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

LJ06079

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: LJ06079

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: LJ06079

Sample ID	Matrix	Date Sampled	Date Received
0-14	Solid	10/05/2010 1345	10/06/2010
K-1	Solid	10/06/2010 1100	10/06/2010
I-1	Solid	10/06/2010 1000	10/06/2010
M-1	Solid	10/06/2010 1415	10/06/2010
O-2	Solid	10/06/2010 1500	10/06/2010
	O-14 K-1 I-1 M-1	0-14 Solid K-1 Solid I-1 Solid M-1 Solid	0-14 Solid 10/05/2010 1345 K-1 Solid 10/06/2010 1100 I-1 Solid 10/06/2010 1000 M-1 Solid 10/06/2010 1415

(5 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: LJ06079

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	0-14	Solid	Ethylbenzene	8260B	5.5		ug/kg	5
001	0-14	Solid	Toluene	8260B	2.3	J	ug/kg	5
001	0-14	Solid	Xylenes (total)	8260B	5.7		ug/kg	5
001	0-14	Solid	Phenanthrene	8270D	250	J	ug/kg	6
001	0-14	Solid	Pyrene	8270D	190	J	ug/kg	6
002	K-1	Solid	Xylenes (total)	8260B	3.0	J	ug/kg	7
003	I-1	Solid	Xylenes (total)	8260B	4.0	J	ug/kg	9

⁽⁷ detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ06079-001

Description: 0-14

Matrix: Solid

Date Sampled:10/05/2010 1345

% Solids: 89.3 10/07/2010 0156

Date Received: 10/06/2010

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution Analysis 1 10/08/201	,	Prep Da	ite	Batch 44040	Sample \ 5.84	137	
Param	neter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne		71-43-2	8260B	ND		4.8	1.1	ug/kg	1
Ethylk	enzene		100-41-4	8260B	5.5		4.8	1.6	ug/kg	1
Tolue	ne		108-88-3	8260B	2.3	J	4.8	1.6	ug/kg	1
Xylen	es (total)		1330-20-7	8260B	5.7		4.8	2.8	ug/kg	1
			Run 1 Accep	tance						

Surrogate	Q	% Recovery	Limits		
1,2-Dichloroethane-d4		92	53-142		
Bromofluorobenzene		112	47-138		
Toluene-d8		106	68-124		

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Analyst

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: LJ06079-001

Description: 0-14

Run

Matrix: Solid

Batch

Prep Date

Date Sampled:10/05/2010 1345

Prep Method

% Solids: 89.3 10/07/2010 0156

Date Received: 10/06/2010

1 3550C	8270D	1 10/1	2/2010 193	88 WD	10/12/201	10 1005	44146			
Parameter				nalytical	Docult	Q	PQL	MDL	Units	Run
		Num		Method	Result	<u> </u>				Rui
Acenaphthene		83-3	2-9	8270D	ND		350	11	ug/kg	1
Acenaphthylene		208-9	6-8	8270D	ND		350	14	ug/kg	1
Anthracene		120-1	2-7	8270D	ND		350	15	ug/kg	1
Benzo(a)anthracene		56-5	5-3	8270D	ND		350	12	ug/kg	1
Benzo(a)pyrene		50-3	2-8	8270D	ND		350	25	ug/kg	1
Benzo(b)fluoranthene		205-9	9-2	8270D	ND		350	24	ug/kg	1
Benzo(g,h,i)perylene		191-2	4-2	8270D	ND		350	24	ug/kg	1
Benzo(k)fluoranthene		207-0	8-9	8270D	ND		350	29	ug/kg	1
Chrysene		218-0	1-9	8270D	ND		350	11	ug/kg	1
Dibenzo(a,h)anthracene		53-7	0-3	8270D	ND		350	23	ug/kg	1
Fluoranthene		206-4	4-0	8270D	ND		350	11	ug/kg	1
Fluorene		86-7	3-7	8270D	ND		350	13	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-3	9-5	8270D	ND		350	31	ug/kg	1
Naphthalene		91-2	.0-3	8270D	ND		350	15	ug/kg	1
Phenanthrene		85-0	1-8	8270D	250	J	350	14	ug/kg	1
Pyrene		129-0	0-0	8270D	190	J	350	15	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptance Limits	!						
2-Fluorobiphenyl		75	33-102							
Nitrobenzene-d5		70	22-109							
Terphenyl-d14		75	41-120							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Matrix: Solid

Batch

Description: K-1

Run

Toluene-d8

Laboratory ID: LJ06079-002

Date Sampled:10/06/2010 1100

Prep Method

% Solids: 83.1 10/07/2010 0156

Sample Wt.(g)

Date Received: 10/06/2010

1 5	035	8260B	1	10/08/201	0 1554	DLB			44040	6.04	. (3)	
Parameter				CAS Number		lytical ethod	Result	Q	PQL	MDL	Units	Run
Benzene				71-43-2	8	8260B	ND		5.0	1.1	ug/kg	1
Ethylbenzene				100-41-4	8	8260B	ND		5.0	1.7	ug/kg	1
Toluene				108-88-3	8	8260B	ND		5.0	1.7	ug/kg	1
Xylenes (total)				1330-20-7	8	8260B	3.0	J	5.0	2.9	ug/kg	1
Surrogate		Q	Run % Reco									
1,2-Dichloroethane	e-d4		92	53-	142							
Bromofluorobenze	ene		112	2 47-	138							

68-124

Dilution Analysis Date

107

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ06079-002

Description: K-1

Matrix: Solid

Date Sampled:10/06/2010 1100

% Solids: 83.1 10/07/2010 0156

Date Received: 10/06/2010

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 10/13/2010	,	Prep Da 10/12/201				
Param	eter			CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acena	phthene			83-32-9	8270D	ND	390	12	ug/kg	1
Acena	phthylene		2	208-96-8	8270D	ND	390	16	ug/kg	1
Anthra	cene		1	120-12-7	8270D	ND	390	17	ug/kg	1
Benzo	(a)anthracene			56-55-3	8270D	ND	390	13	ug/kg	1
Benzo	(a)pyrene			50-32-8	8270D	ND	390	29	ug/kg	1
Benzo	(b)fluoranthene		2	205-99-2	8270D	ND	390	26	ug/kg	1
Benzo	(g,h,i)perylene		1	191-24-2	8270D	ND	390	27	ug/kg	1
Benzo	(k)fluoranthene		2	207-08-9	8270D	ND	390	32	ug/kg	1
Chryse	ene		2	218-01-9	8270D	ND	390	12	ug/kg	1
Dibenz	o(a,h)anthracene			53-70-3	8270D	ND	390	26	ug/kg	1
Fluora	nthene		2	206-44-0	8270D	ND	390	12	ug/kg	1
Fluore	ne			86-73-7	8270D	ND	390	15	ug/kg	1
Indend	(1,2,3-c,d)pyrene		1	193-39-5	8270D	ND	390	35	ug/kg	1
Naphth	nalene			91-20-3	8270D	ND	390	16	ug/kg	1
Phena	nthrene			85-01-8	8270D	ND	390	16	ug/kg	1
Pyrene	<u> </u>		1	129-00-0	8270D	ND	390	17	ug/kg	1
Surro	gate	Q	Run 1 % Recov							
2-Fluo	robiphenyl		75	33-1	02					
Nitrobe	enzene-d5		69	22-1	09					
Terphe	enyl-d14		77	41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ06079-003

Description: I-1

Matrix: Solid

Date Sampled:10/06/2010 1000

% Solids: 79.2 10/07/2010 0156

Date Received: 10/06/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	10/08/2010 1615	DLB		44040	6.37

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-43-2		8260B	ND		5.0	1.1	ug/kg	1
Ethylbenzene		100-41-4		8260B	ND		5.0	1.7	ug/kg	1
Toluene		108-88-3		8260B	ND		5.0	1.7	ug/kg	1
Xylenes (total)		1330-2	0-7	8260B	4.0	J	5.0	2.9	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptar Limits							
1,2-Dichloroethane-d4		91	53-142	2						
Bromofluorobenzene		108	47-138	3						
Toluene-d8		108	68-12	4						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ06079-003

Description: I-1

Matrix: Solid

Date Sampled:10/06/2010 1000

% Solids: 79.2 10/07/2010 0156

Date Received: 10/06/2010

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 10/12/2010	,	Prep Da 10/12/201				
Param	eter			CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acena	phthene			83-32-9	8270D	ND	410	13	ug/kg	1
Acena	phthylene		2	208-96-8	8270D	ND	410	16	ug/kg	1
Anthra	cene		1	120-12-7	8270D	ND	410	18	ug/kg	1
Benzo	(a)anthracene			56-55-3	8270D	ND	410	14	ug/kg	1
Benzo	(a)pyrene			50-32-8	8270D	ND	410	30	ug/kg	1
Benzo	(b)fluoranthene		2	205-99-2	8270D	ND	410	28	ug/kg	1
Benzo	(g,h,i)perylene		1	191-24-2	8270D	ND	410	28	ug/kg	1
Benzo	(k)fluoranthene		2	207-08-9	8270D	ND	410	34	ug/kg	1
Chryse	ene		2	218-01-9	8270D	ND	410	13	ug/kg	1
Dibenz	o(a,h)anthracene			53-70-3	8270D	ND	410	27	ug/kg	1
Fluora	nthene		2	206-44-0	8270D	ND	410	13	ug/kg	1
Fluore	ne			86-73-7	8270D	ND	410	16	ug/kg	1
Indend	(1,2,3-c,d)pyrene		1	193-39-5	8270D	ND	410	37	ug/kg	1
Naphth	nalene			91-20-3	8270D	ND	410	17	ug/kg	1
Phena	nthrene			85-01-8	8270D	ND	410	17	ug/kg	1
Pyrene	<u> </u>		1	129-00-0	8270D	ND	410	18	ug/kg	1
Surro	gate	Q	Run 1 % Recov							
2-Fluo	robiphenyl		73	33-1	02			•		
	enzene-d5		70	22-1	09					
Terphe	enyl-d14		75	41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ06079-004

Matrix: Solid

Description: M-1

Date Received: 10/06/2010

Date Sampled:10/06/2010 1415

% Solids: 76.4 10/07/2010 0156

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 10/08/2010 1637 DLB 44040 6.53

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	3-2	8260B	ND		5.0	1.1	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	ND		5.0	1.7	ug/kg	1
Toluene		108-8	8-3	8260B	ND		5.0	1.7	ug/kg	1
Xylenes (total)		1330-2	0-7	8260B	ND		5.0	2.9	ug/kg	1
Surrogate	Q 9	Run 1 A % Recovery	cceptar Limits							
1,2-Dichloroethane-d4		95	53-142	2						
Bromofluorobenzene		101	47-138	3						
Toluene-d8		106	68-124	1						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: LJ06079-004

Description: M-1

Run

Matrix: Solid

Batch

Date Sampled:10/06/2010 1415

Prep Method

% Solids: 76.4 10/07/2010 0156

Date Received: 10/06/2010

1 3550C	8270D	1 10/1	12/2010 2	034 WD	10/12/201	10 1005 44146			
Parameter		(Num	CAS lber	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene		83-3	32-9	8270D	ND	410	13	ug/kg	1
Acenaphthylene		208-9	96-8	8270D	ND	410	16	ug/kg	1
Anthracene		120-1	2-7	8270D	ND	410	18	ug/kg	1
Benzo(a)anthracene		56-5	55-3	8270D	ND	410	14	ug/kg	1
Benzo(a)pyrene		50-3	32-8	8270D	ND	410	30	ug/kg	1
Benzo(b)fluoranthene		205-9	9-2	8270D	ND	410	28	ug/kg	1
Benzo(g,h,i)perylene		191-2	24-2	8270D	ND	410	28	ug/kg	1
Benzo(k)fluoranthene		207-0	8-9	8270D	ND	410	34	ug/kg	1
Chrysene		218-0	1-9	8270D	ND	410	13	ug/kg	1
Dibenzo(a,h)anthracene		53-7	70-3	8270D	ND	410	27	ug/kg	1
Fluoranthene		206-4	4-0	8270D	ND	410	13	ug/kg	1
Fluorene		86-7	73-7	8270D	ND	410	16	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-3	19 -5	8270D	ND	410	37	ug/kg	1
Naphthalene		91-2	20-3	8270D	ND	410	17	ug/kg	1
Phenanthrene		85-0)1-8	8270D	ND	410	17	ug/kg	1
Pyrene		129-0	0-0	8270D	ND	410	18	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits	ce					
2-Fluorobiphenyl		73	33-102		·				
Nitrobenzene-d5		68	22-109						
Terphenyl-d14		73	41-120						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: O-2

Matrix: Solid

Laboratory ID: LJ06079-005

Date Sampled:10/06/2010 1500

% Solids: 87.0 10/07/2010 0156

Date Received: 10/06/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	10/08/2010 1658	DLB		44040	6.26

Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene		71-43-2	8260B	ND	4.6	1.0	ug/kg	1
Ethylbenzene		100-41-4	8260B	ND	4.6	1.6	ug/kg	1
Toluene		108-88-3	8260B	ND	4.6	1.6	ug/kg	1
Xylenes (total)	1	330-20-7	8260B	ND	4.6	2.7	ug/kg	1
Surrogate	Run Q % Reco							
1,2-Dichloroethane-d4	95	53-1	142					
Bromofluorobenzene	109	47-1	138					
Toluene-d8	106	68-1	124					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: LJ06079-005

Description: O-2

Matrix: Solid

Date Sampled:10/06/2010 1500

% Solids: 87.0 10/07/2010 0156

Date Received: 10/06/2010

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 10/13/2010	,	Prep Da 10/12/201				
Param	neter			CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acena	phthene			83-32-9	8270D	ND	370	11	ug/kg	1
Acena	phthylene		2	208-96-8	8270D	ND	370	15	ug/kg	1
Anthra	cene		1	120-12-7	8270D	ND	370	16	ug/kg	1
Benzo	(a)anthracene			56-55-3	8270D	ND	370	12	ug/kg	1
Benzo	(a)pyrene			50-32-8	8270D	ND	370	27	ug/kg	1
Benzo	(b)fluoranthene		2	205-99-2	8270D	ND	370	25	ug/kg	1
Benzo	(g,h,i)perylene		1	191-24-2	8270D	ND	370	25	ug/kg	1
Benzo	(k)fluoranthene		2	207-08-9	8270D	ND	370	30	ug/kg	1
Chryse	ene		2	218-01-9	8270D	ND	370	11	ug/kg	1
Dibenz	zo(a,h)anthracene			53-70-3	8270D	ND	370	24	ug/kg	1
Fluora	nthene		2	206-44-0	8270D	ND	370	12	ug/kg	1
Fluore	ne			86-73-7	8270D	ND	370	14	ug/kg	1
Indend	(1,2,3-c,d)pyrene		1	193-39-5	8270D	ND	370	33	ug/kg	1
Naphtl	nalene			91-20-3	8270D	ND	370	15	ug/kg	1
Phena	nthrene			85-01-8	8270D	ND	370	15	ug/kg	1
Pyrene	9		1	129-00-0	8270D	ND	370	16	ug/kg	1
Surro	gate	Q	Run 1 % Recov							
2-Fluo	robiphenyl		69	33-1	02					
	enzene-d5		61	22-1	09					
Terphe	enyl-d14		76	41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: LQ44040-001 Batch: 44040

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Benzene	ND	1	5.0	1.1	ug/kg	10/08/2010 1236
Ethylbenzene	ND	1	5.0	1.7	ug/kg	10/08/2010 1236
Toluene	ND	1	5.0	1.7	ug/kg	10/08/2010 1236
Xylenes (total)	ND	1	5.0	2.9	ug/kg	10/08/2010 1236
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	107	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	107	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: LQ44040-002

Batch: 44040

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	50	1	100	69-123	10/08/2010 1033
Ethylbenzene	50	58	1	116	59-128	10/08/2010 1033
Toluene	50	55	1	110	61-129	10/08/2010 1033
Xylenes (total)	100	110	1	113	58-128	10/08/2010 1033
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	111	47-138				
1,2-Dichloroethane-d4	87	53-142				
Toluene-d8	109	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: LQ44040-003

Batch: 44040

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	56	1	112	11	69-123	20	10/08/2010 1055
Ethylbenzene	50	63	1	127	9.1	59-128	20	10/08/2010 1055
Toluene	50	61	1	123	11	61-129	20	10/08/2010 1055
Xylenes (total)	100	120	1	124	9.9	58-128	20	10/08/2010 1055
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	115	47-138						
1,2-Dichloroethane-d4	93	53-142						
Toluene-d8	114	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: LQ44146-001 Batch: 44146 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 10/12/2010 1005

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	10/12/2010 1727
Acenaphthylene	ND	1	330	13	ug/kg	10/12/2010 1727
Anthracene	ND	1	330	15	ug/kg	10/12/2010 1727
Benzo(a)anthracene	ND	1	330	11	ug/kg	10/12/2010 1727
Benzo(a)pyrene	ND	1	330	24	ug/kg	10/12/2010 1727
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	10/12/2010 1727
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	10/12/2010 1727
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	10/12/2010 1727
Chrysene	ND	1	330	10	ug/kg	10/12/2010 1727
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	10/12/2010 1727
Fluoranthene	ND	1	330	10	ug/kg	10/12/2010 1727
Fluorene	ND	1	330	13	ug/kg	10/12/2010 1727
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	10/12/2010 1727
Naphthalene	ND	1	330	14	ug/kg	10/12/2010 1727
Phenanthrene	ND	1	330	13	ug/kg	10/12/2010 1727
Pyrene	ND	1	330	14	ug/kg	10/12/2010 1727
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	63	33-102				
Nitrobenzene-d5	59	22-109				
Terphenyl-d14	72	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: LQ44146-002 Batch: 44146 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 10/12/2010 1005

Parameter	Spike Amount	Result (ug/kg) C) D::	% Rec	% Rec Limit	Analysis Data
	(ug/kg) 3300	(ug/kg) C 2500	Dil 1	74	30-130	Analysis Date 10/12/2010 1746
Acenaphthene			1			
Acenaphthylene	3300	3200	l	95	30-130	10/12/2010 1746
Anthracene	3300	2800	1	83	30-130	10/12/2010 1746
Benzo(a)anthracene	3300	2700	1	82	30-130	10/12/2010 1746
Benzo(a)pyrene	3300	3600	1	108	30-130	10/12/2010 1746
Benzo(b)fluoranthene	3300	2500	1	76	30-130	10/12/2010 1746
Benzo(g,h,i)perylene	3300	3100	1	94	30-130	10/12/2010 1746
Benzo(k)fluoranthene	3300	2900	1	87	30-130	10/12/2010 1746
Chrysene	3300	2700	1	80	30-130	10/12/2010 1746
Dibenzo(a,h)anthracene	3300	2800	1	85	30-130	10/12/2010 1746
Fluoranthene	3300	2600	1	77	30-130	10/12/2010 1746
Fluorene	3300	2500	1	76	30-130	10/12/2010 1746
Indeno(1,2,3-c,d)pyrene	3300	2900	1	87	30-130	10/12/2010 1746
Naphthalene	3300	2000	1	61	30-130	10/12/2010 1746
Phenanthrene	3300	2500	1	76	30-130	10/12/2010 1746
Pyrene	3300	2600	1	79	30-130	10/12/2010 1746
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	72	33-102				
Nitrobenzene-d5	64	22-109				
Terphenyl-d14	73	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

106 Vantage Point Drive Columbia, South Carolina 2

Chain of Custody Record

SHEALY

104733

Number

West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111

106079 Quote No. VTAB Analysis (Attach list if more space is needed All samples are retained for six weeks from receipt 2 412-349-0350 0/0 unless other anarypyments are mede. Clarke 4(2-829-8650) for Pack Mofe: OC Requirements (Specify) Received on Ice (Citcle) by Preservative Type abosal by Lab No, of Containers 1. Received by Received by HORN ЮН 106574 secty Return to Client -00% DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sampleya; PINK-Fleid/Offent Cayry Report to Contact Mork Printed Marry Date 0/6/10 /500 0/6/10 1345 10/6/1/100 00/10/100 oldio 48 DOTO! Unknow. and Time Required (Phor Iab approval required for expedited TAT.) P.O. No. 0000 Containers for each sample may be combined on one line. Skin Imban! 600 COMMERCE SCE-07001-3 3. Relinquished by 0-14

Effective Date: 08-04-02

Document Number: F-40-012

eally Environmental Services, Inc. current Number: F. AD-016	Page 1 of 1 Replaces Date: 09/22/06 Effective Date: 05/29/07
risical Vumbat: 5	Sample Receipt Checklist (SRC)
100	Cooler Inspected by date: WHY 10/6/10 Lot # 25060 79
lient: P17 R	Cooler Inspected by date: Wit Co 199/3 Lot #: 2000
Means of receipt: SESI	Client UPS FedEx Airborne Exp Other
The state of the s	Were custody seals present on the cooler?
Yes No NA	2. If custody seals were present, were they intact and unbroken?
Cooler ID/temperature upon :	receipt 4 6 °C / °C / °C / °C
Method: Temperature Method of coolant: W	
f response is No (or Yes for	14. 15. 16), an explanation/resolution must be provided.
	3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified?
Yes No No NA	PM notified by SRC, phone, note (circle one), other: (For coolers received via commercial courier, PMs are to be notified immediately.
	d to the assessment acquirer's warking align attached to this form?
Yes No NA	4. Is the commercial courier's packing slip attached to this form? 5. Were proper custody procedures (relinquished/received) followed?
Yes No NA	
Yes No NA	6. Were sample IDs listed?
Yes No NA	7. Was collection date & time listed? . 8. Were tests to be performed listed on the COC or was quote ≠ provided?
Yes No NA NA	Were tests to be performed listed on the COC of was quote = previdee: Did all samples arrive in the proper containers for each test?
Yes No NA NA NA	10. Did all container labe! information (ID, date, time) agree with COC?
The state of the s	11. Did all containers arrive in good condition (unbroken, lids on, etc. 17
Yes No NA NA NA	Was adequate sample volume available?
Yes No L NA L	13. Were all samples received within 1/2 the holding time or 48 hours, whichever
Yes No No NA	comes first?
Yes No NA	14. Were any samples containers missing?
YES NO HAL	15. Were there any excess samples not listed on COC?
	16. Were bubbles present >"pea-size" ('4" or 6mm in diameter) in any VOA'
Yes No No NA	via's?
Yes No NA	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?
Yes No NA	18. Were all cyamide and/or sulfide samples received at a pH ≥12?
Yes No No NA	19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pesuPCB/herh
Yes No No NA	(<0.2 mg/L) and toxicity (<0.1 mg/L) samples free of residual colorine?
Yes No NA	20. Were collection temperatures documented on the COC for NC samples?
Sample Preservation (Mu	st be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) *	were received incorrectly preserved and were adjusted
accordingly in sample receiv	
Sample(s)	were received with bubbles >6 mm in diameter.
Sample(s)	were received with TRC > 0.2 mg/L for NH3/
sampic(s) ГКN/cvanide/BNA/pest/PCI	
Toxicity sample(s)	were received with TRC > 0.1 mg/L and were
inalyzed by method 330.5.	NEW PROPERTY OF THE PARTY OF TH
men zee or menter the.	
orrective Action taken, if n	proved Lat.
as client notified: Yes	No Did client respond: Yes No
ESI employee:	
omments:	

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree Sediments

Project Number: SCE 07001-30

Lot Number: LJ07053 Date Completed: 10/20/2010

> Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

LJ07053

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: LJ07053

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: LJ07053

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	L-3	Solid	10/07/2010 0945	10/07/2010

(1 sample)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: LJ07053

Sample Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001 L-3	Solid	Toluene	8260B	3.5	J	ug/kg	5
001 L-3	Solid	Benzo(a)pyrene	8270D	910		ug/kg	6
001 L-3	Solid	Benzo(b)fluoranthene	8270D	920		ug/kg	6
001 L-3	Solid	Benzo(g,h,i)perylene	8270D	600		ug/kg	6
001 L-3	Solid	Benzo(k)fluoranthene	8270D	250	J	ug/kg	6
001 L-3	Solid	Chrysene	8270D	670		ug/kg	6
001 L-3	Solid	Fluoranthene	8270D	950		ug/kg	6
001 L-3	Solid	Indeno(1,2,3-c,d)pyrene	8270D	450		ug/kg	6
001 L-3	Solid	Pyrene	8270D	1100		ug/kg	6

(9 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: L-3 Date Sampled:10/07/2010 0945 Laboratory ID: LJ07053-001

Matrix: Solid

% Solids: 82.8 10/07/2010 2353

Date Received: 10/07/2010

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 10/20/2010 1903 BM44834 6.34

Parameter		(Num	CAS Iber	Analytical Method	Result	Q	PQL	MDL	Units	Rur
Benzene		71-4	3-2	8260B	ND		4.8	1.0	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	ND		4.8	1.6	ug/kg	1
Toluene		108-8	8-3	8260B	3.5	J	4.8	1.6	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		4.8	2.8	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits							
1,2-Dichloroethane-d4		82	53-142)						
Bromofluorobenzene		90	47-138	3						
Toluene-d8		96	68-124	ļ						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: LJ07053-001

Description: L-3

Run

Matrix: Solid

Batch

Date Sampled:10/07/2010 0945

Prep Method

% Solids: 82.8 10/07/2010 2353

Date Received: 10/07/2010

		CAS	S Analytical					
Parameter		Number	,	Result	Q PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	ND	390	12	ug/kg	1
Acenaphthylene		208-96-8	8270D	ND	390	15	ug/kg	1
Anthracene		120-12-7	8270D	ND	390	17	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	ND	390	13	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	910	390	28	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	920	390	26	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	600	390	27	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	250	J 390	32	ug/kg	1
Chrysene		218-01-9	8270D	670	390	12	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND	390	26	ug/kg	1
Fluoranthene		206-44-0	8270D	950	390	12	ug/kg	1
Fluorene		86-73-7	8270D	ND	390	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	450	390	35	ug/kg	1
Naphthalene		91-20-3	8270D	ND	390	16	ug/kg	1
Phenanthrene		85-01-8	8270D	ND	390	16	ug/kg	1
Pyrene		129-00-0	8270D	1100	390	17	ug/kg	1
Surrogate	Q		eptance imits					
2-Fluorobiphenyl		79 3	3-102					
Nitrobenzene-d5		67 2	22-109					
Terphenyl-d14		73 4	1-120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: LQ44834-001 Batch: 44834

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	10/20/2010 1822
Ethylbenzene	ND		1	5.0	1.7	ug/kg	10/20/2010 1822
Toluene	ND		1	5.0	1.7	ug/kg	10/20/2010 1822
Xylenes (total)	ND		1	5.0	2.9	ug/kg	10/20/2010 1822
Surrogate	Q % Red		eptance Limit				
Bromofluorobenzene	97	4	7-138				
1,2-Dichloroethane-d4	92	5	3-142				
Toluene-d8	98	6	8-124				
Toluene-uo	70	C	10-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: LQ44834-002

Batch: 44834

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	45	1	90	69-123	10/20/2010 1647
Ethylbenzene	50	47	1	95	59-128	10/20/2010 1647
Toluene	50	46	1	92	61-129	10/20/2010 1647
Xylenes (total)	100	94	1	94	58-128	10/20/2010 1647
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	99	47-138				
1,2-Dichloroethane-d4	87	53-142				
Toluene-d8	100	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: LQ44834-003

Batch: 44834

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	47	1	93	3.8	69-123	20	10/20/2010 1711
Ethylbenzene	50	48	1	97	2.5	59-128	20	10/20/2010 1711
Toluene	50	48	1	97	4.6	61-129	20	10/20/2010 1711
Xylenes (total)	100	98	1	98	3.9	58-128	20	10/20/2010 1711
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	103	47-138						
1,2-Dichloroethane-d4	89	53-142						
Toluene-d8	102	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: LQ44301-001 Batch: 44301 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 10/13/2010 1709

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	10/14/2010 1524
Acenaphthylene	ND	1	330	13	ug/kg	10/14/2010 1524
Anthracene	ND	1	330	15	ug/kg	10/14/2010 1524
Benzo(a)anthracene	ND	1	330	11	ug/kg	10/14/2010 1524
Benzo(a)pyrene	ND	1	330	24	ug/kg	10/14/2010 1524
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	10/14/2010 1524
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	10/14/2010 1524
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	10/14/2010 1524
Chrysene	ND	1	330	10	ug/kg	10/14/2010 1524
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	10/14/2010 1524
Fluoranthene	ND	1	330	10	ug/kg	10/14/2010 1524
Fluorene	ND	1	330	13	ug/kg	10/14/2010 1524
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	10/14/2010 1524
Naphthalene	ND	1	330	14	ug/kg	10/14/2010 1524
Phenanthrene	ND	1	330	13	ug/kg	10/14/2010 1524
Pyrene	ND	1	330	14	ug/kg	10/14/2010 1524
Surrogate	Q % Rec	Acceptano Limit	e			
2-Fluorobiphenyl	37	33-102				
Nitrobenzene-d5	40	22-109				
Terphenyl-d14	46	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: LQ44301-002 Batch: 44301 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 10/13/2010 1709

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	1800	1	54	30-130	10/14/2010 1551
Acenaphthylene	3300	2400	1	71	30-130	10/14/2010 1551
Anthracene	3300	2000	1	59	30-130	10/14/2010 1551
Benzo(a)anthracene	3300	1800	1	54	30-130	10/14/2010 1551
Benzo(a)pyrene	3300	2400	1	72	30-130	10/14/2010 1551
Benzo(b)fluoranthene	3300	1800	1	55	30-130	10/14/2010 1551
Benzo(g,h,i)perylene	3300	2000	1	59	30-130	10/14/2010 1551
Benzo(k)fluoranthene	3300	2000	1	60	30-130	10/14/2010 1551
Chrysene	3300	1800	1	53	30-130	10/14/2010 1551
Dibenzo(a,h)anthracene	3300	2000	1	59	30-130	10/14/2010 1551
Fluoranthene	3300	1900	1	56	30-130	10/14/2010 1551
Fluorene	3300	1900	1	56	30-130	10/14/2010 1551
Indeno(1,2,3-c,d)pyrene	3300	1900	1	58	30-130	10/14/2010 1551
Naphthalene	3300	1600	1	48	30-130	10/14/2010 1551
Phenanthrene	3300	1900	1	56	30-130	10/14/2010 1551
Pyrene	3300	1800	1	53	30-130	10/14/2010 1551
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	52	33-102				
Nitrobenzene-d5	59	22-109				
Terphenyl-d14	47	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

	Clude No. Page of	Liet No.	Remarks / Cooler I.D.	See ortherbook Table 2-2				2		weeks from receipt ine made.		Date Time	Date Time	18/3/12 Time 1315	Receipt Temp. (0.3 °C
303) 791-9111	Teksphores No. / E-muii 412— 924—9650 Waybui No. Analysis (Attach Nst if more space is needed.			>			•			Note: All samples are retained for six weeks from receipt unless other arrangements are made.				ion Li	kond axi otiv (89%) (e)
West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111	3 2	Metrix by Preservative Type	HORN FOR SOME BONN BONN BONN BONN BONN BONN BONN BON	_		7				Sample Disposer. Return to Crient Disposar by Lab	OC Requirements (Specify)	Time 1. Received by	Trine 2. Received by	Time 3. Laboratory received by	LAB USE ONLY Received on los (Circle)
	Sampler's Signature Sampler's Signature P. Courte X. W. W. M.	P.O. No.	Oleste Timme account	1017 0 9:45 G			-	7	- 4	Poison Linknown Bis		J.S.Z.	Onte	Date	
	City Trafford Commone Circle	CONGREE SEGIMENTS	Sumple 10 / Description (Containers for each sample may be combined on one line,	1-3		,				Possible Hazard Identification Won-Hazard Perweathe Skin Intent P	36	Poppushed by John	2. Relinquished by	3. Revinguished by	Comments

Environmental Services, Inc. ent Number: F.J.ZJ-016	Page 1 of 1 Replaces Date: 09/22/06 Effective Date: 05/29/07
Number 6	- 1 (Ci - 11'+ (CDC')
1.40	Sample Receipt Checklist (SRC)
t: MTR.	Coolor Inspected by/date: 62 6/7/15 Lot # £ J.6 76.53
ans of receipt: SES1	Client UPS FedEx Airborne Exp Other
No NA	Were custody seals present on the cooler?
No NA	2. If custody seals were present, were they intact and unbroken?
der ID/temperature upon re	ceipt_/0_3_°C/_°C/_°C/_°C/
thod: Temperature E	Mank Against Bottles tice Blue Ice Dry Ice None
thou of coolair.	1.15, 1.0 en explanation/resolution must be provided.
esponse is No (or yes for	2 If temperature of any goods exceeded on the was traject the
No NA	av v ide of the CD C Jahona hora I Circle Odel, Ciliet
NO LI MAL	analysis received via commercial courier, PMs are to be notified infinitediately.
ST NOT NAKE	4. In the commercial courier's packing slip attached to this form?
No NA	5. Were proper custody procedures (relinquished/ eceived) followed:
No NA	6. Were sample IDs listed?
NO NA	to the Marine data & time listed?
S NO NA	8. Were tests to be performed listed on the COC or was quote # provided? Some seek tests Some se
s No NA	9. Did all samples arrive in the proper containers for each test? 9. Did all samples arrive in the proper containers for each test?
s No NA	10. Did all container label information (ID, date, time) agree with COC?
s No NA	Did all containers arrive in good condition (unbroken, lids on, etc. 1?
s No NA	12. Was adequate sample volume available? 13. Were all samples received within ½ the holding time or 48 hours, whichever
NO NA C	13. Were all samples received within 12 the house of comes first?
	14. Were any samples containers missing?
	the same to a same that the same to the sa
	15. Were there any excess samples not distect on dismeter) in any VOA. 16. Were bubbles present >"pea-size" (W"or 6mm in diameter) in any VOA.
es No No NA	1.0
S NO NA	1.7. Were all metals/O&C/HEM/nutrient samples received at a pH of <2.
S No NA	The still and the and/or pulling samples received at a pro-
= = =	A CONTRACTOR NAME OF THE PROPERTY OF THE PROPE
es 🗌 No 🗌 NA 🗹	The state of the s
ES NO NAL	10. Ware collection temperatures documented on the COC 10: 140 samples
ample Preservation (Mi	st be completed for any sample(s) incorrectly preserved or with headspace.)
ample(s)	ing with (H ₂ SO ₆ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
cordingly in sample receive	ing with (H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the ore to
	were received with bubbles >6 mm in diameter.
ample(s)	were received with blobbles >0 that dr or NH3/
ample(s)	
KN/cyanide/BNA/pest/PC	B/herb were received with TRC >0.1 mg/L and were
oxicity sample(s)	Middle Lecetard with Association
nalyzed by method 330.5.	
4	
rrective Action taken, if	Did client respond: Yes No
as client notified: Yes	2 that of marronse
SI employee:	

TABLE 2-2

PROPOSED SEDIMENT ANALYTICAL PARAMETER AND ESTIMATED REPORTING LIMITS

Congaree River Sediments Investigation Columbia, South Carolina

Parameter	Method	Reporting Lim
Volatile Organic Compounds		
Benzene	8260B	5
Ethylbenzene	8260B	5
Toluene	8260B	5
Total Xylenes	8260B	5
Semi-Volatile Organic Cortipounds	34	
Acenaphthene	8270D	330
Acenaphthylene	8270D	330
Anthracene	8270D	330
Benz(a)anthracene	8270D	330
Benzo(a)pyrene	8270D	330
Benzo(b)fluoranthene	8270D	330
Benzo(k)fluoranthene	8270D	330
Benzo(g,h,i)perylene	8270D	330
Chrysene	8270D	330
Dibenz(a,h)anthracene	8270D	330
Fluoranthene	8270D	330
Fluorene	8270D	330
Indeno(1,2,3-cd)pyrene	8270D	330
Naphthalene .	8270D	330
Phenanthrene	8270D	330
Pyrene	8270D	330

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Sediments

Project Number: SCE-13001-02

Lot Number: MB23028

Date Completed: 03/08/2011

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

MB23028

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: MB23028

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Dilutions greater than 5X impact the surrogate recoveries, thus negating their usefulness concerning quality control. The sample results are reported and no corrective action is required.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: MB23028

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	J-19	Solid	02/22/2011 1300	02/23/2011
002	K-19	Solid	02/22/2011 1330	02/23/2011
003	L-19	Solid	02/22/2011 1345	02/23/2011
004	I-17	Solid	02/23/2011 1000	02/23/2011
005	O-17	Solid	02/23/2011 1015	02/23/2011

(5 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: MB23028

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	J-19	Solid	Benzene	8260B	37		ug/kg	6
001	J-19	Solid	Ethylbenzene	8260B	2200		ug/kg	6
001	J-19	Solid	Toluene	8260B	8.1		ug/kg	6
001	J-19	Solid	Xylenes (total)	8260B	190		ug/kg	6
001	J-19	Solid	Acenaphthene	8270D	58000		ug/kg	7
001	J-19	Solid	Acenaphthylene	8270D	4500		ug/kg	7
001	J-19	Solid	Anthracene	8270D	41000		ug/kg	7
001	J-19	Solid	Benzo(a)anthracene	8270D	29000		ug/kg	7
001	J-19	Solid	Benzo(a)pyrene	8270D	34000		ug/kg	7
001	J-19	Solid	Benzo(b)fluoranthene	8270D	18000		ug/kg	7
001	J-19	Solid	Benzo(g,h,i)perylene	8270D	9500		ug/kg	7
001	J-19	Solid	Chrysene	8270D	34000		ug/kg	7
001	J-19	Solid	Dibenzo(a,h)anthracene	8270D	2400		ug/kg	7
001	J-19	Solid	Fluoranthene	8270D	51000		ug/kg	7
001	J-19	Solid	Fluorene	8270D	35000		ug/kg	7
001	J-19	Solid	Indeno(1,2,3-c,d)pyrene	8270D	7200		ug/kg	7
001	J-19	Solid	Naphthalene	8270D	82000		ug/kg	7
001	J-19	Solid	Phenanthrene	8270D	150000		ug/kg	7
001	J-19	Solid	Pyrene	8270D	92000		ug/kg	7
002	K-19	Solid	Acenaphthene	8270D	890		ug/kg	9
002	K-19	Solid	Acenaphthylene	8270D	410		ug/kg	9
002	K-19	Solid	Anthracene	8270D	1800		ug/kg	9
002	K-19	Solid	Benzo(a)anthracene	8270D	1900		ug/kg	9
002	K-19	Solid	Benzo(a)pyrene	8270D	1900		ug/kg	9
002	K-19	Solid	Benzo(b)fluoranthene	8270D	1400		ug/kg	9
002	K-19	Solid	Benzo(g,h,i)perylene	8270D	650		ug/kg	9
002	K-19	Solid	Benzo(k)fluoranthene	8270D	540		ug/kg	9
002	K-19	Solid	Chrysene	8270D	2100		ug/kg	9
002	K-19	Solid	Dibenzo(a,h)anthracene	8270D	420		ug/kg	9
002	K-19	Solid	Fluoranthene	8270D	3600		ug/kg	9
002	K-19	Solid	Fluorene	8270D	810		ug/kg	9
002	K-19	Solid	Indeno(1,2,3-c,d)pyrene	8270D	500		ug/kg	9
002	K-19	Solid	Phenanthrene	8270D	4800		ug/kg	9
002	K-19	Solid	Pyrene	8270D	5800		ug/kg	9
003	L-19	Solid	Acenaphthene	8270D	210	J	ug/kg	11
003	L-19	Solid	Acenaphthylene	8270D	96	J	ug/kg	11
003	L-19	Solid	Anthracene	8270D	310	J	ug/kg	11
003	L-19	Solid	Benzo(a)anthracene	8270D	270	J	ug/kg	11
003	L-19	Solid	Benzo(a)pyrene	8270D	320	J	ug/kg	11
003	L-19	Solid	Benzo(b)fluoranthene	8270D	190	J	ug/kg	11
003	L-19	Solid	Benzo(g,h,i)perylene	8270D	120	J	ug/kg	11
003	L-19	Solid	Benzo(k)fluoranthene	8270D	130	J	ug/kg	11
003	L-19	Solid	Chrysene	8270D	280	J	ug/kg	11
003	L-19	Solid	Dibenzo(a,h)anthracene	8270D	350	J	ug/kg	11
003	L-19	Solid	Fluoranthene	8270D	450		ug/kg	11

Executive Summary (Continued)

Lot Number: MB23028

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
003	L-19	Solid	Fluorene	8270D	170	J	ug/kg	11
003	L-19	Solid	Indeno(1,2,3-c,d)pyrene	8270D	81	J	ug/kg	11
003	L-19	Solid	Naphthalene	8270D	170	J	ug/kg	11
003	L-19	Solid	Phenanthrene	8270D	940		ug/kg	11
003	L-19	Solid	Pyrene	8270D	750		ug/kg	11
004	I-17	Solid	Benzene	8260B	4.7	J	ug/kg	12
004	I-17	Solid	Ethylbenzene	8260B	5.5	J	ug/kg	12
004	I-17	Solid	Xylenes (total)	8260B	58		ug/kg	12
004	I-17	Solid	Acenaphthene	8270D	59000		ug/kg	13
004	I-17	Solid	Acenaphthylene	8270D	4700		ug/kg	13
004	I-17	Solid	Anthracene	8270D	65000		ug/kg	13
004	I-17	Solid	Benzo(a)anthracene	8270D	28000		ug/kg	13
004	I-17	Solid	Benzo(a)pyrene	8270D	27000		ug/kg	13
004	I-17	Solid	Benzo(b)fluoranthene	8270D	17000		ug/kg	13
004	I-17	Solid	Benzo(g,h,i)perylene	8270D	7400		ug/kg	13
004	I-17	Solid	Benzo(k)fluoranthene	8270D	6600		ug/kg	13
004	I-17	Solid	Chrysene	8270D	26000		ug/kg	13
004	I-17	Solid	Dibenzo(a,h)anthracene	8270D	1800		ug/kg	13
004	I-17	Solid	Fluoranthene	8270D	76000		ug/kg	13
004	I-17	Solid	Fluorene	8270D	37000		ug/kg	13
004	I-17	Solid	Indeno(1,2,3-c,d)pyrene	8270D	6800		ug/kg	13
004	I-17	Solid	Naphthalene	8270D	790		ug/kg	13
004	I-17	Solid	Phenanthrene	8270D	170000		ug/kg	13
004	I-17	Solid	Pyrene	8270D	97000		ug/kg	13
005	O-17	Solid	Acenaphthylene	8270D	16	J	ug/kg	15
005	O-17	Solid	Fluoranthene	8270D	18	J	ug/kg	15
005	O-17	Solid	Phenanthrene	8270D	19	J	ug/kg	15
005	O-17	Solid	Pyrene	8270D	27	J	ug/kg	15

(73 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: J-19

Date Sampled:02/22/2011 1300

Matrix: Solid

Laboratory ID: MB23028-001

% Solids: 79.1 02/23/2011 2014

Date Received: 02/23/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 02/24/2011 1728 DLB 53650 6.49 2 5035 8260B 50 03/01/2011 0644 LBS 53878 5.77

Parameter		(Num		Analytic Metho	Dani	ult Q	PQL	MDL	Units	Run
Benzene		71-4	3-2	8260	OB	37	4.9	1.1	ug/kg	1
Ethylbenzene		100-4	1-4	8260	OB 22	00	270	93	ug/kg	2
Toluene		108-8	8-3	8260	OB 8	3.1	4.9	1.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260	OB 1	90	4.9	2.8	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptano Limits	ce Q	Run 2 % Recover	Acceptanc y Limits	е			
1,2-Dichloroethane-d4		100	53-142		64	53-142				
Bromofluorobenzene		109	47-138		66	47-138				
Toluene-d8		105	68-124	Ν	64	68-124				

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-001

Description: J-19

Matrix: Solid

Date Sampled:02/22/2011 1300

% Solids: 79.1 02/23/2011 2014

Date Received: 02/23/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	2	03/01/2011 1955	JGH	02/28/2011 2022	53787
2	3550C	8270D	20	03/06/2011 0909	JGH	02/28/2011 2022	53787

Parameter				nalytical Method	Result	Q I	PQL	MDL	Units	Run
Acenaphthene		83-	32-9	8270D	58000	8	300	250	ug/kg	2
Acenaphthylene		208-	96-8	8270D	4500		830	33	ug/kg	1
Anthracene		120-	12-7	8270D	41000	8	300	370	ug/kg	2
Benzo(a)anthracene		56-	55-3	8270D	29000	8	300	270	ug/kg	2
Benzo(a)pyrene		50-	32-8	8270D	34000	8	300	600	ug/kg	2
Benzo(b)fluoranthene		205-	99-2	8270D	18000		830	56	ug/kg	1
Benzo(g,h,i)perylene		191-	24-2	8270D	9500		830	56	ug/kg	1
Benzo(k)fluoranthene		207-	08-9	8270D	ND		830	68	ug/kg	1
Chrysene		218-	01-9	8270D	34000	8	300	260	ug/kg	2
Dibenzo(a,h)anthracene		53-	70-3	8270D	2400		830	55	ug/kg	1
Fluoranthene		206	44-0	8270D	51000	8	300	260	ug/kg	2
Fluorene		86-	73-7	8270D	35000	8	300	320	ug/kg	2
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	7200		830	75	ug/kg	1
Naphthalene		91-	20-3	8270D	82000	8	300	350	ug/kg	2
Phenanthrene		85-	01-8	8270D	150000	8	300	340	ug/kg	2
Pyrene		129-	00-0	8270D	92000	8	300	360	ug/kg	2
Surrogate	Q	Run 1 % Recovery	Acceptance Limits	e Q %	Run 2 Ao Recovery	cceptance Limits				
2-Fluorobiphenyl		79	33-102		81	33-102				
Nitrobenzene-d5		61	22-109		66	22-109				
Terphenyl-d14		72	41-120		87	41-120				

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: K-19

Date Sampled:02/22/2011 1330

Laboratory ID: MB23028-002 Matrix: Solid

% Solids: 91.6 02/23/2011 2014

Date Received: 02/23/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 5035 8260B 02/23/2011 2034 DLB 53530 5.22

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene	71-43-2	8260B	ND	5.2	1.2	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND	5.2	1.8	ug/kg	1
Toluene	108-88-3	8260B	ND	5.2	1.8	ug/kg	1
Xylenes (total)	1330-20-7	8260B	ND	5.2	3.0	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Lim						
1,2-Dichloroethane-d4	95 53-1	142					
5							

Surrogate	Q	% Recovery	Limits
1,2-Dichloroethane-d4		95	53-142
Bromofluorobenzene		113	47-138
Toluene-d8		104	68-124

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Matrix: Solid

Laboratory ID: MB23028-002

Description: K-19

Date Sampled:02/22/2011 1330

% Solids: 91.6 02/23/2011 2014

Date Received: 02/23/2011

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 03/06/201	,	ot Prep Da 02/28/201				
Param	neter			CAS Number	Analytical	Result	Q PQL	MDL	Units	Run
					Method					1
	iphthene			83-32-9 208-96-8	8270D	890	340	10	ug/kg	1
	phthylene				8270D	410	340	13	ug/kg	1
Anthra				120-12-7	8270D	1800	340	15	ug/kg	1
	(a)anthracene			56-55-3	8270D	1900	340	11	ug/kg	1
	(a)pyrene			50-32-8	8270D	1900	340	25	ug/kg	1
	(b)fluoranthene		-	205-99-2	8270D	1400	340	23	ug/kg	1
	(g,h,i)perylene			191-24-2	8270D	650	340	23	ug/kg	1
Benzo	(k)fluoranthene			207-08-9	8270D	540	340	28	ug/kg	1
Chrys	ene		2	218-01-9	8270D	2100	340	10	ug/kg	1
Diben	zo(a,h)anthracene			53-70-3	8270D	420	340	22	ug/kg	1
Fluora	inthene		2	206-44-0	8270D	3600	340	11	ug/kg	1
Fluore	ene			86-73-7	8270D	810	340	13	ug/kg	1
Inden	o(1,2,3-c,d)pyrene			193-39-5	8270D	500	340	30	ug/kg	1
Naphtl	nalene			91-20-3	8270D	ND	340	14	ug/kg	1
Phena	inthrene			85-01-8	8270D	4800	340	14	ug/kg	1
Pyren	е			129-00-0	8270D	5800	340	15	ug/kg	1
Surro	gate	Q	Run 1 % Recov							
2-Fluo	robiphenyl		90	33-1	02					
Nitrobe	enzene-d5		86	22-1	09					
Terphe	enyl-d14		95	41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: L-19

Date Sampled:02/22/2011 1345

Laboratory ID: MB23028-003

Matrix: Solid

% Solids: 85.2 02/23/2011 2014

Date Received: 02/23/2011

Toluene-d8

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 1 02/23/2011 2056 DLB 53530 5.70

104

Parameter	I	CAS lumber	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene		1-43-2	8260B	ND	5.1	1.1	ug/kg	1
Ethylbenzene	1	0-41-4	8260B	ND	5.1	1.7	ug/kg	1
Toluene	1	8-88-3	8260B	ND	5.1	1.7	ug/kg	1
Xylenes (total)	13	30-20-7	8260B	ND	5.1	3.0	ug/kg	1
Surrogate	Run 1 Q % Recove	Accept ry Lim						
1,2-Dichloroethane-d4	96	53-1	142					
Bromofluorobenzene	114	47-1	138					

68-124

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-003

Description: L-19

Matrix: Solid

Date Sampled:02/22/2011 1345

% Solids: 85.2 02/23/2011 2014

Date Received: 02/23/2011

Run 1	Prep Method 3550C	Analytical Method 8270D		alysis Date 06/2011 094	,	Prep Da 02/28/201		Batch 53787			
Param	eter		Nun		nalytical Method	Result	Q	PQL	MDL	Units	Run
Acena	phthene		83-	32-9	8270D	210	J	370	11	ug/kg	1
Acena	phthylene		208-9	96-8	8270D	96	J	370	15	ug/kg	1
Anthra	acene		120-	12-7	8270D	310	J	370	16	ug/kg	1
Benzo	(a)anthracene		56-	55-3	8270D	270	J	370	12	ug/kg	1
Benzo	(a)pyrene		50-	32-8	8270D	320	J	370	27	ug/kg	1
Benzo	(b)fluoranthene		205-9	99-2	8270D	190	J	370	25	ug/kg	1
Benzo	(g,h,i)perylene		191-2	24-2	8270D	120	J	370	25	ug/kg	1
Benzo	(k)fluoranthene		207-0	08-9	8270D	130	J	370	31	ug/kg	1
Chrys	ene		218-0	01-9	8270D	280	J	370	12	ug/kg	1
Dibena	zo(a,h)anthracene		53-	70-3	8270D	350	J	370	25	ug/kg	1
Fluora	nthene		206-	44-0	8270D	450		370	12	ug/kg	1
Fluore	ne		86-	73-7	8270D	170	J	370	14	ug/kg	1
Indend	o(1,2,3-c,d)pyrene		193-	39-5	8270D	81	J	370	34	ug/kg	1
Napht	nalene		91-:	20-3	8270D	170	J	370	16	ug/kg	1
Phena	nthrene		85-0	01-8	8270D	940		370	15	ug/kg	1
Pyrene	е		129-0	00-0	8270D	750		370	16	ug/kg	1
Surro	gate	Q	Run 1 % Recovery	Acceptance Limits)						
2-Fluo	robiphenyl		86	33-102		•	•	•	•		
Nitrobe	enzene-d5		84	22-109							
Terphe	enyl-d14		90	41-120							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: I-17
Date Sampled:02/23/2011 1000

Laboratory ID: MB23028-004

Description: I-17 Matrix

Matrix: Solid

% Solids: 59.9 02/23/2011 2014

Date Received: 02/23/2011

Run 1	Prep Method 5035	Analytical Method 8260B		alysis Date 24/2011 1750	Analyst DLB	Prep Date		ate Batch 53650		Wt.(g)	
Param	neter				alytical lethod	Result	Q	PQL	MDL	Units	Run
Benze	ene		71	43-2	8260B	4.7	J	8.4	1.8	ug/kg	1
Ethylk	penzene		100-4	41-4	8260B	5.5	J	8.4	2.8	ug/kg	1
Toluer	ne		108-8	88-3	8260B	ND		8.4	2.8	ug/kg	1
Xylen	es (total)		1330-	20-7	8260B	58		8.4	4.9	ug/kg	1
Surro	gate	Q	Run 1 % Recovery	Acceptance Limits							
1,2-Di	chloroethane-d4		94	53-142							
Bromo	ofluorobenzene		85	47-138							
Toluer	ne-d8		95	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-004

Description: I-17

Matrix: Solid

Date Sampled:02/23/2011 1000

% Solids: 59.9 02/23/2011 2014

Date Received: 02/23/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	03/01/2011 2013	JGH	02/28/2011 2022	53787
2	3550C	8270D	20	03/06/2011 1005	JGH	02/28/2011 2022	53787

Parameter				nalytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene		83-	32-9	8270D	59000	11000	330	ug/kg	2
Acenaphthylene		208-	208-96-8		4700	530	21	ug/kg	1
Anthracene		120-	12-7	8270D	65000	11000	470	ug/kg	2
Benzo(a)anthracene		56-	55-3	8270D	28000	11000	350	ug/kg	2
Benzo(a)pyrene		50-	32-8	8270D	27000	11000	780	ug/kg	2
Benzo(b)fluoranthene		205-	99-2	8270D	17000	11000	720	ug/kg	2
Benzo(g,h,i)perylene		191-	24-2	8270D	7400	530	36	ug/kg	1
Benzo(k)fluoranthene		207-	08-9	8270D	6600	530	44	ug/kg	1
Chrysene		218-	01-9	8270D	26000	11000	330	ug/kg	2
Dibenzo(a,h)anthracene		53-	70-3	8270D	1800	530	35	ug/kg	1
Fluoranthene		206	44-0	8270D	76000	11000	340	ug/kg	2
Fluorene		86-	73-7	8270D	37000	11000	410	ug/kg	2
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	6800	530	48	ug/kg	1
Naphthalene		91-	20-3	8270D	790	530	23	ug/kg	1
Phenanthrene		85-	01-8	8270D	170000	11000	430	ug/kg	2
Pyrene		129-	00-0	8270D	97000	11000	460	ug/kg	2
Surrogate	Q	Run 1 % Recovery	Acceptance Limits		Run 2 Ac Recovery	cceptance Limits			
2-Fluorobiphenyl		73	33-102		75	33-102			
Nitrobenzene-d5		67	22-109		62	22-109			
Terphenyl-d14		58	41-120		73	41-120			

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: O-17 Date Sampled:02/23/2011 1015 Laboratory ID: MB23028-005

Matrix: Solid

% Solids: 87.9 02/23/2011 2014

Date Received: 02/23/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 02/23/2011 2118 DLB 53530 5.18

Parameter		C Numb		Analytical Method	Result	Q PQL	MDL	Units	Rur
Benzene		71-43	3-2	8260B	ND	5.5	1.2	ug/kg	1
Ethylbenzene		100-41	-4	8260B	ND	5.5	1.9	ug/kg	1
Toluene		108-88	3-3	8260B	ND	5.5	1.9	ug/kg	1
Xylenes (total)		1330-20)-7	8260B	ND	5.5	3.2	ug/kg	1
Surrogate	Q %	Run 1 Ao Recovery	cceptano Limits	ce					
1,2-Dichloroethane-d4		98	53-142						
Bromofluorobenzene		116	47-138						
Toluene-d8		106	68-124						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-005

Description: O-17

Matrix: Solid

Date Sampled:02/23/2011 1015

% Solids: 87.9 02/23/2011 2014

Date Received: 02/23/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3550C 8270D 03/01/2011 2032 JGH 02/28/2011 2022 53787 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Acenaphthene 83-32-9 8270D ND 370 11 ug/kg 1 Acenaphthylene 208-96-8 8270D 370 15 16 J ug/kg 1 Anthracene 120-12-7 8270D ND 370 16 ug/kg 1 Benzo(a)anthracene 56-55-3 8270D ND 370 12 1 ug/kg 370 27 Benzo(a)pyrene 50-32-8 8270D ND ug/kg 1 Benzo(b)fluoranthene 205-99-2 ND 370 25 8270D ug/kg 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg 1 Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg 1 Chrysene 218-01-9 8270D ND 370 11 ug/kg 1 53-70-3 ND 370 24 Dibenzo(a,h)anthracene 8270D ug/kg 1 Fluoranthene 206-44-0 8270D 18 370 12 ug/kg 1 Fluorene 86-73-7 8270D ND 370 14 ug/kg 1 193-39-5 8270D ND 370 33 Indeno(1,2,3-c,d)pyrene ug/kg 1 ND Naphthalene 91-20-3 8270D 370 16 ug/kg 1 85-01-8 8270D 19 15 Phenanthrene 370 ug/kg 1 8270D 27 370 Pyrene 129-00-0 J 16 ug/kg 1 Run 1 Acceptance Surrogate % Recovery Q Limits 2-Fluorobiphenyl 69 33-102 Nitrobenzene-d5 22-109 66 Terphenyl-d14 65 41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

QC Summary

Sample ID: MQ53530-001 Batch: 53530

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Resi	ult	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND			1	5.0	1.1	ug/kg	02/23/2011 1418
Ethylbenzene	ND			1	5.0	1.7	ug/kg	02/23/2011 1418
Toluene	ND			1	5.0	1.7	ug/kg	02/23/2011 1418
Xylenes (total)	ND			1	5.0	2.9	ug/kg	02/23/2011 1418
Surrogate	Q	% Rec		Acceptance Limit				
Bromofluorobenzene		112		47-138				
1,2-Dichloroethane-d4		91		53-142				
Toluene-d8		103		68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53530-002

Batch: 53530

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	49	1	98	69-123	02/23/2011 1250
Ethylbenzene	50	55	1	109	59-128	02/23/2011 1250
Toluene	50	52	1	104	61-129	02/23/2011 1250
Xylenes (total)	100	110	1	111	58-128	02/23/2011 1250
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	120	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	108	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53530-003

Batch: 53530

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	48	1	97	1.6	69-123	20	02/23/2011 1312
Ethylbenzene	50	52	1	105	3.9	59-128	20	02/23/2011 1312
Toluene	50	51	1	102	1.9	61-129	20	02/23/2011 1312
Xylenes (total)	100	110	1	107	2.9	58-128	20	02/23/2011 1312
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	119	47-138						
1,2-Dichloroethane-d4	92	53-142						
Toluene-d8	107	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53650-001 Batch: 53650

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	02/24/2011 1313
Ethylbenzene	ND		1	5.0	1.7	ug/kg	02/24/2011 1313
Toluene	ND		1	5.0	1.7	ug/kg	02/24/2011 1313
Xylenes (total)	ND		1	5.0	2.9	ug/kg	02/24/2011 1313
Surrogate	Q % Rec		eptance Limit				
Bromofluorobenzene	107	4	7-138				
1,2-Dichloroethane-d4	90	5	53-142				
Toluene-d8	105	6	8-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53650-002

Batch: 53650

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	47	1	94	69-123	02/24/2011 1145
Ethylbenzene	50	54	1	107	59-128	02/24/2011 1145
Toluene	50	53	1	106	61-129	02/24/2011 1145
Xylenes (total)	100	110	1	110	58-128	02/24/2011 1145
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	126	47-138				
1,2-Dichloroethane-d4	89	53-142				
Toluene-d8	110	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53650-003

Batch: 53650

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	49	1	98	3.9	69-123	20	02/24/2011 1207
Ethylbenzene	50	52	1	105	2.0	59-128	20	02/24/2011 1207
Toluene	50	52	1	104	2.5	61-129	20	02/24/2011 1207
Xylenes (total)	100	110	1	106	4.1	58-128	20	02/24/2011 1207
Surrogate	Q % Rec	Acceptan Limit	ce					
Bromofluorobenzene	120	47-138						
1,2-Dichloroethane-d4	95	53-142						
Toluene-d8	111	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53878-001 Batch: 53878

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Ethylbenzene	ND		50	250	85	ug/kg	02/25/2011 1342
Surrogate	Q % Rec		cceptance Limit				
Bromofluorobenzene	100		47-138				
1,2-Dichloroethane-d4	97		53-142				
Toluene-d8	102		68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53878-002

Batch: 53878

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q Dil	% Rec	% Rec Limit	Analysis Date
Ethylbenzene	2500	3000	50	118	59-128	02/25/2011 1237
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	110	47-138				
1,2-Dichloroethane-d4	96	53-142				
Toluene-d8	106	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53878-003

Batch: 53878

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Ethylbenzene	2500	2800	50	113	4.0	59-128	20	02/25/2011 1259
Surrogate	Q % Rec	Acceptan Limit	ce					
Bromofluorobenzene	104	47-138						
1,2-Dichloroethane-d4	92	53-142						
Toluene-d8	101	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53787-001 Batch: 53787 Matrix: Solid Prep Method: 3550C

Prep Date: 02/28/2011 2022

Analytical Method: 8270D

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	03/01/2011 1407
Acenaphthylene	ND	1	330	13	ug/kg	03/01/2011 1407
Anthracene	ND	1	330	15	ug/kg	03/01/2011 1407
Benzo(a)anthracene	ND	1	330	11	ug/kg	03/01/2011 1407
Benzo(a)pyrene	ND	1	330	24	ug/kg	03/01/2011 1407
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	03/01/2011 1407
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	03/01/2011 1407
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	03/01/2011 1407
Chrysene	ND	1	330	10	ug/kg	03/01/2011 1407
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	03/01/2011 1407
Fluoranthene	ND	1	330	10	ug/kg	03/01/2011 1407
Fluorene	ND	1	330	13	ug/kg	03/01/2011 1407
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	03/01/2011 1407
Naphthalene	ND	1	330	14	ug/kg	03/01/2011 1407
Phenanthrene	ND	1	330	13	ug/kg	03/01/2011 1407
Pyrene	ND	1	330	14	ug/kg	03/01/2011 1407
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	73	33-102				
Nitrobenzene-d5	66	22-109				
Terphenyl-d14	76	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < PQL and <math>\geq MDL$

N - Recovery is out of criteria

ND = Not detected at or above the MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ53787-002 Batch: 53787 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 02/28/2011 2022

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	2700	1	82	30-130	03/01/2011 1426
Acenaphthylene	3300	2900	1	86	30-130	03/01/2011 1426
Anthracene	3300	3000	1	89	30-130	03/01/2011 1426
Benzo(a)anthracene	3300	2900	1	88	30-130	03/01/2011 1426
Benzo(a)pyrene	3300	3100	1	94	30-130	03/01/2011 1426
Benzo(b)fluoranthene	3300	2300	1	70	30-130	03/01/2011 1426
Benzo(g,h,i)perylene	3300	2400	1	72	30-130	03/01/2011 1426
Benzo(k)fluoranthene	3300	3200	1	96	30-130	03/01/2011 1426
Chrysene	3300	3000	1	89	30-130	03/01/2011 1426
Dibenzo(a,h)anthracene	3300	2700	1	80	30-130	03/01/2011 1426
Fluoranthene	3300	2900	1	86	30-130	03/01/2011 1426
Fluorene	3300	2800	1	84	30-130	03/01/2011 1426
Indeno(1,2,3-c,d)pyrene	3300	2700	1	81	30-130	03/01/2011 1426
Naphthalene	3300	2500	1	74	30-130	03/01/2011 1426
Phenanthrene	3300	2800	1	85	30-130	03/01/2011 1426
Pyrene	3300	3000	1	90	30-130	03/01/2011 1426
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	84	33-102				
Nitrobenzene-d5	74	22-109				
Terphenyl-d14	77	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Bottle (See Instructions on back) Remarks / Cooler ID **DUnknown** Temp. Blank ロソ/白 N) Number of Containers Preservative Lot No. 183 ō 03261 C.Poison Quote Tirne Time Page Time URammable USkin Irritant 9 5 Number sossible Hazard Identification Date Date Receipt Temp. Dalle Non-Hazard O No O Ide Pack Fax No. (803) 791-9111 Shealy Environmental Services, Inc. West Columbia, South Carolina 29172 (Say D Requirements (Specify) Laboratory Received by 106 Vantage Point Drive Received on los (Chack) Waybill No Moder www.shealylab.com Received by Received by Received by Telephone No. (803) 791-9700 1449 100758 C Disposal by Lab Analysis Darte Note: All samples are retained for six weeks from receipt TIME TIME Report to Compact Yoshusk PC8N.7 90 Matrix Sample Disposal DW/WW Return to Client 4. HN03 unless other arrangements are made. 5. Na Thio relephone No. Fax N NE. 5. HCL C=Composite Date Preservative 9 dana=a 2. NaCHZnA um Argund Time Required (Prior lab approval required for expedited TAT) 000 10/15 38 1. Unpres. 3. H2SO4 Time Chain of Custody Record P.O Number 727 1/124/2 Date CITOR □ Rush (Please Specify) (Confairers for each sample may be 600 COMMENCE Sample ID / Description combined on one line) SCE-1301-07 ed, ments 3. Relinquished by Relinquished by Relinquished attord roject Name Slandard SHEALY 1 ١ j 1 Client (

Shealy Environmental Services, Inc. Page 1 of 1 Replaces Date: 09/22/06 Document Number: F-AD-016 Effective Date: 05/29/07 Revision Number: 6 Sample Receipt Checklist (SRC) · Cooler Inspected by/date: 600/ 1/23/4 Lot #: Client: 'MT Client Means of receipt: SESI UPS FedEx Airborne Exp Other Yes NA L. Were custody seals present on the cooler? 2. If custody seals were present, were they intact and unbroken? Yes Cooler ID/temperature upon receipt 51/6 °C / °C / _°C __/ °C Method: Temperature Blank Against Bottles Method of coolant: Wet Ice Blue Ice Dry Ice If response is No (or Yes for 14, 15, 16), an explanation/resolution must be provided. 3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified? PM notified by SRC, phone, note (circle one), other:____ NA Yes No coolers received via commercial courier. PMs are to be notified immediately. 4. Is the commercial courier's packing slip attached to this form? Yes No NA Yes No NA Were proper custody procedures (relinquished/received) followed? Yes No NA Were sample IDs listed? No NA Was collection date & time listed? Yes 8. Were tests to be performed listed on the COC or was quote # provided? NA No Yes No NA 9. Did all samples arrive in the proper containers for each test? Yes No NA Did all container label information (ID, date, time) agree with COC? 11. Did all containers arrive in good condition (unbroken, lids on, etc.)? No NA NA 12. Was adequate sample volume available? Yes No 13. Were all samples received within 1/2 the holding time or 48 hours, whichever NA 🗌 No Yes / comes first? No 1 NA 14. Were any samples containers missing? 15. Were there any excess samples not listed on COC? Were bubbles present >"pea-size" (¼" or 6mm in diameter) in any VOA. No Yes 17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2? Yes No NA 18. "Were all cyanide and/or sulfide samples received at a pH >12? 19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb Yes No NA] (<0.2mg/L) and toxicity (<0.1mg/L) samples free of residual chlorine? Yes No NAP 20. Were collection temperatures documented on the COC for NC samples? Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with (H2SO4,HNO3,HCl,NaOH) with the SR # (number) were received with bubbles >6 mm in diameter. Sample(s) were received with TRC >0.2 mg/L for NH3/ Sample(s) TKN/cyanide/BNA/pest/PCB/herb. Toxicity sample(s) were received with TRC > 0.1 mg/L and were analyzed by method 330.5. Corrective Action taken, if necessary: Did client respond: Yes No Was client notified: Yes No SESI employee: Date of response: Comments:

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree Sediments

Lot Number: MG20083

Date Completed: 08/03/2011

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

MG20083

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: MG20083

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

Shealy is not NELAC certified for Phosphorus by 365.1 but is certified in SC and NC.

Shealy is not NELAC certified for VPH, but is certified for VPH in NC.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: MG20083

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	N36	Solid	07/19/2011 1430	07/20/2011
002	N36.5	Solid	07/19/2011 1430	07/20/2011
003	P36	Solid	07/19/2011 1450	07/20/2011
004	L30	Solid	07/20/2011 0945	07/20/2011
005	130	Solid	07/20/2011 1020	07/20/2011
006	H24	Solid	07/20/2011 1350	07/20/2011
007	L24	Solid	07/20/2011 1420	07/20/2011

(7 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: MG20083

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	N36	Solid	Acenaphthene	8270D	3100		ug/kg	8
001	N36	Solid	Acenaphthylene	8270D	940	J	ug/kg	8
001	N36	Solid	Anthracene	8270D	6200		ug/kg	8
001	N36	Solid	Benzo(a)anthracene	8270D	7700		ug/kg	8
001	N36	Solid	Benzo(a)pyrene	8270D	8200		ug/kg	8
001	N36	Solid	Benzo(b)fluoranthene	8270D	7900		ug/kg	8
001	N36	Solid	Benzo(g,h,i)perylene	8270D	3200		ug/kg	8
001	N36	Solid	Chrysene	8270D	8600		ug/kg	8
001	N36	Solid	Fluoranthene	8270D	13000		ug/kg	8
001	N36	Solid	Fluorene	8270D	3700		ug/kg	8
001	N36	Solid	Indeno(1,2,3-c,d)pyrene	8270D	2500		ug/kg	8
001	N36	Solid	Naphthalene	8270D	260	J	ug/kg	8
001	N36	Solid	Phenanthrene	8270D	19000		ug/kg	8
001	N36	Solid	Pyrene	8270D	23000		ug/kg	8
002	N36.5	Solid	Benzene	8260B	67	J	ug/kg	9
002	N36.5	Solid	Ethylbenzene	8260B	4700		ug/kg	9
002	N36.5	Solid	Toluene	8260B	190	J	ug/kg	9
002	N36.5	Solid	Xylenes (total)	8260B	1700		ug/kg	9
002	N36.5	Solid	Acenaphthene	8270D	660000		ug/kg	10
002	N36.5	Solid	Anthracene	8270D	460000		ug/kg	10
002	N36.5	Solid	Benzo(a)anthracene	8270D	370000		ug/kg	10
002	N36.5	Solid	Benzo(a)pyrene	8270D	390000		ug/kg	10
002	N36.5	Solid	Benzo(b)fluoranthene	8270D	320000		ug/kg	10
002	N36.5	Solid	Benzo(g,h,i)perylene	8270D	150000		ug/kg	10
002	N36.5	Solid	Chrysene	8270D	360000		ug/kg	10
002	N36.5	Solid	Dibenzo(a,h)anthracene	8270D	33000	J	ug/kg	10
002	N36.5	Solid	Fluoranthene	8270D	590000		ug/kg	10
002	N36.5	Solid	Fluorene	8270D	450000		ug/kg	10
002	N36.5	Solid	Indeno(1,2,3-c,d)pyrene	8270D	97000		ug/kg	10
002	N36.5	Solid	Naphthalene	8270D	690000		ug/kg	10
002	N36.5	Solid	Phenanthrene	8270D	1800000		ug/kg	10
002	N36.5	Solid	Pyrene	8270D	1000000		ug/kg	10
003	P36	Solid	Acenaphthene	8270D	44	J	ug/kg	12
003	P36	Solid	Acenaphthylene	8270D	22	J	ug/kg	12
003	P36	Solid	Anthracene	8270D	24	J	ug/kg	12
003	P36	Solid	Benzo(a)anthracene	8270D	74	J	ug/kg	12
003	P36	Solid	Benzo(a)pyrene	8270D	56	J	ug/kg	12
003	P36	Solid	Benzo(b)fluoranthene	8270D	47	J	ug/kg	12
003	P36	Solid	Benzo(g,h,i)perylene	8270D	30	J	ug/kg	12
003	P36	Solid	Chrysene	8270D	46	J	ug/kg	12
003	P36	Solid	Fluoranthene	8270D	65	J	ug/kg	12
003	P36	Solid	Fluorene	8270D	18	J	ug/kg	12
003	P36	Solid	Naphthalene	8270D	230	J	ug/kg	12
003	P36	Solid	Phenanthrene	8270D	77	J	ug/kg	12
003	P36	Solid	Pyrene	8270D	110	J	ug/kg	12
							-	

Executive Summary (Continued)

Lot Number: MG20083

Sample	Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
004	L30	Solid	Acenaphthene	8270D	77	J	ug/kg	14
004	L30	Solid	Acenaphthylene	8270D	14	J	ug/kg	14
004	L30	Solid	Benzo(a)anthracene	8270D	53	J	ug/kg	14
004	L30	Solid	Benzo(a)pyrene	8270D	36	J	ug/kg	14
004	L30	Solid	Benzo(b)fluoranthene	8270D	34	J	ug/kg	14
004	L30	Solid	Chrysene	8270D	32	J	ug/kg	14
004	L30	Solid	Fluoranthene	8270D	40	J	ug/kg	14
004	L30	Solid	Fluorene	8270D	23	J	ug/kg	14
004	L30	Solid	Naphthalene	8270D	480		ug/kg	14
004	L30	Solid	Phenanthrene	8270D	42	J	ug/kg	14
004	L30	Solid	Pyrene	8270D	61	J	ug/kg	14
005	130	Solid	Acenaphthene	8270D	420	J	ug/kg	16
005	130	Solid	Acenaphthylene	8270D	51	J	ug/kg	16
005	130	Solid	Anthracene	8270D	120	J	ug/kg	16
005	130	Solid	Benzo(a)anthracene	8270D	470		ug/kg	16
005	130	Solid	Benzo(a)pyrene	8270D	590		ug/kg	16
005	130	Solid	Benzo(b)fluoranthene	8270D	850		ug/kg	16
005	130	Solid	Benzo(g,h,i)perylene	8270D	390	J	ug/kg	16
005	130	Solid	Chrysene	8270D	640		ug/kg	16
005	130	Solid	Fluoranthene	8270D	900		ug/kg	16
005	130	Solid	Fluorene	8270D	120	J	ug/kg	16
005	130	Solid	Indeno(1,2,3-c,d)pyrene	8270D	310	J	ug/kg	16
005	130	Solid	Naphthalene	8270D	57	J	ug/kg	16
005	130	Solid	Phenanthrene	8270D	710		ug/kg	16
005	130	Solid	Pyrene	8270D	1100		ug/kg	16
006	H24	Solid	Acenaphthene	8270D	220	J	ug/kg	18
006	H24	Solid	Acenaphthylene	8270D	110	J	ug/kg	18
006	H24	Solid	Anthracene	8270D	220	J	ug/kg	18
006	H24	Solid	Benzo(a)anthracene	8270D	570		ug/kg	18
006	H24	Solid	Benzo(a)pyrene	8270D	710		ug/kg	18
006	H24	Solid	Benzo(b)fluoranthene	8270D	920		ug/kg	18
006	H24	Solid	Benzo(g,h,i)perylene	8270D	350	J	ug/kg	18
006	H24	Solid	Chrysene	8270D	720		ug/kg	18
006	H24	Solid	Fluoranthene	8270D	1000		ug/kg	18
006	H24	Solid	Fluorene	8270D	150	J	ug/kg	18
006	H24	Solid	Indeno(1,2,3-c,d)pyrene	8270D	290	J	ug/kg	18
006	H24	Solid	Naphthalene	8270D	25	J	ug/kg	18
006	H24	Solid	Phenanthrene	8270D	650		ug/kg	18
006	H24	Solid	Pyrene	8270D	1400		ug/kg	18
007	L24	Solid	Benzene	8260B	9.4		ug/kg	19
007	L24	Solid	Ethylbenzene	8260B	62		ug/kg	19
007	L24	Solid	Toluene	8260B	9.0		ug/kg	19
007	L24	Solid	Xylenes (total)	8260B	26		ug/kg	19
007	L24	Solid	Acenaphthene	8270D	310	J	ug/kg	20
007	L24	Solid	Acenaphthylene	8270D	290	J	ug/kg	20
007	L24	Solid	Anthracene	8270D	430		ug/kg	20
007	L24	Solid	Benzo(a)anthracene	8270D	1100		ug/kg	20
007	L24	Solid	Benzo(a)pyrene	8270D	1300		ug/kg	20

Executive Summary (Continued)

Lot Number: MG20083

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
007	L24	Solid	Benzo(b)fluoranthene	8270D	1300		ug/kg	20
007	L24	Solid	Benzo(g,h,i)perylene	8270D	610		ug/kg	20
007	L24	Solid	Chrysene	8270D	1300		ug/kg	20
007	L24	Solid	Fluoranthene	8270D	1600		ug/kg	20
007	L24	Solid	Fluorene	8270D	290	J	ug/kg	20
007	L24	Solid	Indeno(1,2,3-c,d)pyrene	8270D	460		ug/kg	20
007	L24	Solid	Naphthalene	8270D	120	J	ug/kg	20
007	L24	Solid	Phenanthrene	8270D	1700		ug/kg	20
007	L24	Solid	Pyrene	8270D	3000		ug/kg	20

(102 detections)

Client: Management and Technical Resources, Inc.

Description: N36

Date Sampled:07/19/2011 1430

Matrix: Solid

Laboratory ID: MG20083-001

% Solids: 83.1 07/20/2011 2151

Date Received: 07/20/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	07/22/2011 2030	JJG		64322	6.09

Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Rur
Benzene		71-43-2	8260B	ND	4.9	1.1	ug/kg	1
Ethylbenzene		100-41-4	8260B	ND	4.9	1.7	ug/kg	1
Toluene		108-88-3	8260B	ND	4.9	1.7	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND	4.9	2.9	ug/kg	1
Surrogate		un 1 Accepta covery Limit						
1,2-Dichloroethane-d4		96 53-1	42					
Bromofluorobenzene	1	102 47-1	38					
Toluene-d8	1	110 68-1	24					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MG20083-001

Description: N36

Matrix: Solid

Date Sampled:07/19/2011 1430

% Solids: 83.1 07/20/2011 2151

Date Received: 07/20/2011

Run 1	Prep Method 3550C	Analytical Method 8270D		Analysis 7/25/201	,	Prep Da 07/22/201		Batch 64265			
Param	neter		Νι	CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acena	phthene		8:	3-32-9	8270D	3100		2000	60	ug/kg	1
Acena	phthylene		208	3-96-8	8270D	940	J	2000	78	ug/kg	1
Anthra	acene		120)-12-7	8270D	6200		2000	87	ug/kg	1
Benzo	(a)anthracene		50	5-55-3	8270D	7700		2000	65	ug/kg	1
Benzo	(a)pyrene		50	0-32-8	8270D	8200		2000	140	ug/kg	1
Benzo	(b)fluoranthene		205	5-99-2	8270D	7900		2000	130	ug/kg	1
Benzo	(g,h,i)perylene		191	-24-2	8270D	3200		2000	130	ug/kg	1
Benzo	(k)fluoranthene		207	7-08-9	8270D	ND		2000	160	ug/kg	1
Chrys	ene		218	3-01-9	8270D	8600		2000	62	ug/kg	1
Dibenz	zo(a,h)anthracene		53	3-70-3	8270D	ND		2000	130	ug/kg	1
Fluora	inthene		206	5-44-0	8270D	13000		2000	62	ug/kg	1
Fluore	ene		86	5-73-7	8270D	3700		2000	76	ug/kg	1
Inden	o(1,2,3-c,d)pyrene		193	3-39-5	8270D	2500		2000	180	ug/kg	1
Napht	halene		9.	1-20-3	8270D	260	J	2000	83	ug/kg	1
Phena	inthrene		8!	5-01-8	8270D	19000		2000	80	ug/kg	1
Pyren	е		129	9-00-0	8270D	23000		2000	85	ug/kg	1
Surro	gate	Q	Run 1 % Recover	Accept y Limi							
2-Fluo	robiphenyl		71	33-1	02				•		•
Nitrobe	enzene-d5		61	22-1	09						
Terphe	enyl-d14		76	41-1	20						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: N36.5

Date Sampled:07/19/2011 1430

Matrix: Solid

Laboratory ID: MG20083-002

% Solids: 78.3 07/20/2011 2151

Date Received: 07/20/2011

Run 2	Prep Method 5035	Analytical Method 8260B		alysis Date 26/2011 1418	Analyst SAS	Prep Da	ate	Batch 64469	Sample \ 5.95	137	
Param	neter		Nun		alytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne		71-4	43-2	8260B	67	J	270	59	ug/kg	2
Ethylb	enzene		100-4	11-4	8260B	4700		270	91	ug/kg	2
Toluer	ne		108-8	38-3	8260B	190	J	270	91	ug/kg	2
Xylene	es (total)		1330-2	20-7	8260B	1700		270	160	ug/kg	2
Surro	gate	Q	Run 2 / % Recovery	Acceptance Limits							
1,2-Did	chloroethane-d4		86	53-142							
Bromo	fluorobenzene		77	47-138							
Toluer	ne-d8		90	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MG20083-002

Description: N36.5

Matrix: Solid

Date Sampled:07/19/2011 1430

% Solids: 78.3 07/20/2011 2151

Date Received: 07/20/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	100	07/29/2011 1155	WD	07/22/2011 1845	64265
2	3550C	8270D	200	08/02/2011 2123	JGH	07/22/2011 1845	64265

Parameter		CAS	Analy		Result	Q	PQL	MDL	Units	Run
		Number	Met							
Acenaphthene		83-32-9	82	270D	660000	4	1000	1300	ug/kg	1
Acenaphthylene		208-96-8	82	270D	ND	4	1000	1600	ug/kg	1
Anthracene		120-12-7	82	270D	460000	4	1000	1800	ug/kg	1
Benzo(a)anthracene		56-55-3	82	270D	370000	4	1000	1400	ug/kg	1
Benzo(a)pyrene		50-32-8	82	270D	390000	4	1000	3000	ug/kg	1
Benzo(b)fluoranthene		205-99-2	82	270D	320000	4	1000	2800	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	82	270D	150000	4	1000	2800	ug/kg	1
Benzo(k)fluoranthene		207-08-9	82	270D	ND	4	1000	3400	ug/kg	1
Chrysene		218-01-9	82	270D	360000	4	1000	1300	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	82	270D	33000	J 4	1000	2700	ug/kg	1
Fluoranthene		206-44-0	82	270D	590000	4	1000	1300	ug/kg	1
Fluorene		86-73-7	82	270D	450000	4	1000	1600	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	82	270D	97000	4	1000	3700	ug/kg	1
Naphthalene		91-20-3	82	270D	690000	4	1000	1700	ug/kg	1
Phenanthrene		85-01-8	82	270D	1800000	8	3000	3400	ug/kg	2
Pyrene		129-00-0	82	270D	1000000	4	1000	1800	ug/kg	1
,		D 4 4			D 0 4				0 0	
Surrogate	Q	Run 1 Accep % Recovery Lim	tance iits Q	%	Run 2 Ao Recovery	cceptance Limits	!			
2-Fluorobiphenyl	Ν	0.00 33-	102 N		0.00	33-102				
Nitrobenzene-d5	Ν	0.00 22-	109 N		0.00	22-109				
Terphenyl-d14	Ν	0.00 41-	120		101	41-120				

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Analytical Method

Batch

Laboratory ID: MG20083-003

Description: P36

Run

Matrix: Solid

% Solids: 87.2 07/20/2011 2151

Sample Wt.(g)

Date Sampled:07/19/2011 1450 coivad: 07/20/2011

Prep Method

Date Received: 07/20/2	2C	7	1	
------------------------	----	---	---	--

1 5035	8260B	1 07/22/2011	,		64322	6.60	_	
Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene		71-43-2	8260B	ND	4.3	0.96	ug/kg	1
Ethylbenzene		100-41-4	8260B	ND	4.3	1.5	ug/kg	1
Toluene		108-88-3	8260B	ND	4.3	1.5	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND	4.3	2.5	ug/kg	1

Analyst

Prep Date

Dilution Analysis Date

Q	Run 1 A % Recovery	cceptance Limits
	84	53-142
	104	47-138
	113	68-124
	Q	Q % Recovery 84 104

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG20083-003

Description: P36

Run

Matrix: Solid

Batch

Date Sampled:07/19/2011 1450

Prep Method

% Solids: 87.2 07/20/2011 2151

Date Received: 07/20/2011

1 3550C	8270D	1 08/02/201	1 2143 JGH	07/22/201	11 1845	6 64265			
Parameter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Rur
Acenaphthene		83-32-9	8270D	44	J	380	12	ug/kg	1
Acenaphthylene		208-96-8	8270D	22	J	380	15	ug/kg	1
Anthracene		120-12-7	8270D	24	J	380	17	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	74	J	380	12	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	56	J	380	28	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	47	J	380	25	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	30	J	380	26	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	ND		380	31	ug/kg	1
Chrysene		218-01-9	8270D	46	J	380	12	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND		380	25	ug/kg	1
Fluoranthene		206-44-0	8270D	65	J	380	12	ug/kg	1
Fluorene		86-73-7	8270D	18	J	380	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND		380	34	ug/kg	1
Naphthalene		91-20-3	8270D	230	J	380	16	ug/kg	1
Phenanthrene		85-01-8	8270D	77	J	380	15	ug/kg	1
Pyrene		129-00-0	8270D	110	J	380	16	ug/kg	1
Surrogate	Q	Run 1 Accept % Recovery Lim							
2-Fluorobiphenyl		81 33-1	02						
Nitrobenzene-d5		69 22-1	09						
Terphenyl-d14		91 41-1	20						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG20083-004

Description: L30

Run

Matrix: Solid

Batch

Date Sampled:07/20/2011 0945

Prep Method

% Solids: 86.3 07/20/2011 2151

Sample Wt.(g)

Date Received: 07/20/2011

1	5035	8260B	1 07/2	2/2011 213	36 JJG			64322	5.85		
Paramete	r		(Num		nalytical Method	Result	Q	PQL	MDL	Units	Run
Benzene			71-4	3-2	8260B	ND		5.0	1.1	ug/kg	1
Ethylbenze	ene		100-4	1-4	8260B	ND		5.0	1.7	ug/kg	1
Toluene			108-8	8-3	8260B	ND		5.0	1.7	ug/kg	1
Xylenes (to	otal)		1330-2	0-7	8260B	ND		5.0	2.9	ug/kg	1
Surrogate)	Q	Run 1 A % Recovery	Acceptance Limits	<u>;</u>						
1,2-Dichlor	roethane-d4		97	53-142							
Bromofluo	robenzene		108	47-138							
Toluene-da	8		116	68-124							

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG20083-004

Description: L30

Run

Matrix: Solid

Batch

Date Sampled:07/20/2011 0945

Prep Method

% Solids: 86.3 07/20/2011 2151

Date Received: 07/20/2011

1 3550C	8270D	1 08/02/201	1 2204 JGH	07/22/201	I1 1845	64265			
Parameter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Rur
Acenaphthene		83-32-9	8270D	77	J	360	11	ug/kg	1
Acenaphthylene		208-96-8	8270D	14	J	360	14	ug/kg	1
Anthracene		120-12-7	8270D	ND		360	16	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	53	J	360	12	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	36	J	360	27	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	34	J	360	25	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	ND		360	25	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	ND		360	30	ug/kg	1
Chrysene		218-01-9	8270D	32	J	360	11	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND		360	24	ug/kg	1
Fluoranthene		206-44-0	8270D	40	J	360	11	ug/kg	1
Fluorene		86-73-7	8270D	23	J	360	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND		360	33	ug/kg	1
Naphthalene		91-20-3	8270D	480		360	15	ug/kg	1
Phenanthrene		85-01-8	8270D	42	J	360	15	ug/kg	1
Pyrene		129-00-0	8270D	61	J	360	16	ug/kg	1
Surrogate	Q	Run 1 Accept % Recovery Lim							
2-Fluorobiphenyl		81 33-1	102		•	•		•	
Nitrobenzene-d5		70 22-1	109						
Terphenyl-d14		95 41-1	120						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: I30

Date Sampled:07/20/2011 1020

Laboratory ID: MG20083-005 Matrix: Solid

% Solids: 69.2 07/20/2011 2151

Date Received: 07/20/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 5035 8260B 07/22/2011 2157 JJG 64322 5.85

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene	71-43-2	8260B	ND	6.2	1.4	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND	6.2	2.1	ug/kg	1
Toluene	108-88-3	8260B	ND	6.2	2.1	ug/kg	1
Xylenes (total)	1330-20-7	8260B	ND	6.2	3.6	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi						
1.0 Dialatana di	00 52.1	40					

Surrogate	Q	% Recovery	LIIIIII
1,2-Dichloroethane-d4		98	53-142
Bromofluorobenzene		103	47-138
Toluene-d8		112	68-124

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG20083-005

Description: I30

Run

Matrix: Solid

Batch

Date Sampled:07/20/2011 1020

Prep Method

% Solids: 69.2 07/20/2011 2151

Date Received: 07/20/2011

1 3550C	8270D	1 07/25/201	,	07/22/20	11 1845 6	4265		
_		CAS	Analytical					
Parameter		Number	Method	Result	Q P	QL MDL	Units	Run
Acenaphthene		83-32-9	8270D	420	J 4	170 14	ug/kg	1
Acenaphthylene		208-96-8	8270D	51	J 4	70 19	ug/kg	1
Anthracene		120-12-7	8270D	120	J 4	70 21	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	470	4	70 16	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	590	4	70 35	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	850	4	70 32	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	390	J 4	70 32	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	ND	4	70 39	ug/kg	1
Chrysene		218-01-9	8270D	640	4	70 15	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND	4	70 31	ug/kg	1
Fluoranthene		206-44-0	8270D	900	4	70 15	ug/kg	1
Fluorene		86-73-7	8270D	120	J 4	70 18	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	310	J 4	70 43	ug/kg	1
Naphthalene		91-20-3	8270D	57	J 4	70 20	ug/kg	1
Phenanthrene		85-01-8	8270D	710	4	70 19	ug/kg	1
Pyrene		129-00-0	8270D	1100	2	70 21	ug/kg	1
Surrogate	Q	Run 1 Accep % Recovery Lim						
2-Fluorobiphenyl		66 33-	102					
Nitrobenzene-d5		65 22-	109					
Terphenyl-d14		72 41-	120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG20083-006

Description: H24

Run

Matrix: Solid

Batch

Date Sampled:07/20/2011 1350

Prep Method

% Solids: 77.1 07/20/2011 2151

Sample Wt.(g)

Date Received: 07/20/2011

1 50	035	8260B	1 07/2	22/2011 2	2219 JJG			64322	6.43	3	
Parameter			(Num	CAS	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene			71-4	3-2	8260B	ND		5.0	1.1	ug/kg	1
Ethylbenzene			100-4	1-4	8260B	ND		5.0	1.7	ug/kg	1
Toluene			108-8	8-3	8260B	ND		5.0	1.7	ug/kg	1
Xylenes (total)			1330-2	20-7	8260B	ND		5.0	2.9	ug/kg	1
Surrogate		Q	Run 1 A % Recovery	Acceptar Limits							
1,2-Dichloroethane	e-d4		81	53-142	2						
Bromofluorobenzer	ne		98	47-138	3						
Toluene-d8			99	68-124	1						

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: MG20083-006

Description: H24

Matrix: Solid

Date Sampled:07/20/2011 1350

% Solids: 77.1 07/20/2011 2151

Date Received: 07/20/2011

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 07/25/201	,	Prep Da 07/22/201		Batch 64265			
Param	neter		١	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acena	phthene			83-32-9	8270D	220	J	410	13	ug/kg	1
Acena	phthylene		2	08-96-8	8270D	110	J	410	16	ug/kg	1
Anthra	acene		1	20-12-7	8270D	220	J	410	18	ug/kg	1
Benzo	(a)anthracene			56-55-3	8270D	570		410	14	ug/kg	1
Benzo	o(a)pyrene			50-32-8	8270D	710		410	30	ug/kg	1
Benzo	(b)fluoranthene		2	05-99-2	8270D	920		410	28	ug/kg	1
Benzo	(g,h,i)perylene		1	91-24-2	8270D	350	J	410	28	ug/kg	1
Benzo	(k)fluoranthene		2	07-08-9	8270D	ND		410	34	ug/kg	1
Chrys	ene		2	18-01-9	8270D	720		410	13	ug/kg	1
Dibenz	zo(a,h)anthracene			53-70-3	8270D	ND		410	27	ug/kg	1
Fluora	anthene		2	06-44-0	8270D	1000		410	13	ug/kg	1
Fluore	ene			86-73-7	8270D	150	J	410	16	ug/kg	1
Inden	o(1,2,3-c,d)pyrene		1	93-39-5	8270D	290	J	410	37	ug/kg	1
Napht	halene			91-20-3	8270D	25	J	410	17	ug/kg	1
Phena	inthrene			85-01-8	8270D	650		410	17	ug/kg	1
Pyren	е		1	29-00-0	8270D	1400		410	18	ug/kg	1
Surro	gate	Q	Run 1 % Recove	Accept ery Limi							
2-Fluo	robiphenyl		65	33-1	02						
Nitrob	enzene-d5		59	22-1	09						
Terphe	enyl-d14		74	41-1	20						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Page: 18 of 31

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: L24 Date Sampled:07/20/2011 1420

Laboratory ID: MG20083-007 Matrix: Solid

% Solids: 75.8 07/20/2011 2151

Date Received: 07/20/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 07/22/2011 2241 JJG 64322 5.41

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene	71-43-2	8260B	9.4		6.1	1.3	ug/kg	1
Ethylbenzene	100-41-4	8260B	62		6.1	2.1	ug/kg	1
Toluene	108-88-3	8260B	9.0		6.1	2.1	ug/kg	1
Xylenes (total)	1330-20-7	8260B	26		6.1	3.5	ug/kg	1
Surrogate	un 1 Accept covery Limi							

Surrogate	Q	% Recovery	Limits
1,2-Dichloroethane-d4		89	53-142
Bromofluorobenzene		93	47-138
Toluene-d8		107	68-124

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: MG20083-007

Description: L24

Matrix: Solid

Date Sampled:07/20/2011 1420

% Solids: 75.8 07/20/2011 2151

Date Received: 07/20/2011

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis 07/25/201	,	Prep Da 07/22/201		Batch 64265			
Param	otor			CAS	Analytical	Result	Q	PQL	MDL	Units	Run
				Number	Method						
	phthene			83-32-9	8270D	310	J	430	13	ug/kg	1
	phthylene			208-96-8	8270D	290	J	430	17	ug/kg	1
Anthra	acene		•	120-12-7	8270D	430		430	19	ug/kg	1
Benzo	(a)anthracene			56-55-3	8270D	1100		430	14	ug/kg	1
Benzo	(a)pyrene			50-32-8	8270D	1300		430	31	ug/kg	1
Benzo	(b)fluoranthene		2	205-99-2	8270D	1300		430	29	ug/kg	1
Benzo	(g,h,i)perylene			191-24-2	8270D	610		430	29	ug/kg	1
Benzo	(k)fluoranthene		2	207-08-9	8270D	ND		430	35	ug/kg	1
Chrys	ene		2	218-01-9	8270D	1300		430	13	ug/kg	1
Dibenz	zo(a,h)anthracene			53-70-3	8270D	ND		430	28	ug/kg	1
Fluora	inthene		2	206-44-0	8270D	1600		430	13	ug/kg	1
Fluore	ene			86-73-7	8270D	290	J	430	16	ug/kg	1
Indend	o(1,2,3-c,d)pyrene		•	193-39-5	8270D	460		430	39	ug/kg	1
Napht	halene			91-20-3	8270D	120	J	430	18	ug/kg	1
Phena	nthrene			85-01-8	8270D	1700		430	17	ug/kg	1
Pyren	е			129-00-0	8270D	3000		430	19	ug/kg	1
Surro	gate	Q	Run 1 % Recov								
2-Fluo	robiphenyl		58	33-1	02						
Nitrobe	enzene-d5		50	22-1	09						
Terphe	enyl-d14		71	41-1	20						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: MQ64322-001 Batch: 64322

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	07/22/2011 1732
Ethylbenzene	ND		1	5.0	1.7	ug/kg	07/22/2011 1732
Toluene	ND		1	5.0	1.7	ug/kg	07/22/2011 1732
Xylenes (total)	ND		1	5.0	2.9	ug/kg	07/22/2011 1732
Surrogate	Q % Rec		eptance Limit				
Bromofluorobenzene	110		17-138				
1,2-Dichloroethane-d4	105	!	53-142				
Toluene-d8	118	(58-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: MQ64322-002

Batch: 64322

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	43	1	86	69-123	07/22/2011 1605
Ethylbenzene	50	46	1	92	59-128	07/22/2011 1605
Toluene	50	46	1	92	61-129	07/22/2011 1605
Xylenes (total)	100	91	1	91	58-128	07/22/2011 1605
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	100	47-138				
1,2-Dichloroethane-d4	94	53-142				
Toluene-d8	104	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: MQ64322-003

Batch: 64322

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	43	1	86	0.072	69-123	20	07/22/2011 1627
Ethylbenzene	50	40	1	79	15	59-128	20	07/22/2011 1627
Toluene	50	40	1	81	12	61-129	20	07/22/2011 1627
Xylenes (total)	100	79	1	79	15	58-128	20	07/22/2011 1627
Surrogate	Q % Rec	Acceptano Limit	ce					
Bromofluorobenzene	90	47-138						
1,2-Dichloroethane-d4	92	53-142						
Toluene-d8	96	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: MQ64469-001

Batch: 64469 Analytical Method: 8260B Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		50	250	55	ug/kg	08/04/2011 1931
Ethylbenzene	ND		50	250	85	ug/kg	08/04/2011 1931
Toluene	ND		50	250	85	ug/kg	08/04/2011 1931
Xylenes (total)	ND		50	250	150	ug/kg	08/04/2011 1931
Surrogate	Q % Rec		ptance mit				
Bromofluorobenzene	117	47	-138				
1,2-Dichloroethane-d4	105	53	-142				
Toluene-d8	111	68	-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: MQ64469-002

Batch: 64469

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	. Dil	% Rec	% Rec Limit	Analysis Date
Benzene	2500	2300	50	93	69-123	08/04/2011 1819
Ethylbenzene	2500	2700	50	109	59-128	08/04/2011 1819
Toluene	2500	2500	50	99	61-129	08/04/2011 1819
Xylenes (total)	5000	5400	50	109	58-128	08/04/2011 1819
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	110	47-138				
1,2-Dichloroethane-d4	88	53-142				
Toluene-d8	111	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: MQ64469-003

Batch: 64469

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	2500	2500	50	98	5.5	69-123	20	08/04/2011 1843
Ethylbenzene	2500	2800	50	110	0.56	59-128	20	08/04/2011 1843
Toluene	2500	2600	50	103	3.8	61-129	20	08/04/2011 1843
Xylenes (total)	5000	5500	50	109	0.68	58-128	20	08/04/2011 1843
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	113	47-138						
1,2-Dichloroethane-d4	102	53-142						
Toluene-d8	112	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ \geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: MQ64265-001 Batch: 64265 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 07/22/2011 1845

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	07/25/2011 1940
Acenaphthylene	ND	1	330	13	ug/kg	07/25/2011 1940
Anthracene	ND	1	330	15	ug/kg	07/25/2011 1940
Benzo(a)anthracene	ND	1	330	11	ug/kg	07/25/2011 1940
Benzo(a)pyrene	ND	1	330	24	ug/kg	07/25/2011 1940
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	07/25/2011 1940
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	07/25/2011 1940
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	07/25/2011 1940
Chrysene	ND	1	330	10	ug/kg	07/25/2011 1940
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	07/25/2011 1940
Fluoranthene	ND	1	330	10	ug/kg	07/25/2011 1940
Fluorene	ND	1	330	13	ug/kg	07/25/2011 1940
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	07/25/2011 1940
Naphthalene	ND	1	330	14	ug/kg	07/25/2011 1940
Phenanthrene	ND	1	330	13	ug/kg	07/25/2011 1940
Pyrene	ND	1	330	14	ug/kg	07/25/2011 1940
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	78	33-102				
Nitrobenzene-d5	75	22-109				
Terphenyl-d14	81	41-120				
Terphenyl-d14	81	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: MQ64265-002 Batch: 64265 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 07/22/2011 1845

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	1900	1	58	46-114	07/27/2011 1019
Acenaphthylene	3300	2500	1	76	44-122	07/27/2011 1019
Anthracene	3300	2000	1	61	50-119	07/27/2011 1019
Benzo(a)anthracene	3300	2100	1	63	47-121	07/27/2011 1019
Benzo(a)pyrene	3300	2300	1	70	55-134	07/27/2011 1019
Benzo(b)fluoranthene	3300	2100	1	62	28-139	07/27/2011 1019
Benzo(g,h,i)perylene	3300	2100	1	62	36-125	07/27/2011 1019
Benzo(k)fluoranthene	3300	2000	1	61	47-130	07/27/2011 1019
Chrysene	3300	2100	1	64	45-126	07/27/2011 1019
Dibenzo(a,h)anthracene	3300	2100	1	62	45-122	07/27/2011 1019
Fluoranthene	3300	2100	1	62	50-123	07/27/2011 1019
Fluorene	3300	2000	1	60	48-117	07/27/2011 1019
Indeno(1,2,3-c,d)pyrene	3300	2000	1	61	45-123	07/27/2011 1019
Naphthalene	3300	1800	1	54	36-110	07/27/2011 1019
Phenanthrene	3300	2000	1	60	49-117	07/27/2011 1019
Pyrene	3300	2100	1	63	47-119	07/27/2011 1019
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	52	33-102				
Nitrobenzene-d5	68	22-109				
Terphenyl-d14	53	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: MG20083-004MS

Batch: 64265

Matrix: Solid Prep Method: 3550C

Prep Date: 07/22/2011 1845

Analytical Method: 8270D

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	77	3800	1600		1	40	30-130	08/03/2011 0601
Acenaphthylene	14	3800	2100		1	56	30-130	08/03/2011 0601
Anthracene	ND	3800	1700		1	44	30-130	08/03/2011 0601
Benzo(a)anthracene	53	3800	1800		1	46	30-130	08/03/2011 0601
Benzo(a)pyrene	36	3800	2200		1	56	30-130	08/03/2011 0601
Benzo(b)fluoranthene	34	3800	1900		1	48	30-130	08/03/2011 0601
Benzo(g,h,i)perylene	ND	3800	1800		1	47	30-130	08/03/2011 0601
Benzo(k)fluoranthene	ND	3800	1900		1	50	30-130	08/03/2011 0601
Chrysene	32	3800	1800		1	48	30-130	08/03/2011 0601
Dibenzo(a,h)anthracene	ND	3800	1800		1	47	30-130	08/03/2011 0601
Fluoranthene	40	3800	1800		1	48	30-130	08/03/2011 0601
Fluorene	23	3800	1700		1	44	30-130	08/03/2011 0601
Indeno(1,2,3-c,d)pyrene	ND	3800	1800		1	47	30-130	08/03/2011 0601
Naphthalene	480	3800	1600		1	30	30-130	08/03/2011 0601
Phenanthrene	42	3800	1700		1	44	30-130	08/03/2011 0601
Pyrene	61	3800	1900		1	49	30-130	08/03/2011 0601
Surrogate	Q % Re	Ac ec	cceptance Limit					
2-Fluorobiphenyl	38		33-102		·		·	
Nitrobenzene-d5	36		22-109					
Terphenyl-d14	43		41-120					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: MG20083-004MD

Batch: 64265 Analytical Method: 8270D Matrix: Solid Prep Method: 3550C

Prep Date: 07/22/2011 1845

	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPI	
Acenaphthene	77	3700	1500		1	39	3.7	30-130	40	08/03/2011 0621
Acenaphthylene	14	3700	2000		1	55	4.0	30-130	40	08/03/2011 0621
Anthracene	ND	3700	1700		1	45	0.36	30-130	40	08/03/2011 0621
Benzo(a)anthracene	53	3700	1900		1	49	4.9	30-130	40	08/03/2011 0621
Benzo(a)pyrene	36	3700	2200		1	58	1.5	30-130	40	08/03/2011 0621
Benzo(b)fluoranthene	34	3700	2000		1	52	6.4	30-130	40	08/03/2011 0621
Benzo(g,h,i)perylene	ND	3700	1800		1	49	2.5	30-130	40	08/03/2011 0621
Benzo(k)fluoranthene	ND	3700	1700		1	47	8.4	30-130	40	08/03/2011 0621
Chrysene	32	3700	1800		1	47	2.3	30-130	40	08/03/2011 0621
Dibenzo(a,h)anthracene	ND	3700	1800		1	49	2.0	30-130	40	08/03/2011 0621
Fluoranthene	40	3700	1900		1	49	1.6	30-130	40	08/03/2011 0621
Fluorene	23	3700	1600		1	43	2.7	30-130	40	08/03/2011 0621
Indeno(1,2,3-c,d)pyrene	ND	3700	1800		1	48	0.13	30-130	40	08/03/2011 0621
Naphthalene	480	3700	1400	Ν	1	24	15	30-130	40	08/03/2011 0621
Phenanthrene	42	3700	1800		1	48	5.9	30-130	40	08/03/2011 0621
Pyrene	61	3700	2000		1	52	3.1	30-130	40	08/03/2011 0621
Surrogate	Q % Rec	Aco	ceptance Limit							
2-Fluorobiphenyl	37		33-102							
Nitrobenzene-d5	34		22-109							
Terphenyl-d14	43		41-120							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Name) Page Of	Number of Containers Bottle (See instructions on back) Preservative Lot No. MG 2-JWS3	See Table 1 that list parameters		Possible Hazard Identification Ohon-Hazard Disamabia CSkin Initiant DiPoison Dullanown	Date Time	Date Time	Date Time
Sampler (Printed Name) Waybill No.	80928-8280 80928-8280 80000000000000000000000000000000	777	////	C Requirements (Specify)	9 1. Received by	2. Received by	3. Received by
C. ソンsit いいらい C. ソンsit いいらい、 Telephone No. / Fax No. / Email イバス・カスケッタもくび	HNC3 7. Na.OH WCL Na Thio. Matrix GW DW WW S B	000		Sample Disposal	S.M. 11-C20	Date Time	Date Time
	Iumbe et al.	7/19/11 1430 7/19/11 1430 7/19/11 1450	1 1020	I required for expecited TAT)	1		
Client MTR Address Address Address Address	Project Name Long Ages Sco.Menta Project Number Project Number Sample ID / Description (Curlainers for each sample may be combined on one line)	N36 N36.5 P36	L30 H24 L24	Turn Around Time Baquired (Prior lato approval required for expedited TAT) Sample Disposal Standard Disposal Disposal	Relinquished to Sampter C	2. Relinquished by	3. Relinquished by

Shealy Environmental Services, Inc. Page 1 of 1 Document Number: F-AD-016 Replaces Date: 02/23/11 Revision Number: 8 Effective Date: 05/06/11 Sample Receipt Checklist (SRC) Lot #: MGZen 83 Cooler Inspected by/date:/// SESI Client UPS FedEx ■ Airborne Exp Other Were custody seals present on the cooler? Yes If custody seals were present, were they intact and unbroken? Cooler ID/temperature upon receipt/ °C °C °C Method: Temperature Blank Against Bottles Method of coolant: Wet Ice Blue Ice Dry Ice None If response is No (or Yes for 14, 15, 16), an explanation/resolution must be provided. 3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified? Yes No 🗌 NA PM notified by SRC, phone, note (circle one), other: coolers received via commercial courier, PMs are to be notified immediately. Yes No Is the commercial courier's packing slip attached to this form? Yes No Were proper custody procedures (relinquished/received) followed? Yes No 5a Were samples relinquished by client to commercial courier? No 6. Were sample IDs listed? Yes, Yes No 7. Was collection date & time listed? Yes No 8. Were tests to be performed listed on the COC? Yes/ No 9. Did all samples arrive in the proper containers for each test? Yes No 10. Did all container label information (ID, date, time) agree with COC? Yes. No 11. Did all containers arrive in good condition (unbroken, lids on, etc.)? Yes, No 12. Was adequate sample volume available? 13. Were all samples received within 1/2 the holding time or 48 hours, whichever Yes No comes first? 14. Were any samples containers missing? Yes Yes 15. Were there any excess samples not listed on COC? No 16. Were bubbles present >"pea-size" (1/4" or 6mm in diameter) in any VOA Yes NA 🗔 No vials? Yes Were all metals/O&G/HEM/nutrient samples received at a pH of <2? No Yes 18. Were all cyanide and/or sulfide samples received at a pH >12? 19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb NA Yes No (<0.2mg/L)samples free of residual chlorine? Yes No 20. Were collection temperatures documented on the COC for NC samples? Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with (H2SO4,HNO3,HCl,NaOH) with the SR # (number) Sample(s) were received with bubbles >6 mm in diameter. Sample(s) were received with TRC > 0.2 mg/L for NH3/ TKN/cvanide/BNA/pest/PCB/herb. Corrective Action taken, if necessary: Yes No Was client notified: Yes No Did client respond: SESI employee: Date of response: Comments:

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree River

Lot Number: MG21009

Date Completed: 08/04/2011

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

MG21009

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: MG21009

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

Shealy is not NELAC certified for Phosphorus by 365.1 but is certified in SC and NC.

Shealy is not NELAC certified for VPH, but is certified for VPH in NC.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: MG21009

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	M-20	Solid	07/21/2011 0820	07/21/2011
002	K-20	Solid	07/21/2011 0810	07/21/2011
003	I-20	Solid	07/21/2011 0750	07/21/2011

(3 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: MG21009

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	M-20	Solid	Benzo(b)fluoranthene	8270D	36	J	ug/kg	6
001	M-20	Solid	Naphthalene	8270D	24	J	ug/kg	6
002	K-20	Solid	Acenaphthene	8270D	85	J	ug/kg	8
002	K-20	Solid	Acenaphthylene	8270D	170	J	ug/kg	8
002	K-20	Solid	Anthracene	8270D	220	J	ug/kg	8
002	K-20	Solid	Benzo(a)anthracene	8270D	830		ug/kg	8
002	K-20	Solid	Benzo(a)pyrene	8270D	920		ug/kg	8
002	K-20	Solid	Benzo(b)fluoranthene	8270D	740		ug/kg	8
002	K-20	Solid	Benzo(g,h,i)perylene	8270D	360	J	ug/kg	8
002	K-20	Solid	Benzo(k)fluoranthene	8270D	370	J	ug/kg	8
002	K-20	Solid	Chrysene	8270D	770		ug/kg	8
002	K-20	Solid	Dibenzo(a,h)anthracene	8270D	85	J	ug/kg	8
002	K-20	Solid	Fluoranthene	8270D	1200		ug/kg	8
002	K-20	Solid	Fluorene	8270D	87	J	ug/kg	8
002	K-20	Solid	Indeno(1,2,3-c,d)pyrene	8270D	290	J	ug/kg	8
002	K-20	Solid	Naphthalene	8270D	37	J	ug/kg	8
002	K-20	Solid	Phenanthrene	8270D	490		ug/kg	8
002	K-20	Solid	Pyrene	8270D	1700		ug/kg	8
003	I-20	Solid	Anthracene	8270D	83	J	ug/kg	10
003	I-20	Solid	Benzo(a)anthracene	8270D	390		ug/kg	10
003	I-20	Solid	Benzo(a)pyrene	8270D	360	J	ug/kg	10
003	I-20	Solid	Benzo(b)fluoranthene	8270D	630		ug/kg	10
003	I-20	Solid	Benzo(g,h,i)perylene	8270D	270	J	ug/kg	10
003	I-20	Solid	Chrysene	8270D	420		ug/kg	10
003	I-20	Solid	Fluoranthene	8270D	770		ug/kg	10
003	I-20	Solid	Fluorene	8270D	28	J	ug/kg	10
003	I-20	Solid	Indeno(1,2,3-c,d)pyrene	8270D	220	J	ug/kg	10
003	I-20	Solid	Naphthalene	8270D	42	J	ug/kg	10
003	I-20	Solid	Phenanthrene	8270D	490		ug/kg	10
003	I-20	Solid	Pyrene	8270D	770		ug/kg	10

(30 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: M-20

Date Sampled:07/21/2011 0820

Laboratory ID: MG21009-001 Matrix: Solid

% Solids: 80.7 07/21/2011 2053

Date Received: 07/21/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 2 5035 8260B 1 07/26/2011 1607 SAS 64470 6.23

Parameter		(Num	CAS iber	Analytical Method	Result	Q	PQL	MDL	Units	Rur
Benzene		71-4	3-2	8260B	ND		5.0	1.1	ug/kg	2
Ethylbenzene		100-4	1-4	8260B	ND		5.0	1.7	ug/kg	2
Toluene		108-8	8-3	8260B	ND		5.0	1.7	ug/kg	2
Xylenes (total)		1330-2	20-7	8260B	ND		5.0	2.9	ug/kg	2
Surrogate	Q	Run 2 A % Recovery	Acceptan Limits							
1,2-Dichloroethane-d4		92	53-142							
Bromofluorobenzene		95	47-138							
Toluene-d8		109	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG21009-001

Description: M-20

Matrix: Solid

Batch

Date Sampled:07/21/2011 0820

Prep Method

% Solids: 80.7 07/21/2011 2053

Date Received: 07/21/2011

Run

Parameter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene			83-32-9	8270D	ND		390	12	ug/kg	1
Acenaphthylene		:	208-96-8	8270D	ND		390	15	ug/kg	1
Anthracene			120-12-7	8270D	ND		390	17	ug/kg	1
Benzo(a)anthracene			56-55-3	8270D	ND		390	13	ug/kg	1
Benzo(a)pyrene			50-32-8	8270D	ND		390	28	ug/kg	1
Benzo(b)fluoranthene		:	205-99-2	8270D	36	J	390	26	ug/kg	1
Benzo(g,h,i)perylene			191-24-2	8270D	ND		390	26	ug/kg	1
Benzo(k)fluoranthene		2	207-08-9	8270D	ND		390	32	ug/kg	1
Chrysene		2	218-01-9	8270D	ND		390	12	ug/kg	1
Dibenzo(a,h)anthracene			53-70-3	8270D	ND		390	26	ug/kg	1
Fluoranthene		2	206-44-0	8270D	ND		390	12	ug/kg	1
Fluorene			86-73-7	8270D	ND		390	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene			193-39-5	8270D	ND		390	35	ug/kg	1
Naphthalene			91-20-3	8270D	24	J	390	16	ug/kg	1
Phenanthrene			85-01-8	8270D	ND		390	16	ug/kg	1
Pyrene		•	129-00-0	8270D	ND		390	17	ug/kg	1
Surrogate	Q	Run 1 % Recov		ance ts						
2-Fluorobiphenyl		61	33-1	02						
Nitrobenzene-d5		60	22-1	09						
Terphenyl-d14		68	41-1	20						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Description: K-20

Date Sampled:07/21/2011 0810

Prep Method

Laboratory ID: MG21009-002

Matrix: Solid

% Solids: 79.7 07/21/2011 2053

Sample Wt.(g)

Date Received: 07/21/2011

Run

Batch

1 5035	8260B	1 07/2	5/2011 1759	BM	6439	6.07	7	
Parameter		C Numb	AS Analy per Me	ytical thod Result	Q PQL	MDL	Units	Run
Benzene		71-43		260B NE	5.2	1.1	ug/kg	1
Ethylbenzene		100-41	1-4 8	260B NE	5.2	1.8	ug/kg	1
Toluene		108-88	3-3 8	260B NE	5.2	1.8	ug/kg	1
Xylenes (total)		1330-20)-7 8	260B NE	5.2	3.0	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	cceptance Limits					
1,2-Dichloroethane-d4		90	53-142					
Bromofluorobenzene		102	47-138					
Toluene-d8		104	68-124					

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Description: K-20

Date Sampled:07/21/2011 0810

Matrix: Solid

Batch

Laboratory ID: MG21009-002

% Solids: 79.7 07/21/2011 2053

Date Received: 07/21/2011 Prep Method

Run

1 3550C	8270D	1 08/03/201	1 0641 JGH	07/22/20	11 1845	64265		
Parameter		CAS	Analytical	Result	Q F	PQL MDL	Units	Run
		Number	Method					
Acenaphthene		83-32-9	8270D	85		400 12	ug/kg	1
Acenaphthylene		208-96-8	8270D	170		400 16	ug/kg	1
Anthracene		120-12-7	8270D	220	J.	400 18	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	830		400 13	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	920		400 29	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	740		400 27	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	360	J .	400 27	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	370	J .	400 33	ug/kg	1
Chrysene		218-01-9	8270D	770		400 13	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	85	J.	400 27	ug/kg	1
Fluoranthene		206-44-0	8270D	1200		400 13	ug/kg	1
Fluorene		86-73-7	8270D	87	J.	400 15	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	290	J .	400 36	ug/kg	1
Naphthalene		91-20-3	8270D	37	J.	400 17	ug/kg	1
Phenanthrene		85-01-8	8270D	490		400 16	ug/kg	1
Pyrene		129-00-0	8270D	1700		400 17	ug/kg	1
Surrogate	Q	Run 1 Accep % Recovery Lim						
2-Fluorobiphenyl		41 33-	102					
Nitrobenzene-d5		35 22-	109					
Terphenyl-d14		45 41-	120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: I-20 Date Sampled:07/21/2011 0750

Laboratory ID: MG21009-003

Matrix: Solid

Date Received: 07/21/2011

% Solids: 84.5 07/21/2011 2053

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	07/25/2011 1821	BM		64394	6.40

1 3033	02000	07/23/2011	1021 DIVI		04374	0.40	,	
Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene		71-43-2	8260B	ND	4.6	1.0	ug/kg	1
Ethylbenzene		100-41-4	8260B	ND	4.6	1.6	ug/kg	1
Toluene		108-88-3	8260B	ND	4.6	1.6	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND	4.6	2.7	ug/kg	1
Surrogate		un 1 Accepta covery Limi						
1,2-Dichloroethane-d4		99 53-1	42					
Bromofluorobenzene		99 47-1	38					
Toluene-d8		111 68-1	24					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG21009-003

Description: I-20

Run

Matrix: Solid

Batch

Date Sampled:07/21/2011 0750

Prep Method

% Solids: 84.5 07/21/2011 2053

Date Received: 07/21/2011

1 3550C	8270D	1 07/2	6/2011 004	8 WD	07/22/201	11 1845	64265			
				nalytical	5 "		501			
Parameter		Num	ber	Method	Result	Q	PQL	MDL	Units	Rur
Acenaphthene		83-3	2-9	8270D	ND		380	12	ug/kg	1
Acenaphthylene		208-9	6-8	8270D	ND		380	15	ug/kg	1
Anthracene		120-1	2-7	8270D	83	J	380	17	ug/kg	1
Benzo(a)anthracene		56-5	5-3	8270D	390		380	13	ug/kg	1
Benzo(a)pyrene		50-3	2-8	8270D	360	J	380	28	ug/kg	1
Benzo(b)fluoranthene		205-9	9-2	8270D	630		380	26	ug/kg	1
Benzo(g,h,i)perylene		191-2	4-2	8270D	270	J	380	26	ug/kg	1
Benzo(k)fluoranthene		207-0	8-9	8270D	ND		380	32	ug/kg	1
Chrysene		218-0	1-9	8270D	420		380	12	ug/kg	1
Dibenzo(a,h)anthracene		53-7	0-3	8270D	ND		380	25	ug/kg	1
Fluoranthene		206-4	4-0	8270D	770		380	12	ug/kg	1
Fluorene		86-7	3-7	8270D	28	J	380	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-3	9-5	8270D	220	J	380	35	ug/kg	1
Naphthalene		91-2	0-3	8270D	42	J	380	16	ug/kg	1
Phenanthrene		85-0	1-8	8270D	490		380	16	ug/kg	1
Pyrene		129-0	0-0	8270D	770		380	17	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	cceptance Limits	!						
2-Fluorobiphenyl		66	33-102							
Nitrobenzene-d5		64	22-109							
Terphenyl-d14		66	41-120							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: MQ64394-001

Batch: 64394 Analytical Method: 8260B Matrix: Solid Prep Method: 5035

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Benzene	ND	1	5.0	1.1	ug/kg	07/25/2011 1059
Ethylbenzene	ND	1	5.0	1.7	ug/kg	07/25/2011 1059
Toluene	ND	1	5.0	1.7	ug/kg	07/25/2011 1059
Xylenes (total)	ND	1	5.0	2.9	ug/kg	07/25/2011 1059
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	108	47-138				
1,2-Dichloroethane-d4	93	53-142				
Toluene-d8	113	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: MQ64394-002

Batch: 64394

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	48	1	96	69-123	07/25/2011 0932
Ethylbenzene	50	54	1	107	59-128	07/25/2011 0932
Toluene	50	52	1	103	61-129	07/25/2011 0932
Xylenes (total)	100	110	1	105	58-128	07/25/2011 0932
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	104	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	111	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: MQ64394-003

Batch: 64394

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	49	1	98	1.4	69-123	20	07/25/2011 0953
Ethylbenzene	50	54	1	108	0.20	59-128	20	07/25/2011 0953
Toluene	50	52	1	105	1.7	61-129	20	07/25/2011 0953
Xylenes (total)	100	110	1	106	0.79	58-128	20	07/25/2011 0953
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	103	47-138						
1,2-Dichloroethane-d4	91	53-142						
Toluene-d8	110	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: MQ64470-001 Batch: 64470

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	07/26/2011 1134
Ethylbenzene	ND		1	5.0	1.7	ug/kg	07/26/2011 1134
Toluene	ND		1	5.0	1.7	ug/kg	07/26/2011 1134
Xylenes (total)	ND		1	5.0	2.9	ug/kg	07/26/2011 1134
Surrogate	Q % Rec	Ac	cceptance Limit				
Bromofluorobenzene	81		47-138				
1,2-Dichloroethane-d4	86		53-142				
Toluene-d8	111		68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: MQ64470-002

Batch: 64470

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	54	1	108	69-123	07/26/2011 1006
Ethylbenzene	50	56	1	111	59-128	07/26/2011 1006
Toluene	50	40	1	81	61-129	07/26/2011 1006
Xylenes (total)	100	110	1	110	58-128	07/26/2011 1006
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	100	47-138				
1,2-Dichloroethane-d4	80	53-142				
Toluene-d8	80	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: MQ64470-003

Batch: 64470

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	49		1	98	10	69-123	20	07/26/2011 1028
Ethylbenzene	50	54		1	108	3.1	59-128	20	07/26/2011 1028
Toluene	50	53	+	1	107	28	61-129	20	07/26/2011 1028
Xylenes (total)	100	110		1	106	3.2	58-128	20	07/26/2011 1028
Surrogate	Q % Rec		eptance Limit						
Bromofluorobenzene	104	4	7-138						
1,2-Dichloroethane-d4	95	5	3-142						
Toluene-d8	110	6	8-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: MQ64265-001 Batch: 64265

Analytical Method: 8270D

Matrix: Solid Prep Method: 3550C

Prep Date: 07/22/2011 1845

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date	
Acenaphthene	ND	1	330	10	ug/kg	07/25/2011 1940	
Acenaphthylene	ND	1	330	13	ug/kg	07/25/2011 1940	
Anthracene	ND	1	330	15	ug/kg	07/25/2011 1940	
Benzo(a)anthracene	ND	1	330	11	ug/kg	07/25/2011 1940	
Benzo(a)pyrene	ND	1	330	24	ug/kg	07/25/2011 1940	
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	07/25/2011 1940	
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	07/25/2011 1940	
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	07/25/2011 1940	
Chrysene	ND	1	330	10	ug/kg	07/25/2011 1940	
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	07/25/2011 1940	
Fluoranthene	ND	1	330	10	ug/kg	07/25/2011 1940	
Fluorene	ND	1	330	13	ug/kg	07/25/2011 1940	
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	07/25/2011 1940	
Naphthalene	ND	1	330	14	ug/kg	07/25/2011 1940	
Phenanthrene	ND	1	330	13	ug/kg	07/25/2011 1940	
Pyrene	ND	1	330	14	ug/kg	07/25/2011 1940	
Surrogate	Q % Rec	Acceptance Limit					
2-Fluorobiphenyl	78	33-102					
Nitrobenzene-d5	75	22-109					
Terphenyl-d14	81	41-120					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ64265-002 Batch: 64265 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 07/22/2011 1845

	Spike Amount	Result			% Rec	
Parameter	(ug/kg)	(ug/kg) O	! Dil	% Rec	Limit	Analysis Date
Acenaphthene	3300	1900	1	58	46-114	07/27/2011 1019
Acenaphthylene	3300	2500	1	76	44-122	07/27/2011 1019
Anthracene	3300	2000	1	61	50-119	07/27/2011 1019
Benzo(a)anthracene	3300	2100	1	63	47-121	07/27/2011 1019
Benzo(a)pyrene	3300	2300	1	70	55-134	07/27/2011 1019
Benzo(b)fluoranthene	3300	2100	1	62	28-139	07/27/2011 1019
Benzo(g,h,i)perylene	3300	2100	1	62	36-125	07/27/2011 1019
Benzo(k)fluoranthene	3300	2000	1	61	47-130	07/27/2011 1019
Chrysene	3300	2100	1	64	45-126	07/27/2011 1019
Dibenzo(a,h)anthracene	3300	2100	1	62	45-122	07/27/2011 1019
Fluoranthene	3300	2100	1	62	50-123	07/27/2011 1019
Fluorene	3300	2000	1	60	48-117	07/27/2011 1019
Indeno(1,2,3-c,d)pyrene	3300	2000	1	61	45-123	07/27/2011 1019
Naphthalene	3300	1800	1	54	36-110	07/27/2011 1019
Phenanthrene	3300	2000	1	60	49-117	07/27/2011 1019
Pyrene	3300	2100	1	63	47-119	07/27/2011 1019
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	52	33-102				·
Nitrobenzene-d5	68	22-109				
Terphenyl-d14	53	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111	USKINSK;	Final Waybill No.		4, HNC3 7, NaOH Boffle (See Instructions on back) 5, HC3 Preservative	6. Na Thro.	Matrix X =	GOODWINN S OF A COOLET ID	× × ×	×	\$ X X	+ V	7. 1. 2.	> 5	Sample Disposal QC Requirements (Specify) Possible Hazard Identification	D Return to Client D Disposed by Lab DNA During D Disposed by Lab	Date Time 1. Received by Date Time	F	Dete Time 3. Received by	Date Time 4. Laboratory Raceived by Time
HEALY Chain of Custody Record	Client MT R	an Orco Orch	State Zip Code	Control of the ISBS 1. University Name of Name	ree River	roject Number	Sample ID / Description (Containers for each sample may be Date ombined on one line)	M-20 5121-11 08:20		I-20 7-4-11 07:50				Turn Around Time Required (Prior lab approval required for expedited TAT)	☐ Standard ☐ Rush (Please Specify)	1. Reliaquished by / Sampler ()	2, Relinquished by	3. Relinquished by	4. Relinquished by

Shealy Environmental Services, Inc. Page 1 of 1 Document Number: F-AD-016 Replaces Date: 02/23/11 Revision Number: 8 Effective Date: 05/06/11 Sample Receipt Checklist (SRC). Cooler Inspected by/date: 6 7/14/11 Lot #19621009 Client: Means of receipt: SESI - Client UPS FedEx Airborne Exp Other Yes No I Were custody seals present on the cooler? No If custody seals were present, were they intact and unbroken? Cooler ID/temperature upon receipt °C / °C °C °C Method: Temperature Blank Against Bottles Method of coolant: Wet Ice Blue Ice Dry Ice None If response is No (or Yes for 14, 15, 16), an explanation/resolution must be provided. 3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified? Yes No NA T PM notified by SRC, phone, note (circle one), other: coolers received via commercial courier, PMs are to be notified immediately. Yes No NA 4. Is the commercial courier's packing slip attached to this form? Yes -No Were proper custody procedures (relinquished/received) followed? Yes No 5a Were samples relinquished by client to commercial courier? Yes No Were sample IDs listed? Yes No Was collection date & time listed? Yes No 8. Were tests to be performed listed on the COC? Yes No 9. Did all samples arrive in the proper containers for each test? Yes No 10. Did all container label information (ID, date, time) agree with COC? Yes No Did all containers arrive in good condition (unbroken, lids on, etc.)? Yes No 12. Was adequate sample volume available? 13. Were all samples received within 1/2 the holding time or 48 hours, whichever Yes No [comes first? Yes Nof Were any samples containers missing? Yes No L Were there any excess samples not listed on COC? 16. Were bubbles present >"pea-size" (1/4" or 6mm in diameter) in any VOA NA P Yes No Yes No NA- Were all metals/O&G/HEM/nutrient samples received at a pH of <2? Yes No NA Were all cyanide and/or sulfide samples received at a pH >12? 19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb NA P Yes No [(<0.2mg/L)samples free of residual chlorine? Yes No NA P 20. Were collection temperatures documented on the COC for NC samples? Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with (H2SO4, HNO3, HCl, NaOH) with the SR # (number) Sample(s) were received with bubbles >6 mm in diameter. Sample(s) were received with TRC >0.2 mg/L for NH3/ TKN/cyanide/BNA/pest/PCB/herb. Corrective Action taken, if necessary: Was client notified: Yes No Did client respond: Yes No SESI employee: Date of response: Comments:

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushinski

Project Name: Congaree River Sediment

Lot Number: MG28025

Date Completed: 08/08/2011

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

MG28025

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: MG28025

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

Shealy is not NELAC certified for Phosphorus by 365.1 but is certified in SC and NC.

Shealy is not NELAC certified for VPH, but is certified for VPH in NC.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: MG28025

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	J8 (20-23)	Solid	07/27/2011 1245	07/28/2011
002	J11 (17-21)	Solid	07/27/2011 1545	07/28/2011
003	J14 (17.5-22)	Solid	07/27/2011 1700	07/28/2011
004	K4 (12-14)	Solid	07/28/2011 1020	07/28/2011
005	l17 (22-26)	Solid	07/28/2011 1230	07/28/2011

(5 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: MG28025

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
004	K4 (12-14)	Solid	Acenaphthylene	8270D	33	J	ug/kg	12
004	K4 (12-14)	Solid	Anthracene	8270D	26	J	ug/kg	12
004	K4 (12-14)	Solid	Benzo(a)anthracene	8270D	62	J	ug/kg	12
004	K4 (12-14)	Solid	Benzo(a)pyrene	8270D	44	J	ug/kg	12
004	K4 (12-14)	Solid	Benzo(b)fluoranthene	8270D	39	J	ug/kg	12
004	K4 (12-14)	Solid	Chrysene	8270D	45	J	ug/kg	12
004	K4 (12-14)	Solid	Fluoranthene	8270D	110	J	ug/kg	12
004	K4 (12-14)	Solid	Phenanthrene	8270D	78	J	ug/kg	12
004	K4 (12-14)	Solid	Pyrene	8270D	150	J	ug/kg	12

(9 detections)

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-001

Description: J8 (20-23)

Matrix: Solid

Date Sampled:07/27/2011 1245

% Solids: 84.0 07/28/2011 2222

Date Received: 07/28/2011

Run 1	Prep Method 5035	Analytical Method 8260B		nalysis Date /01/2011 195	,	Prep Da	te	Batch 64800	Sample V 5.83	.07	
Param	neter		Nur		nalytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne		71-	43-2	8260B	ND		5.1	1.1	ug/kg	1
Ethylb	enzene		100-	41-4	8260B	ND		5.1	1.7	ug/kg	1
Toluer	ne		108-	88-3	8260B	ND		5.1	1.7	ug/kg	1
Xylene	es (total)		1330-	20-7	8260B	ND		5.1	3.0	ug/kg	1
Surro	gate	Q	Run 1 % Recovery	Acceptance Limits							
1,2-Di	chloroethane-d4		87	53-142							
Bromo	fluorobenzene		93	47-138							
Toluer	ne-d8		95	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG28025-001

Description: J8 (20-23)

Matrix: Solid

Batch

Date Sampled:07/27/2011 1245

Prep Method

% Solids: 84.0 07/28/2011 2222

Date Received: 07/28/2011

Run

Acenaphthene 83-32-9 8270D ND 370 11 ug/kg Acenaphthylene 208-96-8 8270D ND 370 15 ug/kg Anthracene 120-12-7 8270D ND 370 16 ug/kg Benzo(a)anthracene 56-55-3 8270D ND 370 12 ug/kg Benzo(a)pyrene 50-32-8 8270D ND 370 27 ug/kg Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 25 ug/kg Chrysene 218-01-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 30 ug/kg Fluoranthene 53-70-3 8270D ND 370 12 ug/kg Fluoranthene 53-70-3 8270D ND 370 25 ug/kg Fluorene 86-73-7 8270D ND 370 25 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 12 ug/kg Naphthalene 91-20-3 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 16 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Acceptance Limits Surrogate Q Recovery Acceptance Limits Surrogate 37 33-102 Nitrobenzene-d5 34 22-109	1 3550C	8270D	1 08/03/2011	1 0420 JGH	08/01/201	11 2010 64808			
Acenaphthylene 208-96-8 8270D ND 370 15 ug/kg Anthracene 120-12-7 8270D ND 370 16 ug/kg Benzo(a)anthracene 56-55-3 8270D ND 370 12 ug/kg Benzo(a)pyrene 50-32-8 8270D ND 370 27 ug/kg Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 25 ug/kg Fluorene 86-73-7 8270D ND 370 12 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 14 ug/kg Naphthalene 91-20-3 8270D ND 370 30 ug/kg Phenanthrene 85-01-8 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 16 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Pyrene 37 33-102 Surrogate 2 Run 1 Acceptance Surrogate 37 33-102 Nitrobenzene-d5 34 22-109	Parameter			-	Result	Q PQL	MDL	Units	Run
Anthracene 120-12-7 8270D ND 370 16 ug/kg Benzo(a)anthracene 56-55-3 8270D ND 370 12 ug/kg Benzo(b)fluoranthene 50-32-8 8270D ND 370 27 ug/kg Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 12 ug/kg Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 12 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 14 ug/kg Naphthalene 91-20-3 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 16 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg	Acenaphthene		83-32-9	8270D	ND	370	11	ug/kg	1
Benzo(a)anthracene 56-55-3 8270D ND 370 12 ug/kg Benzo(a)pyrene 50-32-8 8270D ND 370 27 ug/kg Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 30 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 12 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg	Acenaphthylene		208-96-8	8270D	ND	370	15	ug/kg	1
Benzo(a)pyrene 50-32-8 8270D ND 370 27 ug/kg Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Pyrene 129-00-0 8270D ND 370 15 ug/kg	Anthracene		120-12-7	8270D	ND	370	16	ug/kg	1
Benzo(b)fluoranthene 205-99-2 8270D ND 370 25 ug/kg Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Surrogate Q Run 1 Acceptance Acceptance Acceptance Acceptance	Benzo(a)anthracene		56-55-3	8270D	ND	370	12	ug/kg	1
Benzo(g,h,i)perylene 191-24-2 8270D ND 370 25 ug/kg Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits Limits Limits Limits	Benzo(a)pyrene		50-32-8	8270D	ND	370	27	ug/kg	1
Benzo(k)fluoranthene 207-08-9 8270D ND 370 30 ug/kg Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits V	Benzo(b)fluoranthene		205-99-2	8270D	ND	370	25	ug/kg	1
Chrysene 218-01-9 8270D ND 370 12 ug/kg Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits <td>Benzo(g,h,i)perylene</td> <td></td> <td>191-24-2</td> <td>8270D</td> <td>ND</td> <td>370</td> <td>25</td> <td>ug/kg</td> <td>1</td>	Benzo(g,h,i)perylene		191-24-2	8270D	ND	370	25	ug/kg	1
Dibenzo(a,h)anthracene 53-70-3 8270D ND 370 25 ug/kg Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits <td< td=""><td>Benzo(k)fluoranthene</td><td></td><td>207-08-9</td><td>8270D</td><td>ND</td><td>370</td><td>30</td><td>ug/kg</td><td>1</td></td<>	Benzo(k)fluoranthene		207-08-9	8270D	ND	370	30	ug/kg	1
Fluoranthene 206-44-0 8270D ND 370 12 ug/kg Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 15 ug/kg Surrogate Q Run 1 Acceptance Surrogate Q Recovery Limits 2-Fluorobiphenyl Nitrobenzene-d5 34 22-109	Chrysene		218-01-9	8270D	ND	370	12	ug/kg	1
Fluorene 86-73-7 8270D ND 370 14 ug/kg Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits V	Dibenzo(a,h)anthracene		53-70-3	8270D	ND	370	25	ug/kg	1
Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 370 33 ug/kg Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits <	Fluoranthene		206-44-0	8270D	ND	370	12	ug/kg	1
Naphthalene 91-20-3 8270D ND 370 16 ug/kg Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits 2-Fluorobiphenyl 37 33-102 Nitrobenzene-d5 34 22-109	Fluorene		86-73-7	8270D	ND	370	14	ug/kg	1
Phenanthrene 85-01-8 8270D ND 370 15 ug/kg Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits 2-Fluorobiphenyl 37 33-102 Nitrobenzene-d5 34 22-109	Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND	370	33	ug/kg	1
Pyrene 129-00-0 8270D ND 370 16 ug/kg Surrogate Q Recovery Limits Limits 2-Fluorobiphenyl 37 33-102 Nitrobenzene-d5 34 22-109	Naphthalene		91-20-3	8270D	ND	370	16	ug/kg	1
Surrogate Q Run 1 Recovery Limits 2-Fluorobiphenyl Nitrobenzene-d5 Run 1 Recovery Limits 37 33-102 34 22-109	Phenanthrene		85-01-8	8270D	ND	370	15	ug/kg	1
Surrogate Q % Recovery Limits 2-Fluorobiphenyl 37 33-102 Nitrobenzene-d5 34 22-109	Pyrene		129-00-0	8270D	ND	370	16	ug/kg	1
Nitrobenzene-d5 34 22-109	Surrogate	Q							
	2-Fluorobiphenyl		37 33-1	02					
Terphenyl-d14 49 41-120	Nitrobenzene-d5		34 22-1	09					
17 11 120	Terphenyl-d14		49 41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: J11 (17-21) Date Sampled:07/27/2011 1545 Matrix: Solid

Laboratory ID: MG28025-002

% Solids: 64.8 07/28/2011 2222

Date Received: 07/28/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 2 5035 8260B 08/05/2011 0738 DLB 65109 6.09 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Benzene 71-43-2 8260B ND 6.3 1.4 ug/kg 2 Ethylbenzene 100-41-4 8260B ND 6.3 2.2 2 ug/kg Toluene 108-88-3 8260B ND 6.3 2.2 ug/kg 2 Xylenes (total) 1330-20-7 8260B ND 6.3 3.7 ug/kg 2 Run 2 Acceptance Q % Recovery Surrogate Limits 1,2-Dichloroethane-d4 85 53-142 Bromofluorobenzene 86 47-138 Toluene-d8 96 68-124

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-002

Description: J11 (17-21) Date Sampled:07/27/2011 1545 Matrix: Solid

% Solids: 64.8 07/28/2011 2222

Date Received: 07/28/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3550C 8270D 08/03/2011 0440 JGH 08/01/2011 2010 64808

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	510	16	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	510	20	ug/kg	1
Anthracene	120-12-7	8270D	ND	510	23	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	510	17	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	510	37	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	510	34	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	510	35	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	510	42	ug/kg	1
Chrysene	218-01-9	8270D	ND	510	16	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	510	34	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	510	16	ug/kg	1
Fluorene	86-73-7	8270D	ND	510	20	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	510	46	ug/kg	1
Naphthalene	91-20-3	8270D	ND	510	21	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	510	21	ug/kg	1
Pyrene	129-00-0	8270D	ND	510	22	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi	ance ts					
2-Fluorobiphenyl	39 33-1	02					
Nitrobenzene-d5	36 22-1	09					
Terphenyl-d14	47 41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: J14 (17.5-22)

Date Sampled:07/27/2011 1700 % Solids: 69.4 07/28/2011 2222

Date Received: 07/28/2011

Laboratory ID: MG28025-003

Matrix: Solid

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260B	1	08/05/2011 0759	DLB		65109	6.35

Parameter		(Num	CAS iber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	3-2	8260B	ND		5.7	1.2	ug/kg	2
Ethylbenzene		100-4	1-4	8260B	ND		5.7	1.9	ug/kg	2
Toluene		108-8	8-3	8260B	ND		5.7	1.9	ug/kg	2
Xylenes (total)		1330-2	20-7	8260B	ND		5.7	3.3	ug/kg	2
Surrogate	Q	Run 2 A % Recovery	Acceptar Limits							
1,2-Dichloroethane-d4		98	53-142	2				•		•
Bromofluorobenzene		80	47-138	3						
Toluene-d8		95	68-124	1						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $\label{eq:J} J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Dilution

Laboratory ID: MG28025-003

Description: J14 (17.5-22)

Prep Method

Matrix: Solid

Batch

Date Sampled:07/27/2011 1700 % Solids: 69.4 07/28/2011 2222

Analysis Date

Date Received: 07/28/2011

Run

1 3550C 8270D 08/03/2011 0500 JGH 08/01/2011 2010 64808 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Acenaphthene 83-32-9 8270D ND 460 14 ug/kg 1 18 Acenaphthylene 8270D ND 460 208-96-8 ug/kg 1 Anthracene 120-12-7 8270D ND 460 20 ug/kg 1 Benzo(a)anthracene 56-55-3 8270D ND 460 15 1 ug/kg 33 Benzo(a)pyrene 50-32-8 8270D ND 460 ug/kg 1 Benzo(b)fluoranthene 205-99-2 ND 31 8270D 460 ug/kg 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 460 31 ug/kg 1 Benzo(k)fluoranthene 207-08-9 8270D ND 38 460 ug/kg 1 Chrysene 218-01-9 8270D ND 460 14 ug/kg 1 53-70-3 ND 30 Dibenzo(a,h)anthracene 8270D 460 ug/kg 1 Fluoranthene 206-44-0 8270D ND 460 14 ug/kg 1 Fluorene 86-73-7 8270D ND 460 18 ug/kg 1 193-39-5 8270D ND 41 Indeno(1,2,3-c,d)pyrene 460 ug/kg 1 19 Naphthalene 91-20-3 8270D ND 460 ug/kg 1 85-01-8 8270D ND 19 Phenanthrene 460 ug/kg 1 8270D Pyrene 129-00-0 ND 460 20 ug/kg 1 Run 1 Acceptance Surrogate % Recovery Q Limits 2-Fluorobiphenyl 37 33-102 Nitrobenzene-d5 22-109 33 Terphenyl-d14 45 41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: K4 (12-14)

Date Sampled:07/28/2011 1020

Laboratory ID: MG28025-004

Matrix: Solid

% Solids: 86.3 07/28/2011 2222

Date Received: 07/28/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 08/05/2011 0820 DLB 65109 4.63

1 3033	02008	1 00/03/201	1 0020 DEB		03107	4.00	,	
Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene		71-43-2	8260B	ND	6.3	1.4	ug/kg	1
Ethylbenzene		100-41-4	8260B	ND	6.3	2.1	ug/kg	1
Toluene		108-88-3	8260B	ND	6.3	2.1	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND	6.3	3.6	ug/kg	1
Surrogate		Run 1 Accept Recovery Limi						
1,2-Dichloroethane-d4		99 53-1	42					
Bromofluorobenzene		94 47-1	38					
Toluene-d8		98 68-1	24					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MG28025-004

Description: K4 (12-14)

Matrix: Solid

Batch

Date Sampled:07/28/2011 1020

Prep Method

% Solids: 86.3 07/28/2011 2222

Date Received: 07/28/2011

Run

1 3550C	8270D	1 08/0	03/2011 0	521 JGH	08/01/20	11 2010	0 64808			
				Analytical	5		501			
Parameter		Num	nber	Method	Result	Q	PQL	MDL	Units	Rur
Acenaphthene		83-3	32-9	8270D	ND		380	12	ug/kg	1
Acenaphthylene		208-9	96-8	8270D	33	J	380	15	ug/kg	1
Anthracene		120-1	2-7	8270D	26	J	380	17	ug/kg	1
Benzo(a)anthracene		56-5	55-3	8270D	62	J	380	13	ug/kg	1
Benzo(a)pyrene		50-3	32-8	8270D	44	J	380	28	ug/kg	1
Benzo(b)fluoranthene		205-9	99-2	8270D	39	J	380	26	ug/kg	1
Benzo(g,h,i)perylene		191-2	24-2	8270D	ND		380	26	ug/kg	1
Benzo(k)fluoranthene		207-0)8-9	8270D	ND		380	31	ug/kg	1
Chrysene		218-0)1-9	8270D	45	J	380	12	ug/kg	1
Dibenzo(a,h)anthracene		53-7	70-3	8270D	ND		380	25	ug/kg	1
Fluoranthene		206-4	14-0	8270D	110	J	380	12	ug/kg	1
Fluorene		86-7	73-7	8270D	ND		380	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-3	39-5	8270D	ND		380	34	ug/kg	1
Naphthalene		91-2	20-3	8270D	ND		380	16	ug/kg	1
Phenanthrene		85-0)1-8	8270D	78	J	380	15	ug/kg	1
Pyrene		129-0	0-0	8270D	150	J	380	17	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits	ce						
2-Fluorobiphenyl		39	33-102							•
Nitrobenzene-d5		35	22-109							
Terphenyl-d14		48	41-120							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Description: I17 (22-26)

Date Sampled:07/28/2011 1230

Prep Method

Matrix: Solid

Laboratory ID: MG28025-005

% Solids: 73.4 07/28/2011 2222

Sample Wt.(g)

Date Received: 07/28/2011

Run

Batch

1	5035	8260B	1 0	8/05/2011	0841 DLB			65109	5.94	ļ	
Parameter			Nı	CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene			7	1-43-2	8260B	ND		5.7	1.3	ug/kg	1
Ethylbenzene			100	0-41-4	8260B	ND		5.7	2.0	ug/kg	1
Toluene			108	3-88-3	8260B	ND		5.7	2.0	ug/kg	1
Xylenes (total))		133	0-20-7	8260B	ND		5.7	3.3	ug/kg	1
Surrogate		Q	Run 1 % Recover	Accepta y Limit							
1,2-Dichloroetl	hane-d4		97	53-1	42						
Bromofluorobe	enzene		85	47-13	38						
Toluene-d8			98	68-12	24						

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-005

Description: I17 (22-26)
Date Sampled: 07/28/2011 1230

Matrix: Solid

% Solids: 73.4 07/28/2011 2222

Date Received: 07/28/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	08/03/2011 0541	JGH	08/01/2011 2010	64808

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	440	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	440	18	ug/kg	1
Anthracene	120-12-7	8270D	ND	440	20	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	440	15	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	440	32	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	440	30	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	440	30	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	440	37	ug/kg	1
Chrysene	218-01-9	8270D	ND	440	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	440	29	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	440	14	ug/kg	1
Fluorene	86-73-7	8270D	ND	440	17	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	440	40	ug/kg	1
Naphthalene	91-20-3	8270D	ND	440	19	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	440	18	ug/kg	1
Pyrene	129-00-0	8270D	ND	440	19	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Lim	ance its					
2-Fluorobiphenyl	40 33-	102					
Nitrobenzene-d5	36 22-7	109					
Terphenyl-d14	46 41-3	120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

QC Summary

Sample ID: MQ64800-001 Batch: 64800

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

		Dil	PQL	MDL	Units	Analysis Date
ND		1	5.0	1.1	ug/kg	08/01/2011 1104
ND		1	5.0	1.7	ug/kg	08/01/2011 1104
ND		1	5.0	1.7	ug/kg	08/01/2011 1104
ND		1	5.0	2.9	ug/kg	08/01/2011 1104
Q % Rec	Ac	cceptance Limit				
100		47-138				
103		53-142				
98		68-124				
	ND ND ND Q % Rec 100 103	ND ND Q % Rec 100 103	ND 1 ND 1 ND 1 Acceptance Limit 100 47-138 103 53-142	ND 1 5.0 ND 1 5.0 ND 1 5.0 ND 1 5.0 Acceptance Limit 100 47-138 103 53-142	ND 1 5.0 1.7 ND 1 5.0 1.7 ND 1 5.0 2.9 Acceptance Limit 100 47-138 103 53-142	ND 1 5.0 1.7 ug/kg ND 1 5.0 1.7 ug/kg ND 1 5.0 2.9 ug/kg ND 1 5.0 2.9 ug/kg Q % Rec Limit 100 47-138 103 53-142

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ64800-002

Batch: 64800

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) (Q Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	50	1	99	69-123	08/01/2011 0936
Ethylbenzene	50	50	1	100	59-128	08/01/2011 0936
Toluene	50	49	1	99	61-129	08/01/2011 0936
Xylenes (total)	100	100	1	100	58-128	08/01/2011 0936
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	102	47-138				
1,2-Dichloroethane-d4	106	53-142				
Toluene-d8	101	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ64800-003

Batch: 64800

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	46	1	92	7.2	69-123	20	08/01/2011 0958
Ethylbenzene	50	46	1	91	9.2	59-128	20	08/01/2011 0958
Toluene	50	47	1	93	5.6	61-129	20	08/01/2011 0958
Xylenes (total)	100	92	1	92	8.0	58-128	20	08/01/2011 0958
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	96	47-138						
1,2-Dichloroethane-d4	96	53-142						
Toluene-d8	96	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ65109-001 Batch: 65109

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Benzene	ND	1	5.0	1.1	ug/kg	08/05/2011 0652
Ethylbenzene	ND	1	5.0	1.7	ug/kg	08/05/2011 0652
Toluene	ND	1	5.0	1.7	ug/kg	08/05/2011 0652
Xylenes (total)	ND	1	5.0	2.9	ug/kg	08/05/2011 0652
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	98	47-138				
1,2-Dichloroethane-d4	99	53-142				
Toluene-d8	101	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ65109-002

Batch: 65109

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	44	1	89	69-123	08/05/2011 0528
Ethylbenzene	50	46	1	91	59-128	08/05/2011 0528
Toluene	50	45	1	90	61-129	08/05/2011 0528
Xylenes (total)	100	90	1	90	58-128	08/05/2011 0528
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	99	47-138				
1,2-Dichloroethane-d4	98	53-142				
Toluene-d8	101	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ65109-003

Batch: 65109

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	45	1	89	0.54	69-123	20	08/05/2011 0549
Ethylbenzene	50	45	1	90	1.6	59-128	20	08/05/2011 0549
Toluene	50	44	1	89	1.7	61-129	20	08/05/2011 0549
Xylenes (total)	100	90	1	90	0.48	58-128	20	08/05/2011 0549
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	99	47-138						
1,2-Dichloroethane-d4	97	53-142						
Toluene-d8	98	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ \geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ64808-001 Batch: 64808 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 08/01/2011 2010

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND		1	330	10	ug/kg	08/02/2011 1532
Acenaphthylene	ND		1	330	13	ug/kg	08/02/2011 1532
Anthracene	ND		1	330	15	ug/kg	08/02/2011 1532
Benzo(a)anthracene	ND		1	330	11	ug/kg	08/02/2011 1532
Benzo(a)pyrene	ND		1	330	24	ug/kg	08/02/2011 1532
Benzo(b)fluoranthene	ND		1	330	22	ug/kg	08/02/2011 1532
Benzo(g,h,i)perylene	ND		1	330	23	ug/kg	08/02/2011 1532
Benzo(k)fluoranthene	ND		1	330	27	ug/kg	08/02/2011 1532
Chrysene	ND		1	330	10	ug/kg	08/02/2011 1532
Dibenzo(a,h)anthracene	ND		1	330	22	ug/kg	08/02/2011 1532
Fluoranthene	ND		1	330	10	ug/kg	08/02/2011 1532
Fluorene	ND		1	330	13	ug/kg	08/02/2011 1532
Indeno(1,2,3-c,d)pyrene	ND		1	330	30	ug/kg	08/02/2011 1532
Naphthalene	ND		1	330	14	ug/kg	08/02/2011 1532
Phenanthrene	ND		1	330	13	ug/kg	08/02/2011 1532
Pyrene	ND		1	330	14	ug/kg	08/02/2011 1532
Surrogate	Q % Rec		ptance imit				
2-Fluorobiphenyl	68	33	3-102				
Nitrobenzene-d5	56	22	2-109				
Terphenyl-d14	73	41	I-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ \geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: MQ64808-002 Batch: 64808 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 08/01/2011 2010

Danamatan	Spike Amount	Result	D.II	0/ Dag	% Rec	Amelysis Data
Parameter	(ug/kg)	(ug/kg) Q	Dil	% Rec	Limit	Analysis Date
Acenaphthene	3300	2500	1	74	46-114	08/02/2011 1715
Acenaphthylene	3300	3400	1	102	44-122	08/02/2011 1715
Anthracene	3300	2600	1	77	50-119	08/02/2011 1715
Benzo(a)anthracene	3300	2700	1	80	47-121	08/02/2011 1715
Benzo(a)pyrene	3300	2900	1	88	55-134	08/02/2011 1715
Benzo(b)fluoranthene	3300	2700	1	82	28-139	08/02/2011 1715
Benzo(g,h,i)perylene	3300	2700	1	80	36-125	08/02/2011 1715
Benzo(k)fluoranthene	3300	2500	1	75	47-130	08/02/2011 1715
Chrysene	3300	2600	1	78	45-126	08/02/2011 1715
Dibenzo(a,h)anthracene	3300	2600	1	79	45-122	08/02/2011 1715
Fluoranthene	3300	2700	1	80	50-123	08/02/2011 1715
Fluorene	3300	2600	1	77	48-117	08/02/2011 1715
Indeno(1,2,3-c,d)pyrene	3300	2600	1	79	45-123	08/02/2011 1715
Naphthalene	3300	2200	1	65	36-110	08/02/2011 1715
Phenanthrene	3300	2600	1	77	49-117	08/02/2011 1715
Pyrene	3300	2700	1	81	47-119	08/02/2011 1715
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	72	33-102				
Nitrobenzene-d5	61	22-109				
Terphenyl-d14	75	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		7	www.shealylab.com		
TR C	Report to Contact C. Noslanski		May K Fortun		Quate No.
GOD COMMENCE CACLE A	-10	Email	Waybill No.		Page of
State Zip Code Pre	Preservative	no.			Number of Containers Bottle (See Instructions on back)
Coll In	hA 5. HCl.				Preservative
e KNON SE	2504 6. Na Thio.				Lot No.
Project Number	Matrix Matrix	\neg			M67960
nay be Date	Time Gampwwww	onner Onner	H46 XZ18		Remarks / Cooler ID
Commonator on one tree	188	The same			Sample not
	1245	\			
(1/12/1/	1545	1	1		
	700 /	,			
	1020	-			
21 11/22/1 (22-22)	1230		\		
Turn Around Time Required (Prior lab approval required for expedited TAT) Sample	dited TAT) Sample-Disposal		QC Requirements (Specify) Possi	Possible Hazard Identification	
Standard Rush (Please Specify)	☐ Return to Client	a Disposal by Lab	IONO	DNon-Hazard DFlammable DSkin Initant	int DPoison DUnknown
1. Relimished by Lampier	11/82/12	Time 500	1. Received by	Date	Тіте
2. Relinquished by	Date	Time	2. Received by	Date	Time
3. Relinquished by	Date	Time	3. Received by	Date	Time
4. Reinquished by	Date	Time	4 Moratory Received by	Date 7/20/1/	Time 7300
Note: All samples are retained for six weeks from receipt	or six weeks from r	eceipt	LAB USE ONLY	2 2	-

Page 1 of 1 Shealy Environmental Services, Inc. Replaces Date: 02/23/11 Document Number: F-AD-016 Effective Date: 05/06/11 Revision Number: 8 Sample Receipt Checklist (SRC) Cooler Inspected by/date: Eu 7/28/11 MGZGI Other Client ☐ UPS FedEx Airborne Exp Means of receipt: SESI Were custody seals present on the cooler? Yes 🗌 No P 2. If custody seals were present, were they intact and unbroken? No Yes Cooler ID/temperature upon receipt 12/3 °C / °C °C ___/ Method: Temperature Blank Against Bottles None Wet Ice Blue Ice Dry Ice Method of coolant: If response is No (or Yes for 14, 15, 16), an explanation/resolution must be provided. If temperature of any cooler exceeded 6.0°C, was Project Manager notified? PM notified by SRC, phone, note (circle one), other: Yes 🗌 No 🗌 NA coolers received via commercial courier, PMs are to be notified immediately. Is the commercial courier's packing slip attached to this form? NAT Yes No 5. Were proper custody procedures (relinquished/received) followed? Yes -No 5a Were samples relinquished by client to commercial courier? No 6. Were sample IDs listed? No Was collection date & time listed? Yes No 8. Were tests to be performed listed on the COC? Yes 🖃 No Did all samples arrive in the proper containers for each test? Yes No 10. Did all container label information (ID, date, time) agree with COC? No Yes / 11. Did all containers arrive in good condition (unbroken, lids on, etc.)? Yes No 12. Was adequate sample volume available? Yes No Were all samples received within ½ the holding time or 48 hours, whichever Yes -No comes first? 14. Were any samples containers missing? Yes No 15. Were there any excess samples not listed on COC? Yes No 16. Were bubbles present >"pea-size" (1/4" or 6mm in diameter) in any VOA NA 🗀 Yes No Were all metals/O&G/HEM/nutrient samples received at a pH of <2? NA Yes No 18. Were all cyanide and/or sulfide samples received at a pH >12? Yes No 19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb NA Yes No (<0.2mg/L)samples free of residual chlorine? 20. Were collection temperatures documented on the COC for NC samples? No NAU Yes (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample Preservation were received incorrectly preserved and were adjusted Sample(s) (H2SO4,HNO3,HCl,NaOH) with the SR # (number) accordingly in sample receiving with were received with bubbles >6 mm in diameter. Sample(s) were received with TRC >0.2 mg/L for NH3/ Sample(s) TKN/cyanide/BNA/pest/PCB/herb. Corrective Action taken, if necessary: Did client respond: Yes No Yes No Was client notified: Date of response: SESI employee: Comments:

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree River

Lot Number: MH10046

Date Completed: 08/22/2011

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

MH10046

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: MH10046

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

Shealy is not NELAC certified for Phosphorus by 365.1 but is certified in SC and NC.

Shealy is not NELAC certified for VPH, but is certified for VPH in NC.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: MH10046

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	CR-4	Solid	08/10/2011 0845	08/10/2011
002	CR-7	Solid	08/10/2011 0930	08/10/2011
003	CR-9	Solid	08/10/2011 0950	08/10/2011
004	CR-1	Solid	08/10/2011 0750	08/10/2011

(4 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: MH10046

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
002	CR-7	Solid	Benzo(a)anthracene	8270D	50	J	ug/kg	8
002	CR-7	Solid	Benzo(b)fluoranthene	8270D	43	J	ug/kg	8
002	CR-7	Solid	Chrysene	8270D	45	J	ug/kg	8
002	CR-7	Solid	Fluoranthene	8270D	51	J	ug/kg	8
002	CR-7	Solid	Pyrene	8270D	89	J	ug/kg	8
004	CR-1	Solid	Anthracene	8270D	25	J	ug/kg	12
004	CR-1	Solid	Benzo(a)anthracene	8270D	230	J	ug/kg	12
004	CR-1	Solid	Benzo(a)pyrene	8270D	260	J	ug/kg	12
004	CR-1	Solid	Benzo(b)fluoranthene	8270D	410		ug/kg	12
004	CR-1	Solid	Benzo(g,h,i)perylene	8270D	190	J	ug/kg	12
004	CR-1	Solid	Chrysene	8270D	330	J	ug/kg	12
004	CR-1	Solid	Fluoranthene	8270D	640		ug/kg	12
004	CR-1	Solid	Indeno(1,2,3-c,d)pyrene	8270D	160	J	ug/kg	12
004	CR-1	Solid	Phenanthrene	8270D	190	J	ug/kg	12
004	CR-1	Solid	Pyrene	8270D	480		ug/kg	12

(15 detections)

Client: Management and Technical Resources, Inc.

Analytical Method

Analyst

Prep Date

Laboratory ID: MH10046-001

Description: CR-4

Batch

Matrix: Solid

Date Sampled:08/10/2011 0845

Prep Method

% Solids: 81.6 08/10/2011 2314

Sample Wt.(g)

Date Received: 08/10/2011

Run

1	5035	8260B	1 08/1	11/2011 132	26 SAS			65534	3.42		
Paramete	r		(Num		Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene			71-4	13-2	8260B	ND		9.0	2.0	ug/kg	1
Ethylbenze	ene		100-4	1-4	8260B	ND		9.0	3.0	ug/kg	1
Toluene			108-8	88-3	8260B	ND		9.0	3.0	ug/kg	1
Xylenes (to	otal)		1330-2	20-7	8260B	ND		9.0	5.2	ug/kg	1
Surrogate	9	Q	Run 1 A % Recovery	Acceptance Limits)						
1,2-Dichlo	roethane-d4		116	53-142							
Bromofluo	robenzene		102	47-138							
Toluene-d	8		97	68-124							

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-001

Description: CR-4

Matrix: Solid

Date Sampled:08/10/2011 0845

% Solids: 81.6 08/10/2011 2314

Date Received: 08/10/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3550C 8270D 08/17/2011 2011 **JWS** 08/16/2011 1757 65820 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Acenaphthene 83-32-9 8270D ND 400 12 ug/kg 1 Acenaphthylene 8270D ND 400 16 208-96-8 ug/kg 1 Anthracene 120-12-7 8270D ND 400 18 ug/kg 1 Benzo(a)anthracene 56-55-3 8270D ND 400 13 1 ug/kg 29 Benzo(a)pyrene 50-32-8 8270D ND 400 ug/kg 1 Benzo(b)fluoranthene 205-99-2 ND 400 27 8270D ug/kg 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 400 27 ug/kg 1 Benzo(k)fluoranthene 207-08-9 8270D ND 400 33 ug/kg 1 Chrysene 218-01-9 8270D ND 400 13 ug/kg 1 53-70-3 ND 27 Dibenzo(a,h)anthracene 8270D 400 ug/kg 1 Fluoranthene 206-44-0 8270D ND 400 13 ug/kg 1 Fluorene 86-73-7 8270D ND 400 16 ug/kg 1 193-39-5 8270D ND 400 36 Indeno(1,2,3-c,d)pyrene ug/kg 1 Naphthalene 91-20-3 8270D ND 400 17 ug/kg 1 Phenanthrene 85-01-8 8270D ND 400 16 ug/kg 1 8270D Pyrene 129-00-0 ND 400 17 ug/kg 1 Run 1 Acceptance Surrogate % Recovery Q Limits 2-Fluorobiphenyl 57 33-102 Nitrobenzene-d5 22-109 60 Terphenyl-d14 70 41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-002

Description: CR-7

Matrix: Solid

Date Sampled:08/10/2011 0930

% Solids: 80.4 08/10/2011 2314

Date Received: 08/10/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 1 08/11/2011 1348 SAS 65534 3.96

Parameter	Nur	CAS mber	Analytical Method	Result	Q PQL	MDL	Units	Rur
Benzene	71-	71-43-2		ND	7.9	1.7	ug/kg	1
Ethylbenzene	100-	100-41-4		ND	7.9	2.7	ug/kg	1
Toluene	108-88-3		8260B	ND	7.9	2.7	ug/kg	1
Xylenes (total)	1330-	20-7	8260B	ND	7.9	4.6	ug/kg	1
Surrogate	Run 1 Q % Recovery	Accepta Limit						
1,2-Dichloroethane-d4	119	53-14	12					
Bromofluorobenzene	101	47-13	38					
Toluene-d8	95	68-12	24					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MH10046-002

Description: CR-7

Matrix: Solid

Batch

Date Sampled:08/10/2011 0930

Prep Method

% Solids: 80.4 08/10/2011 2314

Date Received: 08/10/2011

Run

			CAS	Analytical						
Parameter		N	umber	Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene		8	3-32-9	8270D	ND		400	12	ug/kg	1
Acenaphthylene		20	8-96-8	8270D	ND		400	16	ug/kg	1
Anthracene		12	0-12-7	8270D	ND		400	18	ug/kg	1
Benzo(a)anthracene		5	6-55-3	8270D	50	J	400	13	ug/kg	1
Benzo(a)pyrene		5	0-32-8	8270D	ND		400	29	ug/kg	1
Benzo(b)fluoranthene		20	5-99-2	8270D	43	J	400	27	ug/kg	1
Benzo(g,h,i)perylene		19	1-24-2	8270D	ND		400	27	ug/kg	1
Benzo(k)fluoranthene		20	7-08-9	8270D	ND		400	33	ug/kg	1
Chrysene		21	8-01-9	8270D	45	J	400	12	ug/kg	1
Dibenzo(a,h)anthracene		5	3-70-3	8270D	ND		400	26	ug/kg	1
Fluoranthene		20	6-44-0	8270D	51	J	400	13	ug/kg	1
Fluorene		8	6-73-7	8270D	ND		400	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene		19	3-39-5	8270D	ND		400	36	ug/kg	1
Naphthalene		9	1-20-3	8270D	ND		400	17	ug/kg	1
Phenanthrene		8	5-01-8	8270D	ND		400	16	ug/kg	1
Pyrene		12	9-00-0	8270D	89	J	400	17	ug/kg	1
Surrogate	Q	Run 1 % Recover	Accepta y Limit	nce S						
2-Fluorobiphenyl		69	33-10)2						
Nitrobenzene-d5		69	22-10	19						
Terphenyl-d14		77	41-12	.0						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Description: CR-9

Analytical Method

Matrix: Solid

Batch

Laboratory ID: MH10046-003

% Solids: 88.3 08/10/2011 2314

Sample Wt.(g)

Date Received: 08/10/2011

Run

Date Sampled:08/10/2011 0950

Prep Method

1 5035	8260B	1 08/1	11/2011 1410) SAS	•		65534	3.00	(3)	
Parameter		(Num		nalytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	3-2	8260B	ND		9.4	2.1	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	ND		9.4	3.2	ug/kg	1
Toluene		108-8	8-3	8260B	ND		9.4	3.2	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		9.4	5.5	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptance Limits							
1,2-Dichloroethane-d4		124	53-142							
Bromofluorobenzene		103	47-138							
Toluene-d8		100	68-124							

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MH10046-003

Description: CR-9

Matrix: Solid

Batch

Date Sampled:08/10/2011 0950

Prep Method

% Solids: 88.3 08/10/2011 2314

Date Received: 08/10/2011

Run

1 3550C	8270D	1 08/17/2011	,	08/16/201	1 1757 65820			
Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	ND	370	11	ug/kg	1
Acenaphthylene		208-96-8	8270D	ND	370	15	ug/kg	1
Anthracene		120-12-7	8270D	ND	370	16	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	ND	370	12	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	ND	370	27	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	ND	370	25	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	ND	370	25	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	ND	370	30	ug/kg	1
Chrysene		218-01-9	8270D	ND	370	12	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND	370	24	ug/kg	1
Fluoranthene		206-44-0	8270D	ND	370	12	ug/kg	1
Fluorene		86-73-7	8270D	ND	370	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND	370	33	ug/kg	1
Naphthalene		91-20-3	8270D	ND	370	16	ug/kg	1
Phenanthrene		85-01-8	8270D	ND	370	15	ug/kg	1
Pyrene		129-00-0	8270D	ND	370	16	ug/kg	1
Surrogate	Q	Run 1 Accept % Recovery Limi						

Surrogate	Q	% Recovery	Limits
2-Fluorobiphenyl		57	33-102
Nitrobenzene-d5		61	22-109
Terphenyl-d14		68	41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Volatile Organic Compounds by GC/MS

Analyst

Prep Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: MH10046-004

Description: CR-1

Batch

Matrix: Solid

Date Sampled:08/10/2011 0750

Prep Method

% Solids: 78.2 08/10/2011 2314

Sample Wt.(g)

Date Received: 08/10/2011

Run

1 5035	8260B 1 08	8/11/2011 1432 SAS	·	65534	3.87	107	
Parameter	Nu	CAS Analytical mber Method	Result	Q PQL	MDL	Units	Run
Benzene	71	-43-2 8260B	ND	8.3	1.8	ug/kg	1
Ethylbenzene	100	-41-4 8260B	ND	8.3	2.8	ug/kg	1
Toluene	108	-88-3 8260B	ND	8.3	2.8	ug/kg	1
Xylenes (total)	1330	-20-7 8260B	ND	8.3	4.8	ug/kg	1
Surrogate	Run 1 Q % Recovery	Acceptance Limits					
1,2-Dichloroethane-d4	129	53-142		_	•		
Bromofluorobenzene	104	47-138					
Toluene-d8	100	68-124					

Dilution Analysis Date

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-004

Description: CR-1

Matrix: Solid

Date Sampled:08/10/2011 0750

% Solids: 78.2 08/10/2011 2314

Date Received: 08/10/2011

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3550C 8270D 08/17/2011 2108 **JWS** 08/16/2011 1757 65820 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Acenaphthene 83-32-9 8270D ND 400 12 ug/kg 1 Acenaphthylene 208-96-8 8270D ND 400 16 ug/kg 1 Anthracene 120-12-7 8270D 25 400 18 ug/kg 1 Benzo(a)anthracene 56-55-3 8270D 230 J 400 13 ug/kg 1 29 Benzo(a)pyrene 50-32-8 8270D 260 J 400 ug/kg 1 Benzo(b)fluoranthene 205-99-2 27 8270D 410 400 ug/kg 1 Benzo(g,h,i)perylene 191-24-2 8270D 190 400 27 ug/kg 1 Benzo(k)fluoranthene 207-08-9 8270D ND 400 33 ug/kg 1 Chrysene 218-01-9 8270D 330 400 13 ug/kg 1 53-70-3 27 Dibenzo(a,h)anthracene 8270D ND 400 ug/kg 1 Fluoranthene 206-44-0 8270D 640 400 13 ug/kg 1 Fluorene 86-73-7 8270D ND 400 15 ug/kg 1 193-39-5 8270D 400 36 Indeno(1,2,3-c,d)pyrene 160 J ug/kg 1 Naphthalene 91-20-3 8270D ND 400 17 ug/kg 1 85-01-8 8270D Phenanthrene 190 400 16 ug/kg 1 8270D Pyrene 129-00-0 480 400 17 ug/kg 1 Run 1 Acceptance Surrogate % Recovery Q Limits 2-Fluorobiphenyl 57 33-102 Nitrobenzene-d5 59 22-109 Terphenyl-d14 67 41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: MQ65534-001

Batch: 65534

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	08/11/2011 1044
Ethylbenzene	ND		1	5.0	1.7	ug/kg	08/11/2011 1044
Toluene	ND		1	5.0	1.7	ug/kg	08/11/2011 1044
Xylenes (total)	ND		1	5.0	2.9	ug/kg	08/11/2011 1044
Surrogate	Q % Rec	Acc	ceptance Limit				
Bromofluorobenzene	104		47-138				
1,2-Dichloroethane-d4	121	!	53-142				
Toluene-d8	98	(68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: MQ65534-002

Batch: 65534

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	43	1	85	69-123	08/11/2011 0916
Ethylbenzene	50	42	1	83	59-128	08/11/2011 0916
Toluene	50	41	1	81	61-129	08/11/2011 0916
Xylenes (total)	100	85	1	85	58-128	08/11/2011 0916
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	103	47-138				
1,2-Dichloroethane-d4	115	53-142				
Toluene-d8	98	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: MQ65534-003

Batch: 65534

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	42	1	84	1.8	69-123	20	08/11/2011 0938
Ethylbenzene	50	42	1	84	1.5	59-128	20	08/11/2011 0938
Toluene	50	42	1	84	3.0	61-129	20	08/11/2011 0938
Xylenes (total)	100	84	1	84	1.1	58-128	20	08/11/2011 0938
Surrogate	Q % Rec	Acceptance Limit)					
Bromofluorobenzene	101	47-138						
1,2-Dichloroethane-d4	114	53-142						
Toluene-d8	101	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: MQ65820-001 Batch: 65820 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D Prep Date: 08/16/2011 1757

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	08/17/2011 1635
Acenaphthylene	ND	1	330	13	ug/kg	08/17/2011 1635
Anthracene	ND	1	330	15	ug/kg	08/17/2011 1635
Benzo(a)anthracene	ND	1	330	11	ug/kg	08/17/2011 1635
Benzo(a)pyrene	ND	1	330	24	ug/kg	08/17/2011 1635
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	08/17/2011 1635
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	08/17/2011 1635
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	08/17/2011 1635
Chrysene	ND	1	330	10	ug/kg	08/17/2011 1635
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	08/17/2011 1635
Fluoranthene	ND	1	330	10	ug/kg	08/17/2011 1635
Fluorene	ND	1	330	13	ug/kg	08/17/2011 1635
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	08/17/2011 1635
Naphthalene	ND	1	330	14	ug/kg	08/17/2011 1635
Phenanthrene	ND	1	330	13	ug/kg	08/17/2011 1635
Pyrene	ND	1	330	14	ug/kg	08/17/2011 1635
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	74	33-102				
Nitrobenzene-d5	75	22-109				
Terphenyl-d14	80	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: MQ65820-002 Batch: 65820 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 08/16/2011 1757

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	2600	1	77	46-114	08/17/2011 1732
Acenaphthylene	3300	2500	1	74	44-122	08/17/2011 1732
Anthracene	3300	2800	1	84	50-119	08/17/2011 1732
Benzo(a)anthracene	3300	2900	1	87	47-121	08/17/2011 1732
Benzo(a)pyrene	3300	3300	1	99	55-134	08/17/2011 1732
Benzo(b)fluoranthene	3300	3100	1	94	28-139	08/17/2011 1732
Benzo(g,h,i)perylene	3300	2800	1	83	36-125	08/17/2011 1732
Benzo(k)fluoranthene	3300	3000	1	89	47-130	08/17/2011 1732
Chrysene	3300	2900	1	87	45-126	08/17/2011 1732
Dibenzo(a,h)anthracene	3300	2900	1	87	45-122	08/17/2011 1732
Fluoranthene	3300	3000	1	90	50-123	08/17/2011 1732
Fluorene	3300	2700	1	82	48-117	08/17/2011 1732
Indeno(1,2,3-c,d)pyrene	3300	2800	1	85	45-123	08/17/2011 1732
Naphthalene	3300	2200	1	65	36-110	08/17/2011 1732
Phenanthrene	3300	2800	1	85	49-117	08/17/2011 1732
Pyrene	3300	3000	1	90	47-119	08/17/2011 1732
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	72	33-102				
Nitrobenzene-d5	79	22-109				
Terphenyl-d14	73	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" $\,$

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: MH10046-004MS

Batch: 65820

Matrix: Solid Prep Method: 3550C

Prep Date: 08/16/2011 1757

Analytical Method: 8270D

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	ND	4200	3000		1	72	30-130	08/17/2011 2128
Acenaphthylene	ND	4200	2900		1	71	30-130	08/17/2011 2128
Anthracene	25	4200	3500		1	83	30-130	08/17/2011 2128
Benzo(a)anthracene	230	4200	3900		1	89	30-130	08/17/2011 2128
Benzo(a)pyrene	260	4200	4400		1	100	30-130	08/17/2011 2128
Benzo(b)fluoranthene	410	4200	4100		1	89	30-130	08/17/2011 2128
Benzo(g,h,i)perylene	190	4200	3900		1	89	30-130	08/17/2011 2128
Benzo(k)fluoranthene	ND	4200	4100		1	98	30-130	08/17/2011 2128
Chrysene	330	4200	3700		1	82	30-130	08/17/2011 2128
Dibenzo(a,h)anthracene	ND	4200	4000		1	95	30-130	08/17/2011 2128
Fluoranthene	640	4200	4000		1	80	30-130	08/17/2011 2128
Fluorene	ND	4200	3300		1	79	30-130	08/17/2011 2128
Indeno(1,2,3-c,d)pyrene	160	4200	3900		1	90	30-130	08/17/2011 2128
Naphthalene	ND	4200	2800		1	67	30-130	08/17/2011 2128
Phenanthrene	190	4200	3600		1	81	30-130	08/17/2011 2128
Pyrene	480	4200	4000		1	86	30-130	08/17/2011 2128
Surrogate	Q % Re	ec Ac	cceptance Limit					
2-Fluorobiphenyl	67	<u></u>	33-102				<u></u>	
Nitrobenzene-d5	70		22-109					
Terphenyl-d14	75		41-120					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: MH10046-004MD

Matrix: Solid Prep Method: 3550C Batch: 65820 Prep Date: 08/16/2011 1757

Analytical Method: 8270D

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q Dil	% Rec	% RPD	% Rec Limit	% RPE) Analysis Date
Acenaphthene	ND	4200	3200	1	77	7.4	30-130	40	08/17/2011 2147
Acenaphthylene	ND	4200	3100	1	74	6.4	30-130	40	08/17/2011 2147
Anthracene	25	4200	3500	1	82	0.032	30-130	40	08/17/2011 2147
Benzo(a)anthracene	230	4200	3800	1	84	3.8	30-130	40	08/17/2011 2147
Benzo(a)pyrene	260	4200	4500	1	100	1.3	30-130	40	08/17/2011 2147
Benzo(b)fluoranthene	410	4200	3900	1	82	6.0	30-130	40	08/17/2011 2147
Benzo(g,h,i)perylene	190	4200	3900	1	87	0.030	30-130	40	08/17/2011 2147
Benzo(k)fluoranthene	ND	4200	4300	1	102	4.6	30-130	40	08/17/2011 2147
Chrysene	330	4200	3800	1	83	2.5	30-130	40	08/17/2011 2147
Dibenzo(a,h)anthracene	ND	4200	3900	1	93	1.7	30-130	40	08/17/2011 2147
Fluoranthene	640	4200	4200	1	84	5.2	30-130	40	08/17/2011 2147
Fluorene	ND	4200	3400	1	81	3.7	30-130	40	08/17/2011 2147
Indeno(1,2,3-c,d)pyrene	160	4200	3900	1	88	1.3	30-130	40	08/17/2011 2147
Naphthalene	ND	4200	2900	1	68	3.9	30-130	40	08/17/2011 2147
Phenanthrene	190	4200	3600	1	81	1.4	30-130	40	08/17/2011 2147
Pyrene	480	4200	4100	1	86	2.0	30-130	40	08/17/2011 2147
Surrogate	Q % Re	Ac C	cceptance Limit						
2-Fluorobiphenyl	69	<u></u>	33-102						
Nitrobenzene-d5	70		22-109						
Terphenyl-d14	72		41-120						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		AND DESCRIPTION OF THE PERSON NAMED IN COLUMN	Wrww.sirgalyteo.com		
Client MTA	Report to Contact VII Shut SK		Sampler (Printed Name)		Quote Na.
Carlo	No. / F		Waybill No.		Page
COMPACE CIOC	Draeanvaliva				Mimbar of Containers
Colod My 15 cass	1. Unores. 4. HNO3 7. NaOH				Bollie (See Instructions on back)
V	T.				Preservative
20 RIVE	3. H2SC4 B. Na Thio.		0		LOINO. HHAOY
Project Number P.O Number			702		THEORY CO
Sample ID / Description (Containers for each sample may be combined on one line)	Time 6=67 0=000000000000000000000000000000000	Analys Analys Attack	0/28		Remarks / Cooler ID
12-4 Stoll a	0845	1			Use list of
0 11 0	1 260	1			DAHS from
11 P-9	1 2000	7			Conouree AND
CR-1 8/10/11/0	C750 /	7			Project
					5
Turn Around Time Required (Prior lab approval required for expedited TAT) Standard Push (Please Specify)	Sample Disposal	G Disposal by Lab	QC Requirements (Specify) Prossible Haza	Possible Hazard Identification Onon-Nazard OFlammable OSkin Initiant	I D'Discn D'Inknown
Mull Follow	Silo/il Time	1. Rece	1. Repeived by	Date	Тітв
Relinquished by	Date		2. Received by	Date	Time
3. Relinquished by	Date Time		3. Received by	Date	Time
4. Relinquished by	Date		4. Laboratory Received by	Date / / / / Sime / SU	Time /SW)
Note: All samples are retained for six weeks from receipt	or six weeks from recei		LAB USE ONLY Received on the Park of the P	CA CA	MA Trine Back Bookst Town (C.)

Shealy Environmental Services, Inc. Document Number: F-AD-016 Revision Number: 8 Page 1 of 1 Replaces Date: 02/23/11

Revision Num		010	Effective Date: 05/06/11
			Sample Receipt Checklist (SRC)
Client:	MI	R	Cooler Inspected by/date: 60-8/6/11 Lot #: MH10040
Means of	receipt:	☐ SESI	☐ elient ☐ UPS ☐ FedEx ☐ Airborne Exp ☐ Other
Yes 🗌	No		Were custody seals present on the cooler?
Yes 🗌	No		2. If custody seals were present, were they intact and unbroken?
Cooler II)/tempera	ture upon r	eceipt 4 9 °C / °C / °C / °C
000101 12	rtempera	apon i	// °C / °C / °C
Method:	☐ Ter	mperature I	
Method o			
	Total Commence		4, 15, 16), an explanation/resolution must be provided.
11 respons	SC 13 IVO (1 1 1 1 1 1 1	If temperature of any cooler exceeded 6.0°C, was Project Manager notified?
Yes 🗌	No 🗌	NA 🗗	PM notified by SRC, phone, note (circle one), other: (For
1 03	140	NA	coolers received via commercial courier, PMs are to be notified immediately.
Yes 🗌	No 🗌	NA	Is the commercial courier's packing slip attached to this form?
Yes 🖵	No	1071	Were proper custody procedures (relinquished/received) followed?
Yes 🗌	No 🗌	NA	5a Were samples relinquished by client to commercial courier?
Yes 7	No	NAT	Were sample IDs listed?
Yes 📝	No		7. Was collection date & time listed?
Yes 🗗	No 🗆		
Yes 7	No	-	8. Were tests to be performed listed on the COC?
Yes 7			9. Did all samples arrive in the proper containers for each test? 10. Did all samples arrive in the proper containers for each test?
-	No _		10. Did all container label information (ID, date, time) agree with COC?
Yes 7	No _		11. Did all containers arrive in good condition (unbroken, lids on, etc.)?
Yes 🔼	No 🔲		12. Was adequate sample volume available?
Yes 🗗	No 🗌		13. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
Yes	No.		14. Were any samples containers missing?
Yes	No -	-	15. Were there any excess samples not listed on COC?
Yes 🗌	No 🗌	NA 🔄	16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?
Yes	No 🗌	NA 🔽	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?
Yes	No	NA 👉	18. Were all cyanide and/or sulfide samples received at a pH >12?
37	N .	D	19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb
Yes 🔲	No 📙	NA 🗷	(<0.2mg/L)samples free of residual chlorine?
Yes	No 🗌	NA 🖸	20. Were collection temperatures documented on the COC for NC samples?
Sample F	reservat	ion (Mus	t be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s		(1.100	were received incorrectly preserved and were adjusted
		ple receivir	ng with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
Sample(s)	<u>·</u>	were received with bubbles >6 mm in diameter.
Sample(s			were received with TRC > 0.2 mg/L for NH3/
TKN/cya	nide/BNA	/pest/PCB/	herb.
Corrective Was client SESI emplo Comments	notified: oyee:	Yes.	

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree River Sediments

Lot Number: NA11018

Date Completed: 01/23/2012

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

* NA11018*

SC DHEC No: 32010 NELAC No: E87653 NC DENR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: NA11018

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: NA11018

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	AK-80	Solid	01/10/2012 1530	01/11/2012
002	AM-71.5	Solid	01/10/2012 1700	01/11/2012
003	AQ-71.5	Solid	01/10/2012 1710	01/11/2012

(3 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: NA11018

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
002	AM-71.5	Solid	Benzo(a)anthracene	8270D	27	J	ug/kg	8
002	AM-71.5	Solid	Fluoranthene	8270D	13	J	ug/kg	8
002	AM-71.5	Solid	Pyrene	8270D	20	J	ug/kg	8
003	AQ-71.5	Solid	Benzo(a)anthracene	8270D	25	J	ug/kg	10
003	AQ-71.5	Solid	Fluoranthene	8270D	22	J	ug/kg	10
003	AQ-71.5	Solid	Pyrene	8270D	16	J	ug/kg	10

(6 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: AK-80

Date Sampled:01/10/2012 1530

Laboratory ID: NA11018-001

Matrix: Solid

% Solids: 87.9 01/11/2012 2323

Date Received: 01/11/2012

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/16/2012 1319	BM		75735	5.09

Parameter Benzene		(Num		Analytical					
Benzene			1001	Method	Result C) PQL	MDL	Units	Run
		71-4	3-2	8260B	ND	5.6	1.2	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	ND	5.6	1.9	ug/kg	1
Toluene		108-8	8-3	8260B	ND	5.6	1.9	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND	5.6	3.2	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptanc Limits	е					
1,2-Dichloroethane-d4		85	53-142						
Bromofluorobenzene		113	47-138						
Toluene-d8		92	68-124						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: NA11018-001

Description: AK-80

Matrix: Solid

Batch

Date Sampled:01/10/2012 1530

Prep Method

% Solids: 87.9 01/11/2012 2323

Date Received: 01/11/2012

Run

Parameter Acenaphthene Acenaphthylene	CA Numbe	· J · · ·					
Acenaphthylene	Numbe	er Method	Result Q	PQL	MDL	Units	Run
	83-32-	9 8270D	ND	360	11	ug/kg	1
	208-96-	8 8270D	ND	360	14	ug/kg	1
Anthracene	120-12-	7 8270D	ND	360	16	ug/kg	1
Benzo(a)anthracene	56-55-	3 8270D	ND	360	12	ug/kg	1
Benzo(a)pyrene	50-32-	8 8270D	ND	360	26	ug/kg	1
Benzo(b)fluoranthene	205-99-	2 8270D	ND	360	24	ug/kg	1
Benzo(g,h,i)perylene	191-24-	2 8270D	ND	360	24	ug/kg	1
Benzo(k)fluoranthene	207-08-	9 8270D	ND	360	29	ug/kg	1
Chrysene	218-01-	9 8270D	ND	360	11	ug/kg	1
Dibenzo(a,h)anthracene	53-70-	3 8270D	ND	360	24	ug/kg	1
Fluoranthene	206-44-	0 8270D	ND	360	11	ug/kg	1
Fluorene	86-73-	7 8270D	ND	360	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-	5 8270D	ND	360	32	ug/kg	1
Naphthalene	91-20-	3 8270D	ND	360	15	ug/kg	1
Phenanthrene	85-01-	8 8270D	ND	360	15	ug/kg	1
Pyrene	129-00-	0 8270D	ND	360	15	ug/kg	1
Surrogate		ceptance Limits					
2-Fluorobiphenyl	94	33-102		_			
Nitrobenzene-d5	82	22-109					
Terphenyl-d14	88	41-120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Page: 6 of 16

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: AM-71.5

Date Sampled:01/10/2012 1700

Laboratory ID: NA11018-002

Matrix: Solid

% Solids: 87.7 01/11/2012 2323

Date Received: 01/11/2012

Run

Toluene-d8

Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 5035 8260B 01/16/2012 1343 BM75735 5.26

Parameter		CAS Number	,	Result Q	PQL	MDL	Units	Run
Benzene		71-43-2	8260B	ND	5.4	1.2	ug/kg	1
Ethylbenzene		100-41-4	8260B	ND	5.4	1.8	ug/kg	1
Toluene		108-88-3	8260B	ND	5.4	1.8	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND	5.4	3.1	ug/kg	1
Surrogate	Q %		eptance mits					
1,2-Dichloroethane-d4		86 53	3-142					
Bromofluorobenzene		113 4	7-138					

68-124

92

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: NA11018-002

Description: AM-71.5

Matrix: Solid

Batch

Date Sampled:01/10/2012 1700

Prep Method

% Solids: 87.7 01/11/2012 2323

Date Received: 01/11/2012

Run

1	3550C	8270D	1 01/16/2012	2 2014 JCG	01/13/2	012 1647	75652			
Parameter			CAS Number	Analytical Method	Result	Q F	PQL	MDL	Units	Run
Acenaphthene			83-32-9	8270D	ND		370	11	ug/kg	1
Acenaphthylen	е		208-96-8	8270D	ND		370	15	ug/kg	1
Anthracene			120-12-7	8270D	ND		370	17	ug/kg	1
Benzo(a)anthr	acene		56-55-3	8270D	27	J	370	12	ug/kg	1
Benzo(a)pyrene	е		50-32-8	8270D	ND		370	27	ug/kg	1
Benzo(b)fluorai	nthene		205-99-2	8270D	ND		370	25	ug/kg	1
Benzo(g,h,i)per	rylene		191-24-2	8270D	ND		370	26	ug/kg	1
Benzo(k)fluorai	nthene		207-08-9	8270D	ND		370	31	ug/kg	1
Chrysene			218-01-9	8270D	ND		370	12	ug/kg	1
Dibenzo(a,h)an	nthracene		53-70-3	8270D	ND		370	25	ug/kg	1
Fluoranthene			206-44-0	8270D	13	J	370	12	ug/kg	1
Fluorene			86-73-7	8270D	ND		370	14	ug/kg	1
Indeno(1,2,3-c,	,d)pyrene		193-39-5	8270D	ND		370	34	ug/kg	1
Naphthalene			91-20-3	8270D	ND		370	16	ug/kg	1
Phenanthrene			85-01-8	8270D	ND		370	15	ug/kg	1
Pyrene			129-00-0	8270D	20	J	370	16	ug/kg	1

S	Surrogate	Q	% Recovery	Limits
2	2-Fluorobiphenyl		91	33-102
Ν	Nitrobenzene-d5		83	22-109
Т	Ferphenyl-d14		85	41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Page: 8 of 16

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: AQ-71.5

Date Sampled:01/10/2012 1710

Laboratory ID: NA11018-003

Matrix: Solid

% Solids: 90.6 01/11/2012 2323

Date Received: 01/11/2012

Toluene-d8

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution 1	Analysis I 01/16/2012	,	Prep Date	Batch 75735	Sample V 5.36	137	
Param	neter			CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benze	ne			71-43-2	8260B	ND	5.1	1.1	ug/kg	1
Ethylb	enzene			100-41-4	8260B	ND	5.1	1.8	ug/kg	1
Toluer	ne			108-88-3	8260B	ND	5.1	1.8	ug/kg	1
Xylene	es (total)		1:	330-20-7	8260B	ND	5.1	3.0	ug/kg	1
Surro	gate	Q	Run 1 % Recov							
1,2-Did	chloroethane-d4	_	90	53-1	42		•	•	•	
Bromo	fluorobenzene		111	47-1	38					

68-124

93

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: NA11018-003

Description: AQ-71.5

Matrix: Solid

Batch

Date Sampled:01/10/2012 1710

Prep Method

% Solids: 90.6 01/11/2012 2323

Date Received: 01/11/2012

Run

Terphenyl-d14

1 3550C	8270D	1	01/16/2012	2 2038 JCG	01/13/2	012 16	547 75652			
Parameter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene			83-32-9	8270D	ND		350	11	ug/kg	1
Acenaphthylene			208-96-8	8270D	ND		350	14	ug/kg	1
Anthracene			120-12-7	8270D	ND		350	15	ug/kg	1
Benzo(a)anthracene			56-55-3	8270D	25	J	350	11	ug/kg	1
Benzo(a)pyrene			50-32-8	8270D	ND		350	25	ug/kg	1
Benzo(b)fluoranthene			205-99-2	8270D	ND		350	23	ug/kg	1
Benzo(g,h,i)perylene			191-24-2	8270D	ND		350	24	ug/kg	1
Benzo(k)fluoranthene			207-08-9	8270D	ND		350	29	ug/kg	1
Chrysene			218-01-9	8270D	ND		350	11	ug/kg	1
Dibenzo(a,h)anthracene			53-70-3	8270D	ND		350	23	ug/kg	1
Fluoranthene			206-44-0	8270D	22	J	350	11	ug/kg	1
Fluorene			86-73-7	8270D	ND		350	13	ug/kg	1
Indeno(1,2,3-c,d)pyrene			193-39-5	8270D	ND		350	31	ug/kg	1
Naphthalene			91-20-3	8270D	ND		350	15	ug/kg	1
Phenanthrene			85-01-8	8270D	ND		350	14	ug/kg	1
Pyrene			129-00-0	8270D	16	J	350	15	ug/kg	1
Surrogate	Q	Rur % Reco								
2-Fluorobiphenyl		87	7 33-1	02		•			•	•
Nitrobenzene-d5		78	3 22-1	09						

41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \ge MDL$

83

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: NQ75735-001 Batch: 75735

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Resu	ılt	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND			1	5.0	1.1	ug/kg	01/16/2012 1220
Ethylbenzene	ND			1	5.0	1.7	ug/kg	01/16/2012 1220
Toluene	ND			1	5.0	1.7	ug/kg	01/16/2012 1220
Xylenes (total)	ND			1	5.0	2.9	ug/kg	01/16/2012 1220
Surrogate	Q	% Rec	,	Acceptance Limit				
Bromofluorobenzene		116		47-138				
1,2-Dichloroethane-d4		86		53-142				
Toluene-d8		96		68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: NQ75735-002

Batch: 75735

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	54	1	108	69-123	01/16/2012 1004
Ethylbenzene	50	55	1	110	59-128	01/16/2012 1004
Toluene	50	57	1	114	61-129	01/16/2012 1004
Xylenes (total)	100	110	1	111	58-128	01/16/2012 1004
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	111	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	99	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: NQ75735-003

Batch: 75735

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	53	1	105	2.6	69-123	20	01/16/2012 1027
Ethylbenzene	50	52	1	105	5.1	59-128	20	01/16/2012 1027
Toluene	50	56	1	112	1.4	61-129	20	01/16/2012 1027
Xylenes (total)	100	110	1	108	2.4	58-128	20	01/16/2012 1027
Surrogate	Q % Rec	Acceptan Limit	ce					
Bromofluorobenzene	108	47-138						
1,2-Dichloroethane-d4	87	53-142						
Toluene-d8	96	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ \geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: NQ75652-001 Batch: 75652 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 01/13/2012 1647

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	01/16/2012 1246
Acenaphthylene	ND	1	330	13	ug/kg	01/16/2012 1246
Anthracene	ND	1	330	15	ug/kg	01/16/2012 1246
Benzo(a)anthracene	ND	1	330	11	ug/kg	01/16/2012 1246
Benzo(a)pyrene	ND	1	330	24	ug/kg	01/16/2012 1246
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	01/16/2012 1246
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	01/16/2012 1246
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	01/16/2012 1246
Chrysene	ND	1	330	10	ug/kg	01/16/2012 1246
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	01/16/2012 1246
Fluoranthene	ND	1	330	10	ug/kg	01/16/2012 1246
Fluorene	ND	1	330	13	ug/kg	01/16/2012 1246
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	01/16/2012 1246
Naphthalene	ND	1	330	14	ug/kg	01/16/2012 1246
Phenanthrene	ND	1	330	13	ug/kg	01/16/2012 1246
Pyrene	ND	1	330	14	ug/kg	01/16/2012 1246
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	71	33-102				
Nitrobenzene-d5	67	22-109				
Terphenyl-d14	68	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: NQ75652-002 Batch: 75652 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 01/13/2012 1647

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	2500	1	76	46-114	01/16/2012 1311
Acenaphthylene	3300	2900	1	88	44-122	01/16/2012 1311
Anthracene	3300	2600	1	77	50-119	01/16/2012 1311
Benzo(a)anthracene	3300	2600	1	77	47-121	01/16/2012 1311
Benzo(a)pyrene	3300	3000	1	90	55-134	01/16/2012 1311
Benzo(b)fluoranthene	3300	2800	1	85	28-139	01/16/2012 1311
Benzo(g,h,i)perylene	3300	2900	1	86	36-125	01/16/2012 1311
Benzo(k)fluoranthene	3300	2800	1	83	47-130	01/16/2012 1311
Chrysene	3300	2500	1	74	45-126	01/16/2012 1311
Dibenzo(a,h)anthracene	3300	2900	1	87	45-122	01/16/2012 1311
Fluoranthene	3300	2700	1	80	50-123	01/16/2012 1311
Fluorene	3300	2500	1	76	48-117	01/16/2012 1311
Indeno(1,2,3-c,d)pyrene	3300	2800	1	85	45-123	01/16/2012 1311
Naphthalene	3300	2400	1	71	36-110	01/16/2012 1311
Phenanthrene	3300	2500	1	76	49-117	01/16/2012 1311
Pyrene	3300	2600	1	79	47-119	01/16/2012 1311
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	76	33-102				
Nitrobenzene-d5	73	22-109				
Terphenyl-d14	74	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Chain of Custody Record

West Columbia, South Carolina 29172 106 Vantage Point Drive

Number

00 056

Telephone No. (803) 791-9700 Fax No. (803) 791-9111 Shealy Environmental Services, Inc.

		www.sh	www.shealylab.com	
Client MTR	Report to Confact YUSHUSKI	iki	Sampler (Pointed Name)	Quote No.
TGCO COMMENCE CITCLE 41	Telephone No. / Fax No. / Email 75 - 96 - 57 - 51 - 51 - 51 - 51 - 51 - 51 - 51	_	Waybill No.	Page
	Preservative			Number of Containers
1/24+0rd 11/3063 1. Unpres.				Battle (See Instructions on back)
Project Name 2. NaCHIZNA		S		Preservative
CONSULE VIVE CENTRALHEST	O4 6. Na Thio.	24		Lot No.
Project Number P.O Number	Q	-	0	MANAIN
Sample ID / Description (Containors for each sample may be Date Time	and	0228 121 121 Skipl	0/25	Remarks / Cooler ID
combined an ane line)	0	o 1∀(9	
AK-80 1630	30 6	X		Contact Chery
AM-71.5 110/12 1700	00 6	×		Vushunski it Gues-
AR-71.5	10 6	× ′×	4	Ewis which exact
				Dannelox
Turn ApCond Time Required (Prior lab approval required for expedited TAT	d TAT) Sample Disposal	QC Rex	OC Requirements (Specify) Possible Hazard Identification	ation
Standard Dush (Please Specify)	□ Petum to Client □	☐ Disposal by Lab	ONon-Hazard DRammable	OSkin Infant DPoison OUnknown
1. Ralinquished by / Semplifir:	Date // 2 ///	Time 1. Rece	1	Time
2. Relinquished by			2. Received by Date	Time
3, Relinquished by	Date	Time 3. Rece	3. Received by	Time
4. Relinquished by	Date	Time 4. Abo	abdratory Received by	11.3cs
Note: All samples are retained for six unless other arrangements	six weeks from receipt		LAB USE ONLY Received on the Check DAs D No D to Pack Received Towns	A V C Towns Oliver To V
			1	

Shealy Environmental Services, Inc. Document Number: F-AD-016 Revision Number: 9

Page 1 of 1 Replaces Date: 05/06/11 Effective Date: 10/11/11

Cample Descript Checklist (SDC)

	Sample Receipt Checklist (SRC)
Client: MIR	Cooler Inspected by/date: Wer ///// Lot #: NA Hold
Means of receipt: S	ESI Client UPS FedEx Airborne Exp Other
Yes No No	Were custody seals present on the cooler?
Yes No	2. If custody seals were present, were they intact and unbroken?
THE RESERVE THE PARTY OF THE PA	
Cooler ID/temperature up Method: Temperat	ture Blank Against Bottles
Method of coolant:	
A STATE OF THE PARTY OF THE PAR	
If response is No (or Yes	for 14, 15, 16), an explanation/resolution must be provided.
	3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified?
Yes No NA	
V	coolers received via commercial courier, PMs are to be notified immediately.
Yes No NA	
Yes No	Were proper custody procedures (relinquished/received) followed?
Yes No NA	
Yes No	6. Were sample IDs listed?
Yes No	7. Was collection date & time listed?
Yes No	Were tests to be performed listed on the COC?
Yes No	Did all samples arrive in the proper containers for each test?
Yes No No	10. Did all container label information (ID, date, time) agree with COC?
Yes No	11. Did all containers arrive in good condition (unbroken, lids on, etc.)?
Yes No	12. Was adequate sample volume available?
Yes - No 🗌	13. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
Yes No No	14. Were any samples containers missing?
Yes No	15. Were there any excess samples not listed on COC?
Yes No NA	16. Word hubbles proceed Strong size? (16" or from in diameter) in any VOA
Yes No NA	
Yes No NA	
	10. Ware all applicable NH3/TVN/cyapide/phenol/BNA/post/PCB/herb
Yes No No NA	(<0.2mg/L) samples free of residual chlorine?
Yes No NA	20. Were collection temperatures documented on the COC for NC samples?
V D N- D NA	21. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations,
Yes No NA	etc) correctly transcribed from the COC into the comment section in LIMS?
Sample Preservation	(Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s)	were received incorrectly preserved and were adjusted
accordingly in sample re-	ceiving with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
Sample(s)	were received with bubbles >6 mm in diameter.
Sample(s)	were received with TRC >0.2 mg/L for NH3/
TKN/cyanide/BNA/pest/	
Corrective Action taken.	
Was client notified: Y	
SESI employee:	Date of response:
Comments:	

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree River Sediments

Lot Number: NA12017 Date Completed: 01/23/2012

> Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

NA12017

SC DHEC No: 32010 NELAC No: E87653 NC DENR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: NA12017

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: NA12017

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	Y-57	Solid	01/12/2012 1110	01/12/2012

(1 sample)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: NA12017

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	Y-57	Solid	Anthracene	8270D	67	J	ug/kg	6
001	Y-57	Solid	Benzo(a)anthracene	8270D	260	J	ug/kg	6
001	Y-57	Solid	Benzo(a)pyrene	8270D	280	J	ug/kg	6
001	Y-57	Solid	Benzo(b)fluoranthene	8270D	210	J	ug/kg	6
001	Y-57	Solid	Benzo(g,h,i)perylene	8270D	130	J	ug/kg	6
001	Y-57	Solid	Benzo(k)fluoranthene	8270D	99	J	ug/kg	6
001	Y-57	Solid	Chrysene	8270D	280	J	ug/kg	6
001	Y-57	Solid	Fluoranthene	8270D	360		ug/kg	6
001	Y-57	Solid	Indeno(1,2,3-c,d)pyrene	8270D	98	J	ug/kg	6
001	Y-57	Solid	Phenanthrene	8270D	260	J	ug/kg	6
001	Y-57	Solid	Pyrene	8270D	620		ug/kg	6

(11 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: Y-57

Date Sampled:01/12/2012 1110

Laboratory ID: NA12017-001

Matrix: Solid

% Solids: 84.1 01/12/2012 2202

Date Received: 01/12/2012

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch Sample Wt.(g) 1 5035 8260B 01/16/2012 1541 BM 75735 5.72 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Benzene 71-43-2 8260B ND 5.2 1.1 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 5.2 1.8 1 ug/kg Toluene 108-88-3 8260B ND 5.2 1.8 ug/kg 1 Xylenes (total) 1330-20-7 8260B ND 5.2 3.0 ug/kg 1 Run 1 Acceptance Q % Recovery Surrogate Limits 1,2-Dichloroethane-d4 89 53-142 Bromofluorobenzene 114 47-138 Toluene-d8 98 68-124

PQL = Practical quantitation limit

B = Detected in the method blank

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

E = Quantitation of compound exceeded the calibration range

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Laboratory ID: NA12017-001

Description: Y-57

Matrix: Solid

Batch

Date Sampled:01/12/2012 1110

Prep Method

% Solids: 84.1 01/12/2012 2202

Date Received: 01/12/2012

Run

Terphenyl-d14

1 3550C	8270D	1 0	1/16/2012	2 2218 JCG	01/13/2	012 16	547 75652			
			CAS	Analytical	- ·		501			
Parameter		N	umber	Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene		8	3-32-9	8270D	ND		360	11	ug/kg	1
Acenaphthylene		20	8-96-8	8270D	ND		360	14	ug/kg	1
Anthracene		12	0-12-7	8270D	67	J	360	16	ug/kg	1
Benzo(a)anthracene		5	6-55-3	8270D	260	J	360	12	ug/kg	1
Benzo(a)pyrene		5	0-32-8	8270D	280	J	360	27	ug/kg	1
Benzo(b)fluoranthene		20	5-99-2	8270D	210	J	360	25	ug/kg	1
Benzo(g,h,i)perylene		19	1-24-2	8270D	130	J	360	25	ug/kg	1
Benzo(k)fluoranthene		20	7-08-9	8270D	99	J	360	30	ug/kg	1
Chrysene		21	8-01-9	8270D	280	J	360	11	ug/kg	1
Dibenzo(a,h)anthracene		5	3-70-3	8270D	ND		360	24	ug/kg	1
Fluoranthene		20	6-44-0	8270D	360		360	11	ug/kg	1
Fluorene		8	6-73-7	8270D	ND		360	14	ug/kg	1
ndeno(1,2,3-c,d)pyrene		19	3-39-5	8270D	98	J	360	33	ug/kg	1
Naphthalene		9	1-20-3	8270D	ND		360	15	ug/kg	1
Phenanthrene		8	5-01-8	8270D	260	J	360	15	ug/kg	1
Pyrene		12	9-00-0	8270D	620		360	16	ug/kg	1
Surrogate	Q	Run 1 % Recover	Accept y Limi	ance ts						
2-Fluorobiphenyl		92	33-1	02						
Nitrobenzene-d5		84	22-1	09						

41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

90

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: NQ75735-001 Batch: 75735

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	01/16/2012 1220
Ethylbenzene	ND		1	5.0	1.7	ug/kg	01/16/2012 1220
Toluene	ND		1	5.0	1.7	ug/kg	01/16/2012 1220
Xylenes (total)	ND		1	5.0	2.9	ug/kg	01/16/2012 1220
Surrogate	Q % Rec	Ace	ceptance Limit				
Bromofluorobenzene	116		47-138				
1,2-Dichloroethane-d4	86		53-142				
Toluene-d8	96		68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: NQ75735-002

Batch: 75735

Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	54	1	108	69-123	01/16/2012 1004
Ethylbenzene	50	55	1	110	59-128	01/16/2012 1004
Toluene	50	57	1	114	61-129	01/16/2012 1004
Xylenes (total)	100	110	1	111	58-128	01/16/2012 1004
Surrogate	Q % Rec	Acceptance Limit	:			
Bromofluorobenzene	111	47-138				
1,2-Dichloroethane-d4	92	53-142				
Toluene-d8	99	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: NQ75735-003

Batch: 75735

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	53	1	105	2.6	69-123	20	01/16/2012 1027
Ethylbenzene	50	52	1	105	5.1	59-128	20	01/16/2012 1027
Toluene	50	56	1	112	1.4	61-129	20	01/16/2012 1027
Xylenes (total)	100	110	1	108	2.4	58-128	20	01/16/2012 1027
Surrogate	Q % Rec	Acceptance Limit						
Bromofluorobenzene	108	47-138						
1,2-Dichloroethane-d4	87	53-142						
Toluene-d8	96	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: NQ75652-001 Batch: 75652 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 01/13/2012 1647

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Acenaphthene	ND	1	330	10	ug/kg	01/16/2012 1246
Acenaphthylene	ND	1	330	13	ug/kg	01/16/2012 1246
Anthracene	ND	1	330	15	ug/kg	01/16/2012 1246
Benzo(a)anthracene	ND	1	330	11	ug/kg	01/16/2012 1246
Benzo(a)pyrene	ND	1	330	24	ug/kg	01/16/2012 1246
Benzo(b)fluoranthene	ND	1	330	22	ug/kg	01/16/2012 1246
Benzo(g,h,i)perylene	ND	1	330	23	ug/kg	01/16/2012 1246
Benzo(k)fluoranthene	ND	1	330	27	ug/kg	01/16/2012 1246
Chrysene	ND	1	330	10	ug/kg	01/16/2012 1246
Dibenzo(a,h)anthracene	ND	1	330	22	ug/kg	01/16/2012 1246
Fluoranthene	ND	1	330	10	ug/kg	01/16/2012 1246
Fluorene	ND	1	330	13	ug/kg	01/16/2012 1246
Indeno(1,2,3-c,d)pyrene	ND	1	330	30	ug/kg	01/16/2012 1246
Naphthalene	ND	1	330	14	ug/kg	01/16/2012 1246
Phenanthrene	ND	1	330	13	ug/kg	01/16/2012 1246
Pyrene	ND	1	330	14	ug/kg	01/16/2012 1246
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	71	33-102				
Nitrobenzene-d5	67	22-109				
Terphenyl-d14	68	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: NQ75652-002 Batch: 75652 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 01/13/2012 1647

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	2500	1	76	46-114	01/16/2012 1311
Acenaphthylene	3300	2900	1	88	44-122	01/16/2012 1311
Anthracene	3300	2600	1	77	50-119	01/16/2012 1311
Benzo(a)anthracene	3300	2600	1	77	47-121	01/16/2012 1311
Benzo(a)pyrene	3300	3000	1	90	55-134	01/16/2012 1311
Benzo(b)fluoranthene	3300	2800	1	85	28-139	01/16/2012 1311
Benzo(g,h,i)perylene	3300	2900	1	86	36-125	01/16/2012 1311
Benzo(k)fluoranthene	3300	2800	1	83	47-130	01/16/2012 1311
Chrysene	3300	2500	1	74	45-126	01/16/2012 1311
Dibenzo(a,h)anthracene	3300	2900	1	87	45-122	01/16/2012 1311
Fluoranthene	3300	2700	1	80	50-123	01/16/2012 1311
Fluorene	3300	2500	1	76	48-117	01/16/2012 1311
Indeno(1,2,3-c,d)pyrene	3300	2800	1	85	45-123	01/16/2012 1311
Naphthalene	3300	2400	1	71	36-110	01/16/2012 1311
Phenanthrene	3300	2500	1	76	49-117	01/16/2012 1311
Pyrene	3300	2600	1	79	47-119	01/16/2012 1311
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	76	33-102				
Nitrobenzene-d5	73	22-109				
Terphenyl-d14	74	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

ABOUT PAMAMOTERS Sottle (See Instructions on back) CONTACT CHERAL Remarks / Cooler ID H □Unknown Number of Containers NA 120 Preservative VSHINSKI GURSTIONS Lot No. Temp, Blank O Y ŏ Number 10737 CXACT -Poison Quote No. Пте 958 OSión Irritant o, Possible Hazard Identification Receipt Temp. 3 □Flammable Date Jale DNon-Hazard II No II Ice Pack Telephone No. (803) 791-9700 Fax No. (803) 791-9111 PEKLIN Shealy Environmental Services, Inc. Sampler (Printed Name) West Columbia, South Carolina 29172 Ø 7 € QC Requirements (Specify) 106 Vantage Point Drive MANK 4. Laboratory Received, Waybill No. Repolived on Ice (Check) www.shealylab.com Received by Received by Received by LAB USE ONE ZHA9 dors8 Brex -Breo CorB Disposal by Lab Analysis OE 11 , VUSHWS16 (Turken (1522) 18110 Note: All samples are retained for six weeks from receipt Time ime me 7. NBOH elephone No. / Fax No. / Email Matrix Sample Disposal □ Return to Client 0596-678-211 unless other arrangements are made. 1/12/12 6. Na Thio. 4. HN03 8 5. HCL Report to Contact JKW47 dena=8 etisogmoD=0 Dale Date Preservative 0 2. NaOH/ZnA TAT . Unpres. DOD I MEN IS 3. H2804 Chain of Custody Record Time Around Time Required (Prior lab approval required for expedited P.O Number Date 1600 COMMENCE CIRCIT PA ISOBS N Zip Code C Rush (Please Specify) (Containers for each sample may be RIJEM Sample ID / Description combined on one line) MTR 3. Refinquished by 4. Relinquished by Refinquished by MAFFORN ONGAMES Project Number 5 roject Name Slandard HEAL Client

Shealy Environmental Services, Inc. Document Number: F-AD-016 Revision Number: 9 Page 1 of 1 Replaces Date: 05/06/11

Revision Number: 9	Replaces Date: 05/06/11 Effective Date: 10/11/1
	Sample Receipt Checklist (SRC)
Client: HTR	Cooler Inspected by/date: tel //12/12 Lot #: WA/20/7
Manna of manints D CDCI	Double Clark Chile Con
Means of receipt: SESI	Client UPS FedEx Airborne Exp Other
Yes No	Were custody seals present on the cooler?
Yes No	2. If custody seals were present, were they intact and unbroken?
Cooler ID/temperature upon r	eceipt 3 7 °C / °C / °C / °C
Method: Temperature	Blank Against Bottles
Method of coolant: W	
If response is No (or Yes for	14, 15, 16), an explanation/resolution must be provided.
V. 0 N. 0 N. 0	3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified?
Yes No No NA	PM notified by SRC, phone, note (circle one), other: (For
	coolers received via commercial courier, PMs are to be notified immediately.
Yes No NA	Is the commercial courier's packing slip attached to this form?
Yes No	5. Were proper custody procedures (relinquished/received) followed?
Yes No NA	Sa Were samples relinquished by client to commercial courier?
Yes No No	6. Were sample IDs listed?
Yes No	7. Was collection date & time listed?
Yes No No	Were tests to be performed listed on the COC?
Yes No No	Did all samples arrive in the proper containers for each test?
Yes No 🗌	10. Did all container label information (ID, date, time) agree with COC?
Yes-No 🗌	11. Did all containers arrive in good condition (unbroken, lids on, etc.)?
Yes No	12. Was adequate sample volume available?
Yes-FI No I	13. Were all samples received within ½ the holding time or 48 hours, whichever
	comes first?
Yes No-	14. Were any samples containers missing?
Yes No	15. Were there any excess samples not listed on COC?
Yes No No NA	16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?
Yes No NA	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?
Yes No NA	18. Were all cyanide and/or sulfide samples received at a pH > 12?
Yes No NA	19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb
1es No NA	(<0.2mg/L) samples free of residual chlorine?
Yes No NA	20. Were collection temperatures documented on the COC for NC samples?
Yes No No NA	21. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?
Sample Preservation (Mus	t be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) accordingly in sample receiving	were received incorrectly preserved and were adjusted ing with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
Sample(s)	were received with bubbles >6 mm in diameter.
Sample(s)	were received with TRC >0.2 mg/L for NH3/
TKN/cyanide/BNA/pest/PCB	/herb.
Corrective Action taken, if ne	
Was client notified: Yes	
SESI employee:	
Comments:	

Report of Analysis

Management and Technical Resources, Inc. 1600 Commerce Circle Trafford, PA 15085 Attention: Cheryl Yushenski

Project Name: Congaree River Sediments

Lot Number: NB01025 Date Completed: 02/15/2012

> Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

* NB01025*

SC DHEC No: 32010 NELAC No: E87653 NC DENR No: 329

Case Narrative

Management and Technical Resources, Inc.

Lot Number: NB01025

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary

Management and Technical Resources, Inc.

Lot Number: NB01025

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	K-8	Solid	02/01/2012 1030	02/01/2012
002	L-7	Solid	02/01/2012 1240	02/01/2012
003	J-11.5	Solid	02/01/2012 1300	02/01/2012

(3 samples)

Executive Summary

Management and Technical Resources, Inc.

Lot Number: NB01025

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	K-8	Solid	Acenaphthene	8270D	3700		ug/kg	7
001	K-8	Solid	Acenaphthylene	8270D	890		ug/kg	7
001	K-8	Solid	Anthracene	8270D	1200		ug/kg	7
001	K-8	Solid	Benzo(a)anthracene	8270D	4300		ug/kg	7
001	K-8	Solid	Benzo(a)pyrene	8270D	4700		ug/kg	7
001	K-8	Solid	Benzo(b)fluoranthene	8270D	4200		ug/kg	7
001	K-8	Solid	Benzo(g,h,i)perylene	8270D	1900		ug/kg	7
001	K-8	Solid	Benzo(k)fluoranthene	8270D	1600		ug/kg	7
001	K-8	Solid	Chrysene	8270D	4000		ug/kg	7
001	K-8	Solid	Dibenzo(a,h)anthracene	8270D	440		ug/kg	7
001	K-8	Solid	Fluoranthene	8270D	8200		ug/kg	7
001	K-8	Solid	Fluorene	8270D	2400		ug/kg	7
001	K-8	Solid	Indeno(1,2,3-c,d)pyrene	8270D	1500		ug/kg	7
001	K-8	Solid	Naphthalene	8270D	150	J	ug/kg	7
001	K-8	Solid	Phenanthrene	8270D	9800		ug/kg	7
001	K-8	Solid	Pyrene	8270D	9100		ug/kg	7
002	L-7	Solid	Acenaphthene	8270D	47	J	ug/kg	9
002	L-7	Solid	Acenaphthylene	8270D	160	J	ug/kg	9
002	L-7	Solid	Anthracene	8270D	150	J	ug/kg	9
002	L-7	Solid	Benzo(a)anthracene	8270D	680		ug/kg	9
002	L-7	Solid	Benzo(a)pyrene	8270D	860		ug/kg	9
002	L-7	Solid	Benzo(b)fluoranthene	8270D	790		ug/kg	9
002	L-7	Solid	Benzo(g,h,i)perylene	8270D	500		ug/kg	9
002	L-7	Solid	Benzo(k)fluoranthene	8270D	350	J	ug/kg	9
002	L-7	Solid	Chrysene	8270D	700		ug/kg	9
002	L-7	Solid	Dibenzo(a,h)anthracene	8270D	100	J	ug/kg	9
002	L-7	Solid	Fluoranthene	8270D	950		ug/kg	9
002	L-7	Solid	Fluorene	8270D	61	J	ug/kg	9
002	L-7	Solid	Indeno(1,2,3-c,d)pyrene	8270D	370	J	ug/kg	9
002	L-7	Solid	Naphthalene	8270D	31	J	ug/kg	9
002	L-7	Solid	Phenanthrene	8270D	400	J	ug/kg	9
002	L-7	Solid	Pyrene	8270D	1400		ug/kg	9
003	J-11.5	Solid	Acenaphthene	8270D	44	J	ug/kg	11
003	J-11.5	Solid	Acenaphthylene	8270D	110	J	ug/kg	11
003	J-11.5	Solid	Anthracene	8270D	64	J	ug/kg	11
003	J-11.5	Solid	Benzo(a)anthracene	8270D	560		ug/kg	11
003	J-11.5	Solid	Benzo(a)pyrene	8270D	1000		ug/kg	11
003	J-11.5	Solid	Benzo(b)fluoranthene	8270D	970		ug/kg	11
003	J-11.5	Solid	Benzo(g,h,i)perylene	8270D	600		ug/kg	11
003	J-11.5	Solid	Benzo(k)fluoranthene	8270D	390	J	ug/kg	11
003	J-11.5	Solid	Chrysene	8270D	490	J	ug/kg	11
003	J-11.5	Solid	Dibenzo(a,h)anthracene	8270D	110	J	ug/kg	11
003	J-11.5	Solid	Fluoranthene	8270D	500	J	ug/kg	11
	J-11.5	Solid	Fluorene	8270D	45	J	ug/kg	11
003	J-11.3	Jona	1 1401 0110					

Executive Summary (Continued)

Lot Number: NB01025

Sample Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
003 J-11.5	Solid	Phenanthrene	8270D	190	J	ug/kg	11
003 J-11.5	Solid	Pyrene	8270D	650		ug/kg	11

(47 detections)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: K-8

Date Sampled:02/01/2012 1030

Laboratory ID: NB01025-001

Matrix: Solid

% Solids: 79.2 02/02/2012 0035

Date Received: 02/01/2012

Run 1	Prep Method 5035	Analytical Method 8260B		ysis Date /2012 1524	Analyst DLB	Prep [Date	Batch 77207	Sample V 5.23	137	
Param	neter		C.A Numb		lytical ethod	Result	Q	PQL	MDL	Units	Run
Benze	ne		71-43	-2	8260B	ND		6.0	1.3	ug/kg	1
Ethylb	enzene		100-41	-4	8260B	ND		6.0	2.1	ug/kg	1
Toluer	ne		108-88	-3	8260B	ND		6.0	2.1	ug/kg	1
Xylene	es (total)		1330-20)-7	8260B	ND		6.0	3.5	ug/kg	1
Surro	gate	Q	Run 1 Ac % Recovery	cceptance Limits							
1,2-Did	chloroethane-d4		87	53-142							
Bromo	fluorobenzene		81	47-138							
Toluer	ne-d8		93	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

 $J = Estimated result < PQL and <math>\geq MDL$

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: K-8

Date Sampled:02/01/2012 1030

Matrix: Solid

Laboratory ID: NB01025-001

% Solids: 79.2 02/02/2012 0035

Date Received: 02/01/2012

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3550C 8270D 02/03/2012 1904 TAF 02/02/2012 1318 76910 2 3550C 8270D 2 02/06/2012 1206 TAF 02/02/2012 1318 76910

Parameter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	3700		410	13	ug/kg	1
Acenaphthylene		208-96-8	8270D	890		410	16	ug/kg	1
Anthracene		120-12-7	8270D	1200		410	18	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	4300		410	14	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	4700		410	30	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	4200		410	28	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	1900		410	28	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	1600		410	34	ug/kg	1
Chrysene		218-01-9	8270D	4000		410	13	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	440		410	27	ug/kg	1
Fluoranthene		206-44-0	8270D	8200		410	13	ug/kg	1
Fluorene		86-73-7	8270D	2400		410	16	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	1500		410	37	ug/kg	1
Naphthalene		91-20-3	8270D	150	J	410	17	ug/kg	1
Phenanthrene		85-01-8	8270D	9800		410	17	ug/kg	1
Pyrene		129-00-0	8270D	9100		820	36	ug/kg	2
Surrogate	Q		eptance mits Q %	Run 2 Ao Recovery	cceptance Limits)			
2-Fluorobiphenyl		61 33	3-102	56	33-102				
Nitrobonzono dE		42 21	100	27	22 100				

Surrogate	Q	% Recovery	Limits	Q	% Recovery	Limits
2-Fluorobiphenyl		61	33-102		56	33-102
Nitrobenzene-d5		42	22-109		37	22-109
Terphenyl-d14		66	41-120		55	41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Page: 7 of 19

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: L-7

Date Sampled:02/01/2012 1240

Laboratory ID: NB01025-002 Matrix: Solid

% Solids: 80.0 02/02/2012 0035

Date Received: 02/01/2012

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution Analysis I 1 02/07/2012	,	Prep Date	Batch 77207	Sample V 4.12	137	
Param	neter		CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benzer	ne		71-43-2	8260B	ND	7.6	1.7	ug/kg	1
Ethylbe	enzene		100-41-4	8260B	ND	7.6	2.6	ug/kg	1
Toluen	e		108-88-3	8260B	ND	7.6	2.6	ug/kg	1
Xylene	s (total)		1330-20-7	8260B	ND	7.6	4.4	ug/kg	1

Surrogate	Q	Run 1 A % Recovery	cceptance Limits
1,2-Dichloroethane-d4		89	53-142
Bromofluorobenzene		82	47-138
Toluene-d8		93	68-124

PQL = Practical quantitation limit

B = Detected in the method blank

 $J = Estimated result < PQL and \ge MDL$

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Analyst

Prep Date

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

Analytical Method

Description: L-7

Matrix: Solid

Batch

Date Sampled:02/01/2012 1240

Prep Method

% Solids: 80.0 02/02/2012 0035

Laboratory ID: NB01025-002

Date Received: 02/01/2012

Run

1 3550C	8270D	1 02/03/201	,	02/02/20		76910			
Damanadan		CAS	Analytical	December	0	DOL	MDI	11-14-	D
Parameter		Number	Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	47	J	410	13	ug/kg	1
Acenaphthylene		208-96-8	8270D	160	J	410	16	ug/kg	1
Anthracene		120-12-7	8270D	150	J	410	18	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	680		410	14	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	860		410	30	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	790		410	28	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	500		410	28	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	350	J	410	34	ug/kg	1
Chrysene		218-01-9	8270D	700		410	13	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	100	J	410	27	ug/kg	1
Fluoranthene		206-44-0	8270D	950		410	13	ug/kg	1
Fluorene		86-73-7	8270D	61	J	410	16	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	370	J	410	37	ug/kg	1
Naphthalene		91-20-3	8270D	31	J	410	17	ug/kg	1
Phenanthrene		85-01-8	8270D	400	J	410	17	ug/kg	1
Pyrene		129-00-0	8270D	1400		410	18	ug/kg	1
Surrogate	Q	Run 1 Accep % Recovery Lin							
2-Fluorobiphenyl		65 33-	102						
Nitrobenzene-d5		49 22-	109						
Terphenyl-d14		66 41-	120						

PQL = Practical quantitation limit

B = Detected in the method blank

H = Out of holding time

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

 $J = Estimated result < PQL and \ge MDL$

P = The RPD between two GC columns exceeds 40%

E = Quantitation of compound exceeded the calibration range

N = Recovery is out of criteria

* = Reportable result (only when report all runs)

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: J-11.5

Date Sampled:02/01/2012 1300

Laboratory ID: NB01025-003

Matrix: Solid

% Solids: 62.6 02/02/2012 0035

Date Received: 02/01/2012

Run 1	Prep Method 5035	Analytical Method 8260B		lysis Date 7/2012 1612	Analyst DLB	Prep D	ate Batch 77207	Sample \ 4.12	137	
Param	neter		C. Numb		llytical ethod	Result	Q PQL	MDL	Units	Run
Benze	ne		71-43	3-2	8260B	ND	9.7	2.1	ug/kg	1
Ethylbe	enzene		100-41	1-4	8260B	ND	9.7	3.3	ug/kg	1
Toluen	ie		108-88	3-3	8260B	ND	9.7	3.3	ug/kg	1
Xylene	es (total)		1330-20	D-7	8260B	ND	9.7	5.6	ug/kg	1
Surro	gate	Q	Run 1 A % Recovery	cceptance Limits						
1,2-Dic	chloroethane-d4		91	53-142						·
Bromo	fluorobenzene		93	47-138						
Toluen	ie-d8		95	68-124						

PQL = Practical quantitation limit

B = Detected in the method blank

 $J = Estimated result < PQL and <math>\geq MDL$

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Semivolatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Laboratory ID: NB01025-003

Description: J-11.5

Matrix: Solid

Date Sampled:02/01/2012 1300

% Solids: 62.6 02/02/2012 0035

Date Received: 02/01/2012

RunPrep MethodAnalytical MethodDilutionAnalysis DateAnalystPrep DateBatch13550C8270D102/06/2012 1231TAF02/02/2012 131876910

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	44	J	520	16	ug/kg	1
Acenaphthylene	208-96-8	8270D	110	J	520	21	ug/kg	1
Anthracene	120-12-7	8270D	64	J	520	23	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	560		520	17	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	1000		520	38	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	970		520	35	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	600		520	35	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	390	J	520	43	ug/kg	1
Chrysene	218-01-9	8270D	490	J	520	16	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	110	J	520	35	ug/kg	1
Fluoranthene	206-44-0	8270D	500	J	520	16	ug/kg	1
Fluorene	86-73-7	8270D	45	J	520	20	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	460	J	520	47	ug/kg	1
Naphthalene	91-20-3	8270D	ND		520	22	ug/kg	1
Phenanthrene	85-01-8	8270D	190	J	520	21	ug/kg	1
Pyrene	129-00-0	8270D	650		520	23	ug/kg	1
Surrogate	Run 1 Accep Q % Recovery Lim	tance its						
2-Fluorobiphenyl	48 33-	102		•				
Nitrobenzene-d5	36 22-	109						
Terphenyl-d14	52 41-	120						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

 $\ensuremath{\mathsf{ND}}$ = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: NQ77207-001 Batch: 77207

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	5.0	1.1	ug/kg	02/07/2012 1135
Ethylbenzene	ND		1	5.0	1.7	ug/kg	02/07/2012 1135
Toluene	ND		1	5.0	1.7	ug/kg	02/07/2012 1135
Xylenes (total)	ND		1	5.0	2.9	ug/kg	02/07/2012 1135
Surrogate	Q % Red	A	cceptance Limit				
Bromofluorobenzene	98		47-138				
1,2-Dichloroethane-d4	94		53-142				
Toluene-d8	98		68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: NQ77207-002 Batch: 77207

Analytical Method: 8260B

Matrix: Solid Prep Method: 5035

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	44	1	89	69-123	02/07/2012 1001
Ethylbenzene	50	44	1	88	59-128	02/07/2012 1001
Toluene	50	43	1	86	61-129	02/07/2012 1001
Xylenes (total)	100	90	1	90	58-128	02/07/2012 1001
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	94	47-138				
1,2-Dichloroethane-d4	87	53-142				
Toluene-d8	102	68-124				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: NQ77207-003 Batch: 77207 Matrix: Solid Prep Method: 5035

Analytical Method: 8260B

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit) Analysis Date
Benzene	50	49	1	99	10	69-123	20	02/07/2012 1025
Ethylbenzene	50	49	1	97	9.9	59-128	20	02/07/2012 1025
Toluene	50	48	1	95	10	61-129	20	02/07/2012 1025
Xylenes (total)	100	99	1	99	9.5	58-128	20	02/07/2012 1025
Surrogate	Q % Rec	Acceptance Limit	е					
Bromofluorobenzene	93	47-138		•	•	•	•	_
1,2-Dichloroethane-d4	87	53-142						
Toluene-d8	102	68-124						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: NQ76910-001 Batch: 76910 Matrix: Solid Prep Method: 3550C

Analytical Method: 8270D

Prep Date: 02/02/2012 1318

Parameter	Result	Q [il PQL	MDL	Units	Analysis Date
Acenaphthene	ND		330	10	ug/kg	02/03/2012 1814
Acenaphthylene	ND	•	330	13	ug/kg	02/03/2012 1814
Anthracene	ND	•	330	15	ug/kg	02/03/2012 1814
Benzo(a)anthracene	ND	•	330	11	ug/kg	02/03/2012 1814
Benzo(a)pyrene	ND		330	24	ug/kg	02/03/2012 1814
Benzo(b)fluoranthene	ND		330	22	ug/kg	02/03/2012 1814
Benzo(g,h,i)perylene	ND		330	23	ug/kg	02/03/2012 1814
Benzo(k)fluoranthene	ND		330	27	ug/kg	02/03/2012 1814
Chrysene	ND		330	10	ug/kg	02/03/2012 1814
Dibenzo(a,h)anthracene	ND		330	22	ug/kg	02/03/2012 1814
Fluoranthene	ND	•	330	10	ug/kg	02/03/2012 1814
Fluorene	ND	•	330	13	ug/kg	02/03/2012 1814
Indeno(1,2,3-c,d)pyrene	ND	•	330	30	ug/kg	02/03/2012 1814
Naphthalene	ND	•	330	14	ug/kg	02/03/2012 1814
Phenanthrene	ND		330	13	ug/kg	02/03/2012 1814
Pyrene	ND		330	14	ug/kg	02/03/2012 1814
Surrogate	Q % Red	Accepta Limit	nce			
2-Fluorobiphenyl	70	33-10	2			
Nitrobenzene-d5	60	22-10	9			
Terphenyl-d14	76	41-12)			

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: NQ76910-002 Batch: 76910 Matrix: Solid Prep Method: 3550C

Prep Date: 02/02/2012 1318

Analytical Method:	8270D

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	! Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	3300	2800	1	83	46-114	02/03/2012 1839
•			1			
Acenaphthylene	3300	3200	•	95	44-122	02/03/2012 1839
Anthracene	3300	2800	1	85	50-119	02/03/2012 1839
Benzo(a)anthracene	3300	3000	1	89	47-121	02/03/2012 1839
Benzo(a)pyrene	3300	3200	1	95	55-134	02/03/2012 1839
Benzo(b)fluoranthene	3300	2900	1	88	28-139	02/03/2012 1839
Benzo(g,h,i)perylene	3300	2700	1	81	36-125	02/03/2012 1839
Benzo(k)fluoranthene	3300	3100	1	93	47-130	02/03/2012 1839
Chrysene	3300	2800	1	83	45-126	02/03/2012 1839
Dibenzo(a,h)anthracene	3300	2900	1	88	45-122	02/03/2012 1839
Fluoranthene	3300	2900	1	88	50-123	02/03/2012 1839
Fluorene	3300	2800	1	84	48-117	02/03/2012 1839
Indeno(1,2,3-c,d)pyrene	3300	2900	1	86	45-123	02/03/2012 1839
Naphthalene	3300	2400	1	71	36-110	02/03/2012 1839
Phenanthrene	3300	2800	1	84	49-117	02/03/2012 1839
Pyrene	3300	3000	1	89	47-119	02/03/2012 1839
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobiphenyl	79	33-102				·
Nitrobenzene-d5	67	22-109				
Terphenyl-d14	78	41-120				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: NB01025-002MS

Batch: 76910

Prep Method: 3550C Analytical Method: 8270D

Prep Date: 02/02/2012 1318

Matrix: Solid

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	47	4000	3200		1	79	30-130	02/03/2012 1954
Acenaphthylene	160	4000	3600		1	85	30-130	02/03/2012 1954
Anthracene	150	4000	3200		1	75	30-130	02/03/2012 1954
Benzo(a)anthracene	680	4000	3700		1	75	30-130	02/03/2012 1954
Benzo(a)pyrene	860	4000	4100		1	81	30-130	02/03/2012 1954
Benzo(b)fluoranthene	790	4000	3900		1	78	30-130	02/03/2012 1954
Benzo(g,h,i)perylene	500	4000	3400		1	73	30-130	02/03/2012 1954
Benzo(k)fluoranthene	350	4000	3300		1	74	30-130	02/03/2012 1954
Chrysene	700	4000	3400		1	68	30-130	02/03/2012 1954
Dibenzo(a,h)anthracene	100	4000	3300		1	80	30-130	02/03/2012 1954
Fluoranthene	950	4000	3800		1	71	30-130	02/03/2012 1954
Fluorene	61	4000	3100		1	76	30-130	02/03/2012 1954
Indeno(1,2,3-c,d)pyrene	370	4000	3400		1	75	30-130	02/03/2012 1954
Naphthalene	31	4000	2700		1	65	30-130	02/03/2012 1954
Phenanthrene	400	4000	3300		1	72	30-130	02/03/2012 1954
Pyrene	1400	4000	4000		1	64	30-130	02/03/2012 1954
Surrogate	Q % Re	ec Ac	cceptance Limit					
2-Fluorobiphenyl	71	•	33-102				•	
Nitrobenzene-d5	60		22-109					
Terphenyl-d14	69		41-120					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: NB01025-002MD

Batch: 76910 Analytical Method: 8270D Matrix: Solid Prep Method: 3550C

Prep Date: 02/02/2012 1318

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg) C	Ω Dil	% Rec	% RPD	% Rec Limit	% RPI	O Analysis Date
Acenaphthene	47	4100	3000	1	72	6.5	30-130	40	02/03/2012 2019
Acenaphthylene	160	4100	3400	1	78	5.4	30-130	40	02/03/2012 2019
Anthracene	150	4100	3000	1	70	4.6	30-130	40	02/03/2012 2019
Benzo(a)anthracene	680	4100	3900	1	77	3.9	30-130	40	02/03/2012 2019
Benzo(a)pyrene	860	4100	4600	1	92	11	30-130	40	02/03/2012 2019
Benzo(b)fluoranthene	790	4100	4200	1	84	7.1	30-130	40	02/03/2012 2019
Benzo(g,h,i)perylene	500	4100	3600	1	75	4.4	30-130	40	02/03/2012 2019
Benzo(k)fluoranthene	350	4100	3600	1	80	8.7	30-130	40	02/03/2012 2019
Chrysene	700	4100	3600	1	71	4.6	30-130	40	02/03/2012 2019
Dibenzo(a,h)anthracene	100	4100	3300	1	77	1.7	30-130	40	02/03/2012 2019
Fluoranthene	950	4100	4000	1	75	6.1	30-130	40	02/03/2012 2019
Fluorene	61	4100	2900	1	69	7.7	30-130	40	02/03/2012 2019
Indeno(1,2,3-c,d)pyrene	370	4100	3500	1	76	2.7	30-130	40	02/03/2012 2019
Naphthalene	31	4100	2300	1	55	15	30-130	40	02/03/2012 2019
Phenanthrene	400	4100	3300	1	70	0.14	30-130	40	02/03/2012 2019
Pyrene	1400	4100	4500	1	76	13	30-130	40	02/03/2012 2019
Surrogate	Q % Re		ceptance Limit						
2-Fluorobiphenyl	62		33-102		·				
Nitrobenzene-d5	48		22-109						
Terphenyl-d14	63		41-120						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

SHEALY Chain of Custody Record West

SHEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive

West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

WITH PANAMETERS UBOloss CONTACT CHERY ANY QUESTIONS Remarks / Cooler LD. YUSHINSKI IF 8 Quote Ma Page MERNAGIN QUITE-INCHE Analysis (Attach list if more space is needed. All samples are refained for six weeks from receipt Receipt Tentp. unless other arrangements are made. Telephone No. / Fax No. / E-mail 412-829-9650 SH AND Ace Pack Note: 8 1,683 GC Requirements (Specify) 3. Laboratory received by LAB USE ONLY Received on los (Oricle) by Preservative Type Disposal by Lab 40V 98/05 "No. of Confainers 1. Несемед бу HOW DHYUSHIUSKA SONH POSSA savdyn しいいてる 1452 1452 ☐ Return to Citent 1440 1440 Surple Disposar SIMANIES DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PRWK-Field/Client Copy CHERYL Report to Confact Samplar's Signatu KAYLA noanb Printed Name 0 2/1/26 28 V B 21/12 2/1/2 PAR P Unforcent Required (Prior tab approval required for expectited TAT.) 1030 1300 Sets Sets 240 P.O. No. 15085 SCOMONTS Zlo Code □ Sken forfant □ Poison (Containers for each sample may be combined on one line, PA 1 23 C CONGARCE RIVER Sample ID / Description 1600 COMMERCE ush (Specify) seithe Hazard Infentification THA FFORD MIR -11.5 Presided Manne m Around Sandard B Project No.

Document Number: F-AD-012 Effective Date: 08-04-02

Page 1 of 1

Shealy Environmental Services, Inc. Document Number: F-AD-016 Replaces Date: 05/06/11 Revision Number: 9 Effective Date: 10/11/11 Sample Receipt Checklist (SRC) Cooler Inspected by/date: 6 A/1/12 Lot #: NB0/075 LITE Client: Client Means of receipt: SESI ☐ UPS Other FedEx Airborne Exp Were custody seals present on the cooler? No Yes No If custody seals were present, were they intact and unbroken? Cooler ID/temperature upon receipt °C Method: Temperature Blank Against Bottles Method of coolant: Wet Ice Blue Ice Dry Ice None If response is No (or Yes for 14, 15, 16), an explanation/resolution must be provided. If temperature of any cooler exceeded 6.0°C, was Project Manager notified? Yes No NA P PM notified by SRC, phone, note (circle one), other: coolers received via commercial courier, PMs are to be notified immediately. Yes No NA 🖸 Is the commercial courier's packing slip attached to this form? Yes -No Were proper custody procedures (relinquished/received) followed? No NA 5a Were samples relinquished by client to commercial courier? Yes Yes No 6. Were sample IDs listed? Yes 🖊 No Was collection date & time listed? Yes No 8. Were tests to be performed listed on the COC? Yes No 9. Did all samples arrive in the proper containers for each test? No 10. Did all container label information (ID, date, time) agree with COC? Yes Yes No 11. Did all containers arrive in good condition (unbroken, lids on, etc.)? Yes No 12. Was adequate sample volume available? 13. Were all samples received within 1/2 the holding time or 48 hours, whichever Yes 🖂 No comes first? Yes No 14. Were any samples containers missing? Yes 15. Were there any excess samples not listed on COC? No 16. Were bubbles present >"pea-size" (1/2" or 6mm in diameter) in any VOA NAFT Yes No vials? Were all metals/O&G/HEM/nutrient samples received at a pH of <2? Yes No NA 18. Were all cyanide and/or sulfide samples received at a pH >12? Yes No 19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb Yes No NA 🗗 (<0.2mg/L) samples free of residual chlorine? Yes No NA 20. Were collection temperatures documented on the COC for NC samples? Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, Yes No etc...) correctly transcribed from the COC into the comment section in LIMS? Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with (H₂SO₄,HNO₃,HCl,NaOH) with the SR # (number) were received with bubbles >6 mm in diameter. Sample(s) Sample(s) were received with TRC > 0.2 mg/L for NH3/ TKN/cyanide/BNA/pest/PCB/herb. Corrective Action taken, if necessary: Was client notified: Yes No Yes No Did client respond: SESI employee: Date of response: Comments:

Management and Technical Resources, Inc.

Memo

To: Rusty Contrael

From: Cheryl Yushinski

Date: March 11, 2011

Re: Evaluation of Analytical Data for Soil Samples Collected in February 2011

SCE&G Congaree River, Columbia, South Carolina

Sample Identification

I-17 J-19 K-19 L-19 O-17

Overview

Five soil samples were collected from February 22 through February 23, 2011.

The samples collected during the February 2011 sampling event were submitted to Shealy Environmental Services, Inc. (Shealy) located in West Columbia, South Carolina, for laboratory analyses. The laboratory analyses included BTEX (benzene, toluene, ethylbenzene and total xylenes) via EPA Method 8260B, PAHs (polynuclear aromatic hydrocarbons) by EPA Method 8270C. The analytical results were reported in one sample delivery group (SDG) – MB23028. A Level II data package was provided for the SDG.

Summary

Quality control (QC) measures associated with the analytical data were reviewed following the U.S. EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (June 2008) to determine the accuracy and precision of the data reported. These QC measures included sample preservation, holding times, laboratory blanks, surrogate recoveries, and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results. Data usability is presented below.

Data Usability Results

The laboratory provided results with any confirmed detections that fell between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) being reported and qualified as estimated, "J". Any laboratory-qualified results with concentrations below the undiluted PQL value were reported as non-detects. Any

parameters with elevated detection limits without detections above the MDL were reported to the MDL or the undiluted PQL value (whichever was greater) and qualified as estimated, "UJ".

Recommendations for Data Usability

The reviewed QC results were reflective of typical minor QC exceedances and did not indicate that any significant problems existed with data precision and accuracy, as reported. All BTEX and PAH data should be considered usable for intended data uses including those data qualified as estimated, as these issues were generally very minor in nature.

Information Regarding Report Content

- 1. Glossary of Data Qualifier Codes
- 2. Attachment A Shealy Data Summary Reports. This includes qualified results as originally reported by the laboratory with applicable qualifier codes as annotated by MTR.

GLOSSARY OF DATA QUALIFIER CODES

The following definitions provide a brief explanation of the national qualifiers assigned to results in the data review process.

CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds.)

U = Indicates that the constituent was not detected at the reported detection limit.

(NO CODE) = Confirmed identification

- UR = Indicates that the constituent was not detected above the reporting limit. However, the result is unusable due to the holding time being grossly exceeded.
- R = Unusable Result. The sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

CODES RELATED TO QUANTITATION

(Can be used for positive results and sample quantitation limits.)

- J = Indicates an estimated value. The constituent was positively identified. However, the result was less than the quantitation limit but greater than zero; or based on the data evaluation, the associated result is an approximate concentration of the constituent in the sample.
- UJ = Indicates that the constituent was not detected above the reporting limit. However, based on the data evaluation, the reported result is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the concentration of the constituent in the sample.

ATTACHMENT A SHEALY DATA SUMMARY REPORT

Volatile Organic Compounds by GC/MS

Client: Management and Technical Resources, Inc.

Description: J-19

Analytical Method

8260B

8260B

50

100

109

105

Laboratory ID: MB23028-001 Matrix: Solid

5.77

Date Sampled:02/22/2011 1300

Prep Method

5035

5035

% Solids: 79.1 02/23/2011 2014

53878

Date Received: 02/23/2011

1,2-Dichloroethane-d4

Bromofluorobenzene

Toluene-d8

Run

1

2

Dilution Analysis Date Analyst **Prep Date** Batch Sample Wt.(g) 02/24/2011 1728 DLB 53650 6.49

64

66

64

53-142

47-138

68-124

LBS

meter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Rur
zene	71-43-2	8260B	37		4.9	1.1	ug/kg	1
Ibenzene	100-41-4	8260B	2200		270	93	ug/kg	2
ene	108-88-3	8260B	B 8.1		4.9	1.7	ug/kg	1
nes (total)	1330-20-7	8260B	190		4.9	2.8	ug/kg	1
nes (total)	1330-20-7 Run 1 Accepta Q % Recovery Limit	ance F	Run 2 Acc	eptance .imits		2.8	ug/kg	

53-142

47-138

68-124

Ν

03/01/2011 0644

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-001

Matrix: Solid

Description: J-19

% Solids: 79.1 02/23/2011 2014

Date Sampled:02/22/2011 1300 Date Received: 02/23/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	2	03/01/2011 1955	JGH	02/28/2011 2022	53787
2	3550C	8270D	20	03/06/2011 0909	JGH	02/28/2011 2022	53787

Parameter			CAS A nber	nalytical Method	Result	Q	PQL	MDL	Units	Rur
Acenaphthene		83-	32-9	8270D	58000	;	8300	250	ug/kg	2
Acenaphthylene		208-	96-8	8270D	4500		830	33	ug/kg	1
Anthracene		120-	12-7	8270D	41000		8300	370	ug/kg	2
Benzo(a)anthracene		56-	55-3	8270D	29000		8300	270	ug/kg	2
Benzo(a)pyrene		50-	32-8	8270D	34000		8300	600	ug/kg	2
Benzo(b)fluoranthene		205-	99-2	8270D	18000		830	56	ug/kg	1
Benzo(g,h,i)perylene		191-	24-2	8270D	9500		830	56	ug/kg	1
Benzo(k)fluoranthene		207-	08-9	8270D	ND	415 UJ	830	68	ug/kg	1
Chrysene		218-	01-9	8270D	34000		8300	260	ug/kg	2
Dibenzo(a,h)anthracene		53-	70-3	8270D	2400	3/10/11	830	55	ug/kg	1
Fluoranthene		206-	44-0	8270D	51000		8300	260	ug/kg	2
Fluorene		86-	73-7	8270D	35000		8300	320	ug/kg	2
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	7200		830	75	ug/kg	1
Naphthalene		91-	20-3	8270D	82000		8300	350	ug/kg	2
Phenanthrene		85-	01-8	8270D	150000		8300	340	ug/kg	2
Pyrene		129-	00-0	8270D	92000		8300	360	ug/kg	2
Surrogate	Q	Run 1 % Recovery	Acceptance Limits		Run 2 A Recovery	cceptance Limits				
2-Fluorobiphenyl		79	33-102		81	33-102				
Nitrobenzene-d5		61	22-109		66	22-109				
		70	44 400		07	44 420				

2-Fluorobiphenyl	79	33-102	81	33-102
Nitrobenzene-d5	61	22-109	66	22-109
Terphenyl-d14	72	41-120	87	41-120

POL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-002

Matrix: Solid

Date Sampled:02/22/2011 1330

% Solids: 91.6 02/23/2011 2014

Date Received: 02/23/2011

Description: K-19

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	02/23/2011 2034	DLB		53530	5.22

5035	8260B	1 02/	23/2011 2	:034 DLB		53530	5.22		
				Analytical Method	Result	Q PQL	MDL	Units	Run
		71-	43-2	8260B	ND	5.2	1.2	ug/kg	1
		100-	41-4	8260B	ND	5.2	1.8	ug/kg	1
		108-	88-3	8260B	ND	5.2	1.8	ug/kg	1
		1330-	20-7	8260B	ND	5.2	3.0	ug/kg	1
	Q	Run 1 % Recovery				ggelande 404 flatterbilge veda je vezvelvind finledir (2 a - ¹⁰⁰ Pinledigen)			
ane-d4		95	53-142	2					
nzene		113	47-138	3					
		104	68-124	1					
	ane-d4	Q ane-d4	Nur 71- 100- 108- 1330- Run 1 Q % Recovery ane-d4 95 nzene 113	CAS Number 71-43-2 100-41-4 108-88-3 1330-20-7 Run 1 Acceptan Q % Recovery Limits ane-d4 95 53-142 nzene 113 47-138	CAS Malytical Number Method 71-43-2 8260B 100-41-4 8260B 108-88-3 8260B 1330-20-7 8260B Run 1 Acceptance Q % Recovery Limits ane-d4 95 53-142 azene 113 47-138	CAS Analytical Number Method Result	CAS Analytical Result Q PQL	CAS Analytical Result Q PQL MDL	CAS Analytical Result Q PQL MDL Units

PQL = Practical quantitation limit

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-002

Matrix: Solid

% Solids: 91.6 02/23/2011 2014

Description: K-19

Date Received: 02/23/2011

Date Sampled:02/22/2011 1330

Prep Date Batch

Run Pi 1	rep Method 3550C	Analytical Method 8270D	Dilution 1		ysis Date /2011 0927	Analyst JGH	Prep Da 02/28/201		Batch 53787			
				CA	AS Ana	lytical		_				
Paramete	r			Numb	er M	ethod	Result	Q	PQL	MDL	Units	Run
Acenapht	hene			83-32	-9	8270D	890		340	10	ug/kg	1
Acenapht	hylene			208-96	-8	8270D	410		340	13	ug/kg	1
Anthrace:	ne			120-12	-7	8270D	1800		340	15	ug/kg	1
Benzo(a)a	inthracene			56-55	-3	8270D	1900		340	11	ug/kg	1
Benzo(a)				50-32	-8	8270D	1900		340	25	ug/kg	1
	luoranthene			205-99	-2	8270D	1400		340	23	ug/kg	1
• •	n,i)perylene			191-24	-2	8270D	650		340	23	ug/kg	1
	luoranthene			207-08	-9	8270D	540		340	28	ug/kg	1
Chrysene				218-01	-9	8270D	2100		340	10	ug/kg	1
•	a,h)anthracene			53-70	-3	8270D	420		340	22	ug/kg	1
Fluoranth				206-44	-0	8270D	3600		340	11	ug/kg	1
Fluorene				86-73	-7	8270D	810		340	13	ug/kg	1
Indeno(1,	2,3-c,d)pyrene			193-39	-5	8270D	500		340	30	ug/kg	1
Naphthale				91-20	-3	8270D	ND		340	14	ug/kg	1
Phenanth	rene			85-01	-8	8270D	4800		340	14	ug/kg	1
Pyrene				129-00	-0	8270D	5800		340	15	ug/kg	1
Surrogate	•	Q	Run % Reco		ceptance Limits							
2-Fluorobi	phenyl		90		33-102							
Nitrobenze	•		86		22-109							
Terphenyl	-d14		95		41-120							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-003

Matrix: Solid

Description: L-19

Date Sampled:02/22/2011 1345

Date Received: 02/23/2011

% Solids: 85.2 02/23/2011 2014

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution Analysis Date 1 02/23/2011 20		-	Prep Da	ite	Batch 53530	Sample \		
Parame	ter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene	e			71-43-2	8260B	ND		5.1	1.1	ug/kg	1
Ethylber			1	100-41-4	8260B	ND		5.1	1.7	ug/kg	1
Toluene			1	108-88-3	8260B	ND		5.1	1.7	ug/kg	1
Xylenes	(total)		13	330-20-7	8260B	ND		5.1	3.0	ug/kg	1
Surroga	ate	Q	Run 1 % Recov			- Laurence		appen many aggregation from an appen and about a part of the second and a part of the second and a part of the			
1,2-Dich	nloroethane-d4		96	53-1	42						
	uorobenzene		114	47-1	38						
Toluene	e-d8		104	68-1	24						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-003

Matrix: Solid

Description: L-19

Date Received: 02/23/2011

Date Sampled:02/22/2011 1345

% Solids: 85.2 02/23/2011 2014

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	03/06/2011 0946	JGH	02/28/2011 2022	53787

Parameter		CAS Number		Result Q	PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	210 J	370 U	11	ug/kg	1
Acenaphthylene		208-96-8	8270D	96J	370 U	15	ug/kg	1
Anthracene		120-12-7	8270D	310J	370 U	16	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	2 70	370 L	12	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	3 20 J	370 U	27	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	190 J	370 U	25	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	12 0 J	370 U	25	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	130 J	370 U	31	ug/kg	1
Chrysene		218-01-9	8270D	28 0 J	370 U	12	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	350J	370 U	25	ug/kg	1
Fluoranthene		206-44-0	8270D	450	370	12	ug/kg	1
Fluorene		86-73-7	8270D	170 J	370 💢	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	81J	370 🖯	34	ug/kg	1
Naphthalene		91-20-3	8270D	170 J	370 U	16	ug/kg	1
Phenanthrene		85-01-8	8270D	940	370	15	ug/kg	1
Pyrene		129-00-0	8270D	750	370	16	ug/kg	1
Surrogate	Q %		eptance imits	CL4 3/10				
2-Fluorobiphenyl		86 3	3-102					
Nitrobenzene-d5		84 2	2-109					
Terphenyl-d14		90 4	1-120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-004

Matrix: Solid

Description: I-17

Date Sampled:02/23/2011 1000

% Solids: 59.9 02/23/2011 2014

Date Received: 02/23/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B		02/24/2011 1750			53650	4.98

1 5	5035	8260B	1 02	2/24/2011 1	750 DLB			53650	4.98	i	
Parameter			Nu	CAS ımber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene			71	I-43-2	8260B	4.7	_J	8.4 U	1.8	ug/kg	1
Ethylbenzene			100	-41-4	8260B	5.5	J	8.4 (K	2.8	ug/kg	1
Toluene			108	3-88-3	8260B	ND		8.4	2.8	ug/kg	1
Xylenes (total)			1330)-20-7	8260B	58		8.4	4.9	ug/kg	1
Surrogate		Q	Run 1 % Recover	Acceptar y Limits		· · · · · · · · · · · · · · · · · · ·	? (4 .	3/10/11			-
1,2-Dichloroethan	ie-d4		94	53-142	2						
Bromofluorobenze	ene		85	47-138	3						
Toluene-d8			95	68-124	4						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-004

Matrix: Solid

Description: I-17

Date Sampled:02/23/2011 1000

% Solids: 59.9 02/23/2011 2014

Date Received: 02/23/2011

Dilution Analysis Date Analyst **Prep Date** Batch **Analytical Method Prep Method** Run 02/28/2011 2022 53787 03/01/2011 2013 JGH 8270D 1 3550C 1 03/06/2011 1005 JGH 02/28/2011 2022 53787 8270D 20 3550C

Parameter			CAS A	nalytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene		83-	32-9	8270D	59000	11000	330	ug/kg	2
Acenaphthylene		208-	96-8	8270D	4700	530	21	ug/kg	1
Anthracene		120-	12-7	8270D	65000	11000	470	ug/kg	2
Benzo(a)anthracene		56-	55-3	8270D	28000	11000	350	ug/kg	2
Benzo(a)pyrene		50-	32-8	8270D	27000	11000	780	ug/kg	2
Benzo(b)fluoranthene		205-	99-2	8270D	17000	11000	720	ug/kg	2
Benzo(g,h,i)perylene		191-	24-2	8270D	7400	530	36	ug/kg	.1
Benzo(k)fluoranthene		207-	08-9	8270D	6600	530	44	ug/kg	1
Chrysene		218-	01-9	8270D	26000	11000	330	ug/kg	2
Dibenzo(a,h)anthracene		53-	70-3	8270D	1800	530	35	ug/kg	1
Fluoranthene		206-	44-0	8270D	76000	11000	340	ug/kg	2
Fluorene		86-	73-7	8270D	37000	11000	410	ug/kg	2
indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	6800	530	48	ug/kg	1
Naphthalene		91-	20-3	8270D	790	530	23	ug/kg	1
Phenanthrene		85-	01-8	8270D	170000	11000	430	ug/kg	2
Pyrene		129-	00-0	8270D	97000	11000	460	ug/kg	2
Surrogate	Q	Run 1 % Recovery	Acceptance Limits		Run 2 Ad Recovery	cceptance Limits			
2-Fluorobiphenyl		73	33-102		75	33-102			
Nitrobenzene-d5		67	22-109		62	22-109			
Terphenyl-d14		58	41-120		73	41-120			

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-005

Matrix: Solid

Description: 0-17

Date Sampled:02/23/2011 1015

% Solids: 87.9 02/23/2011 2014

Date Received: 02/23/2011

Prep Method 5035	Analytical Method 8260B		•	-	Prep Da	Prep Date		Sample Wt.(g) 5.18		:
eter		N:	CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
e		7	1-43-2	8260B	ND		5.5	1.2	ug/kg	1
		10	0-41-4	8260B	/ ND		5.5	1.9	ug/kg	1
		108	8-88-3	8260B	ND		5.5	1.9	ug/kg	1
; (total)		133	0-20-7	8260B	ND		5.5	3.2	ug/kg	1
ate	Q	Run 1 % Recover			- The second second	And and a sure of the contracts on	ervere di chi (Perentani Mener) in injurya di dell'archivente	3		
nloroethane-d4		98	53-1	42						
luorobenzene		116	47-1	38						
e-d8		106	68-1	24						
	eter e enzene e (total) ate nloroethane-d4 luorobenzene	5035 8260B eter e enzene e s (total) ate Q nloroethane-d4 luorobenzene	5035 8260B 1 0 eter N e 7 nzene 10 s (total) 133 ate Q % Recover	CAS Ster Number e 71-43-2 Inzene 100-41-4 Incorporation (total) 1330-20-7 Run 1 Accept Accep	CAS Analytical Number Method	CAS Analytical Result	CAS Analytical Result Q	CAS Analytical Result Q PQL	CAS Analytical Seter Number Method Result Q PQL MDL	CAS Analytical Number Method Result Q PQL MDL Units

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MB23028-005

Matrix: Solid

% Solids: 87.9 02/23/2011 2014

Description: 0-17

Date Sampled:02/23/2011 1015

Date Received: 02/23/2011

Dilution Analysis Date Analyst Prep Date Batch **Analytical Method Prep Method** Run 02/28/2011 2022 53787 03/01/2011 2032 JGH 3550C 8270D 1

	CAS	Analytical	D # 0	DOL	MD1	1114	
Parameter	Number	Method	Result Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	370	11	ug/kg	1
Acenaphthylene	208-96-8	8270D	16——J	370 K	15	ug/kg	1
Anthracene	120-12-7	8270D	ND	370	16	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	370	12	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	370	27	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	370	25	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	370	25	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	370	30	ug/kg	1
Chrysene	218-01-9	8270D	ND	370	11	ug/kg	-1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	370	24	ug/kg	1
Fluoranthene	206-44-0	8270D	18J	370 لا	12	ug/kg	1
Fluorene	86-73-7	8270D	ND	370	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	370	33	ug/kg	1
Naphthalene	91-20-3	8270D	ND	370	16	ug/kg	1
Phenanthrene	85-01-8	8270D	19J	370 (L	15	ug/kg	1
Pyrene	129-00-0	8270D	27	370 🔍	16	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi		C e	W 3/10/11			
2-Fluorobiphenyl	69 33-1	02					
Nitrobenzene-d5	66 22-1	09					

41-120

65

PQL = Practical quantitation limit

Terphenyl-d14

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Management and Technical Resources, Inc.

Memo

To: Rusty Contrael

From: Cheryl Yushinski

Date: August 17, 2011

Re: Evaluation of Analytical Data for Soil Samples Collected in July 2011

SCE&G Congaree River, Columbia, South Carolina

Sample Identification

H-24	130	J14	L24	N36
l17	J8	K4	L30	N36.5
I20	J11	K20	M20	P36

Overview

Ten sediment and five soil samples were collected from July 19 through July 28, 2011 at the Congaree River Site.

The samples collected during the July 2011 sampling events were submitted to Shealy Environmental Services, Inc. (Shealy) located in West Columbia, South Carolina, for laboratory analyses. The laboratory analyses included BTEX (benzene, toluene, ethylbenzene and total xylenes) via EPA Method 8260B, PAHs (polynuclear aromatic hydrocarbons) by EPA Method 8270D. The analytical results were reported in three sample delivery groups (SDGs) – MG20083, MG21009 and MG28025. Level II data packages were provided for the SDG.

The laboratory created matrix spike/matrix spike duplicate (MS/MSD) samples from PAH sample L30 in SDG MG20083.

Summary

Quality control (QC) measures associated with the analytical data were reviewed following the U.S. EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (June 2008) to determine the accuracy and precision of the data reported. These QC measures included sample preservation, holding times, laboratory blanks, surrogate recoveries, laboratory control sample/laboratory control sample duplicate (LCS/LCSD) and MS/MSD results. Data usability is presented below.

Data Usability Results

The laboratory provided results with any confirmed detections that fell between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) being reported and qualified as estimated, "J". Any laboratory-qualified results with concentrations below the undiluted PQL value were reported as non-detects. Any parameters with elevated detection limits without detections above the MDL were reported to the MDL or the undiluted PQL value (whichever was greater) and qualified as estimated, "UJ".

Notes

It was noted that BTEX QC samples (method blank, LCS and LCSD) were provided in the SDG MG20083 from 8/04/11 even though the last BTEX sample was run on 7/26/2011. The majority of the BTEX samples were run on 7/22/2011 in SDG MG20083 and QC samples were provided from 7/22/2011.

In SDG MG21009, one BTEX relative percent difference (RPD) between the LCS and LCSD had a recovery above the control limits. Action was not needed since qualification is not based on LCS/LCSD results alone.

It was noted that two coolers arrived at the laboratory with temperatures outside the recommended temperature range of 4° C +/- 2° C. Action was not necessary since the samples were analyzed in a timely manner.

Recommendations for Data Usability

The reviewed QC results were reflective of typical minor QC exceedances and did not indicate that any significant problems existed with data precision and accuracy, as reported. All BTEX and PAH data should be considered usable for intended data uses including those data qualified as estimated, as these issues were generally very minor in nature.

Information Regarding Report Content

- 1. Glossary of Data Qualifier Codes
- 2. Attachment A Shealy Data Summary Reports. This includes qualified results as originally reported by the laboratory with applicable qualifier codes as annotated by MTR.
- 3. Attachment B Supporting Documentation

GLOSSARY OF DATA QUALIFIER CODES

The following definitions provide a brief explanation of the national qualifiers assigned to results in the data review process.

CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds.)

U = Indicates that the constituent was not detected at the reported detection limit.

(NO CODE) = Confirmed identification

- UR = Indicates that the constituent was not detected above the reporting limit. However, the result is unusable due to the holding time being grossly exceeded.
- R = Unusable Result. The sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

CODES RELATED TO QUANTITATION

(Can be used for positive results and sample quantitation limits.)

- J = Indicates an estimated value. The constituent was positively identified. However, the result was less than the quantitation limit but greater than zero; or based on the data evaluation, the associated result is an approximate concentration of the constituent in the sample.
- UJ = Indicates that the constituent was not detected above the reporting limit. However, based on the data evaluation, the reported result is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the concentration of the constituent in the sample.

ATTACHMENT A SHEALY DATA SUMMARY REPORT

Client: Management and Technical Resources, Inc.

Laboratory ID: MG20083-001

Description: N36

Toluene-d8

Matrix: Solid

% Solids: 83.1 07/20/2011 2151

Date Sampled:07/19/2011 1430

Date Received: 07/20/2011

Dilution Analysis Date Analyst **Prep Date** Batch Sample Wt.(g) **Analytical Method Prep Method** Run

1 5035	8260B	1 07/	/22/2011 2030) JJG			64322	6.09		
Parameter				nalytical Method	Result	Q F	QL.	MDL	Units	Run
Benzene		71-	43-2	8260B	ND		4.9	1.1	ug/kg	1
Ethylbenzene		100-	41-4	8260B	ND		4.9	1.7	ug/kg	1
Toluene		108-	-88-3	8260B	ND		4.9	1.7	ug/kg	1
Xylenes (total)		1330-	-20-7	8260B	ND		4.9	2.9	ug/kg	1
Surrogate	Q	Run 1 % Recovery	Acceptance Limits							
1,2-Dichloroethane-d4		96	53-142							
Bromofluorobenzene		102	47-138							
Toluene-d8		110	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: N36

Date Received: 07/20/2011

Date Sampled:07/19/2011 1430

Laboratory ID: MG20083-001

Matrix: Solid

% Solids: 83.1 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D		07/25/2011 2042	-	07/22/2011 1845	64265

Parameter	CAS	Analytical	Result	Q I	PQL	MDL	l l m i t m	D
	Number	Method		ا به	- QL	MIDE	Units	Run
Acenaphthene	83-32-9	8270D	3100	2	2000	60	ug/kg	1
Acenaphthylene	208-96-8	8270D	940	J 2	2000	78	ug/kg	1
Anthracene	120-12-7	8270D	6200	2	2000	87	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	7700	2	2000	65	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	8200	2	2000	140	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	7900	2	2000	130	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	3200	2	2000	130	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND %	10 UJ 2	2000	160	ug/kg	1
Chrysene	218-01-9	8270D	8600	2	2000	62	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND 44	00 UT 2	2000	130	ug/kg	1
Fluoranthene	206-44-0	8270D	13000	2	2000	62	ug/kg	1
Fluorene	86-73-7	8270D	3700	2	2000	76	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	2500	2	000	180	ug/kg	1
Naphthalene	91-20-3	8270D	260° 70	<i>a u</i> j 2	000	83	ug/kg	1
Phenanthrene	85-01-8	8270D	19000 €	4	2000	80	ug/kg	1
Pyrene	129-00-0	8270D	23000 🐔	VII nilli	000	85	ug/kg	1
Surrogate	Run 1 Accep Q % Recovery Lim							
2-Fluorobiphenyl	71 33-	102						
Nitrobenzene-d5	61 22-	109						
Terphenyl-d14	76 41-	120						

The results below the PQL were compared to the undicated PQL of 400 tylky and the MDL, and reported to the larger of the two values.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Description: N36.5

Date Sampled:07/19/2011 1430

Date Received: 07/20/2011

Laboratory ID: MG20083-002

Matrix: Solid

% Solids: 78.3 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035			07/26/2011 1418			64469	5.95

5035	8260B	50 07/2	26/2011 14	418 SAS			64469	5.95	5	
				Analytical Method	Result	Q	PQL	MDL	Units	Run
		71-4	13-2	8260B	67	J	270	59	ug/kg	2
		100-4	11-4	8260B	4700		270	91	ug/kg	2
		108-8	38-3	8260B	190	J	270	91	ug/kg	2
		1330-2	20-7	8260B	1700		270	160	ug/kg	2
	Q	Run 2 A % Recovery	Acceptano Limits	e						
ne-d4		86	53-142							
ene		77	47-138							
		90	68-124							
	ne-d4	Q ne-d4	Num 71-4 100-4 108-8 1330-2 Run 2 Q % Recovery ne-d4 ene 77	CAS Number 71-43-2 100-41-4 108-88-3 1330-20-7 Run 2 Acceptanc Q % Recovery Limits ne-d4 86 53-142 ene 77 47-138	CAS Analytical Number Method 71-43-2 8260B 100-41-4 8260B 108-88-3 8260B 1330-20-7 8260B Run 2 Acceptance Q % Recovery Limits ne-d4 86 53-142 ene 77 47-138	CAS Analytical Number Method Result 71-43-2 8260B 67 100-41-4 8260B 4700 108-88-3 8260B 190 1330-20-7 8260B 1700 ne-d4 86 53-142 ene 77 47-138	CAS Analytical Number Method Result Q	CAS Analytical Number Method Result Q PQL 71-43-2 8260B 67 J 270 100-41-4 8260B 4700 270 108-88-3 8260B 190 J 270 1330-20-7 8260B 1700 270 Run 2 Acceptance Q % Recovery Limits ne-d4 86 53-142 ene 77 47-138	CAS Analytical Number Method Result Q PQL MDL	CAS Analytical Number Method Result Q PQL MDL Units 71-43-2 8260B 67 J 270 59 ug/kg 100-41-4 8260B 4700 270 91 ug/kg 108-88-3 8260B 190 J 270 91 ug/kg 1330-20-7 8260B 1700 270 160 ug/kg Run 2 Acceptance Q % Recovery Limits ne-d4 86 53-142 ene 77 47-138

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" $\,$

I = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: N36.5

Date Sampled:07/19/2011 1430

Laboratory ID: MG20083-002

Matrix: Solid

% Solids: 78.3 07/20/2011 2151

Date Received: 07/20/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	100	07/29/2011 1155	WD	07/22/2011 1845	64265
2	3550C	8270D	200	08/02/2011 2123	JGH	07/22/2011 1845	64265

Parameter			CAS A	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene		83-	32-9	8270D	660000	41000	1300	ug/kg	1
Acenaphthylene		208-	96-8	8270D	ND	1600 45 41000	1600	ug/kg	1
Anthracene		120-	12-7	8270D	460000	41000	1800	ug/kg	1
Benzo(a)anthracene		56-	55-3	8270D	370000	41000	1400	ug/kg	1
Benzo(a)pyrene		50-	32-8	8270D	390000	41000	3000	ug/kg	1
Benzo(b)fluoranthene		205-	99-2	8270D	320000	41000	2800	ug/kg	1
Benzo(g,h,i)perylene		191-	24-2	8270D	150000	41000	2800	ug/kg	1
Benzo(k)fluoranthene		207-0	08-9	8270D	ND	3400UJ 41000	3400	ug/kg	1
Chrysene		218-	01-9	8270D	360000	41000	1300	ug/kg	1
Dibenzo(a,h)anthracene		53-	70-3	8270D	33000	J 41000	2700	ug/kg	1
Fluoranthene		206-4	44-0	8270D	590000	41000	1300	ug/kg	1
Fluorene		86-	73-7	8270D	450000	41000	1600	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	97000	41000	3700	ug/kg	1
Naphthalene		91-2	20-3	8270D	690000	41000	1700	ug/kg	1
Phenanthrene		85-0	01-8	8270D	1800000	83000	3400	ug/kg	2
Pyrene		129-0	00-0	8270D	1000000	41000	1800	ug/kg	1
Surrogate	Q	Run 1 / % Recovery	Acceptance Limits		Run 2 Ac Recovery	cceptance Limits			
2-Fluorobiphenyl	N	0.00	33-102	N	0.00	33-102			W
Nitrobenzene-d5	N	0.00	22-109	N	0.00	22-109			
Terphenyl-d14	N	0.00	41-120		101	41-120			

Theresales below the PQL were compared to the undirect PQL of 410 uzky and the MDL, and reported to the larger of the two values.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

D---- 40 - 60

Client: Management and Technical Resources, Inc.

Description: P36

Date Received: 07/20/2011

Date Sampled:07/19/2011 1450

Laboratory ID: MG20083-003

Matrix: Solid

% Solids: 87.2 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B		07/22/2011 2114			64322	6.60

5035	8260B	1 (07/22/2011	2114 JJG			64322	6.60)	
		N	CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
		7	1-43-2	8260B	ND		4.3	0.96	ug/kg	1
		10	0-41-4	8260B	ND		4.3	1.5	ug/kg	1
		10	8-88-3	8260B	ND		4.3	1.5	ug/kg	1
		133	0-20-7	8260B	ND		4.3	2.5	ug/kg	1
	Q	Run 1 % Recover								
e-d4		84	53-14	2						***************************************
ene		104	47-13	8						
		113	68-12	4						
	e-d4	Q e-d4	N 7 10 10 133 Run 1 Q % Recover	CAS Number 71-43-2 100-41-4 108-88-3 1330-20-7 Run 1 Accepta Q % Recovery Limits e-d4 84 53-14 ene 104 47-13	CAS Manaytical Number Method 71-43-2 8260B 100-41-4 8260B 108-88-3 8260B 1330-20-7 8260B Run 1 Acceptance Q % Recovery Limits Pe-d4 84 53-142 Pere 104 47-138	CAS Analytical Number Method Result	CAS Analytical Number Method Result Q	CAS Analytical Number Method Result Q PQL 71-43-2 8260B ND 4.3 100-41-4 8260B ND 4.3 108-88-3 8260B ND 4.3 1330-20-7 8260B ND 4.3 Run 1 Acceptance Q Recovery Limits 84 53-142 ene 104 47-138	CAS Analytical Number Method Result Q PQL MDL 71-43-2 8260B ND 4.3 0.96 100-41-4 8260B ND 4.3 1.5 108-88-3 8260B ND 4.3 1.5 1330-20-7 8260B ND 4.3 2.5 Run 1 Acceptance Q % Recovery Limits e-d4 84 53-142 the 104 47-138	CAS Analytical Number Method Result Q PQL MDL Units

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" $\,$

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: P36

Date Received: 07/20/2011

Date Sampled:07/19/2011 1450

Laboratory ID: MG20083-003

Matrix: Solid

% Solids: 87.2 07/20/2011 2151

Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 1 3550C 8270D 08/02/2011 2143 JGH 07/22/2011 1845 64265

Parameter	C Num	CAS Analytical ber <u>Method</u>	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-3	2-9 8270D	ND 44	ý	380	12	ug/kg	1
Acenaphthylene	208-9	6-8 8270D	22	/J	380	15	ug/kg	1
Anthracene	120-1	2-7 8270D	24	/ J	380	17	ug/kg	1
Benzo(a)anthracene	56-5	5-3 8270D	74	/ J	380	12	ug/kg	1
Benzo(a)pyrene	50-3	2-8 8270D	56	J	380	28	ug/kg	1
Benzo(b)fluoranthene	205-99	9-2 8270D	47	J	380	25	ug/kg	1
Benzo(g,h,i)perylene	191-24	4-2 8270D	30	J	380	26	ug/kg	1
Benzo(k)fluoranthene	207-08	3-9 8270D	ND /		380	31	ug/kg	1
Chrysene	218-01	1-9 8270D	46	J	380	12	ug/kg	1
Dibenzo(a,h)anthracene	53-70	0-3 8270D	ND/		380	25	ug/kg	1
Fluoranthene	206-44	1-0 8270D	65	J	380	12	ug/kg	1
Fluorene	86-73	3-7 8270D	18	J	380	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39	9-5 8270D	ND		380	34	ug/kg	1
Naphthalene	91-20	0-3 8270D	230	J	380	16	ug/kg	1
Phenanthrene	85-0	1-8 8270D	77	J	380	15	ug/kg	1
Pyrene	129-00)-0 8270D	110	J	380	16	ug/kg	1
Surrogate	Run 1 A Q % Recovery	cceptance Limits	CV.	8/10/11				
2-Fluorobiphenyl	81	33-102						
Nitrobenzene-d5	69	22-109						
Terphenyl-d14	91	41-120						

The resules were reported to the undiluted PGL of 380 wilky.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: L30

Date Received: 07/20/2011

Date Sampled:07/20/2011 0945

Laboratory ID: MG20083-004

Matrix: Solid

% Solids: 86.3 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	07/22/2011 2136	JJĠ	•	64322	5.85

Parameter		Num	CAS iber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	13-2	8260B	ND		5.0	1.1	ug/kg	1
Ethylbenzene		100-4	11-4	8260B	ND		5.0	1.7	ug/kg	1
Toluene		108-8	38-3	8260B	ND		5.0	1.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		5.0	2.9	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits	ce						
1,2-Dichloroethane-d4		97	53-142							
Bromofluorobenzene		108	47-138							
Toluene-d8		116	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%
N = Recovery is out of criteria H

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: L30

Date Received: 07/20/2011

Date Sampled:07/20/2011 0945

Laboratory ID: MG20083-004

Matrix: Solid

% Solids: 86.3 07/20/2011 2151

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3550C
 8270D
 1
 08/02/2011 2204
 JGH
 07/22/2011 1845
 64265

Acenaphthene 83-32-9 8270D ND 77 Acenaphthylene 208-96-8 8270D 14 Anthracene 120-12-7 8270D ND Benzo(a)anthracene 56-55-3 8270D 53 Benzo(a)pyrene 50-32-8 8270D 36 Benzo(b)fluoranthene 205-99-2 8270D ND Benzo(g,h,i)perylene 191-24-2 8270D ND Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D ND Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D Acceptance ND Aphenanthrene 85-01-8 8270D 40 Phenanthrene 85-01-8 8270D 40 Run 1 Acceptance Currogate Recovery Limits	t Q	PQL	MDL	Units	Run
Anthracene 120-12-7 8270D ND Benzo(a)anthracene 56-55-3 8270D 53 Benzo(a)pyrene 50-32-8 8270D 36 Benzo(b)fluoranthene 205-99-2 8270D 34 Benzo(g,h,i)perylene 191-24-2 8270D ND Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D 32 Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D 40 Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61	, J	360	11	ug/kg	1
Benzo(a)anthracene 56-55-3 8270D 53 Benzo(a)pyrene 50-32-8 8270D 36 Benzo(b)fluoranthene 205-99-2 8270D 34 Benzo(g,h,i)perylene 191-24-2 8270D ND Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D ND Chrysene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61	. /J	360	14	ug/kg	1
Benzo(a)pyrene 50-32-8 8270D 36 Benzo(b)fluoranthene 205-99-2 8270D 34 Benzo(g,h,i)perylene 191-24-2 8270D ND Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D ND Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 40 Run 1 Acceptance) /	360	16	ug/kg	1
Benzo(b)fluoranthene 205-99-2 8270D 34 Benzo(g,h,i)perylene 191-24-2 8270D ND Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D 32 Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D 8270D 480 Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61	3 / J	360	12	ug/kg	1
Benzo(g,h,i)perylene 191-24-2 8270D ND Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D 32 Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61	; / J	360	27	ug/kg	1
Benzo(k)fluoranthene 207-08-9 8270D ND Chrysene 218-01-9 8270D 32 Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61	⊦	360	25	ug/kg	1
Chrysene 218-01-9 8270D 32 Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61 Run 1 Acceptance)/	360	25	ug/kg	1
Dibenzo(a,h)anthracene 53-70-3 8270D ND Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 42 Pyrene 129-00-0 8270D 61 Run 1 Acceptance)/	360	30	ug/kg	1
Fluoranthene 206-44-0 8270D 40 Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D ₩ 42 Pyrene 129-00-0 8270D √ 61 Run 1 Acceptance	J	360	11	ug/kg	1
Fluorene 86-73-7 8270D 23 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D 480 Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D 129-00-0 8270D √ 61 Run 1 Acceptance)	360	24	ug/kg	1
Indeno(1,2,3-c,d)pyrene 193-39-5 8270D Correction ND Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D ₩3 42 Pyrene 129-00-0 8270D √ 61 Run 1 Acceptance) J	360	11	ug/kg	1
Naphthalene 190-39-3 8270D 200 480	J	360	14	ug/kg	1
Naphthalene 91-20-3 8270D 480 Phenanthrene 85-01-8 8270D ₺₺ 42 Pyrene 129-00-0 8270D ₺ 61 Run 1 Acceptance)	360	33	ug/kg	1
Pyrene 129-00-0 8270D √ 61 Run 1 Acceptance		360	15	ug/kg	1
Run 1 Acceptance	j j	360	15	ug/kg	1
Run 1 Acceptance Surrogate Q % Recovery Limits	J	360	16	ug/kg	1
2-Fluorobiphenyl 81 33-102					

Nitrobenzene-da	5	70	22-109	
Terphenyl-d14		95	41-120	

The results below the PQL were compared to the undituted PQL of 300 wyldg and the MDL, and reported to the larger of the two Values.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Description: 130

Date Sampled:07/20/2011 1020

Date Received: 07/20/2011

Laboratory ID: MG20083-005

Matrix: Solid

% Solids: 69.2 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Ratch	Sample Wt.(g)
1	5035	8260B	1	07/22/2011 2157	JJG		64322	5.85

					0.00	•	
	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
	71-43-2	8260B	ND	6.2	1.4	ua/ka	1
	100-41-4	8260B	ND	6.2	2.1		1
	108-88-3	8260B	ND	6.2	2.1		1
1	330-20-7	8260B	ND	6.2	3.6	ug/kg	1
98	53-1	42					
103	47-1	38					
112	68-1	24					
	1 Run 1 Q % Recov	Number 71-43-2 100-41-4 108-88-3 1330-20-7 Run 1 Accept Q % Recovery Limi 98 53-1 103 47-1	Number Method 71-43-2 8260B 100-41-4 8260B 108-88-3 8260B 1330-20-7 8260B Q % Recovery Limits 98 53-142 103 47-138	Number Method Result 71-43-2 8260B ND 100-41-4 8260B ND 108-88-3 8260B ND 1330-20-7 8260B ND Run 1 Acceptance Q % Recovery Limits 98 53-142 103 47-138	CAS Number Analytical Method Result Q PQL 71-43-2 8260B ND 6.2 100-41-4 8260B ND 6.2 108-88-3 8260B ND 6.2 1330-20-7 8260B ND 6.2 Run 1 Acceptance Q Recovery Limits 8 53-142 103 47-138 47-138 8	CAS Number Analytical Method Result Q PQL MDL 71-43-2 8260B ND 6.2 1.4 100-41-4 8260B ND 6.2 2.1 108-88-3 8260B ND 6.2 2.1 1330-20-7 8260B ND 6.2 3.6 Run 1 Acceptance Recovery Limits 98 53-142 103 47-138 53-142	Number Method Result Q PQL MDL Units

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: 130

Date Received: 07/20/2011

Date Sampled:07/20/2011 1020

Laboratory ID: MG20083-005

Matrix: Solid

% Solids: 69.2 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	07/25/2011 2246	WD	07/22/2011 1845	64265

Parameter		CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	1	3-32-9	8270D	ND 420	1	470	14	ug/kg	1
Acenaphthylene	20	8-96-8	8270D	/ 51 /	J	470	19	ug/kg	1
Anthracene	12	0-12-7	8270D	🖑 120	J	470	21	ug/kg	1
Benzo(a)anthracene		6-55-3	8270D	470		470	16	ug/kg	1
Benzo(a)pyrene	;	0-32-8	8270D	590		470	35	ug/kg	1
Benzo(b)fluoranthene	20	5-99-2	8270D	850		470	32	ug/kg	1
Benzo(g,h,i)perylene	19	1-24-2	8270D	NO 390-	J	470	32	ug/kg	1
Benzo(k)fluoranthene	20	7-08-9	8270D	ND		470	39	ug/kg	1
Chrysene	21	8-01-9	8270D	640		470	15	ug/kg	1
Dibenzo(a,h)anthracene	5	3-70-3	8270D	ND		470	31	ug/kg	1
Fluoranthene	20	6-44-0	8270D	900		470	15	ug/kg	1
Fluorene	8	6-73-7	8270D	NO 120	<i>J</i> \$	470	18	ug/kg	1
Indeno(1,2,3-c,d)pyrene	19	3-39-5	8270D	/ 310 /	/ J	470	43	ug/kg	1
Naphthalene	Ş	1-20-3	8270D	57	J	470	20	ug/kg	1
Phenanthrene	8	5-01-8	8270D	710		470	19	ug/kg	1
Pyrene	12	9-00-0	8270D	1100		470	21	ug/kg	1
Surrogate	Run 1 Q % Recove	Accepta ry Limit		euchang Corsti	es 0/0_				
2-Fluorobiphenyl	66	33-10	2						
Nitrobenzene-d5	65	22-10	9						
Terphenyl-d14	72	41-12	.0						

Theresules below the Pak were reported to the Pak.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: H24

Date Sampled:07/20/2011 1350

Laboratory ID: MG20083-006

Matrix: Solid

% Solids: 77.1 07/20/2011 2151

Date Received: 07/20/2011

Toluene-d8

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution 1	Analysis 1 07/22/2011	•	t Prep Da	ate	Batch 64322	Sample \ 6.43		
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne			71-43-2	8260B	ND		5.0	1.1	ug/kg	1
Ethylb	enzene		•	100-41-4	8260B	ND		5.0	1.7	ug/kg	1
Toluer	ie			108-88-3	8260B	ND		5.0	1.7	ug/kg	1
Xylene	es (total)		1	330-20-7	8260B	ND		5.0	2.9	ug/kg	1
Surro	gate	Q	Run 1 % Recov								
1,2-Dic	chloroethane-d4		81	53-1	42						
Bromo	fluorobenzene		98	47-1	38						

68-124

99

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: H24

Date Received: 07/20/2011

Date Sampled:07/20/2011 1350

Laboratory ID: MG20083-006

Matrix: Solid

% Solids: 77.1 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	07/25/2011 2306	WD	07/22/2011 1845	64265

Parameter		Nu	CAS /	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene		83	-32-9	8270D	// D 220	18	410	13	ug/kg	1
Acenaphthylene		208	-96-8	8270D	/ 110 /	J	410	16	ug/kg	1
Anthracene		120	-12-7	8270D	220	J	410	18	ug/kg	1
Benzo(a)anthracene		56	-55-3	8270D	570		410	14	ug/kg	1
Benzo(a)pyrene		50	-32-8	8270D	710		410	30	ug/kg	1
Benzo(b)fluoranthene		205	-99-2	8270D	920		410	28	ug/kg	1
Benzo(g,h,i)perylene		191	-24-2	8270D	ND 350-	J	410	28	ug/kg	1
Benzo(k)fluoranthene		207-	-08-9	8270D	ND		410	34	ug/kg	1
Chrysene		218-	-01-9	8270D	720		410	13	ug/kg	1
Dibenzo(a,h)anthracene		53-	-70-3	8270D	ND		410	27	ug/kg	1
Fluoranthene		206-	-44-0	8270D	1000		410	13	ug/kg	1
Fluorene		86-	-73-7	8270D	<i>№</i> 150	1	410	16	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	/ 290 /	J	410	37	ug/kg	1
Naphthalene		91-	-20-3	8270D	√ 25	J	410	17	ug/kg	1
Phenanthrene		85-	-01-8	8270D	650		410	17	ug/kg	1
Pyrene		129-	00-0	8270D	1400		410	18	ug/kg	1
Surrogate	Q '	Run 1 % Recovery	Acceptanc Limits	e	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enger Efraf				
2-Fluorobiphenyl		65	33-102							
Nitrobenzene-d5		59	22-109							
Terphenyl-d14		74	41-120							

The results below the par were reported to the PQL.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Description: L24

Date Received: 07/20/2011

Date Sampled:07/20/2011 1420

Laboratory ID: MG20083-007

Matrix: Solid

% Solids: 75.8 07/20/2011 2151

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	07/22/2011 2241	IJG		64322	5.41

Parameter		(Num		Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	3-2	8260B	9.4		6.1	1.3	ug/kg	1
Ethylbenzene		100-4	1-4	8260B	62		6.1	2.1	ug/kg	1
Toluene		108-88-3		8260B	9.0		6.1	2.1	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	26		6.1	3.5	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptano Limits	;e						
1,2-Dichloroethane-d4		89	53-142							
Bromofluorobenzene		93	47-138							
Toluene-d8		107	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Description: L24

Date Sampled:07/20/2011 1420

Date Received: 07/20/2011

Laboratory ID: MG20083-007

Matrix: Solid

% Solids: **75.8 07/20/2011 2151**

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3550C
 8270D
 1
 07/25/2011 2327
 WD
 07/22/2011 1845
 64265

8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	A ≥ 310 √ 290 C ≤ 430 1100 1300 1300 610 ND 1300	J	430 430 430 430 430 430 430 430 430	13 17 19 14 31 29 29	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D	244 430 1100 1300 1300 610 ND		430 430 430 430 430 430	19 14 31 29 29 35	ug/kg ug/kg ug/kg ug/kg ug/kg	1 1 1 1
8270D 8270D 8270D 8270D 8270D	1100 1300 1300 1300 610 ND		430 430 430 430 430 430	14 31 29 29 35	ug/kg ug/kg ug/kg ug/kg	1 1 1
8270D 8270D 8270D 8270D	1100 1300 1300 610 ND		430 430 430 430	31 29 29 35	ug/kg ug/kg ug/kg	1 1 1
8270D 8270D 8270D	1300 610 ND		430 430 430	29 29 35	ug/kg ug/kg	1
8270D 8270D	610 ND		430 430	29 35	ug/kg	1
8270D	ND	•	430	35		
					ug/kg	1
8270D	1300		420			
			430	13	ug/kg	1
8270D	ND		430	28	ug/kg	1
8270D	1600		430	13	ug/kg	1
8270D	∜∂ 290——		430	16	ug/kg	1
8270D	E/M 460		430	39	ug/kg	1
8270D		J	430	18	ug/kg	1
8270D	1700		430	17	ug/kg	1
8270D	3000		430	19	ug/kg	1
	8270D 8270D	8270D 1700	8270D 1700 8270D 3000 tance	8270D 1700 430 8270D 3000 430 tance	8270D 1700 430 17 8270D 3000 430 19 tance	8270D 1700 430 17 ug/kg 8270D 3000 430 19 ug/kg

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
2-Fluorobiphenyl		58	33-102
Nitrobenzene-d5		50	22-109
Terphenyl-d14		71	41-120

The 1+3 ats below the PQL were reported to the PQL.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: M-20

Laboratory ID: MG21009-001

Matrix: Solid

% Solids: **80.7 07/21/2011 2053**

Date Sampled:07/21/2011 0820

Date Received: 07/21/2011

Toluene-d8

Run Prep Meth 2 50	hod 035	Analytical Method 8260B			Prep Da	Prep Date		Sample \ 6.23	107		
Parameter				CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene				71-43-2	8260B	ND		5.0	1.1	ug/kg	2
Ethylbenzene				100-41-4	8260B	ND		5.0	1.7	ug/kg	2
Toluene				108-88-3	8260B	ND		5.0	1.7	ug/kg	2
Xylenes (total)			1	330-20-7	8260B	ND		5.0	2.9	ug/kg	2
Surrogate		Q	Run : % Recov								
1,2-Dichloroethane	e-d4		92	53-1	42						
Bromofluorobenze	ne		95	47-1	38						

68-124

109

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Laboratory ID: MG21009-001

Matrix: Solid

Description: M-20 Date Sampled:07/21/2011 0820

% Solids: 80.7 07/21/2011 2053

Date Received: 07/21/2011

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis I 07/26/2011	•	Prep Da 07/22/201		Batch 64265			
				CAS	Analytical						
Param	neter			Number	Method	Result	Q	PQL	MDL	Units	Run
Acena	phthene			83-32-9	8270D	ND		390	12	ug/kg	1
Acena	phthylene			208-96-8	8270D	ND		390	15	ug/kg	1
Anthra	icene			120-12-7	8270D	ND		390	17	ug/kg	1
Benzo	(a)anthracene			56-55-3	8270D	ND		390	13	ug/kg	1
Benzo	(a)pyrene			50-32-8	8270D	ND		390	28	ug/kg	1
Benzo	(b)fluoranthene			205-99-2	8270D	MD36		390	26	ug/kg	1
Benzo	(g,h,i)perylene			191-24-2	8270D	ND		390	26	ug/kg	1
Benzo	(k)fluoranthene			207-08-9	8270D	ly ND		390	32	ug/kg	1
Chryse	ene			218-01-9	8270D	ND		390	12	ug/kg	1
Dibenz	zo(a,h)anthracene			53-70-3	8270D	8/14/ND		390	26	ug/kg	1
Fluora	nthene			206-44-0	8270D	ND		390	12	ug/kg	1
Fluore	ne			86-73-7	8270D	ND		390	15	ug/kg	1
Indend	o(1,2,3-c,d)pyrene			193-39-5	8270D	ND		390	35	ug/kg	1
Napht	halene			91-20-3	8270D	ND 24	J	390	16	ug/kg	1
Phena	nthrene			85-01-8	8270D	ND		390	16	ug/kg	1
Pyrene	Э			129-00-0	8270D	ND		390	17	ug/kg	1
Surro	gate	Q	Run ' % Recov								
2-Fluo	robiphenyl		61	33-10	02						
Nitrobe	enzene-d5		60	22-10	09						
Terphe	enyl-d14		68	41-12	20						

The rosults below the Pgt were imported to the Pgt.

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: K-20

Date Received: 07/21/2011

Date Sampled:07/21/2011 0810

Laboratory ID: MG21009-002

Matrix: Solid

% Solids: **79.7 07/21/2011 2053**

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	07/25/2011 1759	BM		64394	6.07

1	5035	8260B	1 07/	25/2011 17	759 BM			64394	6.07	•	
Parameter				CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene			71-4	43-2	8260B	ND		5.2	1.1	ug/kg	1
Ethylbenzene			100-4	41-4	8260B	ND		5.2	1.8	ug/kg	1
Toluene			108-8	38-3	8260B	ND		5.2	1.8	ug/kg	1
Xylenes (total)			1330-	20-7	8260B	ND		5.2	3.0	ug/kg	1
Surrogate		Q	Run 1 % Recovery	Acceptano Limits	:e						
1,2-Dichloroeth	ane-d4		90	53-142							
Bromofluorobei	nzene		102	47-138							
Toluene-d8			104	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: K-20

Date Sampled:07/21/2011 0810

Date Received: 07/21/2011

Laboratory ID: MG21009-002

Matrix: Solid

% Solids: 79.7 07/21/2011 2053

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	08/03/2011 0641	JGH	07/22/2011 1845	64265

Parameter	CAS Number	Analytical <u>Method</u>	Result Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	NO 85 1	400	12	ug/kg	1
Acenaphthylene	208-96-8	8270D	170 / J	400	16	ug/kg	1
Anthracene	120-12-7	8270D		400	18	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	830	400	13	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	920	400	29	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	740	400	27	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	NO 360-J	400	27	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	<i>№</i> 370 J	400	33	ug/kg	1
Chrysene	218-01-9	8270D	770	400	13	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ル) 85 J	400	27	ug/kg	1
Fluoranthene	206-44-0	8270D	1200	400	13	ug/kg	1
Fluorene	86-73-7	8270D	#D 87 J	400	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	/ 290 / J	400	36	ug/kg	1
Naphthalene	91-20-3	8270D	∜ 37∕ J	400	17	ug/kg	1
Phenanthrene	85-01-8	8270D	490	400	16	ug/kg	1
Pyrene	129-00-0	8270D	1700	400	17	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi		au sdits Ccy 8/19/1	į.			
2-Fluorobiphenyl	41 33-1	02					
Nitrobenzene-d5	35 22-1	09					
Terphenyl-d14	45 41-1	20					

The results below the PGL were paperted to the PGL.

PQL = Practical quantitation limit

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: I-20

Laboratory ID: MG21009-003

Matrix: Solid

Date Sampled:07/21/2011 0750

% Solids: 84.5 07/21/2011 2053

Date Received: 07/21/2011

Run 1	Prep Method 5035	Analytical Method 8260B		Analysis D 07/25/2011	•	Prep Da	ite	Batch 64394	Sample \ 6.40	,	
Param	eter		N	CAS umber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzer	ne		7	1-43-2	8260B	ND		4.6	1.0	ug/kg	1
Ethylbe	enzene		10	0-41-4	8260B	ND		4.6	1.6	ug/kg	1
Toluen	е		10	8-88-3	8260B	ND		4.6	1.6	ug/kg	1
Xylene	s (total)		133	30-20-7	8260B	ND		4.6	2.7	ug/kg	1
Surrog	jate	Q	Run 1 % Recove	Accepta ry Limits							
1,2-Dic	:hloroethane-d4		99	53-14	2						
Bromot	fluorobenzene		99	47-13	8						
Toluen	e-d8		111	68-12	4						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

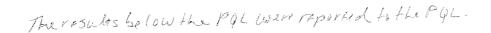
N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MG21009-003

Matrix: Solid


% Solids: 84.5 07/21/2011 2053

Description: I-20 Date Sampled: 07/21/2011 0750

Date Received: 07/21/2011

Dilution Analysis Date Analyst Prep Date Batch **Prep Method Analytical Method** Run 07/26/2011 0048 WD 07/22/2011 1845 64265 3550C 8270D 1

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	380	12	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	380	15	ug/kg	1
Anthracene	120-12-7	8270D	NO 83	J 380	17	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	390	380	13	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	MD 360	-J 380	28	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	630	380	26	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	MA 270	J 380	26	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	380	32	ug/kg	1
Chrysene	218-01-9	8270D	420	380	12	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	380	25	ug/kg	1
Fluoranthene	206-44-0	8270D	770	380	12	ug/kg	1
Fluorene	86-73-7	8270D	NO 28-	J 380	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	/ 220	J 380	35	ug/kg	1
Naphthalene	91-20-3	8270D	42	-J 380	16	ug/kg	1
Phenanthrene	85-01-8	8270D	490	380	16	ug/kg	1
Pyrene	129-00-0	8270D	770	380	17	ug/kg	1
Surrogate	Run 1 Accept Recovery Limi		au edits CLY sp		***		
2-Fluorobiphenyl	66 33-1	02					
Nitrobenzene-d5	64 22-1	09					
Terphenyl-d14	66 41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: J8 (20-23)

Date Sampled:07/27/2011 1245

Date Received: 07/28/2011

Laboratory ID: MG28025-001

Matrix: Solid

% Solids: 84.0 07/28/2011 2222

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	08/01/2011 1957	SAS		64800	5.83

0200B	1 00/0	06/01/2011 1937 3A3				04000	5.63	•		
			Analytical Method	Result	Q	PQL	MDL	Units	Run	
	71-43-2		8260B	ND		5.1	1.1	ug/kg	1	
	100-41-4		8260B	ND		5.1	1.7	ug/kg	1	
	108-88-3		8260B	ND		5.1	1.7	ug/kg	1	
	1330-2	20-7	8260B	ND		5.1	3.0	ug/kg	1	
Q	Run 1 A % Recovery									
	87	53-142	2							
	93	47-138	3							
	95	68-124	ļ							
		Num 71-4 100-4 108-8 1330-2 Run 1 Q % Recovery 87 93	CAS Number 71-43-2 100-41-4 108-88-3 1330-20-7 Run 1 Acceptan Q % Recovery Limits 87 53-142 93 47-138	CAS Number Analytical Method 71-43-2 8260B 100-41-4 8260B 108-88-3 8260B 1330-20-7 8260B Run 1 Acceptance Q % Recovery Limits 87 53-142 93 47-138	CAS Number Analytical Method Result 71-43-2 8260B ND 100-41-4 8260B ND 108-88-3 8260B ND 1330-20-7 8260B ND Run 1 Acceptance Q % Recovery Limits 87 53-142 93 47-138	CAS Number Analytical Method Result Q 71-43-2 8260B ND 100-41-4 8260B ND 108-88-3 8260B ND 1330-20-7 8260B ND Run 1 Acceptance Q % Recovery Limits 87 53-142 93 47-138	CAS Number Analytical Method Result Q PQL 71-43-2 8260B ND 5.1 100-41-4 8260B ND 5.1 108-88-3 8260B ND 5.1 1330-20-7 8260B ND 5.1 Run 1 Acceptance Q % Recovery Limits 87 53-142 93 47-138	CAS Number Analytical Method Result Q PQL MDL 71-43-2 8260B ND 5.1 1.1 100-41-4 8260B ND 5.1 1.7 108-88-3 8260B ND 5.1 1.7 1330-20-7 8260B ND 5.1 3.0 Run 1 Acceptance Q % Recovery Limits 87 53-142 93 47-138	CAS Number Analytical Method Result Q PQL MDL Units 71-43-2 8260B ND 5.1 1.1 ug/kg 100-41-4 8260B ND 5.1 1.7 ug/kg 108-88-3 8260B ND 5.1 1.7 ug/kg 1330-20-7 8260B ND 5.1 3.0 ug/kg Run 1 Acceptance Q % Recovery Limits 87 53-142 93 47-138	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-001

Matrix: Solid

% Solids: **84.0 07/28/2011 2222**

Description: **J8 (20-23)**

Date Sampled:07/27/2011 1245

Date Received: 07/28/2011

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3550C
 8270D
 1
 08/03/2011 0420
 JGH
 08/01/2011 2010
 64808

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run		
Acenaphthene	83-32-9	8270D	ND	370	11	ug/kg	1		
Acenaphthylene	208-96-8	8270D	ND	370	15	ug/kg	1		
Anthracene	120-12-7	8270D	ND	370	16	ug/kg	1		
Benzo(a)anthracene	56-55-3	8270D	ND	370	12	ug/kg	1		
Benzo(a)pyrene	50-32-8	8270D	ND	370	27	ug/kg	1		
Benzo(b)fluoranthene	205-99-2	8270D	ND	370	25	ug/kg	1		
Benzo(g,h,i)perylene	191-24-2	8270D	ND	370	25	ug/kg	1		
Benzo(k)fluoranthene	207-08-9	8270D	ND	370	30	ug/kg	1		
Chrysene	218-01-9	8270D	ND	370	12	ug/kg	1		
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	370	25	ug/kg	1		
Fluoranthene	206-44-0	8270D	ND	370	12	ug/kg	1		
Fluorene	86-73-7	8270D	ND	370	14	ug/kg	1		
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	370	33	ug/kg	1		
Naphthalene	91-20-3	8270D	ND	370	16	ug/kg	1		
Phenanthrene	85-01-8	8270D	ND	370	15	ug/kg	1		
Pyrene	129-00-0	8270D	ND	370	16	ug/kg	1		
Surrogate	Run 1 Accept Q % Recovery Lim								
2-Fluorobiphenyl	37 33-1	02				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Nitrobenzene-d5	34 22-1	09							
Terphenyl-d14	49 41-1	20							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" $\,$

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-002

Matrix: Solid

% Solids: 64.8 07/28/2011 2222

Description: J11 (17-21)

Date Sampled: 07/27/2011 1545

Date Received: 07/28/2011

Analytical Method Dilution Analysis Date Analyst **Prep Date** Sample Wt.(g) **Prep Method** Batch Run 08/05/2011 0738 8260B DLB 65109 6.09 5035

2 5035	0200B 00/03/2011 0/30 DLB			DLB	00109 0.09				
Parameter		C Num	AS Analyt	D 14	Q PQL	MDL	Units	Run	
Benzene		71-43-2		SOB ND	6.3	1.4	ug/kg	2	
Ethylbenzene		100-4	1-4 826	SOB ND	6.3	2.2	ug/kg	2	
Toluene		108-8	3-3 826	SOB ND	6.3	2.2	ug/kg	2	
Xylenes (total)		1330-2	0-7 826	SOB ND	6.3	3.7	ug/kg	2	
Surrogate	Q	Run 2 A % Recovery	cceptance Limits						
1,2-Dichloroethane-d4		85	53-142				·		
Bromofluorobenzene		86	47-138						
Toluene-d8		96	68-124						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-002

Matrix: Solid

% Solids: 64.8 07/28/2011 2222

Description: J11 (17-21) Date Sampled:07/27/2011 1545

Date Received: 07/28/2011

Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Run Batch 3550C 8270D 08/03/2011 0440 JGH 08/01/2011 2010 64808

Parameter	C. Numb	AS Analytical er <u>Method</u>	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32	-9 8270D	ND	510	16	ug/kg	1
Acenaphthylene	208-96	-8 8270D	ND	510	20	ug/kg	1
Anthracene	120-12	-7 8270D	ND	510	23	ug/kg	1
Benzo(a)anthracene	56-55	-3 8270D	ND	510	17	ug/kg	1
Benzo(a)pyrene	50-32	-8 8270D	ND	510	37	ug/kg	1
Benzo(b)fluoranthene	205-99	-2 8270D	ND	510	34	ug/kg	1
Benzo(g,h,i)perylene	191-24	-2 8270D	ND	510	35	ug/kg	1
Benzo(k)fluoranthene	207-08	-9 8270D	ND	510	42	ug/kg	1
Chrysene	218-01	-9 8270D	ND	510	16	ug/kg	1
Dibenzo(a,h)anthracene	53-70	-3 8270D	ND	510	34	ug/kg	1
Fluoranthene	206-44	-0 8270D	ND	510	16	ug/kg	1
Fluorene	86-73	-7 8270D	ND	510	20	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39	-5 8270D	ND	510	46	ug/kg	1
Naphthalene	91-20	-3 8270D	ND	510	21	ug/kg	1
Phenanthrene	85-01	-8 8270D	ND	510	21	ug/kg	1
Pyrene	129-00	-0 8270D	ND	510	22	ug/kg	1
Surrogate	Run 1 Ac Q % Recovery	ceptance Limits					
2-Fluorobiphenyl	39	33-102					
Nitrobenzene-d5	36	22-109					

41-120

47

PQL = Practical quantitation limit

Terphenyl-d14

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-003

Matrix: Solid

Description: J14 (17.5-22) Date Sampled: 07/27/2011 1700

Date Received: 07/28/2011

% Solids: 69.4 07/28/2011 2222

Run 2	Prep Method 5035	Analytical Method 8260B		alysis Date 05/2011 0759	Analyst DLB	Prep Da	ite	Batch 65109	Sample \ 6.35	10,	
Param	eter		Num		alytical lethod	Result	Q	PQL	MDL	Units	Run
Benzei	ne		71-4	1 3-2	8260B	ND		5.7	1.2	ug/kg	2
Ethylbe	enzene		100-4	11-4	8260B	ND		5.7	1.9	ug/kg	2
Toluen	ie		108-8	38-3	8260B	ND		5.7	1.9	ug/kg	2
Xylene	es (total)		1330-2	20-7	8260B	ND		5.7	3.3	ug/kg	2
Surrog	gate	Q	Run 2 / % Recovery	Acceptance Limits							
1,2-Dic	chloroethane-d4		98	53-142							
Bromo	fluorobenzene		80	47-138							
Toluen	ie-d8		95	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-003

Matrix: Solid

Description: J14 (17.5-22) Date Sampled: 07/27/2011 1700

% Solids: 69.4 07/28/2011 2222

Date Received: 07/28/2011

Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Run 08/01/2011 2010 64808 08/03/2011 0500 3550C 8270D JGH

Parameter	CAS Numbe	•	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	460	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	460	18	ug/kg	1
Anthracene	120-12-7	8270D	ND	460	20	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	460	15	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	460	33	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	460	31	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	460	31	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	460	38	ug/kg	1
Chrysene	218-01-9	8270D	ND	460	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	460	30	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	460	14	ug/kg	1
Fluorene	86-73-7	8270D	ND	460	18	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	460	41	ug/kg	1
Naphthalene	91-20-3	8270D	ND	460	19	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	460	19	ug/kg	1
Pyrene	129-00-0	8270D	ND	460	20	ug/kg	1
Surrogate		eptance imits					
2-Fluorobiphenyl	37 3	3-102					
Nitrobenzene-d5	33 2	2-109					
Terphenyl-d14	45 4	1-120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Page: 10 of 23

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-004

Matrix: Solid

% Solids: 86.3 07/28/2011 2222

Description: K4 (12-14) Date Sampled:07/28/2011 1020

Date Received: 07/28/2011

Sample Wt (a)

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution 1	Analysis I 08/05/2011	•	Prep Da	ate	Batch 65109	Sample \ 4.63		
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzer	ne			71-43-2	8260B	ND		6.3	1.4	ug/kg	1
Ethylbe	enzene		1	00-41-4	8260B	ND		6.3	2.1	ug/kg	1
Toluen	е		1	08-88-3	8260B	ND		6.3	2.1	ug/kg	1
Xylene	s (total)		13	30-20-7	8260B	ND		6.3	3.6	ug/kg	1
Surrog	jate	Q	Run 1 % Recove	Accepta ery Limit							
1,2-Dic	chloroethane-d4		99	53-1	42						
Bromo	fluorobenzene		94	47-13	38						
Toluen	e-d8		98	68-12	24						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

H = Out of holding time

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Analyst

Dilution Analysis Date

Client: Management and Technical Resources, Inc.

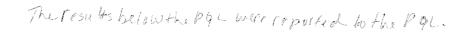
Analytical Method

Laboratory ID: MG28025-004

Matrix: Solid

Description: K4 (12-14) Date Sampled: 07/28/2011 1020

Prep Method


% Solids: 86.3 07/28/2011 2222

Date Received: 07/28/2011

Run

Prep Date Batch

1 3550C 82	270D	1 08/	03/2011 0	521 JGH	08/01/201	1 2010	64808			
Parameter		Num	CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
cenaphthene		83-3	32-9	8270D	ND		380	12	ug/kg	1
Acenaphthylene		208-9	96-8	8270D	/YD 33	J	380	15	ug/kg	1
Anthracene		120-1	12-7	8270D	, 26	/J	380	17	ug/kg	1
Benzo(a)anthracene		56-	55-3	8270D	62 /	J	380	13	ug/kg	1
Benzo(a)pyrene		50-3	32-8	8270D	44	J	380	28	ug/kg	1
Benzo(b)fluoranthene		205-9	99-2	8270D	J 39	J	380	26	ug/kg	1
Benzo(g,h,i)perylene		191-2	24-2	8270D	ND		380	26	ug/kg	1
Benzo(k)fluoranthene		207-0	08-9	8270D	ND		380	31	ug/kg	1
Chrysene		218-0)1-9	8270D	14)45-	·***	380	12	ug/kg	1
Dibenzo(a,h)anthracene		53-7	70-3	8270D	ND		380	25	ug/kg	1
luoranthene		206-4	14-0	8270D	A)110-	J	380	12	ug/kg	1
luorene		86-7	73-7	8270D	ND		380	15	ug/kg	1
ndeno(1,2,3-c,d)pyrene		193-3	39-5	8270D	ND		380	34	ug/kg	1
laphthalene		91-2	20-3	8270D	ND		380	16	ug/kg	1
henanthrene		85-0	01-8	8270D	AD 78		380	15	ug/kg	1
yrene		129-0	0-0	8270D	∳ 150	J	380	17	ug/kg	1
urrogate	Q	Run 1 / % Recovery	Acceptan Limits	ce	all l	da FS -4 -8/1	<i>\frac{1}()</i>			
-Fluorobiphenyl		39	33-102							
litrobenzene-d5		35	22-109	ı						
erphenyl-d14		48	41-120	ı						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-005

Matrix: Solid

Description: I17 (22-26)

Date Sampled:07/28/2011 1230

% Solids: 73.4 07/28/2011 2222

Date Received: 07/28/2011

Toluene-d8

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution 1	Analysis 1 08/05/2011		Analyst DLB	Prep Da	ate	Batch 65109	Sample \ 5.94	107	
Param	eter			CAS Number		ytical thod	Result	Q	PQL	MDL	Units	Run
Benze	ne			71-43-2	8	3260B	ND		5.7	1.3	ug/kg	1
Ethylb	enzene		•	100-41-4	8	3260B	ND		5.7	2.0	ug/kg	1
Toluen	e		•	108-88-3	8	3260B	ND		5.7	2.0	ug/kg	1
Xylene	s (total)		. 13	330-20-7	8	3260B	ND		5.7	3.3	ug/kg	1
Surro	gate	Q	Run 1 % Recov									
1,2-Dic	chloroethane-d4		97	53-1	42							
Bromo	fluorobenzene		85	47-1	38							

68-124

98

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

H = Out of holding time

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Laboratory ID: MG28025-005

Matrix: Solid

Description: I17 (22-26)

Date Sampled: 07/28/2011 1230

Date Received: 07/28/2011

% Solids: 73.4 07/28/2011 2222

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	08/03/2011 0541	JGH	08/01/2011 2010	64808

Parameter	CAS Number	•	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	440	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	440	18	ug/kg	1
Anthracene	120-12-7	8270D	ND	440	20	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	440	15	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	440	32	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	440	30	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	440	30	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	440	37	ug/kg	1
Chrysene	218-01-9	8270D	ND	440	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	440	29	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	440	14	ug/kg	1
Fluorene	86-73-7	8270D	ND	440	17	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	440	40	ug/kg	1
Naphthalene	91-20-3	8270D	ND	440	19	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	440	18	ug/kg	1
Pyrene	129-00-0	8270D	ND	440	19	ug/kg	1
Surrogate		eptance imits					
2-Fluorobiphenyl	40 3	3-102					
Nitrobenzene-d5	36 2	2-109					
Terphenyl-d14	46 4	1-120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Management and Technical Resources, Inc.

Memo

To: Rusty Contrael

From: Cheryl Yushinski

Date: August 23, 2011

Re: Evaluation of Analytical Data for Sediment Samples Collected in August 2011

SCE&G Congaree River, Columbia, South Carolina

Sample Identification

CR-1 CR-4 CR-7 CR-9

Overview

Four sediment samples were collected on August 10, 2011 at the Congaree River Site.

The samples collected during the August 2011 sampling event were submitted to Shealy Environmental Services, Inc. (Shealy) located in West Columbia, South Carolina, for laboratory analyses. The laboratory analyses included BTEX (benzene, toluene, ethylbenzene and total xylenes) via EPA Method 8260B, PAHs (polynuclear aromatic hydrocarbons) by EPA Method 8270D. The analytical results were reported in one sample delivery group (SDG) – MH10046. A Level II data package was provided for the SDG.

The laboratory created matrix spike/matrix spike duplicate (MS/MSD) samples from PAH sample CR-1.

Summary

Quality control (QC) measures associated with the analytical data were reviewed following the U.S. EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (June 2008) to determine the accuracy and precision of the data reported. These QC measures included sample preservation, holding times, laboratory blanks, surrogate recoveries, laboratory control sample/laboratory control sample duplicate (LCS/LCSD) and MS/MSD results. Data usability is presented below.

Data Usability Results

The laboratory provided results with any confirmed detections that fell between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) being reported and qualified as estimated, "J". Any laboratory-qualified results with concentrations below the undiluted PQL value were reported as non-detects.

Recommendations for Data Usability

All BTEX and PAH data should be considered usable for intended data uses.

Information Regarding Report Content

- 1. Glossary of Data Qualifier Codes
- 2. Attachment A Shealy Data Summary Reports. This includes qualified results as originally reported by the laboratory with applicable qualifier codes as annotated by MTR.

GLOSSARY OF DATA QUALIFIER CODES

The following definitions provide a brief explanation of the national qualifiers assigned to results in the data review process.

CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds.)

U = Indicates that the constituent was not detected at the reported detection limit.

(NO CODE) = Confirmed identification

- UR = Indicates that the constituent was not detected above the reporting limit. However, the result is unusable due to the holding time being grossly exceeded.
- R = Unusable Result. The sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

CODES RELATED TO QUANTITATION

(Can be used for positive results and sample quantitation limits.)

- J = Indicates an estimated value. The constituent was positively identified. However, the result was less than the quantitation limit but greater than zero; or based on the data evaluation, the associated result is an approximate concentration of the constituent in the sample.
- UJ = Indicates that the constituent was not detected above the reporting limit. However, based on the data evaluation, the reported result is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the concentration of the constituent in the sample.

ATTACHMENT A SHEALY DATA SUMMARY REPORT

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-001

Description: CR-4

Matrix: Solid

Date Sampled:08/10/2011 0845

% Solids: 81.6 08/10/2011 2314

Date Received: 08/10/2011

Run 1	Prep Method 5035	Analytical Method 8260B		nalysis Date 8/11/2011 1326	Analyst 6 SAS	Prep Da	ite	Batch 65534	Sample \ 3.42	10,	
Param	neter	Z.	Nu		nalytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne		71	-43-2	8260B	ND		9.0	2.0	ug/kg	1
Ethylb	enzene	•	100	-41-4	8260B	ND		9.0	3.0	ug/kg	1
Toluer	ne		108	-88-3	8260B	ND		9.0	3.0	ug/kg	1
Xylene	es (total)		1330	-20-7	8260B	ND		9.0	5.2	ug/kg	1
Surro	gate	Q	Run 1 % Recovery	Acceptance Limits							
1,2-Di	chloroethane-d4		116	53-142							
Bromo	ofluorobenzene		102	47-138							
Toluer	ne-d8		97	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-001

Description: CR-4

Date Sampled:08/10/2011 0845

Matrix: Solid

% Solids: 81.6 08/10/2011 2314

Date Received: 08/10/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	08/17/2011 2011	JWS	08/16/2011 1757	65820

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	400	12	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	400	16	ug/kg	1
Anthracene	120-12-7	8270D	ND	400	18	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	400	13	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	400	29	ug/kg	. 1
Benzo(b)fluoranthene	205-99-2	8270D	ND	400	27	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	400	27	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	400	33	ug/kg	1
Chrysene	218-01-9	8270D	ND	400	13	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	400	27	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	400	13	ug/kg	1
Fluorene	86-73-7	8270D	ND	400	16	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	400	36	ug/kg	1
Naphthalene	91-20-3	8270D	ND	400	17	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	400	16	ug/kg	1
Pyrene	129-00-0	8270D	ND	400	17	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi	ance ts					
2-Fluorobiphenyl	57 33-1	02					
Nitrobenzene-d5	60 22-1	09					
Terphenyl-d14	70 41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-002

Description: CR-7

Matrix: Solid

Date Sampled:08/10/2011 0930

% Solids: 80.4 08/10/2011 2314

Date Received: 08/10/2011

Run Prep Method 1 5035	Analytical Method 8260B		alysis Date 11/2011 1348	Analyst SAS	Prep Da	te	Batch 65534	Sample \ 3.96		
Parameter		Num		alytical lethod	Result	Q	PQL	MDL	Units	Run
Benzene		71-4	13-2	8260B	ND		7.9	1.7	ug/kg	1
Ethylbenzene		100-4	11-4	8260B	ND		7.9	2.7	ug/kg	1
Toluene		108-8	38-3	8260B	ND		7.9	2.7	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		7.9	4.6	ug/kg	1
Surrogate	Q	Run 1 / % Recovery	Acceptance Limits							
1,2-Dichloroethane-d4		119	53-142							
Bromofluorobenzene		101	47-138							
Toluene-d8		95	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Page: 7 of 20

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-002

Description: CR-7

Matrix: Solid

Date Sampled:08/10/2011 0930

% Solids: 80.4 08/10/2011 2314

Date Received: 08/10/2011

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	08/17/2011 2030	JWS	08/16/2011 1757	65820

		CAS	Analytical	D 14	_	DOL	***		_
Parameter	Nur	nber	Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-	32-9	8270D	ND		400	12	ug/kg	1
Acenaphthylene	208-	96-8	8270D	ND		400	16	ug/kg	1
Anthracene	120-	12-7	8270D	ND		400	18	ug/kg	1
Benzo(a)anthracene	56-	55-3	8270D	NO 50-	J	400	13	ug/kg	1
Benzo(a)pyrene	50-	32-8	8270D	ND		400	29	ug/kg	1
Benzo(b)fluoranthene	205-	99-2	8270D	M)43	J	400	27	ug/kg	1
Benzo(g,h,i)perylene	191-	24-2	8270D	ND		400	27	ug/kg	1
Benzo(k)fluoranthene	207-	08-9	8270D	ND		400	33	ug/kg	1
Chrysene	218-	01-9	8270D	M)45	J	400	12	ug/kg	1
Dibenzo(a,h)anthracene	53-	70-3	8270D	ND		400	26	ug/kg	1
Fluoranthene	206-	44-0	8270D	14051	J	400	13	ug/kg	1
Fluorene	86-	73-7	8270D	ND		400	15	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-	39-5	8270D	ND		400	36	ug/kg	1
Naphthalene	91-	20-3	8270D	ND		400	17	ug/kg	1
Phenanthrene	85-	01-8	8270D	ND		400	16	ug/kg	1
Pyrene	129-	0-0	8270D	M∆89	J	400	17	ug/kg	1
Surrogate	Run 1 Q % Recovery	Accepta Limit		C & 8)	4 153/11				
2-Fluorobiphenyl	69	33-10)2						
Nitrobenzene-d5	69	22-10	9						
Terphenyl-d14	77	41-12	20						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-003

Description: CR-9

Matrix: Solid

Date Sampled:08/10/2011 0950

% Solids: 88.3 08/10/2011 2314

Date Received: 08/10/2011

Run 1	Prep Method 5035	Analytical Method 8260B		nalysis Date /11/2011 141	•	Prep Da	ite	Batch 65534	Sample \		
Paramo	eter				nalytical Method	Result	Q	PQL	MDL	Units	Run
Benzer	ne		71-	43-2	8260B	ND		9.4	2.1	ug/kg	1
Ethylbe	enzene		100-	41-4	8260B	ND		9.4	3.2	ug/kg	.1
Toluen	е		108-	88-3	8260B	ND		9.4	3.2	ug/kg	1
Xylene	s (total)		1330-	20-7	8260B	ND		9.4	5.5	ug/kg	1
Surrog	jate	Q	Run 1 % Recovery	Acceptance Limits							
1,2-Dic	hloroethane-d4		124	53-142							
Bromof	fluorobenzene		103	47-138							
Toluen	e-d8		100	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Laboratory ID: MH10046-003

Description: CR-9

Matrix: Solid

Date Sampled:08/10/2011 0950

% Solids: 88.3 08/10/2011 2314

Date Received: 08/10/2011

Run Prep Method 1 3550C	Analytical Method 8270D	Dilution Analysis 1 08/17/201		Prep Da 08/16/201		Batch 65820			
Parameter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	ND		370	11	ug/kg	1
Acenaphthylene		208-96-8	8270D	ND		370	15	ug/kg	1
Anthracene		120-12-7	8270D	ND		370	16	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	ND		370	12	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	ND		370	27	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	ND		370	25	ug/kg	1
Benzo(g,h,i)perylene		191-24-2	8270D	ND		370	25	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	ND		370	30	ug/kg	1
Chrysene		218-01-9	8270D	ND		370	12	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND		370	24	ug/kg	1
Fluoranthene		206-44-0	8270D	ND		370	12	ug/kg	1
Fluorene		86-73-7	8270D	ND		370	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND		370	33	ug/kg	1
Naphthalene		91-20-3	8270D	ND		370	16	ug/kg	1
Phenanthrene		85-01-8	8270D	ND		370	15	ug/kg	1
Pyrene		129-00-0	8270D	ND		370	16	ug/kg	1

Surrogate	Q	Run 1 A % Recovery	Acceptance Limits
2-Fluorobiphenyl		57	33-102
Nitrobenzene-d5		61	22-109
Terphenyl-d14		68	41-120

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: CR-1

Date Sampled:08/10/2011 0750

Laboratory ID: MH10046-004

Matrix: Solid

% Solids: 78.2 08/10/2011 2314

Date Received: 08/10/2011

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution 1	Analysis [08/11/2011	•	Prep Da	ate	Batch 65534	Sample \ 3.87		
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzei	ne			71-43-2	8260B	ND		8.3	1.8	ug/kg	1
Ethylbe	enzene		1	00-41-4	8260B	ND		8.3	2.8	ug/kg	1
Toluen	ie		1	08-88-3	8260B	ND		8.3	2.8	ug/kg	1
Xylene	es (total)		13	30-20-7	8260B	ND		8.3	4.8	ug/kg	1
Surrog	gate	Q	Run 1 % Recove								
1,2-Dic	chloroethane-d4		129	53-1	42						
Bromo	fluorobenzene		104	47-1	38						
Toluen	ne-d8		100	68-1	24						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: CR-1 Date Sampled:08/10/2011 0750 Laboratory ID: MH10046-004

Matrix: Solid

% Solids: 78.2 08/10/2011 2314

Date Received: 08/10/2011

Run 1	Prep Method 3550C	Analytical Method 8270D	Dilution 1	Analysis I 08/17/2011		Analyst JWS	Prep Da 08/16/201		Batch 65820			
							***	····				
Paran	noter			CAS		lytical	Result	Q	PQL	MDL	Units	Run
				Number		ethod		<u> </u>		·····		Kuii
	phthene			83-32-9		8270D	ND		400	12	ug/kg	1
Acena	phthylene			208-96-8		8270D	ND		400	16	ug/kg	1
Anthr	acene			120-12-7		8270D	A/A 25	J	400	18	ug/kg	1
Benzo	(a)anthracene			56-55-3		8270D	NO 230	J	400	13	ug/kg	1
Benzo	(a)pyrene			50-32-8		8270D	N 0 260-	<u></u>	400	29	ug/kg	1
Benzo	(b)fluoranthene			205-99-2		8270D	410		400	27	ug/kg	1
Benzo	(g,h,i)perylene			191-24-2		8270D	NA190	J	400	27	ug/kg	1
Benzo	(k)fluoranthene			207-08-9		8270D	ND		400	33	ug/kg	1
Chrys	ene			218-01-9		8270D	N/330	— J	400	13	ug/kg	1
Diben:	zo(a,h)anthracene			53-70-3		8270D	ND		400	27	ug/kg	1
Fluora	inthene			206-44-0		8270D	640		400	13	ug/kg	1
Fluore	ne			86-73-7		8270D	ND		400	15	ug/kg	- 1
Inden	o(1,2,3-c,d)pyrene			193-39-5		8270D	ND160-	J	400	36	ug/kg	1
Napht	halene			91-20-3		8270D	ND		400	17	ug/kg	1
Phena	inthrene			85-01-8		8270D	NO 190-	J	400	16	ug/kg	1
Pyren	е			129-00-0		8270D	480		400	17	ug/kg	. 1
C	wata.		Run				& 6	V 123/11				
Surro		Q	% Reco					, 7.,		***************************************	·	
	robiphenyl		57	33-1								
Nitrob	enzene-d5		59	22-1								
Terphe	enyl-d14		67	41-1	20							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Management and Technical Resources, Inc.

Memo

To: Rusty Contrael

From: Cheryl Yushinski

Date: January 27, 2012

Re: Evaluation of Analytical Data for Sediment Samples Collected in January 27, 2012

SCE&G Congaree River, Columbia, South Carolina

Sample Identification

AK-80 AM-71.5 AQ-71.5 Y-57

Overview

Four sediment samples were collected on January 10 and January 12, 2012 at the Congaree River Site.

The samples collected during the January 2012 sampling event were submitted to Shealy Environmental Services, Inc. (Shealy) located in West Columbia, South Carolina, for laboratory analyses. The laboratory analyses included BTEX (benzene, toluene, ethylbenzene and total xylenes) via EPA Method 8260B, PAHs (polynuclear aromatic hydrocarbons) by EPA Method 8270D. The analytical results were reported in two sample delivery groups (SDG) – NA11018 and NA12017. Level II data packages were provided for the SDGs.

Summary

Quality control (QC) measures associated with the analytical data were reviewed following the U.S. EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (June 2008) to determine the accuracy and precision of the data reported. These QC measures included sample preservation, holding times, laboratory blanks, surrogate recoveries and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results. Data usability is presented below.

Data Usability Results

The laboratory provided results with any confirmed detections that fell between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) being reported and qualified as estimated, "J". Any laboratory-qualified results with concentrations below the undiluted PQL value were reported as non-detects.

Recommendations for Data Usability

All BTEX and PAH data should be considered usable for intended data uses.

Information Regarding Report Content

- 1. Glossary of Data Qualifier Codes
- 2. Attachment A Shealy Data Summary Reports. This includes qualified results as originally reported by the laboratory with applicable qualifier codes as annotated by MTR.

GLOSSARY OF DATA QUALIFIER CODES

The following definitions provide a brief explanation of the national qualifiers assigned to results in the data review process.

CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds.)

U = Indicates that the constituent was not detected at the reported detection limit.

(NO CODE) = Confirmed identification

- UR = Indicates that the constituent was not detected above the reporting limit. However, the result is unusable due to the holding time being grossly exceeded.
- R = Unusable Result. The sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

CODES RELATED TO QUANTITATION

(Can be used for positive results and sample quantitation limits.)

- J = Indicates an estimated value. The constituent was positively identified. However, the result was less than the quantitation limit but greater than zero; or based on the data evaluation, the associated result is an approximate concentration of the constituent in the sample.
- UJ = Indicates that the constituent was not detected above the reporting limit. However, based on the data evaluation, the reported result is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the concentration of the constituent in the sample.

ATTACHMENT A SHEALY DATA SUMMARY REPORT

Client: Management and Technical Resources, Inc.

Laboratory ID: NA11018-001

Matrix: Solid

Description: AK-80

% Solids: 87.9 01/11/2012 2323

Date Sampled:01/10/2012 1530 Date Received: 01/11/2012

Batch Sample Wt.(g)

Run Prep Method 1 5035	Analytical Method 8260B		16/2012 1319	Analyst BM	Prepi	Date	75735	5.09		
Parameter				ilytical ethod	Result	Q	PQL	MDL	Units	Run
Benzene		71-	43-2	8260B	ND		5.6	1.2	ug/kg	1
Ethylbenzene		100-	41-4	8260B	ND		5.6	1.9	ug/kg	1
Toluene		108-	88-3	8260B	ND		5.6	1.9	ug/kg	1
Xylenes (total)		1330-	20-7	8260B	ND		5.6	3.2	ug/kg	1
Surrogate	Q	Run 1 % Recovery	Acceptance Limits							
1,2-Dichloroethane-d4		85	53-142							
Bromofluorobenzene		113	47-138							
Toluene-d8		92	68-124							

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Laboratory ID: NA11018-001

Matrix: Solid

Description: AK-80 Date Sampled:01/10/2012 1530

% Solids: 87.9 01/11/2012 2323

Date Received: 01/11/2012

Analytical Method Prep Date Batch Dilution Analysis Date Analyst Prep Method 8270D 01/16/2012 1949 JCG 01/13/2012 1647 75652 3550C 1

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	360	11	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	360	14	ug/kg	1
Anthracene	120-12-7	8270D	ND	360	16	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	360	12	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	360	26	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	360	24	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	360	24	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	360	29	ug/kg	1
Chrysene	218-01-9	8270D	ND	360	11	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	360	24	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	360	11	ug/kg	1
Fluorene	86-73-7	8270D	ND	360	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	360	32	ug/kg	1
Naphthalene	91-20-3	8270D	ND	360	15	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	360	15	ug/kg	1
Pyrene	129-00-0	8270D	ND	360	15	ug/kg	1
Surrogate		otance nits			G		
2-Fluorobiphenyl	94 33	-102					
Nitrobenzene-d5	82 22	-109					
Terphenyl-d14	88 41	-120					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

 $ND \approx Not detected at or above the MDL$

 $J = Estimated result < PQL and <math>\geq MDL$ Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" P = The RPD between two GC columns exceeds 40%

* = Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Description: AM-71.5

Date Sampled:01/10/2012 1700

Date Received: 01/11/2012

Laboratory ID: NA11018-002

Matrix: Solid

% Solids: 87.7 01/11/2012 2323

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution Analysis 1 01/16/2012	-	Prep Date	Batch 75735	Sample \ 5.26		
Param	ıeter		CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benze	ne		71-43-2	8260B	ND	5.4	1.2	ug/kg	1
Ethvlb	enzene		100-41-4	8260B	ND	5.4	1.8	ug/kg	1
Toluer			108-88-3	8260B	ND	5.4	1.8	ug/kg	1
Xvlene	es (total)		1330-20-7	8260B	ND	5.4	3.1	ug/kg	1

Surrogate	Q	% Recovery	Limits
1,2-Dichloroethane-d4		86	53-142
Bromofluorobenzene		113	47-138
Toluene-d8		92	68-124

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

^{* =} Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Laboratory ID: NA11018-002

Matrix: Solid

Description: AM-71.5

% Solids: 87.7 01/11/2012 2323

Date Sampled:01/10/2012 1700 Date Received: 01/11/2012

Run Prep Method 1 3550C	Analytical Method 8270D	Dilution Analysis Date 1 01/16/2012 201		Prep Date 01/13/2012 1647	Batch 75652			
Parameter		CAS A Number	nalytical Method	Result Q	PQL	MDL	Units	Run
Acenaphthene		83-32-9	8270D	ND	370	11	ug/kg	1
Acenaphthylene		208-96-8	8270D	ND	370	15	ug/kg	1
Anthracene		120-12-7	8270D	ND	370	17	ug/kg	1
Benzo(a)anthracene		56-55-3	8270D	ND 27-J	370	12	ug/kg	1
Benzo(a)pyrene		50-32-8	8270D	ND	370	27	ug/kg	1
Benzo(b)fluoranthene		205-99-2	8270D	ND	370	25	ug/kg	1
Benzo(g,h,i)perylene	•	191-24-2	8270D	ND	370	26	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270D	ND	370	31	ug/kg	1
Chrysene		218-01-9	8270D	ND	370	12	ug/kg	1
Dibenzo(a,h)anthracene		53-70-3	8270D	ND	370	25	ug/kg	1
Fluoranthene		206-44-0	8270D	ND 13-J	370	12	ug/kg	1
Fluorene		86-73-7	8270D	ND	370	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND	370	34	ug/kg	1
Naphthalene		91-20-3	8270D	ND	370	16	ug/kg	1
Phenanthrene		85-01-8	8270D	ND	370	15	ug/kg	1
Pyrene		129-00-0	8270D	NO 20-J	370	16	ug/kg	1
Surrogate	Q	Run 1 Acceptanc % Recovery Limits	e	Cil change	3 1/12			
2-Fluorobiphenyl		91 33-102		<i>f</i> *				
Nitrobenzene-d5		83 22-109						
Terphenyl-d14		85 41-120						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: Management and Technical Resources, Inc.

Description: AQ-71.5

Date Sampled:01/10/2012 1710

Date Received: 01/11/2012

Bromofluorobenzene

Toluene-d8

Laboratory ID: NA11018-003

Matrix: Solid

% Solids: 90.6 01/11/2012 2323

Run Prep Method 1 5035		Analytical Method 8260B			•	Prep Date	Batch 75735	Sample Wt.(g) 5.36		
Parame	ter		1	CAS Number	Analytical Method	Result Q	PQL.	MDL	Units	Run
Benzene	e			71-43-2	8260B	ND	5.1	1.1	ug/kg	1
Ethylber	nzene		10	00-41-4	8260B	ND	5.1	1.8	ug/kg	1
Toluene	:		10	08-88-3	8260B	ND	5.1	1.8	ug/kg	1
Xylenes	(total)		13	30-20-7	8260B	ND	5.1	3.0	ug/kg	1
Surroga	ate	Q	Run 1 % Recove	Accept ery Limi						
1,2-Dich	nloroethane-d4		90	53-1	42					

47-138

68-124

111

PQL = Practical quantitation limit

B = Detected in the method blank

DL

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Client: Management and Technical Resources, Inc.

Description: AQ-71.5

Date Sampled:01/10/2012 1710

Date Received: 01/11/2012

Laboratory ID: NA11018-003

Matrix: Solid

% Solids: 90.6 01/11/2012 2323

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D				01/13/2012 1647	75652

Parameter	CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	350	11	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	350	14	ug/kg	1
Anthracene	120-12-7	8270D	ND	350	15	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND 25-J	350	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	350	25	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	350	23	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	350	24	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	350	29	ug/kg	1
Chrysene	218-01-9	8270D	ND	350	11	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	350	23	ug/kg	1
Fluoranthene	206-44-0	8270D	MD 22-J	350	11	ug/kg	1
Fluorene	86-73-7	8270 D	ND	350	13	ug/kg	1
indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	350	31	ug/kg	1
Naphthalene	91-20-3	8270D	ND	350	15	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	350	14	ug/kg	1
Pyrene	129-00-0	8270D	ND 46-J	350	15	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi	ance ,	le (CY 1/27) harjis				
2-Fluorobiphenyl	87 33-1	02					
Nitrobenzene-d5	78 22-1	09					
Terphenyl-d14	83 41-1	20					

PQL = Practical quantitation limit

B = Detected in the method blank

J = Estimated result < PQL and ≥ MDL

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

H = Out of holding time

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Description: Y-57

Date Sampled:01/12/2012 1110

Date Received: 01/12/2012

Laboratory ID: NA12017-001

Matrix: Solid

% Solids: 84.1 01/12/2012 2202

Run 1	Prep Method 5035	J Wethou Analytical method District Cold (Cold Analytical Method)		Prep Date	Batch 75735	Sample Wt.(g) 5.72				
Param	neter			CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benze	ne			71-43-2	8260B	ND	5.2	1.1	ug/kg	1
	enzene		1	00-41-4	8260B	ND	5.2	1.8	ug/kg	1
Toluer			1	08-88-3	8260B	ND	5.2	1.8	ug/kg	1
	es (total)		13	330-20-7	8260B	ND	5.2	3.0	ug/kg	1
Surro	gate	Q	Run 1 % Recov							
1 2-Di	chloroethane-d4		89	53-1	42					
	fluorobenzene		114	47-1	38					
Toluer			98	68-1	124					

PQL = Practical quantitation limit

B = Detected in the method blank

 $J = Estimated result < PQL and <math>\geq MDL$

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

H = Out of holding time

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Laboratory ID: NA12017-001

Matrix: Solid

Description: Y-57
Date Sampled:01/12/2012 1110

% Solids: 84.1 01/12/2012 2202

Date Received: 01/12/2012

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D				01/13/2012 1647	75652

Parameter	CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	360	11	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	360	14	ug/kg	1
Anthracene	120-12-7	8270D	ND 67-1	360	16	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	260—J	360	12	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	280—J	360	27	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	210 J	360	25	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	لــــ130	360	25	ug/kg	1
Benzo(k)fluoranthene	207-08-9	827 0 D	9 9 J	360	30	ug/kg	1
Chrysene	218-01-9	8270D	₩ 280—J	360	11	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	360	24	ug/kg	1
Fluoranthene	206-44-0	8270D	360	360	11	ug/kg	1
Fluorene	86-73-7	8270D	ND	360	14	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	<i>№</i> 98—J	360	33	ug/kg	1
Naphthalene	91-20-3	8270D	ND	360	15	ug/kg	1
Phenanthrene	85-01-8	8270D	<i>№</i> 2 60 – J	360	15	ug/kg	1
Pyrene	129-00-0	8270D	620	360	16	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi	ance ts	au chang	27/12			
2-Fluorobiphenyl	92 33-1	02					
Nitrobenzene-d5	84 22-1	09				-	
Terphenyl-d14	90 41-1	20					

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Management and Technical Resources, Inc.

Memo

To: Rusty Contrael

From: Cheryl Yushinski

Date: February 15, 2012

Re: Evaluation of Analytical Data for Sediment Samples Collected in February 2012

SCE&G Congaree River, Columbia, South Carolina

Sample Identification

J-11.5 K-8 L-7

Overview

Three sediment samples were collected on February 1, 2012 at the Congaree River Site.

The samples collected during the February 2012 sampling event were submitted to Shealy Environmental Services, Inc. (Shealy) located in West Columbia, South Carolina, for laboratory analyses. The laboratory analyses included BTEX (benzene, toluene, ethylbenzene and total xylenes) via EPA Method 8260B, PAHs (polynuclear aromatic hydrocarbons) by EPA Method 8270D. The analytical results were reported in one sample delivery group (SDG) – NB01025. A Level II data package was provided for the SDG.

The laboratory created matrix spike/matrix spike duplicate (MS/MSD) samples from PAH sample L-7.

Summary

Quality control (QC) measures associated with the analytical data were reviewed following the U.S. EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (June 2008) to determine the accuracy and precision of the data reported. These QC measures included sample preservation, holding times, laboratory blanks, surrogate recoveries, laboratory control sample/laboratory control sample duplicate (LCS/LCSD) and MS/MSD results. Data usability is presented below.

Data Usability Results

The laboratory provided results with any confirmed detections that fell between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) being reported and qualified as estimated, "J". Any laboratory-qualified results with concentrations below the undiluted PQL value were reported as non-detects.

Recommendations for Data Usability

All BTEX and PAH data should be considered usable for intended data uses.

Information Regarding Report Content

- 1. Glossary of Data Qualifier Codes
- 2. Attachment A Shealy Data Summary Reports. This includes qualified results as originally reported by the laboratory with applicable qualifier codes as annotated by MTR.

GLOSSARY OF DATA QUALIFIER CODES

The following definitions provide a brief explanation of the national qualifiers assigned to results in the data review process.

CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds.)

U = Indicates that the constituent was not detected at the reported detection limit.

(NO CODE) = Confirmed identification

- UR = Indicates that the constituent was not detected above the reporting limit. However, the result is unusable due to the holding time being grossly exceeded.
- R = Unusable Result. The sample results are considered unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

CODES RELATED TO QUANTITATION

(Can be used for positive results and sample quantitation limits.)

- J = Indicates an estimated value. The constituent was positively identified. However, the result was less than the quantitation limit but greater than zero; or based on the data evaluation, the associated result is an approximate concentration of the constituent in the sample.
- UJ = Indicates that the constituent was not detected above the reporting limit. However, based on the data evaluation, the reported result is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the concentration of the constituent in the sample.

ATTACHMENT A SHEALY DATA SUMMARY REPORT

Client: Management and Technical Resources, Inc.

Description: K-8

Date Sampled:02/01/2012 1030

Date Received: 02/01/2012

Laboratory ID: NB01025-001

Matrix: Solid

% Solids: 79.2 02/02/2012 0035

Run	Prep Method	Analytical Method		Analysis Date	•	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	02/07/2012 1524	DLB		77207	5.23

Parameter	CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benzene	71-43-2	8260B	ND	6.0	1.3	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND	6.0	2.1	ug/kg	1
Toluene	108-88-3	8260B	ND	6.0	2.1	ug/kg	1
Xylenes (total)	1330-20-7	8260B	ND	6.0	3.5	ug/kg	1
Surrogate	Run 1 Accept Q % Recovery Limi						
4.0.D' bloom the same of 4.	07 50.4	40					

Surrogate	Q	% Recovery	Limits
1,2-Dichloroethane-d4		87	53-142
Bromofluorobenzene		81	47-138
Toluene-d8		93	68-124

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL $J = Estimated result < PQL \ and \ge MDL$ Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: K-8

Date Sampled:02/01/2012 1030

Date Received: 02/01/2012

Laboratory ID: NB01025-001

Matrix: Solid

% Solids: 79.2 02/02/2012 0035

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	02/03/2012 1904	TAF	02/02/2012 1318	76910
2	3550C	8270D	2	02/06/2012 1206	TAF	02/02/2012 1318	76910

Parameter				nalytical Method	D 14		Q PQL		Units	Run	
Acenaphthene			32-9	8270D	3700		410	13	ug/kg	1	
Acenaphthylene		208-	96-8	8270D	890		410	16	ug/kg	1	
Anthracene		120-	12-7	8270D			410	18	ug/kg	1	
Benzo(a)anthracene		56-	56-55-3		4300		410	14	ug/kg	1	
Benzo(a)pyrene		50-	50-32-8		4700		410	30	ug/kg	1	
Benzo(b)fluoranthene		205-	205-99-2 8		4200		410	28	ug/kg	1	
Benzo(g,h,i)perylene		191-	191-24-2 8		1900		410	28	ug/kg	1	
Benzo(k)fluoranthene		207-	207-08-9 8		1600		410	34	ug/kg	1	
Chrysene		218-01-9		8270D	4000		410	13	ug/kg	1	
Dibenzo(a,h)anthracene		53-	70-3	8270D	440		410	27	ug/kg	1	
Fluoranthene		206-	44-0	8270D	8200		410	13	ug/kg	1	
Fluorene		86-	73-7	8270D	2400		410	16	ug/kg	1	
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270D	1500		410	37	ug/kg	1	
Naphthalene		91-	20-3	8270D	MA 450	- J	410	17	ug/kg	1	
Phenanthrene		85-	01-8	8270D	9800	CLY	410	17	ug/kg	1	
Pyrene		129-	00-0	8270D	9100	2/15/12	820	36	ug/kg	2	
Surrogate	Q	Run 1 % Recovery	Acceptance Limits		Run 2 A	cceptance Limits					
2-Fluorobiphenyl		61	33-102		56	33-102					
Nitrobenzene-d5		42			37	22-109					
1 1 14 4			44.400			44 400					

2-Fluorobipnenyi	01	33-102	90	33-102	
Nitrobenzene-d5	42	22-109	37	22-109	
Terphenyl-d14	66	41-120	55	41-120	

* = Reportable result (only when report all runs)

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Client: Management and Technical Resources, Inc.

Description: L-7

Date Sampled:02/01/2012 1240

Date Received: 02/01/2012

Laboratory ID: NB01025-002

Matrix: Solid

% Solids: 80.0 02/02/2012 0035

Run Prep Method 1 5035		•		Analysis Date Analyst 02/07/2012 1548 DLB		77207	Sample Wt.(g) 4.12		
Parame	ter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene)		71-43-2	8260B	ND	7.6	1.7	ug/kg	1
Ethylben	zene		100-41-4	8260B	ND	7.6	2.6	ug/kg	1
Toluene			108-88-3	8260B	ND	7.6	2.6	ug/kg	1
Xylenes	(total)		1330-20-7	8260B	ND	7.6	4.4	ug/kg	1

Surrogate	Q	Run 1 A % Recovery	Acceptance Limits	
1,2-Dichloroethane-d4		89	53-142	
Bromofluorobenzene		82	47-138	
Toluene-d8		93	68-124	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and > MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Description: L-7

Date Sampled:02/01/2012 1240

Date Received: 02/01/2012

Laboratory ID: NB01025-002

Matrix: Solid

% Solids: 80.0 02/02/2012 0035

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	02/03/2012 1929	TAF	02/02/2012 1318	76910

Parameter		Nui	CAS A mber	nalytical Method	Result Q	PQL	MDL	Units	Run
Acenaphthene		83	-32-9	8270D	ND 47-J	410	13	ug/kg	1
Acenaphthylene		208	-96-8	8270D	M) 160 J	410	16	ug/kg	1
Anthracene		120	-12-7	8270D	<i>№</i> 1 50 J	410	18	ug/kg	1
Benzo(a)anthracene		56-55-3 8		8270D	680	410	14	ug/kg	1
Benzo(a)pyrene		50-32-8		8270D	860	410	30	ug/kg	1
Benzo(b)fluoranthene		205	-99-2	8270D	790	410	28	ug/kg	1
Benzo(g,h,i)perylene		191	-24-2	8270D	500	410	28	ug/kg	1
Benzo(k)fluoranthene		207-08-9		8270D	M350-J	410	34	ug/kg	1
Chrysene		218-01-9		8270D	700	410	13	ug/kg	1
Dibenzo(a,h)anthracene		53	-70-3	8270D	//⊍1 00 J	410	27	ug/kg	1
Fluoranthene		206	-44-0	8270D	950	410	13	ug/kg	1
Fluorene		86	-73-7	8270D	MD 61-J	410	16	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-	-39-5	8270D	NJ3 70 J	410	37	ug/kg	1
Naphthalene		91-	-20-3	8270D	MD 31-J	410	17	ug/kg	1
Phenanthrene		85	-01-8	8270D	MJ 400 J	410	17	ug/kg	1
Pyrene		129-	-00-0	8270D	1400	410	18	ug/kg	1
Surrogate	Q	Run 1 % Recovery	Acceptance Limits	!	alith Ci	муи Н 2/15/13	_		
2-Fluorobiphenyl		65	33-102						
Nitrobenzene-d5		49	22-109						
Terphenyl-d14		66	41-120						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

* = Reportable result (only when report all runs)

Client: Management and Technical Resources, Inc.

Description: J-11.5

Date Sampled:02/01/2012 1300

Date Received: 02/01/2012

Toluene-d8

Laboratory ID: NB01025-003

Matrix: Solid

% Solids: 62.6 02/02/2012 0035

Run 1	Prep Method 5035	Analytical Method 8260B	Dilution 1	Analysis D 02/07/2012	•	Prep Date	Batch 77207	Sample V 4.12		
Param	neter			CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benze	ne			71-43-2	8260B	ND	9.7	2.1	ug/kg	1
Ethylbe	enzene			100-41-4	8260B	ND	9.7	3.3	ug/kg	1
Toluen	e			108-88-3	8260B	ND	9.7	3.3	ug/kg	1
Xylene	es (total)		1	330-20-7	8260B	ND	9.7	5.6	ug/kg	1
Surrog	gate	Q	Run ' % Recov							
1,2-Dic	chloroethane-d4		91	53-14	2					
Bromo	fluorobenzene		93	47-13	88					

68-124

95

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Client: Management and Technical Resources, Inc.

Description: J-11.5

Date Sampled:02/01/2012 1300

Date Received: 02/01/2012

Laboratory ID: NB01025-003

Matrix: Solid

% Solids: 62.6 02/02/2012 0035

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	02/06/2012 1231	TAF	02/02/2012 1318	76910

Parameter	C Num	AS Analytical ber Method	Result Q	PQL	MDL	Units	Run
Acenaphthene	83-3		100 44 J	520	16	ug/kg	1
Acenaphthylene	208-9		№01 10 J	520	21	ug/kg ug/kg	1
Anthracene	120-1		MD 64-J	520	23	ug/kg ug/kg	1
Benzo(a)anthracene	56-5		560	520	17	ug/kg ug/kg	1
Benzo(a)pyrene	50-3		1000	520	38	ug/kg ug/kg	1
Benzo(b)fluoranthene	205-9		970	520 520	35	ug/kg ug/kg	1
Benzo(g,h,i)perylene	191-2		600	520	35 35	ug/kg ug/kg	1
Benzo(k)fluoranthene	207-0		∕M 390—J	520	43	ug/kg ug/kg	1
Chrysene	218-0		, 490—J	520	16	ug/kg	1
Dibenzo(a,h)anthracene	53-7		1 10 J	520	35	ug/kg	1
Fluoranthene	206-4		5 00 J	520	16	ug/kg	1
Fluorene	86-7		45J	520	20	ug/kg	1
ndeno(1,2,3-c,d)pyrene	193-3		460 J	520	47	ug/kg	1
Naphthalene	91-2		ND	520	22	ug/kg	1
Phenanthrene	85-0		190 J	520	21	ug/kg	1
Pyrene	129-0		650	520	23	ug/kg ug/kg	1
Surrogate	Run 1 A Q % Recovery	cceptance Limits	all changes			-99	·
2-Fluorobiphenyl	48	33-102	——————————————————————————————————————			**************************************	
Nitrobenzene-d5	36	22-109					
Terphenyl-d14	52	41-120					

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" $\,$

^{* =} Reportable result (only when report all runs)