

New-Indy Catawba Mill Corrective Action Plan

Submitted: June 15, 2021

TABLE OF CONTENTS

Section Name

Page Number

1.	EXE	XECUTIVE SUMMARY1-1				
2.	BAC	CKGROUND				
3.	OPE	RATIO	ONS AND PROCESS DESCRIPTION			
	3.1	.1 SITE HISTORY				
	3.2	OVER	ALL PROCESS DESCRIPTION			
	3.3	WOO	DYARD			
	3.4	FIBER				
	3.5	PAPER MILL				
		3.5.1 Paper Machines				
		3.5.2	Pulp Dryer			
	3.6	CHEM	IICAL RECOVERY			
		3.6.1	Evaporator System			
		3.6.2	Recovery Furnaces			
		3.0.3 3.6.4	Smelt Dissolving Tanks			
		3.6.5	Causticizing Area			
		3.6.6	Lime Kiln			
	3.7	UTILI	TIES			
	3.8	3 WASTE TREATMENT				
		3.8.1	Condensate Collection and Treatment System			
		3.8.2	Wastewater Treatment System			
		3.8.3	Industrial Landfill			
	3.9	MISC	ELLANEOUS SOURCES			
4.	NEV	V-INDY	EVALUATION OF OPERATIONS AND PROCESSES			
4.1 NEW-INDY EVALUATION OF OPERATIONS AND PROCESSES TO						
	IDENTIFY POTENTIAL ODORS CONDUCTED IN CONSULTATION W			WITH 4-1		
	42	LDAR	FVALUATION	4-2		
	4.3	SCRE	ENING ANALYSIS			
	4.4	AMBI	ENT AIR MONITORS			
	4.5	PROC	ESS AREA REVIEW			
5.	NEV	V-INDY	EFFORTS TO ADDRESS ODOR COMPLAINTS			
6	COL	RECT	$\mathbf{V} \mathbf{V} \mathbf{F} \mathbf{A} \mathbf{C} \mathbf{T} \mathbf{O} \mathbf{N} \mathbf{P} \mathbf{I} \mathbf{A} \mathbf{N} = \mathbf{C} \mathbf{O} \mathbf{N} \mathbf{D} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{A} \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{A} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{A} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{A} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} O$	6-1		
0.	61	H ₂ S S	DURCE EVALUATION	6- 1		
	0.1	611	Woodvard			
		6.1.2	Kraft Pulp Mill			
		6.1.3	No. 2 Paper Machine			
		6.1.4	No. 3 Paper Machine			

TABLE OF CONTENTS

Section Name

Page Number

		6.1.5	Pulp Dryer	6-2
		6.1.6	Evaporator System	6-3
		6.1.7	Recovery Furnaces	6-3
		6.1.8	Smelt Dissolving Tanks	6-3
		6.1.9	Precipitator Mix Tanks	6-4
		6.1.10	Causticizing Area	6-4
		6.1.11	Lime Kiln	6-4
		6.1.12	Combination Boilers	6-4
		6.1.13	Condensate Collection and Treatment System	6-5
		6.1.14	Wastewater Treatment System	6-5
		6.1.15	Industrial Landfill	6-6
		6.1.16	Miscellaneous Sources	6-6
	6.2	CORR	ECTIVE ACTION PLAN – CONDITION 6	6-6
		6.2.1	Woodyard	6-7
		6.2.2	Kraft Pulp Mill	6-7
		6.2.3	No. 2 Paper Machine	6-7
		6.2.4	No. 3 Paper Machine	6-7
		6.2.5	Pulp Dryer	6-7
		6.2.6	Evaporator System	6-8
		6.2.7	Recovery Furnaces	6-8
		6.2.8	Smelt Dissolving Tanks	6-8
		6.2.9	Precipitator Mix Tanks	6-8
		6.2.10	Causticizing Area	6-8
		6.2.11	Lime Kiln	6-9
		6.2.12	Combination Boilers	6-9
		6.2.13	Condensate Collection and Treatment System	6-9
		6.2.14	Wastewater Treatment System	6-9
		6.2.15	Industrial Landfill	6-9
		6.2.16	Miscellaneous Sources	b-10
7.	COF	RECT	IVE ACTION PLAN – WASTEWATER TREATMENT MENTS NEW-INDV – CATAWBA, SC	7_1
	7.1	INTRO	DDUCTION	7-1
	72	COME	PREHENSIVE EVALUATION OF WASTEWATER TREATMENT	
	1.2	SYSTI	EM	7-2
		7.2.1	Operational issues that may be causing or contributing to odor and elevated	
			levels of hydrogen sulfide	7-2
		7.2.2	Adequacy and appropriateness of waste treatment that is occurring in the Aerated Stabilization Basin	7-4
		7.2.3	The potential for odors resulting from the discharge of foul condensate into	
			the treatment system	7-8
		7.2.4	The accumulation of fiber, foam and sludge and their sources	7-9
		7.2.5	A study of the microbial population in the ASB with regards to reducing the fiber/foam layer and providing biological degradation of BOD5	7-10

TABLE OF CONTENTS

LIST OF FIGURES

Figure 3-1 Simplified Mill Flow	⁷ Diagram	3-12	22
---------------------------------	----------------------	------	----

LIST OF TABLES

Table 6-1 6-1	1	2	2
---------------	---	---	---

LIST OF APPENDICES

- Appendix A Leak Detection and Repair (LDAR) inspection reports
- Appendix B Weston Solutions air emissions analysis report
- Appendix C Onsite ambient monitor locations map
- Appendix D Onsite ambient monitor data
- Appendix E Environmental Business Solutions wastewater treatment system reports

1. EXECUTIVE SUMMARY

New-Indy Catawba LLC (New-Indy) submits this Corrective Action Plan report in response to paragraphs 3, 6 and 7 of the Order issued by the South Carolina Department of Health and Environmental Control (SCDHEC or DHEC) on May 7, 2021. By way of background, until late 2020, New-Indy and its predecessor owners of the mill in Catawba, South Carolina produced bleached paper at the facility. Given the substantial decrease in demand for such paper, the mill was becoming more economically unviable each day. Thus, New-Indy made the decision to convert from producing bleached white paper to unbleached containerboard at the mill. Commencing in spring 2020, the mill replaced the outdated bleached paper-making equipment with state-of-the-art equipment to make lightweight ultra-high strength containerboard and retrained its union workforce to operate and maintain this very sophisticated facility. While the mill began salable production on February 1, 2021, it is still working toward steady-state operations. In late January and February, New-Indy and SCDHEC began receiving complaints from local citizens regarding odors.

At that point, the mill began a concerted effort to identify potential sources of odors and to investigate those potential sources. The mill evaluated its seven (7) major operations and process areas: the woodyard, kraft pulp mill, paper machine, chemical recovery process, utilities, waste treatment, and miscellaneous sources. New-Indy evaluated the seven processes with a series of twelve (12) environmental consultants, including personnel from TRC Companies, Inc. (TRC), ALL4 LLC (ALL4), Weston Solutions, Inc. (Weston), National Council for Air and Stream Improvement (NCASI), Environmental Business Specialists, LLC (EBS), LDX Solutions (LDX), Environmental 360 Solutions, Inc. (E360), Trinity Consultants, Inc. (Trinity), Valmet and Rolf Ryham, SFC Contract Services and Saiia Construction Company. That evaluation included leak detection and repair (LDAR) evaluation, an ambient air screening evaluation and the installation of ambient air monitors, in addition to a focused evaluation of the wastewater treatment system. Based on the evaluation, the mill and its professionals concluded the wastewater treatment system was the only possible source of odors at the mill.

The mill has conducted numerous evaluations and process enhancements at the mill to address the odor issues. As noted above, the mill has engaged at least twelve environmental consulting firms

to assist in the process, including three environmental air consultants, three wastewater consultants, two engineering firms and a toxicologist. Activities that the mill has undertaken to identify and address odors include the following: installing continuous ambient air monitors on the mill property and offsite; completing the screening analysis of hydrogen sulfide (H₂S) emissions at the mill; restarting the steam stripper; removing the layer of fiber from the surface of the ASB; injecting calcium nitrate and peroxide into the wastewater stream; repairing existing aerators and installing two new aerators. Certain of those activities are ongoing and have been incorporated into the corrective action plan set forth herein. In addition to the ongoing activities, certain activities are planned that will round out the corrective action plan. Those ongoing and upcoming activities set forth in this corrective action plan include the following: feeding calcium nitrate and peroxide into the wastewater stream; increasing the treatment capacity of the stripper; continuing repair of aerators; weekly advanced chemical and microbiological analysis to evaluate biomass health; and continuous ambient air monitoring onsite and offsite.

2. BACKGROUND

New-Indy Catawba, LLC, (New-Indy) operates a kraft pulp and paper mill located at 5300 Cureton Ferry Rd, Catawba, SC, in York County (mill). The mill operates under Title V Operating Permit #2440-0005 that was issued by the South Carolina Department of Health and Environmental Control (DHEC) on May 7, 2019, became effective on July 1, 2019, and expires on June 30, 2024. New-Indy was issued Construction Permit #2440-0005-DF on July 23, 2019, in accordance with state and federal air quality regulations and standards, to allow the mill to modify its processes to convert from bleached paper production to brown paper production. The construction permit was revised on May 13, 2020, to allow the mill to hard pipe its condensates to the wastewater treatment plant. 40 CFR 63, Subpart S, allows this hard piping as a compliance option. New-Indy began operating the mill as an integrated pulp and paper facility manufacturing brown paper on February 1, 2021.

The Maximum Achievable Control Technology (MACT) standard allows hard piping of all the condensates to wastewater treatment plants as a compliance option. New-Indy projected in its construction permit application that the mill modifications and other operational changes could result in an increase in hydrogen sulfide emissions from the mill. The projected increase in hydrogen sulfide emissions was below the "significant net increase" threshold as outlined in S.C. Regulation 61-62.5, Standard 7, and therefore DHEC issued a minor construction air permit for the change on July 23, 2019.

As stated in DHEC's May 7, 2021 order, after it began receiving complaints in February 2021 about odor in York and Lancaster counties, described as rotten egg and chemical odors, DHEC began an investigation to determine the source of the odors. DHEC staff have also reported observing strong, offsite, odors in the vicinity of the mill and several miles away from the mill that are characteristic of hydrogen sulfide emissions from kraft pulp and paper facilities. On February 22, 23 and 24, 2021, DHEC conducted air, wastewater and landfill inspections at the mill.

On April 7, 2021, DHEC notified New-Indy that based on the results of their investigation into the odor complaints, it appeared to DHEC that New-Indy may be a contributor to the reported odors in the York and Lancaster area. DHEC requested that New-Indy evaluate its operations and

identify and take corrective actions on any potential sources that could be contributing to the odors then being investigated in York and Lancaster counties.

On April 24-27, the US Environmental Protection Agency (EPA) conducted geospatial monitoring of hydrogen sulfide near the mill to identify sources of the odor in the nearby vicinity. EPA monitoring data detected hydrogen sulfide onsite and offsite. DHEC maintains that this validates the determination that the mill is a source of air contaminants at undesirable levels.

DHEC issued a Corrective Order to New-Indy on May 7, 2021, to correct undesirable levels of air contaminants. On May 13, 2021, New-Indy received a Clean Air Act Section 303 Emergency Order from EPA.

3. OPERATIONS AND PROCESS DESCRIPTION

3.1 SITE HISTORY

New-Indy Catawba LLC (New-Indy) operates an integrated pulp and paper mill located in Catawba, South Carolina. The original pulp mill was constructed in 1959, which included a woodyard area for the processing of raw material, a kraft mill to chemically process wood chips into pulp, a pulp dryer, a chemical recovery area to recycle process chemicals, a utilities area to generate steam and electricity, a waste treatment area, and other operations.

In 1962, a paper machine (No. 1 paper machine) and a groundwood pulping process were added to the facility to facilitate the production of paper. An additional paper machine (No. 3 paper machine) was installed in 1968, as well as the expansion of the groundwood pulping process. A thermo-mechanical pulping (TMP) process was added to the facility in 1978. Eight years later (1986), the groundwood and thermo-mechanical pulping processes were eliminated, while a new paper machine (No. 2 paper machine) was installed to increase the production of paper. Also in 1986, a new thermo-mechanical pulping process was added to replace the original thermo-mechanical pulp (TMP) process.

In 2003, the original kraft pulping system and bleach plant were replaced with a state-of-the-art kraft fiber line and bleaching system. In addition, No. 3 paper machine was converted from newsprint to coated paper production, and TMP was also re-configured to support only coated paper production. In 2011, the kraft pulping system and bleaching system were modified to increase production, while using the same amount of wood furnish and cooking chemicals.

In 2020, the Catawba Mill was converted from manufacturing bleached pulp suitable for manufacturing bleached lightweight coated paper and market pulp to unbleached pulp suitable for manufacturing linerboard and other unbleached pulp and paper products. The conversion resulted in retirement of the bleaching system, the TMP plant, No. 1 paper machine and several other operations. Although not currently running, the No. 2 paper machine remains permitted and is in standby for potential future use as markets allow.

3.2 OVERALL PROCESS DESCRIPTION

The Catawba Mill is comprised of seven (7) distinct process areas, which include the following: the woodyard area, the kraft pulp mill area, the paper mill area, the chemical recovery area, the utilities area, the waste treatment area, and a miscellaneous area. A process flow diagram for these process areas has been included as Figure 3-1. An overall description of the process areas is found below.

Southern pine logs and chips are received by the Catawba Mill at the woodyard. Logs are debarked, chipped, and the chips are screened prior to storage for use within the pulping processes. Likewise, wood chips received at the mill are screened, and processed as needed, prior to use within the pulping processes.

The kraft (sulfate) process area is used to produce pulp. Pulp from the kraft process is produced from "cooking" wood chips in a caustic solution at an elevated temperature and pressure.

Linerboard (the outside layer in a corrugated container) is produced in the paper mill area on one state-of-the-art paper machine. Unbleached market pulp is produced on one pulp dryer.

The recovery furnaces (chemical recovery area), which are auxiliary to the kraft process, burn the organics extracted from the chips and recover cooking chemicals. The causticizing area utilizes the chemicals recovered by the recovery furnaces, and after adding lime, provides the cooking chemicals for the kraft process.

Steam and electricity are produced for facility-wide use by two combination boilers. The recovery furnaces also generate steam.

A waste treatment area receives wastewater and mill waste (solid waste) from the various previously mentioned areas of the facility. Wastewater undergoes biological treatment to remove the dissolved organic wastes prior to discharge into the receiving stream. Mill solid waste is deposited within an on-site landfill for disposal.

The miscellaneous areas include everything which is not captured in one of the aforementioned process operating areas, which includes the facility roads and the pulp storage tanks.

3-2

3.3 WOODYARD

Pulp and paper production operations require fibrous vegetative material, or furnish, as a raw material. The Catawba Mill receives virgin fibers in the form of southern pine logs (roundwood furnish) or chips via trucks or railcar. Southern pine materials are off-loaded and stored for processing.

To produce a homogeneous pulping feedstock, roundwood furnish (logs) are transported to the debarking drums for processing. The resulting debarked logs are then cut into chips of equal size through the use of chipper machines. As the wood chips exit the chipper, the material is screened for size using a series of vibrating screens. Oversized chips are isolated and reprocessed to generate acceptably resized chips. Undersized chips, along with the debarking waste, are conveyed to the utilities area for use as a fuel within the facility's boilers.

Raw materials, received in chip form, are screened and processed as noted above. Once the chips, either in-house produced or purchased, are screened, the accepted chips are stored in silos for use by the kraft pulp mill.

The woodyard area was part of the original mill construction in 1959. In 1985, half of the original process equipment was replaced with new equipment. The other half of the woodyard equipment was replaced in 1991. As a result of these changes, the log slashing operation constructed in 1959 was eliminated.

No modifications were required to the woodyard to support manufacturing unbleached pulp. The woodyard operation does not require the use of pollution control devices.

3.4 FIBER LINE

The fiber line utilizes "state-of-the-art" technology for production, process control, environmental control, and energy conservation. Cooking of chips is accomplished in one continuous Kamyr digester. The digester utilizes steam heat and white liquor (a caustic solution) to cook the wood chips into pulp. The outgoing pulp goes to a blow tank for storage at near atmospheric pressure conditions. The pulp is then washed to remove the spent cooking chemicals and dissolved organics (including lignin, the "glue" in wood) extracted from the chips. The washed pulp (called "brown

stock") undergoes additional processing to separate fiber bundles. The brown stock is adjusted for percent solids and stored in high-density storage chests prior to use in the paper mill.

In late 2020, the fiber line was converted from producing virgin fiber suitable for brightening (bleaching) used to manufacture lightweight coated paper to producing virgin fiber suitable for manufacturing unbleached linerboard. The conversion increased the virgin pulp yield by tripling the Kappa number from less than 30 for bleached pulp to over 90 for unbleached pulp. The Kappa number indicates the "harshness" of the cook: lower Kappa resulting from a harsher cook than higher Kappa. The higher Kappa number (less harsh cooking conditions) dissolves fewer organics from the wood, thereby producing more tons of virgin pulp using the same amount of wood with fewer cooking chemicals.

The oxygen delignification system, bleaching system and chlorine dioxide plant were shut down and retired from service in September 2020 to facilitate the conversion to unbleached paper grades. During the conversion, the washers in the retired oxygen delignification system and bleaching system were repurposed to serve as two parallel three-stage brown stock washers. New refiners and screw presses were also installed to facilitate processing the higher Kappa pulp.

Process vapors from the continuous digester, washers, refiners and other sources in the fiber line are collected and routed to the non-condensable gases (NCG) collection system and then routed to the combination boilers for destruction of total reduced sulfur (TRS) compounds and hazardous air pollutants (HAPs). The fiber line NCG collection system was modified to collect process vapors from the new refiners and screw presses and the repurposed brown stock washers.

3.5 PAPER MILL

3.5.1 Paper Machines

The No. 3 paper machine utilizes stock (pulp) prepared in the fiber line. Screens, cleaners, and refiners precede the paper machine to develop a uniform stock inventory. The stock is fed to a headbox which evenly distributes the diluted stock across the width of the paper machine. After the headbox, a sheet forms as water is drained via the forming fabric, located on the wet end of the paper machine. After the freestanding water is removed, the sheet proceeds through presses which

remove entrained water. The sheet then enters the dryer sections, which consist of a series of steam heated rotating cylinders, causing the sheet to "snake" around from one dryer to the other. The sheet exits the dryers and is wound onto a jumbo roll which is later cut down to smaller rolls on the winder. The finished rolls are then prepared for shipping.

The No. 3 paper machine was extensively modified to convert from manufacturing coated paper to linerboard. The coating equipment installed in 2003 was removed and the remaining systems were either replaced or upgraded to support linerboard production. The No. 3 paper machine operation does not require pollution control devices.

The No. 2 paper machine was not modified and is not operating but remains available should a market develop for its production capabilities. The No. 2 paper machine operation does not require pollution control devices.

3.5.2 Pulp Dryer

The pulp dryer utilizes stock prepared in the fiber line. Screens precede the pulp dryer to allow for a uniform stock inventory. The pulp dryer is a cylinder machine in which the stock is fed to a "vat" headbox. After the headbox, a sheet forms as water is drained via the vacuum drum located on the wet end of the pulp dryer. After the freestanding water is removed, the sheet proceeds through presses which remove entrained water. The sheet then enters the dryer sections where a Flakt air flotation system is utilized. The pulp dryer has a steam heated booster oven which allows for additional drying, thus ensuring the final product meets customer specifications for percent moisture. The sheet exits the dryers and is cut into sheets and packaged for shipping.

The pulp dryer stock screening system was put into service by modifying the stock supply system from the No. 1 paper machine (which was retired) to support manufacturing unbleached market pulp. The pulp dryer operation does not require pollution control devices.

3.6 CHEMICAL RECOVERY

3.6.1 Evaporator System

The three evaporator sets receive dilute (weak) spent cooking liquor and dissolved organics, otherwise known as black liquor, from the fiber line. The evaporator sets, which are multiple shell and tube heat exchangers, utilize steam to evaporate water and thicken the weak black liquor. This thickened black liquor undergoes additional concentrating in the concentrators until enough water has been removed from the black liquor so it can sustain its own combustion process in the recovery furnaces. This concentrated black liquor is then injected into the two recovery furnaces where the dissolved organics are burned, chemicals are recovered, and steam is produced.

Emissions from the processing of black liquor through the evaporator sets are collected and treated in the low volume high concentration (LVHC) NCG system. The LVHC NCG System collects vapors from the evaporator hotwells and turpentine system vents, while emissions from the weak black liquor tanks are collected in the high volume low concentration (HVLC) system for destruction in one of the Combination Boilers. The LVHC NCG system is equipped with an inline caustic scrubber to capture non-condensable sulfur compound vapors from the gas stream prior to incineration in either the No. 1 or No. 2 Combination Boiler. The caustic solutions from the smelt dissolving tank scrubber and LVHC in-line scrubber are recycled for the processing of wood chips.

The No. 1 evaporator set was modified to increase the evaporation rate to account for the reduction in the solids content of the weak black liquor from the repurposed washers following the conversion to unbleached pulp. No modifications were required to the No. 2 and No. 3 evaporator sets to support manufacturing unbleached pulp. No modifications were required for the LVHC NCG system to support manufacturing unbleached pulp.

3.6.2 Recovery Furnaces

The No. 2 and No. 3 recovery furnaces combust black liquor from the evaporator sets to remove dissolved organic compounds, recover the sodium and sulfur compounds used in the cooking liquor, and generate steam to operate the kraft pulp mill. The recovery furnaces also have the

potential to burn No. 6 fuel oil and natural gas. Each recovery furnace is equipped with an electrostatic precipitator (ESP) to collect and recover the dried sodium and sulfur compounds and control particulate matter emissions.

No modifications were required to the recovery furnaces to support manufacturing unbleached pulp. No modifications were required for the ESPs serving the No. 2 and No. 3 recovery furnaces to support manufacturing unbleached pulp.

3.6.3 Smelt Dissolving Tanks

Molten sodium and sulfur compounds are collected from the recovery furnace as smelt from the combustion of the black liquor. The resulting smelt is then transported from the recovery furnaces into the two smelt dissolving tanks where the smelt is dissolved with recycled weak cooking chemicals to generate green liquor. This green liquor is then pumped to the Causticizing Area for further processing and re-use in the kraft process.

Smelt dissolving tanks No. 2 and No. 3 are equipped with a caustic scrubber to recycle noncondensable sulfur compounds and prevent these sources from being an odor source. Vapors from the weak black liquor tanks are collected by the HVLC system for destruction in one of the Combination Boilers. The caustic solution from the smelt dissolving tank scrubber is collected to supplement the cooking chemicals used in the fiber line for the processing of wood chips.

No modifications were required to the smelt dissolving tanks to support manufacturing unbleached pulp. No modifications were required for the caustic scrubber serving the No. 2 and No. 3 smelt dissolving tanks to support manufacturing unbleached pulp.

3.6.4 Precipitator Mix Tanks

The precipitator mix tanks recover the dried sodium and sulfur compounds collected from the recovery furnaces for reuse within the kraft pulping process. No modifications were required to the precipitator mix tanks to support manufacturing unbleached pulp. The precipitator mix tanks vent through the recovery furnaces and no modifications to the venting were required to support manufacturing unbleached pulp.

3.6.5 Causticizing Area

The Causticizing Area is designed to regenerate the cooking chemicals for the kraft pulping process. Sodium and sulfur compounds are recovered at the recovery furnaces from the burning of black liquor and are pumped from the smelt dissolving tanks to the Causticizing Area as "green liquor." Hydrated lime is added to the green liquor to form "white liquor" and calcium carbonate (lime mud). The white liquor, which is a strong caustic/sulfide solution, is used in the fiber line digester for the cooking of chips. The sodium/sulfide chemicals are contained in a closed loop within the green, white, and black liquors. The lime slaker is equipped with a wet scrubber to control nuisance dust.

No modifications were required to the causticizing area to support manufacturing unbleached pulp. No modifications were required for the slaker scrubber to support manufacturing unbleached pulp.

3.6.6 Lime Kiln

The Lime Kiln No. 2 is designed to assist in regenerating the cooking chemicals for the kraft pulping process. Hydrated lime is added to the green liquor to form "white liquor" and calcium carbonate (lime mud). The lime mud is separated from the white liquor, thickened, washed, and then reburned in the Lime Kiln to again form lime for converting recovered green liquor to white liquor. The calcium chemicals are contained in a closed loop within the lime, hydrated lime, white liquor, and lime mud constituents. The lime kiln is equipped with an electrostatic precipitator to control particulate emissions.

No modifications were required to the lime kiln to support manufacturing unbleached pulp. No modifications were required for the lime kiln ESP to support manufacturing unbleached pulp.

3.7 UTILITIES

Wood waste, such as bark, sawdust, and undersized chip fractions, is screened at the Woodyard to assure acceptable quality to burn in the No. 1 and No. 2 Combination Boilers. This wood waste is conveyed to the Util/Misc. area. Fuel oil is transported to the facility via truck or rail tanker. Natural gas is supplied by pipeline. Tire derived fuel (TDF) is transported by truck. Each combination boiler is equipped with an ESP to control particulate emissions.

Steam produced by the boilers goes into a common header and a portion is then throttled into the extraction turbine generators. These units receive high pressure steam, extract part of the energy, and discharge steam at lower temperatures and pressures. The lower pressure steam is utilized throughout the facility for process heating purposes. The condensate is returned to the Util/Misc. area for reuse.

The combination boilers also incinerate the NCG gases collected from the kraft pulp mill, the chemical recovery evaporator sets and turpentine recovery system, and the foul condensate steam stripper to control emissions of TRS compounds and HAPs. Incineration of the NCG gases is continuously monitored using the flame failure systems on each boiler. The NCG collection systems are also monitored monthly and annually for leaks following the Catawba Mill Leak Detection and Repair (LDAR) program. The LDAR inspection reports are included in Appendix A.

This area is also responsible for providing the high quality, high purity water which is required for steam production. This is accomplished through the use of flocculation beds, sand filters, and demineralizers.

No modifications were required to the combination boilers to support manufacturing unbleached pulp. No modifications were required for the ESPs serving the No. 1 and No. 2 combination boilers to support manufacturing unbleached pulp.

The fiber line NCG collection system was modified to collect process vapors from the new refiners and screw presses and the repurposed brown stock washers.

3.8 WASTE TREATMENT

3.8.1 Condensate Collection and Treatment System

The Catawba Mill utilizes a condensate collection tank to accumulate kraft pulping process foul condensate prior to treatment. The condensate collection tank acts as a feed tank for the foul condensate steam stripper and/or the hard pipe to the wastewater treatment system. Contaminants from the foul condensate can be removed in the steam stripper and combusted within a combination boiler or treated biologically in the wastewater system aerated stabilization basin

(ASB). "Clean condensate" from the stripper column is recycled back to the brown stock washers for use as shower water.

The foul condensate treatment system was modified to use the hard piping option to biologically treat the foul condensate in the ASB. This modification was approved by DHEC with permit TV-2440-0005-DF. The hard pipe has no emissions points.

The foul condensate steam stripper was cleaned, repaired, thoroughly checked for proper process control functionality, and returned to service in May 2021. The checkout process also included a complete Pre-Startup Safety Review, requisite Management of Change documentation, P&ID drawing validations, interlock validations, instrumentation calibrations, instrument performance validation, and operator training reviews. No modifications to the stripper-off-gases (SOG) NCG system were required to support returning the steam stripper to service.

3.8.2 Wastewater Treatment System

The Wastewater Treatment System is designed to collect all of the wastewaters from the mill, remove settleable solids, and biologically treat the dissolved organics. Most of the wastewater collects within the mill sewers. The sewers gravity flow to the primary clarifier. The clarifier allows solids to settle to the bottom and be removed and clarified water to overflow to either a settling pond or directly to the aerated stabilization basin (ASB). The solids from the primary clarifier, otherwise known as "sludge," are pumped to the primary solids EQ Basin that allows additional separation (thickening) of the solids. Decant from the EQ Basin flows into the aeration basin along with clarified wastewater from the clarifier. The condensate hard pipe discharges below the liquid surface of the ASB to biologically treat contaminants in the foul condensate. The treated wastewater flows by gravity through a Post-Aeration Basin where mechanical aerators increase the dissolved oxygen content of the wastewater prior to discharge into a receiving stream.

Primary clarifier solids that thicken in the EQ Basin are dredged and placed in the No. 4 Sludge Pond for disposal. The ASB was modified by increasing the diameter of the hard pipe below the liquid surface near the entrance to the ASB. The wastewater treatment system does not operate with control devices.

3.8.3 Industrial Landfill

A 15-acre industrial landfill is located west of the paper machines at the mill. Paper, bark, and other wood product wastes are deposited within the landfill on a daily basis. Fly ash, grits, and dregs are also approved for disposal in the landfill. While mill refuse is disposed on-site, commercial and office waste streams are collected and transported off-site for disposal. Fill dirt is removed from the on-site borrow pits and deposited atop the refuse as daily cover.

No modifications were required to the industrial landfill to support manufacturing unbleached pulp. The landfill does not operate with control devices.

3.9 MISCELLANEOUS SOURCES

The Catawba Mill includes miscellaneous equipment and operations such as facility roads, emergency generators, storage tanks, facility maintenance activities, and lab activities.

The pumps and piping to the high density (HD) pulp storage tanks were modified to re-direct pulp from the retired No. 1 paper machine and better support unbleached pulp. The agitators in each tank were also rebuilt or replaced and the No. 4 HD storage tank was repurposed as a low density (LD) storage tank.

No modifications were required to the tanks storing black liquor, green liquor, or white liquor. The spare and weak liquor tanks are vented to the HVLC system for treatment. The pulp tank and other liquor storage tanks do not operate with control devices.

Figure 3-1 Simplified Mill Flow Diagram

4. NEW-INDY EVALUATION OF OPERATIONS AND PROCESSES

4.1 NEW-INDY EVALUATION OF OPERATIONS AND PROCESSES TO IDENTIFY POTENTIAL ODORS CONDUCTED IN CONSULTATION WITH NCASI

Paragraph 3 of DHEC's May 7, 2021 Order reads:

3. On or before June 1, 2021, complete an evaluation conducted in consultation with a nationally recognized organization, such as the National Council for Air and Stream Improvement (NCASI), to fully evaluate the current operations and processes at the Facility to identify all potential sources that could be contributing to the odors and elevated levels of H_2S on and off Facility property. The evaluation must include the recent change in operation from making bleached paper to brown paper, the wastewater treatment plant operations, the recent modifications related to the steam stripper and the hard piping of the foul condensate tank to the wastewater treatment plant, any increases in stack emissions, any changes in operation of pollution control equipment, and any uncontrolled emissions to determine if these changes are contributing to the odors in the vicinity of the Facility.

New-Indy submitted an evaluation to DHEC on June 1, 2021. This Section of the CAP describes in additional detail New-Indy's efforts in consultation with NCASI to fully evaluate current operations at the New-Indy mill to identify potential sources that could be contributing to reported odors and hydrogen sulfide emissions. As explained in Section 3, the Catawba Mill is comprised of seven distinct process areas, including the woodyard area, the kraft pulp mill area, the paper mill area, the chemical recovery area, the utilities area, the waste treatment area, and the miscellaneous area. In consultation with numerous consultants and advisors, including NCASI personnel, personnel from New-Indy conducted an evaluation of each process area to identify potential sources that could be contributing to reported odors.

New-Indy understands that the majority of odor complaints describe a "rotten egg" odor that generally is associated with H_2S . New-Indy conducted its evaluation of operations and processes as they might relate to the different types of odors generally associated with integrated kraft pulping and chemical recovery operation.

Mill personnel at New-Indy conducted the odor evaluation, but New-Indy also engaged the assistance of eight (8) different consultant and engineering firms to assist in the evaluation and corrective action planning, including TRC Consultants (air and wastewater), ALL4, Weston

Solutions ("Weston"), NCASI personnel, Environmental Business Specialists ("EBS"), LDX Solutions ("LDX"), E360 and Trinity. This evaluation included an intensive Leak Detection and Repair ("LDAR") evaluation by E360, installation of three mobile ambient monitors and meteorological stations by TRC and a screening analysis by Weston, among many other efforts.

4.2 LDAR EVALUATION

Pursuant to the mill's Title V air permit, the mill is subject to LDAR requirements under Federal law. Leaks from manufacturing and related equipment, particularly pipes and flanges, can be potential sources of odors. After receiving the initial round of odor complaints in January and February of 2021, New-Indy engaged its LDAR consultant, E360, to conduct an intensive LDAR evaluation at the mill. The LDAR consultant conducted the evaluation of each of the mill's identified potential leak points and discovered no deficiencies in the mill's program or in the equipment. *See* Appendix A for E360's LDAR Evaluation Report.

4.3 SCREENING ANALYSIS

To attempt to identify concentrations and locations of H_2S at the mill, New-Indy engaged Weston to conduct a screening analysis of H_2S emissions. Weston conducted ambient air sampling and drafted a report that is attached hereto as Appendix B.

4.4 AMBIENT AIR MONITORS

After New-Indy conducted its initial screening with Weston, New-Indy determined that it needed additional data to quantify the impact of potential odor sources at the mill. New-Indy engaged TRC to install two ambient monitors, one on mill property, but across the road from the mill entrance at an adjacent baseball field, and one on-site near the ASB. The unit at the baseball field contained a meteorological station. Later, New-Indy determined that it needed additional monitoring data, so it installed a third monitoring station to the northeast of the mill near the Highway 5 bridge and a new meteorological monitoring station on top of the kraft pulp mill digester structure (250 feet above ground elevation, unencumbered by any nearby building structures). The locations of the three monitors is attached hereto as Appendix C. The data from the three monitors is attached hereto as Appendix D.

4.5 PROCESS AREA REVIEW

As noted above, New-Indy reviewed its seven process areas to evaluate potential odor issues:

• Woodyard - Odors typically associated with the woodyard are "pine" or "wood" type odors, similar to logging and wood milling operations. These are not the types of odors about which complaints are being made. New-Indy, in consultation with its consulting professionals, concluded that the woodyard was not a likely source of the subject odors.

• Kraft pulp mill - A kraft pulping process can produce odors similar to "rotten eggs." However, the chemicals that create these odors are treated in air emission control equipment. The mill is in full compliance with its air permit conditions, including LDAR. New-Indy, in consultation with its consulting professionals, concluded that the kraft pulping process likely was not the source of off-site odors.

• Paper mill - A paper machine process can affect the wastewater treatment plant's operation, but typically only as a result of the impact of sewered waste losses on the wastewater treatment plant system. The dilution water (white water) from the paper machine overflows into the sewer to the wastewater treatment plant. Upset operating conditions in the pulp mill can cause organic and chemical carryover to the paper machine operations which will get drained out of the pulp on the machine and into the process sewer. Operational upsets in the paper machine operation can also result in pulp fiber being released to the process sewer. Both of these upset scenarios can have an impact on the wastewater treatment plant efficiencies. New-Indy, in consultation with its consulting professionals, concluded that the paper machine process itself likely was not the source of off-site odors.

• Chemical Recovery - The Chemical Recovery processes can emit odors similar to "rotten eggs." However, the chemicals that create these odors are treated in air emission control equipment. The mill is in full compliance with its air permit conditions, including LDAR. New-Indy, in consultation with its consulting professionals, concluded that the chemical recovery process likely was not the source of off-site odors.

4-3

• Utilities - The utilities process does not emit the type of odors about which complaints are being made. New-Indy, in consultation with its consulting professionals, concluded that the utilities likely were not the source of off-site odors.

• Miscellaneous sources - The miscellaneous sources do not emit the type of odors about which complaints are being made. New-Indy, in consultation with its consulting professionals, concluded that the miscellaneous sources likely were not the source of off-site odors.

• Waste Treatment - The waste treatment system can emit odors similar to "rotten eggs." These odors can occur when the wastewater is not efficiently treated in the wastewater treatment process. New-Indy and its consulting professionals concluded that the waste treatment system may be the cause of odors. These low level odors, though, do not explain the intense reactions being reported by local residents who live at long distances from the plant.

After review of the various operations and processes, and upon consultation with NCASI and its other professional consultants, New-Indy narrowed its focus to the wastewater system.

5. NEW-INDY EFFORTS TO ADDRESS ODOR COMPLAINTS

This section details New-Indy's considerable efforts to address odor complaints. New-Indy received the first odor complaint on January 22, 2021. Since that time, New-Indy has worked tirelessly to respond to the complaints, evaluate New-Indy's operations and address reported odors.

Around the time that New-Indy began receiving odor complaints, South Carolina DHEC conducted an air quality inspection, on February 22 and 23, 2021, and a wastewater inspection, on March 15, 2021, at the mill. The wastewater inspection identified a fiber layer on the surface of the ASB. The layer of fiber on the ASB was the result of initial startup operations following the conversion from bleached paper to unbleached containerboard. The layer of fiber made it difficult for personnel to reach the aerators in the ASB and conduct preventive maintenance and repairs. As a result, several aerators became inoperable.

Beginning on March 1, 2021, New-Indy began removing the layer of fiber from the surface of the ASB. This effort has continued using various methods, including cutting the rim from the forty or so feet of fiber closest to the edge of the basin and using a barge to dredge and push the fiber layer toward the edge of the ASB. That fiber layer is hauled to the No. 4 sludge pond where it is processed with other similar waste. These continuing efforts to remove the fiber layer, along with New-Indy's use of an air boat have allowed personnel to reach the aerators, conduct maintenance and repairs on those aerators and return them to service. The ASB has fifty-two aerators, and at present, 38 of those aerators are operating. In the past 30 days, New-Indy has put 10 aerators back into operation.

Also when New-Indy began receiving odor complaints, New-Indy established a community service hotline to identify complaints. New-Indy began logging complaints, including location, time, date, mill operations assessment and wind speed and direction.

On March 5, 2021, New-Indy conducted a full odor survey with its LDAR consultant, E360. The consultant determined that there were no significant leaks that could cause offsite odors and that the plant was in compliance with its LDAR requirements under Federal law. The mill continues to complete monthly LDAR inspections with no significant leaks having been detected, and when

minor leaks are discovered during the inspection, repairs are made as quickly as possible and within compliance guidelines for those repairs.

On March 8, 2021, New-Indy contacted NCASI for assistance in evaluating operations. The next day, on March 9, the mill contacted Trinity Consultants to assist in the evaluation of odor issues. The following day on March 10, 2021, DHEC visited the mill for a senior DHEC management meeting with the mill. That meeting included Myra Reece, Renee Sheeley, Rhonda Banks, Mike Marcus and Henry Porter at DHEC, along with mill personnel. The DHEC representatives and mill personnel reviewed the mill's progress toward identifying sources of odors, and abating odors.

On March 12, 2021, New-Indy began consultation with LDX regarding utilization of the stripper as opposed to hard piping the foul condensate. With the approval of permit TV-2440-0005-DF in July of 2019, New-Indy obtained DHEC approval to idle the foul condensate steam stripper and hard pipe foul condensate to the ASB.

On March 17, 2021, New-Indy hosted two environmental consultants onsite. The first was Weston for sampling ambient emissions and emissions from process vents and stacks and multiple ambient locations throughout the mill property. The second was TRC for onsite ambient monitoring, working in concert with Weston to guide the ambient air monitoring effort and observe the wastewater treatment system. TRC returned on March 19, 2021, to observe the wastewater system and again on March 24, 2021, for additional onsite monitoring evaluations. On March 25, 2021, New-Indy purchased an odor measurement drone and hand-held equipment (delivery scheduled for early to mid-June). On March 30, 2021, TRC and another consultant (ALL 4) conducted an air dispersion modeling review.

It was important for New-Indy to determine the emissions at New-Indy's property boundary and onsite. As such, New-Indy engaged TRC to install three mobile monitoring units at the property. One unit was located on mill property but across the road from the main entrance in a nearby baseball field. That monitor was equipped with a meteorological station. The second monitor was located in the plant property. On April 28, 2021, the third monitor was located on the property near the I-5 bridge. Appendix C indicates the location of the monitors. Appendix D provides the monitoring data for the three monitoring stations. The first onsite data was generated on approximately April 9, 2021.

On April 9, 2021, New-Indy began removing solids from the equalization basin. Four days later, on April 13, 2021, New-Indy began optimizing liquor sulfidity control in the ASB. Ten days later, on April 19, 2021, New-Indy began adding calcium nitrate in the ASB to supplement oxygen as an electronic acceptor and reduce the formation of hydrogen sulfide.

During this time, New-Indy requested that Weston conduct a screening analysis to determine if high levels of H_2S were being generated at and around the mill. Weston took air samples and generated a screening report that New-Indy provided to DHEC on April 19, 2021. The Weston report is attached as Appendix B. On April 21, 2021, New-Indy began an operations project to return the stripper to operation. On April 28, 2021, TRC installed the third ambient monitor at a location near the bridge on Interstate 5.

The foul condensate steam stripper was returned to operation on May 3, 2021. On that same day, New-Indy hosted consultants Valmet and Rolf Ryham to provide guidance for optimizing the performance of the recovery furnace.

On May 7, 2021, New-Indy received the DHEC order and began implementing the order's requirements, in addition to continuing its odor mitigation efforts independent of the DHEC order. On May 11, 2021, New-Indy continued its No. 1 holding pond oxygen improvement levels by feeding calcium nitrate into the ASB. The site also had an air modeling meeting with TRC and a meeting with NCASI to discuss the need for NCASI to verify the emissions factors the mill used to calculate the actual and potential emissions included in the construction permit application for the change to containerboard. New-Indy had another meeting with NCASI on May 14, 2021, in which NCASI verified the mill used the correct emission factors and validated the calculations.

On May 13, 2021, New-Indy received an order from EPA. Immediately, New-Indy began implementing the requirements of the May 13 EPA order, in addition to continuing its odor mitigation efforts. New-Indy engaged SFC to use a "push boat" that was mobilized on May 16, 2021, to push the fiber layer at the ASB toward the bank. SFC worked with Saiia to transport the solids from the ASB to the No. 4 sludge dewatering pond. This push boat was successful for several days, but as it got progressively deeper into the surface solids, it reached a point where it could no longer push into the material to push it towards the dike for removal by the long arm excavator. Throughout April and May, New-Indy continued to return aerators to service. On

May 26, 2021, New-Indy moved its three ambient air monitors to new locations pursuant to the EPA order. Attached as Exhibit E is the current location of the monitors. Attached as Exhibit F is the air emissions data generated by the monitors.

On May 26, 2021, New-Indy launched a website dedicated to facilitating communication and transparency with local residents and regulatory agencies (<u>www.newindycatawba.com</u>). This website includes daily reports explaining the EPA's independent hydrogen sulfide data collection as well as information about the mill. The mill also posts its daily ambient air emissions monitoring report on the website in an effort to provide transparency to the public. The website also includes public notices of any mill activities that may generate increased odor levels.

On June 8, 2021, New-Indy consulted with LDX regarding current stripper capacity and the repaired trim reflux condenser, which is used to polish the methanol capture efficiency for the stripper operation. On June 8, 2021, New-Indy personnel participated in Scentroid TR8 and Pollutracker training to learn how to use the instrument to measure ambient concentrations on both instantaneous and longer term (24-hour) measurement periods. New-Indy also removed the trim reflux condenser from the stripper for repairs in an effort to increase stripper capacity. On June 9, 2021, New-Indy improved the oxygen transfer into No. 1 Holding Pond by installing two aerators and injecting peroxide into the waste stream. On June 9, 2021, the Post-Aeration Basin tank at the wastewater outfall was upfitted with a new cover and carbon filter. Also on that day, personnel began using the TR8 and Pollutracker handheld devices in the field to measure ambient levels of H₂S at various locations and evaluate the initial inlet and discharge concentrations around the pilot activated carbon filtration system. Also in June, the plant continued to remove ASB fiber layer using a barged-mounted long-reach excavator in addition to a long-reach excavator from the bank.

6. CORRECTIVE ACTION PLAN – CONDITION 6

6.1 H₂S SOURCE EVALUATION

Condition 3 of the DHEC Order required New-Indy to complete the following:

On or before June 1, 2021, complete an evaluation conducted in consultation with a nationally recognized organization, such as the National Council for Air and Stream Improvement (NCASI), to fully evaluate the current operations and processes at the Facility to identify all potential sources that could be contributing to the odors and elevated levels of H₂S on and off Facility property. The evaluation must include the recent change in operation from making bleached paper to brown paper, the wastewater treatment plant operations, the recent modifications related to the steam stripper and the hard piping of the foul condensate tank to the wastewater treatment plant, any increases in stack emissions, any changes in operation of pollution control equipment, and any uncontrolled emissions to determine if these changes are contributing to the odors in the vicinity of the Facility.

New-Indy consulted with NCASI in May 2021 and confirmed the emissions estimates contained in the 2019 and 2020 air permit applications were correctly applied and generally representative of the conversion from manufacturing bleached paper to brown paper.

The H_2S and TRS (H_2S , methyl mercaptan, dimethyl disulfide and dimethyl sulfide) emissions from each area of the mill are reviewed in the following sections. A summary of the H_2S and TRS emissions are provided in Table 6-1.

6.1.1 Woodyard

No modifications were required to the woodyard to support manufacturing unbleached pulp. The woodyard does not operate with control devices. There are no known H_2S or TRS emissions from the woodyard.

6.1.2 Kraft Pulp Mill

The conversion to brown paper increased the virgin pulp yield by tripling the Kappa number from less than 30 for bleached pulp to over 90 for unbleached pulp. Kappa number is a key test method

for determining the level of lignin remaining in a sample of digested pulp. The Kappa number indicates the "harshness" of the cook, lower Kappa being a harsher cook than higher Kappa. The higher Kappa number (less harsh cooking conditions) dissolves fewer organics from the wood, thereby producing more tons of virgin pulp using the same amount of raw materials (wood and with fewer cooking liquor chemicals).

With the exception of the pulp storage tanks after pulp washing, the kraft pulp mill sources are collected and routed to the non-condensable (NCG) system, and H_2S and TRS emissions are controlled through incineration in the combination boilers.

Source testing of both the No. 1 and No. 2 combination boilers will be conducted by New-Indy, in accordance with Condition 5 of the DHEC order to confirm the original H₂S and TRS emissions estimates based on information from, and verified by, NCASI.

6.1.3 No. 2 Paper Machine

The No. 2 paper machine was not modified and remains available should market conditions create an opportunity for its production capabilities to be utilized. The No. 2 off-machine coaters have been retired from service. The No. 2 paper machine does not operate with control devices. The No. 2 paper machine has not returned to operation following the conversion.

6.1.4 No. 3 Paper Machine

The No. 3 paper machine was extensively modified to convert from manufacturing coated paper to linerboard. The No. 3 paper machine does not operate with control devices. New-Indy conducted a screening study of one No. 3 paper machine vent, and no measurable TRS emissions were present in the vent gases. Source testing of the No. 3 paper machine will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

6.1.5 Pulp Dryer

The pulp dryer stock screening system was configured by modifying the stock screening system from the No. 1 paper machine (which was retired) to support manufacturing unbleached market pulp. The pulp dryer does not operate with control devices. Source testing of the pulp dryer will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H₂S and TRS emissions estimates based on information from NCASI.

6.1.6 Evaporator System

The No. 1 evaporator set was modified to operate as a five-effect system to increase the evaporation rate to account for the reduction in the solids content of the weak black liquor from the repurposed washers following the conversion to unbleached pulp. No modifications were required to the No. 2 and No. 3 evaporator sets to support manufacturing unbleached pulp.

Emissions from the processing of black liquor through the evaporator sets are collected and treated in the low volume high concentration (LVHC) NCG system. The LVHC NCG System collects vapors from the evaporator hotwells and turpentine system vents. The LVHC NCG system is equipped with an in-line caustic scrubber to capture non-condensable sulfur compound vapors from the gas stream prior to incineration in either the No. 1 or No. 2 combination boiler.

No modifications were required for the LVHC NCG system to support manufacturing unbleached pulp. The Kappa change results in TRS emissions 16% lower per ton of pulp production based on information provided by NCASI.

Source testing of both the No. 1 and No. 2 combination boilers will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H₂S and TRS emissions estimates based on information from NCASI.

6.1.7 Recovery Furnaces

No modifications were required to the No. 2 and No. 3 recovery furnaces to support manufacturing unbleached pulp. No modifications were required for the ESPs serving the No. 2 and No. 3 recovery furnaces to support manufacturing unbleached pulp.

6.1.8 Smelt Dissolving Tanks

Smelt dissolving tanks No. 2 and No. 3 are equipped with a caustic scrubber to reduce particulate matter (PM) and TRS emissions.

No modifications were required to the smelt dissolving tanks to support manufacturing unbleached pulp. No modifications were required for the caustic scrubber serving the No. 2 and No. 3 smelt dissolving tanks to support manufacturing unbleached pulp.

New-Indy will conduct source testing of the smelt dissolving tank vent to confirm the original H₂S and TRS emissions estimates based on information from NCASI.

6.1.9 Precipitator Mix Tanks

No modifications were required to the precipitator mix tanks to support manufacturing unbleached pulp. The precipitator mix tanks vent through the recovery furnaces, and no modifications to the venting were required to support manufacturing unbleached pulp. Therefore, emissions reported from the recovery furnaces reflect the emissions from these sources.

6.1.10 Causticizing Area

No modifications were required to the causticizing area to support manufacturing unbleached pulp. No modifications were required for the slaker scrubber to support manufacturing unbleached pulp. The causticizing area is a high pH process, and no H₂S emissions are expected. In addition, the causticizing area uses fresh water and no change in TRS emissions is expected.

6.1.11 Lime Kiln

No modifications were required to the No. 2 lime kiln to support manufacturing unbleached pulp. No modifications were required for the lime kiln ESP to support manufacturing unbleached pulp.

6.1.12 Combination Boilers

The combination boilers also incinerate the NCG gases collected from the kraft pulp mill, the chemical recovery evaporator sets and turpentine recovery system, and the foul condensate steam stripper to control emissions of TRS compounds and HAPs. The kraft pulp mill NCG collection system was modified to collect gases from the new refiners and screw presses and the repurposed brown stock washers.

No modifications were required to the combination boilers to support manufacturing unbleached pulp. No modifications were required for the ESPs serving the No. 1 and No. 2 combination boilers to support manufacturing unbleached pulp.

Incineration of the NCG gases is continuously monitored using the flame failure systems on each boiler. The NCG collection systems are also monitored monthly and annually for leaks following the Catawba Mill Leak Detection and Repair (LDAR) program.

Source testing of both the No. 1 and No. 2 combination boilers will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

6.1.13 Condensate Collection and Treatment System

The condensate treatment system was modified to use the hard piping option to biologically treat the foul condensate in the ASB. The hard pipe has no emissions points.

The foul condensate steam stripper was repaired and returned to service in May 2021. No modifications to the stripper-off-gases (SOG) NCG system were required to support returning the steam stripper to service or manufacturing unbleached pulp.

Source testing of the steam stripper will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

6.1.14 Wastewater Treatment System

The ASB was modified by increasing the diameter of the hard pipe below the liquid surface near the entrance to the ASB. The wastewater treatment system does not operate with control devices.

Please see Section 7 for a detailed discussion of the wastewater treatment system.
6.1.15 Industrial Landfill

No modifications were required to the industrial landfill to support manufacturing unbleached pulp. The landfill does not operate with control devices. There are no known H_2S or TRS emissions from the landfill.

6.1.16 Miscellaneous Sources

The pumps and piping to the high density (HD) pulp storage tanks were modified to re-direct pulp from the retired No. 1 paper machine and better support unbleached pulp. The agitators in each tank were also rebuilt or replaced, and the No. 4 HD storage tank was repurposed as a low density (LD) storage tank.

No modifications were required to the tanks storing black liquor, green liquor, or white liquor. Emissions from the spare and weak liquor tanks are vented to the HVLC system for treatment. The remaining pulp and liquor storage tanks do not operate with control devices. The emissions from all storage tanks were estimated using information from NCASI. No change to the storage tank emissions is expected based on the reduction in TRS due to the Kappa change.

No modifications were required to the other miscellaneous sources to support manufacturing unbleached pulp.

6.2 CORRECTIVE ACTION PLAN – CONDITION 6

Condition 6 of the DHEC Order required New-Indy to complete the following:

On or before June 15, 2021, submit to the Department a report of the evaluation conducted in Step 3 above and, for review, comment, and approval; a corrective action plan (CAP) (developed and stamped by a South Carolina-registered Professional Engineer (PE)) and a schedule of implementation, which addresses operational issues identified in the abovereferenced evaluation as contributing to the odor. The schedule of implementation shall include specific dates or timeframes for initiation and the completion of each action and details as to how each action addresses the odor and operational issues noted above.

The corrective actions for each area of the mill are reviewed in the following sections.

6.2.1 Woodyard

No operational issues or corrective actions have been identified for the woodyard.

6.2.2 Kraft Pulp Mill

Source testing of both the No. 1 and No. 2 combination boilers will be conducted by New-Indy in accordance with Condition 5 of the DHEC Order to confirm the original H₂S and TRS emissions estimates based on information from NCASI.

No operational issues or corrective actions have been identified for the kraft pulp mill pending the results of the source testing required by Condition 5 of the DHEC Order.

6.2.3 No. 2 Paper Machine

No operational issues or corrective actions have been identified for the No. 2 paper machine.

6.2.4 No. 3 Paper Machine

Source testing of the No. 3 paper machine will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

No operational issues or corrective actions have been identified for the No. 3 paper machine pending the results of the source testing required by Condition 5 of the DHEC Order.

6.2.5 Pulp Dryer

Source testing of the pulp dryer will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

No operational issues or corrective actions have been identified for the pulp dryer pending the results of the source testing required by Condition 5 of the DHEC Order.

6.2.6 Evaporator System

Source testing of both the No. 1 and No. 2 combination boilers will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H₂S and TRS emissions estimates based on information from NCASI.

No operational issues or corrective actions have been identified for the evaporator system pending the results of the source testing required by Condition 5 of the DHEC Order.

6.2.7 Recovery Furnaces

TRS emissions from the recovery furnaces are continuously monitored and recorded. The Mill will continue to meet the applicable TRS emissions limits for both recovery furnaces.

No operational issues or corrective actions have been identified for the No. 2 and No. 3 recovery furnaces.

6.2.8 Smelt Dissolving Tanks

New-Indy will conduct source testing of the smelt dissolving tank vent to confirm the original H₂S and TRS emissions estimates based on information from NCASI.

No operational issues or corrective actions have been identified for the No. 2 and No. 3 smelt dissolving tanks pending the results of the source testing conducted by New-Indy.

6.2.9 Precipitator Mix Tanks

The precipitator mix tanks are vented through the recovery furnaces and would be reflected in the emissions from those sources.

No operational issues or corrective actions have been identified for the precipitator mix tanks.

6.2.10 Causticizing Area

The causticizing area is a high pH process, and no H_2S emissions are expected. The causticizing area uses fresh water, and no change in TRS emissions is expected.

No operational issues or corrective actions have been identified for the causticizing area.

6.2.11 Lime Kiln

TRS emissions from the lime kiln are continuously monitored and recorded. The Mill will continue to meet the applicable TRS emissions limits for the lime kiln. No operational issues or corrective actions have been identified for the No. 2 Lime Kiln.

6.2.12 Combination Boilers

Incineration of the NCG gases is continuously monitored using the flame failure systems on each boiler. The NCG collection systems are also monitored monthly and annually for leaks following the Catawba Mill Leak Detection and Repair (LDAR) program.

Source testing of both the No. 1 and No. 2 combination boilers will be conducted by New-Indy, in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

6.2.13 Condensate Collection and Treatment System

Source testing of the foul condensate steam stripper will be conducted by New-Indy in accordance with Condition 5 of the DHEC order to confirm the original H_2S and TRS emissions estimates based on information from NCASI.

No operational issues or corrective actions have been identified for the foul condensate steam stripper pending the results of the source testing required by Condition 5 of the DHEC Order.

6.2.14 Wastewater Treatment System

Please see Section 7 for a detailed discussion of the wastewater treatment system operational issues and corrective actions.

6.2.15 Industrial Landfill

No operational issues or corrective actions have been identified for the landfill.

6.2.16 Miscellaneous Sources

No operational issues or corrective actions have been identified for the miscellaneous sources.

6.3 Professional Engineering Certification

Name: Sheryl Watkins, P.E.

S.C. Registration No. 34347

Company: ALL4 LLC

COA No. 6409

Table 6-1Summary of H2S and Other TRS Compound Emissions

	H	2S	H	25	H	25	TI	RS	TI	RS	Т	RS				
	Bleached M	ill (Stripper)	Brown Mill	(Hard Pipe)	Brown Mil	ll (Combo)	Bleached M	ill (Stripper)	Brown Mill	(Hard Pipe)	Brown Mi	l (Combo)				
	Controlled	Percent	Controlled	Percent	Controlled	Percent	Controlled	Percent	Controlled	Percent	Controlled	Percent			Condition 2	Coordition C
SOURCE OF H2S	maximum lb/br	oftotal	maximum lb/br	oftotal	maximum lb/br	oftotal	maximum lb/br	of total	maximum lb/br	oftotal	maximum lb/br	oftotal	TPS/H2S Control	Compliance Monitoring	Operational Evaluation	Condition 6
	10/111	UI LULAI	10/11	UI LULAI	10/11	UI LULAI	10/11	UI LULAI	10/11	UI LULAI	10/11	UI LULAI	Incineration in Combination	compliance Monitoring	Source test required by Condition	No corrective actions identified
Kraft Mill NCG System	0.35	6.7%	0.43	8.1%	0.43	8.2%	1.24	1.9%	1.60	2.8%	1.60	3.1%	Boilers	Flame Failure System CMS	5 to confirm expected emissions	pending source test results
Stripper Off Gases	0.70	13.3%	N/A	N/A	0.37	7.0%	3.48	5.4%	N/A	N/A	1.84	3.5%	Incineration in Combination Boilers	Flame Failure System CMS	Source test required by Condition 5 to confirm expected emissions	No corrective actions identified pending source test results
Recovery Furnace #2	0.16	3.0%	0.16	3.0%	0.16	3.0%	0.27	0.4%	0.27	0.5%	0.27	0.5%	Good combustion practices	TRS CEMS	maintain TRS emissions limit and monitoring	No corrective actions identified
Smelt Dissovling Tank #2	0.28	5.4%	0.28	5.3%	0.28	5.3%	0.37	0.6%	0.37	0.7%	0.37	0.7%	scrubber flow and pressure drop	Stack testing and scrubber CMS	Source test being conducted to confirm current emissions	No corrective actions identified pending source test results
Recovery Furnace #3	0.29	5.5%	0.29	5.4%	0.29	5.5%	0.49	0.8%	0.49	0.9%	0.49	0.9%	Good combustion practices	TRS CEMS	maintain TRS emissions limit and monitoring	No corrective actions identified
Smel Dissolving Tank #3	0.51	9.7%	0.51	9.6%	0.51	9.7%	0.67	1.0%	0.67	1.2%	0.67	1.3%	scrubber flow and pressure drop	Stack testing and scrubber CMS	Source test being conducted to confirm current emissions	No corrective actions identified pending source test results
Lime Kiln #2	0.97	18.4%	0.97	18.2%	0.97	18.3%	0.97	1.5%	0.97	1.7%	0.97	1.9%	Good combustion practices	TRS CEMS	maintain TRS emissions limit and monitoring	No corrective actions identified
Causticizing Area	N/A	N/A	N/A	N/A	N/A	N/A	0.40	0.6%	0.40	0.7%	0.40	N/A	none	none	no change in emissions identified	No corrective actions identified
Precipitator Mix Tanks	N/A	N/A	N/A	N/A	N/A	N/A	0.02	0.0%	0.02	0.0%	0.02	N/A	none	none	no vents to atmosphere, sources vent into recovery furnaces	No corrective actions identified
Paper Machine #2	N/A	N/A	N/A	N/A	N/A	N/A	0.75	1.2%	0.75	1.3%	0.75	N/A	none	none	source not currently in operation	No corrective actions identified
Paper Machine #3	N/A	N/A	N/A	N/A	N/A	N/A	3.13	4.8%	3.13	5.6%	3.13	N/A	none	none	Source test required by Condition 5 to confirm expected emissions	No corrective actions identified pending source test results
Pulp Dryer	N/A	N/A	N/A	N/A	N/A	N/A	0.85	1.3%	0.85	1.5%	0.85	N/A	none	none	Source test required by Condition 5 to confirm expected emissions	No corrective actions identified pending source test results
HD Pulp Storage Tanks	N/A	N/A	N/A	N/A	N/A	N/A	9.20	14.2%	9.20	16.4%	9.20	N/A	none	none	no change in emissions identified	No corrective actions identified
LD Pulp Storage Tanks	N/A	N/A	N/A	N/A	N/A	N/A	3.30	5.1%	3.30	5.9%	3.30	N/A	none	none	no change in emissions identified	No corrective actions identified
Weak Black Liquor StorageTanks	0.15	2.9%	0.15	2.9%	0.15	2.9%	1.41	2.2%	1.41	2.5%	1.41	2.7%	none	none	no change in emissions identified	No corrective actions identified
Strong Black Liquor Storage Tanks	0.25	4.6%	0.25	4.6%	0.25	4.6%	1.35	2.1%	1.35	2.4%	1.35	2.6%	none	none	no change in emissions identified	No corrective actions identified
White Liquor Storage Tanks	0.02	0.3%	0.02	0.3%	0.02	0.3%	1.77	2.7%	1.77	3.2%	1.77	3.4%	none	none	no change in emissions identified	No corrective actions identified
Green Liquor Storage Tanks	N/A	N/A	N/A	N/A	N/A	N/A	0.20	0.3%	0.20	0.4%	0.20	0.4%	none	none	no change in emissions identified	No corrective actions identified
ASB Zone 1	0.81	15.4%	1.64	30.7%	1.22	23.2%	17.76	27.4%	21.22	37.8%	15.46	29.7%	none	none	See Condition 7	See Condition 7
ASB Zone 2	0.44	8.4%	0.36	6.8%	0.36	6.7%	9.75	15.0%	4.66	8.3%	4.49	8.6%	none	none	See Condition 7	See Condition 7
ASB Zone 3	0.34	6.5%	0.27	5.2%	0.27	5.1%	7.47	11.5%	3.56	6.3%	3.43	6.6%	none	none	See Condition 7	See Condition 7
TOTAL EMISSIONS (stk + fug)	5.27		5.33		5.28	1	64.85		56.18	1	51.98					

7. CORRECTIVE ACTION PLAN – WASTEWATER TREATMENT IMPROVEMENTS NEW-INDY – CATAWBA, SC

7.1 INTRODUCTION

Paragraph 7 of the SC DHEC's May 7, 2021 Order reads:

On or before June 15, 2021, and to the extent not included in Step 6 above, submit to the Department, for review, comment and approval, a corrective action plan (CAP) (developed and stamped by a South Carolina-registered Professional Engineer (PE)) and a schedule of implementation, which addresses operational issues at the Facility wastewater treatment plant that may be causing or contributing to odor and elevated levels of H_2S . This CAP shall include, but not be limited to, a comprehensive evaluation of the wastewater treatment plant to determine if adequate and appropriate facultative waste treatment is occurring in the aerated stabilization basin (ASB) and the potential for odors resulting from the discharge of foul condensate into the wastewater treatment plant. The CAP shall address the significant fiber and sludge accumulation and foam occurring in the ASB and identify their respective source(s). Additionally, the CAP shall include a study of the microbial concentration in the ASB to determine if there is an adequate microbial population to aid in the reduction of foam on the ASB. The schedule of implementation shall include specific dates or timeframes for initiation and the completion of each action and details as to how each action addresses the odor and wastewater treatment system operational issues noted above. The schedule of implementation of specific corrective action steps proposed under the CAP will be evaluated by the Department and comments provided to New-Indy within five calendar days. New-Indy shall address all comments by the Department and submit a final approvable CAP within five calendar days of Department comment. Upon Department approval, the schedules(s) and corrective actions contained within the CAP shall be incorporated into and become an enforceable part of this Order.

This CAP has been written to meet the requirements of Paragraph 7.

7.2 COMPREHENSIVE EVALUATION OF WASTEWATER TREATMENT SYSTEM

New-Indy retained EBS and TRC to evaluate the wastewater treatment system with regards the following:

- Operational issues that may be causing or contributing to odor and elevated levels of hydrogen sulfide;
- Whether adequate and appropriate waste treatment is occurring in the ASB;
- The potential for odors resulting from the discharge of foul condensate into the treatment system;
- The accumulation of fiber, foam, and sludge accumulation and their sources; and
- A study of the microbial population in the ASB with regards to reducing the fiber/foam layer and providing biological degradation of BOD5.

7.2.1 Operational issues that may be causing or contributing to odor and elevated levels of hydrogen sulfide

 H_2S emissions can originate in a wastewater treatment basin in two ways. The first source of emissions is H_2S that has been produced upstream of the wastewater treatment system and volatilizes when exposed to mixing or agitation in the aeration basin or holding pond. Minimization of this source of H_2S is generally accomplished via proper subservice diffusion and adequate oxygenation of the wastewater through proper aeration and mixing. The second source of H_2S is the formation of H_2S by sulfate reducing bacteria in unaerated or poorly aerated areas in the ASB or holding pond.

A properly operated aerobic biological treatment system utilizes aeration and bacterial metabolism to convert biodegradable compounds (BOD) in the wastewater into additional bacteria, water, and carbon dioxide, an odorless gas. In the absence of sufficient dissolved oxygen, the bacterial population will shift to a sulfate reducing scenario, where sulfate replaces oxygen as the terminal electron acceptor, with resultant H₂S formation.

TRC performed site visits to the facility on March 17 and March 19, 2021, to observe the conditions of the wastewater treatment system. EBS performed site visits on May 11, May 25, and June 9, 2021, to observe system conditions and to collect process evaluation samples. Discussions regarding EBS's process control data is provided in Section 7.2.2 below, but in general, the conditions observed indicated a floating layer of fiber/foam on portions of the ASB

and accumulated solids in the EQ Basin. Effluent from the primary clarifier weir appeared typical of effluent from paper mill primary clarifiers.

The predominant issues that have hindered aeration and mixing in the ASB have been the formation of the floating layer of foam and fiber and the accumulation of settled solids. Excess fiber loading into the ASB combined with production liquor losses has led to the formation of a thick, floating layer of fiber and foam covering much of the early aerated zone. The fiber and liquors losses arose during mill conversion and recommissioning. The floating solids layer contributed to the breakdown of multiple aerators in the front end of the system. This loss of aeration capacity led to a reduction in biological treatment capacity and resulted in reduced aerobic and even anaerobic conditions. Sulfate reducing bacteria when present under anaerobic conditions metabolize BOD by utilizing sulfate as a terminal electron acceptor when there is no dissolved oxygen present, thus producing H_2S as a byproduct. The floating solids also represent biodegradable material that dissolve over time, adding additional oxygen demand to the system.

The accumulated solids in the ASB have reduced the hydraulic residence time in the basin for treatment and impacted the flow path through the basin. Solids accumulation occurs from solids loading in the influent as well as settling of biomass generated as part of normal biological treatment. The influent loading comes from solids that may not have been removed during the primary clarification process or primary solids that have become re-entrained in wastewater due to the primary clarifier underflow in the EQ Basin.

The reduced treatment efficiency and poorly aerated conditions caused by the floating fiber/foam layer and accumulated solids and H_2S production contributed to elevated concentrations of H_2S in the effluent from the ASB to No. 1 Holding Pond. No. 1 Holding Pond retains wastewater prior to undergoing post-treatment aeration in the post-aeration basin. In the post-aeration basin, large surface aerator/mixers aerate the wastewater in a rectangular, concrete basin. This aeration has the potential of releasing hydrogen sulfide that may be in the wastewater. On June 9, 2021, the facility installed a flexible cover, blower and carbon filtration system to capture emissions from the post-aeration basin and treat the off gasses through a carbon filtration system to reduce the H_2S concentration.

The increase of foul condensate loading to the ASB through the hard pipe option under the Title V permit and NSPS Subpart S increased the load of both BOD5 and sulfur compounds. The loading of the anticipated foul condensate and anticipated wastewater from the converted, unbleached manufacturing operations into the ASB was modeled in 2019 utilizing NCASI's Simulated Aerated Stabilization Basin Model (Version 4.2). The ASB parameters in the model were set up using the 2015 solids survey results based on the facility's assumption that additional sludge accumulation since 2015 was approximately equal to the amount of sludge that was removed as part of maintenance dredging since that time. The 2019 modeling indicated that the ASB could sufficiently treat the foul condensate and enable the wastewater treatment system and comply with current (and anticipated) NPDES permit requirements. After the conversion and restarting of the mill, however, the thick layer of foam/fiber formed on the basin reducing the aeration capacity of the basin. This reduced aeration capacity and sludge accumulation that has reduced mixing and disruption of the flow path through the basin have hindered the basin's ability to perform as modeled.

The two main operational issues in the ASB that pose the potential of causing or contributing to elevated levels of hydrogen sulfide have been the formation of the floating fiber/foam layer and the accumulation of settled solids. Addressing the floating fiber/foam layer and regaining a portion of treatment volume by removing sufficient solids in strategic areas of the ASB are recommended and included as corrective actions in Section 7.3.

7.2.2 Adequacy and appropriateness of waste treatment that is occurring in the Aerated Stabilization Basin

New-Indy's ASB is of typical design for an integrated pulp and paper mill. An ASB operates by both providing sufficient residence time for biological treatment of organic wastes as well as providing for the settling and digestion of biomass essential to the operation of the basin. An ASB accomplishes biological treatment and sludge digestion through two layers. The upper layer is typically well mixed and aerated with the use of floating aerators. Soluble BOD5 serves as a food source to microscopic biota in this upper layer thus reducing the BOD5 concentration in the wastewater. As the BOD5 is consumed, additional biomass is produced to continue the treatment process. As biomass accumulates, some of the solids settle to the basin bottom and begin to undergo digestion in anoxic conditions, which are by design out of reach of the aeration and mixing

energy from the surface aerators. As the biomass degrades, it releases some BOD5 and nutrients. The released BOD5 gets treated in the upper layer, and the released nutrients get reused in the process to support continued biomass growth. This release of nutrients and BOD5 from the degradation of biomass at the bottom is referred to as "benthic feedback" and is an important step in the ASB treatment process. Not all the biomass that settles to the basin bottom digests, and this accumulated sludge can begin reducing the working volume of the basin thus reducing the residence time for treatment.

Unlike an activated sludge system that concentrates biomass in the mixed liquor through the return of a portion of settled secondary sludge, an ASB operates with a much lower density of biomass and achieves high removal efficiencies, not through high concentrations of mixed liquor biomass but instead through extended residence times. The large volumes of typical ASBs that provide the high residence time for treatment also makes ASBs less susceptible to slug discharges of high organic strength, pH swings, and hydraulic loading spikes that can plague activated sludge systems. In addition, by design, ASBs generate less sludge for disposal than activated sludge systems and require less energy to operate. ASBs also require less nutrient loading because of the inherent "benthic feedback" nutrient recycle process.

New-Indy has routinely collected samples from the ASB influent, effluent and within the ASB for process control parameters such as BOD5, TSS, pH and temperature. As part of preparations for full scale unbleached operations and foul condensate hard pipe loading, New-Indy revised the ASB sampling regimen to include methanol sampling as well as sampling of the foul condensate stream in January 2021.

In terms of BOD loading to the ASB, the conversion from bleached paper to unbleached containerboard included two considerations for determining the ASB's ability to support the converted mill operations. Although the planned hard pipe solution would result in a higher loading of BOD to the ASB from the chemical recovery operations, the overall BOD loading to the ASB would not change due to correspondingly reduced BOD loading from the paper making operation (elimination of starch, coatings and sub-sized fibrous "fines" from the paper machine operation). By design, this validated the decision to implement the hard pipe solution for methanol

destruction, as the ASB would continue to be more than adequate to treat the planned postconstruction BOD loading.

The mill experienced a rough operational startup, which was more difficult than anticipated. Additional factors that complicated the wastewater treatment plant startup conditions were the time of year (cold weather) and an anomalous influx of solids from the EQ basin (because the primary clarifier was out of service). The normal flow of effluent from the primary clarifier is to route the underflow sludge to the EQ basin for solids settling with the clarifier overflow going directly to the ASB inlet. With the primary clarifier out of service for rake repairs, all mill effluent was routed through the EQ basin, which resulted in a hydraulic washing of solids from that basin into the ASB. Fiber losses from the mill's operational startup compounded the buildup of solids in the ASB. The fibrous sludge floated and matted on the ASB surface, which caused surface aerators to shut down. The floating solids mat then built to the point where access to the aerators was prohibited, and the aerators could not be returned to service as would otherwise normally take place. This situation was further exacerbated by extremely wet weather in January through March 2021, which resulted in restricted access to the No. 4 sludge holding pond, thus preventing solids removal from the ASB surface until March 2021. Therefore, the ASB's reduced aeration efficiency was a primary factor in creating treatment inefficiencies through the ASB.

New-Indy retained EBS to evaluate the treatment system in May 2021. EBS collected samples from the ASB inlet, effluent, ASB midpoint and from the No. 1 Holding Pond and analyzed for pH, temperature, dissolved oxygen, Oxidation-Reduction Potential (ORP), ammonia, orthophosphate, Sulfide, dissolved oxygen uptake rate, TSS, Volatile Suspended Solids (VSS) and Chemical Oxygen Demand (COD). These samples were collected on May 11, May 25 and June 9, 2021. Continued sampling is conducted weekly going forward. EBS also evaluated the microbiology of samples from the ASB midpoint and ASB effluent during each sampling event, and the details of the microbiology evaluation are discussed more in Section 7.2.5. The complete EBS reports are provided in Appendix D but are summarized below for COD removal along with estimates of loading calculated by TRC based on information provided by the facility and EBS.

• May 11, 2021 EBS Evaluation:

- Wastewater flow into the ASB (minus foul condensate) was recorded at 27.4 MGD, the measured soluble COD in that influent (minus foul condensate) was 873 mg/L, giving a soluble COD loading in the ASB influent (minus foul condensate) of approximately 200,000 pounds per day (lbs./day).
- The foul condensate hard pipe flow that day was approximately 0.158 MGD. The COD of the foul condensate was not measured that day, but the average from the four measurements collected that month was approximately 3,850 mg/L for total COD, giving a COD loading of approximately 5,100 lbs./day from the foul condensate.
- The total influent COD loading was approximately 205,100 lbs./day.
- The ASB effluent soluble COD concentration that day was 510 mg/L, giving an approximate mass loading from the ASB of 117,200 lbs./day, or a removal efficiency of approximately 43%.
- May 25, 2021 EBS Evaluation:
 - Wastewater flow into the ASB (minus foul condensate) was recorded at 30 MGD, the measured soluble COD in that influent (minus foul condensate) was 1303 mg/L, giving a soluble COD loading in the ASB influent (minus foul condensate) of approximately 326,000 pounds per day (lbs./day).
 - The foul condensate hard pipe flow that day was approximately 0.307 MGD. The COD of the foul condensate that day was measured to be 4,300 mg/L for total COD, giving a COD loading of approximately 11,000 lbs./day from the foul condensate.
 - The total influent COD loading was approximately 337,000 lbs./day.
 - The ASB effluent soluble COD concentration that day was 231 mg/L, giving an approximate mass loading from the ASB of 58,388 lbs./day, or a removal efficiency of approximately 83%.
- June 9, 2021 EBS Evaluation:
 - Wastewater flow into the ASB (minus foul condensate) was recorded at 29.4 MGD, the measured soluble COD in that influent (minus foul condensate) was 1,059 mg/L, giving a soluble COD loading in the ASB influent (minus foul condensate) of approximately 260,000 pounds per day (lbs./day).
 - The foul condensate hard pipe flow that day was approximately 0.307 MGD. A total COD value for the foul condensate was not available for that day as of the

writing of this CAP; therefore, the average of the previous three measurements was used (4,733 mg/L), giving a COD loading of approximately 16,600 lbs./day from the foul condensate.

- The total influent COD loading was approximately 276,000 lbs./day.
- The ASB effluent soluble COD concentration that day was 376 mg/L, giving an approximate mass loading from the ASB of 93,500 lbs./day, or a removal efficiency of approximately 66%.

Historically, the ASB has generally removed greater than 85% of the influent BOD. The ASB is capable of treating mill wastewater as demonstrated by historical sampling and modeling. A properly operated and maintained primary clarifier, ASB and treated effluent retaining capabilities along with management and disposal of primary clarifier solids is an appropriate treatment regimen and can provide adequate treatment for this type of wastewater to enable compliance with the NPDES permit. Continued efforts to address the floating fiber/foam layer, strategic maintenance dredging, and continuing the revised monitoring of ASB process control parameters is recommended and included as corrective actions in Section 7.3.

7.2.3 The potential for odors resulting from the discharge of foul condensate into the treatment system

The foul condensate represent an organic and sulfide load to the ASB. In a system facing aeration challenges due to the floating fiber/foam layer and lost volume due to solids accumulation, this additional organic loading can exacerbate the aeration difficulties leading to poorly aerobic and even anaerobic conditions. These conditions can cause the bacteria population to shift to sulfate reducing bacteria where sulfate replaces oxygen as the terminal electron acceptor resulting in H_2S formation. The additional sulfide from the foul condensate provides an additional sulfur source to the system. Improving conditions in the ASB, including addressing the floating fiber/foam layer and regaining treatment volume through removal of solids will improve the ability of the ASB to treat foul condensate in an aerobic environment reducing the biological factors that contribute to the formation of H_2S .

The 2019 ASB modeling of the loading from the unbleached mill operations and the full foul condensate loading indicated the ASB as modeled could meet the oxygen demand requirements of BOD5 in maintaining aerobic conditions in the upper pond layer as designed. H₂S emissions was

estimated using NCASI's Wastewater Hydrogen Sulfide Emissions Simulator (H2SSIM, version 1.3) in January 2020. As with the 2019 ASB modeling, the ASB inputs were based on anticipated wastewater and H₂S loading and that the accumulated solids conditions in January 2020 were approximately the same as those observed in 2015 based on the facility's assumption that additional accumulation was approximately equal to the amount of solids removed through maintenance dredging conducted since 2015. That modeling indicated that based on the assumptions and inputs used, the additional emissions of hydrogen sulfide with the addition of the full condensate stream would be less than 1 ton per year.

With the understanding that ASB conditions have changed since early 2020 when the H_2S modeling was performed and that there is actual data for the foul condensate and process wastewater characteristics from unbleached operations, additional ASB treatment and H_2S emissions modeling is recommended and included as part of the corrective actions in Section 7.3.

7.2.4 The accumulation of fiber, foam and sludge and their sources

As discussed above, the formation of the floating layer of fiber and foam has contributed to the reduction in aeration and mixing capacity in the ASB, while accumulated sludge has impacted the flow path of wastewater through the basin and reduced the effectiveness of mixing and aeration in the basin. The floating layer is a combination of excessive fiber in the wastewater and foaming caused by production liquors, fatty acid soaps, and cellulose breakdown products. Production upsets during recommissioning contributed to the high losses of fiber and production material the facility's process sewer system. Addressing fiber and process liquor losses in the mill is recommended and included as corrective actions in Section 7.3.

The accumulation of sludge in the ASB is a result of elevated primary solids loading in the influent to the ASB and biomass generation from BOD5 treatment. The source of the elevated solids in the influent flow is from solids being entrained in effluent from the primary solids EQ Basin. Sludge from the primary clarifier is pumped to the EQ Basin to thicken and homogenize before being removed and placed in the No. 4 Sludge Pond. If the solids aren't removed frequently enough, suspended solids can be entrained in the supernatant that leaves the EQ Basin into the ASB inlet ditch ultimately settling out in the ASB. While the use of the EQ Basin served as an urgently needed means of addressing inadequate primary sludge dewatering, ultimately managing primary solids in an alternative manner is recommended and is included as corrective action in Section 7.3.

Biomass generated in the ASB during the BOD5 treatment process settles to the basin bottom and undergoes digestion. Digestion alone does not eliminate the solids, as some of it is inert, so maintenance dredging must be performed to keep accumulation in check. If maintenance dredging does not keep up with the accumulation of solids in the basin, the settled solids will begin reducing the working volume of the basin available for treatment. Increasing the maintenance dredging program in the ASB, and even dredging to recover lost volume to regain sufficient treatment volume, is recommended and is included as corrective action in Section 7.3.

7.2.5 A study of the microbial population in the ASB with regards to reducing the fiber/foam layer and providing biological degradation of BOD5

As part of their evaluations on May 11, May 25, and June 9, 2021, EBS performed microscopic examinations. Their reports can be found in Appendix D but are summarized with regards to the micro exams below.

- May 11, 2021 EBS Evaluation: The micro exam showed a moderate to high abundance of dispersed bacteria in the ASB Midpoint and ASB Effluent samples, as well as a moderate abundance of pin floc in both samples. No higher life forms (protozoa/metazoa) were observed at the ASB Midpoint, but the ASB Effluent showed several flagellates and a few free-swimming ciliates. Ciliates are generally considered indicators of aerobic, non-toxic conditions in ASB treatment systems. A low to moderate abundance of fiber was observed at the ASB midpoint sample, and a moderate abundance of grit and debris were observed in both samples.
- May 25, 2021 EBS Evaluation: The micro exam showed higher life forms (protozoa) in both the ASB midpoint and ASB Effluent. Two stalked ciliates were observed at the ASB Midpoint: these are sensitive microorganisms that generally exist in non-toxic, aerobic environments. Two free swimming ciliates were observed at the ASB Outfall as well. The ASB midpoint sample showed a high abundance of grit and debris, as well as pin floc and a few small compact pieces of floc. There was no floc larger than pin floc observed at the ASB Outfall, and the abundance of grit/debris decreased in this sample. Dispersed bacteria abundance was high in the midpoint (2.5 out of 3) and moderate to high in the ASB Effluent (2 out of 3).

 June 9, 2021 EBS Evaluation: The micro exam showed stalked ciliates and freeswimming ciliates at the ASB Mid and ASB Out sample points. Stalked ciliates are generally considered indicators of good biomass health, as they are sensitive microorganisms that don't survive in toxic or anaerobic conditions. There was abundant grit and debris observed in the ASB Mid sample, with the abundance decreasing in the ASB Out sample. This corresponds with the lower percent VSS (volatile suspended solids) observed in the ASB Mid sample, as there is a higher fraction of inorganic grit/debris in this part of the ASB.

As discussed, ASBs do not have the highly concentrated population of microbial life in the mixed liquor that activated sludge systems require for treatment.

Continued evaluations of the ASB mixed liquor microbiology is recommended along with continuous, in situ biomonitoring, and are included to support corrective actions in Section 7.3.

7.3 CORRECTIVE ACTIONS AND TIMELINE

A properly operated aerobic biological treatment system utilizes aeration and bacterial metabolism to convert biodegradable compounds (BOD) in the wastewater into additional bacteria, water, and carbon dioxide, an odorless gas. In the absence of sufficient dissolved oxygen, the bacterial population will shift to a sulfate reducing scenario, where sulfate replaces oxygen as the terminal electron acceptor resulting in H₂S formation. The floating layer of fiber and foam contributed to the reduction in aeration and mixing capacity in the ASB. The accumulation of settled solids in the ASB contributed to the reduction in treatment residence time, reduced mixing efficiency, and altered the flow path of wastewater undergoing treatment through the ASB. The following corrective actions have been developed to address these operational issues.

This corrective action plan employs the concept of the Eight Growth Pressures necessary for optimum aerobic metabolism as outlined in "Aerated Stabilization Basins in the Pulp and Paper Industry" by Paul Klopping and Michael Foster published in 2003. Each of the eight growth pressures (BOD Loading, pH, Hydraulic Retention Time, Dissolved Oxygen, Nutrients, Temperature, Toxicity, and Biomass Viability) play a role in the health of a system with BOD Loading, Dissolved Oxygen, pH, Temperature, and Hydraulic Retention Time being most impactful in terms of H₂S formation and emission. The intent of this document is to provide a

corrective action plan to improve the health of the wastewater treatment system and mitigate H_2S formation.

Item 1: Removal of Floating Solids in the Aerated Stabilization Basin (ASB)

Basic Description:

• Remove floating solids in the ASB. Floating solids removal will allow access to out-of-commission aerators.

Technical Rationale:

• Excess fiber loading into the ASB has led to floating solids covering much of the early aerated zone. The floating solids have contributed to the breakdown of multiple aerators in the front end of the system. Removal of these solids will be necessary to repair the aerators, which will lead to higher BOD removal efficiency, more aerobic conditions in the wastewater treatment system and reduce the potential for H₂S formation. The floating solids also represent biodegradable material that dissolve over time, adding additional oxygen demand to the system.

Timeline:

- Long arm excavators are currently removing solids that can be reached from shore. In addition, two other contracting firms will begin work over the next weeks to remove the floating solids from barge and vessel-based equipment.
- Address fiber and liquor losses in production that may have contributed to the formation of the floating fiber/foam layer.

Item 2: Removal of Settled Solids in the Aerated Stabilization Basin (ASB)

Basic Description:

• Remove sufficient settled solids in the ASB to meet treatment and sludge management needs. Dredging settled sludge will improve the hydraulic retention time of the ASB, improve mixing, and the flow path through the ASB. In addition, a sludge accumulation rate needs to be estimated to plan maintenance dredging rates to stay ahead of accumulation.

Technical Rationale:

• Settled solids removal will also be necessary to provide additional retention time for BOD removal. Additional volume in the ASB will be created by dredging solids from the bottom of the basin.

Timeline:

- Long arm excavators began removing solids that can be reached from shore in March 2021 and will continue until removal is completed.
- Sludge maintenance dredging is ongoing. The facility is currently in the process of identifying a dredging contractor(s) that can dredge at a faster rate.
- EBS began a lithium tracer study on June 8, 2021 to determine the hydraulic retention time of the ASB. In addition, lithium profile samples were collected throughout the ASB five and twenty-four hours after the lithium was introduced to determine the current flow patterns.
 - Preliminary results from the lithium profile sampling will be available by June 21, 2021.
- Perform ASB modeling using up-to-date information about the ASB to guide settled solids removal actions.

Item 3: Primary Clarifier Sludge Handling Improvements

Basic Description:

• While solids removal from the ASB is critically important, it will be subsequently important to ensure solids loading is minimized in the future. Improving primary clarification and preventing dumps of process solids that bypass or overwhelm the primary clarifier will decrease the amount of fiber and other solids that are entering the ASB from the mill. In the short term, this can be mitigated by dredging the EQ basin that the underflow of the secondary clarifier feeds into. In the long term, the underflow of the primary clarifier will be pressed and removed from the wastewater treatment system. Reducing non-wastewater loads of solids to the primary clarifier, such as boiler ash, lime mud, grits and slaker dregs will also reduce the solids loading.

Technical Rationale:

- The underflow of the primary clarifier is currently feeding into an EQ basin that is largely full of solids. The lack of settling volume in the EQ [basin?] is leading to elevated TSS entering the ASB. These solids will settle in the ASB and reduce the hydraulic retention time. Especially during/after dredging, this will be important as the volume gained from dredging will be quickly cancelled out if influent solids aren't reduced.
 - Keeping primary sludge removed in the clarifier from becoming remixed with wastewater is important.
 - Mechanical dewatering through the use of a belt press is essential to improving the solids removal.
 - Returning the EQ Basin to use for attenuating hydraulic and concentration swings in the primary clarifier effluent will provide a more evenly distributed loading to the ASB.

Item 4: Existing Aeration Repair

Basic Description:

• Repair out-of-commission splash aerators in the early zones of the ASB.

Technical Rationale:

- Each hp of aeration in the ASB theoretically removes 25-35 lbs. of BOD per day. Using the midpoint of 30 lbs. of BOD removal per hp, each 75 hp splash aerator that is repaired will remove approximately 2,250 lbs. of additional BOD per day. Sulfate reducing bacteria when present under anaerobic conditions metabolize BOD by utilizing sulfate as a terminal electron acceptor when there is no dissolved oxygen present and produce H₂S as a byproduct. Repairing aerators will decrease the oxygen demand in the ASB and No. 1 Holding Pond, promoting the growth of aerobic bacteria and reduce the conditions favorable to sulfate-reducing bacteria.
- In addition to supplying oxygen, aeration will strip any sulfide present under the right pH conditions, so it is important to reduce any potential sulfide formation from upstream sources prior to entering the ASB.

Timeline:

- Aerator repairs are ongoing.
- Gradually turn on the aerators as they become operational.
- On April 19, 2021, New-Indy began adding calcium nitrate in the ASB to supplement oxygen as an electronic acceptor and reduce the formation of hydrogen sulfide.
- On June 9, 2021, New-Indy began adding hydrogen peroxide and supplemental oxygen to the ASB inlet to provide supplement dissolved oxygen until aeration conditions improve in the ASB.

Item 5: Add Aeration to No. 1 Holding Pond

Basic Description:

• Add two 75 hp splash aerators to the front end of the No. 1 Holding Pond.

Technical Rationale:

• Adding additional aerators to the No. 1 Holding Pond will provide additional D.O. that will reduce the potential for H₂S formation from sulfate reducing bacteria. These aerators will be installed in the early zones of the No. 1 Holding Pond to prevent stirring up solids before the outfall. The permanent need for these will be evaluated as treatment efficiencies improve in the ASB.

Timeline:

• Two 75 hp splash aerators were installed June 9, 2021, near the inlet of No. 1 Holding Pond.

Item 6: ASB Biomass Monitoring: EBS Advanced Microscopic and Chemical Analysis (Weekly)

Basic Description:

• ASB Influent, ASB Midpoint, and ASB Outfall samples will be sent to EBS weekly for an advanced chemical and microbiological analysis that evaluates biomass health and related parameters.

Technical Rationale:

- These analyses will provide weekly trended data on parameters related to wastewater performance. This analysis will evaluate biomass health, biomass abundance, soluble BOD removal efficiency, and other parameters related to wastewater treatment performance.
 - \circ The analysis will include:
 - *Microscopic Examination* Protozoa/Metazoa abundance, floc formation, and dispersed bacteria abundance
 - *Flow Cytometry* Analysis of percent live/dead bacterial cells in the sample
 - Culturable Cell Counts
 - Total Cell Counts
 - Live Cell Counts
 - Basic chemical analysis
 - Soluble BOD
 - NH_3 -N and PO_4^{3-} -P Concentrations
 - o DOUR
 - TSS/VSS

Timeline:

• Weekly sample shipment will begin on June 16.

Item 7: ASB Biomass Monitoring: Sentry Probe Installation

Basic Description:

• EBS will install an in-line probe which will monitor biomass activity at the ASB Midpoint sample. *SENTRY: Bio-Electrode Technology* monitors biological activity by measuring electron transfer as the resident ASB biomass metabolizes soluble organic compounds. This data can be viewed 24/7 on the online SENTRY data page.

Technical Rational:

• The SENTRY unit consists of a metal screen that allows biological material to grow on the screen. As the biology consumes organic material, the electrons that normally would be accepted by oxygen/nitrate/sulfate go into an anode and are measured by the unit. This electron transfer will fluctuate up and down based on how much soluble BOD is present at this point in the system. The electron transfer is measured as MET (microbial electron transfer) and is plotted out on the SENTRY data page. This data can also help alert us to potential inhibitory/toxic compounds moving through the system, as that will decrease oxygen uptake/electron transfer.

Timeline:

• EBS will install the Sentry Probe by mid-July 2021.

7.4 WASTEWATER PROFESSIONAL ENGINEERING CERTIFICATION

Name: James M. Kirlin, P.E.

S.C. Registration No. 19,829

(Seal)

(TRC COA Seal)

APPENDIX A - LEAK DETECTION AND REPAIR (LDAR) INSPECTION REPORTS

New Indy Containerboard - Catawba Mill 5300 Cureton Ferry Rd. Catawba, SC 29704

2021 Monthly LDAR Inspection Summary Report

Table 1: Visual Inspection Summary Table

Equipment Number	Date	Description of Leak	or Visual Defect
MV-1137	1/26/2021	Manual Valve MV Condensate Tank No.	 7-1137 is located on foul condensate line at outlet of HVLC Foul 3 and prior to the pump. The drain valve is open and dripping from spout.
NA	1/27/2021	The 1A Scre	w Press Dilution Conveyor is puffing from top hatch door.
NA	1/27/2021	The 1B Scre	w Press Dilution Conveyor is puffing from top hatch door.
NA	1/27/2021	The 1A Bro	own Stock Washer is puffing from three open hatch doors.
NA	1/27/2021	The 1B Bro	own Stock Washer is puffing from four open hatch doors.
NA	1/27/2021	The 2A Bro	own Stock Washer is puffing from four open hatch doors.
NA	1/27/2021	The 2B Bro	own Stock Washer is puffing from four open hatch doors.
NA	1/27/2021	The 3A B	rown Stock Washer is puffing from one open hatch door.
NA	1/27/2021	The 3B Br	own Stock Washer is puffing from four open hatch doors
First Attempt t	o Renair must	5 Days from	
be completed b	y:	Inspection Date	Not Applicable if no leaks were found.
Repairs must b by:	e completed	15 Days from Inspection Date	Not Applicable if no leaks were found.

This report provides a summary of leaks and visual defects found during the visual inspection of the closed-vent and condensate-collection systems and complies with the record keeping requirements of 63.454(b)(1-2, 4-5).

The facility must initiate repairs to any defects within five (5) calendar days from this inspection and the defects must be repaired within fifteen (15) calendar days of the inspection. If the leak or defect requires the system to be shutdown in order to make repairs, or more emissions would occur from attempting the repair than delaying the repair, then the repairs may be delayed until the next process unit shutdown. A report must be supplied with the repair date and associated information, or the reason for the delay if the repairs are not completed within the 15-day period. These response requirements are specific to 40 CFR 63, specifically 63.453(k)(6), 63.453(l)(3), and 63.964(b)(1-2). Documentation of all repair attempts made and any leaks/defects requiring a process unit shutdown must be completed according to 63.454(b)(6-11).

I certify that the results of the visual inspection are accurate and complete to the best of my knowledge.

Inspector Name: Josh Howard

Signature:

Josh Howard

Inspection QA/QC Procedure

E360 Project Number?	New Tod-	1 Cat	awba	
Task Number (if applicable)?	JUNULIY	2021	Monthly	LOAR

<u>**Purpose of Form**</u> To verify field work meets each critical element.

Visual Work Flow (WF)

Verification of Critical Elements

WF	Requirement	Yes?
No.		
	Work-flow step	1
	Verifier of critical elements for work-flow step	R
1	Was a bump test performed on the personal H ₂ S monitor?	V
2	Have the most recent versions of the inspection forms been used?	V
3	Were all inspection points identified correctly and inspected correctly?	~
4	Did the operator/ contact verify to our inspector that all equipment was operating under normal operating conditions?	V
5	Were any deficiencies identified in person to the client?	V
6	Were all inspection questions answered with either a Yes, No, or NA?	NA
7	Were inspections performed during the required regulatory time frame?	2

Approvals

Role	WF Step	Name	Approval (insert date)
Responsible Person (R)	1	Josh Howard	1/27/21

-	T T		Ţ.,			-				-				-			T T					_			_	.,			_					_				,																	
																																	Name to a sum	Contract on the contract	-																				
101	-	-		5	5	-	4 11	- 7		ŗ	- 7	-	-	-,	7 3		7	1		7	-	1,1	-	-	-	11	,	-	-,	1.5	5 7	5 7		,		-		3	- = 7	3	1	2	7	2	-	5 5	- 5	- ,	1	F.	5	-	-	7	T
T	1			1								T	T																		T				-	Ħ	Ħ												T	Ħ	tt	Ħ	T		-
4										_									_												_				_																				
H				4											_				_												_				_				_				-												_
266		Ħ		0352		0365		41-			-360	-267	Ħ				T	T				I									T	Ħ			436				T					Ħ			1			Ħ	T				
51-11				2.4-MV-		24 MV		VBB			24-MW	S1-FCV																							M52-0																				
F	5 + 6	1+	2NV	W	HAP .	MIN	T EJ	BPCKV	+ +	٢ā	MIN	20	MV	NA	222	NN	NW	د د د	NN/	2VV	-	CT-	0 -		- 0	55	6	NV VV	No No	CKV	+ ā	T	22	No.	HAP MV	5	1	2 10	0 F	0+	a 9	@ H		-	10	00	нo	a -	- 3	re.	- 0 -	n -	222	0 0	t -
78	e V e		0 H	0 < 0	20	V T	2.1	5 10	9	80	0 -	0.2		0.0	8	00	-	N E	4 5	<	~	xo	0 -	~	r 4	5 2	N 0	0	×0	- 5	2 10	4 2	01	8	0 0		10	5 4	5 9	2	00	-	m 4	10	0 1	80	01	NØ	4 4	<	0 1. 0	2 6	0 1	3	5
108	1081	1081	10801	108	109	1090	109	105	109	109	110	110	DIT	110	110	DEE	111	C C C C	CEE	111	111	E E E	211	2112	211	CLE	2LL	CRE	113	113	113	EIL	ELL	113	114	PIT	11.4	114	114	114	115	115	115	115	115	2115	116	116	116	116	911	116	111	117	117
		Ve																															>	Nes	*	, , ,		1	- 7	1	2 2				7.7	*	+	- *	- T	7	1 1	, , , , , , , , , , , , , , , , , , ,	Lerove -		, , ,
	Free of Leaks	Remo																																																					
	VOC	Billion																																																					
	1				-	+							+				+			-	+		+			+					+	+			-	+	+	+	+	$\left \right $	╈	+	╫		+	$\left \right $		+		+			1	+	+
12		D Bube																																																					
20	ere o	i l		+		+						+	+		+		+			+	-					+					-											H						+		+			t	+	+
-	Press																																	į																					
ul Condensate me:	Equip.	180 Minu	51-MV-0580 TI-0328	PI-0318	51-MV-0550	51-MV-0541				VPECTASI	51-MV-0554	51-MV-0567	51-MV-0549				PSV-034C 51-MV-0555		51-MV-0564	51-MV-0548						P5V-034E 51-MV-0556	51-MV-0565	011E0-14			51-FCV-001 51-MV-0562	51-FT-001		51-MV-0560	51-MV-0561	51-MV-0578	SCCD-NM-TC	51-AT-007	19E0-VM-65	24-MV-0359	24-MN-0445				51-LT-265 24 MV-445						24-MV-363	V704F		51-HV-269	24 MV 362
Date/T)		G	MV IT	- ā	M	MV	1 Id	G HAP	0 F	Id	MN	2 M	NV NV	+ 3	U	B	MV	- 10	NIN	NN NN	0	14	HAP	0 -	ā	PRV MV	ANV.	Id	F	4 F	2-	+ 5	÷.	MV	MV	-	- L	T T	CT NOV	NN	NW	RB	RB	MV	MV		Id	CKV	BP	E	2MV	D NN	T	200	AN N
Stripper Sy Completed		1000	1002	1004	1005	1008	1010	1011	1014	1014A	9101	1018	1019	1021	1022	1024	1026	1027A	1028	1029	1031	1032A	1033	1035	1036A	1037	1039	1041	1043	1045	1045	1048	1050	1052	1053	1055	1057	1058	1060	1062	1064	1066	1068	1069A	10698	1071	1073	1075	1076	1079	1080	1082	1084	1086	10874

2					2	muvc		y																																																									1		
Remu		Nex 1	>	>	VOLO LIPA	MA LAT 120	sicher Comun	1 acmu	~	7 17	7	7	4 19	1	,	. 7	>		5	7	7	1		7	1	7	7	ې	- 7	A.	7	2	T	5	5	5	7	5	-	5	0 mout										7	Y CAMANIC	Ler UV	0										101	- AUD ONIA		MM
17-HV-027A																																														7 *																					
CV 3	CV	HAP G	F	5,	- 0	- 1	5	-	æ 0	ΣU	0 m	M	MV	LT	MV	ď	F	ВР	-	1d	CKV	- MV	- 0	HAP	8	0	8	0	8	MV	MV	LT	MV	a ,	- da	+	рŢ	CKV	NN	HAP	a a	0	8	MV	MV	11	NV.	BP	-	ЪТ	CKV	MV	0	8	8	MV	MV	LT	MV	1 de	ВР	-	PT -	CKV	NV a	s .	-
6095 6096	6097	6098 6099	6100	6101	6102	6104	6105	6106	6107	61084	6019	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6121	61214	6122	6123	6123A	6124	6124A	6125	6126	6127	6128	6129	6130	10132	6133	6134	6135	6136	6138	6140	6140A	6141	6142	6143	6144	6145	6148	6149	6150	6151	6152	6155A	6156	6157	6158	6159	61.60	6161	6163	6164	61.65	61.66	6167	6168	6919	TITO
															-	_	_	_		-	-	-	_	_	_					-	-	_	-	_	-	-																						_	_				_	_		_	
		Comments	commenter of																																													Kemove																			7
	s Component	Free of Leaks or Defeots?	V & V	7	1				N.		7	7	N	- 1	, M		~ 5		-	4 4	r +	7		>	(~	L N		4.1 V	-		7		7			- 7	2			2	1	5		~	1	- Kemby C																			>
	Is Component	VOC Free of Leaks Reading or Defeots? Comments		- 7		7	* 7	2	1.1	-	7	7				11.1	~ ~ ~		-	7 17			- 1	>	,	×	~	L 7	4				- 7				7		2			2		5		~	100	Kemeve																			>
12.	10 Is Component	VOC Free of Leaks Background Reading of Defects? Comments				7	~ 7	3	N.I.		7	7					5			1		7	7	>		~							7				7	- 7	2			2		5				Kemove																			7
121 20	rue lu	Pressure VOC Free of Leads (4/-) Backdround Reading Or Defects? Comments				7		,	N.I.		7	3	7				2					7		>													3		2	- 37		2		3	2			- Kemby C																			7
in line lan	me: I U G U	Equip. Pressure VOC Free of Leaks Number (+/-) Background Reading of Defects? Comments				7	26-MV-0485	26-MV-D486	26-HV-364	26-MV-0575								JE DEW JEE	20-PL-V-305				5	>	3	-)	26-PT-372			5		26-PSH-32	7			3		5 T	37-PSH-381		2		37-HV-382A	37-HV-043	37-HV-382B	1	51-MV-637 Kem0V C	51-MV-638		51-MV-474	26-PSH-028			26-MV-0475		26-HV-043	26-HV-030B		51-MV-0283				37-PSH-025		37-MV-0282	7
uber Platform 1121 Pri	d Date/Time: V V V V	Equip. Pressure VOC Free of Leaks Number (+/-) Background Reading of Offects? Comments		ā	G		MV 26-MV-0485	MV 26-MV-0486	CV 26-HV-364 M.	MV 26-MV-0575 MV 25-MV-0575		3		т						SE C			- 5		11	×		PT 26-PT-372	1 L			PT -	PT 26-PSH-373	02								3	ME	CV 37-HV-382A	CV 37-HV-043	CV 37-HV-3828	CV	MV 51-MV-637 KEM0V C	MV 51-MV-638		MV 51-MV-474	PT 26-PSH-028	PT	RD	MV 26-MV-0475	ME VE HV ODDA	CV 26-HV-03UA CV 26-HV-043	CV 26-HV-030B	HAP	MV 51-MV-0283	0	MV	-	PT 37-PSH-025	RD.	MV 37-MV-0282	ME I

8		-	1	• •		- ,	-	-	-	*	+	>	->	- 3		-	,	-	7	- ;	-	-	-	7		*	-	. >			-	-	7	1	-			2	. >	. 1	-	-	~	,		- ,		-	*	,		_	-	*	*	×	>		-	
7	1	7	-		,	5	7	7	3	1	-	5 -	-	7	3	1			1	7	3			-	5	13	-	,	3	Ъ	5			3	5	ズ	2		7	1	-	1	3		5	1	7	7	-	F .	*	7	7)	- 3			7	3	_
																																			00E0-VM-P													1 MV 0774			1-MV-0783	1-MV-0782								
5	Ň	÷	MV T	MV BP	MV		00	E I	9 E	σĘ	0 1	9	-	33 F	-	5 H	33 F	+	≥N a	+ 10	Ę	NW	U	- 0	SE	- 10	35 +	- +	- 0	- 2	NV NV	λ	F ,	PT	2 NV	н (5 0	00	0 0	0 0	5	0 H	00	0	5 0	00	5	T SE	ā	00	MV 5	NN	M	0 0	RB	NN	NN	0 0	00	2-
1607	7094	7095	7098	2100	7101	7103	7105	7108	2110	2112	7114	2115	7117	7118	7120	1217	7123	7124	7125	7127	7129	7131	7132	7134	7135	7137	7138	7140	7142	7143	7145	7145	7148	7150	7152	7153	7155	7155	7158	7159	7161	7163	7164	7166	7168	7170	1717	7173	7176	2176	7177	7179	7181	7183	7184	7186	7188	7190	7191	7193
	Comments																																																											
	Free of Leaks or Defects?	575	7.7	1.1	1 1	+ 1	7 7	4	1		1 n	11	1.1		1 3	, - -	1		1 1		5	4 4			2	4	1	4 1.	5 17	2 1	7.3	*		, ,		1 1		11		4 1	1 1	*	1	5	- 5	- 5	4 4	N	7	- 3	1,1	4.5		1 11	10	Y Ç		1 1	,	
	VOC																										-																																	
	Background F																																																											
12/	Pre samre (+/-)																																																											
9211 am	Equip. 1 Number													24-MV-0380 24-HV-334			24-MV-0378	24-HV-336	24-TE-358	24-PT-357			0360-VM-PC							24-MV-0388	24-HV-329			24-MV-0387		24-11-364	24 11 202	24-01-363	0990-MM-15							6590-MM-15	24-HV-339				51-MV-0658	51-MV-0657	51-MV-769							
I Date/T	Type		PT 14	NV VV	0+	9 G	NN	FF	1	. a ;	<u>د</u> م		ā	- 20	+ +	1.d	MV	CV PAN	L	PT	н,	0	T	14		īd	a 44	1,		H +	N L	-	RD	MV	NN	Ç a	1	50	T	11	- +	īd	EA.	a -	+ id	F	2+	+ to	p.t.	8D	NIN	M	2 E	0+	F	NV O	10 m	a -	8	0 -
ompleted	dumber	7001	7001A 7001B	7002	70028	7002C	7003	7005	7007	2009	7011	7013	7014	2016	7012	2019	7021	7022	7024	7025	7027	7029	7030	7032	7034	7035	7037	2038	7040	7042	7043	7045	7047	7048	2050	7052	7053	7055	7056	7058	7060	7061	7063	7065	7065	7068	7070	1207	7072A	7073	7074	7076	7077	6202	7081	7083	7085	7086	7088	7090

)	50					To Evaporator	Area (Fig. 7)		From Fiberline Turbentine	Condenser	(Fig. 11)			Rev. Date	July ZUZU	Figure 9
2	 	7	h.:	14	ر بو	1 1	5	14	5	×	4 1	>	- >	2	1		11 11		× ./	N 1			>	El		£			8011B 6- 4 803	EI		From Old LVHC TT-	MV-9006-VM	A 1000	MV-	C C C C C C C C C C C C C C C C C C C	MV-9003					idy – Catawba Mill		tion and Testing Diagrams Decanter and Standpipe
-HV-126			MV-0330				PTAL DOAD	d+nc- M i /i	14-0121				A1214	tTo ALL		-PSH-313		MV-0342	-MV-0343								د	808	G.				1	8008	X Dev	0 0						New-Ir		LDAR Inspec Turpentine
CV 14	GHAP	MV	MV 14	t.	0 1	10	Id	d	FA M	a. H	- +	F	Id	L L	F	PT 14	RD	MV 14-	MV 14-	U	MV	PRV	T		********************				1	9012	1	X		9010	P. 11.	200						1000	TAL	
9029 9030	9031 9031	9031C	9033	9035	9035A	9035C	9036	9038	9039	9040	9042	9043	9044	9046	9047	9048	9049	9050	9052	9053	9054	9055	9056	0	306 98C	• _	1	► 9034	MV- 8033				FA- 1 90	9014		2							ONMEN	
	eaks	cts? Comments																							8	T-T	and I d	9040 A 9038 9	FA- TI- 2037		T PI-	9020 9018	A , A , A 10017	× 5010 × 3010		Nu My	CUTTON ON					-	ENVIR	
	Is Compo	A L	1	5 1	F	7	h		7	-	7	7 3	4 1	5	5 5	7	7	7	- 5	1	ר - יר	2 1	5	1	BI-	-0	T- T	■ 3042		÷	9074	1-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9025	PT-9025	701	8						\square		\Box
	NOV	ground Read																							a		48A T	The star	CV- 5045	>		RD- 8026	T-	X	T- an27	17 100	1100	210				ier Page and I Fourioment		her Page and Equipment
21	ressure	(+/-) Elack(-											T	T- X /		PT-9048			>	1	X		WA-	90.28			urpentine iter Underflow	tandpipe AP-9031A	Neres	To Anoth Indicated		From Anot Indicated
tter and Standpip	ä	Equip. Number		14-MV-0312		14-TI/TW-125									14-PI-125A		14-HV-127			14-PSH-122	14-PSH-122			0		A 19049	CV- TH	1 1	MV- X 1 MV-	SW	6-9953	utine	nter 029	803		6	1908		Decan	O T	Ri			
ne Decan	- Show a	Type	-	NW	NM	NIN	F	- +-	U	20	Ē	d VI	E d	T	- id	-	- 2	÷	++	μL	Id	RD T	MV				(MU.	9054		2	4A 6	Turper	Deca				-71W	8031			▶∥	ses	sates	s s Lines
Turpenti		9000	9001	9003	9004	9008	6006	0106	9011A	90116	9012	9013	9015	9016	9018	6106	9020	9022	9023	9025	9025A	9026	9028	•	410	~	PRV-	9055 A	}-	W	305											Vent Ga	Conden	Liquor/S Line: Process

Turpentine	Cooler and Blow	Tank					10035D	Р			Ye	5
Completed D	ate/Time:	112	V		In Commonsult		10035E	-			(¹	
	Equip.	Pressure		VOC	Free of Leaks		10035F	MV			7	
Number T	ype Number	(-/+)	Background	Reading	or Defects?	Comments	10035G	Р			5	
10000	U				1 63		10035H	Р				
10001	TT 52-TE-230				11		100351	9			5	
TOUUZ					~		100351	+			1	
10003	CV 52-QV-937				7		10035V	- 0			2	
10004	MV 52-MV-1021	1			>		VCCONT	-			\$	
10005	Т				5		10035L	F			-	~
10006	PT 52-PSH-934				1		10036	MV			7	
10007	PI				1		10037	MV			-	7
10008	RD				>		10038	d			7	
10009	CV 52-EV-938				1		10039	MV				7
10010	U				-		10040				1	
10011	Ь				>		10040	MV			,-	
10012	FA M52-0429				7		10041	8				
10013	Ь						10042	F			7	
10014	MV 52-MV-1022	2			>		10043	Р			-	7
10015	F						10044	IL			5	
10016	PI -				>		TUNAE	a				
10017	TI				Ţ		CHODT	144				
10018	Т				7		TUU46	MIN			,	
10019	PT						10047	Р				7
10020	CV 52-PV-941				7		10047A	Т			7	
10021	C				- 7		10048	MV	A507			y -
10021A	9				>		10049	Р	1	,	t	0
10022	Ь				7		10050	+				1 Cemure
10023	ME M52-0415				~		10051	0				
10024	Ь				~		TOOL	- (J		1	
10025	U				>		10012	פוו			-	
10026	BP M52-0411				7		10053	PKV				t.
10027	0				۲.		10054	-			7	
10028	- 1				~ ~		10055	Р			-	>
10029	- 1				-		10056	MV			n	
10031	2 +				1		10057	Р				C
10032	NN				5	Car seal present	10058	Р			7	
10033	MV				2		10059	D MAN	Junk		-	7
10034	В				11.		10060	Р			7	
10034A	Ŧ				4 1		10061	8			-	11
10035	TT 52-TT-947				1		10062	F			2	
10035A	5				5		10063	pT	52-PT-215			2
100358	MV				1		10064	-			7	
10035C	MV						toont	1				

	ch Plant oleted Date/	Time	121	121				13072 13073	M M	F530			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Equip.	Pressure		VOC	Is Componen Free of Leak		13074	æ 0				П
11 11<	ber Type	Number	(=/+)	Background	Reading	a or Defects?	Comments	13076	BP	E53-0046			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tq L	53-PT-322			19/64	sch Ma	**	13078	5+	F105			-
10.1 3.07.300 0.0 2.0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <t< td=""><td>D C</td><td></td><td></td><td></td><td></td><td>nanger</td><td>A 40</td><td>13080</td><td>MV</td><td>FIOI</td><td></td><td></td><td>TT</td></t<>	D C					nanger	A 40	13080	MV	FIOI			TT
With Triange Description Description <thdescripion< th=""> <thdescripion< th=""> <thdescripio< td=""><td>- L</td><td>63.DT-320</td><td></td><td></td><td></td><td>W U.YU</td><td>11</td><td>13081</td><td>MV</td><td></td><td></td><td></td><td>Т</td></thdescripio<></thdescripion<></thdescripion<>	- L	63.DT-320				W U.YU	11	13081	MV				Т
100 101 <td>NV VV</td> <td>F420</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>13083</td> <td>0</td> <td></td> <td></td> <td></td> <td></td>	NV VV	F420				1		13083	0				
11 11 111	NAU CC	100			<	1 1 10	Reading and	13084A	2 H				-
1 1	EI O	4944			Ł	VI LUK	the campating	13085	MV	F529			П
10 1001 1	a					0 3000	a de A	13086	8				-
n n	4 20	E522				14.11		13088	- 0				
Prot Prot <th< td=""><td>5 a</td><td>7761</td><td></td><td></td><td></td><td>MIL</td><td>10101</td><td>13088A</td><td>8</td><td></td><td></td><td></td><td></td></th<>	5 a	7761				MIL	10101	13088A	8				
N N	PVB					ix C	1211211	130888	-				
DV Total To	0 0							13091	0 0				-
ND ND<	NO	F521						13092	HAP				
010 100 <td>đ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13093</td> <td>d</td> <td>CE 30</td> <td></td> <td></td> <td>-</td>	đ							13093	d	CE 30			-
N N	PVB							13095	A	0764			T
PV F300 P <td>۵.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13096</td> <td>υ</td> <td></td> <td></td> <td></td> <td></td>	۵.							13096	υ				
mm mm <thmm< th=""> mm mm mm<!--</td--><td>DV</td><td>F520</td><td></td><td></td><td></td><td></td><td></td><td>13097</td><td>8</td><td></td><td></td><td></td><td></td></thmm<>	DV	F520						13097	8				
0 1	d d							13098	MV	F527			T
n n	877							13100	0				T
T T	в							13101	ŋ				
0V 1 100	F							13102	BP				-
T T	20							13103	5 +	6963			
6 1310 0 1310 0 </td <td>• +</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13105</td> <td>MV</td> <td>F248</td> <td></td> <td></td> <td></td>	• +							13105	MV	F248			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9							13106	9				
	5							13107	N		1		
MV F332 I <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13109</td> <td>8</td> <td></td> <td></td> <td></td> <td></td>	8							13109	8				
0 1	MV	F532						13109A	F				
	8 0							13111	B				
IP E3-0021 ID ID </td <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13111A</td> <td>F</td> <td></td> <td></td> <td></td> <td></td>	U							13111A	F				
T T	ВР	E53-0021						13115	5				-
Ge West Figs B 13118 B 13121 G 13121 1 13121 1 1 1 1 1 1 1 1 1	5 +	FSG						13117	HAP				
WW F99 NW F99 NM F99 I3110 DV F53.4 D D G H	U							13118	8				
	MV	F99						13119	N	F524			1
IB M I	NV V							13121	0				
MW B E3-0106 D D G P<	8							13122	9				
F F	Ň							13123	89	E53-0106			
P MV F293 MV F293 P 13126 MV F293 G M P 13128 MV F293 G M P 13128 MV F M F P 13129 G 1 1 F P 1313 MV F M F P 1313 M F M F P 1313 M F F F F D 1 1 MV F F F F D 1 1 MV F F F F F D 1 1 1 M F<	2							13125	p +	F356			
	0 a							13126	MV	F293			
P 13128 MV 13128 MV 1 1 P 13130 1	DV							13127	U				
G DV 13130 C 13130 C DV DV 13131 MV 1 1 P 1 13131 MV 1 1 P 1 1 1 1 1 1 P 1 1 1 1 1 1 1 P 1	٩							13128	MV				
	5							13129	5 8				Т
p 1313 MV 0 <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13130A</td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td>	20							13130A	-				1
B 13132 B 13132 B P D V 13132A T 1 D P 13132A T 1 1 D P 13135A G 1 1 1 D P 13137 HAP 1 1 1 D P 13137 HAP 1 1 1 D P 13137 P P 1 1 1 D P 13137 P P 1 <td>d</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13131</td> <td>MV</td> <td></td> <td></td> <td></td> <td>П</td>	d							13131	MV				П
P P 13132A T 13132A T P <th< td=""><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td>13132</td><td>8</td><td></td><td></td><td></td><td>Т</td></th<>	8							13132	8				Т
VV V	d							13132A	+ 4				T
P MAP MAP MAP MAP MAP MAP DV DV 13137 P P P P P P DV 13138 P P P P P P B 13139 DV 13139 DV P P B B 13141 G 13141 G P P P P T D D 13141 G 13142 P <t< td=""><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td>13136</td><td>0 0</td><td></td><td></td><td></td><td>Т</td></t<>	20							13136	0 0				Т
	- d							13137	HAP				П
P B 13139 DV B B B B B P P P P B B B P P P P P B B B 13140 P P P P P T T T 13142 P P P P P T T T 13142 P	DV							13138	d				-
B 13140 F 13142 F 1	۹.							13139	DV				1
B 13142 P 1 <td>2 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13141</td> <td>0</td> <td></td> <td></td> <td></td> <td>T</td>	2 2							13141	0				T
T T 13143 G 13144 L NP 13144 L 13144 L 1 NP 13145 HAP 1 1 1 B 13146 HAP 1 1 1 1	В							13142	Р				
MV 13145 HAP 1 13146 HAP 1 1	⊢ ā							13143	0 -				Т
B 13146 HAP 1	MV				-			13145	HAP				
	в							13146	HAP				П

-

Inspection Date: February 17, 2021

New Indy Containerboard - Catawba Mill 5300 Cureton Ferry Rd. Catawba, SC 29704

2021 Monthly LDAR Inspection Summary Report

Table 1: V	Visual In	spection	Summary	Table	
------------	-----------	----------	---------	-------	--

Equipment Number	Date	Description of Leak of	or Visual Defect
T-8060	2/17/2021	Tap valve T-8060 eliminator on HVLC	is located on foul condensate low point drain, coming from mist C line at inlet of No. 1 HVLC fan. The valve is open and dripping.
T-8068	2/17/2021	Tap valve T-8068 is lo at outlet	ocated on foul condensate low point drain, coming from HVLC line of No. 2 HVLC fan. The valve is open and dripping.
HAP13007	2/17/2021	The 1A Scre	w Press Dilution Conveyor is puffing from top hatch door.
HAP-13013	2/17/2021	The 1B Scre	w Press Dilution Conveyor is puffing from top hatch door.
HAP-13117	2/17/2021	The 2B Bro	own Stock Washer is puffing from four open hatch doors.
First Attempt	to Repair must	5 Days from	Not Applicable if no leaks were found
Renairs must b	by.	15 Days from	Not Applicable if no leaks were found.
by:	e completed	Inspection Date	Not Applicable if no leaks were found.

This report provides a summary of leaks and visual defects found during the visual inspection of the closed-vent and condensate-collection systems and complies with the record keeping requirements of 63.454(b)(1-2, 4-5).

The facility must initiate repairs to any defects within five (5) calendar days from this inspection and the defects must be repaired within fifteen (15) calendar days of the inspection. If the leak or defect requires the system to be shutdown in order to make repairs, or more emissions would occur from attempting the repair than delaying the repair, then the repairs may be delayed until the next process unit shutdown. A report must be supplied with the repair date and associated information, or the reason for the delay if the repairs are not completed within the 15-day period. These response requirements are specific to 40 CFR 63, specifically 63.453(k)(6), 63.453(l)(3), and 63.964(b)(1-2). Documentation of all repair attempts made and any leaks/defects requiring a process unit shutdown must be completed according to 63.454(b)(6-11).

I certify that the results of the visual inspection are accurate and complete to the best of my knowledge.

Inspector Name: Josh Howard

Signature:

Josh Howard

Inspection QA/QC Procedure

E360 Project Number?	New Trady Catawba
Task Number (if applicable)?	FEBRUARY ZUZU MONTHLY LAAR

<u>Purpose of Form</u> To verify field work meets each critical element.

Visual Work Flow (WF)

Verification of Critical Elements

WF	Requirement	Yes?
No.		
	Work-flow step	1
3 J. J	Verifier of critical elements for work-flow step	R
1	Was a bump test performed on the personal H ₂ S monitor?	1
2	Have the most recent versions of the inspection forms been used?	i
3	Were all inspection points identified correctly and inspected correctly?	L
4	Did the operator/ contact verify to our inspector that all equipment was operating under normal operating conditions?	L
5	Were any deficiencies identified in person to the client?	L
6	Were all inspection questions answered with either a Yes, No, or NA?	L
7	Were inspections performed during the required regulatory time frame?	

Approvals

Role	WF Step	Name	Approval (insert date)
Responsible Person (R)	1	Joh ter	2/17/2021
		0	

La contra	5050 No. 1	Combination	=												No. 2	D15 Combination	\ \ \						Rev. Date	January 2021
FT. FA-80K		5048 5047 5045 5042 EJ-50 G-8			₩.								10 mm	RS T FAA021 5019 X MV									New-Indy – Catawba Mill	LDAR Inspection and Testing Diagrams
ents	Scrubber Pla	(Fig. 6)												LVHCs from	Scrubber Pla (Fig. 6)								360	ONMENIAL
Comm	10.0																							
s Component Free of Leaks or Defects? Comm	1 PC	1.5	~	1	7	1	,	- 7	7	1	3		- 1	4	. 17	2	,	7	7	7 7	7			
VOC Free of Leaks comm	2 PC	1	2	1	7	7	, ,	- 7	7	7	3	7	~ 7	h 1	. 11	5	,	7	7	7 7	5		je and	ge and
VOC Free of Leaks Background Reading or Defects? Comm		1	7	7	5	7	, 7	7	7	7	5	7		<i>h</i>	. 17	2	,	7	7	7 7	7	1	Another Page and	Another Page and
Pressure (+/-) Background Reading or Defects? Comm	メ タア	7		7	5	,	,	- 7	>_	5	2	7		<i>h</i>		2	,	,7	7	77	7		To Another Page and Indicated Equipment	From Another Page and
Equip. Pressure VOC Free of Leaks Number (+/-) Background Reading or Defects? Comm	JA PC		37-MV-0313	7	37-PT-385	37-TT-384	, ,	7	>		3/-P1-383	7	26-MV-0532	<i>h</i>	26-PT-377	>	- 	7	7	76-PT-375			To A mother Page and Indicated Equipment	From Another Page and
Type Number (+/-) Background Reading or Defects? Comm			MV 37-MV-0313	T	PT 37-PT-385	TT 37-TT-384	, ,	FA Y			PI 3/-PI-383		MV 26-MV-0532	T	PT 26-PT-377			FA	D d	PT 26-DT-375			s To Another Page and	dk From Another Page and

11 0 004	11 11		1					6051	RD		10	
Completed	Date/Tim	le i i	1	12				6052	ME			
						Is Compone	ant	6053	S	37-HV-382A	. 7	
		Equip.	Pressure		VOC	Free of Lea	iks	6054	S	37-HV-043	7	
Number	Type	Number	(-/+)	background	Keading	or Detects	Comments	6055	S	37-HV-382B		
6000	-					2 CS		6056	HAP		7	
6001	Id					- :		6609	9			
6002	5					-		6100	T		-	
6003	-					3		6101	9		4	
6004	μ					1		6102	T		N	
6005	MV 2	6-MV-0485				-		6107	В		1	
6006	MV Z	6-MV-0486	10			*		6108	8		5	
6007	S	26-HV-364				~		6108A	9		7	
6008	MV 2	6-MV-0575				7		6109	8		,	
6009	MV 2	6-MV-0507				>		6110	MV		1	
6009A	d							6111	MV		5	
6010	+					~		6112	T		3	
6011	F					,		6113	MN		.,	
6012	+					>		6114	а		, '\ 	
6013	-					1		6115				
6014	Ы					7		6116	RD			
6015	F					1		2112	5 +			
6016	pT					5		/110	DT		2-	
6017	S	26-PCV-365				17		OTTO	11			
6018	T					5		6119	CKV			
6019	SE							6120	MV		7	
6020	5					1		6121	-			
6021	H					1		6121A	9		7	
6022	L					1		6122	HAP		~	
6023	Id					7		6123	8		7	
6024	IL					7		6123A	U		7	
6025	S					5		6124	83)	
6026	F					7		6124A	0		~	
6027	PT	26-PT-372				1		6125	8			
6028	MV					7		6126	MV		>	
6029	0					1,		6127	MV		7	
6030	HAP					1		6128	LI		>	
6031	I.					1		6129	MV		7	
6032	μ					7		6130	۹.			
6033	PT	26-PSH-373				>		6131	-		,	
6034	RD					7		6132	BP		>.	
6035	ME					1		6133	-		- 7	
6036	S					+		6134	ΡŢ		>	
6037	S					7		6135	CKV		- 7	
6038	S					1		6136	MV		>	
6046	MV					5		6137	-		7	
6047	H					1		6138	HAP		>	
6048	μ	37-PSH-381				,		6152	MV		>	
6049	PT					-		6168	MV		>	
6050	ß					>		6171	_		>	

1 22	7	7 7	* 1	1.1		* "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1			. ,	- ,	-			7 1				-	1		N L		×						7	7.5	1	-	*	1 1		5	. 4 4	4	*	1 17	N		6	NN	7	n h .		,	7. 7	11	1.1			h. " h	5 1.	1 1 1	h I	7	,
																																					2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	66550-AM-67												51-MV-0774		2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51-MV-0782								
7092 LT	7094 G	7096	7098 T	7099 MV	7101 CKV	7103 T	7106 B	7108 11	7108A P	7110 11	7111 G	7112 T1 7113 G	7114 71	7115 G	7117 7	7119 7	7121 6	7121A T	7123 7123 T	7124 T	VIN SELL	7125 P	7128 PT	7130 MV	7131 MV	1 51111	7135 St	7136 T	7138 51	7139 T	7141 7	7143 7	7144 PI	7146 MV	7148 11	7149 T	7151 MV	7153 T	7155 G	7156 G	7158 G	7159 6	7161 G	7163 T	7165 6	7167 G	7169 G	7170 G	7172 51	7173 T	7176 G	7177 56	7179 MV	7181 MV	7182 G	7184 RB	7186 MV	71857 MV 71888 MV	7189 G	7191 G	7193 L
		Comments																																																											
	Is Component Free of Leaks	or Defects?	7 7	7.0	5	77		1 1		1 1	4.0	h 1	1 1	1 5	- 7	1 1	5	1 3	*		7		1 1			7	L H	F 17	-	*			5	1 1	N II		- 1	* *		N	, n ,	1 1		1	1 "1		F	5		7	- 1	4 4	4 1	14	1 1		1 "	7	1 1	175	57
	VOC	ground Reading																											1																																
2 11	Presente	(+/-) [3.a.c.H																																																											
5	Equip.	Number													24-MV-0380	24-111-334			24-MV-0378	0000-001-00	24-16-358	24-PT-357			24-MV-0389							24-MV-0388			24-MV-0387	24-HV-331	24-11-364		24-PT-363		51-MV-0660						S1-MV-0659	24+11/2339				24-HV-341	51-MV-0657 51-MV-769								
Evaporator Syste	Completed Date	7000 T	7001 T	ZOOIB PT	7002 G	20028 1	7002C HAP	7003 HAP 7004 MV	7005 11	7007	2008 PI 2009 P	7010 FA	7012 T	7013 T	70.15	7016 CV	7018 1	7020 RD	7021 MV	7023 MV	7024 TT	7026 PT	7028	7029 G	7031 MV	7033 T	7034 T	7036 P	7037 FA	7039 T	7041 PI	7042 T	7044 T	7046 PT	7047 RD 7048 MV	7049 CV	11 1502	7052 P	7054 PT	7056 T	7057 MV	7059 T	7061 PI	7063 FA	7064 P	7066 T	7068 T	7070 T	7071 T T T T T T T T T T T T T T T T T T T	7072A PT	7073A G	7075 CV	7075 MV	7078 11	1 0002	7082 MV	7084 G	7085 B	7087 T	7089 G	7091 8

																											To E va porator Area (Fig. 7) From Fiberline Condenser (Fig. 11)		Rev. Date January 2021	Figure 9
43	5	5"	7	7	5	>	- : 7	5	,	4 4	7			7	5 7	-		-	7	- 7	7			-	5	<i>h</i>	EL- From Old LVHC Gas Cookr MV-BOOK MV-BOOK MV-BOOK		Indy – Catawba Mill	ection and Testing Diagrams e Decanter and Standpipe
14-HV-126			4-MV-0330					TI/TUA/ DOAD	0+0C-M1/11-	M14-0121					14-HV-314			14-PSH-313	CTC-UCL+1	4-MV-0342	14-HV-312	4-MV-0343							New-	LDAR Inspe Turpentine
20	U	MV	I NW		- 0	E	0 8	14	d	FA	d			Id	CV	-	-	pt 1	RD	MN I	S	N	NIV	MV	PRV				A 1360	7 F
9029	9031	9031A 9031C	9033	9034	9035A	90358	9035C	0000	9038	9039	9040	9041	9043	9044	9045	9046	9047	9048	9049	9050	9051	9052	9053	9054A	9055	9056	0034 9014 9014 9014 9014 9014 9014		N C N Z	
	onent Leaks	octs? Comments												-											7		2015 0015 0015 0015 0015 0015			
	Is Comp	or Defe		5	2		5	7	5	5		7	5		-	5	4	7		7	1	7	7	7	F	7	1		\cap	
	VOC	d Reading																											ge and D	ige and <
		Background																									ABAGE SCALE		nother Pa	Another Pa ated Equip
12/a	Pressure	(+/+)																									PT 9031A		To A Indic	From /
d Standpi		Number			N-0312		TW-125										1-125A		101137	17T-AL			SH-122	- 4 4 4 F			Beca 200	٦		
canter an /Time:		Equip			14-N		14-TI				-	-					14-F		TWE	I-bT			14-P				MM Canter Pentine	_		
entine De leted Date		mber Typ	1 100	11 200	003 MV	005 MV	008 MV	T 010	T TIC	11A G	118 E	012 PI	013 P	014 FA	015 P	T 710	018 PI	T 019	020 T	022 T	323 T	024 T	125 PT	26 RD	027 T	028 MV		> 0	nt Gases ndensates	luor/Stock Lines ocess Lines

Turpentine Co	oler and Blow 1	Tank	2				10035A	9 M		1 61	
			-		Is Component		10035C	MV		7	
Number Tvne	Equip.	Pressure (+/-)	Background	Reading	Free of Leaks or Defects?	Comments	10035D	Р		7	
10000 6				'n	101		10035E	F		7	
10001 11	52-TE-230				5		10035F	M		7	
10002 P					7		10035G	Р		۲	
10003 CV	52-QV-937				1		10035H	٩.		1	
10004 MV	52-MV-1021				4		100351	5		7	
10005 T					7		10035J	H		1	
10006 PT	52-PSH-934				1		10035K	д		2	
10007 PI					5		10035L	Þ		1, 1	
10008 RD					1		10036	MV		, u	
10009 CV	52-EV-938				,		10037	MV		1	
10010 G					7		10038	Р		, rJ	
10011 P					٦		10039	MV		1	
10012 FA	M52-0429				11		10039A	Ţ		, H	
10013 P					-		10039B	RB		7	
10014 MV	52-MV-1022				1		10040	MV		7	
10015 T					2		10041	В		7	
10016 PI					1		10042	T		7	
10017 TI					1		10043	Р		7	
10018 T					. 7		10044	TI		7	
10019 PT					7		10045	Р		5	
10020 CV	52-PV-941				11		10046	MV		7	
10021 CV					7		10047	Р		1	
10021A G					7		10047A	L		5	
10022 P					7		10048	MV	A507	7	
10023 ME	M52-0415				1		1052	9		7	
10025 G					, ,		1053	PRV		7	
10076 RP	M52-0411				1		1054	-		>	
10027 G					1		1055	а		T	
10028 T					11		1056	M		~	
10029 FT					5		1057	Р		Γ	
10030 FE					5		1058	д		7	
10031 T					1		1059	8		7	
10032 MV					>	Car seal present.	1060	Р		Υ.	
10033 MV					17		1061	В		- 7	
10034 B					7		1062	F		2	
10034A T					11		1063	ΡŢ	52-PT-215	7	
10035 TT	52-TT-947				h		1064	-1		٨	

																																ToLVHC Header	above Turpentine	(Fig. 9)	ToFoul	Condensate	(Fig. 8)			Rev. Date		Figure 11
	Comments																														H.	11028		T- FA-11025 MV- 11023 11027						New-Indy – Catawba Mill	Inspection and Testing Diagrams	e Condenser and LVHC Gas Cooler
	Is Component Free of Leaks or Defects?	Nec	n cat	5	7	1	5	7	-	1	- 17	7	7	7	1	7	- 5	7	7	2	1	,		7		1 1		, ;	11	-	-	DIB CV. 1.022		P 11020		4 th Floor Under Chip Convevor					LDAR	Turpentin
	VOC Reading																													8	>	toot	T-1101		015					9	NIAL	
ų	Background																													0	> •	2 CV.	1	MV	- 31						IKUNME	
Gaslcoole	Pressure (+/-)																															G- 110		9 11011		3 ^{ril} Floorat Handrai	and the second sec				EN	
me: 2	Equip. Number		52-TE-222A					6120 C3V4	ZTEN-ZCINI					52-TE-225	52-HV-174B	52-A-368			52-PSH-226			52-HV-174A	52-A-428		52-PI-226	M35550-007	C2 A C24	T+C-V-2C	154-H-7C		Cooler		Y	P. 11001	A d	11005	1008		HAP.			1
Condens	Type	RB	F	Ы	٩	0	۹.	4 V	2 0	ЧАР	d	. 5	d.	F	C	MV	F.	÷	ΡT	RD	٩.	2	-	-	đ	EA 1	P			-				G-	4	2	1000	FA-110		age and inpment	ade and	pment
Turpentine	Number	11000	11001	11002	11003	11004	11005	11006	11000	11008A	11009	11010	11011	11012	11013	11014	11015	11017	11018	11019	11020	11021	11022	11023	11024	11025	11026	12011	11029	670TT		^d Floor on Platform		100 L00	-id	11002	Ŀ	62011		To Another Pa Indicated Equ	From Another P	Indicated Equ
																																m		F,		RB- 11000	Turpentine	Condenser		Vent Gases Condensates	Liquor/Stock	Lines Process Lines

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1 1 $1/2$ $1/2$ resure voc resure	Pup Mil (1 of 2) 12025 P ine: Z (1) 2 Equip. Pressure voc Is component Equip. Pressure voc Is component Mumber (+i) Background Reading voc Mumber (+i) Background Reading voc Number (+i) Background Reading voc Y182 Y Y 12029 P Y182 Y Y 12031 P Y182 Y Y 12032 T F541 V1454 Y 12033 G P V4454 Y Y 2032 P D050 Y Y 2903 P 2904 L 1 2904 L 2904 L 1 2904 L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Ind Is Component 12025 P Ind Reading Is Component 12026 MV VOC Free of Leaks Comments 12029 P Ind Reading or Defects? Comments 12029 P Ind Ind Ind Ind Ind Fee Fee Ind Ind Ind Ind Fee Fee Fee Ind Ind Ind Ind Fee Fee Fee Ind Ind Ind Ind Fee Fee Fee Ind Ind Ind Ind Ind Fee Fee	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pulp Mil (1 of 2) 12025 P Ine: Z Init: Z 12026 MV Equip. Pressure Is Component 12026 MV Fer Equip. Pressure Init: Z 12029 P Fer Mumber $(+;)$ Background Reading or Defects? Comments 12029 P F543 X182 Initial Initial Initial Initial Initial MV F543 X182 Initial Initial Initial Initial Initial Initial F543 X182 Initial Initial Initial Initial F543 Initial F543 X182 Initial Initial Initial Initial Initial F543 X182 Initial Initial Initial Initial F543 F543 X182 Initial Initial Initial Initial F543 F543 V4454 Initial Initial Initial Initial F5033 F543 F5033<	Spectrum of the pressure to point to 2) to date/filme: Z 11/2 12025 P to date/filme: Z 11/2 12025 P to date/filme: Z 11/2 12026 MV r Type Number (+1) Background Reading on Detects? comments n V V V 12026 MV F543 n V V V 12023 MV F543 n V V V 12030 MV F543 n V V V 12033 MV F543 n V V V 12034 P 12033 P n V V V V V 12034 P 12034 P
Ind Reading Is Component 12025 12026 N Noc Free of Leaks 0 12028 12028 12028 Noc Free of Leaks Comments 12028 12038 12033 Noc Y Y 12031 12033 12033 Y Y 12033 12033 12033 12033 Y Y 12034 12034 12034 12034 Y Y 12034 12034 12033 12033 12033 Y Y 1 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 12034 120344 120344 <td< td=""><td>1 2 1 2 1 2 ressure VOC Free of Leaks 12025 (+) Background Reading or Defects? 0 1 1 1 <t< td=""><td>Pulp Mil (1 of 2) 12025 1 ine: Z I 1 Z 12025 N Equip. Pressure vOC Free of Leaks 12027 12027 Number (+)-j Background Reading or Defects? Comments 12023 N X182 V V V V V 12033 N V4454 V V V V V 12033 N 0598-22-HY V V V V 29040 N D060 V V V V 29041 12034</td><td>Jack Inter of Lasks 12025 ted Date/Time: 2 12026 12026 r Type Equip. Pressure Scomponent 12025 1 12025 1 r Type Equip. Pressure Background Voc Free of Leaks comments 12028 1 12028 N n N N N N N N 1</td></t<></td></td<>	1 2 1 2 1 2 ressure VOC Free of Leaks 12025 (+) Background Reading or Defects? 0 1 1 1 <t< td=""><td>Pulp Mil (1 of 2) 12025 1 ine: Z I 1 Z 12025 N Equip. Pressure vOC Free of Leaks 12027 12027 Number (+)-j Background Reading or Defects? Comments 12023 N X182 V V V V V 12033 N V4454 V V V V V 12033 N 0598-22-HY V V V V 29040 N D060 V V V V 29041 12034</td><td>Jack Inter of Lasks 12025 ted Date/Time: 2 12026 12026 r Type Equip. Pressure Scomponent 12025 1 12025 1 r Type Equip. Pressure Background Voc Free of Leaks comments 12028 1 12028 N n N N N N N N 1</td></t<>	Pulp Mil (1 of 2) 12025 1 ine: Z I 1 Z 12025 N Equip. Pressure vOC Free of Leaks 12027 12027 Number (+)-j Background Reading or Defects? Comments 12023 N X182 V V V V V 12033 N V4454 V V V V V 12033 N 0598-22-HY V V V V 29040 N D060 V V V V 29041 12034	Jack Inter of Lasks 12025 ted Date/Time: 2 12026 12026 r Type Equip. Pressure Scomponent 12025 1 12025 1 r Type Equip. Pressure Background Voc Free of Leaks comments 12028 1 12028 N n N N N N N N 1
VOC Is Component VOC Free of Leaks Comments VOC VOC Free of Leaks VOC VOC VOC VOC VOC Free of Leaks VOC VOC	Plackground Is Component ressure voc ressure voc ressure voc (+i-) Background Reading or Defects? Comments 1 <t< td=""><td>Pulp Mil (1 of 2) Time: Z I 1 Z Equip. Pressure (+i-) VOC Background Is Component comments Number (+i-) Background Reading or Defects? Comments X182 V V V V V V4454 V V V V V D060 D060 V V V V</td><td>Type Facup mit 10 2) resure Equip. P Facup mit 10 2) P Facup mit 10 2) P Number MV Number P Number MV Number P Number MV Number P Number MV Number</td></t<>	Pulp Mil (1 of 2) Time: Z I 1 Z Equip. Pressure (+i-) VOC Background Is Component comments Number (+i-) Background Reading or Defects? Comments X182 V V V V V V4454 V V V V V D060 D060 V V V V	Type Facup mit 10 2) resure Equip. P Facup mit 10 2) P Facup mit 10 2) P Number MV Number P Number MV Number P Number MV Number P Number MV Number
Ind Reading VOC Is Component VOC Free of Leaks VOC Free of Leaks V V V V V V V V V V V V V V V V V V V V V V	2) 17121 ressure ressure (+i-) Background Reading or Defects? (+i-) U U U U U U U U U U U U U U U U U U U	Pulp Mil (1 of 2) ine: Z I 1 / 2 Equip. Pressure Is Component Equip. Pressure Is Component Number (+i-) Background Reading or Defects? Number (+i-) Background Reading or Defects? X182 V1 V V V V1454 V1454 V V V D060 D060 V V V	ted Date/Time: Z /11/2 / Free of Leaks Equip. Pressure Background Reading or Defects? / 11/2 / 12/ 21/2 / 11/2 / 12/ 21/2 / 11/2 / 12/2 / 11/2 / 12/2 / 11/2 / 12/2 / 11/2 / 12/2
VOC And Reading	(1) 12 1 ressure (+/-) Background Reading	Pulp Mil (1 of 2) Ime: Z In 12 Equip. Pressure (+!-) Background VOC Number (+!-) Background Reading X182 X182 VOC VOC V4454 V4454 D060 D060	ted Date/Time: Z [1] Z ted Date/Time: Z [1] Z r Type Equip. Pressure P VOC M/V P Background Reading M/V P P P P P P P P P P P P P P P P P P P
	2) 1 1 2 1 ressure (+1-) Backgro	Pulp Mil (1 of 2) ime: Z Equip. Pressure Backgro Number (+/-) Backgro V182 X182 X182 V1454 V4454 0598-22-HY D060	Agsential Fulp with 0 4) In 2 ted Date/Time: Z r Type MV P MV (+!-) P (+!-) MV (+!-) P (+!-) MV (+!-) P (+!-) MV (+!-) P (+!-) <t< td=""></t<>

Bleach Plan	t Tate/Time-	2	r r	12				13094	8	F528		4.65	
	4	a	ressure		VOC	Is Component Free of Leaks		13097	В			5	
Number	Type NL	umber	(-/+)	Background	Reading	or Defects?	Comments	13098	MV	F527	r	7	
13026	-					101		13099	В			>	
13026A	- NO					77		13100	9			7	
13028	в					5		13101	9			1	
13028A	+ 1					7		13102	BP			5	
13031	5 0					7		13103	9				
13033	HAP					- 5		13104	T	F262		7	
13034	B	5633						13105	MV	F248		7	
13036	MIN B	1036				3		13106	C			7	
13037	5 5					1 5		LUICI	NW/			-	
13038	U					,		INTET	AIAI			,	
13039	BP E5	3-002.1						13108	0			7	
13041	5 -	F56						13109	8			- 5	
13042	9					7		13109,	A T			7.	
13043	MV	F99				5		13110	NM I			- 5	
13044	AN C					5		13111	B			7	
13046						7		12111	T				
13047	MV					1 1		TTTTT	- (
13050	Р							13115	9			7	
13051	В							13116	0			1	
13054	d (+				-		13117	HAP			7	
13057	2 2					,		13118	8			1	
13058	a					1		01101	20	C D A			
13059	8					11		TTCT		47CJ		5	
13061	d.							1312(B			7	
13062	8 8					, ,		13123	0			7.	
13065	8					11		13122	9			- 7	
13066	8							13123	BP	E53-010	9	7	
13067	+ 3							13124	9			- 7	
13069	MV					11		13125	-	F356		,	
13070	В					1 1		13126	MN	F793		7	
13071	U					5		20101				-	
13072	8	0000				11		7767	0			5-	
13074	NIN	1000				7		13128	M			7	
13075	0					1 1		13129	9			5	
13076	9					7.		13130	8				
13077	BP E5	3-0046				1		13130	A T			7	
13079	0 H	F195				1		13131	M			5	
13080	MV	F101				7		13132	8			2	
13081	5							12127	T				
13083	MV S					1		20101	- (
13084	8	-				1		1313	0			~	
13084A	F					1		13136	9			,	
13085	NM	F529				7		13137	HAP			7	
13086A	a					h		13138	d			,	
13088	U					1		13135	8			7	
13088A	8 +					1		13144	-			1 1	
13090	. 0					n		13145	HAP			7	
13091	ß					1 1		13146	HAP				
13092	Р	+				NN		13147	T HAP			7	
analy t]

tern at Pulp Mil (2 of 2) 17 21	12 L1 Z	12/11/2	121			Is Component		14027 14027A	υŴ		165	
Equip. Pressure VOC Free of Leaks Type Number (+/-) Background Reading or Defects? Cor	Equip. Pressure VOC Free of Leaks Number (+/-) Background Reading or Defects? Cor	Pressure VOC Free of Leaks (+/-) Background Reading or Defects? Cor	VOC Free of Leaks Background Reading or Defects? Cor	VOC Free of Leaks Reading or Defects? Cor	Free of Leaks or Defects? Cor	Cor	nments	14028	P RB		7 7	
P 1 65	1 65	1 65	1 65	1 es	1 65			14046	⊢		7	
MV X170	X170 V			5				14047	Id	114 60	-	
	5	5	5	5 3	5 17			14049	P D	POTY	7	
PI 52-PI-353	52-PI-353	7	7	7	7			14051	MV		7	
								14052	0		. 5	
BP M52-0092	M52-0092			1	1 1			14053	PP		7	
T X74	X74 V	5			5			14055	MV	X167	7	
MV X240	X240 V	- 11	- 1,	- 1	- 1,			14056	Ч		7	
MM				1	1			14057	+		>	
			7	7				14057A	Id		- : 7	
W X169	X169		17	1	1			14058	5		~	
2	>	>	>	7	>			14059	2 da	F52-0128	7	
T X179	X179	-	را . را	1				14061	5 F	X159		
			λ.	λ.	7			14062	MV	X265	2	
		1 N	1 N	1				14063	MV		- 11	
								14064	Ø		>	
HAP		5	5	1	11			14065	٩		- 7	
				-				14066	M	SR313	>	
MV NV	5	5	5	5	5			14069	4		7	
P								14070	M	SR312	>	
MV X171	X171 X171				11			14077	d .			
				1 1	1			140/8	NIN -			
											-	
											L-14.088	To HVI C Header
				and a second sec	and an an an an an and an and an an an an an an and an							
Printed HP-14-50 - H P-14-54	Printers I Privers , I Privera	Harding I P. Marso , I P. Marso	Ban H P-14-50 - H P-1424	D I Printed	P-14P-4		1 AON	45	RB-		MU T	171-Fira)
MOTO WALACK	My M	TOPACITY AND	MUTAC WALTER	MN-14	NV-140-				14 02 8	MV-	14023 14021 T-14020 F P-14013	
				The second secon	1000		X MV-140	048		14024	The second secon	
								1			14025 H C.14029A H	1.00111-00011-00011-00011-00011-00011-00011-00011-00011-00011-00011-00011-00011-00011-00011-0001000000
T-14067A MV 4445	T-14067A	T-140672 MV144657	T-14067	T-14057	T-14057	v	14.040 PI-140	E		T-14065		B-#1002 MV-14009
LIXI- MULTIN	MV-1405-	NW1001-W	MV-1405	MV-1400	MV-1404	2	how d	61		14027	14014 PI-14015 14003	PI-14203A
14004		14084	14084	14084	14064	14084					G-14 027	
14058 1-1406	14058 7-1400	1408 7-1400	14068 1-1406	14058 T-1400	058 T-1400	A				18	BSW G-14016	MV-14008 1A Washer
G. G. Masher	G Haboo	G. HB Washer	G. G. Washer	18 Vasher Washer	G. 18 Washer	B sher	14061			Wa	00 MV-14047 X 14004	T-140%7 Vacuum
A Chord Vacuum			A dp- C- Vacum Tank	Action Vacuum	A db-Lord Vacuum	ank ank	+ C			Ē.F	Inste ank	14005
1 BWasher Vac. BP-14060	1 B Washer Vac BP-14060	1 B Washer Vac BP-14060	1 B Washer Vac BP-14060	1 B Washer Vac BP-14060	Vac BP-14060	1	C					
Sliencer	Sliencer	Slercer	Slencer	Silencer							1A Wash	ar Vac. BP. Der 14006
							1B BSW DD Washer HAP-14053				1A BSW DD Washer HAP-14019	
To Another Page and	To Another Page and	To Another Page and	To Another Page and	age and	Ĺ						New-Indv - Catawba Mill	Rev. Date
ttes) usudr		6	ENVIR 0	ONMENT	A 1360		5	January 2021
From Another Page and	From Another Page and	From Another Page and	Tom Another Page and	age and						LDA	R Inspection and Testing Diagrams	
ines Indicated Equipment	Indicated Equipment	Indicated Equipment	Indicated Equipment	ipment]					Ŧ	VLC System at Pulp Mill (2 of 2)	Figure 14
)

Inspection Date: March 15, 2021

New Indy Containerboard - Catawba Mill 5300 Cureton Ferry Rd. Catawba, SC 29704

2021 Monthly LDAR Inspection Summary Report

Table 1: Visual Inspection Summary Table

Equipment Number	Date	Description of Leak of	or Visual Defect
HAP-13092	3/15/2021	The 3	A Brown Stock Washer is puffing from hatch door
HAP-13117	3/15/2021	The 2	B Brown Stock Washer is puffing from hatch door.
HAP-14053	3/15/2021	The 1	B Brown Stock Washer is puffing from hatch door.
First Attempt t be completed b	o Repair must y:	5 Days from Inspection Date	Not Applicable if no leaks were found.
Repairs must b by:	e completed	15 Days from Inspection Date	Not Applicable if no leaks were found.

This report provides a summary of leaks and visual defects found during the visual inspection of the closed-vent and condensate-collection systems and complies with the record keeping requirements of 63.454(b)(1-2, 4-5).

The facility must initiate repairs to any defects within five (5) calendar days from this inspection and the defects must be repaired within fifteen (15) calendar days of the inspection. If the leak or defect requires the system to be shutdown in order to make repairs, or more emissions would occur from attempting the repair than delaying the repair, then the repairs may be delayed until the next process unit shutdown. A report must be supplied with the repair date and associated information, or the reason for the delay if the repairs are not completed within the 15-day period. These response requirements are specific to 40 CFR 63, specifically 63.453(k)(6), 63.453(l)(3), and 63.964(b)(1-2). Documentation of all repair attempts made and any leaks/defects requiring a process unit shutdown must be completed according to 63.454(b)(6-11).

I certify that the results of the visual inspection are accurate and complete to the best of my knowledge.

Inspector Name: Josh Howard

Signature:

Josh Howard

Inspection QA/QC Procedure

E360 Project Number?	New Tody Cataw	54
Task Number (if applicable)?	March ZUZI Mont	niy LOAR

<u>**Purpose of Form**</u> To verify field work meets each critical element.

Visual Work Flow (WF)

Verification of Critical Elements

WF	Requirement	Yes?
No.		
S. Star	Work-flow step	1
	Verifier of critical elements for work-flow step	R
1	Was a bump test performed on the personal H ₂ S monitor?	L
2	Have the most recent versions of the inspection forms been used?	L
3	Were all inspection points identified correctly and inspected correctly?	L
4	Did the operator/ contact verify to our inspector that all equipment was operating under normal operating conditions?	L
5	Were any deficiencies identified in person to the client?	L
6	Were all inspection questions answered with either a Yes, No, or NA?	L
7	Were inspections performed during the required regulatory time frame?	~

Approvals

Role	WF Step	Name	Approval (insert date)
Responsible Person (R)	1	Joh telet	03/15/2021

pper aystem	Time:	1212					1107E	Т			Ver	
	Faulo Pre	estite		VOC	Is Component Free of Leaks		1107G	NV V			L	
ber Type	Number	(-/+)	Background	Reading	or Defects?	Comments	1108	MV			.5	
HW 6					1 65		1108A	MV				
1 PT					1 1		1109	MV			7	
2 6					7		1110	S			- 5	
E •					11		1111	MV			-	
8 8							1113	4 2			11	
0 9					h		1114	MV			, ,	
9					. 1		1115	T				
PVB					-		1115A	MV			- 5	
AV a					7		1116				1	
MV	24-MV-0361				1		1118	- 1-			7	
MV	24-MV-0359				7		6111	- 13			5	
A LT					11		1120	0			7	
3 CKV					5		1121	т			- 7	
M	24-MV-0445				1		1122	F			3	
- 00							1123	F			. 1	
N N N					4 11		1124	9			7	
ad					1		1125	0				
+					-		1126	5 0				
A MV					5		1711					
8 LT	51-LT-265				- 5		1129	M			1	
MV	24-MV-445				7		1129A	9			7	
					-		1130	N			-	
							1131	-		*	4	
F					-		11314	CKV			5	
CKV					1 1		1132	- 6			~ ~	
F					7		1134	Ē			-	
ВР							1135	BP				
Ξ					1		1136	MV			7	
-	COC MA AC				. 7		1137	NV			1 1	
M	COC-AMI-17						1138	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7	
Ø					h		1139	HAP	M52-0436			
MV	V704F				1 1		1141	LT I			1 1	
MV	24-MV-362						1142	F			1 1	
0 ‡	24 11 366						1143	T			11	
	997-11-15				77		1143A	Н			5	
					,		1144	U				
U					1		1145	0				
Ŧ					7		1140	- 0			.,,	
N					1 11		1148	,+			1 4	
₹ I					>		1149	Ь			L.	
DAN	CJED-WAN-AC				1 1		1150	re			1 1	
	7000- AINI-47				1		1151	в			1	
HAP					7		1152	F			L 11	
ΗM					1 1		1153	8				
M	24-MV-0365				2		1154	8				
- :							1156	- H			7	
a da							1157	U				
CKV	V884F				5		1158	9				
T					1 1		1159	U			7	
Ŧ					7		1160	F				
F					- 11		1161	0				
H					4		1163	8				
M	24-MV-360						1164					
52					5		1165	0			1 1	
12					11		1165A	1G				
S	51-FCV-267				1		1166	Ŧ			>	
U					h		1167	0				
M					-		1168	8			> .	
₹ u					>		1170	NW				
M							1171	NW			1	
-					11		1172	9)	
+					7		1173	U				
M					- 5		1174	Ŀ			4	
1							SEU	3				

																															To TDS Scripper	(Fig. 6)										Rev. Date	- February 2021	Fining 2	1 2008
	Comments																														11-2027		T-2026									-Indy – Catawba Mill		ection and Testing Diagrams	
Is Component	Free of Leaks or Defects?	1 er	1		1	1 1	N .		λ.	. 5	2		>	7	>			2		11		>		7	11	1	2	-i-	2029		2021 2024 N	H										New		LDAR Insp	
	VOC Reading																													-T-	A-2010		2020										NTAL ³⁶⁰		
	Background																												4	ħ	2015	L I	2018										I R O N M E		
	Pressure (+/-)																											ā	8	Ļ	2016		T Lante	1 07								4	ENV		
ne:3 15 121	Equip. Number					51-PCV-264	51-HV-262	51-MV-0672				51-PSH-261			51-HV-260	51-MV-0675				M51-0546				51-PI-268B	51-MV-0673	24-MV-0353		1	PT-201	PD 2011A	T-2010	T-2009	201]	<u>></u>	
d Date/Tir	Tune	addi	0 ⊢	ANV.	T	- 2	20	NM	F	F	F	PT	ΡT	RD	S	F	+)	- ā	2	FA	٩	F	F	ā F	NVN	T		S	3	RD-	V- 2012		•	B007-1				~				r Page and	Equipment L	ar Page and	
Complete		Number	TOOL	2002	5002	2005	2006	2002	2008	2009	2010	2011	2011A	2012	2013	2014	2015	2016	1102	2019	2020	2021	2022	2023	2024	2026	2027		E	>	W	8	cc CC	004	 WV-	2002	2001	$\left(\right)$	tripper Feed	HAP-1090		To Anothe	Indicated	From Anothe	
																															O.	20(T-2		T-2		V	(Q)		 Indicates car seal present 	Vent Gases	Condensates	Liquor/Stock	

Sociely Sociel	Rev. Date February 2021 Figure 5
	New-Indy – Catawba Mill LDAR Inspection and Testing Diagrams Combination Boiler LVHC Incineration
Comments Comments (Fig. 6) (Fig. 6) (Fig. 6)	E N V I R O N M E N T A L ³⁶⁰
CC Free of Leaks oc Free of Leaks or Defects?	
nre Background Res	To Another Page and Indicated Equipment rom Another Page and Indicated Equipment
er LVHC Incineration Time: 3 ISI Equip. Press Number (+/. 37-PT-385 37-PT-383 37-PT-383 37-PT-383 37-PT-383 26-PT-377 26-PT-377 26-PT-375 26-PT-375	
Combination Boile Completed Date/1 Number Type 5014 G 5015 EJ 5016 MV 5017 T 5018 PT 5019 TT 5017 T 5019 TT 5019 TT 5020 P 5021 FA 5023 T 5024 PT 5041 MV 5042 PT 5043 PT 5044 T 5043 PT 5044 T 5045 P 5046 FA 5047 P 5048 T 5049 P 5041 P 5042 P 5043 P 5044 T 5045 P 5046 P 5049 P	Vent Gases Condens ates — Liquor/Stock — Lines Process Lines —

The case	the Die H		1					6051	RD		Ler	
Completed	d Date/Ti	ime: 3	15/2	_				6052	ME		, ,	
		Fauin	Pressure		VOC	Is Component Free of Leaks		6053 6054	5 2	37-HV-382A 37-HV-043		
Number	Type	Number	(-/+)	Background	Reading	or Defects?	Comments	6055	2 2	37-HV-382B	5	
6000	T					101		6056	HAP			
6001	ΡI					7		6609	g		× 1	
6002	9					7		6100	Т		7	
6003	F					. 7		6101	9		>	
6004	Id	TO A MU CAOL				>		6102	T			
SUUD	NIN	20-IVIV-048				1		6107	В		7	
6006	M	26-MV-0486	0			×		6108	в		7	
2000	LV ANY	20-11-02				1		6108A	9		>	
6009	NM	2/50-VIM-02	0.5					6109	8		5	
6000A	d	000 4141 07				1		6110	M		,	
6010						-		6111	MV		7	
6011	IL					7		7110	11		,	
6012	F					רו		5113	M		7	
6013	F					7		4110	2 +			
6014	Ы					11		5115	- da			
6015	T					h		2113	h H		, ,	
6016	ΡŢ					- 17		1118	PT		-	
6017	S	26-PCV-365	15			7		0113	CM		5	
6018	Т							6120	MV		2	
6019	SE							6121	1		-	
6020	U					1 11		1710	- 0		7	
6021	Ħ					-		6122	AAP			
6022	L					1		6173	a			
6023	Ы					~		6173A	- U			
6024	F					7		6124			1	
6025	S					>		61240	<u>د</u>		7	
6026	-	000 000 000						6125	0 00		2	
/709	I.	71-11-3/2				1.1		6126	MV		- 7	
6028	N I							6127	MV		3	
6030	HAP							6128	LT			
6031	L					1		6129	MV		2	
6032	PT					- 1		6130	Р		- 7	
6033	PT	26-PSH-373	-			7		6131	н		7	
6034	RD							6132	BP		,-	
6035	ME					1 1		6133	н		~	
6036	CV					1		6134	ΡŢ		. 3	
6037	CV					5		6135	CKV		7	
6038	CV					11		6136	MV			
6046	MV					7		6137	F		>	
6047	F					5		6138	HAP		,	
6048	ΡŢ	37-PSH-381	_			-		6152	M		5	
6049	ΡŢ							6168	MV		-	
6050	U					2		61/1	ſ		h	

Evaporate	or System	2	1215					2602	LT			465	
	-	Equip.	Pressure		voc	Is Component Free of Leaks		7094	5			1 1	
7000	Type	Number	(-/+)	Background	Reading	V PK	Comments	2096	LL.				
7001						1 1		8607	AV L			7	
7001B	TH					1 1		2100	BP			11	
7002	00					+		7102	MV			, - -	
70028	L							7104				4 4	
7002D	0					*		7107	вIJ			2	
7004	MV							7108	Ξa			+ 1	
7005	-					4 4		7109	υF			N	
7007	- ā					. ,		VOLL	: a (7 11	
7010	PP					1 1		2112	F			. A .	
7011	٩.					1 1		7113	9 E			1	
2013	i							7115	σF			1 2	
7015	<u>-</u>	24-MV-0380				4 4		7117	۲ÿ			1	
7016	20	24-HV-334						6117	7 F			4	
7018	F					1		7121	×۵			7 5	
7020	RD					7		71214	- 5			7.17	
7022	2 V	24-MV-0378 24-HV-336				3		7123	+ +			4	
7024	NW	24-TE-358				1		71244	Id			-	
7025	+ La	24-PT-357				1 1		7125	λ M			- 7 -	
7027	+					1		7127	+ Tq			1 1	
7029	- 0					1 1		7129	EL.			1 1	
7031	- 22	24 MV-0389				1 1		TEL	NV NV			5	
7032	E +					7		7133	0 F			2	
7034						7		7135	0 K			A	
7036	4							7136	+ 9			h n	
7037	₹4							7138	5			5	
7039	+ +							7139				4 4	
7041	ā	0000 700 70				1		7141	+ 0			1 1	
7043	- 20	24-MV-329						7143	+			27	
7045						+ 1		7145	NW NW			1 1	
7047	PT BD					1 1		7147	4			7	
7049	MV VV	24-MV-0387 24-HV-331						7149	F			1	
7050	N	24-TT-364						7151	MV			N. N	
2022	۹.					7		7153	MV +	24-MV-0399		2 4 1	
7054	pT	24-PT-363				7		7154	00				
7056	5 F					1 17		7156	00			1	
7057	NV II	51-MV-0660				. 4		7157	0 0			1	
7059						1 1		7159	00			7 -5	
7061	đ					11		7161	9			h 15	
7063	4					1 1		7163	F			A In	
7065	△ ⊢					1 1		7165	00			L J	
7067	Ē					+ 11		7167				F	
7068	+ >3	51-MV-0659 24-HV-339				1 1		6912	0 0			A	
7070	++					7		1212	00			7	
7072	PT					1 1		7173	SE	51-MV-0774		, ,	
E707	RD					11		7175	5			N	
7074	NV NV	51-MV-0658				. 11		7177	5			1 1	
7075	M	24-HV-341 51-MV-0657				4 1		7178	MV	51-MV-0783		1 1	
7077	MV II	51-MV-769				4 11		7180	0	2020-20-20			
7079	0 H					1 11		7181	δ			1 1	
7081	T					1		7183	8B RB			* 7	
7083	0					- 7		7185	MV MV			1,1	
7085) æ «					1,1		7187	NV VW			7 7	
7087	1-1					7		7190	00			H	
7089	8					4.4		1612	00			7	
7091	нa					1.7		EGL7	- 0			1	

105			7					2	5	~	7	3	-	7		7			5- 7	5	5 5	5 F J	7 7 7 7 7 7								5 7 7 5 7 7 7 5 7 5 7 5 7 3
9029 CV 14-HV-126	9030 G G G G G G G G G G G G G G G G G G	9031A HAP	9031C MV	9033 MV 14-MV-0330	9034 T	9035 T	9035A G	9035B EJ	9035C G	9036 PI	9037 TI 14-TI/TW-304B	9038 P	9039 FA M14-0121	9040 P	9041 T	9042 T	9043 I 0044 Di	9044 FI 14-HV-314	0046 T	T T	0048 DT 14.PCH.213	9048A PT 14-PSH-313	9049 RD	9050 MV 14-MV-0342	9051 CV 14-HV-312	9052 MV 14-MV-0343	9053 G	9054 MV	9054A MV	9055 PRV	9056 L
	Is Component	Free of Leaks	og or Defects? Comments			7		1		~									-				>						- 7		
d Standpipe	31010	Pressure	Number (+/-) Background Readin			IV-0312			/TW-125												9I-125A			12T-N-			SH-132	SH-133			
Turpentine Decanter an	Completed Date/Time:		Number Type Equip.	9000 I I	11 1000	9003 MV 14-M	9004 MV	9005 MV	9008 MV 14-TI/	9009 TI	9010 T	1 1106	9011A G	9011B EJ	9011C G 9012 DI	9013 D	9014 FA	9015 P	9016 T	9017 T	9018 PI 14-P	9019 T	9020 T	9021 CV 14-F	9022 T	T VC00	90.55 PT 14-PC	9025A DT 14-PC	9026 RD	T T	9028 MV

Turpentine C	ooler and Blow	Tank					100358	MV		1	
Completed Dat	e/Time: 3	2/SI	-				10035C	M		>	
	Fouin.	Pressure		VOC	Is Component Free of Leaks		10035D	Р		1	
Number Typ	be Number	(-/+)	Background	Reading	or Defects?	Comments	10035E	⊢		7	
10000 G					4 er		10035F	M		~	
10001 T	F 52-TE-230				1		10035G	٩		7	
10002 P					7		10035H	Р		1,	
10003 C	V 52-QV-937				7		100351	9		γ	
10004 M	V 52-MV-1021				1		10035J	F		7	
10005 1					1		10035K	٩		5	
10006 P	T 52-PSH-934				_		10035L	⊨			Γ
10007 P	_						10036	M		-	
10008 R							10037	M		Ĺ,	
10009 C	V 52-EV-938				1		10038	٩		n	
10011 E							10038A	F			
10012 F	A M52-0429				7		10038B	RB		6	
10013 F					-		10039	MV			
10014 M	V 52-MV-1022				h		10040	MV		N	
10015 1					1		10041	В		- 11	
10016 P	-				~		10042	Т		1 1	
10017 1	_				1		10043	Р		1	
10018					>		10044	Ħ		4	
10019 P			~		1		10045	Р		L L	
10020 C	V 52-PV-941				-		10046	MV		7	
10021 C	> ,						10047	Р		(1	
ALZUNI					-		10047A	Т		7	
10023 N	IE M52-0415				1		10048	MV	A507	1	
10024 F					11		10052	J		7	
10025 ((0				11		10053	PRV		7	
10026 B	P M52-0411				1		10054	н		>	Τ
10027 ((5				5		10055	۹		5	
10028					1		10056	M		ν.	
10029 F					7		10057	Ъ		- 7	
10030 F	щ						10058	Р		>	
10031					7	-	10059	8			
10032 N	2 2				-	Lar sear present.	10060	٦	_	>	
	2 ~				-		10061	8		2	
10034A					7		10062	⊢		~	
10035 T	T 52-TT-947				1		10063	ΡT	52-PT-215	7	
10035A ((5				h		10064	_1		>	

																		From HVLC Sources (Fig. 14) Sources (Fig. 14) To HVLC Line from Turpentine Cooler (Fig. 10)	7-12003	Rev. Date February 2021	Figure 12
res	7	>	7	>	. ,	,	- 11	7	7	7	-	7 1		1	1	~	1		G-12004 D	Catawba Mill	and Testing Diagrams It Pulp Mill (1 of 2)
					543		:541			R307		R308					_	From Brown Stock Washers (Fig. 13) 12005 MV-12006		New-Indy -	LDAR Inspection a HVLC System a
d	MV	Р	⊢	٩	M	Р	T	9	٩	MV S	٩	MV S	-	. a	- (9	_	<	12012 b	360	
12025	12026	12027	12028	12029	12030	12031	12032	12033	12034	12035	12039	12040	12041	12042	71077	12045	12044	±82	B-12	MENT	
		ent	aks s? Comments															ď	My-12028	E N VI B O N	
		Is Compon	or Defects	ves	7	5	F	1	7	7	1	1	7	7	~	ブ	1	P-12:025 1	P-12027H Wash Storec Storec a a Storec a a storeck	\cap	
		000	Reading															44	Washe Series	age and	age and <
	12		Background															12 L	MV 12.03 6-12.03	o A nother Pa ndicated Equ	im Another P
2)	15		Pressure (+/-)																12035		E F
ulo Mil (1 of	ne: 3		Equip.				X182						V4454		0598-22-HY		D060	12 P	ž		
stem at P	d Date/Tir		Type	Р	MV	Р	н	9	Р	MV	Р	8	н	д	MV	Ъ	F	A	× 12000 × 12000 × 12000 × 12000	ses	tock -
HVLC Sv	Complete		Number	12000	12001	12002	12003	12004	12005	12006	12015	12016	12020	12021	12022	12023	12024	P. 01	2042 2042 Tan 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vent Ga: Condens	Liquor/S Line: Process

1	
Lee Lee	
V CI CI	
27	• •
د -	
1 4	7 1
4	4
1	1
11	- 11
1 1	1
4 1	h 17
1)	1)
1	1
	* *
7	7
5	5
دا	- 17
> 3	> 3
1 1	- H
4	4
5	5
5	5
7	
F	-
1 1	1
-	,
1	11.
-	,
7	3
	- 5
1 17	1
7	>
4	7
2	5
1	
. 11	- 17
5	5
1 1	1 1
5	, ,
1. 1.	7
2	
1	
7	7
11	11
1 1	7 5
11	11
1 11	1
7	
4	1
× "	7
1	7
1 1	1 1
11	7
,	,
5	5
5	2
5	5

at Pulp	Mil (2	of 2) IC	1				1402	9			1 25	
		-	101		Is Component		14027	A MV			~	
Equip. Pressure	Pressure		Background	VOC	Free of Leaks or Defects?	Comments	1402	RB a			1	
			5	R	100		1404					
/ X170							1404	- Id			7	
					7		1404	M	X168		, I	
					1		1404	d			7	
52-PI-353		- · · · · · · · · · · · · · · · · · · ·			1		1405	MV			1	
					. ,		1405	9			,	
					>		1405	3 HAP			No	Puttine
P M52-0092		-			1		1405	d			7	
X74					>		1405	MV	X167		7	
v X240		- 1					1405	Р.			1	
>		- 1°			5		1405	T			5	
		1					14057	A PI			7	
		- 1			~		1405	9			7	
V X169					,		1405	9			5	
					1		1406	BP	E52-0128		7	
X179		1			>		1406	-	X159			
							1406	MV	X265		7	
					2		1406	NN	0040		7	
>					1		1406					
					2		1406	4			7	
A							1106	NAV	CD 212		-	
					>		1406	d	CTOUC			
>					,		LOV F	L VWI	c1003		, ,	
					2		1407		2K31Z		7	
V X171					7		140/	AN/			7	
					5		1400				1	
											-	
											L-14.08.8	To HVI C Header
		10									E-1400	I OHVLC Header
H	H P-14	0 7	59 H P-1406	55 H L	2-44054 N-14055	4	¥2	RB-	- H. Y.	14023 MV-	X 14020 H-P-14013	P-4000
*	×	r)			-14056	X MV-14	1048		14 024	A SEC	X WV-14012 X	MV74001
					-D PH14057A	14046	0		T-14026	14-9 G-14	1022A H P-14011	P-14002 MV-14005
					T-14057 MV-140	63 H P-140	04		MVW		14014 PI-14015 14003	PI-14003A
					NUV TO THE TO TH	-0-			-42	G-14027		14010
				- - - - - - - - - - - - - - - - - - -	T-14064	14064			U			MV-14008
				141	88 G	1B XW.	C .	Frins	19 PI	A C	V-14012 G- G- G-	T-14007
)	14069 W	asher 6-	1		Filtre	her ate		G-
					-)]]	Tank 7 14052		とこう	Tar	¥		4405 4
				1 B Washer Silencer	Vac. BP-14060			ist is the	<		1A Washe	r Vac BP-
						1B BSW DD Wash	Ŀ	2	hur		1A BSW DD Washer HAD 14010	00011
		1				HAP-14053					01041 Juni	
			To Another Pa Indicated Equ	age and i				161		New-Indy - Cata	awba Mill	February 2024
		3				ENVIR	ONMEN	TAL		Lono action and	Tooting Disgrams	I GUI MAI À ZUE I
		L	Indicated Equi	age and								License 4
									NH	LC System at Pu	ulp Mill (2 of 2)	Figure 14

Inspection Date: April 5, 2021

New Indy Containerboard - Catawba Mill 5300 Cureton Ferry Rd. Catawba, SC 29704

2021 Monthly LDAR Inspection Summary Report

Table 1: Visual Inspection Summary Table

Equipment Number	Date	Description of Lea	k or Visual Defect
N/A	4/5/2021		No leaks or defects to report.
First Attempt be completed	to Repair must by:	5 Days from Inspection Date	Not Applicable if no leaks were found.
Repairs must by:	be completed	15 Days from Inspection Date	Not Applicable if no leaks were found.

This report provides a summary of leaks and visual defects found during the visual inspection of the closed-vent and condensate-collection systems and complies with the record keeping requirements of 63.454(b)(1-2, 4-5).

The facility must initiate repairs to any defects within five (5) calendar days from this inspection and the defects must be repaired within fifteen (15) calendar days of the inspection. If the leak or defect requires the system to be shutdown in order to make repairs, or more emissions would occur from attempting the repair than delaying the repair, then the repairs may be delayed until the next process unit shutdown. A report must be supplied with the repair date and associated information, or the reason for the delay if the repairs are not completed within the 15-day period. These response requirements are specific to 40 CFR 63, specifically 63.453(k)(6), 63.453(l)(3), and 63.964(b)(1-2). Documentation of all repair attempts made and any leaks/defects requiring a process unit shutdown must be completed according to 63.454(b)(6-11).

I certify that the results of the visual inspection are accurate and complete to the best of my knowledge.

Inspector Name: Josh Howard

Signature:

Josh Howard

Inspection QA/QC Procedure

E360 Project Number?	New Indy catawba
Task Number (if applicable)?	April ZUZI ADAUSTHLDAR
	monthly

Purpose of Form

To verify field work meets each critical element.

Visual Work Flow (WF)

Verification of Critical Elements

WF	Requirement	Yes?
NO.	Work-flow step	1
	Verifier of critical elements for work-flow step	R
1	Was a bump test performed on the personal H ₂ S monitor?	L
2	Have the most recent versions of the inspection forms been used?	L
3	Were all inspection points identified correctly and inspected correctly?	L
4	Did the operator/ contact verify to our inspector that all equipment was operating under normal operating conditions?	V
5	Were any deficiencies identified in person to the client?	NA
6	Were all inspection questions answered with either a Yes, No, or NA?	C
7	Were inspections performed during the required regulatory time frame?	0

Approvals

Role	WF Step	Name	Approval (insert date)
Responsible Person (R)	1	Joh Acco	04/05/2021

tripper System ompleted Date	Time:	1202				107	75	T		423	
	Faulo	Prosento	0	1	s Component ree of Leaks	107	17	BP		7	
Jumber Type	Number	(-/+)	Background Read	Buit	or Defects?	Comments 101	78	E		7	
1000 TK				+	465	105	80	MV		2	
TOO1 NH				+	> 7	301	81	MV			
1003 B				+	>	105	82	U		>	
1004 G					- 7	101	83	0		1	
1005 111					>	OF	94			7	
1006 T				-	- 7		00	5 0		,	
1007 PT					>	SOT .	00				
1008 MH				+		301	88			7	
1009 6				+	>	301	68	NM		,	
11 0101				+	7	501	06	NN		,	
AN TTOT					7	105	16			7	
17 2101						105	92	RB		7	
1013 MN					7.7	105	63	RB			
1014					,	105	94	RB		7	
OTOT STOP				+	-	105	95	MV NV		,	
					1	105	96	NN		17	
1010					4,4	501	-26			1.7	
of of of				+		105	86	NN		1	
D DOOT					7	100	66	-		-	
1070					-7		100	- 0			
14 1701					>		3 5	2 0		>	
1022 T				+	. >		TO			7	
1023 CTk					7	NTT I	02	0		2	
1024 T					. 7	911	03	T			
1025 LT					~	110	04	9		>>	
1026 MV						311	05	В			
1027 B					10	110	06	11		n,	
1078 B					7.	110	07	-			
1000					4.1	011	00			-	
1078				+	~		00	-		>	
1030 8							60	0		- 7	
1031 LG					7	11	10	LG		2	
1032 P					-7	111	11	+		7	
1033 T					7	CII .	12	9		7	
1034 G						111	13	8		- ,	
1035 MV						111	14	-		2	
1036 MV					11		15	MVV			
1037 8P					7		16	NW.		*	
1038 T					111		17			7.7	
1039 T							10				
1040 PI							01			-	
1041					17		10				
1042 T					1.		2	NIN N		~	
TUNA ENOT					7.1		17	2		>	
1044					7.7		77	0		>	
1041						11	23			- >	
					7.	11	24	-		>	
1040					7	11	25	0		- 7	
104/ 0					7	11	26	+		7	
1048 MN				+	>	112	27	+		- 7	
1049 MV				1	7	11.	28	CTK		7	
1050 G					>	11	29	ł		>	
1051 CV					7	11	30	+		2	
1052 FE						11	31	S		. 5	
1053 CV				+	7	211	32	MV		2	
1054 CV					5	115	33	H		2	
1055 MV					2		34	NN		2	
1056 T					X		35	d			
1057 T					۲,		36				
1058 PI										,	
1059 T					2		10			7	
1060 CKV					17		000			>	
1061 BP					3		65	MM		~	
1062 FJ					100	11	40	2 V		7	
1063 T						11	41	2XX		,	
1064 NN				+		114	42	MV		7	
1065 B						11	43	MV		2	
a cont				+	>	114	44	MV		2	
1066 MV						211	45	H		*	
1067 MV					2		AC NC			2	
1068 CKV							0			>	
1069 MV					>	111	41	2M		7	
1070 T						11	48	2		7	
1071 T					2	114	49	T			
1073 T					55	115	50	NN		7	
10 2/01					E I	11	51	S		17	
10/3 10/3				+	7,7	11	52	-		1	
10/4					7						

W. No. 2 4001 E Combination 64000 Bolier Bolier S4011 Bolier S4011 Bolier Bolier	Rev. Date March 2021	Figure 4
THE PART AND	New-Indy – Catawba Mill	LDAR Inspection and Testing Diagrams Combination Boiler LVHC Incineration
Comments Comments Frig. 5) Frig. 5) Crubber Plat Frig. 6)	E N V I R O N M E N T A L ³⁶⁰	
voc Free of Leaks acading or Defects t t t t t t t t t t t t t t t t t t	und Directory	and 🖉
S/2c21 essure (+/-) Background	To Another Page a Indicated Equipme	From Another Page Indicated Equipme
Boiler LVHC Incineratio ate/Time: AVP Pr FA Pr PT PT PT PT PT PT PT PT PT PT PT PT PT		
Combination Completed D Number T 4001 A 4002 A 4003 A 4004 A 4005 A 4006 A 4003 A 4004 A 4003 A 4011 A 4013 A 4014 A 4015 A 4015 A 4016 A 4015 A 4016 A 4017 A 4018 A 4016 A 4017 A 4018 B 4020 A 4021 A	Vent Gases Condensates	Liquor/Stock Lines Process Lines

TRS Scrubb Completed [er Platform Date/Time:	U/5/2	1 22 1						
	2 L	Drocettro		NOC	Is Component Free of Leaks		5047	HAP	785
Number	Type Numb	er (+/-)	Background	Reading	or Defects?	Comments	5048	2	~
5000	MV				yes		5049	פ ו	~
5001	S				7		2020		×
5002	MV				- >		TCDC	D	
5003	MV				7		2005	0 00	,
5004	ч				>		2054	a (5	×
5005	Ы				7		2005	c	
5006	9				. >			- (
5007	+				7		20502	0	X
5008	PT				7		1000	0	
5009	ď				7		5058	NM -	> ;;
5010	MV				>		5059		~
5011	μ				>		5060	MV	>
5012	ц				7		5061	MV	7
5013	μ				>		5062	Ъ	2
5014	μ				7		5063	н	~
5015	PI				٢		5064	BP	>
5016	μ				7		5065	F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5017	PT				>		5066	PT	7-
5018	T				. ^		5067	CKV	7
5019	SE				7		5068	MV	7
5020	9				٢		5069	HAP	. >
5021	Ħ				7		5070	ß	7
5022	÷				4		5071	т	4
5023	H				7		5072	HAP	2
5024	F				- 7		5073	8	7
5025	F				>		5074	8	5
5026	S						5075	9	.>
5027							5076	т	7
5028	Tq.				~		5077	ŋ	7
6705	MV +				2		5078	в	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5030	DT -				۲. ۲		5079	MV	7
TCDC	DT				7.7		5080	L	7
2005	C a				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5081	M	7
5034	ME				- ~		5082	MV	7
5035	2						5083	a	7
5036	S				44		5084	T	2
5037	MV				121		5085	BP	2
5038	L				~ ~		5086	-	2
5039	PT				7		5087	PT	7.
5040	PT				7		5088	CKV	7
5041	RD				7		5089	MV	7
5042	ME				. 7		5090	MV	, 7
5043	C				71		5091	MV	λ.
5044	C				- 7		5092	2	7
5045	U				7		5093	_	~
5046	U				, >		_		

4e5	- 7	1	7.	1	, ,	۲,		7	7	7	T	7	7.	1 I	7	17	7	7	~	1	7-		×.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	7	7	λ.	,>	1	7	7	۲,		>	. 7	۲,	1	۲,		7
MV G	MV TI	T	T DI	. а	FA	d	-	F 3	Id	L	+ CV	DT	1	RD .	M	S	MV	ш	A	1	PT	0	- +	- 0	SE	T	U	SE	- 1-		. 9	Т	PI	MV	MV	ď	F	<u>н</u>	PT	NAV/	
6049 6050	6051 6052	6053	6054 6055	6056	6057	6058	6059	6060	6061	6062	6063	6065	5066	6067	6068	6909	6070	6071	6072	6073	6074	6075	9/09	6078	6079	6080	6081	6082	6084	6085	6086	6087	6088	6089	0609	6091	6092	6093	6094		6095
		Comments																																							
	Is Component Free of Leaks	or Defects?	yes	- 7	7	7	~ >	7 4	7	7	1.1	7.7	~	× ×	2	11	4	, 5	۲,	. 7	7,7	7	1	۲,	7	~~	4	7	27	?	- 7	7	. 7	7.7		>>	2	7	7	1	~
	voc	Reading																																							
10	10	lackground																																							
0	Pressure	(+/-) E																																							
V	-	ber																																							
ule	Equip.	Numt								- II.	- 11-			_	-	-		-	-	+	-	-			-	+	\vdash	-	-	+		+	+	-	-	+	+	-	-	-	
r System	a Vate/ Ilme: Equip.	Type Numt		F	Id	MV B	NW	μ	Ŧ	H	Ы	۹.	P	-	-	ы	⊢	2	H	Ld I	- Ua	MV	S	NM	E	- Id	⊢	-	ר פ	+	SE	H	-	- 0	5 8	H H		ы	MV	٩	•

_
_ 7
* * * *
× 7 7
~ ~ ~ ~ ~

Ver	12 +	~ ~ ~	7		>		>.	1	× **	7	11	7	- 7	7	7	7,	7	× 1	١,٨	7.	. 7	λ.,	7,	1	7	~ ~ ~	7	17	7	7	7		>		7.7	×	5-	7.	1	N/	1	1
																				-																						
9	0 0	9	G	HAP	5	AIM U	M	BP	5	T	Ы	T	MV	MV	H	E	MV	Ħ	8	H I	НАР	שפ) +	. т	U	9	U	н	E	U	9	9 0	פ ר		- 1	MV	L L	- 4	TG	8	T	L
7040	7041	7042	7043	7044	7045	1047	7048	7049	7050	7051	7052	7053	7054	7055	7056	7057	7058	7059	7060	7061	7062	7064	7065	7066	7067	7068	7069	7070	7071	7072	7073	7074	C/U/	10/02	7/07	PT07	7080	7081	7082	7083	7084	7085
		Comments																								Car seal present																
	Is Component	Free of Leaks or Defects?	VCC	2	>	7	7	7	- >	7	- 2	7	7	۲,	, 7	7	7	7	7	7	7	7	7	7	2	7	7	2	7	2	, ,	7	7	2	7	7	7	7	- 7	2	1	N,
		Reading	B																																							
		Background																																								
202/5		Pressure (+/-)																																								
me:		Number																																								
d Date/II		Tvne	R R	Tvbe	Type	Id	ц	Т	F	S	MV	S	T	ß	Ы	ME	H	9	U	BP	5	-	H	F	MV	٨٧	MV	IJ	ВР	9	MV	F	F	Ħ	붠	F	۲	MV	٩	U	F	MV
plete		nhor		001	002	03	04	05	900	07	08	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	12	28	29	30	31	32	33	34	35	36	37	38	39

1.01	755	1 1	7		7	, ,	7,		7.	~	× .	17	1	7_		7	, >	٨,	Υ.	7	.7	~	7	4	7	7.7	T	5	7	7,	1	7	1 1	7-		7.7	~~	1
	ש ע	F	- a	-	U	٩	٩	₹,		2 0	N	F	MV	M	4	M	H	RB	BP	-	4 №	-	4	F	4	₽ □	BP	<u>م</u>	BP	+	PT	Р	M	۹	H N	AK (2 ≥	-
100	9036	9038	9039	9040	9041	9042	9043	9044	9045	9046	9048	9049	9050	9051	9052	9053	9054	9055	9056	1406	9058	9060	9061	9062	9063	9064 anec	9906	9067	9068	6906	9070	9071	9072	9073	9074	5/06	9/06	9078
		Comments																																		Car seal present		
le Comonant	Free of Leaks	or Defects?	405	>	7	7	>	7	7	>	1	7	7	7	7		1	,	7	>	7	>	7	7	7	7		4	7	7	T	7	7	7	>	7	44	7
	VOC	Reading																																				
120		Background																																				
2101	Pressure	(-/+)																																				
le:	Equip.	Number																																				
Date/Tin		Type	0	Þ	Р	S	MV	F	OT	Ы	RD	S	9	Р	FA	d	MV	F	- 10	F	= -	pT	: 2	5	9	Ь	ME	Ь	9	ВР	9	L	H	11	-	MV	MV	ВР
pleted	2	mber	000	001	002	003	004	005	900	007	008	6006	010	011	012	013	014	015	910		018	010	020	021	022	023	024	025	3026	9027	9028	9029	9030	1031	1032	1033	9034	9035

Turpentine	Condens	ser and LVH	C Gas Cool	er				10013	S	Yes	
Completed	d Date/Ti	me:	101	1202		le Comnonant		10014	MV	λ.	
		Equip.	Pressure		VOC	Free of Leaks		10015	н	7	
Number	Type	Number	(-/+)	Background	Reading	or Defects?	Comments	10016	F	7	
10000	RB					Vec		10017	ΡŢ	7	
10001	⊨					7		10018	RD	>	
10002	Ы					ر بر		10019	٩	`>	
10003	Id					۲,		10020	C	,>	
10004	G					7		10021	F		
10005	Ы					7		10022	F	>	
10006	Ы					٢		10023	Ы		
10007	FA					A		10024	FA	~	
10008	Ы					7		10025	٩	>	
10009	Ы					7		10026	MV	7	
10010	9					7		10027	н	- 7-	
10011	Ы					7		10028	HAP	>	
10012	F					7		10029	_	5	

																From HVLC Sources (Fig. 14) To HVLC Line from Turpentine Cooler (Fig. 10) (Fig. 10) T-11003	Rev. Date March 2021	Figure 11
	765	>;	77	7	7	7	>	2	7	7	- 7	7	7	~ ~	7	P-11000 I -11002 I I A BSW Filtrate Tanh	atawba Mill	Testing Diagrams ulp Mill (1 of 2)
																From Brown Stock Washers (Fig. 13)	New-Indy – Ca	LDAR Inspection and HVLC System at P
	<u> </u>	A N	d	т	d.	MV	۹ ۲	- 0	- d	MV	д.	MV +	- 0	. 9	,	A Linot	360	
	11013	11015	11016	11017	11018	11019	11020	11022	11023	11024	11025	11026	11028	11029	11030	r, coo	N T N	
		Comments														1015 T-11017 T-11012 T-11013		
	s Componen Free of Leak:	or Defects?	yes	7	19	7	T	2	×	7	1	2	1	7	1	Vashed Stock Stock	\square	
	VOC	Reading														P. Holds	e and ment	je and C
1202		Background														G-11022	Another Page	n Another Pag dicated Equipr
2) 2)	Pressure	(-/+)														33 H MV-	10 L	Fron
ulp Mil (1 of e: Č(Equip.	Number														∋ē ∑ē		
stem at P		Type	٩	MV	٩	F	G	Р	MV	Р	в	ч	Р	MV	Р	Hage Gaw029	ses	tock
HVLC Sy Completed		Number	11000	11001	11002	11003	11004	11005	11006	11007	11008	11009	11010	11011	11012	2 1028 2 1028 1 1028	Vent Ga Condens	Liquor/S Line: Process

Pulp Mill B	SWs							12042	MV		765
Completed	J Date/Ti	me: C	2 S	120				12043	RB		>
		Fauin	Procetto		2007	Is Component Free of Leaks		12044	н		۲,
Number	Tvpe	Number	(+/-)	Background	Reading	or Defects?	Comments	12045	MV		۲,
12000	RB			,	2	185		12046	Р		
12001	F					7		12047	IJ		Υ.
12002	MV					, >		12048	RB		```
12003	MV					7		12049	F		7
12004	MV					7		12050	٩		- 7
12005	В					7		12051	MV		7
12006	RB					4		12052	MV		
12007	μ					7		12053	Р		7
12008	MV					- 7		12054	н		۲,
12009	MV					5		12055	9		<u>ک</u>
12010	MV					- 7		12056	Р		- 7
12011	RB					7		12057	В		7
12012	F					-7		12058	В		4
12013	MV					7		12059	MV		7
12014	RB					~ >		12060	В		7
12015	F					۲,		12061	MV		۸,
12016	MV							12062	8		
12017	Ч					7		12063	9		۲,
12018	RB					. >		12064	MV		, ,
12019	F					7		12065	9		1
12020	Ъ					7		12066	9		7
12021	MV					7		12067	BP		۲,
12022	٩.					. 7		12068	IJ		
12023	ں ט					7		12069	F		7
12024	d 1					7.		12070	MV		7
12025	T					7		12071	9		7
07071	NIN					7		12072	В		2
12021	NO U					>		12073	۲		, v
12029	, ag					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		12074	DV		٧/
12030	- a					,		12075	F		2
12031	ч					4		12076	F		>
12032	MV					7		120//	9		λ.
12033	CON					7		12078	9		>
12034	U					7		12079	HAP		7
12035	RB					7		12080	Р		
12036	Р					2		12081	в		>
12037	F					7		12082	8		- 7
12038	MV					- 7		12083	Ъ		7
12039	RB					7		12084	8	-	۲,
12040	F					7		12085	Р		λ.
12041	Р					7.		12086	В		2

707	5 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7	. >	7				2		>	۲,	. 7	· · ·	77	N/			>	7	7	7	1 N	× ::	×.	×	×		5	>	7	>	7	۲,	7	-				
12130 MV	12131 6	17137 R		12133 1	12134 MV	12135 B	12136 T	12137 G	12138 G			12140 B	12141 DV	12142 B	12143 G	12144 MV	12145 G	12146 6	D 04177	12147 BP	12148 G	12149 T	12150 MV	12151 G	12152 R	13152 T	1)154 MV	1)155 B	1)156 T	10157 6	D /CT2T	n 90171	12159 HAP	12160 P	12161 B	12162 L					
4.65	-	- >	7	/ /	7	, , ,	9	~ >	>	7	7	7	7		7	7	7	7	λ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× '	, ×	7	- 7	9	>	<u>ک</u>	, , , , , , , , , , , , , , , , , , ,		7	~ ~	×,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۲۱	7	7	7	2	7	۶,	7
41/512021																																									
12087 B	12088 B	12089 B	12090 T	12091 PI	12092 MV	12093 B	12094 G	12095 B	12096 MV	12097 B	12098 G	12099 MV	12100 G	12101 G	12102 BP	12103 G	12104 T	12105 MV	12106 G	12107 B	12108 T	12109 MV	12110 B	12111 T	12112 G	12113 B	12114 T	9 91121	12117 HAP	12118 P	12119 B	12120 B	12121 MV	12122 B	12123 G	12124 MV	12125 G	12126 G	12127 BP	12128 G	T 00101

																											To HVLC Header	(Fig. 12) (13000 (13000 (13001 (13
101	(n)	~ 7	λ,		3	>		27	7	>	×.			37	7	7.		77	λ,	7	>	>	>-;;	>	77	7	L-13056	M.V. 13024 13024 13024 M.V. 13028 M.V. 13028 M.V. 13028 M.V. 13028 M.V. 13015 M.V. 13016 M.V. 13016 M.M. 13006 M.M.
٩	. –	MV	0	0 a	MV	⊢ i	2 0	- M	9	HAP	٩	A a	- ⊢	Ы	U	λ M	a da	i -	M	9	٩	M	٩.	≥ ª	- M	L		13029
13025	13026	13027	13028	13030	13031	13032	12021	13035	13036	13037	13038	13039	13041	13042	13043	13044	13046	13047	13048	13049	13050	13051	13052	13053	13055	13056		N W E N
			Comments																									T T T T T T T T
		Is Component Free of Leaks	or Defects?	465	7	7.7	1.	1	77	7	Ţ	7	- 7	7	2	7.	7	7	~	7		1	7	~ 7	7	2	/	13038 13040 13040 13040 13042 13042 13045 13042 13045 13042 13045 13042 1304 13042 1000 1000 10000 10000000000000000000
		VOC	Reading																									G. G
	1202		Background																									To Another Pa Indicated Equi
f 2)	S F	Pressure	(-/+)																									H 130
Pulp Mil (2 of	me:	Equip.	Number																									
stem at I	d Date/Tir		Type	٩	MV	<u>م</u> ۲	ā	0	MV	U	ВР	F	MV	9	٩.	Ň	F	ā	9	MV	5	HAP	F	MV	٩	MV		ses sates stick
HVLC Sy	Complete		Number	13000	13001	13002	13004	13005	13006	13007	13008	13009	13010	13011	13012	13013	13015	13016	13017	13018	13019	13020	13021	13022	13023	13024		Vent Gé Conden Liquor/S

Inspection Date: May 3-7, 2021

New Indy Containerboard - Catawba Mill 5300 Cureton Ferry Rd. Catawba, SC 29704

2021 LDAR Annual Method 21 Testing and Negative-Pressure Certification Summary Report

Equipment Number	Date	Description of Leak	or Visual Defect
CV-5026	5/4/2021	Control valve CV-502 Ejector and prior to the gasses and had a VOC attempt by tightening	6 is located on the LVHC line at outlet of Steam e mist eliminators. The valve is not collecting reading of 1558 ppm. Maintenance made first shaft of valve, but was unsuccessful.
WSR-12079	5/3/2021	The 3B BSW DD Was	sher is puffing from an open hatch door.
First Attempt to	Repair must be	5 Days from	
completed by:		Inspection Date	Not Applicable if no leaks were found.
		15 Days from	
Repairs must b	e completed by:	Inspection Date	Not Applicable if no leaks were found.

This report provides a summary of leaks and defects found during the Annual Method 21 Testing, Negative-Pressure Certification, and Visual inspection of the closed-vent and condensate collection systems and complies with the record keeping requirements of 63.454(b)(1-5).

The facility must initiate repairs to any defects within five (5) calendar days from this inspection and the defects must be repaired within fifteen (15) calendar days of the inspection. If the leak or defect requires the system to be shutdown in order to make repairs, or more emissions would occur from attempting the repair than delaying the repair, then the repairs may be delayed until the next process unit shutdown. A report must be supplied with the repair date and associated information, or the reason for the delay if the repairs are not completed within the 15-day period. These response requirements are specific to 40 CFR 63, specifically 63.453(k)(6), 63.453(l)(3), and 63.964(b)(1-2). Documentation of all repair attempts made and any leaks/defects requiring a process unit shutdown must be completed according to 63.454(b)(6-11).

I certify that the results of the Annual Method 21 Testing, Negative-Pressure Certification, and Visual inspection are accurate and complete to the best of my knowledge.

Inspector Name: Josh Howard

Signature:

Josh Housed

Daily Calibration Sheet

ENVIRONMENTA L³⁶⁰

Name:

Josh Howard

Company: Environmental 360, Inc.

Date:

Time:

5/4/2021 9.26AM Client Name: New Indy Containerboard Closed-Vent and Condensate-Collection Systems Catawon Method 21 Testing

Actual Value:

20 1

506

9989

VOC Analyzer Model #: TVA 2020 - A2S1B1 VOC Analyzer Serial #: 20205000799

304-401906627-1

Lot#:

Zero Gas Concentration: Zero Grade Air Span Gas Concentration: 500 PPM Methane Span Gas Concentration: <10,000 PPM Methane

9/24/24 5/01/24 11/20/24

Expiration Date:

304 -401804749- 1 304-401969514-1 Cylinder calibration gases must be analyzed and certified by the manufacturer within 2% accuracy.

-2 .	Reading	Actual Value	Precision (%)	The Calibration Precision must not have variability
500 PPM Methane Calibration Precision 1:	499	506	(greater than 10%.
500 PPM Methane Calibration Precision 2:	498	506	2	1
500 PPM Methane Calibration Precision 3:	497	506	2	
500 PPM Methane Calibration Precision 1 w/ Tubing:	483	206	5	
500 PPM Methane Calibration Precision 2 w/ Tubing:	489	506	3	
500 PPM Methane Calibration Precision 3 w/ Tubing:	488	506	4	
<10,000 PPM Methane Calibration Precision 1:	9993	9989	0	
<10,000 PPM Methane Calibration Precision 2:	9983	9988	0	
<10,000 PPM Methane Calibration Precision 3:	9-784	9989	Ĩ	
<10,000 PPM Methane Calibration Precision 1 w/ Tubing:	9964	9989	0	
<10,000 PPM Methane Calibration Precision 2 w/ Tubing:	9950	9989	0]
<10,000 PPM Methane Calibration Precision 3 w/ Tubing:	9996	9989	D]

Response Factor:

Response Time:

Response Time with 20 Ft. Extension Tubing:

8 Sec

3 Sec

Calibration Check: 481 506 =5 % Calibration Check Time: 6:39 Pm

Comments:

The Response Factor must not be greater than 10.

The Response Time must not be greater than 30 seconds. All probes and extensions used during the testing must be attached while measuring the response time.

I certify that calibration occurred prior to use and that all regulations and requirements were met. ki

Signed:

	10001
	ΞŒ
	I or I
1000 1000 1000	Yes
	1
$\sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n$	7
10000 10000 <td< td=""><td>~</td></td<>	~
7 7	7
² <td>7</td>	7
1000 MV 1100 MV 1110 MV 1110 MV 1110 MV 1110 MV 1110 MV 1111	~
1000 MX 1110 MX 1111	~,
10001 11 10001 11 10001 11 10001 11 10001 11 11001 0 11101 1 11101	~
10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10004 1001 10055 1001 10056 1001 10057 1001 10058 1001 10059 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001 10050 1001	,
10001 10001 10001 10002 0.001 10001 10003 0.001 10001 10003 0.001 10001 10003 0.001 10001 10003 0.001 10001 10003 0.001 10001 10004 0.001 10011 10005 0.001 10011 10005 0.001 10011 10005 0.001 10011 10005 0.001 1001 10005 0.001 1001 10005 0.001 1001 10005 0.001 1001 10005 0.001 1001 10005 0.001 1001 1005 0.001 1001 1005 0.001 1001 1005 0.001 1001 1005 0.001 1001 1005 0.001 1001 1005 0.001 1001 1005 0.001 1001 1005 0.001 1001 <t< td=""><td>2</td></t<>	2
10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10003 1001 10004 1001 10005 1001 10005 1001 10005 1001 10005 1001 11005 1001 11005 1001 11005 1001 11005 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001 11105 1001	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	>
1006 M 1109 M 1110 M 1111 M <td< td=""><td>. ></td></td<>	. >
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	٨.
1008 MV 1100 0 1100 0 1100 0 1100 0 1110 0 1110 0 1110 0 1110 0 1110 0 1110 0 1111 1111 <	*
1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1110	7
1100 0 1100 0 1100 0 1110 0 1110 0 1110 0 1110 0 1110 0 1110 0 1110 0 1111 1111 </td <td>X</td>	X
1100 1100 1100 1100 1100 1100 1100 1110 1100 1100 1100 1100 1100 1100 1100	>
1103 1103 1 1103 1 1 1103 1 1 1103 1 1 1113 1 1 <td>2</td>	2
1110 1100 1110 1100 1100 1100	
1110 1110 1110 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111	~
1105 1106 1107 1108 1119 1	>
1100 1100 1100 1110 1110 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111	
1100 1 1110 1 1110 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 1 1112 1 1112 1 1112 1 1112 1 1113 1 1113 1 1113 1 1113 1 1113 1 1113 1 1113 1 1113 1 1114 1 1114 1 1114 1 <td< td=""><td>٨,</td></td<>	٨,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1110 1110 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1112	
11109 11109 1111 11119 111	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1111 1 1113 1113 1114 1115 1115 MW 11115 MW 11115 MW 11115 MW 11116 G 11117 G 11118 G 11119 G 11120 CV 11121 G 11223 G 11231 G 11232 G 11233 G 11234 G 11235 G 11236 G 11237 G 11238 G 11239 MW 11231 G 11233 MW 11234 G 11235 G 11239 MW 11339 MW 11339 MW 11339 MW 11339 MW 11330 MW 11331 MW 11332 MW 113	
1113 1113	7-
1113 1116 1117 1118 1119 1119 1119 1123 112 112	. ,
1113 MV 1116 MV 1116 MV 1111 G 1112 CV 1112 CV 1112 CV 1112 CV 1112 CV 1120 CV 1121 CV 1123 C 1123 C 1123 C 1123 C 1123 C 1124 C 1125 C 1126 C 1127 C 1128 C 1129 C 1120 C 1121 C 1123 C 1123 C 1133 C 1133 C 1133 C 1133 C 1134 MV 1135 C 1144 MV 1145 MV 1144 MV 1145 MV	~
1115 MW 1117 G MW 1118 G MW 1119 G G 1119 G G 1112 G G 1123 G G 1124 T G 1125 G G 1126 G G 1276	1.1
1115 6 1116 M 1118 6 1119 0 1110 0	7.
1117 6 1118 6 1119 6 1112 6 1112 6 1112 6 1112 6 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1112 7 1113 7 1113 7 1113 7 1113 7 1113 7 1113 7 1133 7 1143 7 1143 7 1143 7 1143 7 1143 7 1143 7 1143 7 1143 7 1143 7 1143	1
1118 G 1118 G 11120 CV 1120 CV 11221 G 11213 G 1 1121 G 1	-
1110 6 1121 CV 1121 CV 1123 7 1123 7 1123 7 1123 7 1123 7 1123 7 1124 7 1125 6 1126 7 1127 7 1128 7 1128 7 1129 7 1128 7 1129 7 1131 7 1132 7 1133 7 1133 7 1133 7 1133 7 1133 7 1133 7 1133 7 1134 7 1135 7 1135 7 1135 7 1135 7 1135 7 1136 7 1135 7 1136 7 1137 7 1138 7 1139 7 1131 7 1132 7 1133 7 1134	~
1120 MV 1121 GV 1123 GV 1125 G 1126 T 1126 T 1126 T 1126 T 1127 C 1126 T 1126 T 1126 T 1127 T 1126 T 1127 T 1128 C 1139 MV 1133 T 1133 T 1133 T 1133 T 1133 T 1134 MV 1135 G 1136 T 1137 T 1138 MV 1139 MV 1140 MV 1141 MV 1143 MV 1143 T 1143 T 1144 T 1145 T 1145 T 1145 T	>
1121 CV 1122 C 1123 T 1125 G 1126 T 1126 T 1127 T 1126 T 1128 T 1126 T 1128 T 1126 T 1128 T 1126 T 1128 T 1126 T 1129 T 1126 T 1129 T 1133 K 1133 T 1133 T 1133 T 1133 K 1133 T K K 1133 T K 1133 T K 1133 T K 1133 T K 1133 K K 1134 M K 1143 M K 1144 M 1145 K 1146 K 1147 K 1148 T 1149 K 1141 K 1142 K 1143 K 1144 K	
1122 G 1123 T 1125 T 1125 T 1126 T 1127 T 1128 T 1129 T 1129 T 1129 T 1129 T 1129 T 1129 T 1131 CV 1132 MV 1133 T 1133 T 1133 T 1133 T 1134 MV 1133 T 1134 MV 1133 T 1134 MV 1135 G 1136 M 1137 MV 1138 T 1138 T 1133 T 1134 MV 1135 K 1136 MV 1137 L 1138 T 1139 K 1130 MV 1131 K 1132 L 1132 L 1132 L	.,
1123 1 1126 1 1126 1 1126 1 1127 1 1128 1 1129 1 1129 1 1129 1 1129 1 1129 1 1129 1 1131 1 1133 1 1133 1 1133 1 1133 1 1133 1 1133 1 1133 1 1133 1 1133 1 1134 MV 1135 MV 1135 MV 1135 MV 1143 MV 1143 MV 1143 MV 1144 MV 1145 M	,
1126 1 1128 1 1128 1 1128 1 1128 1 1129 1 1129 1 1129 1 1129 1 1129 1 1130 1 1131 1 1133 M 1134 M 1135 M 1134 M 1135 M 1136 M 1136 M 1136 M 1136 M 1137 M 1138 M 1141 M 1143 M 1144 M 1145 M 1145 M 1145 M	>
1126 1 1126 1 1126 1 1126 1 1128 1 1129 1 1131 1 1133 1 1133 1 1133 1 1133 1 1133 1 1133 1 1133 1 1135 1 1135 1 1136 1 1138 1 1138 1 1140 MV 1143 MV 1144 MV 1145 1 1145 1 1145 1 1145 1 1145 1 1145 1 1145 1	2
1125 T 1127 T 1129 T 1129 T 1129 T 1130 T 1131 CV 1133 T 1134 MV 1133 T 1141 MV 1143 MV 1144 T 1145 T 1145 T 1145 T 1145 T 1145 T	IN
1126 T 1128 CT 1128 CT 1128 CT 1130 T 1131 CV 1133 MV 1133 MV 1133 MV 1135 G 1135 G 1138 MV 1138 MV 1138 MV 1141 MV 1141 MV 1142 MV 1143 MV 1143 MV 1143 MV 1144 MV 1145 CV 1145 CV 1145 CV 1146 T 1146 T 1146 T 1146 T 1147 MV 1148 CV 1148 CV 11	2
1127 T 1129 T 1130 T 1131 CV 1133 MV 1133 MV 1133 P 1134 MV 1139 MV 1139 MV 1139 MV 1139 MV 1140 MV 1141 MV 1141 MV 1141 MV 1143 MV 1143 MV 1143 MV 1144 MV 1144 MV 1144 MV 1145 T 1146 T 1148 CV 1148 CV 1149 MV 1148 CV 1149 MV 1148 CV 1149 MV 1148 CV 1149 MV 1148 CV 1149 MV 1148 CV 1149 MV 1148 CV 1149 MV 1149 MV 1140 MV 1141 MV 1141 MV 1141 MV 1141 MV 1142 MV 1142 MV 1143 MV 1144 MV 1144 MV 1144 MV 1144 MV 1145 CV 1146 T 1146 T 1147 MV 1148 CV 1148 CV 114	- 7
1128 CT 1129 T 1130 CV 1131 CV 1133 MV 1133 P 1133 P 1134 P 1135 P 11	-
1129 T 11310 C 11311 C 11312 MV 11331 CV 11335 P 11336 F 11337 T 11338 P 11336 F 11347 MV 11338 T 11347 MV 1138 MV 11430 MV 11441 MV 11443 T 11443 MV 11443 MV 11443 MV 11443 T 11443 T 11443 T 11443 T 11443 T 11444 T 11445 T 11445 T 11445 T 11445 T 11445 T 11444 T 11445 T 1144	
1130 T 1131 CV 1133 MV 1133 MV 1135 F 1136 F 1137 T 1138 MV 1139 MV 1143 MV 1143 MV 1143 MV 1143 MV 1143 MV 1145 T 1145 T 1145 L	
1131 CV 1131 CV 1133 T 1133 T 1133 1133 P 1136 G	>
1132 MV 1133 MV 1135 P 1135 P 1135 P 1136 G 1136 MV 1137 T 1139 MV 1140 MV 1141 MV 1143 MV 1143 MV 1143 MV 1143 MV 1143 CV 1146 T 1148 CV 1148 CV 1148 CV 1148 CV 1149 CV 1149 CV 1149 CV 1140 CV	-
1133 T 1 1134 Mv 1 1135 F 1 1136 G 1 1137 T 1 1136 G 1 1137 T 1 1138 T 1 1139 Mv 1 1139 Mv 1 1140 Mv 1 1141 Mv 1 1143 Mv 1 1143 Mv 1 1144 Mv 1 1145 T 1 1145 V V 1145 V V 1145 V V 1145 V V 1150 Mv V	7
1134 1135 1135 1135 1136 1138 1139 1140 1141 1142 1143 1143 1143 1143 1143 1144 1143 1144 1144 1145 1150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>
1135 G 1137 T 1138 T 1138 T 1138 MV 1140 MV 1141 MV 1142 MV 1143 MV 1143 MV 1143 MV 1144 MV 1143 MV 1145 T 1146 T 1146 T 1147 V 1147 V 1148 CV 1148 CV 1148 CV 1149 V 1149 V 1140 V 1140 V 1140 V 1140 V 1141 V 1141 V 1141 V 1142 V 1142 V 1141 V 1151 V 11	. ,
1135 G 1137 T 1139 T 1139 MV 1140 MV 1141 MV 1142 MV 1143 MV 1143 MV 1145 T 1146 T 1146 T 1146 T 1146 T 1146 V 1147 MV 1148 CV 1149 CV 1149 CV 1150 MV 1151 CV	~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~
1138 T 1139 MV 1140 MV 1141 MV 1143 MV 1143 MV 1145 T 1145 T 1146 T 1146 T 1146 T 1146 T 1147 MV 1148 CV 1148 CV 1148 CV 1148 CV 1149 CV 1149 CV 1149 CV 1140 T 1140 T 1150 T 1	,
1139 MV 1140 MV 1140 MV MV 1141 1143 MV M 1143 1143 MV MV M 1143 MV M 1143 1143 MV M M 1143 MV M 1143 1145 T MV M 1147 MV M M 1148 CV M M 1143 V M M 1143 V M M 1143 CV M M 1150 V V V	
1140 MV 1140 1141 MV 1142 1142 MV 1143 1145 T 1146 1146 T 1146 1145 T 1146 1146 T 1146 1147 MV 1146 1148 CV 1148 1149 MV 1149 1140 T 1148 1143 CV 1149 1150 MV 1150 1151 CV 1151	
11410 MV MV 1142 MV MV 1143 MV MV 1143 MV MV 1144 T MV 1145 T Y 1146 T Y 1148 CV Y 1148 CV Y 1149 T Y 1148 CV Y 1150 MV Y	>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>
1146 T 1147 MV 1148 CV 1148 CV 1150 MV 1150 V 1151 CV 1152 L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7
1147 MV 1148 CV 1149 T 1150 MV 1151 CV 1152 L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>
1149 T 1150 MV 1151 CV W	7
1150 MV V	
γ 1152 CV WW 1 7	7

12			4022	4001 EaO Combination	-4000 🕂 🚺 Boiler				٤		12/10								7	13	C ON	4012 E3 Combination	4011 + Boiler				Rev. Date	Figure 4
11:34AC	R6-0			4006 4003 E	_				J 11:39A	U	180					×	1	4015	/ II - 6 /	4016	P- T- T-	4017 4014 E	0				ard – Catawba Mill	Testing Diagrams VHC Incineration
Stert		4010 -	THE	4009 4008					15								1	PT- 4021	•	FA-4018	T. P.	4020 4019					New Indy Containerbo	LDAR Inspection and Combination Boiler L
			LVHCs from TRS Scrubber Platform	(Fig. 5)																LVHCs from TRS	Scrubber Platform (Fig. 5)						360	
	5	Comments												mutury										1	N N		4	ENVIRON
	11:39.00	Is Component Free of Leaks or Defects?	yes	٢	٨	٢	~	7	7	~	~	~,	-	۲.	~	7	7	۲	~	2	. ,	٢	۲	~	7			
	121	VOC d Reading	C	0	0	0	0	0	0	С	0	9.	-														other Page and ted Equipment	other Page an ed Equipment
	neration 5/4	Backgroun	U	-								,	4	5													To And Indical	From An Indicat
	r LVHC Inci ime:	Pressure (+/-)	+		-	_							7												NB	*		T F
	tion Boile	Tvpe	5	Ð	MV	F	ΡŢ	F	٩	FA	۹.	- 1	Ч	G		M	F	ΡΤ	F	٩	FA	٩	н	ΡŢ	٢		s	ines ck
	Combina Complete	Number	4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022		Vent Gase Condensat	Liquor/Sto Lines Process L

Yes	. >	~	7	7	٢	۲	~	7	~	>,	~	,		۲.,	~	>;		->		~	>	>	~	7	>	7	~	>	Υ.	~	7	~		>	7	~	7	>	~	7	7	٢.				7	~
0	œ	0				0	0.	1		6	5	0	5	0									0				0	0			INCO .	٥	9	0	0												
70	Y	Current	-		_		_	-	-	-										_		_				_	_					_	_				_									(and	N
5	ם לכ	5 S	σ	T	LS	8	8	5	- (0		AN F	-	NW NW	2	2 +	- ;	H B	-	ΡΤ	CKV	M	CTK	U	-	LS	в	8	9	-	U	8	M	E	M	M	٩	F	BP	T	PT	CKV	NW	VIVI VIVI	NN NY	2	; -
5045	5046	5047	5049	5050	5051	5052	5053	5054	202	5056	1505	5058	2000	5061	TONC	2002	conc	5064	2002	5066	5067	5068	5069	5070	5071	5072	5073	5074	5075	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	2000	2030	16005	5003
	Γ		Г																			Τ							2														Т	Т	Τ	5	
	51018		Comments				CMUK									Smuke													Nut culled	Gersen																1/1 e1/ 6/ minuth	A 1000 Land
1.33 200	LAIN/85111	Is Component Free of Leaks	or Defects? Comments	Y.es	>;	~	2 Conde	2	7	۲,	~	۲,	7	٨,	7	Y Smuke		7	7	>	7	λ,	7	٨,		. >	2	~	NO Not collection	700 65563	7	7	٨,	7	٨	7	7	~	7	~	7	7	7		5	2 1/1 C/1 minute	A least
and active inclui	410/ 11 128/14	VOC Free of Leaks	Reading or Defects? Comments	Yes	7,	~	2 Concide		7	۲,	~	λ,	7	λ,	7	Y Smuke		7	7	>	7	٨,	7 5	7	7	7	2	ح •	1255 NU Nut Cullert	7 400 62561	7	2	٨, 2	7 7	۲ 2	2 4	<u>۲</u>	2 V	7	~	7	7	7		2-	1) C/ 1/ C/ L	
child ecit ichild	111/23111 12161C	VOC Free of Leaks	Background Reading or Defects? Comments	7.65	>;	~ ~ ~	2 Concide			٨,	~	λ,	7	λ,	7	Y Smuke		7	7	>	7	λ,		×	7 00	۲. ۲.	2	ح ،	1258 NU Not Cullecti	7 400 6550	2	2	٨, 2	2 4	2 7	2 4	k 2	7	7	~	7	7			2 7	- 11 5/17 17	
	me: SIGICI IIISSINIA	Pressure VOC Free of Leaks	(+/-) Background Reading or Defects? Comments	1	×;	~	2 CMUK		>	λ,	>	λ,	7	λ,	7	Y Smule		~	7	>	×			>	7	2	7	کر ا	100 Not Lollecti	7 400 6561	3 7 2		٨, 2	7	2 7	2 4	K 2	7	2	>		7			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hanna 1181/1 2 - 140-1	
ther Platform	d Date/Time: > 4/ 0/ 1/ 58/ 0/ 4	Pressure VOC Free of Leaks	Type (+/-) Background Reading or Defects? Comments	MV Yes		MV VWV			2	۲, ۲	PT	γ 4	M	Х, 1		T Y Smule		PI	- >	PT V		λ, ,				- I	а 7	→ → =	CV CV Not Culledy	T 7 Yes 64560	PT 7 2	W II	λ, 2 1	PT Z Y	PT 2 Y	RD 2 Y	ME Z Y	CV Z	CV CV	M C		PT V			RD 1 2 4		

																								Sur				and the second s	- And	Mun			Im	mile								ANA COL	CN W MM	111			
Ycs	7 7	7	~	>,	7	~	7	>	> ;;	>	>,	~	~ >	7	3	,	>,	~	~ ~	7	,	7	۲,	7	. ,	7	~	X	~	~ ,	~	14	s 7.	Y. S	٨.	~	~;	>	~	>	7.	>		.,	,	~	-
)							
M	M	TI	L I	- 2	E 0.	FA	٩		- 10	<u></u> +	- 20	A7 +	PT	2 -	- La	ANV		LV NAV		d	. L	PT	G	т	T	0	, K	-)-	- +-	. 0	SE	Т	T	T	U	- 1	Id	VIV.	AM d	2	E	F	PT	MV	MV	- 0	2
6049	6051	6052	6053	6054 6055	6056	6057	6058	6059	6060	Tana	6063	606A	6065	5066	6067	6068	0000	6070	6071	6072	6073	6074	6075	6076	6077	6078	6/09	60709	06/00	6081	6082	6083	6084	6085	6086	6087	6088	6089	0609	1600	2609	6093	6094	6095	9609	6097	6609
	_		Г		Т	Т	Т					1	T	Т	Т	T	Τ	T	T	Т	Т	Т	Г				Т		2	Т	Т	Γ				Т	Т	Т	T	Т	Т	Т	Т	Т	1	2	Т
- we ch		Comments		Simt																								11-11-14	- T6. C. U. 181				Smult								Dawa I	reme			~ . II . CM-	- 264 "0112	
O C D . 11 1 21	Is Component	Free of Leaks or Defects? Comments		Y Smith			7	7	7	~	~,	~	7;		~	7		~	~	~	77	~	7	7		٨,	7	Y 21 - 11 - 14	4 - T6. C - C - 180	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	YUNNY Y		٨,		7	~	~	2	1 × 1 × 1	reme	76	×, *		1 - 264 WOLD	h,
	Is Component	VOC Free of Leaks ind Reading or Defects? Comments		Y Smith	7		7	7	7	7	>,		>;	~	~	~		7	~	>	77	~	7	7		λ,	7	λ μ.	1 - Te. C - 012	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	Y Smult		<u>ک</u>	~	7	~	~	>	1	Kenne	76	7		7 - 264-012	h1
- 1- 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ls Component	Ire VOC Free of Leaks Comments		Y Smith			7	7-	>	>	>-;		~;			~		~	>	>	77		7	7		λ,	7	λ μ. μ.		×,	~	>	Jump V		λ,	~	7	>	~	~	1 1 1	Kreiner	76	7		7 - 204-0118	h.
ratem clark chilo, 11 up Br	late/inite.	Pressure VOC Free of Leaks Comments		Y Sunt				~	>	>	>;		>;;			>			>		777		7	~		×	~	H1-H - J	- The C - 181	~ ~		>	Munk 1		λ,		>					Kemi	× /	×, •			

								The																																							
			-					2v														_																									
Yes	۲;	~	7	7	۲'	7;	~	>,	- 1	> :	~	>	7	~;	2	~	7	2	>	~	,	7	×	>,	-	>	7	~	5,	~	7	7	7	7	7	7	~	.>.	>	>;;	~	~,	7	~ ~	2	5	2
									r	3	7	25	2				•				0	0 <	0 0	, <		0	ø	0																			
									3	0																																					
I	-)	CUMI	5.5	-	-						-	-	-															-												>
đ		۲ d	+	T	Ы	F	MV +	- +	CTV	4		•	20 0	•			9	U	9	M	в	<u>ں</u> ہ		• <u>+</u>	M	9	۲	F	₹ N	- 2	BP	CKV	MV	۲	۲	F	5	= 0	Pi	= 0		F	: 0	0	F	U	8
23	104	20	5	89	69	0		NIG	. I	2 2						1.			- 1														-								1			- 1		m	4
61		6	61	61	619	616	919	010	1919	1010	2313		6160		6170	N/TO	6171	6172	6173	6174	6175	6176	1/10	6179	6180	6181	6182	6183	6184	6186	6187	6188	6189	6190	6191	6192	6193	6194	CCTO C	6196	0013	0619	620	620	620	620	620
61		61 61	10 01 01 01 01 01 01 01 01 01 01 01 01 0	61	615	616	910	610	010	0104	010	0010	616/	0010	6120	0/10	6171	6172	6173	6174	6175	6176	0/10	6179	6180	6181	6182	6183	6184	6186	6187	618	6185	6190	6191	6192	6193	6194	CCTO	6196	1010	WWW 100	44 15 MU 6201	620	620	620	620
5		Comments 61		61	619	616	919	919	919	010	C010	0010	616/	0010	6919	0/10	6171	6172	6173	6174	6175	6176	0213	6/10	6180	6181	6182	6183	6184	6186	6187	6188	6185	6190	6191	6192	6193	6194	CETO CETO	619	1010	No and S AND AND S	E CLEITANE BU 6201	620	620	620	620
19 NACON	s Component	Free of Leaks Comments 61		() ()	۲ (619	۲, ۲ (16			۲ × 1010	1010	COTO X		×.	0010	6919 A			6172	. 7 6173	6174	. 7 6175	۲ _۲ (6176	0213 1/10	6/19	6180		1 y 6182	Y 6183	6184	×	7, 6187	. X 6188	6185	v 6190	V 6191	Y. 6192	619	619		10 619	1010	1 2 MUMM	Y CLUTTICAN 620	(20)		4	620
	Is Component	VOC Free of Leaks Comments 61			γ 615	516 616			1 × 1	1910	× 1010		× 1919	0010				6172	, Y 6173	×	× 6175	۲ (176) ۲ (176)	1/10	6/10	6180	6181	1 y 6182	Y 6183	6184		γ'		6185	v 6190	V 6191	Y. 6192	619	619		619	8013	WU ANN'S / KI	V. Courteries 620	120	620	6 20	620
	ls Component	VOC Free of Leaks Background Reading or Defects? Comments 61			χ 615		210		۲ کار 1919	1910 1			V 010/	0010				6172	(173 c173	× 6174	. 7 6175	× × 6176	0213	6179	6180	6181	1 V 6182	Y 6183	6184	3819 5976	4		6185	V 6190	(619)	<u> </u>	619	619				TO WWW S A K	V CLUTICIAN 620	630	620	6 20	L 20
		Pressure VOC Free of Leaks (+/-) Backaround Reading or Defects? Comments 61			γ 615					2010								6172	6173	6174	6175	4 × 100	2/10	0/10	6180	6181	5182 6182	Y 6183	6184	3819	4		6185	V 100	(619)	6192	619	619				WU ANWS / K	V ELICATION 620		620	620	
		Pressure VOC Free of Leaks 01 Turne (+/-) Background Reading or Defects? 02			G V 615				010	90T0 5	5010 Solution State Stat		G 6167				6171	6 6172	MV 6173	KB 6174	6175	MV 7 6176	0213 9	6/19	6180	6181 6181	SE 7 6182	G 6183	6184		G 618		SF 6185	G 6190	G (19)	TI 6192	MV	MV 6194		019 019	RD COLOR	2019 WW ADW/S/ Ky I		PT 620			

ves	Υ.	2	>,	4	2	۲.	۲	7,7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		۲,	٢	7	7	۲,	۲.	۲.	>	7	7	2	>	2	7	- ,	3	1	7	- 7	7	۲'	7-	. >	٨.	7	۲'	7	21	41	.>	. ,
	1	- 4	20)														0																0	0	0	0	2	a	0	0
	0	0																D																0	0	0	0	0	0	0	0
۱	7	47	rond	1																																					>
U	U	5	CTK	U	MV	U	MV	BP	ر ا	Ы	н	MV	MV	H	Ħ	MV	H	8	F	SJ	9	0	-	- (0 0	0	F	F	U	9	ŋ	ß	т	-	LT	MV	Т	Р	LG	в	F
7040	7041	7042	7044	7045	7046	7047	7048	7049	7050	7052	7053	7054	7055	7056	7057	7058	7059	7060	7061	7062	7063	7064	7065	7066	7068	7069	7070	7071	7072	7073	7074	7075	7076	7077	7078	7079	7080	7081	7082	7083	7084
			T		T		T	Т	Т	T				1	-		-	T	_	-	_	T							-	-		-		-	-						
0.0			Comments										Smerk													Car seal present							I reacher bill			9					
1 200	right of	Is Component Free of Leaks	or Defects? Comments	yes	Υ.	>	~;	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	λ,	7	7	Y Smill	7	7	,7	7	۲,	>	~	7	λ,	7	7,	۲.	7 Car seal present	~	۲.	~	~			Y Indescipit	-	>-	2		۲,		٨,	٧
vor vor	highly come	VOC Free of Leaks	Reading or Defects? Comments	yes	۲.	>	>;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	λ,	7	7	Y' Smure	7	7	7	7	۲,	>	>	~	7	~	7, 7	~	6 7 Car seal present	2	>.	7	>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Y. Incuescipie		>-	~	. ,	٨,	. >	λ,	٨
LOT TE ICITS MD	which s which is the	Is Component VOC Free of Leaks	Background Reading or Defects? Comments	ye5	۲.	>	>;	2	~~~	7	7	λ,	Y Smill	7	7	7	~	λ,	>	2 C	~	7	>	λ, 9	~	G 7 Car seal present	2	>.	~	>	2		Y Inductional		>	~ ~	. >	λ,	. >	٨,	~
man shirts ma	me: Styles in 121418 and	Pressure VOC Free of Leaks	(+/-) Background Reading or Defects? Comments	- yes	7-	>	>	~	~ ~	λ,	7	7	Y' Smuke	~	7	, 7	, ,	λ,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7 00	~ ~	× 0	>	λ, 9	>	6 7 Car seal present	2	>.	~	>			y, Incuescials		>	A A A	. >	7	. >	٨,	\
wer Platform UN S ILU S ICI S WID	id Date/Time: Style	Pressure VOC Free of Leaks	Type (+/-) Background Reading or Defects? Comments	B - γeS	۲- ۱	>				CV CV	NN N	CV	7 Smurke	5	7	WE		λ,	>		× · · · · · · · · · · · · · · · · · · ·		> > >	Х, У ц	MV >>>	MV Gar seal present	MV X				MV V V		T T T T T T T T T T T T T T T T T T T		×		· >	J AW	· >	۲ <u>۲</u>	۲ ۲

						DCUE	F	1	452	- And
urpentine	Cooler and B	low Tank				9037	MV		7	
ompleted Da	ate/Time:	5/3/21	2	A		9038	F		7	
			-	Is Component		9039	Р		>	
Number T	VDe (+/-)	e Background	Reading	or Defects?	Comments	9040	– (~	Snore
0006	1			Ves		9041	، و		2	
ann1				,		9042	a		~	
1000	- 0			,		9043	d		× ,,	
2006	-			,		9044	W		>	
9003	2			~ .		9045	T		~	Smrc
9004	Ŵ			2		9046	Р		٠, ٨	
9005	T			٢	Smuke	9047	9		>	
9006	PT			~		9048	MV		7	
9007	PI			٢		9049	F		7	
9008	RD			7		9050	MV		7	
6006	CV			>		9051	M		λ.	
9010	6			7		9052	Р		۲.	
9011	4			7		9053	MV		7	
9012	FA			7		9054	T		7	Smrr
9013	d			7		9055	RB		7	
9014	AV.					9056	В		7	
9015	-			7		9057	۲		7	
9016	Id			7		9058	٩		>	
9017	I.			>		9059	MV		,	
9018	-			7		9060	-			
9019	DT TQ			7		9061	۵		λ.	
0006	2			. ^		9062	F		>	
070	5 2			γ,		9063	٦		,7	
1706				~		9064	MV		>	
2706	ם פ					9065	Р		X	
9023	L L					9066	8		~	
9024	ME			2		9067	٩		,>	
9025	d					9068	в		. >	
9026	9			~		9069	Т		٢.	
9027	BP			7	monthy/ 1461	9070	PT		7	
9028	U			>		9071	Р		7	
9029	н			>		9072	MV			
9030	F			~		9073	Ρ		7	
9031	Ŧ			7		9074	н		7	
9032	Т			,	>	9075	PRV		7	
9033	MV			F	Car seal present	9076	U	>	~	
9034	WV .			~	IN LANNOW	2206	M	CUM	7	
1000				>		9078	_	NW	7	

N

					1				. 1		a 11			- II.			
													Smuke		To LVHC Header above Turpentine Decante (Fig. 8) To Foul Condensate HVLC Turpentine (Fig. 7)	Rev. Date March 2021	
745	γ1	٨.		, >	- >	٨,	۲,	7	>	Υ.	۲	۲.	7	,	Pr. 10027 0025 M.W. 10026	ard – Catawba Mill	
													>	NB	CV- 10021 10020 T- 10021 T- 10023 T- FA-10024 10022 FA-10024	New Indy Containerbo	
M CV	г	F	ΡT	RD	д	C	L	Т	Ы	FA	Р	MV	г	_	10017 10016 10018 10019 10019	(EO	202
_				~	6	0	1	2	~	+	5	9	7	00			AL
10013	10015	10016	10017	1001	1001	1002	1002	1002	1002	1002	1002	1002	1002	1002	ANA ANA Tools		NWEN
t 10013	Comments 10015	10016	10017	1001	1001	1002	1002	1002	1002	1002	1002	1002	1002	1002	S 13 121 S 13 121 S 13 121 S 13 121 P 00010 00012 0 0013 P 10014 1 10014 1 10016		ENVIRONMENT
Is Component 10013 10014	or Defects? Comments 10015	YCC 10016	1001	γ 1001	1001	γ' 1002	1002 1002	1002	1002	1002	1002	v 1 1002	1002	1002	OS / 3 / 21 OS / 3 / 21 Cooler Cooler 1000 A-1000 A-1000 A-1000 A-1000 A-1000 A-1000 A-1000 A-1000 A-1000 A-1000 A-1001 A-10000 A-1001 A-10000 A-1001 A-1001 A-1001 A-1001 A-1001 A-1001 A-100		ENVIRONMENT
VOC Free of Leaks	Reading or Defects? Comments 10015	Yes 10016	1001	y 1001	1001	γ' 1002	1002	1002	1002	1002	1002	v ¹	1	1002	E.J. II: 07.372 OS 1372 OS 1372 Cooler 1000 P. P. 10012 1000 P. P. 10012 10016 P. P. 10012 10016 P. P. 10012 10014 P. 10012 10016 P. 10012 10016 P. 10012 10016 P. 10016 P. 10012 P. 10016 P. 1001	r Page and Equipment	ENVIRONMENT
VOC Free of Leaks	Background Reading or Defects? Comments 10015	10016	1001	1001E	1001	V	1002	1002	1002	1002	1002	1002	1002	1002	EAU 11:0777 Plantophi	To Another Page and Indicated Equipment	ENVIRONMENT
Pressure VOC Free of Leaks 10014	(+/-) Background Reading or Defects? Comments 10015		1001	1001E	1001	γ 1002	1002	1002	1002	1002	1002	1002 I	1002	1002	ELA IL: 07A OS [372] ^{3rd Floor on Plattoph ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰¹ ¹⁰⁰⁰ ¹⁰⁰¹ ¹⁰⁰⁰ ¹⁰⁰¹¹ ¹⁰⁰¹ ¹⁰}	To Another Page and Indicated Equipment	ENVIRONMENT
Pressure VOC Free of Leaks 10013	Type (+/-) Background Reading or Defects? Comments 10015	RB Yes 10016	TT , 10017	PI Y 10018	P 1001	G Y 1002	P (1002	P 1002	FA 1002	P 1002	P	G 4 1002	P 1002	TT 1002	EAL ILOTATION OS 13721 S" Floor on Turber Gas Party of the floor S" Floor on Turber the floor Turber the floor S" Floor at Turber the floor Turber the floor S" Floor at Turber the floor Turber the floor S" Floor at Handfall Turber the floor Turber	To Another Page and to Indicated Equipment	

	1	Smell									Smr				From HVLC Sources (Fig. 13)		To HVLC Line from	(Fig. 9)	11003	λ				Rev. Date	March 2021	Figure 11
- 46	7 7	× ·	×.	>	~	2	`	>,;		,	5 71	~	>	VA I Y I	m Brown Stock ashers (Fig. 12)			MV-11006	P-11002 H	G-11004		FiltrateTank DD		New Indy Containerboard – Catawba Mill		LUAK Inspection and Testing Diagrams HVLC System at Pulp Mill (1 of 2)
11014 P	11015 MV 11016 P	11017 T	11018 P	AMI GTOTT	T 102011	1 17011	11002 B	11024 MAV	11025 P	11026 MV		11028 P	11029 G	11030 L	L L X	T- 11009	*	Mu	11011 - 中 B-11008	Smort	Δ	ank			ONMENTAL ³⁶⁰	
	Comments				Smere									Smerc	121	work		Citoto		T-11013		Surge Ti	3	ł	ENVIR	
md 82	Is Component Free of Leaks or Defects?	Sar	7	1	7	. 7	7	7	>	2	7,	7	7	٢,	5/50 V	3.2		P-11014	P-11016 4		Washed	▲ T- Storage	Washed Stock Separator			
2:2	VOC														L		L-11030				11019 H	G-11022		ther Page ar		other Page a d Equipmen
of 2) 3 / 2	Background																	MV-	K			Pris-		To Ano Indicat		From And Indicate
ulp Mil (1	Pressure (+/-)	1	4											7				P- 11023	- VV	20				1.444	, i	r r
stem at P d Date/Tin	Type	d	MV	Р	Ŧ	U	Ч	MV	٩	В	- 4	A N	Р	т				NN SSG	► 1-1103	11029	>				S 1	× se
HVLC Sy. Completed	Number	11000	11001	11002	11003	11004	11005	11006	11007	11008	11009	11011	11012	11013				P. 11025		11028 ⁴ -	2 nd Stane	Filtrate		Vent Gases	Condensate	Liquor/stoc Lines Process Lir

Pulp Mill BSV	Vs	L	111	-	50.0	21				-		
Completed D	ate/Time:	2	210		5.0		12124	MV	1		705	
	Pre	ssure		VOC	Free of Leaks		12125	9	1		2	
Number T	ype (+	+/-) Backg	ground F	Reading	or Defects?	Comments	12126	9			1	
12081	В	1			465		12127	ВР			۲.	
12082	В				7		12128	9			7	
12083	Р				- >		12129	F			7	
12084	8				1		12130	MV			۲'	
12085	Ь				7		12131	9			λ.	
12086	в				7.		12132	8			7	
12087	в				>		12133	F			2	
12088	в				7		12134	MN				
12089	в				. >	1	12135	a			2	
12090	-				7	Smy	DCFCF	- H			-;	C.m.Dr
12091	Id				.,		95121	- 1	-		~	1.000
12092	MV				14		12137	9			~	
12093	В				.,		12138	9			2	
12094	9				۲,		12139	WSR			7	
12095	В				G		12140	В			7	
12096	MV				1		12141	DV			7	
12097	В				- 7		12142	8			2	
12098	G				7		12143	9			7	
12099	MV				. 7		12144	MV			7	
12100	9				z		12145	5			>	
12101	9				ŕ		12146	Ľ			4	
12102	BP				14		17147				>	
12103	9				7		14171				-	
12104	+				λ,		17140	,			7	
12105	MV				7		12149	-			-	
12106	9				N		12150	MV			7	
12107	в				7		12151	9			7	
12108	F				7		12152	В			٢	
12109	MV						12153	Т			٢	
12110	В				>		12154	MV			7	
12111	Т				7	Smer	12155	8			7	
12112	ß				2		12156	Г			7	Smelk
12113	в				7		12157	9			7	
12114	F				7		12158	9			7	
12115	9				7		12159	WSR			7	
12116	5				7		12160	d			4	
12117 \	NSR				1		12161				,7	
12118	Ъ				۲,		10171	0 0				
12119	в				7		12162	RB			7	
12120	в				1		12163	F			-	Smerc
12121	MV				,		12164	MV			7	
12122	в	0			7		12165	Р	×		~	
12123	9	A					12166	_	R N		~	

ulp Mill BS	SWs Dato/T		c In D		ALC: N	5			-		
nanaldulo	חמוב/ ו		1510	5	Is Component		12039	RB	(760	
		Pressure		VOC	Free of Leaks		12040	т	_	,>	Smurc
Number	Type	(-/+)	Background	Reading	or Defects?	Comments	12041	Ч		5	
12000	RB	1			Yes		12042	MV	>	>	
12001	Т	-			7		12043	RB		- ,	/hautur
12002	MV				, ,	Smith	12044	F		>	Visue
12003	MV				7		12045	MV		. >	9
12004	MV				. 7		12046	Ч		>	*
12005	8				7		12047	Ч	(7	
12006	RB				7		12048	RB	-	٢,	
12007	F				7	Smuthe	12049	F		7	Junk
12008	MV				>		12050	Р		λ,	
12009	MV				7		12051	MV		. 7	
12010	MV				,		12052	MV		7	
12011	RB				2		12053	Р		7	
12012	Г				,	Smuth	12054	Т		7	Smart
12013	M				1		12055	9			
12014	RB				17		12056	Ь		٨,	
12015	L				7	Smer	12057	8		7	
12016	MV				>		12058	8		۲,	
12017	Р				~		12059	MV		7	
12018	RB				,		12060	В		γ,	
12019	Т				7		12061	MV		V.I	
12020	Р				7		12062	В		<u>ک</u>	8
12021	MV				7		12063	9		7	
12022	Р				7		12064	M		2	
12023	9				7		12065	g		7	
12024	Р				7		12066	9		,>	
12025	⊢				7	Smarc	12067	ВР		->	
12026	MV				7		12068	U		,	
12027	CON				٢,		12069	н		~	
12028	9						12070	M		2	
12029	RB				7		12071	G		,	
12030	Ъ				- 7		12072	в		_7	
12031	Т				7	Smark	12073	н		.,	
12032	MV				7		12074	DV		7	
12033	CON				7		12075	8		7	
12034	9				7		12076	н		,7	Smith
12035	RB				7		12077	U		7	
12036	٩				. 7		12078	U		2	N 12
12037	Т				٢,	Smoke	12079	WSR		NC.	WITIN
12038	MV	A			7		12080	Р	\rightarrow	ALC .	

Inspection Date: June 7th, 2021

New Indy Containerboard - Catawba Mill 5300 Cureton Ferry Rd. Catawba, SC 29704

2021 Monthly LDAR Inspection Summary Report

Table 1: Visual Inspection Summary Table

Equipment Number	Date	Description of Leak	c or Visual Defect
CTK-1000	6/7/2021	Strip	per Feed Tank CTK-1000 is puffing from top of tank.
MV-1008 (Old ID Number)	6/7/2021	Manual Valve (old Pre-Heater). The v	MV-1008) is located on the foul condensate line at the outlet of No. 1 valve is the bypass valve for the stripped condensate and is dripping from valve stem.
T-3030 (Old ID Number)	6/7/2021	Tap valve (old T-303 Stripper Column. T	30) is located on SOG line near Trim Reflux Condenser and above the The valve is leaking from threaded connection with a VOC reading of 788 ppm.
CV-5026	6/7/2021	Control valve CV-50 to the mist eliminator	26 is located on the LVHC line at outlet of Steam Ejector and prior rs. The valve is not collecting gases.
PT-5032	6/7/2021	Pressure transmitter l rupture disc on steam connection.	PT-5032 is located on LVHC line between mist eliminator and a ejector platform. The transmitter is puffing from threaded
WSR-12079	6/7/2021	The 3B BSW DD W	asher is puffing around hatch door.
First Attempt to be completed by) Repair must /:	5 Days from Inspection Date	Not Applicable if no leaks were found.
Repairs must be by:	e completed	15 Days from Inspection Date	Not Applicable if no leaks were found.

This report provides a summary of leaks and visual defects found during the visual inspection of the closed-vent and condensate-collection systems and complies with the record keeping requirements of 63.454(b)(1-2, 4-5).

The facility must initiate repairs to any defects within five (5) calendar days from this inspection and the defects must be repaired within fifteen (15) calendar days of the inspection. If the leak or defect requires the system to be shutdown in order to make repairs, or more emissions would occur from attempting the repair than delaying the repair, then the repairs may be delayed until the next process unit shutdown. A report must be supplied with the repair date and associated information, or the reason for the delay if the repairs are not completed within the 15-day period. These response requirements are specific to 40 CFR 63, specifically 63.453(k)(6), 63.453(l)(3), and 63.964(b)(1-2). Documentation of all repair attempts made and any leaks/defects requiring a process unit shutdown must be completed according to 63.454(b)(6-11).

I certify that the results of the visual inspection are accurate and complete to the best of my knowledge.

Inspector Name: Josh Howard

Signature:

Josh Howard

Daily Calibra	tion Sheet F N V I R O N M E N T A L ³⁶⁰
Company: Environmental 360, Inc.	Client Name: New Frdy Cotawby Closed-Vent and Condensate-Collection Systems Method 21 Testing
Time: 3:14Pm	VOC Analyzer Model #: TVAZOZO AZSIBN VOC Analyzer Serial #: 2020 15010799
Zero Gas Concentration: Zero Grade Air O() Span Gas Concentration: 500 PPM Methane III / Span Gas Concentration: <10,000 PPM Methane III / Cylinder calibration gases must be analyzed and certified by	$\frac{1}{24} = \frac{1}{24} $
	Reading Actual Precision The Calibration Precision Value (%) must not have variability
500 PPM Methane Calibration Precision 1: 500 PPM Methane Calibration Precision 2: 500 PPM Methane Calibration Precision 3:	505 503 O greater than 10%. 502 503 O
500 PPM Methane Calibration Precision 1 w/ Tubing:	496 503
500 PPM Methane Calibration Precision 2 w/ Tubing: 500 PPM Methane Calibration Precision 3 w/ Tubing:	495 503 Z 496 503 1
<10,000 PPM Methane Calibration Precision 1: <10,000 PPM Methane Calibration Precision 2: <10,000 PPM Methane Calibration Precision 3:	9952 9489 () 9962 9989 () 9983 9989 ()
<10,000 PPM Methane Calibration Precision 1 w/ Tubing: <10,000 PPM Methane Calibration Precision 2 w/ Tubing: <10,000 PPM Methane Calibration Precision 3 w/ Tubing:	9975 9989 () 9990 9989 () 9953 9989 ()
Response Factor:	The Response Factor must <u>not</u> be greater than 10.
Response Time: 3 Sec Response Time with 8 Sec 20 Ft. Extension Tubing: Calibration Check: 488 /S03 = 3% Calibration Check Time: 6 110 800	The Response Time must <u>not</u> be greater than 30 seconds. All probes and extensions used during the testing must be attached while measuring the response time.
Comments:	
I certify that calibration occurred prior to use and that all reg Signed:	ulations and requirements were met.

202	2	1 1	~ ;	7	7	7	1		7	5	5	1	5	5	1 1	, 1,)	, ,,	1	*	, ,,	-	- 7	2 2	27	2		1 1	2	, ,	7		~ 7	7		>	, , , , , , , , , , , , , , , , , , ,	1 1	~	0	>		7	1 1	11 1	× 13	17	- 3	2			- 7	*	, , , , , , , , , , , , , , , , , , ,	- 3		1 1		7		- 7	n
CKV	T BD	EI	T	MV	U	0 0	0 0	9	D E	MV	AM +	RB	RB	RB	MV	U	MV	5 (0 0	0	T	σ	8	5+		. 9	LG LG	T	U	8	-	MV	0	U	U	NV I	9	T	-	5 +		5	T	F	2	MV +	NN	Ь	G	F	Ŧ	M	NM NM		NM	MV	-	т	MV	S	F.	MV
1075	1076	1078	1079	1081	1082	1083	1085	1086	1088	1089	1090	1092	1093	1094	1096	1097	1098	1099	1101	1102	1103	1104	1105	1105	1108	1109	0111	1111	1112	1113	1114	5111	2111	1118	1119	1120	1122	1123	1124	1125	1127	1128	1129	1130	1131	1132	TELL	1135	1136	1137	1138	1139	1140	1141	1143	1144	1145	1146	1147	1148	1149	1150
LXL was		unments	N True																																																											
		Co	Putt.	0 101																																																										
F	Is Component	Free of Leaks or Defects? Co	ATAN RUFA		7	, , 7	7	×	, h	7	× 1	*		~ 7	3		>		1	2	>		5-3	3	1	7	- "- -	>	,	2			P 1	, , , , , , , , , , , , , , , , , , , ,				7	1	5	F	2 17			~ ~ ~	- 17	7	, , , ,			1 1	,		7	1	~	1	7	~		2	- 7
17. 121	VOC Escomponent	d Reading or Defects? Co	ANT NU PUEL	7.7	7	5	7	>	N N	7	× 3	*	- 1	~ 7	3	- >	~		7		>	,	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7		>	,	> 3			6 J.	, " , ''				7	1		1			1 1	~ ~	- 17	~	7			1 1	~		>		>	7		7	1	7	- 7
56/67/2, HEN	VOC Escontonent	Background Reading or Defects? Co	they were		>	5	- 7		~ ~	7	* 3			7	3		~	7	7		>		5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	,		>	,					7				~		7	-	2 17				- 17	~	7			1 1	~		7		~					h ,	- 7
ul Condensate / 67 / 7 ,	Promotion is Component	Pressure (+/-) Background Reading or Defects? Co	ATTNU PUTT		×,	7	- 7	>	~ ~ ~	*	× 3	~		2	3		~	7	7		>		,		1 1			>					· · ·					~		5	-					- 7	~					~		7							h /	
Mater Foul Condensate 67 / 7 (Province Component	Type (+/-) Background Reading or Defects? Co	CTK CTK	B	B	0	- 7	PT PT	U U			MV VW	0 0	PVB			5 0		T	CTK					T I	8	16	a.,		D M	MV	BP				T	MV NV	NM +		5	MV V	MV N			CV CV	CV	M				CKV	BP		7, ·	MV			CKV	MV		T / Y	- 7

	د \	4022	J-4001 EL Combination	G-4000 Boiler							-							2	013	No. 2	J-4012 EE Combination	5-4011 🕂 🕨 Boiler			=	Rev. Date May 2021	Figure 4
	PT- 4010 FA-4007 FA-4007	IRS H H H H H H H H H H H H H H H H H H H	4009 4006 4006 4005 E.			LIL ULPM	12/10/10	0	N 4:Sol >	CALL THUS	and i have			21-1	DA		4021 4015 4015		TRS		40.20 40.19 40.17 40.14 E	o MU	CHERT S. OSPIN		End S. 14 Pro JA	New Indy Containerboard – Catawba Mill	LDAR Inspection and Testing Diagrams Combination Boiler LVHC Incineration
ž	Comments	Nonth Scrubber Plat	(Fig. 5)				Ster		LA LA			7							LVHCs from	Scrubber Plat (Fig. 5)						ENVIRONMENTAL ³⁶⁰	
S-141	Is Component Free of Leaks or Defects?	Ver	-7	7	7	7	7	2	7	7	7	2	>	>	7	>	7	>	- 7	>	- 7	,	5	1		and nent	e and Contraction
6 107 12 1	Background Readin											-		- 3	8	0	5	2	2	5	-	_	- >			To Arrother Page Indicated Equipr	From Another Pag Indicated Equipri
ler LVHC Incin /Time:	Pressure (+/-)												+	-		-	-	-						ANA M			
Combination Boi Completed Date,	Number Type	4000 G	4001 EJ	4002 MV	4003 T	4004 PT	4005 TT	4006 P	4007 FA	4008 P	4009 T	4010 PT	4011 6	4012 EJ	4013 MV	4014 T	4015 PT	4016 TT	4017 P	4018 FA	4019 P	4020 T	4021 PT	4022 L		Vent Gases Condensates	Liquor/Stock — Lines Process Lines —

annino ou									1 1 1 1 A	
ompleted L	Date/Time:	15/10/20	2	~~~~!!!!		5046	g		-	_
				Is Component		5047	CTK		,	A
	Press	sure	Reading	Free of Leaks or Defects?	Comments	5048	S	ind.	>	
	ANV PUL	Richard		1101	Mundh L	5049	U			Marthe
2000				163	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5050	F			-
5002	MV			7		5051	2 ª		11	
5003	MV			٨		2005	0 00		> 1	
5004	T			. ,		5054	. c		1	
5005	Ы			7		5055) ⊢			
5006	ۍ ا			1		5056	. 5		7	
5007	Ŧ			7		5057	8		1	
5008	PT			. 5		5058	M		7	
5009	Р			γ		5059	11		- 7	
5010	MV			11		5060	MV		1	
5011	Η			4		5061	NM		5	
5012	Ц			۲.		EDED	-		7	
5013	Т			4		7000	- +		-	
5014	+			1		conc	-		-	
5015	Id			,		5064	BP		-	
5016	: +			,		5065	F		7	
010	- La			N		5066	PT		5	
1010	1			, ,,		5067	CKV		7	
OTOC	4			1		5068	M		λ,	
5019				1 1		5069	CTK		1	
2020	K.			1		5070	IJ		7	
1705	ם נ			~		5071	F		5	
2022	± ۱					5072	SJ		2	
5023	- 1			~		5073	в		7	
5024	Ы			1		5074	a		7	
5025	I			h l l l		5075	n (11	
5026	S			NC	No + cours	5075	, r		n	
5027	μ			1	5 esser	0/00	- (
5028	РТ			- 7		1/05	ם פ			
5029	MV			, v		8/05	8		-	
5030	۲			* /		6/05	NIN			-
5031	PT			N		5080			;	
5032	PT			NO	NUTES T	1000	NIN		1	
5033	RD			× .	Ancoded	2002	NM			
5034	ME				co v co	2083	2			
5035	C			4		5084	F		>	
5036	CV			14		5085	BP			
5037	MV			*		5086	T		>	
5038	+			7		5087	PT		1	
5039	PT			7		5088	CKV		>	
5040	PT			1		5089	MV			
5041	RD			7	0	5090	MV		7	
5042	ME			7		5091	MV		بر	_
5043	+ CV)	1	*	~	5092	C		>	7
5044	T S	_	_	2		5093	ſ		۲	

4 60	2	Y 1	7	2	7	. ,	7		>		~	7	-	7	5	7	. 1	3	~	7		-	17	7	2	ر	, ,	2		7	ر ر	7	. ,	>	, ,	•)	~	- 3	>	1	14	5		T	7	>
MV	D M	E +		PI	d	FA	d +	-	- 2	H +	- 1	L CV	PT		RD	MV	CV	MV	F	d	T	PT	ר פ		U	SE	T		- 0	SE	T	т	F	U	- 2	PI	MV	4	. F	. F	pT	M	NN	T	U	U
6049	6051	6052	6054	6055	6056	6057	6058	6059	6060	6061	6062	6064	6065	6066	6067	6068	6909	6070	6071	6072	6073	6074 Coar	5075	6077	6078	6079	6079A	60798	6080	6082	6083	6084	6085	6086	6087	6088	0609	1009	6092	6093	6094	6095	9609	6097	6098	6609
			-	-	_	_	_	_	_	_		-	T	-	T	T	T	-				-		-	T				T		T						Т	Т	T	-	Т	T	Т	T		
			Comments																																											
		Is Component Free of Leaks	or Defects? Comments	402	<u>, </u>	1	>		>		7		~ .	7	,		2	4		, (,		2	1	-	~	- J	4	ر	5	,		~		>	. ,	7			3		,,	. ,	5	• 7	X	
	12	VOC Free of Leaks	Reading or Defects? Comments	102	~ ~	~	>		>	>	7		>	7			5 7	7	-			2	3	-	~	- J	4	ر	5	,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · ·	>	. ,	~	7	~	2				5		7	
	12/22/21	VOC Free of Leaks	Background Reading or Defects? Comments	465	~		>	5	>	>	7		~	7				~	~			~	3		~	7	4	٠	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~		,	. ,	~	, ,		3					1	Υ.	
	ime: 0, 1, 67, 12, 1	Pressure VOC Free of Leaks	(+/-) Background Reading or Defects? Comments	465	~		>	7	>	>	7		>	7			5 7	7	- 			~	3		~	7	4	ر	3-	2		~		>	. ,	~			2				~	1	7	7
	d Date/Time: 0 L / C7 / 2 I	Pressure VOC Free of Leaks	Type (+/-) Background Reading or Defects? Comments			PT	MV V		M NM	> F	·						5 7	- La		cv L		PT V	7	RD		MV VW	Ц	۲ (ر	PT T			~		SE		→ →		D 10					, , , , , , , , , , , , , , , , , , ,		TT V	NM N

Fuendrator	Svetom						6153	īd	247	
Completed	Date/Tin	ne: 6	1210				6154	Ь		
		Pressure		VOC	Is Component Free of Leaks		6155	FA	0	
Number	Type	(-/+)	Background	Reading	or Defects?	Comments	6156	а (
6100	0				トレア		6157	- ,	~	
6101	5 0						6150	- ā	77	
6103	0 0				-		6160	F		
6104	U				7		6161	MV	7	
6105	U				5		6162	F	5	
6106	в				>		6163	۲	7	
6107	5						6164	CTK	- 5	
6108	U U				~		6165	Т	7	
6109	5 0						6166	8	- h	
6111	ם פ				7		6167	В	~	
6112	0				7		6168	9		
6113	0				5		6169	۲	7	
6114	F				,		6170	LS	- 7	
6115	σ				- 5		6171	9	Υ.	
6116	U				2		6172	9	<u>را</u>	
6117	M				. ,		6173	9	1	
6118	RB				>		6174	MV		
6119	¥						6175	В	, v	
6120	0				~		6176	ŋ	. 5	
6121	AN (6177	F	7	
2719	5				,		6178	8		
6124					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6179	LT	٨,	
6125	M				1		6180	MV	4	
6126	0				7		6181	g	Υ.	
6127	SE						6182	Т	7	
6128	9				5		6183	F	~	
6129	M				. ,		6184	MV		
6130	5				~		6185	T	~	
6131	M						6186	MV	, L	
6132	5 F						6187	ВР		
VELS	0				2		6188	CKV	<u>ب</u>	
6135	SE				,		6189	MV	,	
6136	U				4		6190	F	,	
6137	9				.,		6191	-	-	
6138	F				7		6192	F		
6139	M				, ,		6193	9	2	
6140	M				-		6194	= (- J	
6141					2		6195	5	~	
5142					-		6196	= (تر	
6144					2		/619/	ס	~	
6145					ر، ۲ ا		6198	۹	1	
6146	- +-				2		6199	F	>	
6147	PT						6200	9	;	
6148	PT				4 4		6201	٩	5	
6149	CV				7		6202	F	,	
6150	F				٨.		6203	ۍ ۱	2	
6151	F I				۲(₁		620F	2 -	14	T
6152	-						CU20	-		

HVLC Blov	ver Platfo	E					7040	9	フ	
Completed	d Date/Til	me:	21212	-			7041	9	7	
					Is Component		7042	IJ	7	
		Pressure			Free of Leaks		7043	U	>	
Number	Type	(-/+)	packground	кеашид	Or Delects	Comments	7044	CTK	,	
2000	8				52		7045	ŋ	7	
7001	F				7		7046	MV	1	
7002	F				>		7047	9	7	
7003	Ы				1		7048	MV	17	
7004	TI				7		7049	ВР	5	
7005	Т				1		7050	9	11	
7006	F				7		7051	Т	Υ.	
7007	C				1 1		7052	Ы	11	
7008	MV				7		7053	T	7 1	
2009	CV						7054	MV	5	
7010	T				7		7055	MV	7	
7011	9				1		7056	H		
7012	Р				>		7057	Ħ	>	
7013	ME				7		7058	M	7	
7014	Т				7		7059	Ħ	7	
7015	9				1 1		7060	В	7	
7016	9				7		7061	F	>	
7017	BP				1 7		7062	LS	7	
7018	5 0				7		7063	9	<u>ـ</u> ر	
7019	+				1		7064	g	ر ر	
UCUL					1 1		7065	F	7	
7071	F				-		7066	T	7	
T201	VVV				7 1		7067	9	2	
2701	ANV.				3	Car coal nracont	7068	9	-	
C2U1	MN				7		7069	9	7	
7025	U				1		7070	- 1	7	
7026	BP				h		1/0/	- 0	7	
7027	9				11		7073	0 0	>	
7028	MV				7		7074	0 0	5	
7029	⊢				1		7075	U		
7030	н				7		7076	F	7	
7031	Ħ				1		7077	т	4	
7032	Ħ				2		7078	LT	- 7	
7033	1				>		7079	MV		
7034	Т				7		7080	т	フ	
7035	MV						7081	Р	>	
7036	Р				*		7082	Pl	,	
7037	9				1		7083	в	5	
7038	Т				2		7084	F	: حر	
7039	MV				<i>y</i>		7085	-l	>	

and Blo	w Tank	121	1	working	9037	MV	5	
	00 00	1	Is Component	1366-1	9038	E d	7 3	
Sure	Background	VOC	Free of Leaks or Defects?	Commonte	9040	Т	7	
-	Rippin		Vec	anothe bi	9041	<u>ن</u> ی	7	
			7		9042	- a		
			1		9044	MV	-	
			2		9045	F	7	
			. ام		9046	ď	-	-
			۲.		9047	9	7	
			1		9048	MV		
			4		9049	щ		
			7		9050	MV		~
			7		9051	MV	ر	
					9052	Р		2
			2		9053	MV	5	
			1		9054	Т		۲
			7		9055	RB	2	
			7		9056	В		1
			3		9057	н	7	
			1		9058	Ь		2
			7		9059	MV	<u>,</u>	
			1		9060	F		>
			7		9061	Р	>	
					9062	F		~
			7		9063	۵	2	
					9064	W	7	
			, ,		9065	d		
			7		9066	8	,	
			5		9067	A I		
					9068	8	-	_
	-			2	9069	T	5	
Y	-	-	~		9070	PT	3	
-	_	-	1		9071	Ъ	-	-
		-	5		9072	MV	ر	
~		_	7		9073	Ь	7	
+		_	2		9074	Т	5	
-		-	, I)		9075	PRV	5	
+		~	1	Car seal present	9076	IJ	ر	
+	>	1	۲.,		9077	MV		X
		-			9078			NU ATA

	10	2	M	F	F	PT	RD	Р	C	г	г	Ы	FA	Р	MV	н	L
	10013	CTOOT	10014	10015	10016	10017	10018	10019	10020	10021	10022	10023	10024	10025	10026	10027	10028
		_	_	_	_	_		_	_								
				Comments													
		Is Component	Free of Leaks	or Defects?	1 er	-5	7	2	7	5	h ,	n	7	フ	7	7	5
-	2		VOC	Reading													
HC Gas Coole	C 107 1	>		Background													
ser and LV	me:		Pressure	(-/+)													
e Conden	d Date/Ti			Type	RB	Ħ	Ы	Р	9	Ь	Р	FA	Р	Р	9	Р	F
Turpentin	Complete			Number	10000	10001	10002	10003	10004	10005	10006	10007	10008	10009	10010	10011	10012

Yer	~	7	5	۲,	7	7	J	۲, ۲	. ,	1	5	4	7	2	*
CV	MV	т	F	PT	RD	Ь	CV	т	Т	PI	FA	Р	MV	т	L
10013	10014	10015	10016	10017	10018	10019	10020	10021	10022	10023	10024	10025	10026	10027	10028

																	From HVLC Sources (Fig. 13) To HVLC Line from Turpentine Cooler (Fig. 9)	Rev. Date Mav 2021	Figure 11
	100	>	, ,		7	- 7	4	,	7	7	-	7	~		7	5	P-11002	rboard – Catawba Mill	and Testing Diagrams at Pulp Mill (1 of 2)
																	From Brown Stack Washers (Fig. 12) MV-11005	New Indy Containe	LDAR Inspection a HVLC System a
c	2	M d	. L	Р	MV	Р	Т	U	Р	MV	d	AN +		2 (-	H-1 008	360	
4 4 0 4 4	11014	11016	11017	11018	11019	11020	11021	11022	11023	11024	11025	11026	11020	02011	67011	11030	+- 600 K	AFNTA	
_			Comments														15 11010 HIDIO T-11873 M	ENVIDON	
	1	Free of Leaks	or Detects?	5	T	~	-	5-5	-	, , ,	2	- 17	,	, 2	7	6	P-1101 P-110 P-1101 P-110 P-1101 P-110 P		<u>></u>
		VOC	Reading														MW- MIOH HIGH MA HIGHIGH MA HI	er Page and Equipment	ier Page an Equipment
of 2)	2110/0		Background														11024	To Anoth Indicated	From Anoth Indicated
ulp Mil (1	le:	Pressure	(-/+)														P-	i i	1 1
stem at P	a Date/ IIn		Type	-	AM d	L +	- 0	0	M	Р	В	н	Р	MV	Р	Т	SSS 1201-1	s	les les
HVLC Sy	Completed		Number	DODTT	10011	71002	11004	11005	11006	11007	11008	11009	11010	11011	11012	11013	P. P. M. M. M. M. M. M. M. M. M. M. M. M. M.	Vent Gases Condensate	Liquor/Stoc Lines Process Lir

Completed	SWS Date/Ti	ime:	hhi				00000	c c		
	· Innn ·	2			Is Component		12039	RB	707	
		Pressure	1	VOC	Free of Leaks		12040	T	7	
Number	Type	(-/+)	Background	Reading	or Defects?	Comments	12041	Р	~	
12000	RB		×		705		12042	MV	- >-	
12001	Т		*		1		12043	RB	ر	
12002	MV				4		12044	Т	~	
12003	MV						12045	MV	>	
12004	MV				X		12046	Р		
12005	В				1 1		12047	Ρ		
12006	RB				*		12048	RB		
12007	F				11		12049	Т	>	
12008	MV				-		12050	Р		
12009	MV				7		12051	MV		
12010	MV				7		12052	MV		
12011	RB				5		12053	Р	5	
12012	н				7		12054	Т	~	
12013	MV				. 1		12055	ß	7	
12014	RB				h		12056	Р	1	
12015	F				5		12057	В	7	
12016	MV				7		12058	В	5	
12017	Ь				7		12059	MV	7	
12018	RB				٢		12060	В	, ,	
12019	н				1)		12061	MV	<u>,</u>	
12020	Ь				7		12062	В	7	
12021	MV						12063	U	7	
12022	Ь		1.0		7		12064	MV	7	
12023	9				-		12065	U	7	
12024	Р				٨		12066	ŋ		
12025	н				r1 1		12067	BP	5	
12026	MV	1.000			N I		12068	IJ	11	
12027	CON				1		12069	Т	5	
12028	9				4		12070	MV	7	
12029	RB				7		12071	U	5	
12030	Р				7		12072	В	,	
12031	F				4		12073	т	2	
12032	MV				5		12074	DV	,	
12033	CON				1		12075	В	2	
12034	IJ				4		12076	т	>	
12035	RB				1		12077	U	ر ۱	
12036	Р				5		12078	U	י - ד	
12037	⊢				7		12079	WSR	2	Kuthing from held
12038	MV				2		12080	d	×	dow

Completed Date/1	Time:	100/ 3	12			VCLC1	AAV		7
	Proseitro		NOC	Is Component Free of Leaks		12125	UNI D		7
Number Type	(-/+)	Background	Reading	or Defects?	Comments	12126	9		7
12081 B				Ler		12127	BP		-ر
12082 B				7		12128	9		7
12083 P				7		12129	Т		, ר
12084 B						12130	MV		- ' '
12085 P				7		12131	9		2
12086 B				7		12132	8		5
12087 B				7		12133	T		5
12088 B				,		12134	MV		
12089 B				5		12135	8		
12090 1				7		12136			
12091 PI				>		75121	- 0		
12092 MV				7		100101			
12093 B				2		12138	2		
12094 G				5		12139	WSR		5
12095 B				7		12140	в		- 7
12096 MV						12141	DV		>
12097 B				5		12142	В		J
12098 G				7		12143	6		4
12099 MV				>		12144	MV		
12100 G		_				12145	G		7
12101 G				>		12146	9		5
12102 BP						12147	BP		2
12103 G				~		12148	U		- 17
12104				~		12149	-		
12105 MV				7		12150	NW		>
D 00171				3		12151	9		7
1210/ B				, I		12152	0 8		7
12109 MV				5		12153	T		7
12110 B				, ,		12154	MV		5
12111 T				۲		12155	В		3
12112 G						12156	F		7
12113 B				>		12157	9		بر
12114 T						12158	9		2
12115 G				7		12159	WSR		7
12116 G						12160	d		7
MSK 1211/ WSK				~		12161	в		- J
4 01171 D				7		12162	RB		7
12120 B				> - 1		12163	Т		7
12121 MV				2		12164	MV		4
12122 B				7		12165	Ь		- J
12123 G				2		12166	-	_	2

					>																	
467	۶. ^{>}	2	~	~	7_	7	5.	~	1		>	* *	~ ~ ~	~ ~ ~	× * * ;		****	× × × × × × ×	× × × × × × ×	× × × × × × ×	× × × × × × × × ×	× × × × × × × × ×
⊢Ŷ	G RB	۵.	¥ ⊦		M	9	WSK	₽₹	٩	H	U	M		5	B B	BP G	M - BP		M P G M I		M P M I H H B B B B B B B B B B B B B B B B B	
13026 13027	13028	13030	13031	13034	13035	13036	13030	13039	13040	13041	13043	13044	13045	日日日日日	13046	13046 13047	13046 13047 13048 13048	13046 13047 13048 13049 13050	13046 13047 13048 13049 13050 13051	13046 13047 13048 13049 13049 13050 13051 13052	13046 13047 13048 13049 13049 13050 13051 13052 13053	13046 13047 13048 13049 13050 13051 13051 13053 13053 13053
		Comments																				
	Free of Leaks		٢	7	,		~	- 7	7;	,	7	7		,	۲ ۶	» , ,,	2777	2 ⁷ 7 ⁷ 7 ² 7 ²	2 ⁷ 7 ⁷ 7 ⁷ 7	2 ⁷ 7 ⁷ 7 ⁷ 7	> ⁷ 7 ⁷ 7 ⁷ 7 ⁷ 7	× ⁷ × ⁷ × ⁷ × ⁷ × ⁷
	VOC	Keauing																				
2		background																				
Co 107 1	Ó																					
ulp Mil (2 of 2)	Pressure	(-/+)									-	-	-	1					× ×	> 4		> % > >
tem at Pulp Mil (2 of 2)	Pressure	Type (+/-)	MV	d	- 0	MV	U	BP	NAV/	NN U	, a	MV	٩		⊢	ك ⊣	¥⊍⊦	- O V O	L Q Q Q L	T WS G W		

12/2/		36-1		L- Forto	No. 4	-5040 EI Combination	Boiler					•		EI-5026		727								-V-	16		+5015 EI Combination	-5014 Boiler				A C MAN				5002	JAL .	10 201		Rev. Date	July 2020	L
Ead SHIPM		PT- 5049 5043	θ- θ-	Pec FA-5045 5044 X MV-		5048 5047 5045 5042 EI					Pl. PT. PT.	5038/ 5038		RS RS		2037 5035 5030 5K	-	12/CO/DD maddering	The ME			рт.	5024 5018	EA.5021 5019 W		om / T. P. P. T. P. T.	✓ 5023 5022 5020 5017 EJ	0			i i	50131 5011 5008 5000		RS RS R RS	bm > 1 T T T	5012 5010 5007 5005	c			New-Indy – Catawba Mill		LDAR Inspection and Testing Diagrams
ents V (, WHC & from	Scrubber Plat	(Fig. 6)								SOGs from T	Scrubber Plat			J	'n						LVHCs from	Scrubber Plat	(FIG. 6)							SOGs from 7	Scrubber Plat	(FIG.0)					NMENTAL ³⁶⁰	
ponent r Leaks fects? Commi んパッハ																																							T		ENVIRO	
Eree of or Def	-			_					-												-			-																	× 1	<u>چ</u>
Background Read																																								ther Page and	ed Equipment	other Page and
6 / 7 / 2 Pressure (+!-)																																								ToAno	Indicati	From And
ne: O Equip. Number	17-MV-0283			000 10 10	37-P1-032								37-MV-0313		37-PT-385	37-11-384				37-PT-383				26-11-034	26-DT-033	000-11-07		26-PT-031				26-MV-0532	2000 AND AND AND	712-11-971				36.01.375	C/C-1/-07			
I Date/Tir Type	M	F	F	- 1	I L	Id	FA	F	ΡΤ	⊢ ā	2 0	, a	MV	+	Id	= 0	FA	Ч	F	Id	<u>ه</u> و	MV	11	E	- 10		T T	PT	F	đ	9 E	MV	F I	s Þ	۵.	FA	٩.	- 10				
Completed Number 5000	5001	5003	5004	5005	5006	5008	5009	5010	5011	5012	5013	5015	5016	5017	5018	5019	5021	5022	5023	5024	5026	5027	5028	5029	5030	TCOC	5035	5036	5037	5038	5040	5041	5042	5043	5045	5046	5047	5040	5050	fent Gases	condensates	iquor/Stock

APPENDIX B - WESTON SOLUTIONS AIR EMISSIONS ANALYSIS REPORT

April 16, 2021

Via Electronic Mail (reecemc@dhec.sc.gov)

Myra Reece Director of Environmental Affairs South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

Re: New-Indy Catawba LLC – Weston Solutions, Inc. Odor Testing Report

Dear Myra:

As we have discussed, New-Indy has been diligently investigating its operations to determine whether the mill could be the source of odor complaints submitted to DHEC, New-Indy and others. In connection with that review, New-Indy has engaged consultants to evaluate New-Indy's processes for potential odor sources. Consistent with our goal of working cooperatively and professionally with DHEC to identify potential sources of these odors, we introduced one of our consultants to DHEC staff last week to facilitate frank discussion regarding the consultant's work and findings. As we noted in our call last Friday, our consultant Weston Solutions, Inc. is an experienced environmental engineering firm that has been performing testing with respect to odor-related issues since the late 1980's. Weston Solutions personnel who conducted the testing and developed the Testing Report have a combined total of 75 years of emission testing experience. Following up on our conversation last Friday, please find enclosed Weston Solutions' Odor Testing Report.

We engaged Weston Solutions to conduct an expedited screening analysis to determine if the mill is generating significant odors. As you will see from the Testing Report, during the periods of March 16 through 18 and 23 through 25, 2021, Weston Solutions observed mill operations, collected samples from a variety of sources in and around the mill and its wastewater treatment operations, and performed testing to determine if the compounds typically associated with the odor described in the complaints (total reduced sulfur, methanol and terpenes) are present at the New-Indy mill in significant concentrations that would cause such intense odors many miles from the mill. Please note that, although New-Indy still is involved with significant construction and ramp-up activities, the consultants' work was conducted while the mill was in operation. As the Testing Report indicates, Weston Solutions did not detect those compounds in any meaningful concentration that would equate to intense odors. To understand the odor complaints better, Weston Solutions personnel also traveled to several off-site locations. As indicated in the Testing Report, Weston Solutions personnel did not detect off-site mill-type odors, but did detect odors from a fire, and sewage-related odors.

While the Weston Solutions report is a helpful and encouraging screening tool, we are continuing to investigate mill operations and off-site sources in an effort to resolve this situation and will provide additional data as it becomes available. For example, using the Weston Test Report as a basis for further analysis, we have engaged TRC to conduct continuous ambient monitoring of compounds typically associated with odor for an extended monitoring period.

Myra Reece April 16, 2021 Page 2

Given the public interest in this topic and our interest in working together to resolve this, we would be grateful if you would include Weston's Test Report on DHEC's website with the other reports on this issue. (https://scdhec.gov/environment/environmental-sites-projects-permits-interest/lancaster-york-counties-odor-investigation).

Sincerely,

ike May

Tony Hobson Vice President of Manufacturing

Enclosure

Weston Solutions, Inc. 1625 Pumphrey Avenue Auburn, Alabama 36832-4303 334-466-5600 ♦ Fax 334-466-5660 www.westonsolutions.com

13 April 2021

Mr. Tony Hobson New-Indy Catawba, LLC 5300 Cureton Ferry Road Catawba, South Carolina 29704

Work Order No. 15730.001.006

Re: New-Indy Catawba Mill Odor Testing

Dear Mr. Hobson:

This letter with attachments constitutes our report of odor testing performed at the New-Indy Catawba, South Carolina facility. In an effort to identify potential sources of odor and the constituents, WESTON set up an EPA Method 16 GC to monitor total reduced sulfur (TRS). Data was collected from a single GC with the capability to move to different locations based on wind direction. No significant or sustained ambient TRS was detected at the mill. Wastewater and condensate samples were also collected and analyzed for methanol and terpenes by the Auburn, Alabama laboratory. Mr. Templeton Simpkins, Mr. Chris Hartsky, and Mr. Jack Short of Weston Solutions, Inc. (WESTON®) performed the testing during 16-18 and 23-25 March 2021 for in-house engineering use by New-Indy personnel. The mill was in operation during sampling.

Along with the TRS, methanol, and terpenes testing, New-Indy personnel requested that WESTON travel to several off-site locations in the local area around the mill to determine if there were odors. On Monday, 22 March 2021, WESTON personnel travelled to Rock Hill, South Carolina and stopped at a Marathon gas station at approximately 18:30. An acrid sulfur dioxide (SO₂) smell was detected that WESTON presumes was from a fire in the area. Haze from the presumed fire was observed by WESTON personnel. Several customers were observed rubbing their eyes and commenting on the smoke-like odor. On Wednesday, 24 March 2021, WESTON personnel travelled to Waxhaw, North Carolina and stopped at 16:35 at the Food Lion parking lot, and no odor was detected. WESTON personnel then drove to Indian Land, South Carolina and arrived at 2024 Drawbridge Drive at 18:30. An odor from a possible sewage leak was detected.

Attachment A to this letter presents the results of the testing in tabular form. Attachments B, C, and D include copies of field, laboratory, and quality control data, respectively.

Total reduced sulfur sampling and analysis were conducted according to EPA Reference Method 16. The methanol and terpenes condensate samples were analyzed by NCASI Method DI/MeOH-94.03 and NIOSH Method 1552, respectively.

We appreciate the opportunity to serve you on this project. If you have any questions or require additional information, please call me at 334-466-5627.

Sincerely,

WESTON SOLUTIONS, INC.

Jampele m

Templeton Simpkins Client Service Manager jb Enclosure

Sincerely,

WESTON SOLUTIONS, INC.

Jatalie Hammonds

Natalie Hammonds Quality Assurance Manager

SAMPLING LOCATIONS FOR TRS TESTING

SAMPLING LOCATIONS FOR TRS TESTING

WESTON SOLUTIONS, INC. (WESTON®) QUALIFICATIONS

Since the company's inception in 1957, WESTON has provided high quality environmental engineering and consulting services to a variety of commercial, industrial and governmental clients. We have been performing emissions testing for more than 40 years and have developed an extensively experienced team of professionals, dedicated to partnering with our clients to achieve their regulatory compliance and operational goals.

WESTON's Auburn Alabama operations has been performing emission testing in support of odor-related compounds including but not limited to speciated sulfur compounds since the late 80's and was instrumental in development of the gas chromatograph (GC) methods such as EPA Method 16 for total reduced sulfur sampling and analysis. Since that time, WESTON has performed hundreds of test programs where we implemented online and continuous GC measurement and analysis for compliance and industrial engineering applications.

Our emissions testing group has over 60 professionals dedicated principally to conducting emissions testing services. Many of our client service managers, project managers, and project leaders have over 20 to 40 years of stack testing experience.

Over the past 40 years, we have performed emissions testing for a wide variety of commercial, industrial, and governmental clients including:

- Power/Utility
- Pulp & Paper
- Chemical
- Wood Products
- Petrochemical/Refineries
- Cement
- Pharmaceutical
- Steel/Specialty Metals
- Manufacturing
- Air Pollution Control Equipment Vendors

WESTON is certified as an Air Emissions Testing Body (AETB) under ASTM D7036 "Standard Practice for Competence of Air Emission Testing Bodies". We have over 25 employees who are certified as Qualified Individuals (QI) in accordance with ASTM D7036 as required by 40 CFR Part 75. Additionally, we have several employees who have received certification as Qualified Stack Testing Individuals (QSTI) from the Source Evaluation Society (SES). QSTI certification is not required by regulation but is an additional step in the assurance of the quality of our staff.

WESTON is a sustaining member of the National Council for Air and Stream Improvement (NCASI) - independent research institute for the forest products industry.

Emission testing services are conducted using resources in three WESTON offices: Auburn, Alabama; West Chester, Pennsylvania; and Houston, Texas.

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC

Weston Solutions, Inc. (WESTON®) Emission Testing Practice – Auburn Operations Accreditation Stipulation

Weston Solutions, Inc.
Louisiana Environmental Laboratory Accreditation Program (LELAP) – Laboratory and Emission Testing Practice
LELAP – 03024
Total Reduced Sulfur, Methanol, and Terpenes Sampling and Analysis
LELAP – 21 December 2001
LELAP – 30 June 2021

These results meet all requirements of TNI unless otherwise specified.

The results within this report relate only to the samples listed in the body of this report.

Data Qualifiers

The following are general reporting notes that are applicable to all WESTON reports, unless otherwise noted.

- NL denotes data that was not from a LELAP accredited method.
- LNL denotes lab results that are not from an accredited LELAP laboratory.
- NN denotes data that was not from The NELAC Institute (TNI) accredited method.
- NNL denotes lab results that are not from an accredited TNI laboratory.
- ED denotes data that is not to be used for compliance purposes and may deviate from approved procedures.
- Q denotes data whose QA/QC check did not fall within the specified range. This data is still considered valid.
- A denotes data that is anomalously high with no explanation for the outlier.
- **BDL** denotes values that were below the limit of detection of the analyzer and 2% of the span gas was used to calculate an emission rate.
- **DF** denotes a dilution factor.
- NAP denotes emission testing performed by personnel from a non-TNI accredited laboratory.
- S denotes analysis that has been subcontracted.
- All values are reported on a "dry" basis, unless otherwise designated as "actual" or "wet" basis.

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC

ATTACHMENT A SUMMARY OF RESULTS

Tables A-1 through A-4 present detailed summaries of the results of the emission testing. Measurement uncertainty is not shown in results but has been taken into consideration during method development. Any differences between the calculated results presented in the appendices and the results reported in the summary tables are due to rounding for presentation.

Date/Time	Location	TRS (ppm)
3/16/21 & 3/17/21 1815-0805	West Side ASB	0.02
3/17/21 0946-1553	West Side ASB	0.02
3/17/21 & 3/18/21 1645-0759	North Clarifier	0.02
3/18/21 1021-1428	Trailer South of Old Guard Shack by Blue Dumpsters	0.03
3/23/21 & 3/24/21 0906-0810	Multiple Locations: East of RB Building in Ally; West Side CB; NW of No. 3 RB Stack; Rail Car Area	0.07
3/24/21 0931-1014	Rail Car Area	0.10
3/24/21 1017-1029	PM Roof Edge	0.00
3/24/21 1031-1043	PM Roof Vent 2	0.00
3/24/21 1058-1540	Multiple Locations: NW Side of Mill	0.03

TABLE A-1 Summary of Ambient TRS Monitoring

Table A-2 presents the results of a TRS purge conducted on various process liquids. The purge analysis was conducted to determine the concentration of TRS in each of the liquid samples.

TABLE A-2SUMMARY OF TRS RESULTS(25 MARCH 2021)

Source ID	H2S (µg/mL)	MeSH (µg/mL)	DMS (µg/mL)	DMDS (µg/mL)	TRS as S (μg/mL)
Stripper Feed	48.8	9.3	11.7	6.1	62.2
Acid Sewer	0.13	< 0.07	< 0.06	0.20	0.26
Clarifier Overflow	0.25	< 0.1	1.2	0.57	1.24
ASB Effluent	0.20	< 0.1	< 0.08	< 0.06	0.18
ASB Influent	0.10	< 0.06	0.65	0.23	0.58
Screw Press Filtrate	0.14	< 0.05	< 0.04	< 0.03	0.13
PM3 Whitewater	0.04	< 0.05	0.18	< 0.03	0.13

Table A-3 presents the results of the methanol analysis conducted on various wastewater samples collected during the test program. The samples were prepared and analyzed in accordance with NCASI Method DI/MeOH-94.03.

Source ID	Concentration (µg/mL)
No. 3 Foul Condensate	7,170
No. 3 Combined Condensate	1,210
No. 2 Foul Condensate	2,320
No. 2 Combined Condensate	188
No. 2 Condenser Condensate	1,590
No. 1 Old Condensate	1,340
No. 1 Foul Condensate	688
No. 1 Combined Condensate	103
No. 1 Auxiliary Condensate	2,510
M52-0453 Combined Condensate	539
M52-0432 HVLC Condensate	160
Stripper Feed Tank	1,860
Acid Sewer	43.8
Clarifier Overflow	185
ASB Effluent	49.4
ASB Influent	117
Screw Press Filtrate	54.1
PM3 Whitewater	14.5

 TABLE A-3
 Summary of Methanol Laboratory Results

Table A-4 presents the results of the terpenes analysis conducted on various wastewater samples collected during the test program. The samples were prepared and analyzed in accordance with NCASI Method 1552.

Source ID	Total Concentration (μg/mL)
No. 3 Foul Condensate	6011
No. 3 Combined Condensate	229
No. 2 Foul Condensate	196
No. 2 Combined Condensate	127
No. 2 Condenser Condensate	516
No. 1 Old Condensate	265
No. 1 Foul Condensate	132
No. 1 Combined Condensate	142
No. 1 Auxiliary Condensate	422
M52-0453 Combined Condensate	166
M52-0432 HVLC Condensate	62.0
Stripper Feed Tank	2,396
Acid Sewer	29.1

 TABLE A-4

 Summary of Terpenes Laboratory Results

ATTACHMENT B FIELD DATA

ATTACHMENT B

TOTAL REDUCED SULFUR

ATTACHMENT B

16-17 MARCH 2021

RUN SUMMARY

Number 1

Client: New Indy Location: Catawba, SC Source:

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 16 Mar 2021

Start Time 18:15 End Time 08:05

Average Measured TRS Conc. 0.02 ppm Recovery Missing

Number 1

Method 16

Calibration 1

Client: New Indy Location: Catawba, SC Source:

Project Number: 15730.001.006 Operator: T. Simpkins Date: 16 Mar 2021

		H ₂ S		Me	SH	DMS		D	NDS	TRS	
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
					West Sid	le ASB					Ċ.
	18:15	3	0.04	<2	<0.025	<2	<0.035	2	0.01	0.07	
	18:18	3	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
	18:21	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	18:24	3	0.04	<2	<0.025	<2	<0.035	4	0.01	0.07	
	18:27	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	18:30	6	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
	18:33	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	18:36	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	18:39	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	18:42	2	0.04	<2	<0.025	<2	<0.035	5	0.02	0.07	
	18:45	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	18:48	<2	<0.035	<2	<0.025	<2	<0.035	2	0.01	0.02	
	18:51	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	18:54	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	an marana
an New York	18:57	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:00	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
	19:03	6	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
	19:06	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:09	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:12	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:15	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:18	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:21	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:24	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:27	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
	19:30	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:33	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:36	2	0.04	<2	<0.025	<2	<0.035	3	0.01	0.06	
	19:39	2	0.03	<2	<0.025	<2	<0.035	<2	<0.009	0.03	
	19: 42	4	0.05	<2	<0.025	4	0.05	<2	<0.009	0.10	•
	19:45	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:48	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	19:51	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:54	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	19:57	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	20:00	<2	<0.035	<2	<0.025	<2	<0.035	4	0.01	0.03	
	20:03	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	20:06	<2	<0.035	<2	<0.025	<2	<0.035	<2	< 0.009	-	
	20:09	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	

RUN DATA Number 1

Client: New Location: Cata Source:	Method 16 Operator: T. Calibration 1 Date: 16					15730.001 T. Simpkin 16 Mar 202	.006 IS 21			
Timo	ŀ	12 S	Me	eSH	D	MS	DI	IDS	TRS	
, inte	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
20:12	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
20:15	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
20:18	2	0.04	<2	<0.025	4	0.05	<2	<0.009	0.09	
20:21	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
20:24	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
20:28	<2	<0.035	<2	<0.025	5	0.06	<2	<0.009	0.06	
20:31	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	ð.
20:34	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009		
20:37	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
20:40	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009		
20:43	7	0.07	<2	<0.025	<2	<0.035	<2	<0.009	0.07	
20:46	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
20:49	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
20:52	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009		
. 20:55	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
20:58	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	÷.	
21:01	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:04	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:07	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:10	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
21:13	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:16	2	0.04	<2	<0.025	<2	<0.035	5	0.02	0.07	. A.
21:19	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:22	<2	<0.035	<2	<0.025	<2	<0.035	3	0.01	0.02	
21:25	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:28	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:31	5	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
21:34	3	0.04	<2	<0.025	<2	< 0.035	<2	<0.009	0.04	
21:37	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:40	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:43	<2	<0.035	<2	<0.025	<2	<0.035	2	0.01	0.02	
21:46	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:49	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:52	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:55	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
21:58	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
22:01	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	10
22:04	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	71
22:07	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
22:10	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	

141

Number 1

Client: New Location: Catav Source:	Method 16 Calibration 1				Project Number: 15730.001.006 Operator: T. Simpkins Date: 16 Mar 2021					
Time	ł	H₂S	M	eSH	D	MS	D	MDS	TRS	
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
22:13	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009		
22:16	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
22:19	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
22:22	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009		
22:25	3	0.05	<2	<0.025	<2	<0.035	7	0.02	0.09	
. 22:28	5	0.06	<2	<0.025	<2	< 0.035	<2	<0.009	0.06	
22:31	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
22:34	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
22:37	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
22:40	5	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
22:43	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
22:46	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
22:49	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
22:52	5	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
22:55	6	0.06	<2	<0.025	5	0.06	<2	<0.009	0.12	
22:58	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009		
23:01	<2	< 0.035	<2	<0.025	<2	<0.035	3	0.01	0.02	
23:04	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:07	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:10	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
23:13	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:16	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
23:19	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:22	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
23:25	<2	< 0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:28	2	0.04	<2	<0.025	2	0.04	11	0.03	0.13	
23:31	7	0.07	<2	<0.025	3	0.05	<2	<0.009	0.12	
23:34	2	0.04	2	0.03	<2	<0.035	<2	<0.009	0.06	
23:37	4	0.05	<2	<0.025	<2	<0.035	<2	<0.009	0.05	
23:40	8	0.07	<2	<0.025	<2	<0.035	<2	<0.009	0.07	
23:43	4	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
23:46	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:49	9	0.08	<2	<0.025	<2	<0.035	<2	<0.009	0.08	
23:52	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
23:55	5	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.06	
23:58	<2	<0.035	<2	<0.025	5	0.06	<2	<0.009	0.06	
00:01	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
00:04	3	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
00:07	<2	<0.035	<2	<0.025	6	0.06	2	0.01	0.08	
00:10	<2	<0.035	<2	<0.025	3	0.04	<2	<0.009	0.04	

SOLUTIONS

.

RUN DATA

Number 1

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Number: Operator: Date:	15730.001.006 T. Simpkins 16 Mar 2021	
		H₂S	Me	eSH	D	MS	D	MDS	TRS	
Time	e area	ppm	area	ppm	area	ppm	area	ppm	ppm	
00:1:	3 <2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
00.1	6 2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
00:1	9 35	0.18	<2	<0.025	<2	<0.035	<2	<0.009	0.18	
00:2:	2 8	0.07	<2	< 0.025	2	0.04	<2	<0.009	0.11	
00:2	5 3	0.04	<2	< 0.025	2	0.04	<2	<0.009	0.08	
00:20	8 <2	<0.035	<2	< 0.025	5	0.06	<2	<0.009	0.06	
00:20	1 <2	<0.035	<2	< 0.025	<2	< 0.035	<2	<0.009	5. 5	
00:3	4 <2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	
00.3	7 <2	<0.000	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
00.4	0 <2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	
00:4	3 <2	<0.000	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
00:40	6 2	0.04	<2	<0.025	<2	< 0.035	<2	<0.009	0.04	
00:40	9 <2	<0.04	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
00.5	2 <2	<0.000	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
00:54	5 <2	<0.000	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
00.5	8 <2	<0.000	<2	<0.025	<2	<0.035	<2	< 0.009	-	
00.00	1 <2	<0.000	<2	<0.025	<2	<0.035	<2	< 0.009	-	
01:0	1 2	0.000	<2	<0.025	<2	<0.035	<2	< 0.009	0.04	
01.0	T _2	<0.04	<2	<0.025	<2	<0.035	<2	< 0.009	-	
01.0	0 <2	<0.035	<2	<0.020	<2	<0.035	3	0.01	0.02	*
01.10	2 ~2	<0.000	3	0.020	<2	<0.035	<2	<0.009	0.03	
01.1	s <2	<0.000	<2	<0.00	<2	<0.035	<2	< 0.009	-	
01.10		-0.033	<2	<0.020	<2	<0.035	<2	<0.009	0.04	
01.13		<0.07	<2	<0.020	<2	<0.035	<2	< 0.009	-	
01.24	5 2	0.000	<2	<0.020	<2	<0.035	<2	< 0.009	0.04	
01.20	9 Z	0.07	<2	<0.025	<2	<0.035	<2	< 0.009	0.07	
01.20	1 <2	<0.07	<2	<0.020	<2	<0.035	<2	< 0.009	-	
01.3		0.000	<2	<0.020	4	0.05	<2	<0.009	0.09	
, 01.34	+ 2	<0.04	<2	<0.020	<2	<0.035	<2	< 0.009	-	
01.3	0 -2	<0.035	<2	<0.020	<2	<0.035	<2	<0.009	-	
01.40	3 6	0.000	<2	<0.020	<2	<0.035	<2	< 0.009	0.06	
01.4	5 0	<0.00	<2	<0.025	<2	<0.035	<2	<0.009	-	
01.40		-0.033	<2	<0.020	<2	<0.035	<2	<0.009	0.04	
01.43		<0.04	22	<0.020	<2	<0.000	<2	<0.009	-	
01:54		<0.035	<2	<0.025	<2	<0.000	3	0.01	0.02	
01:55		~0.035	~2	<0.020	<2	<0.000	<2		-	250
01:58		~0.035	~2	<0.020	<2	<0.000	<2	<0.000	_	
02:01		<0.035 0.04	~2	<0.020	~2	<0.000	</td <td></td> <td>0.04</td> <td></td>		0.04	
02:04		0.04	~2	~0.020	~2	<0.033	2	0.003	0.08	
02:07	/ 4 0 0	0.00	~2	<0.025	<2	<0.000	<2		-	
UZIII	J ~Z	~0.030	14	~U.UZJ	1	-0.000	~ 2	.0.000		

WAESTON.

.

Number 1

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Operator: T. Simpkins Date: 16 Mar 2021			
	Time	F	l ₂ S	Mo	eSH	D area	MS	DN area	MDS ppm		
		area	ppm	urou	ppm					1.1	
	02:13	<2	<0.035	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
	02:16	<2	<0.035	<2	<0.025	<2	< 0.035	3	0.01	0.02	
	02:19	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	
	02:22	<2	<0.035	<2	<0.025	<2	< 0.035	<2	< 0.009	-	
	02:25	<2	<0.035	<2	<0.025	<2	< 0.035	7	0.02	0.04	
	02:29	<2	<0.035	<2	<0.025	<2	<0.035	<2	< 0.009	-	
	02:32	<2	<0.035	<2	<0.025	<2	<0.035	<2	< 0.009	-	
	02:35	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	02:38	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	02:41	<2	<0.035	<2	<0.025	3	0.04	<2	<0.009	0.04	
	02:44	6	0.07	<2	<0.025	<2	<0.035	<2	<0.009	0.07	
	02:47	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	02:50	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	02:53	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	02:56	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	02:59	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	03:02	2	0.04	<2	<0.025	<2	<0.035	<2	<0.009	0.04	
	03:05	<2	< 0.035	<2	<0.025	<2	< 0.035	3	0.01	0.02	
	03.08	<2	< 0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	
1. 1 1. 1	83:11	25	<0:035	<2	<0:025	<2	<0.035	4	<0.009	a na	
	03.14	<2	< 0.035	<2	<0.025	<2	< 0.035	<2	<0.009		
	03.17	<2	<0.035	<2	< 0.025	<2	< 0.035	<2	<0.009	-	
	03.20	<2	<0.035	<2	< 0.025	<2	< 0.035	<2	<0.009	-	
	03.23	<2	<0.035	<2	< 0.025	<2	< 0.035	<2	<0.009	-	
	03:26	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	
	03.20	3	0.05	<2	<0.025	<2	< 0.035	<2	< 0.009	0.05	
	03.20	<2	<0.00	<2	<0.025	<2	<0.035	<2	< 0.009	**	
	03.32	<2	<0.000	<2	<0.025	<2	<0.035	<2	< 0.009	**	
	03.33	<2	<0.000	7	0.05	<2	<0.035	<2	< 0.009	0.05	
	03.30	~2	<0.035	<2	<0.00	<2	<0.035	4	0.01	0.03	
	03.41	~2	<0.035	<2	<0.020	<2	<0.035	<2	<0.009	-	
	03.44	~2	<0.035	<2	<0.020	<2	<0.035	<2	<0.009	-	
	03.47	~2	<0.035	~2	<0.025	<2	<0.000	<2	<0.000	_	
	03:50	~2	<0.035	~2	<0.025	<2	<0.000	<2	<0.000	0.05	
	03:53	3	0.00	~2	<0.020	<2	<0.000	2	0.01	0.02	
3	03:56	52	<0.030	~2	~0.020	~2	<0.000	<2		-	
	03:59	<2	<0.035	<2	<0.025	~2	<0.030	~2		_	
	04:02	<2	<0.035	<2	<0.025	×2	<0.035 <0.025	~2		_	
	04:05	<2	< 0.035	<2	<0.025	<2	<0.030	~2	<0.009	-	
	04:08	<2	< 0.035	<2	<0.025	<2	<0.035	SZ	<0.009	-	
	04:11	<2	<0.035	<2	< 0.025	<2	<0.035	<2	~0.009	-	

WAESTON.

a,

Number 1

Client: New Indy Location: Catawba, SC 'Source:			Method 16 Calibration 1				Project C	Number: Operator: Date:	15730.001.006 T. Simpkins 16 Mar 2021		
		н	s	Me	esH	D	MS	DI	IDS	TRS	
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	04.14	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	04:17	<2	<0.035	<2	< 0.025	<2	<0.035	<2	<0.009	-	
	04.17	4	0.05	<2	< 0.025	<2	< 0.035	<2	<0.009	0.05	
	04.20	т 2	0.00	<2	<0.025	<2	< 0.035	<2	<0.009	0.04	
	04.25	5	0.06	<2	<0.025	3	0.04	<2	<0.009	0.10	
	04.20	7	0.00	<2	<0.025	<2	< 0.035	<2	<0.009	0.07	
	04.29	5	0.06	<2	<0.025	<2	< 0.035	<2	<0.009	0.06	
	04.32	~?	<0.00	<2	<0.025	<2	< 0.035	<2	<0.009	-	
	04.33	2	0.035	<2	<0.025	<2	< 0.035	<2	<0.009	0.04	
	04.30	2	0.04	<2	<0.020	<2	< 0.035	2	0.01	0.06	
	04:41	<2 <2	<0.04	<2	<0.020	<2	<0.035	<2	< 0.009	-	
2	04.44	~2	<0.035	<2	<0.020	<2	<0.035	<2	< 0.009		
	04.47	~2	~0.055	<2	<0.020	<2	<0.035	<2	< 0.009	0.05	
	04:50	4	<0.035	<2	<0.020	<2	<0.035	<2	< 0.009		
	04:53	~2	<0.035	~2	<0.025	<2	<0.035	<2	< 0.009	-	
	04:50	~2	<0.035	~2	<0.025	<2	<0.035	<2	< 0.009	0.05	
	04:59	3	0.05	~2	<0.025	<2	<0.000	2	0.01	0.02	
	05:02	<2	<0.035	~2	<0.025	<2	<0.000	<2	<0.009	-	e.
	05:05	<2	<0.035	~2	<0.025	<2	<0.000	<2	<0.009	-	
	05:08	<2	<0.035	~2	<0.025	<2	<0.000	<2	<0.009	<u>_</u>	
	05:11	<2	< 0.035	~2	<0.025	<2	<0.000	<2	<0.009	-	
	05:14	<2	< 0.035	<2	<0.025	~2	<0.000	<2	<0.000	0.04	
	05:17	2	0.04	~2	<0.025	~2	<0.035	<2	<0.000	-	
	05:20	<2	< 0.035	<2	<0.025	~2	<0.035	<2	<0.000	-	
	05:23	<2	< 0.035	<2	<0.025	2	0.000	<2	<0.000	0.04	
	05:26	<2	< 0.035	<2	<0.025	-2	<0.04	<2	<0.000	-	
×.	05:29	<2	< 0.035	<2	<0.025	~2	<0.035	3	0.000	0.02	
	05:32	<2	< 0.035	<2	<0.025	~2	<0.035	1	0.01	0.02	
	05:35	<2	< 0.035	<2	<0.025	~2	<0.035	-2		-	
	05:38	<2	< 0.035	<2	<0.025	<2	<0.035	~2		_	
	05:41	<2	<0.035	<2	<0.025	<2	<0.035	~2			
	05:44	<2	< 0.035	<2	<0.025	<2	<0.035	~2		-	
	05:47	<2	<0.035	<2	<0.025	<2	<0.035	~2		0.05	
	05:50	4	0.05	<2	< 0.025	<2	<0.035	~2	<0.009	0.05	×
	05:53	<2	<0.035	<2	< 0.025	<2	<0.035	<2	<0.009	-	
	05:56	<2	<0.035	<2	<0.025	<2	<0.035	<2	~0.009	-	
	05:59	<2	<0.035	<2	< 0.025	<2	<0.035	3	20.000	0.02	
	06:02	<2	<0.035	<2	< 0.025	<2	<0.035	<2	<0.009	158	
	06:05	<2	<0.035	<2	< 0.025	<2	<0.035	<2	<0.009	0.06	
	06:08	6	0.06	<2	<0.025	<2	<0.035	<2	<0.009	0.00	
	06:11	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	

a.

Number 1

C Loca Sou	Client: New Indy Location: Catawba, SC Source:				Methoo Calibrat	d 16 ion 1		Project I C	Number:)perator: Date:	15730.001.006 T. Simpkins 16 Mar 2021	
-		Н	28	Me	SH	D	MS	DN	NDS	TRS	78. S. A.
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	06.14	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	06:17	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	82	
243	06.20	<2	<0.035	<2	<0.025	<2	< 0.035	3	0.01	0.03	
	06.23	3	0.04	<2	< 0.025	<2	< 0.035	<2	<0.009	0.04	
	06:26	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	-	
	06.20	<2	<0.000	<2	<0.025	<2	< 0.035	<2	<0.009	-	
	06.23	~2	<0.000	<2	<0.025	<2	< 0.035	<2	<0.009		
	00.32	2	<0.050	<2	<0.025	<2	<0.035	2	0.01	0.07	
	00.30	-2	<0.03	<2	<0.020	<2	<0.035	<2	<0.009	-	
	00:30	~2	<0.035	<2	<0.020	<2	<0.035	<2	< 0.009	-	
	06:41	<2	<0.035	~2	<0.025	<2	<0.035	3	0.01	0.03	
	06:44	~2	<0.035	~2	<0.025	<2	<0.035	<2	< 0.009	<u> </u>	
	06:47	<2	<0.035	~2	<0.025	<2	<0.000	<2	<0.009	_	
	06:50	<2	<0.035	~2	<0.025	<2	<0.000	<2	<0.009	- <u>-</u>	
	06:53	<2	<0.035	~2	<0.025	<2	<0.000	<2	<0.009	0.04	
	06:56	2	0.04	~2	<0.025	<2	<0.000	<2	<0.009	-	
	06:59	<2	< 0.035	~2	<0.025	~2	<0.000	<2	<0.009	_	
	07:02	<2	< 0.035	~2	<0.025	~2	<0.000	<2	<0.000		
1	07:05	<2	< 0.035	<2	<0.025	~2	<0.000	<2	<0.000	_	
	07:08	<2	< 0.035	<2	<0.025	~2	<0.035	<2	<0.000	0.04	
	07:11	<2	< 0.035	4	0.04	~2	<0.035	<2	<0.000	-	
	07:14	<2	<0.035	<2	<0.025	<2	<0.035	~2		_	
	07:17	<2	< 0.035	<2	<0.025	<2	<0.035	~2	<0.003	_	
	07:20	<2	< 0.035	<2	< 0.025	<2	<0.035	~2	<0.009	-	
	07:23	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	2
	07:26	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	-	
	07:29	<2	<0.035	<2	< 0.025	<2	< 0.035	<2	<0.009	-	
	07:32	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009	0.00	
	07:35	6	0.07	<2	<0.025	<2	< 0.035	2	0.01	0.09	
	07:38	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009		
	07:41	<2	<0.035	<2	<0.025	<2	< 0.035	<2	<0.009		
	07:44	<2	<0.035	<2	<0.025	<2	< 0.035	<2	< 0.009		
	07:47	6	0.06	<2	<0.025	<2	< 0.035	<2	< 0.009	0.06	
	07:50	<2	<0.035	<2	<0.025	<2	<0.035	<2	< 0.009	-	
	07:53	<2	< 0.035	<2	<0.025	<2	<0.035	<2	< 0.009	-	
	07:56	<2	< 0.035	<2	<0.025	<2	<0.035	2	0.01	0.02	
	07:59	<2	< 0.035	<2	<0.025	<2	<0.035	<2	< 0.009		
	08:02	<2	<0.035	<2	<0.025	<2	<0.035	<2	<0.009	9 <u>0</u> 9	
	Average		<0.035		<0.025		<0.035		<0.009	-	

CALIBRATION DATA

Number 1

Client: New Indy Location: Catawba, SC Source:	Me	ethod 16	Project Number: Operator: Date:	15730.001.006 T. Simpkins 15 Mar 2021
Ambien	t Temperature: 72°C	Barometric F	Pressure: 30.20 in. Hg	
Analyto	H ₂ S	MeSH	DMS	DMDS
Rorm Dovice ID	T-53950	33-56671	89-56661	89-56665
Porm Pate nl /min	422	455	306	217
Ref Time sec	19.0	32.5	70.0	125.0
1 Flow = 49 5 ml /Min	8.53 ppm	9.20 ppm	6.18 ppm	4.39 ppm
Time: 13:19		Peak Area	as, mv-sec	
Time: 10.10	32537	39496	20950	58413
	32418	39230	21200	58902
	31825	38696	21077	58586
Avorado Aroa	32260 /	39141 /	21076 /	58634
Average Area	02200 /			
2 Flow = 108 ml /Min	3.92 ppm	4.22 ppm	2.83 ppm	2.01 ppm
Time: 13:46		Peak Are	as, mv-sec	
	8799	12079	5689	18833
	9054	11850	5632	17770
	8930	11712	5606	17267
Average Area	8928 /	11880	5642	17956 /
3 Flow = 263 mL/Min	1.61 ppm	1.73 ppm	1.16 ppm	0.83 ppm
Time: 13:59		Peak Are	as, mv-sec	
	1643	2427	1065	3746
	1726	2386	1071	3552
	1698	2306	1049	3468
Average Area	1689	2373 🦯	1062	3589 /

N

CALIBRATION SUMMARY

Number 1

•

Client: New Indy Location: Catawba, SC Source:		Ν	/lethod 16	Projec	t Number: 15730.001.0 Operator: T. Simpkins Date: 15 Mar 2021	06
	4	2	3			5
H ₂ S	12:10	12:46	13.50			
	9.53	3 92	1.61			
Concentration, ppm	22260	8928	1689			
Area, mv-sec	8 38	4 05	1.58			
Calc. Conc., ppm	-1.8	3.5	-1.6			
% Error	Slope	Intercent	Corr. Coeff.	Min. Area	Det. Lim.	
Calibration Curve	1 7682	2 8763	0.9994	2	0.035	
	1.7002	2.0700				
Mash	1	2	3			
Time	13.19	13:46	13:59			
Concentration nnm	9.20	4.22	1.73			
Area my-sec	39141	11880	2373			
Calc Conc ppm	8.98	4.42	1.69			
% Error	-2.4	4.7	-2.1			42) 42)
Calibration Curve	Slope 1.6811	Intercept 2.9904	Corr. Coeff. 0.9989	Min. Area 2	Det. Lim. 0.025	
DMS	1	2	3			
Time	13:19	13:46	13:59			
Concentration, ppm	6.18	2.83	1.16			
Area, mv-sec	21076	5642	1062			
Calc. Conc., ppm	6.09	2.92	1.15			
% Error	-1.5	2.9	-1.3	Min Aroo	Dot Lim	神经学
Calibration Curve	Slope 1.7909	2.9192	0.9996	2	0.035	
DMDS	1	2	3			
Time	13:19	13:46	13:59			
Concentration, ppm	4.39	2.01	0.83			
Area, mv-sec	58634	17956	3589			
Calc. Conc., ppm	4.28	2.11	0.81			
% Error	-2.5	4.9	-2.2		Dot Lim	
Calibration Curve	Slope 1.6755	Intercept 3.7107	0.9988	2	0.009	

 \mathbb{R}^{2}

2 m

CALIBRATION DATA

Number 2

Client: New Indy Location: Catawba, SC Source:	Me	ethod 16	Project Number: Operator: Date:	15730.001.006 T. Simpkins 17 Mar 2021
Ambien	t Temperature: 72°C	Barometric P	ressure: 30.20 in. Hg	
Analyte	H ₂ S	MeSH	DMS	DMDS
Perm Device ID	T-53950	33-56671	89-56661	89-56665
Perm. Rate. nL/min	422	455	306	217
Ret. Time, sec	19.0	32.5	70.0	125.0
1 Flow = 43.1 mL/Min	9.80 ppm	10.6 ppm	7.09 ppm	5.04 ppm
Time: 08:28		Peak Area	s, mv-sec	
	32885	40065	21703	62655
	32377	40847	22337	64423
	33445	40700	22722	65189
Average Area	32902 /	40537 /	22254 /	64089 /
2 Flow = 91.6 ml /Min	4.61 ppm	4.97 ppm	3.34 ppm	2.37 ppm
Time: 08:45		Peak Area	s, mv-sec	
	10234	12405	6217	19301
	9896	12664	6278	19254
	10029	12369	6218	19511
Average Area	10053	12479	6238	19355
3 Flow = 215 mL/Min	1.96 ppm	2.12 ppm	1.42 ppm	1.01 ppm
Time: 09:10		Peak Area	s, mv-sec	
	2028	2745	1321	4433
	2061	2708	1308	4367
	2026	2706	1300	4291
Average Area	2038	2720 /	1310 🦯	4364 <

CALIBRATION SUMMARY

.

Number 2

Client: New Indy Location: Catawba, SC Source:			Vlethod 16	Projec	ct Number: Operator: Date:	15730.001.006 T. Simpkins 17 Mar 2021
<u> </u>	1	2	3			
Time	08:28	08:45	09:10			
Concentration, ppm	9.80	4.61	1.96			
Area, mv-sec	32902	10053	2038			
Calc. Conc., ppm	9.56	4.83	1.92			
% Error	-2.4	4.7	-2.1		Det Lim	
Calibration Curve	Slope 1.7338	Intercept 2.8171	0.9988	Min. Area 2	0.035	
MeSH	1	2	3			
Time	08:28	08:45	09:10			
Concentration, ppm	10.6	4.97	2.12			
Area, mv-sec	40537	12479	2720			
Calc. Conc., ppm	10.4	5.15	2.08			0
% Error	-1.9	3.6	-1.6			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.6833	2.8984	0.9993	2	0.029	
DMS	1	2	3			
Time	08:28	08:45	09:10			
Concentration, ppm	7.09	3.34	1.42			
Area, mv-sec	22254	6238	1310			
Calc. Conc., ppm	7.01	3.41	1.41			
% Error	-1.1	2.2	-1.0		Det Lim	
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.7640	2.8552	0.9997	Z	0.030	
DMDS	1	2	3			
Time	08:28	08:45	09:10			
Concentration, ppm	5.04	2.37	1.01			
Area, mv-sec	64089	19355	4364			
Calc. Conc., ppm	4.97	2.43	1.00			
% Error	-1.3	2.5	-1.2			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim	
	1.6735	3.6414	0.9996	2	0.010	
5.•)/					em	

ANALYTES AND STANDARDS

Client: New Indy Location: Catawba, SC Source:	Method	16	Project N Op	umber: 15730.001.0 erator: T. Simpkins Date: 15 Mar 202)06 3 1				
Analyte	H₂S	MeSH	DMS	DMDS					
Molecular Weight	34.08	48.11	62.14	94.20					
Retention Time, sec	19.0	32.5	70.0	125.0	э				
Peak Detection Window, sec	3.0	5.0	10.0	10.0					
Minimum Peak Area, mv-sec	2	2	2	2					
Minimum Peak Height, mv	1	1	1	1					
Beginning Peak Width, sec	1.0	1.0	2.0	3.0					
Ending Peak Width, sec	2.0	3.0	4.0	5.0					
Permeation Device ID	T-53950	33-56671	89-56661	89-56665					
Permeation Rate, ng/min	600	913	792	852					
Permeation Rate, nL/min*	422	455	306	217					
Barometric Pressure:	Barometric Pressure: 30.20 in. Hg Ambient Temperature: 72 °F No Oxygen Correction								
*Permeation rates are gravimetrically de	termined by th	e manufacture	er with results	s by weight in ng/mir	า.				
Permeation rates by volume, in nL/min,	are calculated	from the perr	neation rates	by weight as follow	ร:				
Permeation rates by volume, in Hz/Hin, are calculated from the permeation rates by weight and the permeation rates by weight and the permeation rates by weight and the permeation rate by weight and the permeating the permeation rate by weight and the permeating the									
For example, H ₂ S:	[°] For example, H ₂ S:								
PR _{nl} = 600 x (22.4 / 34.08)	PR _{nl} = 600 x (22.4 / 34.08) x [(460 + 72) / 492] x (29.92 / 30.20)								
= 422 nL/min	= 422 nL/min								
To calclate concentrations: C = PR _{nl} / F _d					ŗ				

Where:

.

С	= Concentration, ppmv
DD .	- Permeation Rate by volume

- **PR**_{ni} = Permeation Rate by volume, nL/min F_d = Flow rate of diluent, mL/min

15730.001.006 New-Indy Catawba Odor Testing

18	
	15730.001.006 New-Indy Catawba Odor Testing

INSTRUMENT INFORMATION

. Marta and a star

Client: New Ind Location: Catawb Source:	ly a, SC	Method 16	Project Number: 15730.001.006 Operator: T. Simpkins Date: 15 Mar 2021							
	Program Ver Com	File: C:\Data\TrsDat sion: 2.0, built 15 May 2 outer: DESKTOP-A1IJDC	a1.trs 017 File Version: 2 .0 GT Trailer: 88							
	Analog Input I	Device: Keithley KUSB-3	108 GC Channel: 16							
	Sampling	Rate: 0.050 sec. Da	ta Interval: 0.5 sec.							
	Gas Chroi	matograph: Shimadzu G Detector Range:	C8A Serial No. GC 1 10							
Gases Temperatures, °C Columns										
Pr H ₂ Air Carrier	GasesTemperatures, CColumnPress.FlowpsimL/minColumn: 100Primary: CarbopackH23050Detector: 120Secondary: N/AAir3060Sample Loop: 4"Carrier5030Sample Loop: 4"									
		Injection Cycle)							
Total Le	ngth: 180 sec	Sampling Time: 170 se	ec Load/Backflush Time: 80 sec							
	e onenale en en en e	Default Integration Pa	rameters							
Mini	Signal Thres mum peak area	hold 0.67 mv Peak de 2 mv-sec Minimum pe	ection window ±10 sec eak height 1 mv above baseline							
		Dynacalibrato	r							
		Chamber Temperatur Ambient Temperatur Barometric Pressure 3	e 50.0°C e 72.0°F 0.20 in. Hg							

ATTACHMENT B

17-18 MARCH 2021

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTR.PT.DOC

RUN SUMMARY

Number 1

Client: New Indy Location: Catawba, SC Source:

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 17 Mar 2021

Start Time 09:46 End Time 15:53

Average Measured TRS Conc. 0.02 ppm Recovery Missing

RUN SUMMARY

Number 3

Client: **New Indy** Location: **Catawba, SC** Source:

4

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 17 Mar 2021

Start Time 16:45 End Time 07:59

Average Measured TRS Conc. 0.02 ppm Recovery Missing

Number 1

C Loca ,Soi	Client: New Indy Location: Catawba, SC ,Source:				Method 16 Calibration 1				Project Number: 15730.001.00 Operator: T. Simpkins Date: 17 Mar 2021			
		Н	2 S	Me	∍SH	D	MS	D	IDS	TRS		
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm		
-	09:46	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	09.46	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	09.49	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	09:52	4	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04		
	09:55	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	ш×		
	09:58	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04		
	10:01	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	10:04	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04		
	10:07	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	10:10	2	0.03	<2	<0.024	<2	<0.030	2	0.01	0.05		
	10:13	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	200 G		
2.4	10:16	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:19	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	10:22	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008			
	10:25	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:28	5	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05		
	10:31	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:34	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	H 0		
	10:37	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:41	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:44	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:47	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008			
	10:50	5	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05		
	10:53	6	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05		
	10:56	3	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	10:59	7	0.06	<2	<0.024	<2	<0.030	<2	<0.008	0.06		
	11:02	5	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05		
	11:05	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008			
	11:08	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-		
	11:11	2	0.03	<2	<0.024	<2	< 0.030	<2	<0.008	0.03		
	11:14	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-		
	11:17	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-		
	11:20	<2	<0.029	3	0.03	<2	< 0.030	<2	<0.008	0.03		
	11:23	8	0.06	<2	<0.024	2	0.03	6	0.02	0.13	E.	
	11:26	<2	<0.029	3	0.03	<2	< 0.030	3	0.01	0.05		
	11:29	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-		
	11:32	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-		
	11:35	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008			
	11:38	<2	< 0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-		
	11:41	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		

6

XXESTON.

Number 1

C Loca So	Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Operator: 15730.001.006 Operator: T. Simpkins Date: 17 Mar 2021			
	Time	ł area	H ₂ S	Mo	eSH ppm	D area	MS	DI area			
								-0	10.000	0.00	
	11:44	3	0.03	<2	< 0.024	<2	< 0.030	<2	<0.008	0.03	
i.	11:47	<2	< 0.029	<2	< 0.024	<2	<0.030	<2	<0.000	-	
	11:50	<2	<0.029	<2	< 0.024	<2	<0.030	<2	<0.000	-	
	11:53	<2	<0.029	<2	< 0.024	<2	<0.030	<2	<0.000		
	11:56	<2	<0.029	<2	< 0.024	<2	<0.030	~2		-	
	11:59	<2	< 0.029	<2	< 0.024	<2	<0.030	~2		-	
	12:02	<2	<0.029	<2	< 0.024	<2	<0.030	<2	<0.000	-	
	12:05	<2	<0.029	<2	< 0.024	~2	<0.030	~2		-	
	12:08	<2	<0.029	<2	<0.024	<2	<0.030	~2			
	12:11	<2	<0.029	<2	<0.024	<2	<0.030	~2	<0.000	-	
	12:14	<2	<0.029	<2	< 0.024	<2	<0.030	~2	<0.000	0.04	
	12:17	3	0.04	~2	<0.024	~2	<0.030	~2		0.04	
	12:20	~2	<0.029	~2	<0.024	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0.030	~2	<0.000	0.07	
	12:23	3	0.04	~2	<0.024	-2	<0.03	~2		0.07	
	12:20	3	0.04	~2	<0.024	~2	<0.030	~2		0.04	
	12:29	2	<0.03	~2	<0.024	~2	<0.030	<2		0.00	
	12:32	<2	<0.029	~2	<0.024	~2	<0.030	<2	<0.000	-	
r.	12:30	~2	<0.029	~2	<0.024	~2	<0.030	<2	<0.000	_	
	12:30	~2	<0.029	~2	<0.024	~2	<0.030	<2	<0.000		
	12.41	~2	<0.029	~2	<0.024	<2	<0.030	<2		2	
	12:44	~2	<0.029	~2	<0.024	~2	<0.030	<2		0.06	
	12.47	1	<0.00	~2	<0.024	<2	<0.030	<2	<0.000	0.00	
	12.50	~2	<0.029	~2	<0.024	~2	<0.030	<2	<0.000	_	
	12.00	~2	<0.029	~2	<0.024	<2	<0.030	<2	<0.000		
	12.00	~2	<0.029	~2	<0.024	<2	<0.030	<2	<0.000	_	
	12.09	~2	<0.029	~2	<0.024	1	0.030	<2	<0.000	0.08	
	13.02	-2	<0.04	~2	<0.024	<2	<0.04	<2	<0.000	-	
	13.00	~2	<0.029	~2	<0.024	<2	<0.030	3	0.000	0.02	
	13.00	~2	<0.029	~2	<0.024	<2	<0.030	<2	<0.01	-	
	13.11	2	<0.029	<2	<0.024	<2	<0.000	<2	<0.008	0.03	
	13.14	~2	<0.03	<2	<0.024	<2	<0.000	<2	<0.008	-	
	12.17	2	0.028	<2	<0.024	<2	<0.000	<2	<0.008	0.04	
	13.20	-2	<0.04	<2	<0.024	</td <td><0.000</td> <td><2</td> <td><0.008</td> <td>-</td>	<0.000	<2	<0.008	-	
	13.23	<2	<0.020	<2	<0.024	<2	<0.030	2	0.01	0.02	
	13.20	~2	<0.028	<2	<0.024	<2	<0.000	<2	<0.008	-	
	13.28	~2	<0.029	~2	<0.024	<2	<0.000	<2	<0.000	-	
	13.32	~2	<0.029	~2	<0.024	<2	<0.030	<2	<0.000		
	10.00	~2	<0.029	~2	<0.024	<2	<0.000	<2	<0.000	-	
	13.30	~2	<0.028	~2	<0.024	<2	<0.030	<2	<0.000		
	13.41	~2	NU.U29	~2	~U.UZ4	~~	-0.000	74	-0.000	130 F	

RUN DATA Number 1

 Client: New Indy Location: Catawba, SC Source: 				Method 16 Calibration 1				Operator: 15730.001.00 Operator: T. Simpkins Date: 17 Mar 2021			
		F	l2S	Me	eSH	D	MS	D	IDS	TRS	
	lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	13:44	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	ж
	13:47	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	3 0 0	
	13:50	7	0.06	<2	<0.024	<2	<0.030	<2	<0.008	0.06	
	13:53	9	0.07	2	0.03	<2	<0.030	<2	<0.008	0.10	
	13:56	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	13:59	<2	<0.029	3	0.03	<2	<0.030	3	0.01	0.05	
	14:02	8	0.07	<2	<0.024	<2	<0.030	<2	<0.008	0.07	
	14:05	7	0.06	<2	<0.024	2	0.03	<2	<0.008	0.09	
9 1 0	14:08	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	14:11	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
	14:14	4	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05	
	14:17	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	1 	
	14:20	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	14:23	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	14:26	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	14:29	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	<u>1</u> 00	
	14:32	6	0.06	<2	<0.024	<2	<0.030	<2	<0.008	0.06	
	14:35	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	14:38	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	14:41	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	14:44	3	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
	14:47	3	0.04	<2	<0.024	<2	<0.030	3	0.01	0.06	
	14:50	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	<u> </u>	
	14:53	2	0.03	2	0.03	<2	<0.030	<2	<0.008	0.06	
1.4	14:56	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	<u></u>	
	14:59	<2	<0.029	<2	<0.024	<2	<0.030	4	0.01	0.03	
	15:02	<2	<0.029	<2	<0.024	2	0.03	<2	<0.008	0.03	
	15:05	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:08	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:11	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	15:14	<2	<0.029	<2	<0.024	3	0.03	<2	<0.008	0.03	
	15:17	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:20	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	15:23	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:26	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:29	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	7. 11	
	15:32	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
	15:35	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:38	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	15:41	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	

RUN DATA

Number 1

(Loc Sc	Client: New l ication: Cataw ource:	ndy /ba, SC			Methoo Calibrat	d 16 ion 1		Project Number: 15730.001.006 Operator: T. Simpkins Date: 17 Mar 2021			
	Time	H ₂ S		Me	€SH	D	MS	DMDS		TRS	
	lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	15:44	3	0.04	<2	<0.024	<2	< 0.030	5	0.01	0.06	
	15:47	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	15:50	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
-	Average		<0.029		<0.024		<0.030		<0.008		

.

RUN DATA

Number 3

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Operator: 15730.001.00 Operator: T. Simpkins Date: 17 Mar 2021				
		H	2 S	Me	€SH	D	MS	DN	IDS	TRS		
	lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm		
					North C	larifier						
	16:45	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	3 55 5		
	16:48	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	16:51	3	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	16:54	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	Sisterior (Englisting Str	a-gar-sconers	
	16:57	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04		
	17:00	6	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05		
	17:03	<2	<0.029	<2	<0.024	<2	< 0.030	4	0.01	0.03		
	17:06	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	17:09	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	17:12	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008			
	17:15	<2	<0.029	<2	<0.024	<2	< 0.030	2	0.01	0.02		
1	17:18	3	0.04	<2	<0.024	<2	<0.030	3	0.01	0.06		
	17:21	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04		
	17:24	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-		
	17:27	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008			
	17:30	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008			
	17:33	3	0.04	<2	<0.024	<2	< 0.030	<2	<0.008	0.04		
	17:36	<2	<0.029	<2	<0.024	<2	<0.030	5	0.01	0.03		
	17:39	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	<u>.</u>	
	17:42	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	() 		
	17:45	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02		
	17:48	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008			
	17:51	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	17:54	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02		
	17:57	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	18:00	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
e	18:03	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	18:06	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03		
	18:09	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	ш÷		
	18:12	6	0.06	<2	<0.024	<2	<0.030	<2	<0.008	0.06		
	18:15	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	18:18	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		
	18:21	<2	< 0.029	<2	< 0.024	<2	<0.030	<2	<0.008	-		
	18:24	<2	< 0.029	<2	<0.024	8	0.06	<2	<0.008	0.06		
	18:27	6	0.05	<2	<0.024	<2	< 0.030	<2	<0.008	0.05		
	18:30	<2	< 0.029	4	0.03	<2	< 0.030	<2	<0.008	0.03		
	18:33	<2	< 0.029	<2	< 0.024	<2	<0.030	<2	<0.008	-		
	18:36	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-		
	18:39	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-		

ï

RUN DATA Number 3

 \mathbf{x}

C Loca So	Client: New Indy Location: Catawba, SC Source:			Methoo Calibrat	d 16 ion 1		Project (15730.001. T. Simpkin 17 Mar 202	.006 s · 21		
		Н	l2 S	M	eSH	D	MS	DI	NDS	TRS	
	lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	18:42	<2	<0.029	<2	<0.024	3	0.04	<2	<0.008	0.04	
	18:45	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
	18:48	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	1. 	
x	18:51	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	18:54	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	18:57	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:00	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:03	<2	<0.029	3	0.03	<2	<0.030	<2	<0.008	0.03	
	19:06	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	19:09	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:12	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	ð
	19:15	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:18	<2	<0.029	2	0.02	<2	<0.030	5	0.01	0.05	
	19:21	2	0.03	<2	<0.024	<2	<0.030	2	0.01	0.05	
	19:24	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
	19:27	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:30	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:33	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
7	19:36	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:39	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:42	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:45	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:48	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:51	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:54	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	19:57	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	*
	20:00	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
	20:03	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:06	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:09	5	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05	
	20:12	<2	<0.029	<2	<0.024	3	0.04	<2	<0.008	0.04	
	20:15	4	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05	
	20:18	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:21	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	(.)	
E.	20:24	8	0.06	<2	<0.024	7	0.06	<2	<0.008	0.12	
	20:27	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:30	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:33	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	20:36	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:39	6	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05	

WAESTON.

Number 3

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Project I C	Number:)perator: Date:	15730.001.006 T. Simpkins 17 Mar 2021		
		Н	2 S	Μ	sH	D	MS	DN	NDS	TRS	
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	20.42	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	20:45	<2	< 0.029	<2	< 0.024	<2	<0.030	<2	<0.008	-	1
	20:48	4	0.04	<2	< 0.024	<2	<0.030	<2	<0.008	0.04	
	20:51	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	20:54	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	20.57	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	21.00	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008		
	21.00	<2	<0.020	<2	< 0.024	<2	< 0.030	<2	<0.008	1.00	
	21:06	<2	<0.029	<2	< 0.024	<2	< 0.030	3	0.01	0.02	
	21.00	<2	<0.029	<2	< 0.024	3	0.03	<2	<0.008	0.03	
e -	21.00	7	0.06	<2	<0.024	<2	< 0.030	<2	<0.008	0.06	
	21.12	<2	<0.00	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	21.13	2	0.020	<2	<0.024	<2	< 0.030	<2	<0.008	0.04	
	21.10	<2	<0.04	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	21.21	~2	<0.029	<2	<0.024	2	0.03	<2	<0.008	0.03	
	21.24	~2	<0.023	<2	<0.021	<2	< 0.030	<2	<0.008	7 <u>~</u> 2	
	21.27	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	21.30	2	<0.023	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	21:33	3	0.04	2	0.024	<2	<0.030	<2	<0.008	0.07	
	21:30	4	<0.03	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<0.02	<2	<0.030	<2	<0.008	-	
	21:39	~2	<0.029	-2	<0.024	<2	<0.030	<2	<0.008		
	21:42	~2	<0.029	<2	<0.024	3	0.03	<2	<0.008	0.03	
	21:40	~2	<0.029	2	0.024	<2	<0.030	<2	<0.008	0.02	
	21.40	~2	<0.029	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<0.02	<2	<0.030	<2	<0.008	-	
	21:51	~2	<0.029	-2	<0.024	<2	<0.030	<2	<0.008		
	21:54	~2	<0.029	~2	<0.024	2	0.03	<2	<0.008	0.10	
	21:57	9	<0.07	~2	<0.024	<2	<0.00	<2	<0.008		
	22:00	<2	<0.029	~2	<0.024	3	0.04	<2	<0.008	0.04	
	22:04	<2	<0.029	~2	<0.024	<2	<0.030	<2	<0.008	-	
	22:07	< <u>Z</u>	<0.029	~2	<0.024	<2	<0.000	<2	<0.008	7	
	22:10	<2	<0.029	~2	<0.024	<2	<0.000	<2	<0.008	-	
	22:13	<2	<0.029	~2	<0.024	<2	<0.000	<2	<0.008	-	
	22:16	<2	<0.029	~2	<0.024	~2	<0.000	<2	<0.008	-	3
	22:19	<2	<0.029	<2	<0.024	~2	<0.030	<2	<0.008	-	
	22:22	<2	<0.029	~2	<0.024	~2	<0.000	1	0.01	0.02	
	22:25	<2	<0.029	<2	<0.024	~2	<0.000	T </td <td><0.01</td> <td>0.02</td> <td></td>	<0.01	0.02	
	22:28	<2	<0.029	<2	<0.024 0.02	~2	<0.030	<2	<0.000	0.03	
	22:31	<2	<0.029	3	0.03	~2	<0.030	<2	<0.000	0.00	
	22:34	<2	< 0.029	<2	<0.024	10	0.030	<2	<0.000	0.07	
	22:37	<2	<0.029	<2	<0.024		0.07	~2	<0.000	0.07	
	22:40	<2	< 0.029	<2	<0.024	2	0.05	~2	-0.000	0.00	

RUN DATA

Number 3

Cl Loca Sou	Client: New Indy Location: Catawba, SC Source:				Methoo Calibrat	d 16 ion 1		Project C	Number:)perator: Date:	15730.001.006 T. Simpkins 17 Mar 2021	
		н	20	Me	SH	D	MS	DN	I DS	TRS	
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	22.43	10	0.07	<2	<0.024	<2	<0.030	<2	<0.008	0.07	
	22.40	<2	<0.029	<2	< 0.024	<2	< 0.030	5	0.02	0.03	
	22.40	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	22.40	<2	<0.029	<2	< 0.024	<2	<0.030	3	0.01	0.02	
	22.52	<2	<0.029	<2	< 0.024	<2	<0.030	<2	<0.008		
	22.50	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	22.00	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	23.01	<2	<0.029	<2	< 0.024	<2	< 0.030	3	0.01	0.02	5
	23.07	<2	<0.020	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	23.07	<2	<0.020	<2	<0.024	5	0.05	<2	<0.008	0.05	
	23.10	<2	<0.020	<2	<0.024	<2	< 0.030	<2	<0.008		
	23.15	3	0.020	<2	<0.024	<2	< 0.030	<2	<0.008	0.04	
	23.10	3	0.04	<2	<0.024	<2	< 0.030	<2	<0.008	0.04	
	23.18	<2	<0.04	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	23.22	2	0.020	<2	<0.024	<2	< 0.030	<2	<0.008	0.03	
	23.20	~2	<0.00	<2	<0.024	<2	< 0.030	<2	<0.008	(—)	
	23.20	<2	<0.020	<2	<0.024	<2	< 0.030	<2	<0.008	10 	
	23.31	<2	<0.020	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	23.34	2	0.020	<2	<0.024	<2	< 0.030	<2	<0.008	0.03	
	23.37	~2	<0.03	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	23.40	~2	<0.029	<2	<0.021	<2	< 0.030	<2	<0.008	2 —	
	23.43	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	23.40	~2	<0.023	<2	<0.021	<2	<0.030	<2	< 0.008	-	а.
	23.49	~2	-0.023	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	23.32	4	<0.04	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	23.00	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	23.00	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	00:01	~2	~0.029	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	00.04	-2	<0.04	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	00.07	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	00.10	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	00:13	~2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	00:16	~2	<0.029	~2	<0.024	<2	<0.030	<2	<0.008	0.06	
	00:19	1	<0.00	~2	<0.024	<2	<0.030	<2	<0.008	-	
	00:22	<2	<0.029	~2	<0.024	<2	<0.000	<2	<0.008	<u>-</u>	
	00:25	<2	<0.029 0.04	~2	<0.024	<2	<0.000	<2	<0.008	0.04	
	00:28	3	0.04	~2	<0.024	~2	<0.000	<2	<0.008	-	
	00:31	<2	<0.029	<2	~0.024	~2	<0.000	<2	<0.008	-	
	00:34	<2	<0.029	~2	~0.024	~2	<0.000	<2	<0.000	-	•
	00:37	<2	<0.029	~2	~0.024	~2	<0.000	<2	<0.000	<u> </u>	
	00:40	<2	<0.029	<2	<0.0Z4	~2	~0.050	74	-0.000		

WESTON:

45700 004 000

. .

.

RUN DATA

Number 3

.

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Dperator: Date:	T. Simpkins 17 Mar 2021		
	ŀ	1 ₂ S	Me	eSH	D	MS	DI	IDS	TRS	ĸ
lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
00.43	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
00:46	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
00.49	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
00:52	<2	<0.029	<2	<0.024	<2	<0.030	4	0.01	0.02	
00:55	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	, 1 2	
00:58	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	Ξ.	
01:01	4	0.04	<2	<0,024	<u>,<2</u>	< 0.030	<2	<0.008	0.04	
01:04	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	n a bela di bela de	
01:07	3	0.04	<2	<0.024	<2	<0.030	10	0.02	0.08	
01:10	3	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
01:13	<2	<0.029	<2	<0.024	<2	<0.030	4	0.01	0.03	
01:16	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
01:19	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
01:22	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	•
01:25	<2	<0.029	3	0.03	<2	<0.030	<2	<0.008	0.03	
01:28	<2	<0.029	<2	<0.024	3	0.04	<2	<0.008	0.04	
01:31	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
01:34	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
01:37	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
01:40	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
01:43	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
01:46	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
01:49	<2	<0.029	<2	<0.024	2	0.03	<2	<0.008	0.03	
01:52	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
01:55	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
01:58	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		
02:01	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:04	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:07	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:10	<2	<0.029	<2	<0.024	2	0.03	<2	<0.008	0.03	
02:13	3	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
02:16	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		
02:19	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:22	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:25	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:28	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
02:31	<2	<0.029	<2	<0.024	<2	<0.030	2	0.01	0.02	
02:34	<2	<0.029	<2	<0.024	<2	<0.030	2	0.01	0.02	
02:37	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
02:40	<2	<0.029	<2	<0.024	<2	<0.030	9	0.02	0.04	

WESTON:

Number 3

Client: New Indy Location: Catawba, SC Source:				Metho Calibrat	d 16 tion 1		Project Number: 15730.001.0 Operator: T. Simpkins Date: 17 Mar 2021			.006 Is 21	
		н	28	Me	SH	D	MS	DN	IDS	TRS	
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
÷	02:43	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	02:46	5	0.05	<2	<0.024	<2	<0.030	<2	<0.008	0.05	
	02:49	4	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	02:52	2	0.03	<2	<0.024	<2	<0.030	6	0.02	0.06	
	02:55	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	<i>t</i>)
	02:58	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	03:01	<2	<0.029	<2	<0.024	4	0.05	<2	<0.008	0.05	
	03:04	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	03:07	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	03:10	<2	<0.029	<2	<0.024	<2	<0.030	2	0.01	0.02	
	03:13	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	03:16	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	03:19	4	0.04	<2	<0.024	<2	< 0.030	<2	<0.008	0.04	
0	03:22	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	03.25	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	03:28	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	<u> </u>	
	03:31	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	03:34	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	03.37	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	03:40	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	200	26
	03:43	<2	< 0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	03:46	2	0.03	<2	< 0.024	<2	< 0.030	<2	<0.008	0.03	
	03:49	<2	< 0.029	<2	< 0.024	<2	<0.030	2	0.01	0.02	
	03:52	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	03:55	<2	< 0.029	<2	< 0.024	<2	<0.030	<2	<0.008	-	
	03:58	2	0.03	<2	< 0.024	<2	<0.030	<2	<0.008	0.03	
	04.01	<2	<0.029	<2	< 0.024	2	0.03	<2	<0.008	0.03	
	04.05	3	0.03	<2	< 0.024	<2	< 0.030	2	0.01	0.05	
	04:08	<2	< 0.029	<2	< 0.024	2	0.03	<2	<0.008	0.03	
	04:00	2	0.03	<2	< 0.024	<2	<0.030	<2	<0.008	0.03	
	04.11	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	04.14	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008		
	04.17	3	0.04	<2	< 0.024	<2	< 0.030	<2	<0.008	0.04	
	04.23	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008		
	04.20	5	0.05	<2	< 0.024	<2	< 0.030	<2	<0.008	0.05	
	04.20	5	0.05	<2	< 0.024	<2	< 0.030	<2	<0.008	0.05	1 0
	04.20	<2	<0.00	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	04.32	<2	<0.020	<2	<0.024	<2	< 0.030	5	0.01	0.03	
	04.38	<2	<0.029	<2	< 0.024	3	0.04	<2	<0.008	0.04	
	04:41	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	

ю

•

Number 3

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1			Project Number: 15 Operator: T. Date: 17		15730.001. T. Simpkin 17 Mar 202	006 s 1		
		Н	2 S	Me	MeSH DMS		DMDS		TRS		
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
1	04:44	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	04.47	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	04.50	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	Η.	
	04.53	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	(<u>1</u>	
	04:56	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	04:59	<2	< 0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
	05.02	9	0.07	<2	<0.024	<2	<0.030	<2	<0.008	0.07	
	05:05	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
	05:08	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	05.11	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	05:14	2	0.03	<2	< 0.024	<2	<0.030	<2	<0.008	0.03	
	05.17	3	0.04	<2	<0.024	<2	< 0.030	<2	<0.008	0.04	
	05.20	3	0.04	<2	< 0.024	<2	<0.030	4	0.01	0.06	
	05:23	<2	< 0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	05.26	2	0.03	<2	< 0.024	<2	< 0.030	<2	<0.008	0.03	
	05.29	<2	< 0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	05:32	3	0.04	5	0.04	2	0.03	<2	<0.008	0.11	
	05:35	<2	< 0.029	<2	< 0.024	<2	< 0.030	<2	<0.008	-	
	05:38	<2	< 0.029	2	0.02	<2	< 0.030	5	0.01	0.05	
	05:41	<2	<0.029	<2	< 0.024	<2	< 0.030	<2	<0.008		
1.000	05:44	4	0.04	<2	< 0.024	<2	<0.030	<2	<0.008	0.04	
	05:47	2	0.03	<2	< 0.024	<2	< 0.030	2	0.01	0.05	
	05:50	<2	< 0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	05:53	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	05:56	<2	<0.029	<2	< 0.024	<2	<0.030	<2	<0.008	π.	
	05:59	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
	06.02	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	 ::	*
	06.05	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	06.08	3	0.03	3	0.03	<2	<0.030	<2	<0.008	0.06	
	06:11	<2	< 0.029	<2	< 0.024	<2	<0.030	<2	<0.008	17 2 (
	06.14	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	<u></u>	
	06:17	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	06.20	6	0.05	<2	< 0.024	<2	< 0.030	<2	<0.008	0.05	
	06.23	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	06.26	2	0.03	<2	<0.024	<2	<0.030	<2	<0.008	0.03	
6	06.29	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	06:32	<2	< 0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
	06:35	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	06:38	3	0.04	<2	<0.024	<2	<0.030	4	0.01	0.07	
	06:41	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		

45300 004 000

.

RUN DATA

Number 3

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Operator: T. Simpkins Date: 17 Mar 2021			
	H ₂ S		⊳ S	MeSH DMS		MS	B DMDS		TRS		
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	06:44	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	06:47	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	8
	06.50	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	06:53	<2	<0.029	<2	<0.024	<2	<0.030	3	0.01	0.02	
	06:56	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	06.59	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07:02	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07.05	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07:08	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	07:11	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
1	07:14	3	0.03	<2	<0.024	<2	<0.030	5	0.01	0.06	
	07:17	4	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	07.20	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	07:23	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008	2 	
	07:26	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07.29	3	0.04	<2	<0.024	<2	<0.030	<2	<0.008	0.04	
	07.32	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	07:35	<2	< 0.029	<2	<0.024	<2	<0.030	<2	<0.008		- R -
	07:38	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07.41	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07.44	<2	< 0.029	<2	<0.024	3	0.04	<2	<0.008	0.04	
	07.47	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	07:50	<2	<0.029	<2	<0.024	<2	< 0.030	<2	<0.008	-	
	07:53	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008	-	
	01100	—	815 win	d movin	g toward	NE- trai	ler N of C	larifier			
r.	07:56	<2	<0.029	<2	<0.024	<2	<0.030	<2	<0.008		
	Average		<0.029		<0.024		<0.030		<0.008	-	

······

CALIBRATION DATA Number 1

' Client: New Indy Location: Catawba, SC Source:	M	ethod 16	Project Number: Operator: Date:	15730.001.006 T. Simpkins 17 Mar 2021
Ambien	t Temperature: 72°C	Barometric Pr	essure: 30.20 in. Hg	
Analyte	H ₂ S	MeSH	DMS	DMDS
Perm Device ID	T-53950	33-56671	89-56661	89-56665
Perm. Rate, nL/min	422	455	306	217
Ret. Time, sec	19.0	32.5	70.0	125.0
1 Flow = 51.7 mL/Min	8.17 ppm	8.80 ppm	5.91 ppm	4.20 ppm
Time: 08:28		Peak Areas	s, mv-sec	
	32885	40065	21703	62655
	32377	40847	22337	64423
- • e x	33445	40700	22722	65189
Average Area	32902 /	40537 🦯	22254	64089
2 Flow = 110 ml /Min	3.84 ppm	4.14 ppm	2.78 ppm	1.98 ppm
Time: 08:45		Peak Areas	s, mv-sec	
Time. 00.40	10234	12405	6217	19301
	9896	12664	6278	19254
	10029	12369	6218	19511
Average Area	10053	12479	6238	19355 🦯
3 Flow = 258 mL/Min	1.64 ppm	1.76 ppm	1.18 ppm	0.84 ppm
Time: 09:10		Peak Areas	s, mv-sec	
	2028	2745	1321	4433
	2061	2708	1308	4367
	2026	2706	1300	4291
Average Area	2038	2720	1310	4364 🦯

ł

SOLUTIONS

44

N

.

CALIBRATION SUMMARY

Number 1

Client: New Indy Location: Catawba, SC Source:		1	Vlethod 16	Projec	t Number: 15 Operator: T. Date: 17	5730.001.006 Simpkins 7 Mar 2021
H ₂ S	1	2	3			
' Time	08:28	08:45	09:10			
Concentration, ppm	8.17	3.84	1.64			
Area, mv-sec	32902	10053	2038			
Calc. Conc., ppm	7.97	4.02	1.60			
% Error	-2.4	4.7	-Z.1	Min Aroo	Dot Lim	
Calibration Curve	Slope	Intercept		wiin. Area	0 029	
	1.7333	2.9545	0.9900	2	0.023	
MeSH	1	2	3			
Time	08:28	08:45	09:10			
Concentration. ppm	8.80	4.14	1.76			
Area. mv-sec	40537	12479	2720			
Calc, Conc., ppm	8.64	4.29	1.74			
% Error	-1.9	3.6	-1.6			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.6829	3.0318	0.9993	2	0.024	
DMS	1	2	3			
Time	08:28	08:45	09:10			
Concentration, ppm	5.91	2.78	1.18			
Area, mv-sec	22254	6238	1310			
Calc. Conc., ppm	5.85	2.84	1.17			
% Error	-1.1	2.2	-1.0	Min Aree	Dot Lim	
Calibration Curve	Slope	Intercept	Corr. Coen.	win. Area	0.030	
	1.7636	2.9950	0.9997	2	0.000	
DMDS	1	2	3			
Time	08:28	08:45	09:10			
Concentration. ppm	4.20	1.98	0.84			
Area, my-sec	64089	19355	4364			
Calc. Conc ppm	4.14	2.03	0.83			
% Error	-1.3	2.5	-1.2			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.6731	3.7739	0.9996	2	0.008	

WASSION

45

ph

CALIBRATION DATA Number 2

.

.

Client: New Indy Location: Catawba, SC Source:	M	ethod 16	Project Number: Operator: Date:	15730.001.006 T. Simpkins 18 Mar 2021		
Ambient Analyte Perm. Device ID Perm. Rate, nL/min Ret. Time, sec	Temperature: 72°C H₂S T-53950 422 19.0	Barometric Pro MeSH 33-56671 455 32.5	essure: 30.20 in. Hg DMS 89-56661 306 70.0	DMDS 89-56665 217 125.0		
1 Flow = 55.0 mL/Min	7.68 ppm	8.28 ppm	5.56 ppm	3.95 ppm		
Time: 08:30		Peak Areas	, mv-sec			
r	37217	48066	25482	71756		
	38155	47820	25458	71884		
	37886	48063	25691	71544		
Average Area	37753 🗸	47983	25544	71728		
2 Flow = 108 mL/Min	3.91 ppm	4.21 ppm	2.83 ppm	2.01 ppm		
Time: 08:53		Peak Areas	ik Areas, mv-sec			
	11220	15593	6415	19990		
	11626	15400	6404	19931		
	11251	15235	6408	19816		
Average Area	11366 🦯	15409 🦯	6409	19912 🍃		
3 Flow = 234 mL/Min	1.80 ppm	1.95 ppm	1.31 ppm	0.93 ppm		
Time: 09:08		Peak Areas	, mv-sec			
	2385	3436	1360	4560		
	2307	3358	1346	4470		
	2361	3302	1307	4384		
Average Area	2351	3365 🦯	1338 🦯	4471 /		

46

æ

0r

CALIBRATION SUMMARY

Number 2

Client: New Indy Location: Catawba, SC Source:		I	Method 16	Proje	ct Number: Operator: Date:	15730.001.006 T. Simpkins 18 Mar 2021
r						
H ₂ S	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	7.68	3.91	1.80			
Area, mv-sec	37753	11366	2351			
Calc. Conc., ppm	7.55	4.04	1.78			
% Error	-1.7	3.3	-1.5			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.9202	2.8914	0.9993	2	0.045	
MeSH	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	8.28	4.21	1.95			
Area. mv-sec	47983	15409	3365			
Calc. Conc., ppm	8.11	4.37	1.91			
% Error	-2.0	3.8	-1.7			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
Second	1.8384	3.0096	0.9990	2	0.034	
DMS	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	5.56	2.83	1.31			
Area, mv-sec	25544	6409	1338			τ.
Calc. Conc., ppm	5.57	2.82	1.31			
% Error	0.1	-0.3	0.1			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	2.0366	2.8888	>0.9999	2	0.054	
DMDS	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	3.95	2.01	0.93			
' Area, mv-sec	71728	19912	4471			
Calc. Conc., ppm	3.94	2.02	0.93			
% Error	-0.2	0.4	-0.2			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.9169	3.7145	>0.9999	2	0.017	
						i.
					kin	

ANALYTES AND STANDARDS

Client: Location: Source:	New Indy Catawba, SC		Method 1	16	Project N Op	umber: 15730.0 erator: T. Simp Date: 17 Mar 2	01.006 kins 2021		
	Molecu	Analyte Ilar Weight	H₂S 34.08	MeSH 48.11	DMS 62.14	DMDS 94.20			
Retention Time, sec Peak Detection Window, sec Minimum Peak Area, mv-sec Minimum Peak Height, mv Beginning Peak Width, sec Ending Peak Width, sec			19.0 3.0 2 1 1.0 2.0	32.5 5.0 2 1 1.0 3.0	70.0 10.0 2 1 2.0 4.0	125.0 10.0 2 1 3.0 5.0	7		
Permeation Device ID Permeation Rate, ng/min Permeation Rate, nL/min*			T-53950 600 / 422	33-56671 913 455	89-56661 792 306	89-56665 852 217			
	Barometric	Pressure: 30 N).20 in. Hg Io Oxygen Co	Ambient 7 rrection	Temperature:	72 °F			
*Permea Permea	*Permeation rates are gravimetrically determined by the manufacturer with results by weight in ng/min. Permeation rates by volume, in nL/min, are calculated from the permeation rates by weight as follows: $PR_{nl} = PR_{ng} \times (V_{mol} / W_{mol}) \times [(460^{\circ} + T_a) / T_s] \times (P_s / P_b)$								
	Where: PR_{nl} = Permeation Rate by volume, nL/min PR_{ng} = Permeation Rate by weight, ng/min V_{mol} = Molar Volume of any gas @32 °F & 29.92 mm Hg = 22.4 L/mole W_{mol} = Molecular Weight of compound T_a = Ambient Temperature, °F T_s = Standard Temperature = 492°R (32 °F) P_s = Standard Pressure = 29.92 in Hg P_b = Barometric Pressure, in Hg								

For example, H₂S:

PR_{nl} = 600 x (22.4 / 34.08) x [(460 + 72) / 492] x (29.92 / 30.20) = 422 nL/min

To calclate concentrations:

C = PR_{nl} / F_d Where: C = Concentration, ppmv PR_{nl} = Permeation Rate by volume, nL/min

 F_d = Flow rate of diluent, mL/min

48

15730.001.006 New-Indy Catawba Odor Tenting

INSTRUMENT INFORMATION

C Loca Soi	lient: New ation: Cata urce:	/ Indy awba, S	С	Method 16	Project Number: 15730.001.006 Operator: T. Simpkins Date: 17 Mar 2021				
	File: C:\Data\NIC\Trs Data 17 March 2021 A.trs Program Version: 2.0, built 15 May 2017 File Version: 2.0 Computer: DESKTOP-A1IJDGT Trailer: 88								
	Analog Input Device: Keithley KUSB-3108 GC Channel: 16								
	Sampling Rate: 0.050 sec. Data Interval: 0.5 sec.								
	Gas Chromatograph: Shimadzu GC8A Serial No. GC 1 Detector Range: 10								
		Gases		Temperatures, °C	Columns				
ų	H₂ Air Carrier	Press. psi 30 30 50	Flow mL/min 50 60 30	Column: 100 Detector: 120	Primary: Carbopack Secondary: N/A Sample Loop: 4"				
				Injection Cycle					
	Total	Length	180 sec	Sampling Time: 170 sec	Load/Backflush Time: 80 sec				
		u (Default Integration Paramet	ters				
	Signal Threshold 0.67 mv Peak detection window ±10 sec Minimum peak area 2 mv-sec Minimum peak height 1 mv above baseline								
				Dynacalibrator					
1	Chamber Temperature 50.0°C Ambient Temperature 72.0°F Barometric Pressure 30.20 in. Hg								

ATTACHMENT B

18 MARCH 2021

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTR.PT.DOC

RUN SUMMARY

Number 1

Client: **New Indy** Location: **Catawba, SC** Source:

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 18 Mar 2021

Start Time 10:21 End Time 14:28

Average Measured TRS Conc. 0.03 ppm Recovery Missing

15730.001.006 New-Indy Catawba Odor Testing

RUN DATA

- 2

Clie Locat Sour	ent: New l ion: Catav rce:	Indy vba, SC		Method 16 Calibration 1				Project Number: 15730.001.006 Operator: T. Simpkins Date: 18 Mar 2021 ⁻			06
	T	F	12S	Me	SH	D	MS	DN	IDS	TRS	
	lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
			trailer sou	uth of ol	d guard s	hack- by	y blue du	mpsters			
				wine	d from so	uth to no	orth			0.00	
	10:21	4	0.06	<2	<0.030	<2	<0.049	<2	< 0.015	0.06	
	10:24	<2	<0.041	<2	<0.030	<2	<0.049	5	0.02	0.05	
	10:27	<2	<0.041	<2	<0.030	<2	<0.049	<2	< 0.015	-	
	10:30	3	0.05	<2	<0.030	<2	<0.049	2	0.02	0.08	
	10:33	<2	<0.041	5	0.05	<2	<0.049	<2	< 0.015	0.05	
	10:36	<2	<0.041	<2	<0.030	<2	<0.049	<2	< 0.015	2 -	
	10:39	<2	<0.041	<2	<0.030	<2	<0.049	<2	< 0.015	-	
	10:42	2	0.04	<2	<0.030	<2	<0.049	<2	< 0.015	0.04	×
	10:45	2	0.04	2	0.03	<2	<0.049	<2	< 0.015	0.08	
	10:48	<2	<0.041	<2	<0.030	<2	<0.049	4	0.02	0.04	
	10:51	5	0.07	<2	<0.030	<2	<0.049	<2	< 0.015	0.07	
	10:54	<2	<0.041	<2	<0.030	<2	<0.049	2	0.02	0.03	
	10:57	<2	<0.041	2	0.03	<2	<0.049	<2	<0.015	0.03	
	11:00	12	0.11	<2	<0.030	<2	<0.049	<2	<0.015	0.11	
	11:03	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:06	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	(=)	
	11:09	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	. 	
	11:12	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:15	4	0.06	<2	<0.030	<2	<0.049	<2	<0.015	0.06	
	11:18	2	0.04	<2	<0.030	<2	<0.049	<2	<0.015	0.04	
	11:21	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:24	<2	<0.041	<2	<0.030	3	0.06	<2	<0.015	0.06	
	11:27	2	0.04	5	0.05	<2	<0.049	5	0.02	0.14	
	11:30	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:33	<2	<0.041	<2	<0.030	<2	<0.049	2	0.02	0.03	
	11:36	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:39	<2	<0.041	<2	<0.030	3	0.06	<2	<0.015	0.06	
	11:42	2	0.04	<2	<0.030	<2	<0.049	<2	<0.015	0.04	
	11:45	7	0.08	<2	<0.030	<2	<0.049	<2	<0.015	0.08	
	11:48	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:51	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	5 4 0	
	11:54	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	11:57	<2	<0.041	<2	< 0.030	<2	<0.049	<2	<0.015	-	
	12:00	2	0.04	<2	<0.030	<2	<0.049	<2	<0.015	0.04	
	12:03	<2	< 0.041	3	0.04	<2	<0.049	2	0.02	0.07	
	12:06	<2	< 0.041	3	0.04	<2	<0.049	<2	<0.015	0.04	
	12:09	3	0.05	<2	<0.030	<2	<0.049	<2	<0.015	0.05	
	12:12	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015		

Number 1

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Project	Number: Operator: Date:	T. Simpkins 18 Mar 2021		
		F	1 ₂ S	Me	eSH	D	MS	DI	NDS	TRS	
	lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
	12:15	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015		
	12:18	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	8
	12:21	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015		
	12:24	<2	<0.041	<2	< 0.030	<2	<0.049	<2	<0.015	-	
	12:27	<2	< 0.041	<2	< 0.030	2	0.05	2	0.02	0.08	
	12.30	<2	< 0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	12:33	3	0.05	<2	<0.030	<2	<0.049	<2	<0.015	0.05	
	12:37	<2	<0.041	<2	< 0.030	<2	<0.049	3	0.02	0.04	
	12:40	<2	< 0.041	<2	< 0.030	<2	<0.049	<2	<0.015	-	
	12:43	<2	<0.041	<2	< 0.030	<2	<0.049	<2	<0.015	-	
	12:46	<2	<0.041	<2	< 0.030	<2	< 0.049	<2	<0.015	-	
	12.40	<2	<0.041	<2	<0.030	<2	< 0.049	<2	< 0.015	-	
	12.40	<2	<0.041	<2	<0.030	5	0.08	<2	< 0.015	0.08	
	12.52	<2	<0.041	<2	<0.030	<2	<0.049	<2	< 0.015	-	
	12.00	~2	-0.041	- L	moving	trailer	0.010	_			
	12.58	<2	<0.041	3	0.03	<2	<0.049	<2	<0.015	0.03	
	12.00	2	0.041	<2	<0.00	<2	<0.049	<2	<0.015	0.05	
	12:04	-2	<0.03	<2	<0.000	<2	<0.049	<2	<0.015	-	- *
	13.04	2	0.041	<2	<0.030	<2	<0.049	<2	<0.015	0.05	
	13.07	-2	<0.03	<2	<0.030	<2	<0.049	<2	<0.015	-	
	13.10	~2	<0.041	~2	<0.030	<2	<0.040	<2	<0.015	-	
	13:13	<2	<0.041	~2	<0.030	<2		<2	<0.015	-	
	13:10	<2	<0.041	~2	<0.030	<2	<0.040	<2	<0.015	_	
	13:19	~2	\U.U4		or contrac	tor nark	cina		0.010		
	12.22	<2	<0.041	<2		25	0 17	<2	<0.015	0.17	
	12.22	~2	<0.041	5	0.05	<2	<0.049	<2	< 0.015	0.05	
а	13.20	~2	<0.041	<2	<0.00	<2	<0.049	<2	<0.015	-	
	13.20	~2	\0.041		r contract	or narki	na lot	-	0.010		
	12.21	~2	<0.041		<0.030	<2	<0.049	<2	<0 015	-	
	10.01	~2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-	
	13:34	~2	<0.041	~2	<0.030	<2	<0.040	<2	<0.015	0.06	
	13:37	4	0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.030	~2		<2	<0.015	0.04	
	13:40	<z< td=""><td><0.041</td><td>4</td><td><0.04</td><td>~2</td><td></td><td><2</td><td><0.015</td><td>-</td><td></td></z<>	<0.041	4	<0.04	~2		<2	<0.015	-	
	13:43	<2	< 0.041	<2	<0.030	~2	<0.049	<2	<0.015	0.04	
	13:46	2	0.04	<2	< 0.030	~2	<0.049	~2	<0.015	0.04	
	13:49	<2	<0.041	<2	< 0.030	~2	<0.049	~2	<0.015	-	
	13:52	<2	< 0.041	<2	< 0.030	<2	<0.049	~2	~0.015	and a second	
	13:55	<2	< 0.041	<2	<0.030	<2	<0.049	SZ -0	<0.015	-	
	13:58	<2	< 0.041	<2	< 0.030	<2	< 0.049	52	<0.015	-	
	14:01	3	0.05	<2	< 0.030	<2	< 0.049	<2	<0.015	0.05	
	14:04	<2	<0.041	<2	< 0.030	<2	<0.049	<2	<0.015	-	
	10.20	~~	NU.UT I	J	0.00	~4	·U.UTU	1	0.010		S. Panaga

53

SOLUTIONS

RUN DATA Number 1

Client: New Indy Location: Catawba, SC Source:					Methoo Calibrat	d 16 ion 1		Project Number: 15730.001.006 Operator: T. Simpkins Date: 18 Mar 2021				
	Timo	F	H ₂ S		MeSH		MS	DN	I DS	TRS		
	TIME	area	ppm	area	ppm	area	ppm	area	ppm	ppm		
	14:07	4	0.06	<2	<0.030	<2	<0.049	<2	<0.015	0.06		
	14:10	<2	<0.041	4	0.04	<2	<0.049	2	0.02	0.08		
	14:13	<2	<0.041	2	0.03	<2	<0.049	<2	<0.015	0.03		
	14:16	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-		
	14:19	<2	< 0.041	<2	<0.030	<2	<0.049	<2	<0.015	-		
	14:22	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-		
	14:25	<2	<0.041	<2	<0.030	<2	<0.049	<2	<0.015	-		
	Average		<0.041		<0.030		<0.049		<0.015		8	

CALIBRATION DATA

Number 1

Client: New Indy Location: Catawba, SC Source:	M	ethod 16	Project Number: Operator: Date:	15730.001.006 T. Simpkins 18 Mar 2021
Ambien	t Temperature: 72°C	Barometric P	ressure: 30.20 in. Hg	
Analyte	H ₂ S	MeSH	DMS	DMDS
Perm. Device ID	T-53950	33-56671	89-56661	89-56665
Perm. Rate. nL/min	422	455	306	217
Ret. Time, sec	19.0	32.5	70.0	125.0
1 Flow = 53.0 mL/Min	7.97 ppm	8.59 ppm	5.77 ppm	4.10 ppm
Time: 08:30		Peak Area	s, mv-sec	
	37217	48066	25482	71756
	38155	47820	25458	71884
	37886	48063	25691	71544
Average Area	37753 🧹	47983 🗸	25544 /	71728
2 Flow = 106 mL/Min	3.98 ppm	4.29 ppm	2.88 ppm	2.05 ppm
Time: 08:53		Peak Area	s, mv-sec	
	11220	15593	6415	19990
	11626	15400	6404	19931
	11251	15235	6408	19816
Average Area	11366 /	15409 /	6409	19912 🦯
3 Flow = 234 mL/Min	1.80 ppm	1.95 ppm	1.31 ppm	0.93 ppm
Time: 09:08		Peak Areas	s, mv-sec	
	2385	3436	1360	4560
	2307	3358	1346	4470
	2361	3302	1307	4384 /
Average Area	2351 /	3365	1338	4471 ′

R

15730.001.006 New-Indy Catawba Odor Testing

CALIBRATION SUMMARY

Number 1

Client: New Indy				Proje	ct Number: 15	730.001.006 Simpkins
Source:			Method 16		Date: 18	Mar 2021
	10 y					
H ₂ S	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	7.97	3.98	1.80			
Area, mv-sec	37753	11366	2351			
Calc. Conc., ppm	7.83	4.12	1.78			
% Error	-1.8	3.4	-1.6			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.8723	2.9040	0.9992	2	0.041	
MeSH	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	8.59	4.29	1.95			
Area, my-sec	47983	15409	3365			
Calc. Conc., ppm	8.41	4.46	1.91			
% Error	-2.0	4.0	-1.8			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.7925	3.0232	0.9990	2	0.030	
5000		0	2			
	1	09.52	3			
	00.30 E 77	00.00	1 21			
Concentration, ppm	0.77 05544	2.00	1220			
Area, mv-sec	20044 5 77	2 99	1 2 1			
Calc. Conc., ppm	0.1	2.00	0.1			
% Error	U.I Slong	-U.Z	Corr Cooff	Min Aroa	Det Lim	
Calibration Curve	1 0850	2 8050		2	0.049	•
	1.3033	2.0950	20.3333	2	0.040	
DMDS	1	2	3			
Time	08:30	08:53	09:08			
Concentration, ppm	4.10	2.05	0.93			
Area, mv-sec	71728	19912	4471			
Calc. Conc., ppm	4.09	2.06	0.93			
% Error	-0.3	0.5	-0.2			
Calibration Curve	Slope 1.8692	Intercept 3.7132	Corr. Coeff. >0.9999	Min. Area 2	Det. Lim. 0.015	

R

ANALYTES AND STANDARDS

Client: New In Location: Catawb Source:	dy ba, SC	Method	16	Project Number: 15730.001.006 Operator: T. Simpkins Date: 18 Mar 2021					
17	Analyte Molecular Weight	H₂S 34.08	MeSH 48.11	DMS 62.14	DMDS 94.20	÷			
Peak D Minimu Minir Begin En	Retention Time, sec etection Window, sec im Peak Area, mv-sec num Peak Height, mv ning Peak Width, sec ding Peak Width, sec	19.0 3.0 2 1 1.0 2.0	32.5 5.0 2 1 1.0 3.0	70.0 10.0 2 1 2.0 4.0	125.0 10.0 2 1 3.0 5.0				
Per Perr	Permeation Device ID meation Rate, ng/min neation Rate, nL/min*	T-53950 600 422	33-56671 913 455	89-56661 792 306	89-56665 852 217				
Barometric Pressure: 30.20 in. Hg Ambient Temperature: 72 °F No Oxygen Correction									
*Permeation rate Permeation rate	s are gravimetrically dete s by volume, in nL/min, a	ermined by the are calculated	e manufacturer from the perm	with results eation rates	by weight in ng by weight as fo	/min. llows:			
Permeation rates by volume, in Hzmin, are calculated from the permeation rates by volume, in Hzmin, are calculated from the permeation rates by we get $PR_{nl} = PR_{ng} \times (V_{mol} / W_{mol}) \times [(460^{\circ} + T_a) / T_s] \times (P_s / P_b)$ Where: $PR_{nl} = Permeation Rate by volume, nL/min$ $PR_{ng} = Permeation Rate by weight, ng/min$ $V_{mol} = Molar Volume of any gas @32 °F & 29.92 mm Hg = 22.4 L/mole$ $W_{mol} = Molecular Weight of compound$ $T_a = Ambient Temperature, °F$ $T_s = Standard Temperature = 492 °R (32 °F)$ $P_s = Standard Pressure = 29.92 in Hg$ $P_s = Barometric Pressure in Hg$									
For example, H ₂ PR ni	2S: = 600 x (22.4 / 34.08) = 422 nL/min	x [(460 + 72)	/ 492] x (29.92	/ 30.20)					
To calclate conc C	entrations: = PR _{nl} / F _d								
C PRnl	= Concentration, ppm = Permeation Rate by	/ volume, nL/m	in	d					

F_d = Flow rate of diluent, mL/min

15730.001.006 New-Indy Catawba Odor Testing

INSTRUMENT INFORMATION

Clier Locatio Sourc	nt: New on: Cata ce:	v Indy awba, So	C	M	ethod	16		Project Nu Op	imber: erator: Date:	15730.001.006 T. Simpkins 18 Mar 2021	
		Ρ	File: rogram Ve Com	C:\Data\NIC\Tr ersion: 2.0, buil puter: DESKT	rs Data It 15 Ma OP-A1	18 Mare ay 2017 IJDGT	ch 2021 A File Ve Trailer:	A.trs e rsion: 2. 88	0		
		Ana	alog Input	Device: Keithle	∍y KUS	B-3108	GC	Channel:	16		
			Samplin	g Rate: 0.050 s	ec.	Data I	nterval:	0.5 sec.			
			Gas Chro	matograph: Sl Detect	himadz or Ran	u GC8A ge: 10	Serial N	lo. GC 1		×.	
		Gases		Temp	erature	es, °C		C	olumn	IS	
C	Press.FlowpsimL/minColumn:100Primary:CarbopackH23050Detector:120Secondary:N/AAir3060Sample Loop:4"Carrier50303044										
				Injec	tion C	ycle					
	Total	Length:	180 sec	Sampling Tin	ne: 17	0 sec	Load/Ba	ckflush 1	Time:	80 sec	
	Sur Chantein			Default Integ	gration	Parame	eters				
	N	Sig linimum	gnal Thres peak area	shold 0.67 mv a 2 mv-sec Mi	Peak inimun	detecti n peak h	on windo neight 1	w ±10 se mv above	ec baseli	ne	
				Dyna	acalibr	ator			12111-1-1-K		
				Chamber Te Ambient Te Barometric Pr	mpera mperat essure	ture 50 ture 72 e 30.20	.0°C .0°F in. Hg			2	

58

15730.001.006 New-Indy Catawba Odor Testing

a.

ATTACHMENT B

23-24 MARCH 2021

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTR.PT.DOC

Number 1

Client: New Indy Location: Catawba, SC Source:

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 23 Mar 2021

Start Time 09:06 End Time 08:10

Average Measured TRS Conc. 0.07 ppm Recovery Missing

Client: New Location: Catav Source:	Indy vba, SC		Method 16 Calibration 1				DMDS TPS		
Time	F	12 S	M	eSH	D	MS	D	NDS	TRS
e ime	area	ppm	area	ppm	area	ppm	area	ppm	ppm
09:06	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
			East	of RB Bu	ilding in	ally			
09:06	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
09:09	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
09:12	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
09:15	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
09:18	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
09:21	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	 -0
09:24	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
09:27	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
				west of	CB's				
				west of	cb's				
09:30	3	0.06	<2	< 0.053	<2	<0.053	<2	<0.019	0.06
09:33	3	0.06	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.06
09:36	3	0.06	<2	< 0.053	<2	< 0.053	3	0.02	0.10
09:39	2	0.06	<2	< 0.053	<2	< 0.053	2	0.02	0.10
09:42	3	0.06	<2	<0.053	<2	<0.053	2	0.02	0.10
09.46	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
09.49	<2	<0.053	<2	<0.053	2	0.06	<2	<0.019	0.06
09:52	2	0.06	<2	<0.000	<2	<0.00	<2	<0.010	0.06
00:02	2	0.06	<2	<0.000	<2	<0.000	2	0.010	0.00
00.00	2	0.06	<2	<0.000	<2	<0.000	2	0.02	0.10
10.01	<2	<0.00	<2	<0.053	<2	<0.000	<2	<0.02	0.10
10.01	2	-0.055	<2	<0.053	~2	<0.000	~2	<0.019	0.06
10.07	6	0.00	~2	<0.053	~2	<0.053	~2	<0.019	0.00
10.07	0	0.09	~ <u>~</u>	<0.000	~2		~2	~0.019	0.09
10.10	~2	<0.052	LV Day S				6	0.02	0.14
10.10	~2	<0.053	5	0.07	~2	<0.053	0	0.03	0.14
10.13	~2	<0.053	0	0.10	~2	<0.053	9	0.04	0.10
10.16	<2	<0.053	4		< <u>Z</u>	<0.053	1	0.04	0.14
40.40	0	0.00	wes	St SIGE CD			-0	10.040	0.00
10:19	2	0.06	<2	< 0.053	<2	< 0.053	<2	<0.019	0.06
10:22	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
10:25	2	0.05	<2	< 0.053	<2	< 0.053	3	0.02	0.10
10:28	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	
10:31	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
10:34	7	0.10	<2	<0.053	<2	<0.053	<2	<0.019	0.10
10:37	2	0.05	<2	< 0.053	<2	< 0.053	3	0.02	0.10
10:40	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
10:43	5	0.09	<2	<0.053	<2	<0.053	<2	<0.019	0.09
10:46	13	0.14	<2	<0.053	<2	<0.053	<2	<0.019	0.14

Number 1

Client: New I Location: Catav Source:	indy vba, SC			Metho Calibrat	d 16 tion 1		Project (Number: Operator: Date:	15730.001.006 T. Simpkins 23 Mar 2021	
Time	F	12 S	Me	∋SH	D	MS	DI	IDS	TRS	
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
10:49	<2	<0.053	<2	< 0.053	<2	< 0.053	4	0.03	0.05	
10:52	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	-	
10:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-	
10:58	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	-	
11:01	2	0.05	<2	<0.053	25	0.18	<2	<0.019	0.24	
11:04	2	0.05	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.05	
11:07	<2	<0.053	<2	< 0.053	<2	< 0.053	<2	<0.019	-	
11:10	<2	<0.053	<2	<0.053	2	0.06	<2	<0.019	0.06	
11:13	<2	< 0.053	<2	< 0.053	<2	<0.053	<2	<0.019	1.70	
11:16	<2	<0.053	2	0.05	<2	<0.053	<2	<0.019	0.05	
11:19	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-	
11:22	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-	
11:25	<2	<0.053	<2	<0.053	<2	<0.053	2	0.02	0.04	
11:28	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
11:31	<2	<0.053	<2	<0.053	3	0.06	<2	<0.019	0.06	
11:34	<2	<0.053	2	0.05	<2	<0.053	<2	<0.019	0.05	
11:37	2	0.06	<2	<0.053	<2	<0.053	3	0.02	0.10	
11:40	<2	<0.053	<2	<0.053	<2	<0.053	4	0.03	0.05	
11:43	3	0.06	<2	< 0.053	<2	<0.053	<2	<0.019	0.06	
11:46	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
11:49	6	0.10	<2	<0.053	<2	< 0.053	<2	<0.019	0.10	
11:52	<2	<0.053	<2	<0.053	<2	< 0.053	2	0.02	0.04	
11:55	<2	<0.053	<2	<0.053	<2	< 0.053	4	0.03	0.05	
11:58	6	0.09	<2	<0.053	<2	<0.053	<2	<0.019	0.09	
12:01	6	0.09	<2	<0.053	<2	<0.053	<2	<0.019	0.09	
12:04	<2	<0.053	<2	<0.053	<2	<0.053	4	0.03	0.06	
12:07	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
12:10	<2	<0.053	5	0.08	<2	<0.053	<2	<0.019	0.08	
12:13	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	a (* 1	
12:16	5	0.09	<2	<0.053	<2	<0.053	<2	<0.019	0.09	
12:19	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	=	
12:22	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	2	
12:25	<2	<0.053	<2	<0.053	3	0.07	<2	<0.019	0.07	
12:28	4	0.08	<2	<0.053	<2	<0.053	<2	<0.019	0.08	
12:31	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
12:34	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019		
12:37	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
12:40	<2	<0.053	<2	< 0.053	<2	<0.053	<2	<0.019	-	
12:43	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
12:46	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019) (1000	

C υ

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Operator: 15730.001.006 Operator: T. Simpkins Date: 23 Mar 2021			
Time	н	I ₂ S	Me	eSH	D	OMS	D	MDS	TRS		
lime	area	ppm	area	ppm	area	ppm	area	ppm	ppm		
12:49	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.05		
			1254	wind still	blowing	g west					
12:52	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07		
12:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019			
12:58	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-		
13:01	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-		
13:04	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-		
13:07	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.05		
13:10	6	0.09	<2	<0.053	<2	<0.053	<2	<0.019	0.09		
13:13	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06		
				moving	trailer						
13:16	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	17 <u>–</u> 1		
13:19	<2	< 0.053	<2	<0.053	<2	<0.053	<2	< 0.019	0 		
13:22	8	0.11	<2	<0.053	<2	<0.053	<2	< 0.019	0.11		
13:25	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-		
13:28	49	0.27	246	0.62	49	0.25	4	0.03	1.20		
13:31	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	12		
13:34	2	0.06	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.06		
13:37	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	<0.019	_		
13.40	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.05		
13.43	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	0.00		
	_	N	W of No	3 RB Sta	- ick acro	oss street	-	0.010			
13.46	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	_		
10.10	-	0.000	wind	d blowing	toward	NW		0.010			
13.49	3	0.07	<2	<0.053	<2	<0.053	2	0.02	0.11		
13:52	14	0.14	96	0.39	23	0.18	6	0.03	0.77		
13:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.00	0.11		
13:58	4	0.08	<2	<0.000	<2	<0.000	<2	<0.010	0.08		
14.01	78	0.34	180	0.53	32	0.21	<2	<0.010	1.07		
14.04	<2	<0.04	3	0.00	<2	<0.21	<2	<0.010	0.07		
14.07	5	0.000	<2	<0.07	3	0.06	<2	<0.010	0.07		
14.07	<2	<0.00	<2	<0.000	<2	<0.00	<2	<0.013	0.14		
14.10	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-		
14.15	62	-0.000	6	<0.000	6	<0.000	~2	<0.019	0.49		
14.10	~2	<0.052	-2	<0.05	~2	<0.052	~2	<0.019	0.40		
14.13	2	0.000	~2	<0.000	~2	<0.000	~2	<0.019	0.07		
14.22	-0	0.07	~2	~0.000	~2	~0.000	~2	~0.019	0.07		
14.20	~2	<0.000 <0.050	~2		~2	<0.000 <0.050	~2	<0.019	-		
14.20	~2		~2	<0.053	~2	<0.053	<2	<0.019	377.2		
14.01	~2	NU.000	~2	<0.053	~2	<0.053	~2	<0.019	0.00		
14:34	3	0.00	<2	<0.053	<2	<0.053	<2	<0.019	0.06		

Client: New I Location: Cataw Source:	ndy /ba, SC		Method 16 Calibration 1				Project C	Number: Operator: Date:	15730.001.006 T. Simpkins 23 Mar 2021
Time	ŀ	l2S	M	eSH	D	MS	D	IDS	TRS
	area	ppm	area	ppm	area	ppm	area	ppm	ppm
14:37	844	1.13	235	0.61	52	0.26	<2	<0.019	2.00
14:40	<2	<0.053	223	0.59	51	0.26	5	0.03	0.91
14:43	<2	<0.053	407	0.81	118	0.39	6	0.03	1.26
14:46	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
14:49	107	0.40	69	0.33	4	0.08	<2	<0.019	0.80
14:52	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
14:55	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
14:58	394	0.77	419	0.82	76	0.32	6	0.03	1.97
15:01	<2	< 0.053	8	0.11	3	0.07	2	0.02	0.21
15:04	6	0.10	2	0.06	4	0.07	<2	<0.019	0.23
15:07	166	0.50	56	0.29	5	0.08	<2	< 0.019	0.87
15:10	22	0.18	8	0.11	4	0.08	<2	< 0.019	0.36
15:13	5	0.08	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.08
15:16	<'2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
15:19	4	0.07	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.07
15:22	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
15:25	<2	< 0.053	<2	< 0.053	<2	< 0.053	4	0.02	0.05
15:28	121	0.42	83	0.36	6	0.09	<2	< 0.019	0.87
10.01	<2	<0.053	2	0.05	<2	< 0.053	<2	< 0.019	0.05
10.04	< <u>_</u>	<0.053	3	0.00	4	0.07	<2	< 0.019	0.14
15.37	10	0.15	4	0.08	2	0.06	<2	< 0.019	0.28
15.40	-2	<0.07	~2	<0.053	~2	< 0.053	5	0.03	0.13
15.45	~2	<0.053	~2	<0.053	2	0.00	<2	<0.019	0.06
15.50	~2	<0.053	2	<0.055	~2	<0.053	~2	<0.019	0.06
15.50	2	~0.055	<2	<0.00	~2	<0.053	~2	<0.019	0.00
15:56	<2	<0.00	2	<0.000 0.05	<2	<0.053	<2	<0.019	0.00
15.50	4	0.000	<2	<0.053	<2	<0.053	<2	<0.019	0.03
16:02	<2	<0.07	<2	<0.000	<2	<0.053	<2	<0.019	0.07
16:02	2	0.05	<2	<0.000	<2	<0.000	<2	<0.013	0.05
16:08	<2	<0.053	4	0.000	<2	<0.000	<2	<0.019	0.03
16:11	<2	<0.053	<2	<0.00	<2	<0.000	<2	<0.010	0.00
16:14	278	0.64	162	0.50	32	0.20	<2	<0.010	1 35
16.17	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.010	-
16:20	3	0.07	<2	<0.053	<2	<0.053	<2	<0.010	0.07
16.23	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
	_	0.000	_	rail car	area	0.000	-	0.010	
			v	Vind Direc	tion NW	1			
16:26	<2	<0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
16:29	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-

Client: New I Location: Cataw Source:	ndy vba, SC			Method 16 Calibration 1				Number: Operator: Date:	15730.001.006 T. Simpkins 23 Mar 2021
Time	ŀ	l ₂ S	M	eSH	D	MS	DN	IDS	TRS
	area	ppm	area	ppm	area	ppm	area	ppm	ppm
16:32	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
16:35	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
16:38	<2	<0.053	<2	<0.053	5	0.08	<2	<0.019	0.08
16:41	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
16:44	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
16:47	3	0.06	<2	<0.053	<2	<0.053	4	0.03	0.11
16:50	3	0.06	<2	<0.053	<2	<0.053	3	0.02	0.11
16:53	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.04
16:56	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
16:59	<2	<0.053	3	0.07	<2	<0.053	<2	<0.019	0.07
17:02	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	100 100
17:05	7	0.10	<2	<0.053	<2	<0.053	<2	<0.019	0.10
17:08	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
17:11	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
17:14	7	0.10	<2	<0.053	<2	<0.053	<2	< 0.019	0.10
17:17	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
17:20	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
17:23	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	5 0
17:26	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
17:29	<2	<0.053	<2	<0.053	36	0.22	<2	<0.019	0.22
17:32	3	0.06	<2	<0.053	<2	<0.053	5	0.03	0.12
17:35	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	()
17:38	3	0.07	<2	< 0.053	<2	<0.053	<2	<0.019	0.07
17:41	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
17:44	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	<0.019	
17:47	<2	< 0.053	<2	< 0.053	12	0.13	<2	<0.019	0.13
17:50	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
17:53	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	-
17:56	<2	<0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
17:59	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
18:02	<2	<0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
18:05	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
18:08	<2	<0.053	<2	< 0.053	<2	< 0.053	<2	<0.019	-
18:11	<2	<0.053	<2	< 0.053	<2	< 0.053	<2	<0.019	_
18:14	3	0.07	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.07
18:17	<2	< 0.053	<2	< 0.053	3	0.07	<2	< 0.019	0.07
18:20	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
18:23	2	0.05	<2	< 0.053	<2	< 0.053	3	0.02	0.10
18:26	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
18:29	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-

RUN DATA Number 1

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1			Project Number: Operator: Date:		15730.001.006 T. Simpkins 23 Mar 2021
Timo	ŀ	H₂S	Me	eSH	D	MS	DI	IDS	TRS
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm
18:32	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	_
18:35	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
18:38	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
18:41	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
18:44	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
18:47	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
18:50	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
18:53	<2	<0.053	4	0.07	<2	<0.053	<2	<0.019	0.07
18:56	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
18:59	<2	<0.053	<2	<0.053	<2	< 0.053	5	0.03	0.06
19:02	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.05
19:05	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
19:08	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
19:11	3	0.07	5	0.08	<2	<0.053	3	0.02	0.19
19:14	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
19:17	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
19:20	<2	<0.053	<2	<0.053	3	0.06	4	0.03	0.12
19:23	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
19:26	<2	<0.053	<2	<0.053	<2	< 0.053	4	0.03	0.05
19:29	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-
19:32	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
19:35	<2	<0.053	<2	<0.053	4	0.07	<2	<0.019	0.07
19:38	<2	<0.053	9	0.11	<2	<0.053	<2	<0.019	0.11
19:41	5	0.08	<2	<0.053	<2	<0.053	<2	<0.019	0.08
19:44	5	0.08	<2	<0.053	<2	<0.053	<2	<0.019	0.08
19:47	<2	<0.053	<2	< 0.053	<2	<0.053	<2	<0.019	-
19:50	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	12
19:53	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
19:56	5	0.08	<2	<0.053	<2	<0.053	<2	<0.019	0.08
19:59	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
20:02	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
20:05	4	0.07	<2	<0.053	<2	<0.053	5	0.03	0.13
20:08	3	0.07	<2	<0.053	<2	<0.053	3	0.02	0.11
20:11	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
20:14	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
20:17	<2	< 0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-
20:20	<2	< 0.053	<2	<0.053	4	0.07	<2	<0.019	0.07
20:23	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
20:26	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-
20:29	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07

66

RUN DATA Number 1

Client: New Indy Project Number: 15730.001.006 Location: Catawba, SC Method 16 **Operator:** T. Simpkins Source: Calibration 1 Date: 23 Mar 2021 H₂S MeSH DMS DMDS TRS Time area ppm area ppm area ppm area ppm ppm 20:32 <2 <2 < 0.053 < 0.053 <2 < 0.053 <2 < 0.019 -5 20:35 0.08 <2 < 0.053 <2 < 0.053 <2 < 0.019 0.08 <2 20:38 < 0.053 <2 < 0.053 <2 < 0.053 2 0.02 0.04 4 <2 <2 < 0.019 20:41 0.08 < 0.053 < 0.053 <2 0.08 <2 <2 20:44 < 0.053 < 0.053 <2 2 0.02 < 0.053 0.04 <2 2 20:47 < 0.053 0.05 <2 < 0.053 <2 < 0.019 0.05 20:50 <2 < 0.053 <2 < 0.053 <2 < 0.053 <2 < 0.019 -20:53 <2 <2 <2 < 0.053 < 0.053 < 0.053 <2 < 0.019-2 0.10 <2 <2 3 20:56 0.06 < 0.053 < 0.053 0.02 <2 20:59 < 0.053 <2 < 0.053 <2 < 0.053 <2 < 0.019 -21:02 <2 <2 < 0.053 < 0.053 <2 < 0.053 <2 < 0.019 _ 21:05 <2 < 0.053 <2 <2 <2 < 0.053 < 0.053 < 0.019 _ 21:08 <2 < 0.053 <2 < 0.053 <2 < 0.053 <2 < 0.019 _ <2 21:11 < 0.053 <2 <2 <2 < 0.053 < 0.053 < 0.019 _ 21:14 4 0.08 <2 < 0.053 <2 < 0.053 <2 < 0.019 0.08 21:17 <2 < 0.053 <2 < 0.053 <2 <2 < 0.053 < 0.019 ... 21:20 <2 <2 <2 < 0.053 < 0.053 < 0.053 <2 < 0.019 2 21:23 <2 < 0.053 <2 <2 <2 < 0.053 < 0.053 < 0.019 21:26 2 0.06 <2 < 0.053 <2 < 0.053 8 0.04 0.13 21:29 <2 <2 <2 <2 < 0.019 < 0.053 < 0.053 < 0.053 -21:32 2 0.06 <2 < 0.053 <2 <2 0.06 < 0.053 < 0.019 21:35 <2 <2 <2 <2 < 0.053 < 0.053 < 0.053 < 0.019 -21:38 <2 < 0.053 <2 < 0.053 <2 < 0.053 <2 < 0.019 < 0.053 21:41 <2 <2 <2 < 0.053 < 0.053 4 0.03 0.05 21:44 <2 < 0.053 <2 <2 <2 < 0.053 < 0.053 < 0.019 -<2 <2 21:48 < 0.053 < 0.053 <2 < 0.053 2 0.02 0.04 21:51 3 0.06 <2 4 <2 < 0.053 0.07 < 0.019 0.13 <2 21:54 < 0.053 <2 < 0.053 <2 <2 < 0.053 < 0.019 -21:57 <2 < 0.053 <2 < 0.053 <2 < 0.053 <2 < 0.019 -22:00 <2 <2 <2 < 0.053 < 0.053 < 0.053 <2 < 0.019-<2 22:03 < 0.053 <2 5 <2 < 0.053 0.08 < 0.019 0.08 22:06 <2 < 0.053 <2 < 0.053 <2 < 0.053 <2 < 0.019 -2 <2 22:09 0.06 < 0.053 2 0.06 <2 0.12 < 0.019 22:12 2 <2 <2 0.06 < 0.053 <2 < 0.053 < 0.019 0.06 22:15 <2 < 0.053 <2 < 0.053 <2 <2 < 0.053 < 0.019 ÷ 1 <2 <2 <2 22:18 < 0.053 < 0.053 < 0.053 <2 < 0.019 -<2 <2 <2 22:21 < 0.053 < 0.053 < 0.053 <2 < 0.019 -22:24 2 <2 < 0.053 <2 <2 0.06 < 0.053 0.06 < 0.019 <2 <2 22:27 < 0.053 <2 <2 < 0.053 < 0.053 < 0.019 -22:30 <2 <2 <2 < 0.053 < 0.053 < 0.053 <2 < 0.019 -

Number 1

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Number: Operator: Date:	15730.001.006 T. Simpkins 23 Mar 2021	
Time	ł	l₂S	М	eSH	D	MS	D	NDS	TRS	
	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
22:33	4	0.08	<2	<0.053	<2	< 0.053	<2	<0.019	0.08	
22:36	<2	<0.053	3	0.06	<2	<0.053	<2	<0.019	0.06	
22:39	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019		
22:42	3	0.07	<2	<0.053	<2	< 0.053	<2	<0.019	0.07	
22:45	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-	
22:48	4	0.07	5	0.09	<2	<0.053	<2	<0.019	0.16	
22:51	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	<u></u>	
22:54	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
22:57	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.04	
23:00	<2	<0.053	4	0.08	<2	<0.053	<2	<0.019	0.08	
23:03	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07	
23:06	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
23:09	2	0.05	<2	<0.053	<2	<0.053	<2	<0.019	0.05	
23:12	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:15	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
23:18	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019		
23:21	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
23:24	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:27	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:30	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:33	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:36	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:39	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07	
23:42	<2	< 0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
23:45	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
23:48	<2	<0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	-	
23:51	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	<0.019		
23:54	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	< 0.019		
23:57	<2	< 0.053	2	0.06	<2	< 0.053	<2	< 0.019	0.06	
00:00	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-	
00:03	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019		
00:06	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-	
00:09	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-	
00:12	~2	<0.003 0.05	<2	<0.053	<2	<0.053	<2	< 0.019	-	
00:15	2	0.05	<2	<0.053	<2	<0.053	<2	< 0.019	0.05	
00.18	~2	SCU.U33	<2	<0.053	<2	<0.053	<2	< 0.019	-	
00.21	2	0.05	~2	<0.053	<2	<0.053	<2	< 0.019	0.05	
00.24	-2 -2	C.00	~2	<0.000	~2	<0.053	<2	<0.019	0.06	
00.27	5	-0.000 0 08	~2	<0.000	~2	<0.000 <0.052	~2	~0.019	0.09	
00.50	5	0.00	~2	~0.000	~2	~0.000	~2	-0.019	0.00	

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Project Number: 15730.001.006 Operator: T. Simpkins Date: 23 Mar 2021		
Time	ł	l₂S	M	eSH	D	MS	D	IDS	TRS
	area	ppm	area	ppm	area	ppm	area	ppm	ppm
00:33	<2	< 0.053	<2	<0.053	<2	< 0.053	3	0.02	0.05
00:36	4	0.08	<2	< 0.053	<2	< 0.053	<2	<0.019	0.08
00:39	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	
00:42	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	
00:45	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
00:48	<2	<0.053	4	0.08	<2	<0.053	<2	<0.019	0.08
00:51	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
00:54	2	0.06	<2	<0.053	<2	< 0.053	<2	<0.019	0.06
00:57	3	0.06	<2	<0.053	<2	< 0.053	<2	<0.019	0.06
01:00	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
01:03	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:06	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:09	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:12	<2	<0.053	4	0.07	<2	<0.053	<2	<0.019	0.07
01:15	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
01:18	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:21	<2	<0.053	<2	<0.053	<2	<0.053	4	0.03	0.05
01:24	2	0.06	<2	<0.053	4	0.08	<2	<0.019	0.13
01:27	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	H 1
01:30	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	₹
01:33	<2	<0.053	<2	<0.053	<2	<0.053	5	0.03	0.06
01:36	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:39	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	H
01:42	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:45	2	0.05	<2	<0.053	<2	<0.053	<2	<0.019	0.05
01:48	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
01:51	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
01:54	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	<u>11</u>
01:57	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	÷
02:00	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
02:03	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
02:06	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
02:09	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
02:12	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
02:15	8	0.10	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.10
02:18	<2	<0.053	<2	< 0.053	<2	<0.053	<2	< 0.019	5 4
02:21	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	20 22
02:24	<2	<0.053	<2	< 0.053	<2	< 0.053	2	0.02	0.04
02:27	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
02:30	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-

RUN DATA Number 1

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Project Number: Operator: Date:		15730.001.006 T. Simpkins 23 Mar 2021
Time	. F	l2S	M	MeSH		MS	DMDS		TRS
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm
02:33	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
02:36	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	50 -
02:39	<2	<0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	
02:42	4	0.08	<2	<0.053	<2	<0.053	<2	< 0.019	0.08
02:45	<2	< 0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	-
02:48	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
02:51	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
02:54	<2	<0.053	<2	< 0.053	<2	<0.053	<2	<0.019	-
02:57	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:00	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:03	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-
03:06	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:09	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:12	3	0.07	<2	<0.053	<2	< 0.053	2	0.02	0.11
03:15	11	0.12	<2	<0.053	<2	< 0.053	<2	<0.019	0.12
03:18	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:21	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
03:24	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
03:27	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	(<u>_</u>)
03:30	6	0.10	<2	<0.053	<2	<0.053	<2	<0.019	0.10
03:33	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	
03:36	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
03:39	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:42	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:45	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:49	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:52	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
03:58	<2	<0.053	2	0.05	<2	<0.053	3	0.02	0.10
04:01	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	1 70 3
04:04	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	Ξ.
04:07	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
04:10	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
04:13	3	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06
04:16	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	int i
04:19	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
04:22	<2	<0.053	<2	<0.053	3	0.06	<2	<0.019	0.06
04:25	<2	<0.053	<2	< 0.053	<2	<0.053	<2	<0.019	7
04:28	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
04:31	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	7

Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Project Number: Operator: Date:		15730.001.006 T. Simpkins 23 Mar 2021
Timo	H	l₂S	M	MeSH		DMS		NDS	TRS
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm
04:34	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
04:37	<2	<0.053	3	0.07	<2	<0.053	<2	< 0.019	0.07
04:40	4	0.08	<2	<0.053	<2	< 0.053	3	0.02	0.12
04:43	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	<u></u> 2
04:46	2	0.05	<2	<0.053	<2	<0.053	<2	<0.019	0.05
04:49	2	0.05	<2	<0.053	<2	< 0.053	<2	<0.019	0.05
04:52	<2	<0.053	<2	<0.053	<2	<0.053	3	0.02	0.04
04:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
04:58	7	0.10	<2	<0.053	<2	<0.053	<2	<0.019	0.10
05:01	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
05:04	2	0.05	<2	<0.053	<2	<0.053	<2	<0.019	0.05
05:07	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
05:10	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
05:13	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	<u>-</u>
05:16	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
05:19	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
05:22	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	
05:25	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07
05:28	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	112
05:31	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	S
05:34	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
05:37	5	0.08	<2	< 0.053	<2	<0.053	<2	<0.019	0.08
05:40	7	0.10	<2	< 0.053	<2	<0.053	<2	<0.019	0.10
05:43	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	<0.019	22
05:46	<2	< 0.053	<2	< 0.053	<2	< 0.053	6	0.03	0.06
05:49	<2	<0.053	<2	<0.053	<2	< 0.053	<2	< 0.019	-
05:52	2	0.06	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.06
05:55	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
05:58	<2	< 0.053	<2	< 0.053	<2	< 0.053	5	0.03	0.06
06:01	2	0.06	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.06
06:04	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
06:07	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
06:10	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
06:13	3	0.06	<2	< 0.053	<2	< 0.053	<2	< 0.019	0.06
06:16	<2	< 0.053	<2	< 0.053	<2	< 0.053	<2	< 0.019	-
00:19	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	-
00:22	2	0.00	<2	<0.053	<2	< 0.053	<2	< 0.019	0.06
00:20	<2	<0.053	<2	<0.053	22	0.17	<2	< 0.019	0.17
00:20	~2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-
00:31	<2	<0.053	<2	<0.053	<2	<0.053	<2	< 0.019	1

Client: New In Location: Cataw Source:	Client: New Indy Location: Catawba, SC Source:			Method 16 Calibration 1				Operator: 15730.001.006 Operator: T. Simpkins Date: 23 Mar 2021		
Time	F	12 S	M	MeSH DMS		DMDS		TRS		
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
06:34	2	0.06	<2	<0.053	<2	<0.053	<2	<0.019	0.06	
06:37	2	0.06	<2	< 0.053	<2	< 0.053	2	0.02	0.10	
06:40	<2	< 0.053	<2	< 0.053	<2	<0.053	<2	<0.019	-	
06:43	3	0.07	<2	<0.053	4	0.07	<2	<0.019	0.14	
06:46	<2	< 0.053	<2	<0.053	<2	< 0.053	4	0.03	0.05	
06:49	<2	< 0.053	<2	<0.053	<2	<0.053	<2	<0.019	8 2	
06:52	<2	<0.053	<2	<0.053	<2	< 0.053	<2	<0.019	-	
06:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
06:58	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:01	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:04	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	3 <u>1</u> 1	
07:07	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:10	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07	
07:13	<2	< 0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:16	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:19	4	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07	
07:22	<2	<0.053	<2	<0.053	34	0.21	<2	<0.019	0.21	
07:25	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	. 	
07:28	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:31	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:34	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:37	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07	
07:40	6	0.09	<2	<0.053	<2	<0.053	<2	<0.019	0.09	
07:43	<2	<0.053	<2	<0.053	<2	<0.053	2	0.02	0.04	
07:46	3	0.07	<2	<0.053	<2	<0.053	<2	<0.019	0.07	
07:49	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:52	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
				wind blow	ving SW					
07:55	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
07:58	<2	< 0.053	<2	<0.053	<2	<0.053	<2	<0.019	-	
08:01	<2	<0.053	<2	<0.053	2	0.06	<2	<0.019	0.06	
08:04	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019		
08:07	<2	<0.053	<2	<0.053	<2	<0.053	<2	<0.019	<u> </u>	
Average		<0.053		<0.053		<0.053		<0.019	-	

15730.001.006 New-Indy Catawba Odor Testing

CALIBRATION DATA

Number 1

Client: New Indy Location: Catawba, SC Source:	Μ	ethod 16	Project Number: Operator: Date:	15730.001.006 T. Simpkins 22 Mar 2021
Ambient	: Temperature: 72°C	Barometric P	ressure: 30.12 in. Hg	
Analyte	H ₂ S	MeSH	DMS	DMDS
Perm. Device ID	T-53950	33-56671	89-56661	89-56665
Perm. Rate, nL/min	423	456	307	218
Ret. Time, sec	19.0	32.5	70.0	125.0
1 Flow = 55.0 ml /Min	7.70 ppm	8.30 ppm	5 57 ppm	3 96 nnm
Time: 07:30		Peak Area	s my-sec	0.00 ppm
	36921	39362	26024	72542
	36710	38779	26172	73474
	36242	38902	26190	73390
Average Area	36624 /	39014 /	26129	73135
2 Flow = 104 mL/Min	4.06 ppm	4.37 ppm	2.94 ppm	2.09 ppm
Time: 08:01		Peak Areas	s, mv-sec	
	11400	11116	6663	22616
	11123	11403	6907	21518
	11213	11305	6812	21056
Average Area	11245	11275 /	6794 /	21730
3 Flow = 291 mL/Min	1.46 ppm	1.57 ppm	1.05 ppm	0.75 ppm
Time: 08:12		Peak Areas	s, mv-sec	
	1408	1530	914	2577
	1343	1487	875	2882
	1360	1474	866	2897
Average Area	1370	1497 /	885	2785

73

R

15730.001.006 New-Indy Catawba Odor Testing

CALIBRATION SUMMARY

Source: Method 16 Date: 22 Mar 2021 H2S 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 7.70 4.06 1.46 Area, mv-sec 36624 11245 1370 Calc. Conc., ppm 7.57 4.17 1.44 % Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9802 2.8229 0.9996 2 0.053 MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. DMS 1 2 3 0.053 0.053 DMS 1 2 3 0.053 DMS 1 <th>Client: New Indy Location: Catawba, SC</th> <th></th> <th></th> <th></th> <th>Proje</th> <th>ct Number: Operator:</th> <th>15730.001.006 T. Simpkins</th>	Client: New Indy Location: Catawba, SC				Proje	ct Number: Operator:	15730.001.006 T. Simpkins
H2S 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 7.70 4.06 1.46 Area, mv-sec 36624 11245 1370 Calc. Conc., ppm 7.57 4.17 1.44 % Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 0.053 1.9802 2.8229 0.9996 2 0.053 MeSH 1 2 3	Source:			Method 16		Date:	22 Mar 2021
H2S 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 7.70 4.06 1.46 Area, mv-sec 36624 11245 1370 Calc. Conc., ppm 7.75 4.17 1.44 % Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area 1.9802 2.8229 0.9996 2 0.053 MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3							
Time 07:30 08:01 08:12 Concentration, ppm 7.70 4.06 1.46 Area, mv-sec 36624 11245 1370 Calc. Conc., ppm 7.57 4.17 1.44 % Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. MeSH 1 2 3	H₂S	1	2	3			
Concentration, ppm 7.70 4.06 1.46 Area, mv-sec 36624 11245 1370 Calc. Conc., ppm 7.57 4.17 1.44 % Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. . 1.9802 2.8229 0.9996 2 0.053 MeSH 1 2 3 . <t< th=""><th>Time</th><th>07:30</th><th>08:01</th><th>08:12</th><th></th><th></th><th></th></t<>	Time	07:30	08:01	08:12			
Area, mv-sec 36624 11245 1370 Calc. Conc., ppm 7.57 4.17 1.44 % Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. .9802 2.8229 0.9996 2 0.053 MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 1.05 Area, mv-sec 26129 6794 885 2.0890 0.053 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960	Concentration, ppm	7.70	4.06	1.46			
Calc. Conc., ppm % Error 7.57 4.17 1.44 % Error -1.7 2.8 -1.0 Corr. Coeff. Min. Area Det. Lim. Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. MeSH 1 2 3 0.053 0.053 MeSH 1 2 3 0.053 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 0.0999 2 0.053 DMS 1 2 3 3 3 3 4.37 1.57 % Error -0.2 0.4 -0.2 0.053 3 3 3 3 3 4.37 1.57 Min. Area Det. Lim. 2.7936 >0.9999 2 0.053 DMS 1 2 3 3 3 4.37 1.57 Galibration Curve Slope Intercep	Area, mv-sec	36624	11245	1370			
% Error -1.7 2.8 -1.0 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9802 2.8229 0.9996 2 Dittercept 0.053 MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calic. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 3 3 3 3 Time 07:30 08:01 08:12 3 3 4 3 4 3 Concentration, ppm 5.57 2.94 1.05 4 4 4 3 4 4 4 4 4 4 4 4 4 </th <th>Calc. Conc., ppm</th> <th>7.57</th> <th>4.17</th> <th>1.44</th> <th></th> <th></th> <th></th>	Calc. Conc., ppm	7.57	4.17	1.44			
Calibration Curve Slope 1.9802 Intercept 2.8229 Corr. Coeff. 0.9996 Min. Area 2 Det. Lim. 0.053 MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept 1.9584 Corr. Coeff. 2.7936 Min. Area >0.9999 Det. Lim. 0.053 DMS 1 2 3 3 3 3 3 3 3 Time 07:30 08:01 08:12 3 3 4 3 4 3 Calc. Conc., ppm 5.57 2.94 1.05 4 2 3 Time 07:30 08:01 08:12 5 6 2 2.8960 0.9999 2 0.053 DMDS 1 2	% Error	-1.7	2.8	-1.0			
MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. DMS 1 2 3 3 3 3 3 3 DMS 1 2 3 3 3 3 3 3 DMS 1 2 3 3 3 3 3 3 3 3 3 DMS 1 2 3 3 3 3 3 3 3 3 3 3 Concentration, ppm 5.57 2.94 1.05 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 <t< th=""><th>Calibration Curve</th><th>Slope</th><th>Intercept</th><th>Corr. Coeff.</th><th>Min. Area</th><th>Det. Lim</th><th></th></t<>	Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim	
MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1		1.9802	2.8229	0.9996	2	0.053	
MeSH 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1							
Time 07:30 08:01 08:12 Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 1 2 Image: Concentration, ppm 3.96 2.09 0.75 3.96 2.09	MeSH	1	2	3			
Concentration, ppm 8.30 4.37 1.57 Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 Min. Area Det. Lim. Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Min. Area Det. Lim. Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 0.053 DMDS 1 2 3 0.053 DMDS 1 <	Time	07:30	08:01	08:12			
Area, mv-sec 39014 11275 1497 Calc. Conc., ppm 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 0.9584 2.7936 >0.99999 2 0.053 DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. % Error 0.9 -1.5 0.6 O.6 O.053 O.053 DMDS 1 2 3 O.053 O.053 DMDS 1 2 3 O.053 O.053 DMDS 1 2 3 O.053 O.053	Concentration, ppm	8.30	4.37	1.57			
Calc. Conc., ppm % Error 8.28 4.39 1.57 % Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. DMS 1 2 3 2 0.053 DMS 1 2 3 2 0.053 Time 07:30 08:01 08:12 0.053 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. % Error 0.9 -1.5 0.6 O.6 O.99999 2 0.053 DMDS 1 2 3 O.9 0.99999 2 0.053 DMDS 1 2 3 O.9 0.15 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 O.053 DMDS 1	Area, mv-sec	39014	11275	1497			
% Error -0.2 0.4 -0.2 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 2 0.053 Time 07:30 08:01 08:12 0.053 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 3 3 3 3 Concentration, ppm 3.96 2.09 0.75 3 3 3	Calc. Conc., ppm	8.28	4.39	1.57			
Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 1.9584 2.7936 >0.99999 2 0.053 DMS 1 2 3 2 0.053 Time 07:30 08:01 08:12 2 0.053 Concentration, ppm 5.57 2.94 1.05 4 4 4 5 5 2.94 1.05 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 1 2 3 7 1 1 2 1 2 1 0 1 2 1 2 1	% Error	-0.2	0.4	-0.2			
I.9584 2.7936 >0.9999 2 0.053 DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Calibration curve 3.92 2.074	Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim	
DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cale Come num 2.02 2.12 0.74		1.9584	2.7936	>0.9999	2	0.053	
DMS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.99999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cale Concentration, ppm 3.92 2.12 0.74			-				
Time 07:30 08:01 08:12 Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cale Concentration 2.02 2.42 0.74	DMS	1	2	3			
Concentration, ppm 5.57 2.94 1.05 Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cala Concentration 2.92 0.74	Time	07:30	08:01	08:12			
Area, mv-sec 26129 6794 885 Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cala Come num 2.02 2.12 0.74	Concentration, ppm	5.57	2.94	1.05			
Calc. Conc., ppm 5.62 2.89 1.06 % Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Calo Concentration 2.022 2.12 0.74	Area, mv-sec	26129	6794	885			
% Error 0.9 -1.5 0.6 Calibration Curve Slope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cala Concentration 2.02 2.12 0.74	Calc. Conc., ppm	5.62	2.89	1.06			
Calibration Curve Stope Intercept Corr. Coeff. Min. Area Det. Lim. 2.0280 2.8960 0.9999 2 0.053 DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Calo Concentration 2.023 0.74	% Error	0.9	-1.5	0.6		Det Line	
DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cala Carea mm 3.92 2.12 0.74	Calibration Curve	Siope	Intercept	Corr. Coen.		Det. Lim.	
DMDS 1 2 3 Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cala Carea mm 2.02 0.74		2.0200	2.0900	0.9999	Z	0.055	
Time 07:30 08:01 08:12 Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cale Concentration 2.02 2.12 0.74	DMDS	1	2	3			
Concentration, ppm 3.96 2.09 0.75 Area, mv-sec 73135 21730 2785 Cale Care nnm 3.92 2.12 0.74	Time	07:30	08:01	08:12			
Area, mv-sec 73135 21730 2785	Concentration, ppm	3.96	2.09	0.75			
Cala Cana $nnm = 2.02 = 2.12 = 0.74$	Area, mv-sec	73135	21730	2785			
Gaid. Cond., ppm 3.82 2.12 0.74	Calc. Conc., ppm	3.92	2.12	0.74			
% Error -0.9 1.4 -0.5	% Error	-0.9	1.4	-0.5			
Calibration CurveSlopeInterceptCorr. Coeff.Min. AreaDet. Lim.1.96583.69720.999920.019	Calibration Curve	Slope 1.9658	Intercept 3.6972	Corr. Coeff. 0.9999	Min. Area 2	Det. Lim. 0.019	

ANALYTES AND STANDARDS

Client: Location: Source:	New Indy Catawba, SC	Method	16	Project Nu Ope	mber: 15730.001.006 erator: T. Simpkins Date: 22 Mar 2021		
	Analyte	H 2 S	MeSH	DMS	DMDS		
	Molecular Weight	34.08	48.11	62.14	94.20		
8	Retention Time, sec	19.0	32.5	70.0	125.0		
	Peak Detection Window, sec	3.0	5.0	10.0	10.0		
	Minimum Peak Area, mv-sec	2	2	2	2		
	Minimum Peak Height, mv	1	1	1	1		
	Beginning Peak Width, sec	1.0	1.0	2.0	3.0		
	Ending Peak Width, sec	2.0	3.0	4.0	5.0		
	Permeation Device ID	T-53950	33-56671	89-56661	89-56665		
	Permeation Rate, ng/min	600 √	913 ノ	792	852 ⁻ /		
	Permeation Rate, nL/min*	423	456	307	218		
	Barometric Pressure: 30.12 in. Hg Ambient Temperature: 72 °F No Oxygen Correction						
*Permeat	ion rates are gravimetrically det	ermined by the	manufacture	r with results b	y weight in ng/min.		
Permeat	ion rates by volume, in nL/min,	are calculated f		leation rates b	y weight as follows:		
V	PRnI = PRng x (Vmol / Wmol) Vhere:	x [(460° + T _a)	/ Ts] x (Ps / P	b)			

P_b = Barometric Pressure, in Hg

For example, H₂S:

PR_{nl} = 600 x (22.4 / 34.08) x [(460 + 72) / 492] x (29.92 / 30.12) = 423 nL/min

To calclate concentrations:

С	= PR _{nl} / F _d
Where:	
С	= Concentration, ppmv
PRnl	= Permeation Rate by volume, nL/min
Fd	= Flow rate of diluent, mL/min

R

15730.001.006 New-Indy Catawba Odor Testing

INSTRUMENT INFORMATION

Client: Ne Location: Ca Source:	w Indy tawba, S	с	Project Number: 15730.001.006 Operator: T. Simpkins Date: 22 Mar 2021					
	File: C:\Data\NIC\Trs Data 23 March 2021.trs Program Version: 2.0, built 15 May 2017 File Version: 2.0 Computer: DESKTOP-A1IJDGT Trailer: 88							
Analog Input Device: Keithley KUSB-3108 GC Channel: 16								
Sampling Rate: 0.050 sec. Data Interval: 0.5 sec.								
		Gas Chro	matograph: Shimadzu GC8 Detector Range: 1	3A Serial No. GC 1 0				
	Gases		Temperatures, °C	Columns				
H₂ Air Carrier	Press. Flow psi mL/min 30 50 30 60 sr 50 30		Column: 100 Detector: 120	Primary: Carbopack Secondary: N/A Sample Loop: 4"				
			Injection Cycle					
Tota	l Length	: 180 sec	Sampling Time: 170 sec	Load/Backflush Time: 80 sec				
			Default Integration Parar	neters				
	Si Minimum	gnal Thres peak area	hold 0.67 mv Peak detec 2 mv-sec Minimum peak	tion window ±10 sec theight 1 mv above baseline				
			Dynacalibrator					
			Chamber Temperature 5 Ambient Temperature 7 Barometric Pressure 30.1	50.0°C 72.0°F 12 in. Hg				

15730,001,006 New-Indy Catawba Odor Testing

24 MARCH 2021

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC

Number 1

New Indy	
Catawba, SC	
	New Indy Catawba, SC

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021

Start Time 09:31 End Time 10:14

Average Measured TRS Conc. 0.10 ppm Recovery Missing

Number 2

Client: **New Indy** Location: **Catawba, SC** Source:

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021

Start Time 10:17 End Time 10:29

Average Measured TRS Conc. 0.00 ppm Recovery Missing

Number 3

Client: New Indy Location: Catawba, SC Source:

Method **16** Calibration **1**
 Project Number:
 15730.001.006

 Operator:
 T. Simpkins

 Date:
 24 Mar 2021

Start Time 10:31 End Time 10:43

Average Measured TRS Conc. 0.00 ppm Recovery Missing

Number 4

Client: New Indy Location: Catawba, SC Source:

Method **16** Calibration **1** Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021

Start Time 10:58 End Time 15:40

Average Measured TRS Conc. 0.03 ppm Recovery Missing

RUN DATA Number 1

Client: New Indy Location: Catawba, SC Source:				Metho Calibrat	d 16 ion 1		Project Number: 15730.001.0 Operator: T. Simpkins Date: 24 Mar 2021			
Timo	H ₂ S		MeSH		DMS		DMDS		TRS	
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
09:31	<2	<0.044	579	0.81	<2	<0.052	8	0.04	0.88	
09:34	<2	<0.044	67	0.25	<2	<0.052	3	0.02	0.29	
09:37	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
09:40	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
09:43	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
09:46	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
09:49	<2	<0.044	<2	<0.038	<2	<0.052	2	0.02	0.04	
09:52	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
09:55	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
09:58	<2	<0.044	<2	<0.038	<2	<0.052	6	0.03	0.06	
10:01	<2	<0.044	<2	<0.038	<2	<0.052	5	0.03	0.06	
10:05	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
10:08	3	0.05	<2	<0.038	2	0.06	<2	<0.017	0.11	
10:11	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
Average		<0.044		0.08		<0.052		<0.017	0.10	

Number 2

Client: New I Location: Cataw Source:	Method 16 Calibration 1				Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021				
Time H ₂ S			MeSH		DMS		DMDS		TRS
	area	ppm	area	ppm	area	ppm	area	ppm	ppm
			PM Re	oof Vent -	Edge 93	35-940			
10:17	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-
10:20	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	<u>-</u>
10:23	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	2 70
10:26	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	_ 2
Average		<0.044		<0.038		<0.052		<0.017	-

ł.

Number 3

3

Client: New I Location: Cataw Source:	Method 16 Calibration 1				Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021				
Time	H	H ₂ S		MeSH		DMS		IDS	TRS
Thie	area	ppm	area	ррт	area	ppm	area	ppm	ppm
			PM	Roof Vent	2- 955-'	1000			
10:31	<2	<0.044	<2	<0.038	<2	< 0.052	<2	<0.017	-
10:34	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-
10:37	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-
10:40	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-
Average		<0.044		<0.038		<0.052		<0.017	-

Number 4

Client: New Indy Location: Catawba, SC Source:				Metho Calibrat	d 16 tion 1		Project	Number: Operator: Date:	15730.001.006 T. Simpkins 24 Mar 2021	
Time H ₂ S		H₂S	MeSH		DMS		D	MDS	TRS	
Inne	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
			Moving	trailer to	NW sid	e of mill				
10:58	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	- :	
			SC	tv bag 2-	1045-10	50				
11:01	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
11:04	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
				sdtv bag	g done					
11:07	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
11:10	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	=	
11:13	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
11:16	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
		N	W side	of ill near	old gua	rd shack				
		stac	k plume	es going s	traight u	up right n	ow			
11:19	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
11:22	<2	<0.044	3	0.05	<2	<0.052	<2	<0.017	0.05	
11:25	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
11:28	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
11:31	2	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05	
11:34	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
11:37	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
11:40	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	3. .	
11:43	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	1	
11:46	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	1-	
11:49	<2	<0.044	9	0.09	<2	<0.052	2	0.02	0.12	
11:52	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
11:55	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	3 🚍 2	
11:58	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
12:01	<2	<0.044	<2	<0.038	<2	<0.052	3	0.02	0.04	
12:04	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
12:07	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	2 — 6	
12:10	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
12:13	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
12:16	3	0.06	<2	<0.038	<2	<0.052	<2	<0.017	0.06	
12:19	<2	<0.044	<2	<0.038	<2	<0.052	2	0.02	0.04	
12:22	2	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05	
12:25	<2	<0.044	<2	<0.038	8	0.10	<2	<0.017	0.10	
12:28	3	0.06	<2	<0.038	6	0.09	<2	<0.017	0.15	
12:31	2	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05	
12:34	<2	<0.044	<2	<0.038	<2	<0.052	2	0.02	0.04	
12:37	<2	<0.044	<2	< 0.038	<2	<0.052	<2	<0.017	-	
12:40	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		

1

WASSION .

Number 4

Client: New I Location: Cataw Source:		Methoo Calibrat	d 16 ion 1		Project Number: Operator: Date:		15730.001.006 T. Simpkins 24 Mar 2021					
Time	ŀ	H ₂ S	MeSH		DMS		DMDS		TRS			
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm			
12:43	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			
12:46	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017				
12:49	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			
		in ma	in cour	tyard of m	ill next	to Wood	tent					
	NE wint going toward											
12:52	<2	<0.044	<2	< 0.038	<2	<0.052	<2	<0.017	-			
12:55	4	0.06	<2	< 0.038	<2	< 0.052	3	0.02	0.10			
12:58	<2	<0.044	<2	<0.038	<2	< 0.052	<2	< 0.017				
13:01	2	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05			
13:04	<2	<0.044	<2	<0.038	2	0.05	<2	<0.017	0.05			
13:07	<2	<0.044	<2	<0.038	5	0.08	<2	<0.017	0.08			
13:10	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			
13:13	4	0.06	<2	<0.038	<2	<0.052	7	0.03	0.12			
13:16	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			
13:19	3	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05			
13:22	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	11			
13:25	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			
13:28	2	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05			
13:31	5	0.07	<2	<0.038	27	0.19	<2	<0.017	0.26			
13:34	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	2. 			
13:37	<2	<0.044	<2	<0.038	<2	<0.052	4	0.02	0.05			
13:40	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			
13:43	4	0.06	<2	<0.038	<2	<0.052	<2	<0.017	0.06			
13:46	7	0.09	<2	< 0.038	25	0.19	4	0.02	0.32			
13:49	<2	<0.044	<2	< 0.038	3	0.06	<2	<0.017	0.06			
13:52	<2	<0.044	<2	<0.038	<2	< 0.052	<2	< 0.017	-			
13:55	<2	<0.044	<2	< 0.038	<2	< 0.052	<2	<0.017	-			
13:58	<2	<0.044	<2	< 0.038	<2	<0.052	3	0.02	0.04			
14:01	2	0.05	<2	<0.038	<2	< 0.052	<2	< 0.017	0.05			
14:04	<2	<0.044	<2	< 0.038	<2	< 0.052	<2	<0.017	-			
14:07	13	0.12	<2	< 0.038	<2	< 0.052	<2	< 0.017	0.12			
14:10	<2	<0.044	<2	<0.038	<2	< 0.052	<2	< 0.017	-			
14:13	5	0.07	<2	<0.038	<2	< 0.052	<2	< 0.017	0.07			
14:16	8	0.09	<2	< 0.038	<2	< 0.052	<2	< 0.017	0.09			
14:19	<2	<0.044	<2	< 0.038	<2	< 0.052	<2	< 0.017	-			
14:22	3	0.05	<2	< 0.038	<2	< 0.052	<2	< 0.017	0.05			
14:25	<2	<0.044	<2	<0.038	<2	< 0.052	<2	< 0.017	-			
14:28	<2	<0.044	<2	< 0.038	<2	< 0.052	<2	< 0.017				
14:31	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-			

k i

86

RUN DATA Number 4

*

Client: New In Location: Cataw Source:	ndy /ba, SC			Methoo Calibrat	d 16 ion 1		Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021			
Time	H ₂ S		MeSH		DMS		DMDS		TRS	
	area	ppm	area	ppm	area	ppm	area	ppm	ppm	
14:34	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
14:37	<2	<0.044	<2	<0.038	<2	<0.052	<2	< 0.017	-	
14:40	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	_	
14:43	3	0.05	<2	<0.038	<2	<0.052	<2	<0.017	0.05	
14:46	2	0.04	<2	<0.038	<2	<0.052	2	0.02	0.08	
14:49	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
14:52	<2	<0.044	<2	<0.038	<2	<0.052	4	0.02	0.05	
14:55	<2	<0.044	<2	<0.038	<2	<0.052	2	0.02	0.04	
14:58	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
15:01	3	0.05	<2	<0.038	<2	<0.052	2	0.02	0.09	
15:04	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	- 0	
15:07	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
15:10	4	0.06	<2	<0.038	<2	<0.052	<2	<0.017	0.06	
			win	d blowing	toward	NE				
15:13	4	0.06	<2	<0.038	<2	<0.052	<2	<0.017	0.06	
15:16	<2	<0.044	<2	<0.038	<2	<0.052	3	0.02	0.05	
15:19	<2	<0.044	<2	<0.038	30	0.20	<2	<0.017	0.20	
15:22	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
15:25	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	2 10	
15:28	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017		
15:31	<2	<0.044	<2	<0.038	<2	<0.052	4	0.02	0.05	
15:34	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
15:37	<2	<0.044	<2	<0.038	<2	<0.052	<2	<0.017	-	
Average		<0.044		<0.038		<0.052		<0.017		

87
15730.001.006 New-Indy Catawba Odor Tenting

CALIBRATION DATA Number 1

Client: New Indy Location: Catawba, SC Source:	Μ	ethod 16	Project Number Operator Date	15730.001.006 T. Simpkins 24 Mar 2021
Ambient	Temperature: 72°C	Barometric F	Pressure: 30.12 in. Hg	
Analyte	H ₂ S	MeSH	DMS	DMDS
Perm. Device ID	T-53950	33-56671	89-56661	89-56665
Perm. Rate, nL/min	423	456	307	218
Ret. Time, sec	19.0	32.5	70.0	125.0
1 Flow = 55.0 mL/Min	7.70 ppm	8.30 ppm	5.57 ppm	3.96 ppm
Time: 08:25		Peak Area	is, mv-sec	
	36213	43418	23287	63725
	36413	42776	23331	64081
	36421	43380	23930	65240
Average Area	36349 🖌	43191	23516	64349 🦯
2 Flow = 120 mL/Min	3.53 ppm	3.80 ppm	2.55 ppm	1.81 ppm
Time: 08:40		Peak Area	is, mv-sec	
	8717	10940	4796	15534
	9003	11114	4780	14544
	8846	10903	4727	14462
Average Area	8855 /	10986 🧹	4768	14847 /
3 Flow = 331 mL/Min	1.28 ppm	1.38 ppm	0.93 ppm	0.66 ppm
Time: 08:53		Peak Area	s, mv-sec	
	1189	1564	654	2164
	1219	1539	643	2101
	1185	1516	632	2063
Average Area	1198	1540	643	2109

1

qui

15730.001.006 New-Indy Celawba Odor Testing

CALIBRATION SUMMARY

Number 1

Client: New Indy Location: Catawba, SC				Proje	ct Number: Operator:	15730.001.006 T. Simpkins
Source:			Method 16		Date:	24 Mar 2021
H ₂ S	1	2	3			
Time	08:25	08:40	08:53			
Concentration, ppm	7.70	3.53	1.28			
Area, mv-sec	36349	8855	1198			
Calc. Conc., ppm	7.59	3.62	1.27			
% Error	-1.4	2.5	-1.1			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim	
	1.9048	2.8836	0.9997	2	0.044	
MeSH	1	2	3			
Time	08:25	08:40	08:53			
Concentration, ppm	8.30	3.80	1.38			
Area, mv-sec	43191	10986	1540			
Calc. Conc., ppm	8.16	3.91	1.36			
% Error	-1.6	2.9	-1.2			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim	
	1.8614	2.9379	0.9996	2	0.038	
DMS	1	2	3			
Time	08:25	08:40	08:53			
Concentration, ppm	5.57	2.55	0.93			
Area, my-sec	23516	4768	643			
Calc. Conc., ppm	5.61	2.53	0.93			
% Error	0.6	-1.0	0.5			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	2.0039	2.8712	>0.9999	2	0.052	
DMDS	1	2	3			
Time	08:25	08:40	08:53			
Concentration, ppm	3.96	1.81	0.66			
Area. my-sec	64349	14847	2109			
Calc. Conc., ppm	3.94	1.83	0.66			
% Error	-0.4	0.7	-0.3			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim	
	1.9051	3.6735	>0.9999	2	0.017	

1

ANALYTES AND STANDARDS

Client: Location: Source:	New Indy Catawba, SC	Method	16	Project N O	Number: 15730.00 perator: T. Simpk Date: 24 Mar 2	1.006 ins 021
	Analyte Molecular Weight	H₂S 34.08	MeSH 48.11	DMS 62.14	DMDS 94.20	
	Retention Time, sec Peak Detection Window, sec Minimum Peak Area, mv-sec Minimum Peak Height, mv Beginning Peak Width, sec Ending Peak Width, sec	19.0 3.0 2 1 1.0 2.0	32.5 5.0 2 1 1.0 3.0	70.0 10.0 2 1 2.0 4.0	125.0 10.0 2 1 3.0 5.0	
	Permeation Device ID Permeation Rate, ng/min Permeation Rate, nL/min*	T-53950 600 423	33-56671 913 456	89-56661 792 307	89-56665 852 218	
	Barometric Pressure:	30.12 in. Ha	Ambient	Temperature:	72 °F	

No Oxygen Correction

*Permeation rates are gravimetrically determined by the manufacturer with results by weight in ng/min. Permeation rates by volume, in nL/min, are calculated from the permeation rates by weight as follows:

PRni Where: PRng Vmoi Wmo Ta Ts Ps Pb	 = PRng x (Vmol / Wmol) x [(460° + Ta) / Ts] x (Ps / Pb) = Permeation Rate by volume, nL/min = Permeation Rate by weight, ng/min = Molar Volume of any gas @32 °F & 29.92 mm Hg = 22.4 L/mole = Molecular Weight of compound = Ambient Temperature, °F = Standard Temperature = 492°R (32 °F) = Standard Pressure = 29.92 in Hg = Barometric Pressure, in Hg
For example, H PR nł	₂ S: = 600 x (22.4 / 34.08) x [(460 + 72) / 492] x (29.92 / 30.12) = 423 nL/min
To calclate cond C Where: C PRnl Fd	entrations: = PR _{nl} / F _d = Concentration, ppmv = Permeation Rate by volume, nL/min = Flow rate of diluent, mL/min

į.

90

15730.001.006 New-Indy Catawba Odor Testing

15730,001.006 New-Indy Calawba Odor Testing

INSTRUMENT INFORMATION

Client: Ne Location: Ca Source:	w Indy tawba, S	С	Method 16	Project Number: 15730.001.006 Operator: T. Simpkins Date: 24 Mar 2021		
	Ρ	Fi rogram Ve Com	e: D:\NIC\Trs Data 24 March rsion: 2.0, built 15 May 2017 puter: DESKTOP-A1IJDGT	2021 B.trs 7 File Version: 2.0 Trailer: 88		
	An	alog Input	Device: Keithley KUSB-3108	GC Channel: 16		
		Sampling	g Rate: 0.050 sec. Data	Interval: 0.5 sec.		
Gas Chromatograph: Shimadzu GC8A Serial No. GC 1 Detector Range: 10						
	Gases		Temperatures, °C	Columns		
	Press.	Flow				
	psi	mL/min	Column: 100	Primary: Carbopack		
	30	50	Detector: 120	Secondary: N/A		
Carrier	30 50	30		Sample Loop: 4"		
			Injection Cycle			
Tota	Length:	: 180 sec	Sampling Time: 170 sec	Load/Backflush Time: 80 sec		
Default Integration Parameters						
Signal Threshold 0.67 mv Peak detection window ±10 sec Minimum peak area 2 mv-sec Minimum peak height 1 mv above baseline						
2			Dynacalibrator			
			Chamber Temperature 50 Ambient Temperature 72 Barometric Pressure 30.12	0.0°C 2.0°F 2 in. Hg		

A.

91

ATTACHMENT B

25 MARCH 2021

	H ₂ S	MeSH	DMS	DMDS	TRS as S
Sample	µg / mL	µg / mL	µg / mL	μg / mL	μg / mL
Stripper Feed, AX3930	48.8 /	9.3 🗸	11.7 🗸	6.1 🖌	62.2
Acid Sewer, AX3931	0.13 🗸	<0.07 -	<0.06 -	0.20 -	0.26 🦯
Clarifier Overflow, AX3932	0.25 🗸	<0.1 🗸	1.2 🗸	0.57 🗸	1.24 🗸
ASB Effluent, AX3933	0.20 🗸	<0.1 🗸	<0.08	<0.06 🧹	0.18 🗸
ASB Influent, AX3934	0.10 🗸	<0.06 🗸	0.65 🗸	0.23 🗸	0.58 🗸
Screw Press Filtrate, AX3935	0.14 🗸	<0.05 🗸	<0.04 🗸	<0.03 🗸	0.13 🗸
PM 3 Whitewater, AX3936	0.04 🗸	<0.05 🗸	0.18 🗸	<0.03 🗸	0.13 🗸

JUB

93

Sample	Stripper Feed, AX3930					
Aliquot, mL			2.5			
Purge						
Nitrogen Flow Rate, mL/min			948			
Purge Time, min			10.00			
Gas Volume in Bag, L			9.480			
Analysis	H ₂ S	MeSH	DMS	DMDS	TRS as S	
Conc. in Bag, ppm	9.08	1.23	1.19	0.41	12.32	
Mass in Bag, μg	122 🗸	23.3 🗸	29.2 🗸	15.2 🗸	155 🗸	
Conc. in Sample, µg/mL	48.8 🗸	9.3 🗸	11.7	6.1 🏒	62.2 🗸	
	1		•	•		
	P/					
	Ċ					

NNA

Sample	Acid Sewer, AX3931				
Aliquot, mL			15.0		
Purge					
Nitrogen Flow Rate, mL/min			945		
Purge Time, min			2.00		
Gas Volume in Bag, L			1.890		
Analysis	H ₂ S	MeSH	DMS	DMDS	TRS as S
Conc. in Bag, ppm	0.73	<0.25	<0.16	0.40	1.53
Mass in Bag, µg	2.0 🗸	<0.95 🗸	<0.79 /	3.0 🗸	3.8 🗸
Conc. in Sample, μg/mL	0.13 🗸	<0.07 🗸	<0.06 🗸	0.20 🗸	0.26 🗸

July 1

95

Sample	Clarifier Overflow, AX3932					
Aliquot, mL			10.0			
Purge						
Nitrogen Flow Rate, mL/min			987			
Purge Time, min			2.00			
Gas Volume in Bag, L			1.974			
Analysis	H ₂ S	MeSH	DMS	DMDS	TRS as S	
Conc. in Bag, ppm	0.91	<0.25	2.33	0.74	4.72	
Mass in Bag, µg	2.55	<1.0	11.9	5.72	12.4	
Conc. in Sample, µg/mL	0.25	< 0.1	1.2	0.57	1.24	

ASB Effluent, AX3933					
		10.0			
		962			
		2.00			
		1.924			
H ₂ S	MeSH	DMS	DMDS	TRS as S	
0.72	<0.25	<0.16	<0.07	0.72	
2.0	<1.0	<0.8	<0.53	1.8	
0.20	<0.1	<0.08	<0.06	0.18	
	H ₂ S 0.72 2.0 0.20	ASB H ₂ S MeSH 0.72 <0.25 2.0 <1.0 0.20 <0.1	ASB Effluent, AX 10.0 962 2.00 1.924 H ₂ S MeSH DMS 0.72 <0.25 <0.16 2.0 <1.0 <0.8 0.20 <0.1 <0.08	ASB Effluent, AX3933 10.0 962 2.00 1.924 H ₂ S MeSH DMS DMDS 0.72 <0.25 <0.16 <0.07 2.0 <1.0 <0.8 <0.53 0.20 <0.1 <0.08 <0.06	

Jul

Sample	ASB Influent, AX3934				
Aliquot, mL			20.0		
Purge					
Nitrogen Flow Rate, mL/min			1033		
Purge Time, min			2.00		
Gas Volume in Bag, L			2.066		
Analysis	H ₂ S	MeSH	DMS	DMDS	TRS as S
Conc. in Bag, ppm	0.66	<0.25	2.43	0.58	4.25
Mass in Bag, µg	1.9 🗸	<1.04 <	13.0 🗸	4.7 🗸	11.7 🗸
Conc. in Sample, µg/mL	0.10 🗸	<0.06 🗸	0.65 🗸	0.23 🗸	0.58 🗸

July 1

Screw Press Filtrate, AX3935				
		20.0		
		985		
		2.00		
		1.970		
H ₂ S	MeSH	DMS	DMDS	TRS as S
0.99	<0.25	<0.16	<0.07	0.99
2.8	<1.0	<0.82	<0.55	2.6
0.14	<0.05	<0.04	<0.03	0.13
	H ₂ S 0.99 2.8 0.14	Screw Pa H ₂ S MeSH 0.99 <0.25 2.8 <1.0 0.14 <0.05	Screw Press Filtrate 20.0 985 2.00 1.970 H2S MeSH DMS 0.99 <0.25	Screw Press Filtrate, AX3935 20.0 985 2.00 1.970 H ₂ S MeSH DMS 0.99 <0.25

J JUB

	PM 3 W	hitewater,	AX3936	
		20.0		
		998		
		2.00		
Gas Volume in Bag, L				
H ₂ S	MeSH	DMS	DMDS	TRS as S
0.27	<0.25	0.71	< 0.07	0.98
0.76	<1.0	3.7	<0.55	2.6
0.04	<0.05	0.18	<0.03	0.13
	H ₂ S 0.27 0.76 0.04	PM 3 W H ₂ S MeSH 0.27 <0.25 0.76 <1.0 0.04 <0.05	PM 3 Whitewater, 20.0 998 2.00 1.996 H ₂ S MeSH DMS 0.27 <0.25 0.71 0.76 <1.0 3.7 0.04 <0.05 0.18	PM 3 Whitewater, AX3936 20.0 998 2.00 1.996 H ₂ S MeSH DMS 0.27 <0.25

....

500

RUN DATA

Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Project Number: Operator: J. Short Date: 25 Mar 2021		
Time H ₂ S		2 S	MeSH		DMS		DMDS		TRS	
	Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm
		1		PM3	8 Whitewa	ter AX3	936			
	10:49	4	0.23	<2	<0.25	35	0.68	<2	<0.070	0.91
	10:52	4	0.23	<2	<0.25	41	0.73	<2	<0.070	0.96
	10:55	8	0.34	<2	<0.25	40	0.72	<2	<0.070	1.06
	Average		0.27	1011-01-00-010-2004	<0.25	2 12 10 	0.71		<0.070	0.98

RUN DATA

٠

Client: Ne Location: Ca Source:	Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Project Number: Operator: J. Short Date: 25 Mar 2021		
Time	Time H ₂ S area ppm		Mo area	eSH ppm	D area	MS ppm	DMDS area ppm		TRS ppm		
			Screv	v Press Fi	Itrate A	X3935					
11:29	67	0.97	<2	<0.25	<2	<0.16	<2	<0.070	0.97		
11:32	78	1.04	<2	<0.25	<2	<0.16	<2	< 0.070	1.04		
11:35	69	0.98	<2	<0.25	<2	<0.16	<2	<0.070	0.98		
Averag	je	0.99		<0.25		<0.16		<0.070	0.99		

RUN DATA Number 3

Client: New I ocation: Cataw Source:	Client: New Indy ocation: Catawba, SC Source:				Method 16 Calibration 1				: J. Short : 25 Mar 2021
Timo	Н	2 S	MeSH		DMS		DMDS		TRS
nme	area	ppm	area	ppm	area	ppm	area	ppm	ppm
			AS	B Influer	nt AX393	4			alkani 2840 metatara artikana dalam
11:45	30	0.65	<2	<0.25	415	2.36	137	0.60	4.22
11:48	30	0.65	<2	<0.25	446	2.45	103	0.52	4.14
11:51	32	0.67	<2	<0.25	453	2.47	148	0.62	4.39
Average		0.66		<0.25		2.43		0.58	4.25

RUN DATA

15730.001.006 New-Indy Catawba Odor Testing

Client: New In Location: Cataw Source:		Method 16 Calibration 1				Project Number: Operator: J. Short Date: 25 Mar 2021			
Time	H ₂ S		MeSH		D	DMS		IDS	TRS
	area	ppm	area	ppm	агеа	ppm	area	ppm	ppm
			A	SB Effluer	nt AX39	33			
12:54	35	0.70	<2	<0.25	<2	<0.16	<2	<0.070	0.70
12:57	39	0.74	<2	<0.25	<2	<0.16	<2	<0.070	0.74
13:00	37	0.72	<2	<0.25	<2	<0.16	<2	<0.070	0.72
Average		0.72		<0.25		<0.16		<0.070	0.72

RUN DATA

Client: New I Location: Cataw Source:		_	Metho Calibrat	d 16 tion 1	Project Number: Operator: J. Short Date: 25 Mar 2021				
Time H ₂ S		2 S	MeSH		DMS		DMDS		TRS
Time	area	ppm	area	ppm	area	ppm	area	ppm	ppm
			Clar	ifier overf	low AX3	932			
13:03	53	0.86	<2	<0.25	395	2.30	207	0.74	4.65
13:06	65	0.95	<2	<0.25	398	2.32	212	0.75	4.76
13:09	59	0.91	<2	<0.25	415	2.36	200	0.73	4.73
Average		0.91		<0.25		2.33		0.74	4.71

C Loca So	Client: New Indy Location: Catawba, SC Source:				Method 16 Calibration 1				Project Number: Operator: J. Short Date: 25 Mar 2021			
Time H area			1 ₂ S MeSH		D	DMS		DMDS				
		area	ppm	area	ppm	area	ppm	area	ppm	ppm		
				Α	cid Sewe	r AX393	1					
	13:25	39	0.74	<2	<0.25	<2	<0.16	62	0.40	1.54		
	13:28	37	0.72	<2	<0.25	<2	<0.16	53	0.37	1.46		
	13:31	37	0.72	<2	<0.25	<2	<0.16	72	0.43	1.58		
	Average		0.73		<0.25		<0.16		0.40	1.53	-7: vi) ()	

RUN DATA

Client: New I Location: Cataw Source:		Method 16 Calibration 1				Project Number: Operator: J. Short Date: 25 Mar 2021			
Time F area		2 S	MeSH		D	DMS		IDS	TRS
	area	ppm	area	ppm	area	ppm	area	ppm	ppm
			Str	ipper Fee	d AX39	30			
14:10	6015	8.99	50	1.16	115	1.24	63	0.40	12.2
14:13	5820	8.85	58	1.24	91	1.10	64	0.41	12.0
14:16	6579	9.40	63	1.30	113	1.23	68	0.42	12.8
Average		9.08		1.23		1.19		0.41	12.3

CALIBRATION DATA

15730.001.006 New-Indy Catawba Odor Testing

Client: New Indy			Project Nu	mber:
Location: Catawba, SC Source:	īV	lethod 16	Ope	Date: 25 Mar 2021
Ambient [•]	Temperature: 72°C	Barometric I	Pressure: 30.04 in.	Hg
Analyte	H ₂ S	MeSH	DMS	DMDS
Perm. Device ID	T-53935	33-56672	89-56663	89-53970
Perm. Rate, nL/min	425	439	271	200
Ret. Time, sec	17.0	28.0	60.0	101.5
1 Flow = 30.8 mL/Min	13.8 ppm	14.3 ppm	8.81 ppm	6.49 ppm
Time: 08:51		Peak Area	as, mv-sec	
	13428	8757	5211	13721
	14531	9664	5583	14836
	14535	9586	5637	15008
Average Area	14165	9336	5477	14522
2 Flow = 62.9 mL/Min	6.76 ppm	6.98 ppm	4.31 ppm	3.18 ppm
Time: 09:06		Peak Area	as, mv-sec	
	3408	2165	1413	3808
	3446	2160	1465	3622
	3435	2121	1322	3658
Average Area	3430	2149	1400	3696
3 Flow = 118 mL/Min	3.62 ppm	3.74 ppm	2.31 ppm	1.70 ppm
Time: 09:22		Peak Area	as, mv-sec	
	967	560	395	1069
	938	573	378	1018
	950	576	395	1055
Average Area	951	570	389	1047

CALIBRATION SUMMARY

15730.001.006 New-Indy Catawba Odor Testing

Client: New Indy				Proj	ect Number:	
Location: Catawba, SC					Operator:	J. Short
Source:		1	Viethod 16		Date:	25 Mar 2021
		1				10 10 11 11 11 10 10 10 10 10 10 10 10 1
H-C	1	2	3			
Time	09:51	00:06	00.22			
Concentration nom	12.9	6 76	3.62			
Area my acc	14165	3430	951			
Area, mv-sec	12.8	6.81	3.60			
Calc. Conc., ppm	0.3	0.01	0.4			
% Error	-0.5	U.7	-U.4 Corr Cooff	Min Aroa	Dot Lim	
Calibration Curve	310pe	1 9561		2	0.17	
	2.0102	1.0001	~0.9999	2	0.17	
MeSH	1	2	3			
Time	08:51	09:06	09:22			
Concentration, ppm	14.3	6.98	3.74			
Area, my-sec	9336	2149	570			
Calc. Conc., ppm	14.2	7.03	3.72			
% Error	-0.3	0.7	-0.4			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	2.0875	1.5641	>0.9999	2	0.25	
DMS	1	2	3			
Time	08:51	09:06	09:22			
Concentration, ppm	8.81	4.31	2.31			
Area, mv-sec	5477	1400	389			
Całc. Conc., ppm	8.74	4.38	2.29			
% Error	-0.7	1.6	-0.8			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.9730	1.8806	0.9998	2	0.16	
DMDS	1	2	3			
Time	08:51	09:06	09:22			
Concentration, ppm	6.49	3.18	1.70			
Area, mv-sec	14522	3696	1047			
Calc. Conc., ppm	6.46	3.22	1.69			
% Еггог	-0.5	1.2	-0.6			
Calibration Curve	Slope	Intercept	Corr. Coeff.	Min. Area	Det. Lim.	
	1.9629	2.5716	0.9999	2	0.070	

ANALYTES AND STANDARDS

15730.001.006 New-Indy Catawba Odor Testing

Client: New Indy Location: Catawba, SC Source:	Method ·	16	Project N O	Number: perator: J. Date: 2	Short Mar 2021
Analyte	H₂S	MeSH	DMS	DMDS	
Molecular Weight	34.08	48.11	62.14	94.20	
Retention Time, sec	17.0	28.0	60.0	101.5	I
Peak Detection Window, sec	5.0	5.0	10.0	10.0	
Minimum Peak Area, mv-sec	2	2	2	2	
Minimum Peak Height, mv	1	1	1	1	
Beginning Peak Width, sec	1.0	1.0	2.0	3.0	
Ending Peak Width, sec	2.0	3.0	4.0	5.0	
Permeation Device ID	T-53935	33-56672	89-56663	89-53970	
Permeation Rate, ng/min	600 /	876	699	781	
Permeation Rate, nL/min*	425	439	271	200	

No Oxygen Correction

*Permeation rates are gravimetrically determined by the manufacturer with results by weight in ng/min. Permeation rates by volume, in nL/min, are calculated from the permeation rates by weight as follows:

PRnl = $PR_{ng} \times (V_{mol} / W_{mol}) \times [(460^{\circ} + T_a) / T_s] \times (P_s / P_b)$ Where: PRnl = Permeation Rate by volume, nL/min = Permeation Rate by weight, ng/min PRna Vmol = Molar Volume of any gas @32 °F & 29.92 in. Hg = 22.4 L/mole = Molecular Weight of compound Wmol = Ambient Temperature, °F Ta = Standard Temperature = 492°R (32 °F) Ts = Standard Pressure = 29.92 in. Hg Ps = Barometric Pressure, in. Hg Pb For example, H₂S: PRnl = 600 x (22.4 / 34.08) x [(460 + 72) / 492] x (29.92 / 30.04) = 425 nL/min To calclate concentrations: С $= \mathbf{PR}_{nl} / \mathbf{F}_{d}$ Where: С = Concentration, ppmv PRni = Permeation Rate by volume, nL/min = Flow rate of diluent, mL/min Fd

INSTRUMENT INFORMATION

15730.001.006 New-Indy Catawba Odor Testing

Client:	New	/ Indy					Project Number:	
Location: Source:	: Cata :	awba, SC		Metho	d 16		Operator: Date:	J. Short 25 Mar 2021
I.		P	rogram Ve Compi	File: J:\Misc\New rsion: 2.0, built 28 uter: JWS-PROGF	Indy\03-25 Oct 2020 AMMING	-21.trs File Ver Trailer:	sion: 2 .0 221	
		An	alog Input	Device: MCC US	B-1608G	GC Ch	annel: 16	
			Sampling	Rate: 0.050 sec.	Data I	nterval: 0).5 sec.	
		Gas	Chromato	graph: Shimadzu (Detector F	GC-8A Se i tange: 10	rial No. C1	10493414707	а,
		Gases		Tempera	tures, °C		Columns	
Ca	H2 Air Arrier	Press. psi 30 30 50	Flow mL/min 50 60 30	Column Detector	: 100 : 120	5 1	Primary: 6 Secondary: no Sample Loop:	one 6"
				Injectio	n Cycle			
	Total	Length:	180 sec	Sampling Time:	160 sec	Load/Ba	ckflush Time: 70	sec
			W///W/JI	Default Integrat	ion Param	eters		
	IV	Sig linimum	jnal Thres Peak Area	hold 0.67 mv Pe 2 mv-sec Minin	ak Detecti num Peak	ion Windo Height 1	w ±10 sec mv above baseline	
ne on de la literation de la ser				Dynaca	librator	11	Solution for a line of the site	
				Chamber Temp Ambient Temp Barometric Press	erature -1 erature 72 sure 30.04	1.0°C 2.0°F 1 in. Hg	ά _{λ.}	

ATTACHMENT C LABORATORY DATA

METHANOL

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC

Inter-Office Memorandum

15730.001.000

1625 Pumphrey Avenue, Auburn, AL 36832 334.466.5600

TO: Temp Simpkins, Project Manager

FROM: Staci Hickman, Laboratory Manager

PROJECT: New Indy Catwaba

W.O. NO: 15730.001.006

SUBJECT: Methanol Analysis Results

ACTION: Analysis of samples received on 20 March 2021

cc: File

Date: 23 March 2021

JOB NO.: 2021-091

NELAC Accreditation ID: 03024

NARRATIVE:

This letter with analytical results constitutes our report for the analysis of the condensate samples collected by New Indy personnel and submitted to the laboratory on 20 March 2021 for methanol analysis. The samples arrived in accordance with the Chain-of-Custody. The samples were prepared and analyzed on 22 March 2021 according to NCASI Method DI/MeOH-94.03.

Enclosed is a copy of the Chain-of-Custody record, acknowledging receipt of these samples. Please note that any unused portion of the samples will be discarded 90 days after the date of receipt.

The results of this report relate only to the samples listed in the body of this report.

This report shall not be reproduced by any organization outside of Weston Solutions, Inc. in part or in full, without the written approval from Weston Solutions, Inc.

These results meet all requirements of TNI, unless otherwise specified.

QUALITY ASSURANCE AND QUALITY CONTROL:

Quality control procedures conformed to the requirements of the referenced method and our quality assurance program.

All quality control results associated with this sample set were within acceptable limits and/or do not adversely affect the reported results. The quality control analysis results as well as the acceptance criteria are shown in the Quality Control section.

We appreciate the opportunity to work with you in performing this analysis. If we can be of any other assistance, please contact me at (334) 466-5683.

Attachments

Client	: New Indy Catwaba	Instrument ID: GC/FID-Lil Red
Proposal #	: 15730.001.006	Analyst: SH
WESTON Lab J	lob # : 2021-091	Date(s) Prepped: 3/22/2021
Dates Received	: 20-Mar-21	Date (s) Analyzed: 3/22/2021

Limit of Quantification for Methanol (µg/mL): 1.15

Source ID	Date Collected	Lab ID	Sample Methanol Concentration (µg/mL)
#3 Foul Condensate	3/17/2021	AX 3919	7170
#3 Combined Condensate	3/17/2021	AX 3920	1210
#2 Foul Condensate	3/17/2021	AX 3921	2320
#2 Combined Condensate	3/17/2021	AX 3922	188
#2 Condenser Condensate	3/17/2021	AX 3923	1590
#1 Old Condensate	3/17/2021	AX 3924	1340
#1 Foul Condensate	3/17/2021	AX 3925	688
#1 Combined Condensate	3/17/2021	AX 3926	103
#1 Auxillary Condensate	3/17/2021	AX 3927	2510
M52-0453 Combined Condensate	3/17/2021	AX 3928	539
M52-0432 HVLC Condensate	3/17/2021	AX 3929	160
Stripper Feed Tank	3/17/2021	AX 3930	1860
Acid Sewer	3/17/2021	AX 3931	43.8
Clarifying Overflow	3/17/2021	AX 3932	185
ASB Effluent	3/18/2021	AX 3933	49.4
ASB Influent	3/18/2021	AX 3934	117
Screw Press Filtrate	3/18/2021	AX 3935	54.1
PM3 Whitewater	3/18/2021	AX 3936	14.5

Some samples were diluted 1:5 to reduce potential interferences.

Staci

Staci Hickman, Laboratory Manager Printed: 3/23/2021

Client:	New Indy Catwab	ba	WESTON La	b Job #	2021-091	WESTON W.O. # 15730.001.006
			Table 1.1			
		Calibration Cu	rve Verifica	tion Standar	ds	
				Methanol		
	Analysis Date	Laboratory ID	Actual Value (µg/mL)	Calculated Value (µg/mL)	Difference (%)	
	3/22/2021	9339-42-07	46.1	46.1	0.1%	-
	3/22/2021	9339-42-05	576	578	0.4%	1
	3/22/2021	LCS 5459400	2008	2008	0.0%	
	3/22/2021	9339-42-05	576	559	2.9%	
	3/22/2021	9339-42-05	576	547	5.0%	
	3/22/2021	9339-42-03	2303	2418	5.0%	7

Table 1.2

Replicate Analysis

			Methanol	
Analysis Date	Laboratory ID	Original Value (µg/mL)	Replicate Value (µg/mL)	Difference (%)
3/22/2021 3/22/2021	AX 3919 AX 3929	7165 160	7598 160	2.9% 0.0%

Table 1.3

	Duj	plicate Analy	/sis	
			Methanol	311-040-00110-040010-04
Analysis Date	Laboratory [D	Original Value (μg/mL)	Duplicate Value (µg/mL)	Difference (%)
3/22/2021	AX 3920	1207	1217	0.4%

Table 1.4

1847

0.3%

1859

Spike Analysis

		Methanol						
Analysis Date	Laboratory ID	Original Value (µg/mL)	Spiked Value (µg/mL)	Recovered Amount (µg/mL)	Spiked Amount (µg/mL)	Recovery (%)		
3/22/2021	AX 3920	1207	2728	1521	1582	96%		
3/22/2021	AX 3930	372	2825	2453	2373	103%		

- Note- For QC purposes the actual analytical result rather than the LOQ was used when the analytical result was less than the LOQ.

- Consequently, certain differences in actual and calculated values may be skewed

Calculations:

- Standard % Difference = ((|(Actual Value-Calculated Value)|)+(Actual Amount))*100

- Replicate/Duplicate % Difference = ((|Average Value - Original Value|) + (Average Value))*100.

AX 3930

- Spike % Recovery = (Recovered Amount) ÷ (Spiked Amount) * 100

Acceptance Cirteria:

-The CCV Acceptance Criterion is \pm 10 % for Methanol -The LCS Acceptance Criterion is \pm 15 percent for methanol

3/22/2021

-The Replicate and Duplicate Percent Difference Acceptance Criterion is \pm 10 percent. -The Spike Recovery Acceptance Criterion is 100 percent \pm 30 percent.

Lot #s: Spike Lot #

 Spike Lot #
 Neat - 145647

 Internal Lot #
 9339-39-00

Version 2 Page 3of 3

Printed 3/23/2021

Lab Tracking Number

Chain-of-Custody Record/Lab Work Request

Page___of

15730.001.006

Client		New Indy, Catwa	ba, SC	
Work Order Number	15730.001.004	15730001.01 (H)	Phone Number	334-728-0127
Contact Person		Templeton Simpkins	Turn Around Time	

				Analyses I		
Lab ID	Field Sample ID		Sample Collection Date	Meoth Analysis Neast 191.03		Sample Check-of
Ax 2919	NI-#3FoulCondensate		3/17/2021	×		
3920	NL#3CombinedCondensate		3/17/2021	X		
3921	NI-#2FoulCondensate		3/17/2021	×		
3922	NI-#2CombinedCondensate		3/17/2021	X		
3923	NI_#2CondenserCondensate		3/17/2021	X		
3124	NI-#10ldCondensate		3/17/2021	X		
3925	NI-#1FoulCondensate		3/17/2021	X		
3126	NI-#1CombinedCondensate		3/17/2021	X		
3927	NI-#1AuxillarvCondensate		3/17/2021	X		
3128	NI-M52-0453CombinedCondensate		3/17/2021	X		
3929	NI-M52-0432HVLCCondensate		3/17/2021	X		
3930	NI-StripperFeedTank		3/17/2021	X		
3131	NI-AcidSewer		3/17/2021	×		
3932	NI-ClarifyingOverflow		3/17/2021	X		
3933	NI-ASBEffluent		3/18/2021	X		
3134	NI-ASBInfluent		3/18/2021	×		•
3135	NI-ScrewPressFiltrate		3/18/2021	×		
3930	NI-PM3Whitewater		3/18/2021	X		
lotes:	LAB JOB N	10: 2021-07	1	I		
	SAMPLE T	EMP: 0,492	*			.*
Reling	uished By Received By	Date	Time	Sec. 4	Lab Use Only	0.12
Tindin	Sonda Star Hickman	3/20/21	(4:00	Shipper	Air Bill #	
		113		Opened By	Date/Time	
				Temp °C	Condition	
				Custody Seals: Ye	es No None N/A	
aboratory Co	omments:					

TERPENES

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTR.PT.DOC

Inter-Office Memorandum

1625 Pumphrey Avenue, Auburn, AL 36832 334.466.5600

JOB NO.: 2021-094

Date: 12 April 2021

TO:	Temp Simpkins, Project Manager
FROM:	Staci Hickman, Laboratory Manager
PROJECT:	New Indy Catwaba
W.O. NO:	15370.001.006
SUBJECT:	Terpene Analysis Results
ACTION:	Analysis of samples received on 20 March 2021

NARRATIVE:

This memo with analytical results constitutes our report for the condensate samples submitted to the laboratory for terpene analysis. The samples arrived in accordance with the Chain-of-Custody. The samples were prepared on 22 March 2021 and analyzed on 23 March through 24 March 2021 per NIOSH Method 1552. Each sample was analyzed for α -pinene, β -pinene and total terpenoids. The unidentified terpenoid amount was determined using the response factor for α -pinene to quantify individual terpenoid peaks and adding the combined concentrations to determine total unidentified terpenoid concentration.

Enclosed is a copy of the Chain-of-Custody record, acknowledging receipt of the samples. Please note that any unused portion of the sample will be discarded 90 days after the date of receipt.

These results of this report relate only to the samples listed in the body of this report.

This report shall not be reproduced by any organization outside of Weston Solutions, Inc. in part or in full, without the written approval from Weston Solutions, Inc.

This analysis is outside the scope of our TNI accreditation.

QUALITY ASSURANCE AND QUALITY CONTROL:

Quality control procedures conformed to the requirements of NIOSH 1552 modified for condensate terpenes and our quality assurance program. All samples were analyzed in replicate. The replicates had differences of 3.5% or less for α and β -pinene, and 4.9% or less for the unidentified terpenoids.

All quality control results associated with this sample set were within acceptable limits and/or do not adversely affect the reported results. The quality control analysis results as well as the acceptance criteria are shown in the following tables of the Quality Control Report.

We appreciate the opportunity to work with you in performing these analyses. If we can be of any other assistance, please contact me at (334) 466-5683.

Sincerely,

WESTON SOLUTION:

Stau Hickman

Staci Hickman Laboratory Manager

Analytical Laboratory 1625 Pumphrey Ave. Auburn, AL 36832 334 466 5600

Analysis Report a-Pinene, & Total Terpenoids per NIOSH Method 1552,

Client : 1 WESTON W.O. # : 1	Vew Indy Catwab 15370.001.006	ಥ				Lab Job #:	2021-094	
Date Received : 3 Date Prepared : 3 Limit of Quantification for a-pin	3/20/2021 3/22/2021 tene(μg/mL):	0.69 µg/mL			Ins Date(Limit of Oua	trument ID: Analyst: s) Analyzed: ntification for	GC/FID-Green Ma SH 3/23/2021-3/24/20	chine 21 0.69 un/m1
Source ID	Date Collected	Sample Volume (mL)	Dilution	Sample ID	Analyzed a-Pinene (µg/mL)	Analyzed B-Pinene (µg/mL)	Total Terpenoids (μg/mL)	Analyzed Analyzed Other Terpenoids (µg/mL)
#3 Foul Condensate	3/17/2021	43	1	AX 3937	3430	1308	6011	1274
#3 Combined Condensate	3/17/2021	43	-	AX 3938	25.8	11.2	229	192
#2 Foul Condensate	3/17/2021	43	-	AX 3939	1.57	0.88	196	194
#2 Combined Condensate	3/17/2021	43	1	AX 3940	<0.69	<0.69	127	127
#2 Condenser Condensate	3/17/2021	43	I	AX 3941	205	79.4	516	232
#1 Old Condensate	3/17/2021	43		AX 3942	76.2	35.4	265	154
#1 Foul Condensate	3/17/2021	43	1	AX 3943	2.67	1.25	132	128
#1 Combined Condensate	3/17/2021	43	1	AX 3944	<0.69	<0.69	142	142
#1 Auxillary Condensate	3/17/2021	43	-	AX 3945	113	53.8	422	255
M52-0453 Combined Condensat	t 3/17/2021	43	1	AX 3946	4.85	2.40	166	159
M52-0432 HVLC Condensate	3/17/2021	43	1	AX 3947	1.79	1.11	62.0	59.1
Stripper Feed Tank	3/17/2021	43	-	AX 3948	1309	512	2396	575
Acid Sewer	3/17/2021	43	1	AX 3949	2.85	1.28	29.1	25.0
							L. L.	2.22

Stail Hickman Staci Hickman, Laboratory Manager

K \CHEM LAB\Methods-Al\\GC_Analysis\VOC\PRCSLIQD\OTHER\TERPENES\2021\2021-094_NewIndy_Terps

15730,001.006 New-Indy Catawba Odor Testing

Printed on: 4/12/2021

Client: New Indy Catwaba

Weston Job #: 2021-094

Weston WO#: 15370.001.006

1 (1) 10 101

Continuing Calibration Curve Verification Standards

			α-Pinene			ß-Pinene		
Analysis	Laboratory	Actual	Calculated		Actual	Calculated		
Date	ID	Value	Value	Difference	Value	Value	Difference	
		(µg/mL)	(µg/mL)	(%)	(µg/mL)	(µg/mL)	(%)	
3/23/2021	9339-48-06	2.74	2.75	0.4%	2.76	2.77	0.4%	
3/23/2021	9339-48-03	686	633	7.7%	689	634	8.0%	
3/23/2021	LCS 9339-47-00	945	970	2.7%	923	914	1.0%	
3/24/2021	9339-48-05	34.3	30,2	12%	34.5	30.7	11%	
3/24/2021	9339-48-04	68.6	62.8	8.5%	68.9	63.1	8.4%	
3/24/2021	9339-48-01	3428	3649	6.5%	3446	3702	7.4%	
3/24/2021	9339-48-03	686	639	6.9%	689	641	6.9%	
						2		

Table 1.2

Duplicate Analysis α-Pinene **B-Pinene** Duplicate Analysis Laboratory Original Duplicate Original Date ID Value Value Difference Value Value Difference (µg/mL) $(\mu g/mL)$ (%) (µg/mL) (µg/mL) (%) 25.8 26.2 0.8% 3/23/2021 AX 3938 11.2 11.5 1.1% 3/24/2021 AX 3948 1309 1341 512 1.2% 524 1.1%

Table 1.3 Spike Analysis

		α-Pinene				ß-Pinene					
Analysis	Laboratory	Original	Spiked	Recovered	Spiked		Original	Spiked	Recovered	Spiked	
Date	ID	Value	Value	Amount	Amount	Recovery	Value	Value	Amount	Amount	Recovery
		(µg/mL)	(µg/mL)	(µg/mL)	(µg/mL)	(%)	(μg/mL)	(µg/mL)	(µg/mL)	(µg/mL)	(%)
2/22/2224			04.5	(0.0	(0.(1000/		0.0 ((0.0	10.001
3/23/2021	AX 3938	25.8	94.7	68.9	68.6	100%	11.2	83.6	72.3	68.9	105%
3/24/2021	AX 3948	1341	1400	58.8	68.6	86%	512	589	76.3	68.9	111%

- Note the actual analytical result rather than the LOQ was used when the analytical result was less than the LOQ. - Consequently, certain differences in actual and calculated values may be skewed.

Calculations:

- Standard % Difference = ((|(Actual Value-Calculated Value)|)+(Actual Amount))*100,

- Duplicate %t Difference = ((|(Original Value + Duplicate Value) ÷ 2 - Original Value|) ÷ (Average Value))*100.

- Spike % Recovery = (Recovered Amount) ÷ (Spiked Amount) * 100.

Acceptance Cirteria:

- The CCV Acceptance Criterion is ± 15 percent,

- The LCS Acceptance Criterion is ± 15 percent.

- The Duplicate Percent Difference Acceptance Criterion is ± 10 percent.

- The Spike Recovery Acceptance Criterion is 100 percent ± 30 percent.

Stau Hirkman Staci Hickman, Laboratory Manager 121 Printed on 1112 2021

Lab Tracking Number

Chain-of-Custody Record/Lab Work Request

Page___of

15730.001.006

OIU

Client		New Indy, Catwa	Indy, Catwaba, SC				
Work Order Number	15730.001.000	15730001.01 (W)	Phone Number	334-728-0127			
Contact Person		Templeton Simpkins	Turn Around Time				

					Analyses Requested/Other Info				
Lab ID		Field Sample ID		Sample Collection Date	Terpane. Analysis NTOSH ICSJ				Sample Check-off
Av 2927	NI-#3FoulConder	nsate		3/17/2021	X				
1 3920	NI-#3CombinedC	ondensate		3/17/2021	X				
3939	NI-#2FoulConder	isate		3/17/2021	X				
3940	NI-#2CombinedC	ondensate		3/17/2021	X				
2941	NI_#2Condenser	Condensate		3/17/2021	×				
3940	NI-#10ldCondens	sate		3/17/2021	×				
13942	NI-#1FoulConden	isate		3/17/2021	×				
3944	NI-#1CombinedC	ondensate		3/17/2021	X				
3940	NI-#1AuxillaryCor	ndensate		3/17/2021	×				
2941	NI-M52-0453Corr	binedCondensate		3/17/2021	×				
2917	NI M52 0432HVI CCondensate			3/17/2021	×				
3042	NI-M52-0432HVECCOndensate			3/17/2021	X				
2944				3/17/2021	X				
1 2111	NI ClarifyingOvor	flow	3/17/2021						
	NI-ClarityingOver	now		3/18/2021					
	NI-ASBEIlluent		3/18/2021		£				
	NI-ASBINIUent	trata	3/18/2021						
	NI-ScrewPressFiltrate			3/18/2021					
	NI-PNSVIII.ewate	1		0/10/2021					
	A								
					<u> </u>				
Notes:				3/18/2021		a college data e		-manufacture amazona	-
NO 103 Line Providence	NI-ASBEInuent	LAB JOB NO: 2021-0 SAMPLE TEMP: 5.4 • 0	<u>14</u>	or for zoz f	erkern, Armannaideand	2019 - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		The second second	(an - 2, 2, 3)
Relinq	uished By	Received By	Date	Time		Lab	Use Only	in de la co	25
Inst	Bry Stau Hickman 3/20/21		3/20/21	14:00	Shipper	Shipper Air Bill #			
terel.	0-(· / Opened By		Date/Time				
					Temp °C		Condition		-

ATTACHMENT D QUALITY CONTROL DATA

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC
ATTACHMENT D

AUDIT CYLINDER CERTIFICATE

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC

12 April 2021 12:00 p.m. Version

Airgas Specialty Gases Airgas USA, LLC 630 United Drive Durham, NC 27713 Airgas.com

15730.001.006 New-Indy Catawba Odor Testing

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A00U0 CC507346 124 - Durham (SAP) - NC B22020 H2S,O2,BALN

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

122-401930615-1 146.2 CF 2015 PSIG 330 Oct 21, 2020

Expiration Date: Oct 21, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a

mole/mole basis unless otherwise noted.

		Du	ANALYTIC	CAL RESUL	TS		A000V
Compo	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relativ Uncertainty	/e	Dates
HYDROG	GEN SULFIDE	7.000 PPM	7.427 PPM	G1	+/- 0.9% NIST	Traceable	10/14/2020, 10/21/2020
AIR		Balarice			DDC		
Type	Lot ID	Cylinder No	CALIBRATIC Concentration)N STAND	ARDS	Uncertainty	Expiration Date
GMIS RGM	122401645168 12332	101 CC163645 CC183693	10.10 PPM HYDI 10.07 PPM HYDI	ROGEN SULFIDI ROGEN SULFIDI	E/NITROGEN E/NITROGEN	+/- 0.80 +/- 0.8%	Jan 23, 2023 Dec 18, 2017
The SRM,	, PRM or RGM noted	above is only in reference	to the GMIS used in the a	ssay and not part o	r the analysis.	and the second second	
Instrum	nent/Make/Mod	el	ANALYTICA Analytical I	L EQUIPM Principle	IENT Last	t Multipoint Ca	libration
Applied /	Analytics OMA-40	6 AA210266	Ultraviolet		Oct 1	16, 2020	

Triad Data Available Upon Request

Signature on file **Approved for Release**

15730.001.006 New-Indy Catawba Odor Texting

RUN DATA

Number 2

Client: New I Location: Catav Source:	ndy vba, SC			Metho Calibrat	d 16 tion 1		Project C	Number:)perator: Date:	15730.001 T. Simpkin 17 Mar 202	.006 1s 21
Time	H area	₂S ppm	Me area	eSH ppm	D area	MS ppm	DN area	/IDS ppm	TRS ppm	
16:32 16:33	32304 33396	7.89 8.04	<2 <2	<0.024 <0.024	<2 <2	<0.030 <0.030	<2 <2	<0.008 <0.008	7.89 8.04	
Average		7.96		<0.024		<0.030		<0.008	7.96	

15730.001.006 New-Indy Catawba Odor Testing

RUN DATA

Number 1

Client: New I Location: Catav Source:	ndy /ba, SC			Methoo Calibrat	d 16 ion 1		Project C	Number:)perator: Date:	15730.001.006 T. Simpkins 18 Mar 2021
Time	H ₂ area	Sppm	Me area	eSH ppm	D area	MS ppm	DN area	/IDS ppm	TRS ppm
09:36 09:39	36240 36179	7.66	<2 <2	<0.030 <0.030	<2 <2	<0.049 <0.049	<2 <2	<0.015 <0.015	7.66 7.65
Average		7.65		<0.030		<0.049		<0.015	7.65
								L	

RUN DATA

Number 1

Client: New I Location: Catav Source:	ndy vba, SC			Methoo Calibrat	d 16 ion 1		Project C	Number: Operator: Date:	15730.001 T. Simpkin 23 Mar 202	.006 IS 21
Time	H: area	2S ppm	Me area	eSH ppm	D area	MS ppm	DN area	/IDS ppm	TRS ppm	7
08:42 08:45	36227 36413	7.53 7.55	<2 <2	<0.053 <0.053	<2 <2	<0.053 <0.053	<2 <2	<0.019 <0.019	7.53 7.55	
Average		7.54		<0.053		<0.053		<0.019	7.54	

15730.001.006 New-Indy Catawba Odor Testing

RUN DATA

Number 0

Client: New I Location: Catav Source:	ndy vba, SC			Metho Calibrat	d 16 tion 1		Project (Number: Operator: Date:	15730.001.006 T. Simpkins 24 Mar 2021
Time	H; area	2S ppm	Mo area	eSH ppm	D area	MS ppm	DN area	/IDS ppm	TRS ppm
09:13	33726	7.30	<2	<0.038	<2	<0.052	<2	<0.017	7.30
09:16	33952	7.32	<2	<0.038	<2	<0.052	<2	<0.017	7.32
09:19	34010	7.33	<2	<0.038	<2	<0.052	<2	<0.017	7.33
09:22	33998	7.33	<2	<0.038	<2	<0.052	<2	<0.017	7.33
Average		7.32	/	<0.038		<0.052		<0.017	7.32

ATTACHMENT D

PROJECT TEAM QUALIFICATIONS

K:\15730 NEW INDY\001 CATAWBA SC\006\REPORT\NIC CATAWBA MAR 2021 NEW-INDY CATAWBA ODOR TESTING LTRRPT.DOC

12 April 2021 12:00 p.m. Version

8	eston Solutions, Inc	: Integrated Air Services Emple	oyee Qualific	cations	
				Years of E	(perience
					Emission
Name	Title/Position	Education/Training	QSTI	Total	Testing
		BS - English Ed Jacksonville State University (2011)			
Bryant, Ashley	Report Coordinator	MA - English - Jacksonville State University (2012)	QSTI 1	∞	00
		BS - Environmental Science			
Hammonds, Natalie	Quality Manager	Auburn University (1998)	QSTI 1	23	18
		BA - Environmental Studies			
Hartsky, Chris	Emission Testing Specialist	Washington College (2016)		10	5
		BS - Biology - Auburn University (1973)			
Short, Jack	CEMS Operator	MS - Botany - Auburn University (1978)	QSTI 1, 2 & 3	32	32
		BS - Zoology			
Simpkins, Templeton	Project Manager	Auburn University (1997)	QSTI 1 & 3	20	20

15730.001.006 New-Indy Catawba Odor Testing

END OF DOCUMENT

APPENDIX C - ONSITE AMBIENT MONITOR LOCATIONS MAP

Ambient Monitoring Stations: Current "Fence Line" Locations

APPENDIX D - ONSITE AMBIENT MONITOR DATA

Ambient H2S Monitoring Data

Initial Onsite Locations

	Avg ppb	Avg ppb	Avg ppb	Avg mph	Avg Degrees
Date	Station 1	Station 2	Station 3		Wind
	Ballfield	On ASB	Hwy 5	Wind Speed	Direction
4/11/2021	0.32	12.39		5.8	246
4/12/2021	0.31	144.94		4.0	251
4/13/2021	5.11	156.51		2.2	179
4/14/2021	34.19	173.81		3.7	212
4/15/2021	0.34	27.72		4.1	271
4/16/2021	0.21	95.11		2.6	228
4/17/2021	4.37	125.68		2.4	179
4/18/2021	4.02	102.93		2.3	187
4/19/2021	17.33	184.62		3.1	198
4/20/2021	33.27	104.17		4.2	183
4/21/2021	0.15	54.07		5.7	240
4/22/2021	0.05	103.79		3.4	240
4/23/2021	3.92	108.33		2.4	184
4/24/2021	67.82	331.94		3.5	182
4/25/2021	0.21	60.84		3.6	220
4/26/2021	2.81	221.37		2.2	194
4/27/2021	0.19	183.69		3.6	221
4/28/2021	0.10	35.27		3.6	212
4/29/2021	0.25	26.29	22.50	5.6	216
4/30/2021	0.15	11.45	1.23	5.2	270
5/1/2021	1.86	107.38	2.05	2.6	196
5/2/2021	0.29	96.91	26.33	3.5	220
5/3/2021	0.24	45.56	34.45	5.0	201
5/4/2021	0.94	28.56	16.30	4.0	219
5/5/2021	0.64	11.59	7.09	5.5	243
5/6/2021	1.43	27.76	0.90	2.6	210
5/7/2021	1.21	26.13	0.91	4.4	265
5/8/2021	0.24	77.80	17.44	4.0	250
5/9/2021	3.34	78.47	16.56	4.1	194
5/10/2021	0.35	23.26	28.98	4.0	232
5/11/2021	0.42	40.98	1.05	2.9	108
5/12/2021	0.19	66.02	0.90	3.1	138
5/13/2021	0.14	45.97	0.59	2.8	165
5/14/2021	1.37	25.91	0.61	2.0	174
5/15/2021	1.45	56.35	2.03	1.9	181
5/16/2021	13.63	58.78	19.16	2.6	235
5/17/2021	0.98	60.80	0.86	1.9	154
5/18/2021	3.87	27.48	0.65	1.9	151
5/19/2021	1.26	18.11	0.58	2.8	168
5/20/2021	3.63	39.48	0.62	2.7	170
5/21/2021	0.84	19.84	0.59	2.8	155
5/22/2021	2.97	45.42	2.33	1.6	208
5/23/2021	0.53	91.53	2.98	2.4	201
5/24/2021	1.74	83.63	2.32	2.0	186

Ambient H2S Monitoring

Current Fence Line Data

		Station 1			Station 2			Station 3	
	H2S Avg	Wind	Wind	H2S Avg	Wind	Wind	H2S Avg	Wind	Wind
		Speed	Direction		Speed	Direction		Speed	Direction
Date	dqq	mph	degrees (from)	ddd	mph	degrees (from)	dad	mph	degrees (from)
05 / 26 / 2021				44.10			1.31		
05 / 27 / 2021	18.09	24.9	227	18.40			11.30		
05 / 28 / 2021	53.54	7.5	223	7.48			7.00		
05 / 29 / 2021	20.94	8.4	223	8.15			19.22		
05 / 30 / 2021	235.80	12.8	90	1.29			0.20		
05/31/2021	176.90	5.4	144	0.20			0.48		
06/01/2021	53.09	2.5	156	1.20			1.23		
06 / 02 / 2021	67.27	2.2	174	6.51			6.88		
06 / 03 / 2021	90.40	2.4	148	0.24			0.63		
06 / 04 / 2021	184.20	4.2	169	0.31	1.0	198	2.15	0.4	191
06 / 05 / 2021	171.70	3.1	210	3.96	1.1		2.44	0.4	202
06 / 06 / 2021	7.46	3.0	163	0.90	0.6	165	3.10	0.5	170
06 / 07 / 2021	1.20	3.4	179	0.62	1.0	179	2.06	0.8	173
06/08/2021	0.91	2.3	187	2.11	0.6	164	11.26	0.2	159
06/09/2021	1.53	4.0	190	1.36	1.4	198	9.80	0.8	195
06 / 10 / 2021	35.31	4.6	201	5.93	2.2	212	16.17	0.4	191
06/11/2021	40.82	4.5	200	9.37	1.9	204	24.56	0.9	189
06 / 12 / 2021	89.90	4.5	210	10.82	2.3	199	20.21	1.0	205
06 / 13 / 2021	186.80	4.0	159	10.43	0.9	181	7.21	0.4	199
06 / 14 / 2021	300.70	5.7	85	0.27	0.7	144	8.04	0.7	149

APPENDIX E - ENVIRONMENTAL BUSINESS SOLUTIONS WASTEWATER TREATMENT SYSTEM REPORTS

Today's Visit

New Indy - Catawba Wastewater Service Report Tuesday, May 11, 2021

Previous Visit

		Tuesday, Ma	y 11, 2021	
				Holding Pond
	Inlet	ASB Mid	ASB Effluent	Effluent
Hd	9.51	8.11	7.66	8.01
Temp. (°C)	44.0	33.1	31.3	26.0
Dissolved Oxygen (mg/L)		0.64	0.59	0.27
ORP	-169.40	-23.60	-164.50	-241.80
Ammonia (as N, mg/L)	3.05	0.38	0.09	2.60
Soluble o-PO4 (as P, mg/L)	0.58	0.12	0.20	0.62
Sulfide (ua/L)	-	-		
DOUR (mg/L/h)		6.9	4.7	3.3
FED DOUR (mg/L/hr)		10.5		
TSS (mg/L)	630	118	93	48
VSS (mg/L)				
%VSS				
tCOD (mg/L)	1468			806
sCOD (mg/L)	873	539	510	646
Bacteria Abundance (0 - 3)		2.0	2.0	
Flagellates		0	13	
Free Swimming Ciliates		0	4	
Stalked Ciliates		0	0	
Rotifers		0	0	
Total Indicators Observed		0	17	
Maturity Index		i0//IC#	1.2	

Summary:

- The soluble COD data showed a 42% reduction from the ASB Effluent. This reduction in soluble COD is indicative of a reduction in BOD across the ASB. The DOUR of 6.9 mg/L/hr indicates an active biomass at the ASB midpoint, and the reduction in DOUR from the midpoint to the ASB Effluent to the Holding Pond Effluent is another indicator of BOD reduction across the system. A "Fed" DOUR was run at the ASB Midpoint, where the sample was artificially spiked with additional BOD (ASB Influent was added), and the increase in DOUR indicates the biomass will increase it's metabolic rate when presented with additional "food" at this point in the system. - The micro exam showed a moderate to high abundance of dispersed bacteria in the ASB Midpoint and ASB Effluent samples, as well as a moderate abundance of pin floc in both samples. No higher life forms (protozoa/metazoa) were observed at the ASB Midpoint, but the ASB Effluent showed several flagellates and a few free swimming cilitates. Cilitates are generally considered indicators of aerobic, non-toxic conditions in ASB treatment systems. A low to moderate abundance of fiber was observed at the ASB midpoint sample, and a moderate abundance of grit and debris were observed in both samples.

- The excess paper stock in the front end of the system is an indication of previous primary clarification malfunction, and is what we call "phantom" BOD in the ASB at this time. Phantom BOD is insoluble organic material in a treatment system that slowly breaks down into soluble BOD over time. It's called "phantom" BOD because it will not show up on the influent BOD data (fiber takes longer than 5 days to degrade), but will make a BOD contribution to the treatment system over time as the fiber is broken down. - While dissolved oxygen residuals weren't completely bottomed out at the ASB Midpoint and ASB Effluent, we generally consider D.O. concentrations under 1 mg/L in ASBs to be oxygen deficient. Getting the out of commision aerators back online in the front end of the system will increase the BOD removal capacity of the ASB, and promote more aerobic conditions.

The TSS of 630 mg/L at the ASB Influent is clevated, indicating poor primary clarification efficiency and clevated solids loading into the ASB at this time.

- Ammonia and ortho-phosphate concentrations were over 0.1 mg/L at the ASB midpoint, which indicates adequate nitrogen and phosphorus availability for the biomass. Bacteria require macronutrients (N & P) at a ratio of 100:25:0.5 (BOD:N:P) for optimal BOD removal. Target residuals are 0.1-0.3 mg/L for both N & P in an ASB. The increase in ammonia from the ASB Effluent to the Holding Pond Effluent is due to benthic feedback, where settled sludge breaks down and releases ammonia and phosphate into the water.

pH values were within the target range of 6.5 - 8.5 across the system

If you have any questions about the report please let me know.

mcelwee@ebsbiowizard.com (864) 933 1240 (Cell) Tripp McElwee Regional Consultant

ENVIRONMENTAL BUSINESS SPECAUSTS, LUC

Today's Visit

New Indy - Catawba Wastewater Service Report Tuesday, May 25, 2021

		and functions .		
				Holding Pond
	Inlet	ASB MID	ASB ETTUENT	ETTIUENT
Hq	10.19	7.05	7.28	7.79
Temp. (°C)	44.6	32.2	29.1	26.8
Dissolved Oxygen (mg/L)		0.21	0.42	0.46
ORP	-131.30	-29.10	-46.50	-124.50
Ammonia (as N, mg/L)	3.02	0.03	0.03	3.14
Soluble o-PO4 (as P, mg/L)	0.38	0.08	0.07	0.45
Sulfide (µg/L)				
DOUR (mg/L/h)		4.3	2.6	2.9
FED DOUR (mg/L/hr)		12.2		
TSS (mg/L)	793	271	134	45
VSS (mg/L)	720	204	115	35
%NSS	91%	75%	85%	77%
tCOD (mg/L)				
sCOD (mg/L)	1303	407	231	323
Sulfide (mg/L)	0.35	0.14	0.13	1.94
Bacteria Abundance (0 - 3)		2.5	2.0	
Flagellates		ę	ę	
Free Swimming Ciliates		0	2	
Stalked Ciliates		2	0	
Rotifers		0	0	
Total Indicators Observed		5	5	
Maturity Index		1.8	1.4	

Previous Visit Tuesday, May 11, 2021

	Inlet	ASB Mid	ASB Effluent	Holding Pond Effluent
Hq	9.51	8.11	7.66	8.01
Temp. (°C)	44.0	33.1	31.3	26.0
Dissolved Oxygen (mg/L)		0.64	0.59	0.27
ORP	-169.40	-23.60	-164.50	-241.80
Ammonia (as N, mg/L)	3.05	0.38	0.09	2.60
Soluble o-PO4 (as P, mg/L)	0.58	0.12	0.20	0.62
Sulfide (µg/L)				
DOUR (mg/L/h)		6.9	4.7	3.3
FED DOUR (mg/L)		10.5		
TSS (mg/L)	630	118	93	48
VSS (mg/L)				
%VSS				
tCOD (mg/L)	1468			806
sCOD (mg/L)	873	539	510	646
Sulfide (mg/L)				
Bacteria Abundance (0 - 3)		2.0	2.0	
Flagellates		0	13	
Free Swimming Ciliates		0	4	
Stalked Ciliates		0	0	
Rotifers		0	0	
Total Indicators Observed		0	17	
Maturity Index		i0//ID#	1.2	

Summary:

- Sulfide concentrations were measured in the ASB and Holding Pond today. Concentrations were low in the influent and ASB samples, but increased to 1.94 mg/L in the Holding Pond Effluent sample. This increase can be attributed to sulfate reducing bacteria will metabolize BOD and produce sulfides when oxygen or nitrate are not available.

- The soluble COD data indicated elevated organic loading into the ASB today. The significant 82% drop in soluble COD is indicative of a reduction in BOD across the ASB. The increase in oxygen uptake in the Spiked DOUR (added 30 mL of influent to the sample) at the ASB Midpoint indicates the biomass is uninhibited and will increase it's metabolic rate when presented with additional BOD.

- The TSS in the influent continues to be elevated, indicating poor primary clarification efficiency and high solids loading into the ASB.

- The micro exam showed higher life forms (protozoa) in both the ASB midpoint and ASB Effluent. Two stalked cilitates were observed at the ASB Midpoint: these are sensitive microorganisms that generally exist in non-toxic, aerobic environments. Two free swimming cilitates were observed at the ASB outfall as well. The ASB midpoint sample showed a high abundance of grit and debris, as well as pin floc and a few small compact pieces of floc. There was no floc alternative microorganisms that generally exist in non-toxic, aerobic environments. Two free swimming cilitates were observed at the ASB Outfall, and the abundance of grit/debris decreased in this sample. Dispersed bacteria abundance was high in the midpoint (2.5 out of 3), and moderate to high in the ASB Effluent (2 out of 3).

- While dissolved oxygen concentrations were low at the ASB Midpoint, ASB Effluent, and Holding Pond (less than 0.5 mg/L), the Oxidation Reduction Potential (ORP) of these samples were increased from the previous visit, indicating more aerobic conditions than previously observed. We commonly utilize ORP to determine how anaerobic/aerobic aerobic an environment is whenever D.O. concentrations are low, as a lower value is a more "electron rich", reduced environment and indicates anaerobic conditions. For example, a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a D.O. of 0.2 mg/L and an ORP of -50 mV is significantly more aerobic than a sample with a

- Ammonia and ortho-phosphate concentrations were below the target range of 0.1 mg/L in the ASB today. While oxygen deficiency is the most important limiting growth pressure at this time, we should also be addressing nutrient deficiency at this time. Adding additional bioavailable nitrogen and phosphorus (ammonium and phosphate) to the ASB will improve the rate of BOD conversion and make the biomass more resilient to loading swings.

Please let me know if you have any questions or additional input at this time.

Tripp McElwee Regional Consultant mcelwee@ebsbiowizard.com (864) 933 1240 (Cell)

Today's Visit

New Indy - Catawba Wastewater Service Report Wednesday, June 9, 2021

		EQ																					
			Hd	Temp. (°C)	Dissolved Oxygen (mg/L)	ORP	Ammonia (as N, mg/L)	Soluble o-PO4 (as P, mg/L)	DOUR (mg/L/h)	FED DOUR (mg/L)	TSS (mg/L)	VSS (mg/L)	%NSS	tCOD (mg/L)	sCOD (mg/L)	Sulfide (mg/L)	Bacteria Abundance (0 - 3)	Flagellates	Free Swimming Ciliates	Stalked Ciliates	Rotifers	Total Indicators Observed	Maturity Index
	Holding Pond	Effluent	8.20	29.5	0.30	-207.30	2.20	0.34	1.3		36	32	89%		342	2.5							
-		ASB Effluent	8.17	33.6	0.13	-173.90	0.08	0.15	4.7		103	88	85%		376	0.1	2.0	9	-	°	0	10	1.7
esday, June 9, 202		ASB Mid	8.62	33.6	06:0	-6.40	0.04	0.13	3.5	9.9	187	133	71%		385	0.11	2.5	10	2	2	0	14	1.4
Wedn		Clarifier Out	9.24	47.5		-189.80	0.18	0.50			84	72	86%		1059	0.3							
		B	9.59	47.6		-236.90	3.02	0.50			1860	1380	74%		1168	0.14							
			Hq	Temp. (°C)	Dissolved Oxygen (mg/L)	ORP	Ammonia (as N, mg/L)	Soluble o-PO4 (as P, mg/L)	DOUR (mg/L/h)	FED DOUR (mg/L/hr)	TSS (mg/L)	VSS (mg/L)	%VSS	tCOD (mg/L)	sCOD (mg/L)	Sulfide (mg/L)	Bacteria Abundance (0 - 3)	Flagellates	Free Swimming Ciliates	Stalked Ciliates	Rotifers	Total Indicators Observed	Maturity Index

			Previous Visit		
		Τu	esday, May 25, 2021		
	EQ	Clarifier Out	ASB Mid	ASB Effluent	Holding Pond Effluent
Hq		10.19	7.05	7.28	7.79
Temp. (°C)		44.6	32.2	29.1	26.8
Dissolved Oxygen (mg/L)			0.21	0.42	0.46
ORP		-131.30	-29.10	-46.50	-124.50
Ammonia (as N, mg/L)		3.02	0.03	0.03	3.14
Soluble o-PO4 (as P, mg/L)		0.38	0.08	0.07	0.45
DOUR (mg/L/h)			4.3	2.6	2.9
FED DOUR (mg/L)			12.2		
TSS (mg/L)		263	271	134	45
VSS (mg/L)		720	204	115	35
%VSS		91%	75%	85%	77%
tCOD (mg/L)					
sCOD (mg/L)		1303	407	231	323
Sulfide (mg/L)		0.35	0.14	0.13	1.94
Bacteria Abundance (0 - 3)			2.5	2.0	
Flagellates			e	e	
Free Swimming Ciliates			0	2	
Stalked Ciliates			2	0	
Rotifers			0	0	
Total Indicators Observed			5	5	
Maturity Index			1.8	1.4	

Summary:

The sulfide concentration at #1 Holding Pond was 2.5 mg/L today. Concentrations continue to be low in the influent and ASB samples, indicating H2S formation is occurring primarily in the Holding Pond.

The micro exam showed stalked clitates and free swimming clitates at the ASB Mid, and ASB Out sample points. Stalked clitates are generally considered indicators of good biomass health, as they are sensitive microorganisms that don't survive in toxic or anaerobic conditions. There was abundant grit and debris observed in the ASB Mid sample, with the abundance decreasing in the ASB Out. This corresponds with the lower percent VSS observed in the ASB Mid sample, with the abundance decreasing in the ASB Out. This corresponds with the lower percent VSS observed in the ASB Mid sample, as higher fraction of inorganic grit/debris in this part of the ASB.

Samples of the clarifier overflow and EQ basin effluent were sampled today. The EQ effluent TSS is elevated and is contributing to high solids loading into the ASB. The clarifier overflow TSS was low, and would normally indicate good primary clarification if the EQ solids werent mixed in.

There was a 64% reduction in soluble COD from the clarifier overflow to the ASB Midpoint, and the drop is primarily due to soluble BOD treatment. The DOUR and sCOD data indicates the majority of BOD is treated by the ASB Mid sample. The holding pond DOUR is within a range that suggests low soluble BOD in the effluent.

The D.O. and ORP at the ASB Midpoint sample indicate more aerobic conditions than the previous service visits. Mark and I performed a D.O. and ORP profile of the ASB today, and several measurements showed D.O. concentrations above 1 mgL, with a few being over 2 mg/L in the ASB, mostly in deeper areas closer to acrators.

Ammonia concentrations were under the recommended ASB range of 0.1 - 0.3 mg/L. Adequate concentrations of bioavailable nitrogen and phosphores (ammonium and ortho-phosphate) will speed up the rate of BOD conversion in the ASB and make the biomass more resilient to loading swings.

On the next report I will create a compiled data tab so we can keep track of trended data

Please let me know if you have any questions or additional input at this time.

Tripp McElwee Regional Consultant mcehwe@ebsbiowizard.com (864) 933 1240 (Cell)