

Record document
for Construction

Permit No.20,194-IW.

Gary

WASTEWATER

FINAL APPROVAL TO PLACE INTO OPE

ISSUED TO:

US DEPARTMENT OF ENERGY

SAVANNAH RIVER SITE

BUILDING 705-3C AIKEN SC 29808

20194-IW

for the operation of a wastewater treatment/collection system permitted under Construction Permit No. 20,234-IW, dated November 1, 2018.

PROJECT NAME: SRS/SALT WASTE PROCESSING FACILITY (SWPF) Final Tie-Ins

COUNTY:

Aiken

PROJECT DESCRIPTION: The Salt Waste Processing Facility (SWPF) is designed to extract and concentrate cesium, strontium, and actinides from salt wastes in the tank farms resulting in effluents that are acceptable for treatment at the Defense Waste Processing Facility (DWPF) and the Saltstone Production Facility (SPF). Attachment A provides a list of equipment.

The effluent concentrations of those constituents the wastewater treatment system is designed to remove or reduce for wastewater transferred to Tank 50 to the SPF are contained in Construction Permit No. 18,801-IW for the SPF. The solid waste from the SPF will be disposed in the Saltstone Disposal Facility (SDF) in accordance with Solid Waste Industrial Permit #025500-1603. The wastewater sent to the DWPF will be vitrified and poured into canisters that are transferred to the Glass Waste Storage Buildings.

PERMITTED FLOW:

System Nominal Daily Flow: 35,840 gallons per day

System Design Capacity Flow: 185,736 gallons per day

WWTP:

US DOE/SAVANNAH RIVER SITE Salt Waste Processing

Facility (SWPF)

SPECIAL CONDITIONS:

1. This permit is in addition to Construction Permit No. 19,219-IW (Salt Waste Processing Facility (SWPF)), Construction Permit No. 20,194-IW (SWPF NGS Cold Chemical Feed Facility), Construction Permit No. 18,801-IW (Saltstone Production Facility (SPF)), Construction Permit No. 17,424-IW (F-Area and H-Area Tank Farms), and Construction Permit No. 16,783, Defense Waste Processing Facility.

2. The jumpers that will tie the SWPF in with the SPF and DWPF are permitted by this construction permit. There shall be no radioactive salt solution received from the High Level Waste (HLW) tanks for processing and transfer to the DWPF and/or the SPF until these jumpers have been installed and the Department has issued the Approval to Place into Operation for this construction permit.

This approval is based on the APO request letter (SRR-ESH-2019-00118) signed by Ms. Patricia M. Allen. Note that Attachment 1 is the Engineer's letter of certification (signed by Andrew R. Redwood, P.E., South Carolina Registration No. 20525).

Date Issued: October 29, 2019

Barry S. Mullinax Barry S. Mullinax, Engineer

(for) Environmental Affairs

AIKEN EA OFFICE

cc: Bureau of Water Permitting File – Construction Permit No. 20,234-IW

Bureau of Water Permitting File - Construction Permit No. 19,219-IW

Bureau of Water Permitting File – Construction Permit No. 20,194-IW

Bureau of Water Permitting File - Construction Permit No. 18,801-IW

Bureau of Water Permitting File – Construction Permit No. 17,424-IW

Bureau of Water Permitting File - Construction Permit No. 16,783-IW

Travis Fuss, Aiken EA Office

Crystal Robertson, Aiken EA Office

Shawn M. Clarke, BOW, Columbia Office

Crystal Rippy, BOW - Columbia Office

Andrew Redwood, P.E., SRR

Attachment A Equipment List

The equipment included in Construction Permit No. 20,234-IW is listed below:

- 1. Transfer Line SDP1 and Jumper 6-7(SPP2)2 for Raw Salt Solution (RSS) Transfer Line
- 2. Jumper 6-7(SPP3)3 for Strip Effluent (SE) Waste Transfer Line
- 3. Jumper 3(SPP3)15 for Monosodium Titanate Precipitate (MSTPCP) Waste Transfer Line
- 4. Transfer lines DSS-0077, SSP077, and WTS-SSP4 for the Decontaminated Salt Solution to Tank 50 and the Saltstone Production Facility.

Wastewater System Construction

APPROVAL TO PLACE INTO OPERATION

ISSUED TO:

US DEPARTMENT OF ENERGY

SAVANNAH RIVER SITE

BUILDING 705-3C AIKEN SC 29808

for the operation of a wastewater treatment/collection system permitted under Construction Permit No. 19,219-IW, dated August 6, 2008. This construction permit superseded Construction Permit No. 19,164-IW, dated January 2, 2008, that was issued for the installation of three (3) waste transfer line segments.

PROJECT NAME: SRS/SALT WASTE PROCESSING FACILITY (SWPF)

COUNTY:

Aiken

PROJECT DESCRIPTION: The Salt Waste Processing Facility (SWPF) is designed to extract and concentrate cesium, strontium, and actinides from salt wastes in the tank farms resulting in effluents that are acceptable for disposal at the Defense Waste Processing Facility (DWPF) and the Saltstone Production Facility (SPF). Attachment A lists the SWPF equipment.

The effluent concentrations of those constituents the wastewater treatment system is designed to remove or reduce for wastewater transferred to Tank 50 to the SPF are contained in Construction Permit No. 18,801-IW for the SPF. The solid waste from the SPF will be disposed in the Saltstone Disposal Facility (SDF) in accordance with Solid Waste Industrial Permit #025500-1603. The wastewater sent to the DWPF will be disposed as a solid waste in canisters that are transferred to the Glass Waste Storage Buildings.

PERMITTED FLOW:

System Nominal Daily Flow: 35,840 gallons per day

System Design Capacity Flow: 185,736 gallons per day

WWTP:

US DOE/SAVANNAH RIVER SITE Salt Waste

Processing Facility (SWPF)

SPECIAL CONDITIONS:

1. The jumpers that will tie the SWPF in with the SPF and DWPF are permitted by Construction Permit No. 20,234-IW. There shall be no radioactive salt solution received from the HLW tanks for processing and transfer to the DWPF and/or the SPF until these jumpers have been installed and the Department has issued an Approval to Place into Operation for Construction Permit No. 20,234-IW.

- 2. The use of water, chemicals, and non-radioactive materials to support SWPF activities such as flushing, cleaning, startup testing, and demonstrations to validate performance of components and/or systems is allowed as long as the jumpers in Condition #1 have not been installed or the jumpers are physically isolated from the SWPF.
- 3. NPDES Permit No. SC0000175 allows the disposal of "scavenger" wastewater. If the wastewater is not scavenger wastewater, a written request shall be submitted to the Department describing this wastewater. No discharge of this wastewater may be performed without the written approval from the Department.
- 4. Note that Construction Permit No. 20,194-IW was issued for the Next Generation Solvent Cold Chemical Feed Facility. This facility is in addition to Construction Permit No. 19,219-IW that was issued for the SWPF.

Date Issued: August 14, 2019

This approval is based on the Engineer's letter of certification signed by James C. Somma, P.E., South Carolina Registration No. 14718 (Parsons).

Barry S Mullinax, Engineer

(for) Environmental Affairs

AIKEN EA OFFICE

cc: Bureau of Water Permitting File – Construction Permit No. 19,219-IW

Bureau of Water Permitting File - Construction Permit No. 20,194-IW

Bureau of Water Permitting File - Construction Permit No. 20,234-IW

Travis Fuss, Aiken EA Office

Shawn M. Clarke, BOW - Columbia

Crystal Rippy, BOW - Columbia

Crystal Robertson, Aiken EA Office

James Somma, P.E., Parsons

Attachment A for SWPF Approval to Operate (APO)

SWPF Equipment List (Drawing No. G-P1-J-00001)

PROCESS BUILDING - PROCESS EQUIPMENT

Tank Number	Tank Name			
Process Cell Area				
TK-101	TK-101 Alpha Sorption Tank-A (AST-A)			
TK-102	Filter Feed Tank-A (FFT-A)			
TK-103	Cleaning Solution Dump Tank-A (CSDT-A)			
TK-104	Sludge Solids Receipt Tank (SSRT)			
TK-105	Wash Water Hold Tank (WWHT)			
TK-109	Salt Solution Feed Tank (SSFT)			
TK-121A/B/C	Back Pulse Tank			
TK-123	Washing Filter Back Pulse Tank			
TK-127	Spent Acid Storage Tank (SAST)			
TK-205	Strip Effluent Hold Tank (SEHT)			
TK-208	Solvent Drain Tank			
TK-235	Lab Drain Tank			
TK-505	Backup Air Receiver			
TK-506	Backup Air Receiver			
TK-601	Alpha Sorption Drain Tank (ASDT)			
	Operating Deck			
TK-122	Back Pulse Charge Tank-A			
TK-128	AST-A Air Pulse Agitator Charge Tank			
TK-129	FFT-A Air Pulse Agitator Charge Tank			
TK-131	SSRT Air Pulse Agitator Charge Tank			
TK-132	SSFT Air Pulse Agitator Charge Tank			
TK-133	WWHT Air Pulse Agitator Charge Tank			
	CSSX Tank Cell			
TK-202	Solvent Hold Tank (SHT)			
TK-203	Strip Effluent Coalescer			
TK-204	Caustic Wash Tank			
TK-206	Ba-137 Decay Tank (BDT)			
TK-211	Decontaminated Salt Solution Stilling Tank			
TK-212	Strip Effluent Stilling Tank			
TK-215	Strip Effluent Pump Tank			
TK-217	Solvent Strip Feed Tank			

Tank Number	Tank Name
CSS	X Contactor Drop Area
TK-201	Decon. Salt Solution Coalescer
	Cold Chemicals Area
TK-106	Filter Cleaning Acid Feed Tank
TK-107	Filter Cleaning Caustic Tank
TK-108	Caustic Dilution Feed Tank
TK-301	Process Water Tank
TK-302	Caustic Receipt Tank
TK-303	Caustic Makeup Tank
TK-304	Nitric Acid Receipt Tank
TK-305	Process Water Pressure Tank
TK-307	Nitric Acid Scrub Makeup Tank
TK-311	MST Storage Tank
TK-312	DI Water Storage Tank
TK-313	Solvent Makeup Tank
TK-314	DI Water Expansion Tank
TK-317	Neutralization Tank
TK-330	Argon Tank
CS	SX Contactor Area
EXT-201A-P	
EXT-202A/B	Solvent Extraction Contactors Scrub Contactors
EXT-203A-P	
EXT-204A/B	Stripping Contactors
	Caustic Wash Contactors
FLT-102A/B/C	Process Filters
FLT-104	Alpha Sorption Filters
	Washing Filter
	a Finishing Facility
TK-207	DSS Hold Tank (DSSHT)
TK-220	Intermediate Storage Tank (IST)
TK-221	Alpha Sorption Tank - B (AST-B)
TK-222	Filter Feed Tank - B (FFT-B)
TK-223	Cleaning Solution Dump Tank - B (CSDT-B)
TK-224	MST/Sludge Transfer Tank (MSTT)
TK-225A/B/C	Finishing Area Back Pulse Tank
TK-228	Alpha Finishing Drain Tank (AFDT)
TK-233	Back Pulse Charge Tank B
TK-236/237	Lab Collection Tank
TK-604	Low Level Drain Tank
FLT-222A/B/C	Alpha Sorption Filters

	PUMPS
N	orth ASP Pump and Valve Gallery
P-015A	ASP Secondary Loop Pump Water Pump
P-015B	ASP Secondary Loop Pump Water Pump
P-101A/B	Alpha Sorption Tank-A Transfer Pumps
P-102-1A/B/C	Filter Feed/Solids Trans Pumps
P-102-2 A/B/C	Filter Recirculation Pumps
P-104-1	Washing FLT Feed/Sludge Solids Trans Pump
P-104-2	Washing Filter Recirculation Pump
P-110	ASP Sump Trans Pump
So	outh ASP Pump and Valve Gallery
P-105A/B	Wash Water Trans Pumps
P-208A/B	Solvent Drain Tank Pumps
P-601A/B	Alpha Sorption Drain TK Transfer Pumps
	CSSX Pump and Valve Gallery
P-109A/B	Salt Solution Feed Pumps
P-202A/B	Solvent Feed Pumps
P-204A/B	Caustic Wash Tank Pumps
P-205A/B	Strip Effluent Trans Pumps
P-206A/B	Ba-137 Decay Tank Trans Pumps
P-212A/B	Strip Effluent Coalescer Feed Pumps
P-215A/B	Strip Effluent Pump Tank Pumps
P-217A/B	Solvent Strip Feed Pumps
P-218	CSSX Tank Cell Sump Transfer Pump
S	Sample Pump and Valve Gallery
SP-101	Alpha Sorption Tank-A Sample Pump
SP-102	Filter Feed Tank-A Sample Pump
SP-103	Cleaning Solution Dump Tank-A Sample Pump
SP-104	Sludge Solids Receipt Tank Sample Pump
SP-105	Wash Water Hold Tank Sample Pump
SP-109	Salt Solution Feed Tank Sample Pump
SP-205	Strip Effluent Hold Tank Sample Pump
SP-235	Lab Drain Tank Sample Pump
	Drum off/Decon Area
P-605	Decon Area Sump Pump

	PUMPS (continued)
	Cold Chemicals Area
P-106	Acid Transfer Pump
P-107	Filter Cleaning Caustic Trans Pump
P-108	Caustic Dilution Trans Pump
P-300	Cold Chemicals Possiving P. J. C.
P-301-1	Cold Chemicals Receiving Dock Sump Pump Process Water Utility Pump
P-301-2	Flush Pump
P-302	Caustic Trans Pump
P-303	
P-304-1	Caustic Makeup Trans Pump
P-304-2	Nitric Acid Metering Pump
P-305A/B	Neutralization Metering Pump
P-309A/B	Sodium Hypochlorite Addition Pump
P-310A/B	Scrub Feed Pumps
P-311	Strip Feed Pumps
P-311-1	MST Transfer Pump
P-312-1	MST Drum Pump
P-312-2 DI Water Trans Pump	
P-312-3A/B	Scrub Water Feed Pump
P-313	Strip Water Feed Pumps
P-313-1	Solvent Makeup Trans Pump
P-317	Solvent Drum Pump
P-318	Neutralization Tank Discharge Pump
P-319	Caustic Sump Pump
2-320	Acid Sump Pump
2-321	Neutralization Sump Pump
-322	Nitric Acid Sump Pump
-326	Water Sump Pump
320	Pump Seal Make-up Water Supply Pump
	Alpha Finishing Facility
-207A/B	DSS Hold Tank Transfer Pumps
-220A/B	Intermediate Storage Tank Transfer Pumps
-221 A/B	Alpha Sorption Tank B Transfer Pumps
-222-1A/B/C	Filter Feed/Solids Transfer Pumps
·222-2A/B/C	Filter Recirculation Pumps
224	MST/Sludge Transfer Pump
228	
	Alpha Finishing Drain Tank Transfer Pump

P-236	Lab Collection Tank Pump
P-604	Low Level Drain Tank Transfer Pump
P-025A/B	AFP Secondary Cooler Loop Pump
SP-207, SP-220 – SP-224	Sample Pumps
P-210, P-226, P-227, P-228-1	AFF Sump Pumps
P-229	Alpha Finishing Process Filter Loop Drain Pump
	AGITATORS
AGT-107	Filter Cleaning Caustic Tank Agitator
AGT-108	Caustic Dilution Feed Tank Agitator
AGT-303	Caustic Makeup Tank Agitator
AGT-307	Nitric Acid Scrub Makeup Tank Agitator
AGT-311	MST Storage Tank Agitator
AGT-311-1	MST Drum Agitator
AGT-313	Solvent Makeup Tank Agitator
AGT-221	Alpha Sorption Tank B Agitator
AGT-222	Filter Feed Tank B Agitator
AGT-224	MST/Sludge Transfer Tank Agitator
	BORATORY EQUIPMENT
GB-001 – GB-011, GB-014	Glove Boxes
RH-001 – RH-017	Radio Hoods
FH-001	Fume Hood
HC-001 – HC-004	Hot Cell Windows
STS-101	Sample Transfer System
EI	LECTRICAL SYSTEMS
ATS-203 – ATS-205	Automatic Transfer Switch
TS-207	Automatic Transfer Switch
TS-208	Automatic Transfer Switch
TS-210	Automatic Transfer Switch
ICC-201 – MCC-206	Motor Control Center
ICC-209 – MCC-210	Motor Control Center
WGR-201 – SWGR-204	Switchgear
SX-301	Uninterruptible Power Supply

INSTRI	UMENTATION
ICP-001 - ICP-013	Instrument Control Panel
ICP-014 - ICP-016	Instrument Control Panel
IR-001 – IR-014, IR-016 – IR-022, IR-024, IR-026 IR-040	- Instrument Control Rack
AIR HANDL	ING EQUIPMENT
ACU-001	Well Mounts J.Y.
AHU-001 – AHU-006	Wall Mounted Heat Pump
AHU-008 – AHU-009	Air Handling Units
	Air Handling Units
	/Fans/Coils
CCL-401A/B	Process Vessel Vent Coolers
CCL-402A/B	Pulse Mixer Vent Coolers
FAN-401A/B	Process Vessel Vent Exhaust Fans
FAN-402A/B	Pulse Mixer Vent Exhaust Fans
FAN-001	Exhaust Fan
AN-002	Exhaust Fan
AN-003	Exhaust Fan on Roof
AN-004	Exhaust Fan on Roof
AN-007	Exhaust Fan on Roof
AN-009	Exhaust Fan on Roof
AN-010	Exhaust Fan on Roof
AN-013	Exhaust Fan on Roof
AN-014	Exhaust Fan on Roof
AN-015	Exhaust Fan on Roof
LT-001 - FLT-004	Exhaust Air HEPA Filters
T-009	Lab Exhaust Air HEPA Filter
T-010 - FLT-016	Cell Inlet Air HEPA Filters
T-017	Lab Exhaust Air HEPA Filter
T-020	Hot Lab Intake Filter Above Suspended Ceiling
T-021	Hot Cell Exhaust Air HEPA Filter
T-022	Hot Cell Exhaust Air HEPA Filter
T-023 – FLT-034	Glovebox Inlet Air HEPA Filters
T-240 – FLT-242	Solvent Recovery Filters
T-250	Solvent Adjustment Filter
Г-301А/В	Process Water Cartridge Filter
Г-401A/B	Process Vessel Vent Filters

ELT 400 A TO 10 TO	
FLT-402A/B/C/D HRC-001	Pulse Mixer Vent Filters
11KC-001	Heat Recovery Coil
	Scrubbers
SCB-001	Scrubber
SCB-002	Scrubber
SCB-003	Hot Cell Scrubber
SCB-004	Hot Cell Scrubber
SCFS-001	Scrubber Caustic Feed System
SCFS-002	Scrubber Caustic Feed System
	Separators
SEP-001	Bldg Chilled Water Air Separator
SEP-003	Control Room Chilled Water Air Separator
EP-005	Process Chilled Water Air Separator
EP-007	Heat Recovery Air Separator
	Pumps
-001A/B	
-003A/B	Bldg Chilled Water Supply Pumps
-005A/B	Control Room Chilled Water Pumps
007A/B	Process Chilled Water Supply Pumps
	Heat Recovery Water Pumps Tanks
K-001	
ζ-002	Bldg Chilled Wtr Exp Tank
K-002	Bldg Chilled Wtr Chem Feed Tank
ζ-004	Control Room Chilled Wtr Exp Tank
K-005	Control Room Chilled Wtr Chem Feed Tank
Z-006	Process Chilled Wtr Exp Tank
2-007	Process Chilled Wtr Chem Feed Tank
-008	Heat Recovery Bladder Exp Tank
-015	Heat Recovery Chemical Feed Tank
-016	Process Chilled Water Expansion Tank
-025	Chemical Bypass Feeder Tank
	Process Chilled Water Expansion Tank
0.001	Ventilators
R-001	Gravity Roof Ventilator
R-002	Gravity Roof Ventilator

	MISCELLANEOUS ITEMS
BTR-001	DW Pressure Booster System
CMP-504	Back Up Air Receiver Compressor
DMST-401A/B	Process Vessel Vent Demisters
DMST-402A/B	Pulse Mixer Vent Demisters
FAN-005	Exhaust Fan
FAN-006	Exhaust Fan
FLT-007	Exhaust Air HEPA Filter
HTR-007	Domestic Water Heater/Tank
HTR-017A/B	Strip Contactors Tempered Water Heaters
HTR-203A/B	Solvent Strip Feed Towns A. W. A. T.
HTR-310A/B	Solvent Strip Feed Tempered Water Heaters Strip Feed Heaters
HTR-401A/B	Process Vessel Vent Heaters
HTR-402A/B	Pulse Mixer Vent Heaters
HX-015	ASP Secondary Loop Cooler
HX-025	AFP Secondary Loop Cooler
HX-102A/B/C	Filter Recirculation Coolers
HX-104	
HX-201	Washing Filter Recirculation Cooler Salt Solution Feed Cooler
HX-202A/B	Solvent Feed Cooler Solvent Feed Coolers
HX-203	
HX-217A/B	Strip Contactor Tempered Water Heat Exchanger
	Solvent Strip Feed Heat Exchanger
IX-250	Filter Recirculation Coolers
X-312	Solvent Adjustment Heat Exchanger
EP-015	DI Water Package Unit
EP-025	Process Chiller Water Air Separator
MP-001	Process Chilled Water Separator Vibration Monitor Panel

June 21, 2018

Frank Sheppard US DEPT OF ENERGY SAVANNAH RIVER SITE BUILDING 705-C Aiken, SC 29808

Re:

Construction Permit No. 20194-IW

USDOE/ SRS/ SWPF/ NGS COLD CHEM FEED

Aiken County

Dear Frank Sheppard:

Enclosed is a SC Wastewater Construction Permit for the above referenced project. Construction is to be performed in accordance with this permit and supporting engineering report, plans, and specifications approved by this Office.

This system cannot be placed into operation until final approval is granted by the appropriate Bureau of Environmental Health Services (BEHS) Regional Office. Your Regional contact is Joshua C Yon, in the MIDLANDS REGION BEHS AIKEN. This regional office should be notified when construction begins at the following address and phone number: 206 BEAUFORT ST NE, AIKEN SC 29801-4476, 803-642-1637.

Upon completion of any construction, a letter must be submitted to the BEHS Regional Office from the registered engineer certifying that the construction has been completed in accordance with the approved plans and specifications. An inspection may then be scheduled. The BEHS Regional Office will approve the system for operation upon successful completion of this project.

Sincerely.

Barry S Mullinax

Industrial Wastewater Permitting Section
Water Facilities Permitting Division

Barry Mullinax

cc:

Joshua C Yon, MIDLANDS REGION BEHS AIKEN

James Somma, Usdoe, Building 705-C, AIKEN, SC 29808

Wastewater Construction Permit Bureau of Water

PROJECT NAME: USDOE/ SRS/ SWPF/ NGS COLD CHEM FEED

COUNTY: AIKEN

PERMISSION IS HEREBY GRANTED TO:

US DEPT OF ENERGY SAVANNAH RIVER SITE 1080 Silver Bluff Rd

Aiken SC 29803

for the construction of an upgrade to an existing wastewater treatment plant in accordance with the construction plans, specifications, engineering report and the Construction Permit Application signed by James Somma, Registered Professional Engineer, S.C. Registration Number: 14718.

PROJECT DESCRIPTION: This application describes the location and configuration of the proposed Next Generation Solvent (NGS) Cold Chemical Feed Facility at the Salt Waste Processing Facility (SWPF). The Cold Chemical Feed Facility is required to support the deployment of NGS at SWPF.

The effluent will be discharged to the Salt Waste Processing Facility at a daily average rate of 7200 gallons per day.

This facility is associated with the Savannah River Site with NPDES Permit #SC0000175.

CONDITIONS: See page 2.

In accepting this permit, the owner agrees to the admission of properly authorized persons at all reasonable hours for the purpose of sampling and inspection. This is a permit for construction only and does not constitute DHEC approval, temporary or otherwise, to place the system in operation. An Approval to Place in Operation is required and can be obtained following the completion of construction by contacting the MIDLANDS REGION BEHS AIKEN at 803-642-1637. Additional permits may be required prior to construction (e.g., Stormwater).

, .	·
PERMIT NUMBER:	20194-IW
ISSUANCE DATE:	June 21, 2018
EXPIRATION DATES:	June 20, 2020 (to begin construction) June 21, 2021 (to obtain Approval to Place in Operation)

Jeffrey/P. deBessonet, P.E., Director Water Facilities Permitting Division

BSM

CONDITIONS

- 1. The permittee shall maintain at the permitted facility a complete Operations and Maintenance (O&M) Manual for the wastewater treatment system. The manual shall be made available for on-site review during normal working hours. The manual shall contain operation and maintenance instructions for all equipment and appurtenances associated with the wastewater treatment system. The manual shall contain a general description of the treatment process(es), operating characteristics that will produce maximum treatment efficiency and corrective action to be taken should operating difficulties be encountered.
- 2. In accordance with Regulation 61-67, Standards for Wastewater Facility Construction, all wastewater treatment facilities shall be closed out within one hundred eighty (180) days when the facility is closed or the effluent disposal permit is inactivated, terminated or revoked, unless otherwise determined by the Department. Closure of wastewater treatment facilities necessitates the submittal of a closure plan and approval of the plan by the Department in accordance with R.61-82 prior to closure of any wastewater treatment unit(s).
- 3. If necessary, final as-built drawings shall be submitted to the Department when you submit the request for SCDHEC to perform an inspection of this facility to obtain an Approval to Place into Operation.
- 4. The permittee shall provide for the performance of daily treatment facility inspections by a qualified operator. The inspections shall include, but should not necessarily be limited to, areas which require visual observation to determine efficient operation and for which immediate corrective measures can be taken using the O & M manual as a guide. All inspections shall be recorded and shall include the date, time, and name of the person making the inspection, corrective measures taken, and routine equipment maintenance, repair, or replacement performed. The permittee shall maintain all records of inspections at the permitted facility as required by the permit, and the records shall be made available for on-site review during normal working hours.
- 5. Operators for the Salt Waste Processing Facility shall perform the daily inspections on the days when the facility is being operated. SWPF operator qualifications are established in administrative procedures.
- 6. This construction permit is in addition to Construction Permit No. 19,219-IW for the Salt Waste Processing Facility.
 - 7. All waste oil and solid and hazardous waste shall be properly disposed of in accordance with the rules and regulations of the Bureau of Land and Waste Management of SCDHEC.
 - 8. Spill prevention measures shall be taken during the facility operation and during unloading or loading activities for chemical materials.
 - 9. If the equipment identification numbers are changed from the Parsons equipment identification numbering system to the Savannah River equipment identification numbering system, the drawings submitted in the construction permit application package shall be revised, as appropriate, and signed, sealed, and dated by an SC-registered PE. These drawings shall be submitted to the Department as a supplemental record for this construction permit.

PEDWIN THE DIVISION

RECEIVE

JUN 15 2018

WATER FACILITIES

PERMITTING DIVISION

MEMORANDUM

June 06, 2018

TO:

Joshua C Yon

MIDLANDS REGION BEHS AIKEN

FROM:

Crystal D Rippy

Industrial Wastewater Permitting Section Water Facilities Permitting Division

RE:

Construction Permit Application

USDOE/ SRS/ SWPF/ NGS COLD CHEM FEED

No specific concerns

Aiken County

Are you aware of any problems with, or do you have any comments on, the referenced project? Copies of the application and location map are enclosed.

Please return any comments that you may have by: June 16, 2018. An e-mail response is suitable if you prefer. If you have no comments, please just note so. Thanks.

COMMENTS:

Josh for Ailcen EA Office

South Carolina Department of Health and Environmental Control

Environmental Quality Control

Wastewater Application Fee 2600 Bull Street Columbia, SC 29201

US DEPT OF ENERGY SAVANNAH RIVER SITE

1080 SILVER BLUFF RD AIKEN SC 29803 Invoice Date:

06/06/2018

Invoice Number: Invoice Amount: QY25894-7

Program ID:

\$400.00 1242453

Department Name:

BOW - DOMESTIC WW PERM

Department Contact: LINDA S HARRELL

Department Phone: 803-898-4300

Qty	Description	Unit	Extended
1.00	TS => 1MGD - Modification (no expansion)	400.00	400.00
	Tr. 4.1		0.400.00
	Total		\$400.00

South Carolina Department of Health and Environmental Control

Facility Name:

US DEPT OF ENERGY SAVANNAH RIV

Program ID:

1242453

Invoice Number:

QY25894-7 Amount Due: \$400.00

Amount Remitted:

\$

To ensure proper credit, please return this portion of the invoice with your payment to the address below or you may go to our agency's website: www.sc.dhec.gov then click on PAY INVOICES under ONLINE SERVICES & TOOLS or use the reverse side of this form for credit card payments. Limit of \$3000.00 per transaction and \$1.00 convenience fee for debit/credit card payments. No limit or fee for ACH/e-checks. Please include the invoice number on your remittance. Payment due upon receipt, past due 30 days from invoice date. Change of address and credit card payment forms are on the reverse side.

SC DHEC

ATTN: BUREAU OF FINANCIAL MANAGEMENT

PO BOX 100103

COLUMBIA, SC 29202-3103

JUN 15 2018

WATER FACILITIES PERMITTING DIVISION

June 06, 2018

Kristy Ellenberg

TO: Richelle Tolton - 208 Planning Contact

SUBJECT: 208 plan conformance (INFORMATION ONLY)

Recommendation NOT required

1. Project Name: USDOE/ SRS/ SWPF/ NGS COLD CHEM FEED

Aiken 2. County:

3. Type of Project: WWC WWTP UPGRADE(QUALITY) -

4. Type Waste: INDUSTRIAL Volume (GPD): 7200

5. Disposal Method: US DOE/SAVANNAH RIVER SITE (NPDES SC0000175)

6. Consulting Engineer: USDOE/JAMES SOMMA

7. DHEC contact: Crystal D Rippy

Industrial Wastewater Permitting Water Facilities Permitting Division

Bureau of Water

BUREAU OF WATER

June 06, 2018

JAMES SOMMA USDOE BUILDING 703-C AIKEN SC 29803

Re: USDOE/ SRS/ SWPF/ NGS COLD CHEM FEED

Aiken County

Application Tracking # 1242453

Dear James Somma:

The Industrial Wastewater Permitting section received an engineering submittal on the above project on 05/24/2018. In accordance with R.61-30 we have reviewed your application for completeness. Based on our review, your project application package is administratively incomplete. For this reason, your project will not be in line for a technical review until you satisfy the deficiencies noted below. As a courtesy, we have logged in your project and will keep it here pending your complete response. To complete your application package, please provide the following items:

A SC-registered PE must sign and seal and date all plans and specifications and the Certificate of
Authorization (COA) from the engineering firm must also be affixed near the PE seal. Please resubmit
these documents with the appropriate seals. Please note: Each page of design drawings or plans must
include the COA and the PE seal/signature with the date regardless of whether or not they are in a bound
document that is signed, sealed, dated, and affixed with the COA.

Please return the above noted items as soon as possible. Failure to submit these items will result in significant delays in the review process.

Also, please note that any land clearing activity that is being performed in relation to this project must be permitted under the State Sediment and Erosion Control Program. For more information contact Ann Clark at (803) 898-4028.

If you have any questions, please do not hesitate to contact this office at 803-898-4300.

Sincerely, Trinda S. Harrell Linda S. Harrell

Industrial Wastewater Permitting Section

Water Facilities Permitting Division

May 23, 2018

SRR-SWPF-2018-00030 RSM Tracking No.: 10667

Mr. Barry S. Mullinax, Professional Engineer
South Carolina Department of Health and
Environmental Bureau of Water
South Carolina Department of Health and
Environmental Control
2600 Bull Street
Columbia, South Carolina 29201-1208
Savannah River Nuclear Solutions

Dear Mr. Mullinax:

CONSTRUCTION PERMIT APPLICATION – WATER/WASTEWATER FACILITIES – SALT WASTE PROCESSING FACILITY (SWPF)

On behalf of the U.S. Department of Energy and Parsons Government Services, please find the following documents attached for review and approval:

- 1. Construction Permit Application and Engineering Report for the SWPF Next Generation Solvent (NGS) Cold Chemical Feed Facility (3 copies)
- 2. Location Maps (3 copies)
- 3. Signed and Sealed Engineering Reports (3 copies)
- 4. One Application Fee

Your timely review and processing of the construction permit application package is requested.

Should you have any questions or concerns, please feel free to contact me at (803) 208-1468.

Keith D. Harp
SWPF Integration Program Manager

MAY 24 2018

RECEIVED

WATER FACILITIES
PERMITTING DIVISION

csw/jf

c:

P. A. Marks, 704-122S

S. S. Farrell, 704-122S

S. A. Stewart, 730-B

K. P. Guay, 704-125S

SWPFDCA, 704-127 S

W. F. Anderson, 766-H

K. R. Liner, 704-S

G. R. Huff, 707-18E

J. S. Kirk, 766-H

K. Smith, 766-H

Construction Permit Application Water/Wastewater Facilities

BUREAU OF WATER

DEL	EGATED REVIEW PROJECT SUBMITTAL: Yes □ EXPEDITED REVIEW PROGRAM SUBMITTAL: Yes □
SEL	ECT ONE Water Facilities Wastewater Facilities Combined Water & Wastewater Facilities
I.	Project Name: Next Generation Solvent Cold Chemical Feed Facility County: Aiken
II.	Project Location (street names, etc.): Savannah River Site, Aiken SC
III.	Project Description(s): Water System: RECEIVED
	MAY 2.1 2018
	Wastewater System: This application describes the location and configuration of the proposed Next Generation Solvent (NGS)
	Cold Chemical Feed Facility at the Salt Waste Processing Facility (SWFF)R FACILITIES
	PERMITTING DIVISION
	Project Type (A-Z): Water: Wastewater: Z (See instructions for the appropriate project code)
IV.	Initial Owner: [Time of Application] Name/Organization: USDOE-Owner
	Address: 1080 Silver Bluff Road (Attn: Frank Sheppard, Jr.) City: Aiken State: SC Zip: 29803
	Phone #: (803) 643-7100
V.	Final Owner: [After Construction] Name/Organization: USDOE-Owner
	Address: Bldg. 703-B, Room 321 (Attn: J. Demass) City: Aiken State: SC Zip: 29808
1000	Phone #: (803) 952-8261
VI.	Entity Responsible for Final Operation & Maintenance of System:
	Water System: Name: N/A Address:
	City: State: Zip: Phone#: () Fax#: ()
	Wastewater System: Name: USDOE-Owner Aldress: Bldg. 703-B, Room 321 (Attn: J. Demass)
	City: Aiken State: SC Zip: 29808 Phone#: (803) 952-8261 Fax#: ()
VII.	Engineering Firm: Name: N/A Address:
	City: State: Zip: Phone #: () Fax #: ()
3/111	E-mail (Design Engineer): Is this project: A) Part of a phased project? No Z Yes \(\sigma\). If Yes, Phase \(\sigma\) of \(\sigma\)
VIII.	B) A revision to a previously permitted project? No \(\sigma\) Yes \(\mathbb{Z}\). If Yes, Permit#: 19,219-IW
	Date Approved: 8/6/08 Project name (if different): Salt Waste Processing Facility
	C) Submitted based on a Schedule of Compliance or Order issued by DHEC? No Z Yes D . Order #:
	D) Anticipating funding by the State Revolving Fund (SRF)? No Z Yes \B .
	E) Crossing a water body (e.g., river, creek)? No \(\overline{\ove
IX.	Are Standard Specifications approved by DHEC being used on this project? No 🗷 Yes 🗆. If Yes:
	Water: Date Approved: Approved for whom:
	Wastewater: Date Approved: Approved for whom:
X.	Wastewater Systems: A) Type: Domestic □ Process (Industrial) ☑ Combined (Domestic & Process) □
	B) Average Design Flow 1. Project: 7,200 GPD 2. Treatment system: N/A GPD
	C) Sewers or Pretreatment 1. Name of facility (e.g., POTW) treating the wastewater:
	2. NPDES/ND Number of facility in Item #1:
	Treatment Systems 3. Date Preliminary Engineering Report (PER) approved:
	4. NPDES/ND application submitted? No ☐ Yes ☐. If Yes, Date:
	Disposal Sites 5. Effluent Disposal Site (Description):
	6. Sludge Disposal Site (Description):

XI.	Water Systems: Project located within city limits? No ☑ Yes □.
	Public water system providing water. Name: System #.: System #.: New water system (including master meter)? No
YII.	Type of Submittal: Complete Section A (Standard) or Section B (Delegated Review Program - DRP).
/>	A) Standard Submittal must include the following:
	 A transmittal letter outlining the submittal package. The original construction permit application, properly completed, with one (1) copy.
	☑ 3. Three (3) sets of signed and sealed plans and one (1) set of construction specifications. Specifications may be omitted
	if approved standard specifications are on file with DHEC. Four (4) sets of plans are required for a combined submittal,
	if the project includes a wastewater treatment facility. 4. One (1) set of the appropriate design calculations. WASTEWATER: Design flow (based on R.61-67, Appendix A),
	pump station calc's. and pump curve. WATER: Recent flow test from a location near the tie-on site, design calc's.
	indicating pressure maintained in the distribution system during max. instantaneous demand, fire flow and flushing velocities achieved. Number/types of service connections, well record form, pumping test results, etc.
	5. Three (3) copies of a detailed 8½" x 11" location map, separate from the plans.
	6. Two (2) copies of construction easements unless the project owner has the right of eminent domain.
	7. A letter(s) from the entity supplying water and/or providing wastewater treatment stating their willingness and ability to serve the project, (state the flow, number of lots, etc.), including pretreatment permits, if applicable.
	8. A letter(s) from the entity agreeing to be responsible for the operation and maintenance (O&M) of the systems.
	 ✓ 9. Application fee enclosed \$ 400.00 (Refer to Instructions). ✓ 10. WATER SYSTEMS: a) A letter from the local government which has potable water planning authority over the area, if
	applicable, in which the project is located, stating project consistency with water supply service plan for area.
	b) For wells, four (4) copies of a well head protection area inventory.c) For new wells, a viability demonstration is required in accordance with Regulation 61-58.1.B.(4).
	Note: Other approvals may include 208 (wastewater only) and OCRM CZC Certification, and navigable waterway permitting.
	To expedite the project review, the 208 and OCRM CZC Certification may be included with the project submittal.
	B) DRP submittal must include the following:
	☐ 1. A transmittal letter, signed by the professional engineer representing the DRP entity, noting this is a DRP submittal. The letter should state that the project has been reviewed and complies with R.61-58 and/or R.61-67.
	☐ 2. The original construction permit application, properly completed, with one (1) copy.
	□ 3 Two (2) sets of the signed and sealed plans. □ 4. One (1) set of the appropriate design calculations. WASTEWATER: Same information as regular dupler settion
	 Iwo (2) sets of the signed and seared plans. One (1) set of the appropriate design calculations. <u>WASTEWATER</u>: Same information as required under Section XII.A.4. above. <u>WATER</u>: Same information as required under Section XII.A.4. above. One (1) copy of a detailed 8½" x 11" location map, separate from the plans. Two (2) copies of construction easements, unless the project owner has the right of engine to come in the plans.
	5. One (1) copy of a detailed 8½" x 11" location map, separate from the plans. 6. Two (2) copies of construction easements, unless the project owner has the right of engine tromain.
	□ 7. DHEC's OCRM CZC Certification (for water and/or wastewater facilities, in the eight coastal countries of the coasta
	8. DHEC's Water Quality permit or conditions for placement in navigable waters, and ther Agency and the Agency and the season of the placement of the season
	includes the specific flow and, when applicable, the specific number of lots being acceptable.
	b) A letter from the organization agreeing to be responsible for the O&M of the wasteward system.
	b) A letter from the organization agreeing to be responsible for the O&M of the wastewater system. c) The 208 Plan certification from the appropriate Council of Governments (designated 206 areas). or from OFLE on the non-designated 208 areas. 10. WATER SYSTEMS: A letter from the local government which has potable water planning authority over the area, if applicable, in which the project is located stating project consistency with water supply service plan for area.
	- 10. Triving a straight from the food government which has possible water premius authority of the tile and, in
	applicable, in which the project is located, stating project consistency with water supply service plan for area. □ 11. Fee of \$75 for water and \$75 for wastewater (\$150 if combined).
	Note: The DRP entity should ensure that a copy of the final approved plans are returned to the design engineeral state.
XIII.	Construction plans, material and construction specifications, the engineering report including supporting design d
	calculations are herewith submitted and made a part of this application. I have placed my signature and calculations are herewith submitted, signifying that I accept responsibility for the design of this system, and the have submitted
	a complete administrative package.
	Engineer's Name (Printed): Source Signature: Signature: Signature: No. 14718 No. 14718
XIV.	S.C. Registration Number: 14 +18
Al v.	plans and specifications, to the best of my knowledge, information and belief. This certification will be based more product.
	observations of construction and a final inspection for design compliance by me or a representative of the white the construction and a final inspection for design compliance by me or a representative of the construction and a final inspection for design compliance by me or a representative of the construction and a final inspection for design compliance by me or a representative of the construction and a final inspection for design compliance by me or a representative of the construction and a final inspection for design compliance by me or a representative of the construction and a final inspection for design compliance by me or a representative of the construction and a final inspection for design compliance by me or a representative of the construction and the construction are constructed by the construction of the construction and the construction are constructed by the construction of the construction and the construction are constructed by the construction of the construction are constructed by the construction are constructed by the construction of the construction are constructed by the construction are constructed by the construction of the construction are constructed by the construction are constructed by the construction of the construction are constructed by the construction are constructed by the construction of the construction are constructed by the construction of the construction are constructed by the construction are constructed by the const
	my supervision. Engineer's Name (Printed): Super C. Source Signature: St. 01.50
	S.C. Registration Number: 147/8
XV.	I hereby make application for a permit to construct the project as described above. Lhave read this application and agree to
	the requirements and conditions and agree to the admission of properly authorized persons at all reasonable purs for the purpose of sampling and inspection.
	Owner's Name (Printed): FRANK SHEPPARI Signature:
	Owner's Title: SENICR VP SWPF PRES, Market Date: 5/10/18

United States Department of Energy

Savannah River Site Aiken, South Carolina

Engineering Report

for

NGS Cold Chemical Feed Facility

Prepared By

PARSONS

1080 Silver Bluff Road Bany Mulling, Ren, South Carolina 29803

For the Aiken, South Carolina 29803

for the

United States Department of Energy

Function: Environmental Permitting

Q-PER-J-00007 Doc. No.:

Revision:

Date: 05/10/2018

MAY 24 2018

WATER FACILITIES PERMITTING DIVISION

Q-PER-J-00007, Rev. 0 Summary of Changes

SUMMARY OF CHANGES

Revision No.	Date	Description of Change
0	05/10/2018	Developed per DMR-4365. Engineering report needed to support the Industrial Wastewater Permit for NGS Building.

TABLE OF CONTENTS

1.0	ENGINEERING REPORT			
2.0	BACKGROUND INFORMATION			
3.0	LOCATION AND FACILITY LAYOUT			
	2001			
4.0	PROJ	ECT DESCRIPTION		
5.0	PROC	CESS DESCRIPTION		
	5.1	Boric Acid Strip Solution		
		5.1.1 Receipt of Concentrated Boric Acid		
		5.1.2 Preparation of Boric Acid Strip Solution		
		5.1.3 Transfer of Boric Acid Strip Solution to SWPF		
	5.2	Caustic Scrub Solution		
		5.2.1 Preparation of Caustic Scrub Solution		
		5.2.2 Transfer of Caustic Scrub Solution to SWPF		
6.0	MOD	IFICATION DESIGN		
	6.1	Piping Design		
	6.2	Tank and Vessel Design		
	6.3	Secondary Containment		
	6.4	Process Controls		
7.0	OPERATIONS AND MAINTENANCE			
8.0	AIR E	EMISSIONS		
	8.1	Toxic and Criteria Pollutant Emissions		
9.0	REFE	RENCES		
List of	Figure	<u>es</u>		
т.				
Figure	3-1. N	GS Cold Chemical Feed Facility Location		
rigure	J-2. I	. In sec Dimensional Design view of the 1465 Cold Chemical Feed Facility		

List of Appendices

Appendix A. CCFF General Arrangement

Appendix B. CCFF Process Flow Drawings

Appendix C. CCFF Pump Performance Curves and Calculations

Appendix D. CCFF Equipment List

NGS Cold Chemical Feed Facility:

Engineering Report

Q-PER-J-00007, Rev. 0 Acronyms and Abbreviations

LIST OF ACRONYMS AND ABBREVIATIONS

°F degrees Fahrenheit

API American Petroleum Institute

ASME American Society of Mechanical Engineers

BPCS Basic Process Control System

CCA Cold Chemicals Area

CCFF Cold Chemical Feed Facility

Cs Cesium

CSSX Caustic-side Solvent Extraction DOE U.S. Department of Energy

DWPF Defense Waste Processing Facility

ER Engineering Report

H₃BO₃ Boric Acid

LWR Liquid Radioactive Waste

M Molar

Mgal Million Gallons

NaOH Sodium Hydroxide (Caustic) NGS Next Generation Solvent

SCDHEC South Carolina Department of Health and Environmental Control

SCR South Carolina Regulation

SRNS Savannah River Nuclear Solutions

SRS Savannah River Site

SWPF Salt Waste Processing Facility

wt% Weight Percent

1.0 ENGINEERING REPORT

This Engineering Report (ER) is being submitted pursuant to South Carolina Regulation (SCR) 61-67 (Standards for Wastewater Facility Construction¹) to allow the construction of a new Next Generation Solvent (NGS) Cold Chemical Feed Facility (CCFF). This ER describes the location, industrial wastewater treatment processes, and configuration of the proposed new Salt Waste Processing Facility (SWPF) NGS CCFF at Savannah River Site (SRS).

2.0 BACKGROUND INFORMATION

This ER describes a modification at SWPF that requires a construction permit that is in addition to the SWPF Industrial Wastewater Treatment Permit (Construction Permit No. 19219-IW) issued by South Carolina Department of Health and Environmental Control (SCDHEC). The construction of CCFF is required to support deployment of NGS at SWPF. The deployment of NGS, developed through research funded by the U.S. Department of Energy (DOE), for use at SWPF will improve the Cesium (Cs) removal from treated waste and increase the overall throughput of SWPF. The purpose of the proposed CCFF is to receive, dilute, and then transfer the chemicals to SWPF that are necessary for deployment of NGS at SWPF.

3.0 LOCATION AND FACILITY LAYOUT

The CCFF will be constructed adjacent to SWPF in J-Area at SRS, located East of the SWPF Process Building and South of the SWPF Administrative Building. See Figure 3-1 for detailed location of the CCFF.

The CCFF is divided into two diked process areas (i.e., the caustic scrub diked area and the Boric Acid [H₃BO₃] diked area) and one NGS work area that contain a total of seven process pumps, three chemical storage tanks, two process heaters, and one chemical metering pump skid. Also, each diked area is equipped with a collection sump that is piped to a common sump pump. Figure 3-2 provides a three-dimensional design view of the NGS CCFF. Appendix A provides general arrangement of CCFF equipment.

Figure 3-1. NGS Cold Chemical Feed Facility Location

Figure 3-2. Three Dimensional Design View of the NGS Cold Chemical Feed Facility

4.0 PROJECT DESCRIPTION

The SWPF is tasked with processing 34 Million gallons (Mgal) of liquid radioactive waste (LRW) stored as salt solution or saltcake in the SRS tank farms. One operational step in the processing of LRW is the Caustic-side Solvent Extraction (CSSX) for removal of Cs. The baseline CSSX process uses a specially engineered solvent that selectively removes Cs. As part of the CSSX process, the engineered solvent must be scrubbed for removal of impurities with 0.05 Molar (M) Nitric Acid and then stripped of Cs with 0.001M Nitric Acid.

Through research funded by the DOE, a NGS has been developed and tested to improve Cs removal and increase LRW throughput in SWPF. Deployment of NGS in the CSSX process at SWPF requires the use of different cold chemicals for scrubbing and stripping of NGS. The installation of CCFF will provide the source of these new scrubbing and stripping chemical solutions.

The scope of this modification is to install systems that will:

- 1. Receive and provide storage of approximately 2,500 gallons of 0.45M H₃BO₃. H₃BO₃ will be received from either a chemical tote or tanker truck.
- 2. Prepare and provide storage for approximately 2,500 gallons of 0.01M H₃BO₃ solution to be used as the strip solution for NGS. Process water for this dilution process will be provided from SWPF.
- 3. Heat the 0.01M H₃BO₃ strip solution and transfer to SWPF strip contactors.
- 4. Prepare and provide storage for approximately 2,500 gallons of 0.025M Caustic scrub solution. Caustic and process water required for preparation of scrub solution will be provided from SWPF.
- 5. Transfer the 0.025M Sodium Hydroxide (NaOH) scrub solution to the SWPF scrub contactors.

These systems will operate 24/7 in conjunction with SWPF, except for outages and times of maintenance.

5.0 PROCESS DESCRIPTION

The CCFF will store and provide chemicals to SWPF that are required for scrubbing and stripping the NGS being deployed in the SWPF CSSX process (see Appendix B through Appendix D). This facility will not process or utilize any radioactive fluids.

5.1 Boric Acid Strip Solution

The purpose of the H₃BO₃ strip solution system is to provide 0.01M H₃BO₃ to the strip stages of the CSSX process for removal of Cs from the Cs-laden solvent stream flowing through the SWPF extraction contactors.

5.1.1 Receipt of Concentrated Boric Acid

The 0.45M H₃BO₃ is normally delivered by tanker truck to the Boric Acid Strip Receipt Tank (TK-710) via the SWPF Cold Chemicals Area (CCA) Receiving Dock. Alternatively, 0.45M H₃BO₃ may be delivered directly to the CCFF via chemical totes.

5.1.2 Preparation of Boric Acid Strip Solution

H₃BO₃ strip solution is made up in the Boric Acid Strip Feed Tank (TK-720) by mixing process water with 0.45M H₃BO₃ (from the Boric Acid Strip Receipt Tank [TK-710]). Process water is provided from the existing Process Water Tank (TK-301) in SWPF.

5.1.3 Transfer of Boric Acid Strip Solution to SWPF

When the SWPF CSSX process is operating, the strip contactors continuously use the 0.01M H₃BO₃ strip solution. One of the CCFF Boric Acid Strip Feed Pumps (P-720A/B) provides the strip solution to SWPF. A Boric Acid Strip Feed Heater (HTR-720A/B), installed on the discharge side of each Boric Acid Strip Feed Pump, maintains the strip solution between 86 degrees Fahrenheit (°F) and 96°F, improving its stripping performance.

When the SWPF is out of operation for an extended period, transfer of 0.01M H₃BO₃ strip solution from CCFF to SWPF is ceased. In place of this continuous transfer, 0.45M H₃BO₃ (from the Boric Acid Strip Receipt Tank [TK-710]) is batch transferred to the existing Strip Effluent Hold Tank (TK-205) in SWPF via the Boric Acid Strip Charge Pump (P-711). The concentrated H₃BO₃ is eventually transferred from SWPF to the Defense Waste Processing Facility (DWPF) in order to support continued formulation of the DWPF glass recipe. The transfer of 0.01M H₃BO₃ strip solution resumes once SWPF operation is restarted.

5.2 Caustic Scrub Solution

The purpose of the caustic scrub solution system is to provide 0.025M NaOH to the scrub stages of the CSSX process for removal of soluble salts from the solvent stream exiting the SWPF extraction contactors.

5.2.1 Preparation of Caustic Scrub Solution

Caustic scrub is made up in the Caustic Scrub Tank (TK-730) by mixing process water with 50 weight percent (wt%) NaOH. Process water is provided from the existing Process Water Tank (TK-301) in SWPF. The 50 wt% NaOH is provided from the existing Caustic Receipt Tank (TK-302) in SWPF.

Alternatively, a dilute caustic solution can be made up in one of two existing SWPF tanks and provided to the CCFF. The dilute caustic solution may be provided from SWPF via either the Caustic Cleaning Tank (TK-107) or the Caustic Makeup Tank (TK-303) to the CCFF Caustic Scrub Tank (TK-730), where additional dilution with process water can be performed as required to create 0.025M NaOH.

5.2.2 Transfer of Caustic Scrub Solution to SWPF

When the SWPF CSSX process is operating, the scrub contactors continuously use the 0.025M NaOH scrub solution. One of the CCFF Caustic Scrub Feed Pumps (P-730A/B) provides the scrub solution to SWPF. When the SWPF is out of operation for an extended period, transfer of 0.025M NaOH scrub solution from CCFF to SWPF is ceased. The transfer of scrub solution resumes once SWPF operations is restarted.

6.0 MODIFICATION DESIGN

6.1 Piping Design

Process piping installed for the CCFF modification shall be designed, fabricated, examined, and tested in accordance with American Society of Mechanical Engineers (ASME) B31.3-2002, *Process Piping*² requirements.

6.2 Tank and Vessel Design

Cold chemical storage tanks (Boric Acid Strip Receipt Tank [TK-710], Boric Acid Strip Feed Tank [TK-720] and the Caustic Scrub Tank [TK-730]) shall be designed, fabricated, examined and tested in accordance with the American Petroleum Institute (API) 650, Welded Steel Tanks for Oil Storage³ requirements.

Pressure vessels installed for the CCFF modification (Boric Acid Strip Feed Heaters [HTR-720A/B] and Fire Protection Water Surge Tank [TK-014]) shall be designed, fabricated, examined and tested in accordance with ASME Section VIII, Division 1, *Boiler and Pressure Vessel Code*⁴ requirements.

6.3 Secondary Containment

Major process equipment within the CCFF is located within concrete diked areas that provide secondary containment for leaks resulting from equipment failure or from routine operation and maintenance activities. Each diked area is capable of containing 100% minimum of contents of the largest tank located within the diked area. The floor of each diked area is sloped to a sump, equipped with leak detection and alarm, which can be pumped to a tanker truck via NGS Sump Pump (P-740).

Chemicals for use in the CCFF are received at the SWPF CCA receiving dock, where they are unloaded from a tanker truck and transferred either directly (H₃BO₃) or indirectly (NaOH) to the CCFF. The CCA receiving dock area provides containment of chemical spills and is sloped to a sump that collects spillage for disposition by SWPF personnel. Personnel performing activities associated with receipt of CCFF chemicals will be SWPF trained and qualified operators, working to approved procedures.

6.4 Process Controls

Normal operations sequences for the CCFF are automated and are controlled/monitored by the SWPF Basic Process Control System (BPCS). The BPCS is also responsible for gathering and recording process data to provide process history from the CCFF.

7.0 OPERATIONS AND MAINTENANCE

SWPF trained and qualified operations personnel will operate the equipment per approved procedures. Normal operations will not require "hands on" activities with the equipment within the CCFF.

SWPF trained and qualified maintenance personnel will perform required maintenance of equipment per approved procedures, work orders and per equipment manufacturer Installation-Operation-Maintenance manuals.

8.0 AIR EMISSIONS

8.1 Toxic and Criteria Pollutant Emissions

Emissions from CCFF have been evaluated (see Savannah River Nuclear Solutions [SRNS]-J2210-2017-00224, Supporting Documentation for Emission Rate Calculations for Three Tanks Located in Building Southeast of 221-J [006J, 007J, and 008J]⁵) and it has been determined that no toxic or criteria pollutants will be emitted from each of the three tanks in CCFF. Based upon Section A, Item 19 of SCDHEC, Bureau of Air Quality Permitting Exemption List (December 2016)⁶ these sources are considered insignificant and are not required to be documented with respect to construction permitting. Based upon Section A, Item 25 of SCDHEC Insignificant Activities List for S.C. Regulation 61-62.70 "Title V Operating Permit Program", these tanks are considered insignificant and are not required to be included in a Title V permit application.

9.0 REFERENCES

SCR 61-67, South Carolina Standards for Wastewater Facility Construction. South Carolina Department of Health and Environmental Control, Columbia, South Carolina. May 24, 2002.

ASME B31.3, *Process Piping*. American Society of Mechanical Engineers, New York, New York. May 1, 2002.

API 650, Welded Steel Tanks for Oil Storage. 11th Edition American Petroleum Institute, Washington D.C. November 1, 1998, including Addendum 1 (2008) and Addendum 2 (2009).

ASME Section VIII, Division 1, Boiler and Pressure Vessel Code. American Society of Mechanical Engineers, New York, New York. 2004.

NGS Cold Chemical Feed Facility: Engineering Report

Q-PER-J-00007, Rev. 0 Page 8 of 8

- SRNS-J2210-2017-00224, Supporting Documentation for Emission Rate Calculations for Three Tanks Located in Building Southeast of 221-J (006J, 007J, and 008J). Letter from K.A. Wolfe (SRNS) to A.R. Waller (SRNS). November 6, 2017.
- SCDHEC, Bureau of Air Quality Permitting Exemption List (December 2016). South Carolina Department of Health and Environmental Control. 2016. (http://www.scdhec.gov/ENVIRONMENT/DOCS/NEWEXEMPTIONS.PDF)
- SCDHEC Insignificant Activities List for S.C. Regulation 61-62.70 "Title V Operating Permit Program". South Carolina Department of Health and Environmental Control. Revised February 4, 2013. (http://www.scdhec.gov/environment/docs/air Activities4SC.pdf)

NGS Cold Chemical Feed Facility: Engineering Report	Q-PER-J-00007, Rev. 0
Engineering Report	Page A1 of 2

Appendix A. CCFF General Arrangement

P-PG-J-0024, SWPF Next Generation Solvent Building General Arrangement Plan at Elevation 98'-9" And Sections (U)

S Cold Chemical beed Faeilly: hay

Appendix B. CCFF Process Flow Drawings

M-M5-J-0007, SWPF Solvent Extraction and Acid Scrub PFD (U)
M-M5-J-0008, SWPF Solvent Stripping and Caustic Wash PFD (U)
M-M5-J-0010, SWPF Cold Chemical Makeup and Process Water Tank PFD (U)
M-M5-J-0020, SWPF Next Generation Solvent Building Cold Chemical Makeup Tanks PFD

Appendix C. CCFF Pump Performance Curves and Calculations

- 1. Pump Performance Curve for P-710A/B
- 2. Pump Performance Curve for P-720A/B
- 3. Pump Performance Curve for P-730A/B
- 4. Pump Performance Curve for P-711
- 5. M-CLC-J-00223, Boric Acid Strip Transfer Pumps Sizing Calculation, P-710A/B
- 6. M-CLC-J-00225, Boric Acid Strip Feed Pumps Sizing Calculation, P-720A/B
- 7. M-CLC-J-00226, Caustic Scrub Feed Pumps Sizing Calculation, P-730A/B
- 8. M-CLC-J-00224, Boric Acid Strip Charge Pump Sizing Calculation, P-711

Appendix C. CCFF Pump performance Curves and Calculations

Page 5 of 50

Equipment Tag # P-711 Page 4 of 4

Differential Pressure Performance Curve

		Calcul	ation Cover	Sheet					
Project: NGS Deplo	yment at SWPF		Calculation No.: M-CLC-J-00223		Project Number 749600	er:			
Title: Bori	c Acid Strip Transfer Pumps	s Sizing Calcula	ntion, P-710A B		Sheet 1 of 10				
Software C	lassification:	⊠ N/A	Discipline: Process		Preliminar	y Confirmed			
	Program Name oftware Quality Assurance	N/A Plan Unique Id	entifier_		Approval Date				
☐ s	oftware Evaluation Report	Unique Identifi	er		Approval Date				
□ s	oftware Requirement Speci	fication Unique	Identifier		Approval Date	2			
□ s	oftware Design Description	Unique Identif	fier		Approval Date	e			
□ s	oftware User Documentation	on Unique Ident	tifler		Approval Date	e			
☐ s	oftware Verification/Valida	ntion Plan Uniq	ue Identifier		Approval Date				
□ s	oftware Verification/Valida	ntion Report Un	ique Identifier		Approval Date				
	6 Ch								
S	ofiware Installation & Chee	kout Unique Ic	tentifier		Approval Date				
	oftware Change Request U				• •				
S Version / R	oftware Change Request Ua telease No				• •				
Version / R Purpose an	oftware Change Request U	nique Identifier	criteria for the Bori		Approval Date				
S Version / R Purpose an The purpose	oftware Change Request Untelease No. d Objective e of this calculation is to eva	nique Identifier	criteria for the Bori		Approval Date				
Sversion / R Purpose an The purpose The objective Summary of	oftware Change Request Untelease No. Id Objective e of this calculation is to eva	nique Identifier	criteria for the Bori		Approval Date	710AB.			
Sversion / R Purpose an The purpose The objective Summary of	oftware Change Request Untelease No. Id Objective te of this calculation is to evalue of this calculation is to size of Conclusion	nique Identifier	A·B.		Approval Date	710AB.			
Sversion / R Purpose and The purpose The objection Summary of	oftware Change Request the telease No	nique Identifier	A·B.		Approval Date	710AB.			
SVersion / R Purpose an The purpose The objecti Summary of The design	oftware Change Request the clease No	nique Identifier	A·B. pressure Revisions		Approval Date	710AB.			
Sversion / R Purpose and The purpose The objection Summary of The design Rev. No.	oftware Change Request the telease No	nique Identifier duate the design ve pumps P-710 psi differential	A·B.	e Acid Strip Tran	Approval Date	Cad Discipline			
SVersion / R Purpose an The purpose The objecti Summary of The design	oftware Change Request the clease No	nique Identifier	A·B. Pressure Revisions	e Acid Strip Tran	Approval Date nsier Pumps. P- No. 14718	710A B.			
Sversion / R Purpose and The purpose The objection Summary of The design Rev. No.	oftware Change Request the telease No	nique Identifier duate the design pe pumps P-710 psi differential	A·B. Pressure Revisions Sign Off Verification /	e Acid Strip Tran	Approval Date nsier Pumps. P- No. 14718 No. 14718	Lead Discipline Engineer (Print)			

Q-PER-J-00007, Rev. 0 Page 7 of 50

	SONS eering	Proj	ect:	NG	S Deploy	ment a	t SWPF	-			Calculation No. M-CLC-J- 0022	3		
Calcu		Title	:	Bor	ic Acid S	trip Tra	ınsfer Pun	ps Siz	zing Calculation	on, P-710/		<u> </u>		
Rev 0	Originator N. DesRocl	ner	Date 10/26/2	2017	Checker Donna Ya		Date 10-28-17	Rev	Originator	Date	Checker	Date		
							Table o	of Con	itents		Sheet			
1.0	Purpos	se ai	nd Obj	ectiv	es							3		
2.0	Refere	nces	5									3		
3.0	Inputs											4		
4.0	Assum	ptio	ns									4		
5.0	Analyti	ical	Method	d								5		
6.0	Calcula	ation	ns									6		
7.0	Result	s an	d/or R	econ	nmendati	ions						7		
8.0												7		
9.0												7		
9.1					s Calcula							8		
9.2					s Calcula							9		
9.3	eumpi	JISCI	narge L	.ine L	oss Calc	uiation						10		

Page 8 of 50

Calculation Continuation Sheet

PARSONS Engineering Project: NGS Deployment at SWP						<i>i</i> .			culation No. I-CLC-J- 00223	
Calc				ric Acid Strip Tra	nsfer Pump	s Si	zing Calculation	, P-710A/B		
Rev 0	Originator N. DesRock	ner	Date 10/26/2017	Checker	Date 10-28-17	Rev	Originator	Date	Checker	Date

1.0 Purpose and Objectives

The purpose of this calculation is to evaluate the design criteria for the Boric Acid Strip Transfer Pumps, P-710A/B.

The objective of this calculation is to size pumps P-710A/B.

References 2.0

- 2.1 P-DB-J-00006, Rev. 0, NGS Deployment at SWPF Basis of Design
- 2.2. DSG-MP-03, Parsons Engineering Department Design Guide: Pump Head Calculations
- 2.3 P-PG-J-0024, Rev. 0, SWPF Next Generation Solvent Building General Arrangement Plan at Elevation 98'-9" and Sections
- 2.4 Crane, Flow of Fluids through Valves, Fittings and Pipe, Technical Paper No. 410
- Cameron Hydraulic Data, 19th Edition 2.5
- 2.6 Pump Handbook, 2nd Edition
- 2.7 M-M6-J-0201, Rev. 5, SWPF Next Generation Solvent Building Boric Acid Strip Receipt Tank TK-710 P&ID M-M6-J-0202, Rev. 5, SWPF Next Generation Solvent Building Boric Acid Strip Feed Tank TK-720 P&ID
- 2.8 Specification 15120, Rev. 25, Piping Material Specification
- 2.9 M-M5-J-0020, Rev. 0, SWPF Next Generation Solvent Building Cold Chemical Makeup Tank PFD
- 2.10 P-PI-J-14-10005-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10005-PS200A-
 - P-PI-J-14-10005-02, Rev. 0, SWPF Piping Isometric 2"-BOR-10005-PS200A-
 - P-PI-J-14-10006-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10006-PS200A-
 - P-PI-J-14-10007-01, Rev. 0, SWPF Piping Isometric 3/4"-BOR-10007-PS200A-
 - P-PI-J-14-10008-01, Rev. 0, SWPF Piping Isometric 3/4"-BOR-10008-PS200A-
 - P-PI-J-14-10008-02, Rev. 0, SWPF Piping Isometric 1/2"-BOR-10008-PS200A-
 - P-PI-J-14-10008-03, Rev. 0, SWPF Piping Isometric 3/4"-BOR-10008-PS200A-
 - P-PI-J-14-10008-04, Rev. 0, SWPF Piping Isometric 2"-BOR-10008-PS200A-

Page 9 of 50

PARS	ONS	Proje	ect:	NG	S Depl	ovment a	at SWPF				Calc	ulation No.	
Engineer	ring										_	CLC-J- 00223	
Calculat	ion	Title	:	Bor	ic Acid	Strip Tra	ansfer Pum	os Siz	zing Calculatio	n, P-710/	4∕B		
I I	riginator	ner	Date 10/26/2	017	Chec	ker 56 Yarbrough	Date 10-25-17	Rev	Originator	Date		Checker	Date
3.0	Inputs												
3.1	Fluid P	rope	rties:										
	• Flui	id:	Boric A	cid									
	• Ope	erati	ng Tem	pera	ature					77	۰	F	Ref. 2.9
	• Vis	cosi	ty							1	С	P	Sec. 4.3.1
	• Spe	ecific	Gravity	/						1			Sec. 4.3.1
	• Var	or F	Pressure	9						0.46	ps	sia	Sec. 4.3.1
3.2	Service	Co	nditions										
	0.45M l	Borio	c Acid fo	or St	rip Sol	ution							
3.3	Operati	_											
			Flow R							1.4	gp	om	Ref. 2.9
		_	Flow R							5	gr	om	Sec. 4.3.2
			Pressu							14.7	•	sia	Ref. 2.7
ļ					d From	Low Lev	el ***			-1.19		ft	
			y Pressi		W 95 90000					14.7		sia	Ref. 2.7
			ge Stat							11.13		ft	
			PSV or	Ven	t Settir	ıg				14.7	-	sia	Ref. 2.7
			vel **							1		ft	
			Centerli							2.19	1	ft	Ref. 2.10
			eter Pre							2		si	Sec. 4.3.4
	• Hig	hesi	t Pipe E	leva	tion on	Dischar	ge Line **			13.32	1	ft	Ref. 2.10
**	Elevation	on w	ith resp	ect t	o floor	elevatio	า (98'-9")						
***	Elevation	on w	ith resp	ect t	to the p	ump cer	terline						
4.0	Assum	ptic	ons										
4.1	Assum	ptior	ns Conta	ainin	g Unve	erified De	esign						
	None												
4.2		ptior	ns Requ	iiring	Re-Ve	erification	1						
4.2.1						alve cvs		on pr	eliminary infor	mation a	nd w	ill be verified wit	h

Page 10 of 50

Calculation Continuation Sheet

PARS(Enginecri		Proje	ect: NG	S Deployment a	t SWPF				alculation No. M-CLC-J- 0022	3
Calculatio	on	Title:	Bo	ic Acid Strip Tra	nsfer Pum	ps Si	zing Calculation	on, P-710A/I	В	
	ginator DesRock	ier	Date 10/26/2017	Checker 56 Donna Yarbrough	Date 10-28-17	Rev	Originator	Date	Checker	Date
				iring Re-Verifica		sume	ed to be equal	to the fluid	properties of wa	ter.
4.3.2	The no	rmal	flow rate 1	4 gpm. For cons	servatism,	the de	esign flow rate	e is set at 5 g	gpm.	

- 4.3.3 Piping is PS200A. Per Ref. 2.8 this is 304L SS, Sch 40S between sizes 1/2" and 6".
- 4.3.4 The pressure drop through the flow meter is assumed to be 2 psi.

5.0 Analytical Method

5.1 Suction Pressure:

Source pressure is calculated using Eq. 5.1

Suction Pressure = source pressure + the suction static head from min. suction height

- the suction line losses.

Eq. 5.1

Convert Suction Static Head from feet of liquid to psi using Eq. 5.2

$$P = SG \times \rho \times \left(\frac{g}{g_c}\right) \times h$$

Eq. 5.2

where

$$\rho$$
 = density of water = 62.4 lb_m/ft³
g = gravitational acceleration = 32.2 ft/s²
g_c = universal constant = 32.2 (ft - lb_m)/(lb_f - s²)

 $1 ext{ ft}^2 = 144 ext{ in}^2$

Eq. 5.2 is simplified to Eq. 5.3:

$$P = SG \times 0.433 \times h$$

Eq. 5.3

5.2 Net Inlet Pressure

The net inlet pressure is calculated using Eq. 5.4:

Net Inlet Pressure = suction pressure (absolute) - vapor pressure (absolute)

Eq. 5.4

5.3 Discharge Pressure:

The discharge pressure is calculated using Eq. 5.5:

Discharge Pressure = Delivery Pressure + Discharge Static Head + Dynamic line and component losses

Eq. 5.5

Page 11 of 50

PARS	SONS	Project:	NG	S Deployment a	t SWPF			C	Calcu	ulation No.	
Enginee	ring	r roject.							M-(CLC-J- 00223	
Calculat	tion	Title:	Bori	ic Acid Strip Tra	nsfer Pump	s Siz	zing Calculation	, P-710A/	B		
1 1	riginator N. DesRoch		ate 0/26/2017	Checker Donna Yarbrough	Date 6-78-11	Rev	Originator	Date		Checker	Date
5.4	Differer										
				e is calculated և discharge press	_		essure			Eq.	5.6
6.0	Calcula	ations									
6.1	Suction	Pressu	ure:								
	Using E	Eq. 5.3,	the sucti	on static head fi	rom min. su	ction	height is:				
	Suction	Static	Head from	m Min. Suction	Height (psi)	=	-0.52 psi				
	Using E	Eq. 5.1,	the sucti	on pressure is:							
	(from A	Att. 9.1 -	- 9.2, Suc	tion Line Loss	=	0.	37 psi)				
	Suctio	n Press	sure =	13.81 psia							
6.2	Net Inle	et Press	sure								
	Using E	Eq. 5.4,	the net in	nlet pressure is:							
	Net Inl	et Pres	sure =	13.35 psia							
6.3	Discha	rge Pre	essure:								
	Using E	Eq. 5.3,	the disch	narge static hea	d is convert	ed to	psi:				
	Discha	rge Sta	atic Head	= 4.82 psi							
	Using E	Eq. 5.5,	the disch	narge pressure	s:						
	Disch	arge Li	ne Loss	= 7.46 psi							Att. 9.3
	Disch	arge P	ressure	= 28.98 psi	a						

Appendix C. CCFF Pump performance Curves and Calculations

Page 12 of 50

	RSONS	Proj	ect: NG	S Deployment a	t SWPF				Calculation No M-CLC-J-		
_	culation	Title	Bor	ic Acid Strip Tra	nsfer Pump	s Si	zing Calculation	, P-710A		00220	
Rev 0	Originator N. DesRocl	her	Date 10/26/2017	Checker Conna Yarbrough	Date 10-28-17	Rev	Originator	Date	Checker		Date
	.4 Differe	ntial	Pressure								
				rential pressure = 15.17 psi	is:						1
7	.0 Result	s an	id/or Recon	nmendations							
7	.1 Suction	ı Pre	essure:		13.81 psi	а					Sec 6.1
7	.2 Net Inle	et Pr	ressure:		13.35 psi	а					Sec 6.2
7	.3 Discha	rge	Pressure:		28.98 psi	а					Sec 6.3
7	.4 Differe	ntial	Pressure:		15.17 psi						Sec 6.4
8	.0 Conclu	usio	ns								
	The de	sign	point is:	5 g	pm & 15.17	psi	differential pres	sure			
9	.0 Attach	mer	nts								
9	0.1 Pump	Suct	tion Line Los	ss Calculation, 2	н					Sheets	1
9	0.2 Pump	Suct	tion Line Los	ss Calculation, 3	/4"					Sheets	1
9	0.3 Pump	Disc	:harge Line l	Loss Calculation	I					Sheets	1

Appendix C. CCFF Pump performance Curves and Calculations

PARS	ONS	Proj	ect: N	IGS	S Deployme	ent a	t SWPF						Cal	cula	tion No.		
Engineer		,													-J- 002		
Informati	_	Sub	ject: F	um	n Suction I	line	Loss Calcu	latio	n. 2)"						Sheet	No.
Calculati			,		,p Gaellerr			.,								8 of	
Rev Orig			Date	T	Checker	.,	Date	Rev	Ori	ginator		Date		Chec	ker	Da	
1 1 -	esRocher	- 1	10/26/2017	,	Checker Sonna Yarbro	D nigh			J	giiiatoi					, NO		"
Line N					10005-PS2			Ь	Fli	uid:	Bori	c Acid					Sec. 3.1
	lumber:		M-M6-J-			.002				ow Rat	_		5		gpm		Sec. 3.1
	VG No.:	-			-14-10005-	01	Ref. 2.10	,		scosity		•	1		СБ		Sec. 3.1
	10 110	•		10	14-10000	01		,		ecific		tv:	1		Op		Sec. 3.1
From:	TK-710)							<u></u>		Oluv.	.y					560. 5.1
To:	2"x3/4"																
Basis Ir	nternal [Dia.(d	d): _	2.	.067 in.		Internal Are	ea	=	0.02	3303	ft²	=	τ	x 0.25	x d ² /1	14
Surface	Rough	ness	ε(ε): _	0.0	00015 ft												
Relative	e Rough	ness	ε ε/D:	0.0	00871												[2.5]
İ																	-# (A.1 0.000.c.)
Reynol	ds Num	ber:		7	,638 =	50	0.6](Q)(SG 1] (d) } }	2.4]	-							[2.5]
Note: Sin	ce the Re	ynold	s Number is	s > 4	4,000, the flow	is tu	rbulent and the	e frict	tion f	actor is o	calculat	ted using	the C	olebro	ook equat	ion.	
													· .	_			`
Colebro	ook Equ	ation	(For Re	yno	ilds Numbe	rs >	4,000) :		f	1/2 =	= (-2) Log	$\left\{ \begin{bmatrix} \underline{\varepsilon} \\ 3 \end{bmatrix} \right\}$	<u>/D</u>) 1.7)	+ [F	2.51 Re) (f 1/2
Colebro	ook Fric	tion I	Factor (f):	= (0.03	4										[2.4]
Lamina	r Frictio	n Fa	ctor f = 6	4/R	Re = (0.00	8 Velo	city ((v) f _t).478).019	fps					[2.5] [2.4]
Friction	Factor	For '	This Calc) .	= (0.03	4										
Item	С	omp	onent		QTY	"K"	Formula [2	.4]				d ₁		d ₂	β²	β⁴	K
1	Entrance	1			1	K =	0.78										0.78
2	Pipe				82.8 in.	K =	f L/d										1.36
3	Ball Valv	е			1	C	/= 376	[4.2	2.1]	K= 891	d⁴/Cv	4					0.12
4	Pipe Ben	d (45	° or 90°)		1	K =	14 f _t										0.27
5	Tee Run				1	K = :	20 f _t						L				0.38
6	Tee Bran	nch			1	K =	60 f _t										1.14
7	Reducer		-		1	K=	0.5 (1- β ²) / β4	1				0.824	2.	067	0.159	0.025	16.82
8	Total K																20.87
Pressu	re Drop	:	= <u>K</u> \$ 2 \$	SG Jc	ρ _{H2O} (v²	ft ² 4 in ²	= 0	.03	ps	i							[2.5]

PARS	ONS	Project: NG	S Deployment a	t SWPF				Calcul	ation No.		
Engineeri	ing							M-CL	.C-J- 002	223	
Informati	on Only	Subject: Pur	np Suction Line	Loss Calcu	latio	n, 3/4"				Sheet N	No.
Calculation	on	-								9 of 1	0
Rev Orig	inator	Date	Checker 16	Date	Rev	Originator	Date	Ch	ecker	Date	:
0 N. D	esRocher	10/26/2017	Donna Yarbrough	10-28-17				200			
Line Nu	ımber:	3/4"-BOI	R-10005-PS200	D_		Fluid: Bo	ric Acid				Sec. 3.1
P&ID N	umber:	M-M6-J-02	201	Ref. 2.7		Flow Rate (Q):	5	gpm		Sec. 3.1
ISO DW	VG No.:	P-PI-	J-14-10005-02	Ref. 2.10	ĺ	Viscosity (μ):		1	ср		Sec. 3.1
i						Specific Grav	vity:	1	_		Sec. 3.1
From:	2"x3/4"										
To:	P-710A										
Basis Ir	nternal [Dia.(d):).824 in.	Internal Are	ea	= 0.003703	s ft²	=	π x 0.25	x d ² /14 ⁴	4
Surface	Rough	ness (ε): _0	00015 ft								[2.5]
Relative	Rough	ness ε/D: 0.0	002184								
Reynold			9,159 = $\frac{\int 50}{\int }$	μ) (υ .	,		ated usina	the Colet	orook equal	ion.	[2.5]
		ation (For Reyn	olds Numbers >			$\frac{1}{f^{1/2}} = \left(-\frac{1}{2}\right)^{1/2}$	2) Log	$\left(\begin{bmatrix} \underline{\varepsilon/D} \\ 3.7 \end{bmatrix}\right)$	† (F	2.51 Re) (f	(2.4)
Lamina	r Frictio	n Factor f = 64/	Re = 0.00	3 Velo	city ($f_t = 0.025$	•				[2.5] [2.4]
Friction	Factor	For This Calc.	= 0.03	0							
Item	C	omponent	QTY "K"	Formula [2	.4]		d ₁	d₂	β²	β4	K
1	Pipe		72 in. K=	f L/d							2.62
2	Ball Valv	e	2 C	v = 51	[4.2	.1] K= 891 d⁴/C	v ²				0.32
	Pipe Ben	d (45° or 90°)	2 K=	14 f _t							0.70
4	Tee Run		1 K=	20 f ₁					<u> </u>		0.50
5	Tee Bran		1 K=	60 f _t							1.50
6	Total K										5.64
Pressu	re Drop:	= K SG 2 g _c	i ρ _{Η2Ο} (v² ft² 144 in²	= 0.	.34	psi					[2.5]

PARS	ONS	Project: NG	S Deployme	ent at SWPF		, ,	***	Cal	culat	tion No.		
Engineeri	ing							M-	-CLC	-J- 002	23	
Informati	-	Subject: Pur	np Discharg	e Line Loss Ca	Icula	ation	···				Sheet I	No.
Calculation		•	,								10 of	
Rev Orig	inator	Date	Checker XO	Date	Rev	Originator	Date		Chec	ker	Date	
1 1 -	esRocher	10/26/2017	Donna Yarbro	Dugh 10-29-17								
Line No			0008-PS20			Fluid: E	Boric Acid					Sec. 3.1
	umber:	M-M6-J-02		Ref. 2.7		Flow Rate (5		gpm		Sec. 3.1
	VG No.:		0008-01 to)	Viscosity (µ	_	1		Ср		Sec. 3.1
						Specific Gra	_	1				Sec. 3.1
From:	P-710A						_					
	TK-720			."						0.00		
]				******								
Basis Ir	nternal D	ia.(d):(0.622 in.	Internal Are	ea	= 0.0021	1 ft²	=	π	x 0.25	x d ² /14	4
Surface	Roughr	ness (ε): 0.	00015 ft									[2.5]
	_	ness ε/D : 0.0										[2.0]
	·											
		_		50.6) Q) SG	1 62	2.4)						[2.5]
Reynold	ds Numb	er: 2	5,381 =	[50.6][Q][SG [µ][d	ĵ							
Note: Sin	ce the Rey	nolds Number is >	4.000, the flow	is turbulent and the	e frict	ion factor is calc	ulated usin	g the C	olebro	ook equat	ion.	
	•							_				_
Colebro	ok Equa	ition (For Reyn	olds Numbe	rs > 4,000) :		$\frac{1}{f^{1/2}} = \left(\frac{1}{f^{1/2}} \right)$	2)] [[(<u>a</u>)		2.51)
						f 1/2	-2 j LOG	3	.7	F	le f	1/2
Colebro	ok Fricti	on Factor (f):	= (0.030						•	, ,	[2.4]
Lamina	r Friction	Factor f = 64/l	Re = (0.003 Velo	city (v) = 5.27	79 fps					[2.5]
						$f_t = 0.02$	27					[2.4]
Friction	Factor F	or This Calc.	= (0.030								
Item	Co	mponent	QTY	"K" Formula [2	.4]		d ₁		dz	β^2	β4	K
1	Pipe		450 in.	K = f L/d								21.7
2	Ball Valve		4	Cv = 26	[4.2	.1} K= 891 d ⁴ /	Cv ²					0.79
3	Check Va	lve	1	K = 100 f _t								2.70
4	Pipe Bend	(45° or 90°)	11	K = 14 f ₁								4.16
5	Tee Run		4	K = 20 f ₁								2.16
6	Expander		2	$K = (1 - \beta^2)^2$			0.62	2 0.	824	0.570		0.37
7	Reducer		2	$K = 0.5 (1 - \beta^2)$			0.62	2 0.	824	0.570		0.43
8	Tee Brand	zh	4	K = 60 f _t								6.48
9	Exit		1	K = 1.0								1
10	Total K											39.79
Pressu	re Drop:	= KSG	Ouro (v²	ft^2 = 7	46	osi						[2.5]
	. э = гор.	2 g _c	$\rho_{H2O} \left(v^2 \right)$	l in ²		F						[2.0]
		2 y _c	CIT									

Page 16 of 50

		PA	RSO	143	
		Calcula	ation Cover	Sheet	
Project: NGS Deplo	yment at SWPF		Calculation No.: M-CLC-J-00225	Project Number 7496()()	er:
Title: Bori	ic Acid Strip Feed Pumps Siz	ing Calculation	. P-720A/B	Sheet 1 of 11	
Software C	lassification:	⊠ N.A	Discipline: Process	Preliminar	y Confirmed
	Program Name oftware Quality Assurance P	N/A Plan Unique Ide	entifier	Approval Date	
\square s	oftware Evaluation Report U	nique Identific	:r	Approval Date	
□ s	oftware Requirement Specif	ication Unique	Identifier	Approval Date	
□ s	oftware Design Description	Unique Identif	ier	Approval Date	
□ s	oftware User Documentation	ı Unique Identi	ifier	Approval Date	
□ s	oftware Verification Validat	ion Plan Uniqu	e Identifier	Approval Date	
□ s	oftware Verification/Validat	ion Report Uni	ique Identifier	Approval Date	
□ s	oftware Installation & Cheel	kout Unique Id	entifier	Approval Date	
☐ S	oftware Change Request Un	ique Identifier		Approval Date	
Version / R Purpose an	d Objective			Approval Date_	
Version / R Purpose an The purpose The objection Summary of	d Objective	uate the design	criteria for the Boric A B.	: Acid Strip Feed Pumps, P-720/	AROUND ATTER
Version / R Purpose an The purpose The objection Summary of	delease No. delea	uate the design	criteria for the Boric	: Acid Strip Feed Pumps, P-720/	AROUND ATTER
Version / R Purpose an The purpose The objection Summary of The design	telease No	uate the design	criteria for the Boric A B.	: Acid Strip Feed Pumps, P-720/	AROUND ATTER
Version / R Purpose an The purpose The objective Summary of The design Rev. No.	telease No	uate the design	criteria for the Boric A B.	: Acid Strip Feed Pumps, P-720/	AROLINA SSIONING
Version / R Purpose an The purpose The objective Summary of The design Rev. No.	Release No	uate the design	criteria for the Boric A B. Oressure Revisions	Acid Strip Feed Pumps, P-720/	AROUND AR
Version / R Purpose an The purpose The objective Summary of The design Rev. No.	telease No	uate the design e pumps P-720/	criteria for the Boric A B. oressure Revisions	: Acid Strip Feed Pumps, P-720/	AROUND ATTER
Version / R Purpose an The purpose The objectiv Summary of The design Rev. No.	Release No	uate the design e pumps P-720/	criteria for the Boric A B. Pressure Revisions Sign Off Verification /	C. Verifier / Checker (Print)	A/B. ARO ARO ARO ARI ARI ARI ARI ARI

Page 17 of 50

	RSONS	Proje	ect: N	GS Deployment a	t SWPF			(Calculation No. M-CLC-J- 0022	5
1,55	alation	Title	: Во	oric Acid Strip Fee	ed Pumps	Sizing	Calculation, P	-720A/B		
Rev 0	Originator N. DesRocl	her	Date 11/6/2017	Checker & S	Date (1-7-17	Rev	Originator	Date	Checker	Date
					Table o	f Cor	ntents			
ý,									\$	Sheet
1.	0 Purpos	se ar	nd Objecti	ives						3
2.	0 Refere	nces	;							3
3.	0 Inputs									4
4.	0 Assum	ptio	ns							5
5.	0 Analyt	ical l	Method							5
6.	0 Calcul	atior	ns							6
7.	0 Result	s an	d/or Reco	mmendations						8
8.	0 Conclu	usior	ns							8
9.	0 Attach	men	ts							8
9.				oss Calculation, 1						9
9.	-			oss Calculation, 3 Loss Calculation						10 11

Page 18 of 50

Calculation Continuation Sheet

1	RSONS ncering	Proj	ect: NG	NGS Deployment at SWPF Calculation No. M-CLC-J- 00225						
Calc	ulation	Title	Bor	Boric Acid Strip Feed Pumps Sizing Calculation, P-720A/B						
Rev 0	Originator N. DesRoci	her	Date 11/6/2017	Checker Donna Yarbrough	Date 11-7-17	Rev	Originator	Date	Checker	Date

1.0 Purpose and Objectives

The purpose of this calculation is to evaluate the design criteria for the Boric Acid Strip Feed Pumps, P-720A/B.

The objective of this calculation is to size pumps P-720A/B.

2.0 References

- 2.1 P-DB-J-00006, Rev. 0, NGS Deployment at SWPF Basis of Design
- 2.2. DSG-MP-03, Parsons Engineering Department Design Guide: Pump Head Calculations
- 2.3 P-PG-J-0024, Rev. 0, SWPF Next Generation Solvent Building General Arrangement Plan at Elevation 98'-9" and Sections
- 2.4 Crane, Flow of Fluids through Valves, Fittings and Pipe, Technical Paper No. 410
- 2.5 Cameron Hydraulic Data, 19th Edition
- 2.6 Pump Handbook, 2nd Edition
- 2.7 M-M6-J-0202, Rev. 5, SWPF Next Generation Solvent Building Boric Acid Strip Feed Tank TK-720 P&ID M-M6-J-0081, Rev. 11, SWPF Process Building Strip Feed Pumps P-310A/B P&ID as modified by DCN-7000 M-M6-J-0042 SH2, Rev. 8, SWPF Process Building Stripping Contactors EXT-203O/P P&ID
- 2.8 Specification 15120, Rev. 25, Piping Material Specification
- 2.9 M-M5-J-0020, Rev. 0, SWPF Next Generation Solvent Building Cold Chemical Makeup Tanks PFD
- 2.10 P-PI-J-14-10011-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10011-PS200A-

P-PI-J-14-10012-01, Rev. 0, SWPF Piping Isometric 1"-BOR-10012-PS200A-

P-PI-J-14-10013-01, Rev. 0, SWPF Piping Isometric 1/2"-BOR-10013-PS200A-

P-PI-J-14-10014-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10014-PS200A-HCN

P-PI-J-14-10015-01, Rev. 0, SWPF Piping Isometric 1/2"-BOR-10015-PS200A-

2.11 P-PI-J-14-10016-01, Rev. 0, SWPF Piping Isometric 1"-BOR-10016-PS200A-HCN P-PI-J-14-10016-10, Rev. 0, SWPF Piping Isometric 1/2"-BOR-10016-PS200A-HCN P-PI-J-15-10016-10, Rev. 0, SWPF Piping Isometric 1/2"-BOR-10016-PS200A-ETN

Page 19 of 50

1	SONS	Project:	NO	SS Deployment a	t SWPF				l	ulation No.	
Engine	-								CLC-J- 00225		
Calcula	ation	Title:	Во	ric Acid Strip Fee	ed Pumps S	Sizing	Calculation, F	-720A/B			
Rev (Originator	D	ate	Checker	Date	Rev	Originator	Date		Checker	Date
0	N. DesRock	ner 1	1/6/2017	Donna Yarbrough	11-7-17			<u>.L.</u>			l
2.10	P-PI-J-PI-J-P-PI-J-PI-J-P-PI-J	15-100 15-100 15-100 15-100 03-100 03-100 03-701 03-701 02-701 02-701	16-12, F 16-13, F 16-14, F 16-15, F 16-10, F 16-10, F 2-03, Re 2-02, Re 2-01, Re 2-01, Re 2-01, Re 2-10, Re	Rev. 0, SWPF Pip Rev. 0, SWPF Pipi Rev. 4, SWPF Pipi Rev. 4, SWPF Pipi Rev. 5, SWPF Pipi Rev. 8, SWPF Pipi Rev. 8, SWPF Pipi Rev. 6, SWPF Pipi	sing Isometroing I	ric 1/2 ric 1/2 ric 1/2 ric 3/4 ric 1/2 ric 1/2 ric 1/2 ric 1/2 ric 1/2 ric 1/2 ric 1-1 ric 3"-1	2"-BOR-10016 2"-BOR-10016 2"-BOR-10016 2"-BOR-10016 2"-BOR-10016 2"-BOR-10016 "-HNO3-7012- "-HNO3-7012- "-HNO3-7012- "-HNO3-7012- "-HNO3-7012-PS	-PS200A -PS200A -PS200A -PS200A -PS200A -PS200A -PS200D -PS200D-PS200D-PS200D-PS200D-PS200D-PS200D-PS200D-PS200D-PS200D-PS200D-H	-ETN -ETN -ETN -ETN -HCN HCN HCN HCN CN	N N N N N I I as modified by	DCN-7010
3.0 3.1	Inputs			, Salt Waste Pro	cessing Fac	cility i	salance of Pla	nt basis (oi De	ssign	
3.1			ss. Oric Acid								
			Temper					77	۰	F	Ref. 2.9
		cosity	Temper	atore				1	c		Sec. 4.3.1
		ecific G	Gravity					1	•		Sec. 4.3.1
	-	por Pre	9.77					0.46	ps	sia	Sec. 4.3.1
3.2				Solvent Stripping							
3.3	Operat	ing Cor	nditions:								
	• No	rmal Fl	ow Rate					1.4	gp	om	Ref. 2.9
	• De	sign Flo	ow Rate					3	gp	om	Sec. 4.3.2
	• So	urce Pr	essure					14.7	ps	sia	Ref. 2.7
	• Su	ction S	tatic Hea	ad From Low Lev	el ***			-1.19	f	t	
	• De	livery P	ressure					14.56	ps	sia	Ref. 2.12
	• Dis	charge	Static H	lead ***				33.06	f	ft	
	• Ve:	ssel PS	SV or Ve	nt Setting				14.7	ps	sia	Ref. 2.7
	• Lo	w Leve	**					1	1	it	
	• Pu	mp Cei	nterline '	**				2.19		<u>ft</u>	Ref. 2.10

Page 20 of 50

	1 1			
Cala	.latia-	. Continu		Chast
Caici	наноп	i Continu	nonski	Sneer

Description of the second	RSONS	Proj	ect: NG	S Deployment a	t SWPF	1000			Calculation No. M-CLC-J- 0022	25
Calcu	lation	Title	e: Boi	ric Acid Strip Fee	ed Pumps S	Sizing	Calculation,	P-720A/B		
Rev 0	Originator N. DesRoc	her	Date 11/6/2017	Checker	Date 11-7-17	Rev	Originator	Date	Checker	Date
3.0	• Flo	w M	Conditions (leter Pressu t Pipe Eleva	Service .	e Line **			2 35.25	psi ft	Sec. 4.3.4 Ref. 2.11
	• He	ater	Pressure D	rop				5	psi	Sec. 4.2.1

- Elevation with respect to floor elevation (98'-9")
- Elevation with respect to the pump centerline

Assumptions

- 4.1 Assumptions Containing Unverified Design None
- 4.2 Assumptions Requiring Re-Verification
- 4.2.1 Elevations, pipe routing, valve cvs, and equipment pressure drops are based on preliminary information and will be verified with final isometrics and vendor information.
- 4.3 Assumptions Not Requiring Re-Verification
- 4.3.1 The fluid properties of the 0.01M boric acid are assumed to be equal to the fluid properties of water.
- 4.3.2 The normal flow rate 1.4 gpm. For conservatism, the design flow rate is set at 3 gpm.
- 4.3.3 Piping is PS200A. Per Ref. 2.8 this is 304L SS, Sch 40S between sizes 1/2" and 6".
- 4.3.4 The pressure drop through the flow meter is assumed to be 2 psi.

5.0 Analytical Method

5.1 Suction Pressure:

Source pressure is calculated using Eq. 5.1

Suction Pressure = source pressure + the suction static head from min. suction height

- the suction line losses.

Eq. 5.1

Convert Suction Static Head from feet of liquid to psi using Eq. 5.2

$$P = SG \times \rho \times \left(\frac{g}{g_c}\right) \times r$$

Eq. 5.2

Page 21 of 50

PARS Engineer Calculati	ring	Project:		oloyment a		Sizino	Calculation, F		Calculation No. M-CLC-J- 002	25
Calculati	ion	Title:	BUIL AC	u Suip rec	o rumps c	nziriç	Calculation, r	-120/00		
i	riginator	Date ner 11/6/2	1	ecker () a Yarbrough	Date 11-7-17	Rev	Originator	Date	Checker	Date
5.2	$g = g_c = 1$ ft ² Eq. 5.2 P =	density of gravitation universal of a simplifier SG x 0 et Pressure	al accelera constant in ² d to Eq. 5. .433 x	ation = = 3: h	62.4 lb _r 32.2 ft/s 32.2 (ft ng Eq. 5.4:	2)/(lb ₁ - s ²)			Eq. 5.3
					_	vapo	r pressure (ab	solute)		Eq. 5.4
5.3	Discha	rge Pressu	re:							
	Discha	_	re = Delive		sing Eq. 5.5 e + Discha		static Head + D	ynamic lin	e and	Eq. 5.5
5.4	Differe	ntial Pressu	ıre							
		-			using Eq. 5. sure - suctio		essure			Eq. 5.6
6.0	Calcul	ations								
6.1	Suction	n Pressure:								
	Using f	Eq. 5.3, the	suction st	atic head f	rom min. st	ıctior	n height is:			
	Suction	n Static Hea	ad from Mi	n. Suction	Height (psi	=	-0.52 psi			
	Using I	Eq. 5.1, the	suction pr	essure is:						
	(from A	Att. 9.1 & 9.	2, Suction	Line Loss	=	0.	10 psi)			
	Suction	n Pressure	e = 14.0	08 psia						

Appendix C. CCFF Pump performance Curves and Calculations

Page 22 of 50

Engi	RSON neering ulation		Proje			Deployme			Sizing	Calculation,	P-720A/B	M-	culation No. -CLC-J- 00225	5
Rev 0	Origina		Title:	Date 11/6/20		Checker	50	Date 11-7-17	Rev	Originator	Date		Checker	Date
6.	2 Ne	t Inlet	Pre	ssure		Oonna Yarbr				3- 3-		100		
6.	Ne	et Inle	t Pro	essure ressure	=		sia							
e de	Us	ing E	q. 5.	3, the d	lischa	arge static	head	d is convert	ed to	psi:				
	Dis	schar	ge S	Static He	ead	= 14.31	psi							
	Us	ing E	q. 5.	5, the d	lischa	arge press	ure i	S :						
	D	ischa	rge	Line Lo	SS	= 43.95	psi							Att. 9.3
		Comp	oone	ent Loss	6	= 7.00	psi							
	C	ischa	rge	Pressu	re	= 79.82	psia	ı						
6	4 Dif	feren	tial F	Pressure	е									
	Us	ing E	q. 5.	6, the d	liffere	ential pres	sure	is:						
	D	iffere	ntial	Pressu	ire	= 65.74	psi							
•														

Page 23 of 50

	RSONS	Proj	ect: NG	S Deployment a	SWPF				Calculation No. M-CLC-J- 00225	
-	ulation	Title	Boi	ric Acid Strip Fee	d Pumi	os Sizir	ng Calculation	on, P-720A/B		
Rev 0	Originator N. DesRoc	her	Date 11/6/2017	Checker (C) Donna Yarbrough	Date 11-7-1	1 Re	v Originator	Date	Checker	Date
7.	0 Result	s an	d/or Recon	nmendations						
7.	1 Suction	n Pre	essure:		14.08	psia				Sec 6.
7.	2 Net Inle	et Pr	essure:		13.62	psia				Sec 6.
7.	3 Discha	rge l	Pressure:		79.82	psia				Sec 6.3
7.	4 Differe	ntial	Pressure:		65.74	psi				Sec 6.4
8.	0 Conclu	oisu	ns							
	The de	sign	point is:	3 g _l	om & 65	5.74 ps	differential	pressure		
9.	0 Attach	men	nts							
9.	1 Pump	Suct	ion Line Los	ss Calculation, 1'	•				Sheets	1
9.	•			ss Calculation, 3/					Sheets	1
9.	3 Pump	Disc	harge Line I	Loss Calculation					Sheets	1

Page 24 of 50

PARS	ONS	Project: NG	S Deploymen	at SWPF					Cal	culation No	١.		
Engineer	ing					W. 10.00			M-	CLC-J- 00	225		CHOI EL SONN E CO
Calculati	on	Subject: Pur	mp Suction Lir	ne Loss Calcu	latio	n, 1"					She	et No.	
											90	f 11	
Rev Orig	ginator	Date	Checker 64	Date	Rev	Originator		Date		Checker		Date	
0 N. E	DesRocher	11/6/2017	Donna Yarbroug	h 11-7-17									
Line N	umber:	1"-BOR	-10011-PS200	DA		Fluid:	Borio	Acid				Se	ec. 3.1
P&ID N	lumber:	M-M6-J-02	202	Ref. 2.7		Flow Rate	(Q)	:	3	gpm		S	ec.3.3
ISO DV	VG No.:	P-PI-	J-14-10011-01	Ref. 2.10)	Viscosity	(μ):		1	ср		Se	ec. 3.1
						Specific G	ravit	y:	1.00			Se	ec. 3.1
From:	TK-720												
То:	1"x3/4"	reducer	-										
Basis Ir	nternal C	Dia.(d):	1.049 in.	Internal Are	ea	= 0.006	002	ft ²	=	π x 0.25	$5 \times d^2$	144	
Surface	Rough	ness(ε): 0.	.00015 ft										[2.5]
	_		001716										1
													
Reynol	ds Numl	per:	9,030 = [50.6)(Q)(SG	62	2.4)							[2.5]
			ι	μιζι	,								
Note: Sin	ce the Re	ynolds Number is >	4,000, the flow is	turbulent and the	e frict	on factor is ca	lculate	ed using t	he Co	olebrook equa	tion.		
Colebro	ook Equa	ation (For Reyn	olds Numbers	> 4,000) :		$\frac{1}{f^{1/2}} =$	[-2]	Log	िह्य	미 + -	2.5	51	
			0.000			f 1/2	(-)	3	([3.	ז) נד.	Re)	f 1/2	,,
Colebro	ook Frict	ion Factor (f) :	= 0.0)34									[2.4]
Lamina	r Frictio	n Factor f = 64/	Re = 0.0	007 Velo	city (v) = 1.	114	fps					[2.5]
Friction	Factor	For This Calc.	= 0.0	34		f _t = 0.	023						[2.4]
Item	Co	omponent	QTY "I	(" Formula [2	.41			d ₁	d	2 β ²	В		K
1	Entrance		T	= 0.78	•						1	_	0.78
2	Pipe		138 in. к	= f L/d									4.47
3	Ball Valve	9	2	Cv = 68	[4.2.	1] K= 891 c	ı⁴/Cv²						0.47
4	1	d (45° or 90°)		= 14 f _t							1		0.64
5	Tee Run			= 20 f _t								(0.46
6	Tee Bran	ch	1 K	= 60 f _t								7	1.38
7	Reducer		1 K	$= 0.5 (1- \beta^2)$				1.049	2.0	67 0.258	0.0	67 (0.37
8	Total K												3.57
Pressu	re Drop:	= K SG 2 g _c	ρ _{H2O} (v ² ft	$\left(\frac{2}{1}\right) = 0$.07	psi							[2.5]

NGS Cold Chemical Feed Facility: Engineering Report Appendix C. CCFF Pump performance Curves and Calculations Calculation Sheet

Page 25 of 50

PARS	ONS	Project: NG	S Deploymen	t at SWPF				Calcu	lation No		
Engineeri	ing							M-C	LC-J- 002	225	
Calculation	on	Subject: Pui	mp Suction Li	ne Loss Calcu	latio	n, 3/4"				Sheet I	No.
										10 of	11
Rev Orig	inator DesRocher	Date 11/6/2017	Checker Jo	- 19	Rev	Originator	Date	C	hecker	Date	2
Line Nu			R-10011-PS2	- 1		Fluid:	Boric Acid				Sec. 3.1
	umber:			Ref. 2.7		Flow Rate		3	gpm		Sec.3.3
	VG No.:		J-14-10011-0	Ref. 2.10)	Viscosity (1	cp		Sec. 3.
						Specific G	_	1.00			Sec. 3.
From:	1"x3/4"										
	P-720A	, ,									
									3		
Basis fr	nternal C)ia.(d): (0.824 in.	Internal Are	ea	= 0.0037	03 ft²	=	π x 0.25	x d ² /14	4
Surface	Rough	ness(ε): 0.	00015 ft								[2.5
Relative	Rough	ness ε/D: 0.0	002184								-
D (-	-l-		4.400	50.6)(Q)(SG	62	2.4)					[2.5
Reynolo	ds Numb	per: 1	$1,496 = \frac{1}{1}$	μ) (d	ĵ						•
Note: Sin	ce the Rev	ynolds Number is >	4.000. the flow is	turbulent and the	e frict	ion factor is cal	culated using	the Cole	brook equa	tion.	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Colebro	ook Equa	ation (For Reyn	olds Numbers	> 4.000) :		1	(-).	([E/D)	2.51)
		(, c. , , c. , . c. ,		.,,,,,,,		$\frac{1}{f^{1/2}} = 1$	[-2] Log	3.7) + TF	Re] f	1/2
Colebro	ook Frict	ion Factor (f):	= 0.	033		•		((0	, (.	, (.	[2.4
											(- ,
Lamina	r Friction	n Factor f = 64/	Re = 0.	006 Velo	city (v) = 1.8	05 fps				[2.5
Friction	Factor	For This Calc.	= 0.	033		$f_t = 0.0$	25				[2.4
Item	Co	omponent	QTY "	K" Formula			d ₁	d₂	β²	β⁴	K
1	Pipe		12 in. k	= f L/d							0.48
2	Bail Valve	9	1	Cv = 51	[4.2	.1] K= 891 d	¹/Cv²				0.16
3	Reducer		1 K	$\zeta = 0.5 (1 - \beta^2)$			0.824	1.04	9 0.617		0.19
4	Pipe Ben	d (45° or 90°)	1	(= 14 f _l							0.35
5	Total K						6 40	gr - Q2			1.18
Pressui	re Drop:	= KSG	$\rho_{\rm H2O}$ v^2 f	t^2 = 0	.03	psi					[2.5
	•	2 g _c	$\rho_{\rm H2O} \left(v^2 \right) $	n ²		•					•
		£ 9c	••••								

Page 26 of 50

PARS	ONS	Project: NG	S Deployme	ent at SWPF					Calcul	ation No		
Engineeri	ing								M-CL	.C-J- 00	225	
Calculation	on	Subject: Pu	mp Discharg	e Line Loss Ca	lcula	ition					Sheet 11 of	
Rev Orig	inator	Date	Checker		Rev	Originator	٠	Date	Ch	ecker	Da	
0 N.D	esRocher	11/6/2017	Donna Yarbro	ugh 11-7-17								
Line Nu	umber:	1/2"-BOR-1001	3/14/16-PS200A/	-HNO3-7013/7012-PS	200D	Fluid:	Bori	c Acid				Sec. 3.1
P&ID N	umber:	M-M6-J-02	02, -0081, -00	042SH2 Ref. 2.7		Flow Rate	e (Q)	:	3	gpm		Sec.3.3
ISO DV	VG No.:	See Re	ef. 2.10 and 2	2.11		Viscosity	(μ):		1	ср		Sec. 3.1
						Specific (Gravi	ty:	1.00	_		Sec. 3.1
From:	P-720A									_		
To:	SB-310											
Basis Ir			0.622 in.	Internal Are	ea	= 0.00	211	ft²	=	π x 0.25	5 x d ² /14	
	_		.00015 ft 002894									[2.5]
Reynolo	ds Numi	ber: 1	5,229 =	(50.6)(Q)(SG	6 <u>)</u> [62	2.4)						[2.5]
Note: Sin	ce the Re	ynolds Number is >	4,000, the flow	is turbulent and the	e fricti	on factor is c	alculat	ed using	the Colet	rook equa	tion.	
Colebro	ook Frict	ation (For Reyn	: = ().033		1 f 1/2			$\left(\begin{bmatrix} \underline{\epsilon/D} \\ 3.7 \end{bmatrix}\right)$	† ([2.51 Re) [1	[2.4]
Lamina	r Frictio	n Factor f = 64/	Re = ().004 Velo	city (v) = 3	.167	tps				[2.5]
Friction	Factor	For This Calc.	= (0.033		$f_t = 0$.027					[2.4]
Item	С	omponent	QTY	"K" Formula				d ₁	d ₂	β²	β⁴	K
1	Pipe		11,400 in.	K = f L/d								604.82
2	Ball Valve	Э	3	Cv = 26	[4.2.	1] K= 891	d⁴/Cv²	1				0.59
3	Check Va	alve	1	K = 100 f _t					<u> </u>	ļ	<u> </u>	2.70
4	Pipe Ben	d (45° or 90°)	75	K = 14 f _t								28.35
5	Tee Run		10	K = 20 f _t								5.40
6	Tee Bran	ch	5	K = 60 f _t								8.10
7	Reducer		11	$K = 0.5 (1 - \beta^2)$				0.622	0.824	0.570		0.22
8	Exit	····	1	K = 1.0							<u></u>	1
9	Total K											651.20
Pressu	re Drop:	= K SG 2 g _c	$\rho_{H2O} \left(v^2 \right)$	$\frac{ft^2}{\sin^2} = 43$	3.95	psi						[2.5]

		PA	RSO	NS		-			
		Calcul	ation Cove	r Sheet		į			
Project: NGS Deploy	yment at SWPF		Calculation No. M-CLC-J-00226		Project Numb 749600	Project Number: 749600			
Title: Caus	stic Scrub Feed Pumps Sizit	ng Calculation, I	P-730A/B		Sheet 1 of 9	Sheet of 9			
Software C	lassification:	⊠ N⁄A	Discipline: Process		☐ Prelimina	ry 🛭 Confirmed			
	Program Name oftware Quality Assurance	N'A Plan Unique Ide	entifier		Approval Dat	e			
☐ Sc	oftware Evaluation Report	_ Approval Dat	Approval Date						
☐ Sc	oftware Requirement Speci	_ Approval Dat	Approval Date						
☐ Sc	oftware Design Description	Approval Dat	Approval Date						
☐ Sc	oftware User Documentation	_ Approval Dat	Approval Date						
□ So	oftware Verification Valida	ition Plan Uniqu	ue Identifier		Approval Date	Approval Date			
☐ Sc	oftware Verification Valida	Approval Date	Approval Date						
☐ Sc	oftware Installation & Che	kout Unique Id	lentifier		Approval Date	<u> </u>			
□ Se	oftware Change Request U	nique Identifier			Approval Date				
	elease No								
Purpose an	d Objective								
Purpose and The purpose The objective	d Objective c of this calculation is to eva	_		stic Scrub	Feed Pumps, P-730A	В.			
Purpose and The purpose The objective Summary of	d Objective e of this calculation is to eva	ze pumps P-730	A/B.	istic Scrub	STATE SOUTH C	AROLINA SSIGNA			
Purpose and The purpose The objective Summary of The design	d Objective e of this calculation is to eva- we of this calculation is to size of Conclusion a points is: 3 gpm & 55.40	ze pumps P-730	A/B.	astic Scrub	Feed Pumps, P-730A	AROLINA SSIGNA			
Purpose and The purpose The objective Summary of	d Objective e of this calculation is to eva- we of this calculation is to si. of Conclusion	ze pumps P-730	A/B.	astic Scrub	STATE SOUTH C	AROLINA SSIGNA			
Purpose and The purpose The objective Summary of The design	d Objective e of this calculation is to eva- we of this calculation is to size of Conclusion a points is: 3 gpm & 55.40	ze pumps P-730	A/B.	stic Scrub	No. 1	AROLINA SSIGNA			
Purpose and The purpose The objective Summary of The design Rev. No.	d Objective e of this calculation is to eva- ve of this calculation is to si. of Conclusion a points is: 3 gpm & 55.40 Revision Description -	ze pumps P-730	A/B.	stic Scrub	STATE SOUTH C	AROLINA SSIGNATURE			
Purpose and The purpose The objective Summary of The design Rev. No.	d Objective e of this calculation is to eva- ve of this calculation is to size of Conclusion a points is: 3 gpm & 55.40 Revision Description - Issued for Use	ze pumps P-730	A/B. Pressure Revisions Sign Off	2/20	No. 1	AROLINA SSIGNATURE SOMMANIA			
Purpose and The purpose The objective Summary of The design Rev. No.	d Objective e of this calculation is to eva- ve of this calculation is to si. of Conclusion a points is: 3 gpm & 55.40 Revision Description -	ze pumps P-730	A/B. pressure Revisions	2/20	No. 1	AROLINA SSIGNATURE			
Purpose and The purpose The objective Summary of The design Rev. No.	d Objective e of this calculation is to eva- ve of this calculation is to size of Conclusion n points is: 3 gpm & 55.40 Revision Description - Issued for Use Originator (Print)	ze pumps P-730	A/B. Revisions Sign Off Verification /	Verific	No. 1	Lead Discipline Engineer (Print) Sign / Date Cliff Conner			
Purpose and The purpose The objective Summary of The design Rev. No.	d Objective e of this calculation is to eva- ve of this calculation is to size of Conclusion n points is: 3 gpm & 55.40 Revision Description - Issued for Use Originator (Print) Sign / Date	ze pumps P-730	A/B. Pressure Revisions Sign Off Verification / Thecking Method	Verific	No. 1	ARO ARO Sion Lead Discipline Engineer (Print) Sign / Date			

Engineering Report Appendix C. CCFF Pump performance Curves and Calculations Calculation Continuation Sheet

Page 28 of 50

PARSONS Engineering		Project: NGS Deployment at SWPF							Calculation No. M-CLC-J- 00226					
	lation	Title: Caustic Scrub Feed Pumps Sizing Calculation, P-730A/B												
Rev 0	Originator N. DesRocl	Dat		Checker & Onna Yarbrough	Date 11-6-17	Rev	Originator	Date	Checker	Date				
	Table of Contents													
		Sheet												
1.0	Purpose and Objectives 3													
2.0	References 3													
3.0	0 Inputs	Inputs												
4.0	0 Assum	Assumptions												
5.0	0 Analyt	Analytical Method												
6.0	0 Calcul	Calculations												
7.0	0 Result	Results and/or Recommendations 7												
8.	0 Conclu	Conclusions 7												
9.	0 Attach	ments								7				
9.	1 Pump	Pump Suction Line Loss Calculation 8												
9.	2 Pump	Pump Discharge Line Loss Calculation 9												

Engineering Report Appendix C. CCFF Pump performance Curves and Calculations

Page 29 of 50

Calculation Continuation Sheet

1	RSONS incering	Proj	ect: NG	S Deployment a	t SWPF				alculation No. M-CLC-J- 00226	
Calc	culation	Title	Ca	ustic Scrub Feed	d Pumps Siz	zing	Calculation, P-7	30A/B		
Rev 0	Originator N. DesRocl	ner	Date 11/6/2017	Checker (Conna Yarbrough	Date 11-6-17	Rev	Originator	Date	Checker	Date

1.0 Purpose and Objectives

The purpose of this calculation is to evaluate the design criteria for the Caustic Scrub Feed Pumps, P-730A/B.

The objective of this calculation is to size pumps P-730A/B.

2.0 References

- 2.1 P-DB-J-00006, Rev. 0, NGS Deployment at SWPF Basis of Design
- 2.2. DSG-MP-03, Parsons Engineering Department Design Guide: Pump Head Calculations
- 2.3 P-PG-J-0024, Rev. 0, SWPF Next Generation Solvent Building General Arrangement Plan at Elevation 98'-9" and Sections
- 2.4 Crane, Flow of Fluids through Valves, Fittings and Pipe, Technical Paper No. 410
- 2.5 Cameron Hydraulic Data, 19th Edition
- 2.6 Pump Handbook, 2nd Edition
- 2.7 M-M6-J-0203, Rev. 5, SWPF Next Generation Solvent Building Caustic Scrub Feed Tank TK-730 P&ID M-M6-J-0082, Rev. 9, SWPF Process Building Nitric Acid Scrub Makeup Tank P&ID as modified by **DCN-7000**

M-M6-J-0038, Rev. 0, SWPF Process Building Scrub Contactors EXT-202A/B P&ID

- 2.8 Specification 15120, Rev. 25, Piping Material Specification
- 2.9 M-M5-J-0020, Rev. 0, SWPF Next Generation Solvent Building Cold Chemical Makeup Tanks PFD
- 2.10 P-PI-J-14-10024-01, Rev. 0, SWPF Piping Isometric 2"-NAOH-10024-PS200A-P-PI-J-14-10024-02, Rev. 0, SWPF Piping Isometric 1"-NAOH-10024-PS200A-P-PI-J-14-10025-01, Rev. 0, SWPF Piping Isometric 1"-NAOH-10025-PS200A-
- 2.11 P-PI-J-14-10026-01, Rev. 0, SWPF Piping Isometric 3/4"-NAOH-10026-PS200A-P-PI-J-14-10027-01, Rev. 0, SWPF Piping Isometric 3/4"-NAOH-10027-PS200A-P-PI-J-14-10027-10, Rev. 0, SWPF Piping Isometric 1/2"-NAOH-10027-PS200A-P-PI-J-15-10027-10, Rev. 0, SWPF Piping Isometric 1/2"-NAOH-10027-PS200A-ETN

Calculation Continuation Sheet

PARSON	Project:	NG	SS Deploym	ent at SI	WPF					ulation No.	
Engineering									M-(CLC-J- 0022	26
Calculation	Title:	Ca	ustic Scrub	Feed Pu	ımps Si	zing (Calculation, P	-730A/B			
Rev Origin	nator E	ate	Checker	56 Di	ate	Rev	Originator	Date		Checker	Date
0 N. De	esRocher 1	1/6/2017	Donna Yaro		6-17						
P-I P-I P-I P-I P-I P-I P-I P-I	PI-J-15-100 PI-J-15-100 PI-J-15-100 PI-J-03-100 PI-J-03-100 PI-J-03-703 PI-J-03-703 PI-J-02-703 PI-J-02-703	27-12, R 27-13, R 27-14, R 27-15, R 27-10, R 27-10, R 7-03, Re 7-01, Re 7-01, Re	Rev. 0, SWP Rev. 0, SWP Rev. 0, SWP Rev. 0, SWP Rev. 0, SWP Rev. 0, SWP Rev. 4, SWPF Rev. 6, SWPF Rev. 4, SWPF	F Piping F Piping F Piping F Piping F Piping F Piping Piping I Piping I Piping I	Isomet Isomet Isomet Isomet Isomet Isometri sometri sometri	ric 1/2 ric 1/2 ric 1/2 ric 3/4 ric 1/2 ric 1/2 c 1/2 c 1/2 c 1/2	2"-NAOH-100 2"-NAOH-100 2"-NAOH-100 2"-NAOH-100 4"-NAOH-100 2"-NAOH-100 2"-NAOH-100 2"-NAOH-100 '-HNO3-7037 '-HNO3-7037 '-HNO3-7037	27-PS200 27-PS200 27-PS200 27-PS200 27-PS200 27-PS200 -PS200D- -PS200D- -PS200D-)A-E1)A-E1)A-E1)A-)A-)A-)A-	TN TN TN TN TN	OCN-7010
3.1 Flu	uid Propertie	es:									
•	Fluid: Di	lute NaC	H								
•	Operating	Temper	ature					77	°F	F	Ref. 2.
•	Viscosity							1	cl	P	Sec. 4.3.
•	Specific G	ravity						1			Sec. 4.3.
•	Vapor Pre	ssure						0.46	ps	ia	Sec. 4.3.
	ervice Condi ilute (0.025N		for CSSX S	Scrub							
3.3 O	perating Co	nditions:									
•								1.4	gp	m	Ref. 2.9
	Design Flo	ow Rate						3	αp	m	20 0 0
•	_										Sec. 4.3.
•	Source Pr	ressure						14.7	ps		
•	Source Pr Suction S	ressure tatic Hea	nd From Lov	/ Level *	**			-1.19	ps f	t	Ref. 2.
•	Source Pr Suction S Delivery P	ressure tatic Hea Pressure		/ Level *	**			-1.19 14.56	ps fr ps	it sia	Ref. 2.
•	Source Prosumer Suction Source Prosumer Prosumer Prosumer Prosumer Prosumer Prosumer Prosumer	ressure tatic Hea Pressure e Static H	lead ***	/ Level *	**			-1.19 14.56 26.19	ps fi ps f	t sia t	Ref. 2.1
•	Source Pr Suction S Delivery F Discharge Vessel PS	ressure tatic Hea Pressure Static H SV or Ver	lead ***	/ Level *	**			-1.19 14.56 26.19 14.7	ps fi ps fr	t sia t sia	Sec. 4.3.1 Ref. 2.1 Ref. 2.1 Ref. 2.
•	Source Prosumer Suction Source Prosumer Prosumer Prosumer Prosumer Prosumer Prosumer Prosumer	ressure tatic Hea Pressure e Static H SV or Ver	lead *** nt Setting	/ Level *	**			-1.19 14.56 26.19	ps fi ps fi	t sia t sia t	Ref. 2.1

Engineering Report Appendix C. CCFF Pump performance Curves and Calculations

Page 31 of 50

Calculation Continuation Sheet

PARSONS Ingineering	Proj	ect: NG	S Deployment a	t SWPF				'alculation No. M-CLC-J- 0022	6		
Calculation Title: Caustic Scrub Feed Pumps Sizing Calculation, P-730A/B											
tev Originator N. DesRo		Date 11/6/2017	Checker Donna Yarbrough	Date 11-6-17	Rev	Originator	Date	Checker	Date		

Highest Pipe Elevation on Discharge Line **

28.38 ft Ref. 2.11

- Elevation with respect to floor elevation (98'-9")
- *** Elevation with respect to the pump centerline

4.0 Assumptions

- 4.1 Assumptions Containing Unverified Design None
- 4.2 Assumptions Requiring Re-Verification
- 4.2.1 Elevations, pipe routing, valve cvs, and equipment pressure drops are based on preliminary information and will be verified with final isometrics and vendor information.
- 4.3 Assumptions Not Requiring Re-Verification
- 4.3.1 The fluid properties of the 0.025M NaOH are assumed to be equal to the fluid properties of water.
- 4.3.2 The normal flow rate 1.4 gpm. For conservatism, the design flow rate is set at 3 gpm.
- 4.3.3 Piping is PS200A. Per Ref. 2.8 this is 304L SS, Sch 40S between sizes 1/2" and 6".
- 4.3.4 The pressure drop through the flow meter is assumed to be 2 psi.

5.0 Analytical Method

5.1 Suction Pressure:

Source pressure is calculated using Eq. 5.1

Suction Pressure = source pressure + the suction static head from min. suction height

- the suction line losses.

Eq. 5.1

Convert Suction Static Head from feet of liquid to psi using Eq. 5.2

$$P = SG \times \rho \times \left(\frac{g}{g_c}\right) \times h$$

Eq. 5.2

where

 $= 62.4 \, lb_m/ft^3$ = density of water

= gravitational acceleration = 32.2 ft/s²

= $32.2 (ft - lb_m)/(lb_f - s^2)$ universal constant

Page 32 of 50

	RSONS neering	Proj	ect: NG	S Deployment a	SWPF				alculation No. M-CLC-J- 00226	
Calc	ulation	Title	Ca	ustic Scrub Feed	Pumps Siz	zing	Calculation, P-7	'30A/B		
Rev ()	Originator N. DesRoc	her	Date 11/6/2017	Checker (1) Donna Yarbrough	Date 11-6-17	Rev	Originator	Date	Checker	Date

 $1 \text{ ft}^2 =$ 144 in² Eq. 5.2 is simplified to Eq. 5.3: $P = SG \times 0.433 \times h$

Eq. 5.3

5.2 Net Inlet Pressure

The net inlet pressure is calculated using Eq. 5.4: Net Inlet Pressure = suction pressure (absolute) - vapor pressure (absolute)

Eq. 5.4

5.3 Discharge Pressure:

The discharge pressure is calculated using Eq. 5.5: Discharge Pressure = Delivery Pressure + Discharge Static Head + Dynamic line and component losses

Eq. 5.5

5.4 Differential Pressure

The differential pressure is calculated using Eq. 5.6: Differential Pressure = discharge pressure - suction pressure

Eq. 5.6

Calculations 6.0

6.1 Suction Pressure:

Using Eq. 5.3, the suction static head from min. suction height is:

Suction Static Head from Min. Suction Height (psi) = -0.52 psi

Using Eq. 5.1, the suction pressure is:

(from Att. 9.1, Suction Line Loss = 0.08 psi

Suction Pressure = 14.10 psia

6.2 Net Inlet Pressure

Using Eq. 5.4, the net inlet pressure is:

Net Inlet Pressure = 13.64 psia

Page 33 of 50

PARS Engincer		Projec	et: NGS	S Deployment at	SWPF				Calculation No.		
Calculati		Title:	Cau	stic Scrub Feed	Pumps Si	zing (Calculation, P-7	730A/B			
I I	riginator . DesRock	ner	Date 11/6/2017	Checker (7) Donna Yarbrough	Date 11-6-17	Rev	Originator	Date	Checker		Date
6.3	Dischar	ge P	ressure:								
	Using E	q. 5.	3, the disch	arge static head	is conver	ed to	psi:				
	Discha	rge S	tatic Head	= 11.34 psi							
	Using E	q. 5.	5, the disch	arge pressure is	s:						
	Disch	arge l	Line Loss	= 41.60 psi							Att. 9.2
	Disch	arge	Pressure	= 69.50 psia							
6.4	Differer	ntial F	ressure								
	Using E	Eq. 5.	6, the differ	ential pressure i	s:						
	Differe	ential	Pressure	= 55.40 psi							
7.0	Result	s and	l/or Recom	nmendations							
7.1	Suction	Pres	ssure:		14.10 ps	ia					Sec 6.1
7.2	Net Inle	et Pre	essure:		13.64 ps	ia					Sec 6.2
7.3	Discha	rge P	ressure:		69.50 ps	ia					Sec 6.3
7.4	Differe	ntial F	Pressure:		55.40 ps	i					Sec 6.4
8.0	Conclu										
			point is:	3 gr	om & 55.40) psi (differential pres	sure			
9.0	Attach										
9.1				s Calculation						Sheets	1
9.2	Pump l	Disch	arge Line L	oss Calculation						Sheets	1

PARSONS Project	NG	S Deployme	ent at S	WPF		1. 0. 50			Calc	ulation	No.		
Engineering			_				-		M-0	CLC-J-	00226		
Calcuitation Subject	: Pu	mp Suction	Line Lo	ss Calcu	ulatio	n					Sh	eet N	lo.
											8	of 9	ſ
Rev Originator Date		Checker	Dat	te	Rev	Original	or	Date		Checker	- N - 13 11 11 - 11 - 11 - 11	Date	
0 N. DesRocher 11/6	/2017	Donna Yarbro	ough ((·	-6-17					1			1	
Line Number:	"-NAOI	H-10024-PS				Fluid:	Dilu	ite NaOH					Sec. 3.1
P&ID Number: M-	M6-J-0	203		 Ref. 2.7		Flow I	Rate (Q)	:	3	gpn	1	-	Sec. 3.1
ISO DWG No.:	P-PI-J	-10024-01,	-02	Ref. 2.1	0		sity (μ):		1	cp			Sec. 3.1
				-			ic Grav	ity:	1.00				Sec. 3.1
From: TK-730						•							
To: P-730B										······································			
		- · . · ·										-	
Basis Internal Dia.(d):		1.049 in.	Int	ernal Ar	ea	= 0.	006002	ft ²	=	πхО	.25 x c	² /144	1
	-												
Surface Roughness (a): 0	.00015 ft											[2.5]
Relative Roughness c/		001716											
_													
Downalda Numbari		9,030 =	[50.6])(a)(sa	s)(62	2.4)							[2.5]
Reynolds Number:		9,030 -	μ] [d]								
Note: Since the Reynolds Nu	mber is >	4,000, the flow	is turbul	ent and th	e fricti	on factor	is calcula	ted using t	the Co	lebrook e	quation.		
									_				
Colebrook Equation (F	or Reyn	olds Numbe	rs > 4,0	000):		1	- (2) Log	[<u>ε/Ι</u>	્રો .	2	2.51	
, ,	•			•		f 1/2	- = (-2) Log	3.	7) +	Re	f	1/2
Colebrook Friction Fac	tor (f)	: = (0.034								. ,	•	[2.4]
Laminar Friction Facto	f = 64/	Re = (0.007	Velo	city (v) =	1.114	fps					[2.5]
					• '	•							
Friction Factor For This	Calc.	= (0.034			f _t =	0.023						[2.4]
Item Compone	nt	QTY	"K" Fo	rmula [2	2.4]			d ₁	d	2	2	β4	K
1 Entrance		1	K = 0.78										0.78
2 Pipe		130.8 in.	K = f L/d	i									4.24
3 Ball Valve		2	Cv=	68	[4.2.	1] K=	891 d4/Cv	2					0.47
4 Pipe Bend (45° or	90°)	3	K = 14 f	le man				1					0.97
5 Tee Run		2	K = 20 f	1									0.92
6 Tee Branch		1	K = 60 f	1									1.38
7 Reducer		1	K = 0.5	(1- β ²)				1.049	2.0	67 0.2	58		0.37
8 Reducer		1	K = 0.5	(1- β ²) / β ⁴	1			0.824	1.0			.381	0.50
9 Total K			200										9.63
Pressure Drop: =	K SG	$\rho_{H2O} \int v^2$	ft ²	= 0	80.0	psi							[2.5]
	2 g _c	$\rho_{H2O} \left(v^2 \right)$	1 in ²										
	- 00												

Engineering Report Appendix C. CCFF Pump performance Curves and Calculations

Page 35 of 50

PARS	ONS	Pro	ject:	NG	S Deployme	nt a	at SWPF						Cal	cula	tion No.			
Engineeri	ng			2 300 100				207					M	-CLC	-J- 002	26		
Calcuilati	ion	Sub	oject:	Pur	np Discharg	e L	ine Loss Ca	Icula	tion							She	et N	lo.
																9 (of 9	
Rev Orig			Date		Checker		Date	Rev	Origi	inator		Date		Chec	ker		Date	
	esRocher		11/6/201		Donna Yarbro			<u> </u>	<u></u>			L		L				
Line Nu					027-PS200A/-H			-	Flui			te NaOH						Sec. 3.1
P&ID N			IVI-IVID-		03, -0082, -0	003	8 Ref. 2.7				te (Q)	:	3		gpm			Sec. 3.1
ISO DW	VG No.:			Se	e Ref. 2.11					cosity		<u> </u>	1		ср			Sec. 3.1
-	D 700D								Spe	CITIC	Gravi	ity:	1.00					Sec. 3.1
From:																		
То:	SB-309																	
Basis Ir	nternal [Dia.(d):).622 in.		Internal Are	ea	=	0.00	0211	ft²	=	τ	x 0.25	x d²	/144	ļ
Surface Relative	_		7.5		00015 ft 002894													[2.5]
Reynolo	ds Numi	ber:		1	5,229 =	(51	0.6)(Q)(SG μ)(d)(62)	2.4)									[2.5]
Note: Sin	ce the Re	ynolo	is Numbe	ris >	4.000, the flow	is tu	irbulent and th	e frict	ion fa	ctor is	calcula	ted using	the C	olebro	ook equat	ion.		
Colebro					olds Numbe = (rs >).03			1	1/2	= (-2) Log	$\left(\left[\frac{\varepsilon}{3}\right]\right)$	<u>/D</u>	† (F	2. Re)	51 (f¹	[2.4]
Lamina	r Frictio	n Fa	actor f =	64/	Re = (0.00	4 Velo	city (v)	= ;	3.167	fps						[2.5]
Friction	Factor	For	This Ca	alc.	= (0.03	3		f _t	= (0.027							[2.4]
Item	C	omp	onent		QTY	"K"	Formula [2	.4]				d₁		d2	β^2	ß	4	K
1	Pipe				10,800 in.	K =	f L/d				FT-600 P)			1/4				573.00
2	Ball Valve	е			3	С	v = 26	[4.2	.1]	K= 89	1 d⁴/Cv	2						0.59
3	Check Va	alve			2	K =	100 f _t											5.40
4	Pipe Ben	d (45	s° or 90°)		60	K=	14 f ₁											22.68
5	Tee Run				10	K =	20 f _t						_			_		5.40
6	Tee Bran	ch			5	K =	60 f _t									L		8.10
7	Reducer				1	K =	$0.5 (1- \beta^2)$					0.622	0.	824	0.570			0.22
8	Exit				1	K =	1.0					<u> </u>						1
9	Total K																	616.4
Pressu	re Drop:	:	= <u>K</u>	SG	ρ _{H2O} (v²	ft²	= 4	1.60	psi									[2.5]

		PA	RSO	NS		
		Calcul	ation Cover	Sheet		
Project: NGS Deplo	yment at SWPF		Calculation No.: M-CLC-J-00224		Project Numb 749600	oer:
Title: Bori	ic Acid Strip Charge Pump Sizin	ng Calculation	on, P-711		Sheet 1 of 15	
Software C	Classification:	N/A	Discipline: Process		☐ Prelimina	ry 🛚 Confirmed
	Program Name Oftware Quality Assurance Plan	N/A Unique Id	entifier		Approval Dat	e
□ s	oftware Evaluation Report Unio	que Identifi	er		Approval Dat	e
☐ s	oftware Requirement Specifica	tion Unique	ldentifier		Approval Dat	c
□ s	oftware Design Description Un	ique Identi	fier		Approval Dat	e
□ s	oftware User Documentation U	nique Ident	tifier		Approval Dat	e
□ s	oftware Verification/Validation	n Plan Uniq	ue Identifier			
☐ s	oftware Verification/Validation	Report Un	ique Identifier			.
□ s	oftware Installation & Checkou	ıt Unique la	lentifier		Approval Date	
	oftware Change Request Uniqu					.
Version / R						
Summary (of Conclusion n points are: 60 gpm & 10.33 p 10 gpm & 65.07 p	osi differenti	al pressure		NITH SOUTH	CAROLINA ESSIONAL
	,		Revisions		W No.	14718
Rev. No.	Revision Description -			904	an for	<u> </u>
0	Issued for Use			Shoke	1/1/1	MA IL
	<u></u>			1	11/158 0	SOMMATILLE
			Sign Off	1		
Rev. No.	Originator (Print) Sign / Date	C	Verification / Thecking Method	1	Checker (Print) n / Date	Lead Discipline Engineer (Print) Sign / Date
0	Nicholas DesRocher	Inc	dependent Review/	Donna	Yarbrough	Cliff Conner
	That 10/251	17	Math Check	BC59	10-25-17	Single octo
		_				

ı	RSONS	Project:	NG	S Deployment a	t SWPF	-			alculation No.	
_	leering lation		Por	ic Acid Strip Cha	eras Puma	Cizio	a Calculation		M-CLC-J- 0022	4
Carco	iation	Title:	DOI	ic Acid Strip Chi	arge Pump	SIZIII	y Calculation,	F-/		
Rev 0	Originator N. DesRocl	Da		Checker C Donna Yarbrough	Date 10-25-17	Rev	Originator	Date	Checker	Date
		1							I	
					Table o	f Con	itents			
									\$	Sheet
1.0) Purpos	se and (Objectiv	res						3
2.0) Refere	nces								3
3.0) Inputs									4
4.0) Assum	ptions								5
5.0) Analyti	ical Met	hod							6
6.0) Calcula	ations								7
7.0) Result	s and/o	r Recon	nmendations						8
8.0	Conclu	sions								8
9.0) Attach	ments								
9.	-			s Calculation, 60	_					9
9.	•			s Calculation, 10	•	_				10
9.3 9.4	-	-		oss Calculation oss Calculation		•				11 12
9.	-	_		oss Calculation						13
9.0				oss Calculation						14
9.	7 Pump l	Discharg	e Line L	oss Calculation	Tee to Si	3-205,	1/2"			15

Report Appendix C. CCFF Pump performance Curves and Calculations

Page 38 of 50

Calculation Continuation Sheet

	RSONS	Proj	ect: NG	S Deployment a	t SWPF			1	Calculation No. M-CLC-J- 0022	4
Cal	culation	Title	Bor	ic Acid Strip Cha	arge Pump :	Sizin	g Calculation,	P-711		
Rev 0	Originator N. DesRoci	her	Date 10/24/2017	Checker & O	Date 10-25-17	Rev	Originator	Date	Checker	Date

1.0 Purpose and Objectives

The purpose of this calculation is to evaluate the design criteria for the Boric Acid Strip Charge Pump, P-711.

The objective of this calculation is to size pumps P-711.

2.0 References

- 2.1 P-DB-J-00006, Rev. 0, NGS Deployment at SWPF Basis of Design
- 2.2. DSG-MP-03, Parsons Engineering Department Design Guide: Pump Head Calculations
- 2.3 P-PG-J-0024, Rev. 0, SWPF Next Generation Solvent Building General Arrangement Plan at Elevation 98'-9" and Sections
- 2.4 Crane, Flow of Fluids through Valves, Fittings and Pipe, Technical Paper No. 410
- 2.5 Cameron Hydraulic Data, 19th Edition
- 2.6 P-DB-J-00004, Rev. 5, Salt Waste Processing Facility Project Balance of Plant Basis of Design
- 2.7 M-M6-J-0201, Rev. 5, SWPF Next Generation Solvent Building Boric Acid Strip Receipt Tank TK-710 P&ID M-M6-J-0202, Rev. 5, SWPF Next Generation Solvent Building Boric Acid Strip Feed Tank TK-720 P&ID M-M6-J-0024, Rev. 6, SWPF Process Building Central Processing Area Breakpots P&ID as modified by DCN-7000
- 2.8 Specification 15120, Rev. 25, Piping Material Specification
- 2.9 M-M5-J-0020, Rev. 0, SWPF Next Generation Solvent Building Cold Chemical Makeup Tanks PFD
- 2.10 P-PI-J-14-10005-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10005-PS200D-P-PI-J-14-10006-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10006-PS200D-
 - P-PI-J-14-10006-02, Rev. 0, SWPF Piping Isometric 2"-BOR-10006-PS200D-
- 2.11 P-PI-J-14-10009-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10009-PS200D-
 - P-PI-J-14-10009-10, Rev. 0, SWFP Piping Isometric 1-1/2"-BOR-10009-PS200D-
 - P-PI-J-14-10040-01, Rev. 0, SWPF Piping Isometric 2"-BOR-10040-PS200D-
 - P-PI-J-14-10040-02, Rev. 0, SWPF Piping Isometric 2"-BOR-10040-PS200D-
 - P-PI-J-15-10009-10, Rev. 0, SWPF Piping Isometric 1-1/2"-BOR-10009-PS200D-ETN

PARS Engineer		Proje	ect: NG	S Deployment a	t SWPF				Calculation No M-CLC-J-	
Calculati		Title	Bor	ic Acid Strip Cha	arge Pump	Sizin	g Calculation, I	P-711	I W OLO U	00221
1 1	riginator	ег	Date 10/24/2017	Checker S Donna Yarbrough	Date 10-25-17	Rev	Originator	Date	Checker	Date
2.13	P-PI-J-PI-PI-PI-PI-PI-PI-PI-PI-PI-PI-PI-PI-PI-	15-1 15-1 15-1 15-1 03-1 03-1 02-1 01-1 01-1 01-1 01-7 01-7	0009-12, Re 0009-13, Re 0009-14, Re 0009-15, Re 0009-10, Re 0009-11, Re 0009-01, Re 0009-01, Re 0009-01, Re 0009-10, Re 20008, Rev 2-001, Rev. 2-13-01, Rev 213-01, Re 213-02, Re 213-03, Re	ev. 0, SWPF Pipelev. 5, SWPF Pipelev. 5, SWPF Pipelev. 5, SWPF Pipelev. 5, SWPF Pipelev. 0, SWPF Pipelev. 0, SWPF Pipelev. 5, SWPF Pipelev. 5, SWPF Pipelev. 5, SWPF Pipelev. 0,	sing Isometroing I	ic 1- ic 2- ic 2- ic 2- ic 3/4 c 3/4	1/2"-BOR-1000	99-PS200 99-PS200 99-PS200 99-PS200 99-PS200 99-PS200 99-PS200 99-PS200 PS200D-PS20D-PS20D-PS20D-PPS20D-PPP-PS20D-PPP-PPP-PPP-PPP-PPP-PPP-PPP-PPP-PPP-P	DD-ETN DD-ETN DD-ETN DD-ETN DD- DD- DD- DD- DD- DD- DD- DD- DD- DD	
3.0	Inputs									
3.1	OpVisSp:	id: erati cosi ecific	Boric Acid ing Tempera	ature				77 1 1 0.46	°F cP psia	Ref. 2.9 Sec. 4.3.1 Sec. 4.3.1 Sec. 4.3.1
3.2			nditions c Acid for S	trip Solution and	Concentra	ted S	Supply to DWPI	=		
3.3	• De	sign sign	Conditions: Flow Rate, Flow Rate, Pressure					60 10 14.7	gpm gpm psia	Sec. 4.3.3 Sec. 4.3.3 Ref. 2.7

Appendix C. CCFF Pump performance Curves and Calculations

Calcul	lation	Continua	tion	Sheet
Carcu	auvii	Continua	uvu	SHEEL

PARSONS Engineering	Project: NC	SS Deployment a	t SWPF				Calculation N M-CLC-J-	
Calculation	Title: Bo	ric Acid Strip Cha	arge Pump	Sizin	g Calculation	, P-711		
Rev Originator 0 N. DesRoci	Date her 10/24/2017	Checker Donna Yarbrough	Date 10-25-17	Rev	Originator	Date	Checker	T Date
	ing Conditions (M. Charles Inc.	_1 ***			4.4	£.	
	ction Static Hea livery Pressure,	d From Low Leve	9 1			-1.4 14.7	ft psia	Ref. 2.7
	livery Pressure,					14.56	psia	Ref. 2.6
		lead, TK-720 ***				11.10	ft	7102.0
	-	lead, SB-205 ***				52.10	ft	
• Ve:	ssel PSV or Vei	nt Setting				14.7	psia	Ref. 2.7
• Lov	w Level **	-				1	ft	Ref. 2.10
• Pui	mp Centerline *	•				2.4	ft	Ref. 2.10
• Flo	w Meter Pressu	re Drop				2	psi	Sec. 4.3.2
• Hig	hest Pipe Eleva	ation on Discharg	e Line, TK-	720	**	13.5	ft	Ref. 2.10
• Hig	hest Pipe Eleva	ation on Discharg	je Line, SB-	205	**	54.5	ft	Ref. 2.14
** Elevation	on with respect	to floor elevation	(98'-9")					
*** Elevation	on with respect	to the pump cen	terline					

4.0 Assumptions

4.1 Assumptions Containing Unverified Design

Npne

- 4.2 Assumptions Requiring Re-Verification
- 4.2.1 Elevations, pipe routing, and valve cvs are based on preliminary information and will be verified with final isometrics and vendor information.
- 4.3 Assumptions Not Requiring Re-Verification
- 4.3.1 The fluid properties of the 0.45M boric acid are assumed to be equal to the fluid properties of water.
- 4.3.2 The pressure drop through the flow meter is assumed to be 2 psi.
- 4.3.3 Factoring in line lengths and fill volumes, the flow rate is conservatively assumed to be 60 gpm to TK-720 and 10 gpm to SB-205.

Page 41 of 50

ARSONS	Project:	NGS Deploymen	t at SWPF				niculation No. M-CLC-J- 0022	24
alculation	Title:	Boric Acid Strip (Charge Pump	Sizin	g Calculation,	P-711		
ev Originator N. DesRo	Date 10/24/	Checker 2017 Donna Yarbrou	Date Da	Rev	Originator	Date	Checker	Date
5.0 Analy	tical Metho	od						
5.1 Suction	n Pressure:	:						
Sourc	e pressure i	s calculated using	Eq. 5.1					
	n Pressure auction line l	= source pressure osses.	+ the suction	statio	head from m	in. suction h	•	Eq. 5.1
		Static Head from fee	et of liquid to	psi us	ing Eq. 5.2		•	-y. J. I
P =	SG x p	$x \left(\frac{g}{g_c} \right) x h$					ı	Eq. 5.2
where		water	= 624 lb	/ft ³				
g = g _c = 1 ft	gravitation universal = 144	nal acceleration constant in ²		s ²	/(lb _f - s ²)			
	-	ed to Eq. 5.3: 0.433 x h					E	Eq. 5.3
5.2 Net In	let Pressure	e						
	•	sure is calculated u	• .					
Net in	let Pressure	e = suction pressure	e (absolute) -	vapo	r pressure (at	osolute)	į	Eq. 5.4
5.3 Disch	arge Pressu	ıre:						
Disch	• .	essure is calculated ire = Delivery Press s	• .		tatic Head + [Oynamic line		≣q. 5.5
5.4 Differen	ential Press	ure						
	(5)	ressure is calculate ure = discharge pre			essure		ı	Eq. 5.6

Page 42 of 50

PAR	RSONS	Project:	NG	S Dei	oloymer	nt at S	WDE				Calcula	tion No.	
Engin	eering	rioject.	NO	3 Del	Joynnei	it at C					M-CL	C-J- 002	24
Calcu	lation	Title:	Bor	ic Aci	d Strip	Charg	e Pump	Sizin	g Calculation	ı, P-711			
Rev 0	Originator N. DesRoc	Da	te /24/2017	Cho	cker (C	6 D)ate -25-17	Rev	Originator	Date	C	hecker	Date
6.0) Calcul												
6.1	Suction	n Pressu	re:										
									height is: -0.61 psi				
	•	Eq. 5.1,											
	***	om Att. 9						psi)					
	(tro	om Att. 9	.2 Sucti	on Lir	e Loss	=	0.04	psi)	(to SB-2	05)			
	Suction	n Press	ure =	12.7	'4 psi	а	(to TK	-720)					
		n Press					(to SB	•					
6.2	2 Net Inl	et Press	ure										
	Using	Eq. 5.4,	the net i	nlet p	ressure	is:							
	Net In	let Press	sure =	12.2	28 psi	а	(to TK	-720)					
	Net In	let Press	sure =	13.5	59 psi	а	(to SB	-205)					
6.3	B Discha	rge Pres	ssure:										
	Using	Eq. 5.3,	the disc	harge	static h	ead is	s conver	ted to	psi:				
		arge Stat											
	Discha	arge Stat	ic Head	=	22.56	psi	(to SB	-205)					
	_	Eq. 5.5,		harge				ACCOMPANY VARIABLE VARIABLES					
		narge Lin		=	1.56		(to TK						Att. 9.3, Att. 9.
	Disch	narge Lin	e Loss	=	38.00	psi	(to SB	-205)				Att. 9.4	, Att. 9.6, Att. 9.
	Disch	narge Pr	essure	=	23.07	ps	sia (to	TK-7	720)				
	Discl	narge Pr	essure	=	79.12	. ps	sia (to	SB-2	205)				
6.4	4 Differe	ntial Pre	ssure										
	Using	Eq. 5.6,	the diffe	rentia	l pressi	ıre is:							
		ential Pr			10.33		(to TK						
1	Differ	ential Pr	essure	=	65.07	psi	(to SB	-205)					

Page 43 of 50

l	SONS	Proje	ect: NG	S Deployment	at SWPF				-	culation No.	
Engine Calcul		Title	Bor	ic Acid Strip C	harge Pump	Sizin	g Calculation, F	P-711	J M∙	-CLC-J- 00224	
		Title	:								
Rev 0	Originator N. DesRoch	ier	Date 10/24/2017	Checker Donna Yarbroug	Date th (0-25-17	Rev	Originator	Date		Checker	Date
7.0	Results	s and	d/or Recon	nmendations							
7.1	Suction	Pre	ssure:		12.74 ps		(to TK-720)				Sec 6.1
					14.05 ps	ia	(to SB-205)				Sec 6.1
7.2	Net Inle	et Pro	essure:		12.28 ps	ia	(to TK-720))			Sec 6.2
					13.59 ps		(to SB-205))			Sec 6.2
7.3	Dischar	rae F	Pressure:		23.07 ps	ia	(to TK-720)	1			Sec 6.3
'	Diodria	go .	10000.0.		79.12 ps		(to SB-205)				Sec 6.3
7.4	Differen	امنده	Pressure:		10.33 ps	:	(to TK-720)				5 6.4
7.4	Dinerei	illai	Pressure.		65.07 ps		(to SB-205)				Sec 6.4 Sec 6.4
7.0	Conclu	ısioı	ne								
"."	Concid	13101									:
	The de	sign	points are:				i differential pres				
				11	0 gpm & 65.0	7 ps	i differential pres	ssure			
8.0	Attach	men	its								
8.1	Pump \$	Sucti	ion Line Los	s Calculation,	60 gpm					Sheets	1
8.2	Pump \$	Sucti	ion Line Los	s Calculation,	10 gpm					Sheets	1
8.3	Pump I	Discl	harge Line l	oss Calculatio	on, to Tee, 60	gpn	า			Sheets	1
8.4				oss Calculatio						Sheets	1
8.5			_	oss Calculatio						Sheets	1
8.6 8.7			_	oss Calculation						Sheets Sheets	1
0.7	rump i	ואוט	naige Line i	LOSS Calculation)11, 1 66 to 36	-200	, 1/2			Sileets	'
					7						

Engineering Report Appendix C. CCFF Pump performance Curves and Calculations

Page 44 of 50

PARSO	ONS Proje	ect: NG	S Deployme	nt at SWPF					Calc	culation No).	
Engineeri									M-	CLC-J- 00	224	
Informati		iect: Pui	mp Suction L	ine Loss Cald	ulatio	n. 60 apm					Shee	No.
Calculation		,				.,,					9 of	
Rev Orig		Date ·	Checker (_/ Date	Rev	Originator		Date		Checker		ate
		10/24/2017	יית י	ugh 10-25-17		<u></u>			1			
Line Nu			-10006-PS2			Fluid:	Bori	c Acid				Sec. 3.1
	-	M-M6-J-0		Ref. 2.1	7	Flow Rat			60	gpm		Sec. 3.1
ISO DW	VG No.:	P-PI-J-14-10	0006-01/-02, -1	0005-01 Ref. 2.	10	Viscosity			1	ср		Sec. 3.1
	_					Specific	Gravi	ity:	1.00			Sec. 3.1
From:	TK-710											
To:	P-711											
Basis Ir	nternal Dia.(d	i):	2.067 in.	Internal A	rea	= 0.023	3303	ft ²	=	π x 0.2	$5 \times d^2/1$	44
	•											
Surface	Roughness	(ε): 0	.00015 ft									
Relative	e Roughness	· · ·	000871									[2.5]
		-										- 1
D	da Niceana	,	04 CE2 -	(50.6)(Q)(S	G)(62	2.4)						[2.5]
Reynoid	ds Number:	٤	91,003 =	(µ)(d)							
Note: Sin	ce the Reynolds	s Number is >	4,000. the flow	is turbulent and t	he frict	on factor is o	alcula	ted using t	the Co	lebrook equa	ation.	
									_			
Colebro	ook Equation	(For Reyn	olds Numbe	rs > 4,000) :		1 _	- (2)	[₫	<u> </u>	2.51)
						f 1/2	- (-2) LUG	l l 3.	7 7	Re] [f ^{1/2}
Colebro	ook Friction F	Factor (f)	: = 0	0.022					`			[2.4]
												10 2
Lamina	r Friction Fa	ctor f = 64/	'Re = 0	0.001 Vel	ocity (v) = 5	5.736	fps				[2.5]
Friction	Factor For 1	This Calc.	= (0.022		$f_t = 0$	0.019					[2.4]
Item	Compo	onent	QTY	"K" Formula [2.4]			d ₁	d	2 β ²	β ⁴	K
1	Entrance		1	K = 0.78								0.78
2	Pipe		188 in.	K = f L/d								2.00
3	Ball Valve		2	Cv = 376	[4.2	.1] K= 891	d⁴/Cv	2				0.23
4	Pipe Bend (45°	° or 90°)	3	K = 14 f _t								0.80
5	Tee Run		3	K = 20 f _t								1.14
6	Tee Branch		1	K = 60 f _t								1.14
7	Total K											6.09
				_								
Pressu	re Drop:	= K SC	$\rho_{H2O} \left(v^2 \right)$	ft ² =	1.35	psi						[2.5]
		2 g _c	144	l in ²								

Appendix C. CCFF Pump performance Curves and Calculations **Calculation Sheet**

PARSO	ONS Pro	ject: NG	S Deployme	nt at SWPF					Cal	culation 1	No.		
Engineeri	ng								M-	CLC-J- (0224		
Information	on Only Sub	ject: Pui	np Suction L	ine Loss Calcu	latio	n, 10 gpm					St	neet N	lo.
Calculation	on	v=									1	0 of	15
Rev Origi	inator	Date	Checker	Date	Rev	Originator		Date		Checker		Date	
0 N. D	esRocher	10/24/2017	Donna Yarbro	ugh 10-25-17									
Line Nu	ımber:	2"-BOR	-10006-PS2	00D		Fluid:	Bori	c Acid					Sec. 3.1
P&ID N	umber:	M-M6-J-02	201	Ref. 2.7		Flow Rate	(Q)	:	10	gpm			Sec. 3.1
ISO DW	/G No.:	P-PI-J-14-10	006-01/-02, -1	0005-01 Ref. 2.10)	Viscosity	(μ):		1	ср			Sec. 3.1
						Specific G	Gravi	ty:	1.00	<u> </u>			Sec. 3.1
From:	TK-710												
To:	P-711												
Basis In	nternal Dia.(d):	2.067 in.	Internal Are	ea	= 0.023	303	ft ²	=	$\pi \times 0$.	25 x (² /144	l I
Surface	Roughnes	s(ε): _0	00015 ft										
Relative	Roughnes	s ε/D: <u>0.</u>	000871										[2.5]
					.,								
Revnolo	ds Number:	1	5 275 =	(50.6)(Q)(SG	62	<u>4) </u>							[2.5]
, toynor	30 110111001	•	0,270	(µ) (d]								
Note: Sine	ce the Reynold	ls Number is >	4,000, the flow	is turbulent and the	e fricti	on factor is ca	alculat	ed using	the Co	olebrook ed	uation	(
									<i>.</i>				\ \ \
Colebro	ook Equation	n (For Reyn	olds Numbe	rs > 4,000) :		$\frac{1}{f^{1/2}} =$	[-2	Loa	<u>ε/</u>	<u>'D</u> + -	_ 2	2.51	
						f ^{1/2}	(-	,9	(l3	ر7.	[Re]	[f 1	''²
Colebro	ook Friction	Factor (f):	= 0	0.029									[2.4]
Lamina	r Friction Fa	actor f = 64/	Re = 0	0.004 Velo	city (v) = 0.	.956	fps					[2.5]
Friction	Factor For	This Calc.	= (0.029		$f_t = 0$.019	,					[2.4]
Item	Comp	onent	QTY	"K" Formula [2	.4]			d ₁	-	j ₂ β ²		β ⁴	K
-	Entrance		1	K = 0.78					1		\perp		0.78
2	Pipe			K = f L/d					ļ				2.64
3	Ball Valve		2	Cv = 376	[4.2.	1] K= 891	ď⁴/Cv	1	_		\bot		0.23
1 100	Pipe Bend (45	or 90°)	3	K = 14 f ₁							\bot		0.80
5	Tee Run		3	K = 20 f ₁					<u> </u>		\perp		1.14
6	Tee Branch		1	K = 60 f ₁									1.14
7	Total K												6.73
Pressu	re Drop:	= K SG 2 g _c	i ρ _{H2O} (v² 144	$\frac{ft^2}{\sin^2} = 0$.04	psi			2001				[2.5]

							0.000	2012/06/02		2 /2/2					12	2	
PA	RSC	ONS	Pro	ject: NG	S Deployme	nt at	SWPF					Cal	cula	tion No.			
Engi	neeri	ng										M	-CLC	-J- 002	24		
Infor	matic	on Only	Sub	ject: Pur	np Discharg	e Line	e Loss Ca	Icula	tion, to Te	e, 60	gpm				She	et N	0.
Calc	ulatio	on .			_										11	of 1	5
Rev	Origi	inator		Date	Checker 4	<u>Κ</u> D	ate	Rev	Originator		Date		Chec	ker		Date	
0	N. D	esRocher		10/24/2017	Donna Yaroro	ugh I	0-25-17										
	PRINCES A 1	ımber:		2"-BOR	-10040-PS2				Fluid:	Bori	c Acid					,	Sec. 3.1
P&I	D N	umber:		M-M6-J-02			Ref. 2.7		Flow Rat	e (Q)	:	60		gpm		;	Sec. 3.1
ISO	DW	/G No.:			4-10040-01	-02	Ref. 2.11	1	Viscosity			1		ср			Sec. 3.1
									Specific		tv:	1.00		•		:	Sec. 3.1
Fro	m:	P-711															
To:	-	Tee															
	-															0.00	
Bas	is In	iternal D	ia.(d): 2	2.067 in.	li	nternal Are	ea	= 0.023	3303	ft ²	=	π	x 0.25	$x d^2$	/144	
			(•		-	0.02				•		. •		
Surf	ace	Roughi	าครร	s(e): 0	00015 ft												
		Rough			000871												[2.5]
		, rtoag.,		<u> </u>	300071												[2.0]
						50 (പ്പി വിടര	1 62	ه م								[2.5]
Rey	nolo	is Numb	er:	9	1,653 =) (d	1									[2.0]
Note	. Cin	oo tha Ba	mald	la Numbaria >	4,000, the flow	μ ic turb	ulant and the) o frieti	ion footos is s	امام باما	od usina	tha C	alaher	ack course	ion		
NOLE	. 31110	ce use reg	/HOIG	is Number is >	4,000, the now	is tuit	dient and th	e mice	ion factor is t	alculai	eu using	ine C	olebic	on equal			
Col	abro	ok Eau	ation	/Eor Down	olds Number	·c > 1	000) -		1	,		((,	'n		2	5 1)
COR	5010	ok Equa	aliOi	i (i oi iteyii	olus Ituliibei	3-4	,,000) .		1 f 1/2	= [-2	Log	5	70	+ 76	2	F 1/	2
Cal	abro	ak Erist	ion	Factor (f):	- 0	.022			Į.				.1)	Į r	(e)	()	[2.4]
COI	טוט	OK FIICE	ЮП	ractor (1).	- (.022											[2.4]
	ina	- Eriotio		-to- f = 64!	Do 0	004	Vole	-i+ . /	5	726	fna						[O E]
Lan	ıınaı	rFrictioi	1 F8	actor f = 64/	Re = 0	.001	Velo	city (v) = 5	5.736	ips						[2.5]
Eric	tion	Factor	Ear	This Calc.	= 0	.022			f _t = 0	0.019							[2.4]
-					r		Carmula (2	41	'1 - 0	7.013	٦.	Т.	4. T	β²	_ G	4 T	
Ite 1			mp	onent	QTY		ormula [2	.4]			d ₁	+	d ₂	β_		-	K
		Pipe				K = fL		14.0	.1] K= 891	d4/Cv2		╫			-	-+	0.38
		Ball Valve		20	1	Cv:		[4.2	.1] N= 091	d /CV		\vdash				-+	
-3	_	Pipe Ben	0 (45	or 90°)		K = 14					 	\vdash			-	\dashv	0.27
	_	Tee Run			3	K = 20					-	╁			⊢	\dashv	1.14
- 5	_	Tee Bran			1	K = 60) f _t		···		L	<u>. </u>			<u> </u>		1.14
-6		Total K			 												0.38
D		- D		- 400	C.2	42)	_ ^	00	:								(O 51
re	ssur	e Drop:		= <u>K SG</u>	$\rho_{H2O} \left(v^2 \right)$	12	= 0	.08	psi								[2.5]
l				2 g _c	(144	コープ											

PARS	ONS	Project: NG	S Deployme	nt at SWPF					Cald	culation N	0.		
Engineeri									M-	CLC-J- 00	0224		
Informati	- 1	Subject: Pu	mp Discharg	e Line Loss	Calcul	ation, to Te	e, 10	gpm			She	et N	lo.
Calculation	on							•			12	of	15
Rev Orig	inator	Date	Checker	Date	Rev	Originator		Date		Checker		Date	
0 N. D	DesRocher	10/24/2017	Donna Yarbro	ugh 10-25-17									
Line N	umber:	2"-BOR	R-10040-PS2			Fluid:	Borio	c Acid					Sec. 3.1
P&ID N	lumber:	M-M6-J-0	201	Ref. 2	2.7	Flow Rat	e (Q)	:	10	gpm			Sec. 3.1
ISO DV	VG No.:	P-PI-J-	14-10040-01,	-02 Ref. 2	2.11	Viscosity	(μ):		1	ср			Sec. 3.1
			16			Specific	Gravi	ty:	1.00				Sec. 3.1
From:	P-711										u u		
To:	Tee												
,													
Basis Ir	nternal D	ia.(d):	2.067 in.	Internal	Area	= 0.023	3303	ft ²	=	$\pi \times 0.2$	$5 \times d^2$	/144	ļ
Surface	Rough	ness (ε): 0	.00015 ft										
Relative	Rough	ness ε/D: 0.	000871										[2.5]
		_											
Powed	ds Numb	105	15,275 =	50.6)(Q)(SG)(6	2.4]							[2.5]
Reynoid	us Numi	er.	15,275 -	μ) (d									
Note: Sin	ce the Rey	nolds Number is >	4,000, the flow	is turbulent and	the fric	tion factor is o	alculate	ed using	the Co	lebrook equ	ation.		
									_				_
Colebro	ook Equa	ation (For Reyn	olds Number	s > 4,000):		$\frac{1}{f^{1/2}}$ =	ره) -	100	<u>ε/</u>	⊉	2.	51]
						f 1/2	- (-2,	Log	∫ ∫3 .	゙゚゚゚゚゙ヿ゚	Re)	f^1	1/2
Colebro	ook Frict	ion Factor (f)	: = 0	.029					•		,	3)	[2.4]
Lamina	r Friction	Factor f = 64/	Re = 0	.004 Ve	elocity	(v) = 0	.956	fps					[2.5]
Friction	Factor	For This Calc.	= 0	.029		f _t = 0	0.019						[2.4]
Item	Co	mponent	QTY	"K" Formula	[2.4]			ď	d	β^2	F	3 ⁴	K
1	Pipe		36 in.	K = f L/d									0.51
2	Ball Valve	1	1	Cv = 37	6 [4.2	.1] K= 891	d⁴/Cv²						0.12
3	Pipe Bene	d (45° or 90°)	1	K = 14 f _t									0.27
4	Tee Run		3	K = 20 f _t									1.14
5	Tee Bran	ch	1	K = 60 f _t									1.14
6	Total K							1					0.51
			12.72										
Pressu	re Drop:	= K SG	$\frac{\rho_{H2O} \left(v^2 \right)}{144}$	ft^2 =	0.003	psi							[2.5]
		2 g _c	144	in ²									

PARSONS	Decinate NC	C Danlauman	A OL CIMPE			,,		Cala	ulation No		
	Project: NG	S Deploymen	it at SWPF								
Engineering								M-(CLC-J- 00	T	
Information Only	Subject: Pu	mp Discharge	Line Loss Ca	lcula	tion, Tee to	TK-	720			Sheet	Liver IX
Calculation	<u> </u>	1								13 of	
Rev Originator	Date	Checker_		Rev	Originator		Date	ľ	Checker	Dat	e
0 N. DesRoche	MI SANTANIA	Donna Yarorou									
Line Number:		-10040-PS20			Fluid:		c Acid				Sec. 3.1
P&ID Number			Ref. 2.7		Flow Rate		:	60	gpm		Sec. 3.1
ISO DWG No.	: <u>P-PI-</u>	J-14-10040-02	2Ref. 2.11		Viscosity (_1_	ср		Sec. 3.1
					Specific G	ravi	ty:	1.00			Sec. 3.1
From: Tee											
To: <u>TK-72</u>	0										
Basis Internal		2.067 in.	Internal Are	еа	= 0.0233	303	ft²	=	π x 0.25	5 x d ² /14	4
Relative Roug		000871									[2.5]
Reynolds Num	nber: 9	$91,653 = \frac{1}{6}$	50.6)(Q)(SG μ)(d) 62)	.4]						[2.5]
Note: Since the R	eynolds Number is >	4,000, the flow is	turbulent and the	e frictio	on factor is cal	lculate	ed using t	the Co	lebrook equa	ition.	
	uation (For Reyn		s > 4,000) : 022		1 f ^{1/2} =	(-2)) Log	$\left(\left[\frac{\underline{\varepsilon}/\underline{\mathfrak{l}}}{3.}\right]\right)$	7 + (2.51 Re) (f	1/2) [2.4]
Laminar Friction	on Factor f = 64/	Re = 0.	001 Veloc	city (v	/) = 5.7	736	fps				[2.5]
Friction Factor	For This Calc.	= 0.	022		$f_t = 0.0$	019					[2.4]
Item (Component	QTY "	K" Formula [2.	.4]	75-5		ď	d:	β^2	β4	K
1 Pipe	<u> </u>	300 in. K	(= f L/d								3.19
2 Ball Val	ve	1	Cv = 376	[4.2.] K= 891 d	I⁴/Cv²					0.12
3 Pipe Be	nd (45° or 90°)	9 K	C = 14 f ₁								2.39
4 Exit		1 K	(= 1.0								1
5 Total I	<										6.7
Pressure Drop	o: = <u>K SG</u> 2 g _c	6 ρ _{H2O} (v² f	$\frac{n^2}{n^2} = 1$.48	psi						[2.5]

PARSONS	Project: NG	S Deploymen	nt at SWPF			-		Calcula	ation No.		
Engineering								M-CL	C-J- 002	224	
Information Only	Subject: Pur	np Discharge	e Line Loss Ca	lculation	on, Tee	to SB-	205, 1-	1/2"		Sheet N	Ю.
Calculation										14 of	15
Rev Originator	Date	Checker 45	Date	Rev O	riginator		Date	Che	cker	Date	
0 N. DesRoche			ugh 10-25-17		C						
Line Number		-10009-PS2		F	luid:	Borio	Acid				Sec. 3.1
P&ID Number			-0024 Ref. 2.7	F	low Rat	e (Q)	:	10	gpm		Sec. 3.1
ISO DWG No.		e Ref. 2.11			iscosity			1	ср		Sec. 3.1
					pecific		tv:	1.00	-		Sec. 3.1
From: Tee							_		-		
To: Reduc	tion before SI-70	15									
Basis Internal	Dia.(d):1	1.610 in.	Internal Are	ea :	= 0.01	4138	ft²	=	π x 0.25	x d ² /14	4
Surface Roug	hness (ε): <u>0.</u>	00015 ft									
Relative Roug	hness ε/D: 0.0	001118									[2.5]
Reynolds Nun	nber: 1	9,611 = (50.6)(Q)(SG	62.4	<u>4)</u>						[2.5]
	eynolds Number is >	,		•		1		h - O-1-h	!	·	
Colebrook Fri	uation (For Reynotion Factor (f) : on Factor f = 64/	= 0	.028	 city (v)	$\frac{1}{f^{1/2}}:$	= (-2)		(<u>ε/D</u>) 3.7	† (F	2.51 Re) (f	[2.4]
							•				
	r For This Calc.		.028	f _t	- (0.021		F	T _2	T	[2.4]
	Component		"K" Formula [2	.4]			d ₁	d ₂	β²	β⁴	K
1 Pipe			K = f L/d			4 2	 		 	 	200
2 Ball Val		2	Cv = 170	[4.2.1]	K= 891	l d⁴/Cv²		 	 	 	0.41
	end (45° or 90°)		K = 14 f _t								23.52
4 Reduce	·		$K = 0.5 (1 - \beta^2)$				1.610	2.067	0.607		0.20
5 Tee Ru		 	K = 20 f ₁		-		-		-		0.84
6 Tee Bra	anch	1	K = 60 f _t						 		6.30
7 Exit		1 1	K = 1.0				L	<u>, </u>	1	L	1
8 Total		ρ _{H2O} (v²	$\frac{\mathrm{ft}^2}{\mathrm{in}^2} = 3$.87 р	osi						[2.5]

PARSONS	Project: NG	S Deployme	nt at SWP	°F					Calcula	tion No.	-	
Engineering									M-CL	C-J- 002	24	
Information Only	Subject: Pur	np Discharge	Line Los	s Ca	lculation	on, Tee	to SB-	205, 1/2	2"		Sheet I	No.
Calculation		, ,									15 of	15
Rev Originator	Date	Checker	6 Date		Revio	riginator		Date	Che	cker	Date	
0 N. DesRocher		Donna Yarbrou		-17								
Line Number:		-7213-PS200			F	luid:	Borio	Acid			1	Sec. 3.1
P&ID Number				f. 2.7	-	low Rat			10	gpm		Sec. 3.1
ISO DWG No.:		-7213-01, -02				iscosity			1	ср		Sec. 3.1
		72.001, 0.		2		pecific		v. —	1.00	. "		Sec. 3.1
From: Reduct	tion before SI-70	15			·	poomo	O.u	·y·	1.00	-		000. 0.1
To: SB-205		10										
10. <u>00-200</u>	<u>, </u>											
Basis Internal I	Dia.(d):(0.622 in.	Interna	al Ar	ea :	= 0.00	0211	ft²	= ;	π x 0.25	x d ² /14	4
Surface Rough	ness(s): 0	00015 ft										[2.5]
Relative Rough	· · 	02894										[2.0]
Reynolds Num	ber: 5	0,763 = {	50.6)(0	<u>d</u>	62.4	<u>)</u>						[2.5]
Note: Sings the Br	eynolds Number is >		, ,,,	•	,		calculate	d using t	ha Calabi	ook ooust	ion	
Note. Since the Re	synoids Number is >	4,000, the now	is turbulent a	anu un	e modor	i iacioi is i	Calculate	to using t	HE COIEDI	cok equal	JOH.	
	ation (For Reynotion Factor (f):		s > 4,000 .028):	-	1 f ^{1/2}	= (-2)	Log	$ \left(\frac{\varepsilon/D}{3.7} \right) $	+ <u></u> [F	2.51 Re) [f	$\frac{1}{2}$ [2.4]
CONCORDION	don racior (1).		.020									[2.4]
Laminar Friction	on Factor f = 64/i	Re = 0	.001	Velo	city (v)	= 1	10.56	fps				[2.5]
Friction Factor	For This Calc.	= 0	.028		f _t	= (0.027					[2.4]
Item C	Component	QTY	"K" Formu	ıla [2	.4]			d۱	d₂	β²	β⁴	K
1 Pipe		800 in.	K = f L/d									36.01
2 Ball Valv	re	11	Cv =	20	[2.12]	K= 891	1 d⁴/Cv²				L	0.33
3 Pipe Ber	nd (45° or 90°)	9	K = 14 f _t									3.40
4 Reducer		1	Κ = 0.5 (1- β	3 ²)				0.622	1.610	0.149		0.43
5 Plug Val	ve, 2 way	1	Cv =	16	[2.12]	K= 89	1 d⁴/Cv²					0.52
6 Plug Val	ve, 3 way	1	Cv =	9	[2.12]	K= 89	1 d⁴/C√²					1.65
7 Tee Run		1	K = 20 f _t									0.54
8 Tee Brai	nch	1	K = 60 f ₁									1.62
9 Exit	*	1	K = 1.0									1
10 Total K	(.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							45.50
Pressure Drop	: = K SG 2 g _c	ρ _{H2O} (v²	ft² =	= 34	4.13 p	si						[2.5]

PER-J-00007, Rev. 0
Page D1 of 3

Appendix D. CCFF Equipment List

M-MX-J-0001, SWPF Equipment Database (U) (NGS only)

NGS Cold Chemical Feed Facility: Engineering Report

Appendix D. CCFF Equipment List

PARSONS Project: SWPF Joh No.: 749478

SWPF EQUIPMENT DATABASE (NGS ONLY)

Q-PER-J-00007, Rev. 0 Page D2 of 3

M-MX-J-0001 REV 18

Thursday, November 30, 2017

Page 1 of 2			z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	10
	The state of the last	REMARKS																	DCN-2010
	Patentine)	Equipment Schedule Drawing/ Specification Section	M-DS-J-00411	M-DS-3-00421	M-DS-3-00431							M-DS-J-00400	M-DS-J-00400	16443				M-DS-3-00401	
FOURMENT DESCRIPTION	98	ELECTRICAL DIAGRAM	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-)-00039	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-£2-3-00039	E-E2-J-00039	E-E2-3-0002	NA	NA	NA	E-ES-3-00040	
FOUIDMENT		P&ID/HVAC DRAWING	M-M6-J-0201	M-M6-J-0202	M-M6-J-0203	TBD	OST.	TBD	OST.	TBD	TB0	M-M6-3-0202	M-M6-3-0202	NA	NA	NA	NA	M-M6-3-0200	
	A STATE OF THE PARTY OF	940	M-MS-3-0020	M-MS-3-0020	M-M5-3-0020	NA	NA	NA	NA	NA	NA	M-MS-3-0020	M-M5-3-0020	NA	NA	NA	NA	NA	
0.0000000		GS (Note 1)	65-2	CS-2	65-2	65-2	65-2	65-2	65-2	65-2	CS-2	65-2	68-2	68-2	6S-2	GS-2	GS-2	CS-2	
	Mausasa	CATAGORY	PC:1	PC-1	PC:1	PC-1	PC-1	PC-1	PC-1	R:1	PC:1	PC:1	PC-1	PC-1	PC-1	PC-1	PC-1	PC-1	
	2000	TENET	R-4	PL-4	PL-4	PL-4	PL-4	PL-4	PL-4	P.4	₽.4	PL4	PL4	R 4	PL-4	7	P. 4	F.	
	CONTROL	NUMBER	08653	08653	08653	TBO	TBD	TBD	TBD	TBD	TBO	08654	08654	TBD	TBD	OBT.	TBD	TBD	
	-	BACKUP	ON	ON	ON	ON	ON	ON	ON	NO	NO	ON	ON	ON	N.	NA	NA	ON	
	700	FD/LOCAL B	NA	NA.	NA.	NA	N	NA	NA.	N	NA	NA	NA	NA	NA	NA	NA	NA N	
	- Sections	GE PHASE TYPE STA	VFD	VFD	VFD	STR	STR	BKR	BKG	BKR	BKR	BKR	BKR	BKR	NA	NA	NA	BKR	
	- Andread	PHASE	3	3	3	3	3	3	3	3	3	3	3	3	NA	NA	NA		
	100	VOLTAGE	480V	480V	480V	480V	480V	480V	480V	480V	480V	480V	480V	480V	NA	NA	N	120v	
		LOAD	1 HP	1 HP	1 HP	0.75 HP	0.75 HP	5.0 KW	5.0 KW	5.0 KW	5.0 KW	24 KW	24 KW	300 Amps	Ā	Ą	NA	¥	
TO LANGE	NOT A	COOLING REQ (BTU/HR)	NA	NA	NA	NA	¥	Ą	¥	¥	¥	N	NA	NA	N	¥	NA	A	
	III DESCR	AUR REQ-	NA	A	NA NA	NA.	ž	NA NA	ž	Ϋ́	NA	NA	NA	NA	NA	N.	NA	\$	
	Equipme	STEAM REQ. LBM/HR	NA	NA	NA NA	AN	Ā	NA	¥	NA N	NA .	Ä	N	NA	¥	NA	NA	NA.	
		MATERIAL	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	Aluminum	Aluminum	Steel	Steel	Steel	Steel	304 Stainless Steel	304 Stainless Steel	Steel	Steel	Steel	Steel	OWC	
		CAPACITY/ DUTY (Note 5)	NA	NA	NA	10,000 CFM	10,000 CFM	400 CFM	400 CFM	400 CFM	400 CFM	24 KW	24 KW	600 Ampere	1/4 Ton	1/4 Ton	1/4 Ton	20 GPH	
		EQUIPMENT DESCRIPTION	Mechanical Mixer, Used to agitate TK-710 contents	Mechanical Mixer, Used to agitate TK-720 contents	Mechanical Mixer, Used to agitate TK-730 contents	Used to Exhaust Air from NGS Building	NGS Building Exhaust Fan Used to Exhaust Air from NGS Building	Provide Heat to NGS Building	Electric Heater, Used to Heat Strip Feed	Electric Heater, Used to Heat Strip Feed	Motor Control Center	Monorail to Remove/Replace AGT-710	Monorail to Remove/Replace AGT-720	Monorali to Remove/Replace AGT-730	700A Boric Acid Addition Pump Used for Tote/Drum Unloading				
		EQUIPMENT NAME	Boric Acid Strip Receipt Tank Agitator	Boric Acid Strip Feed Tank Agitator	Caustic Scrub Feed Tank Agitator	NGS Building Exhaust Fan	NGS Building Exhaust Fan	Electric Unit Heater	Electric Unit Heater	Electric Unit Heater	Electric Unit Heater	Boric Acid Strip Feed Heater	Boric Acid Strip Feed Heater	NGS 480V Normal Power MCC	AGT-710 Monorail	AGT-720 Monorail	AGT-730 Monorail	Boric Acid Addition Pump	
	IBER	SEQ NUMBER	710	720	730	016	017	810	610	020	021	720A	7208	211	141	142	143	700A	
	TION NUN	FUNC.	AGT	AGT	AGT	FAN	FAN	Ĕ	Ĕ	HTR	HTR	HTR	н	MCC	MR	MR	M	۵	
	EQUIPMENT IDENTIFICATION NUMBER	bane	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	
8	MENT ID	DESIGN	14	41	14	14	14	14	41	14	14	7.	14	14	14	14	14	14	
4947	EQUIP	STITE	_	ſ	_	ſ	^	7	~	-	-	C	^	^	^	^	_	^	
Job No.: 749478	SAN	DISCIPLINE	Process	Process	Process	HVAC	HVAC	HVAC	HVAC	HVAC	HVAC	Process	Process	Electrical	Material Handling	Material	Material Handling	Process	

NGS Cold Chemical Feed Facility: Engineering Report

Job No.: 749478 Project: SWPF PARSONS

Appendix D. CCFF Equipment List

Q-PER-J-00007, Rev. 0 Page D3 of 3

M-MX-J-0001 REV 18

Thursday, November 30, 2017

7
NLY)
ᅙ
Ξ.
쏬
¥
E
ш
TABASI
⋖
9
2
⋈
δ
ᆮ
5
Z
ž
5
ᄎ
ĸ
ā
5
?
9)

21	No.													
Page 2 of 2	UNKS	Z	Z	z	z	Z	z	Z	Z	Z	z	z	z	z
	REMARKS					H				-74				
	Equipment Schedule Drawling/ Specification Section	M-DS-3-00401	M-DS-J-00402	M-DS-J-00402	M-DS-J-00403	M-DS-3-00404	M-DS-)-00404	M-DS-J-00405	M-DS-J-00405	M-DS-J-00406	16442	NA	M-DS-J-00410	M-DS-J-00420
ESCRIPTION	ELECTRICAL	E-ES-J-00040	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-3-00039	E-E2-J-00039	NA	E-E2-3-00039	NA	NA	NA
EQUIPMENT DESCRIPTION	P&1D/HVAC DRAWING	M-M6-3-0200	M-M6-3-0201	M-M6-3-0201	M-M6-3-0201	M-M6-3-0202	M-M6-3-0202	M-M6-J-0203	M-M6-J-0203	M-M6-J-0204	NA	M-M6-3-0097	M-M6-3-0201	M-M6-3-0202
	9	NA	M-M5-3-0020	M-M5-3-0020	M-M5-3-0020	M-M5-3-0020	M-M5-3-0020	M-M5-J-0020	M-M5-J-0020	NA	NA	NA	M-M5-3-0020	M-MS-3-0020
1000000	CLASS SS, GS (Note 1)	65-2	68-2	GS-2	65-2	GS-2	GS-2	GS-2	65-2	65-2	65-2	0S-2	GS-2	CS-2
	PERFORM	PC-1	PC-1	PC-1	PC-1	152	R:1	PC-1	PC-1	PC-1	PC-1	PC-1	R:1	PC:1
PROC LEVEL		PL4	PL4	PL.4	귳	PL-4	PL-4	PL-4	PL4	PL4	P. 4	PL-4	PL-4	PL-4
	CONTROL	180	08655	08655	08655	08655	08655	08655	08655	95980	TBD	NA	08652	08652
Section 1	BACKUP	ON	NO	ON	ON	ON	ON	ON	ON	ON	NA	NA	NA	NA
	VFD/LOCAL STABTED	NA	NA	NA	NA	N	NA	N	¥	NA	N	N	N.	NA
	FDR.		VFD	VFD	VFD	VFD	VFD	VFD	VFD	NA	BKR	NA	NA	NA
	PHASE	1	3	3	3	3	3	£	3	NA	3	NA	NA	NA
	VOLTAGE	120V	480V	480V	480V	480V	480V	480V	480V	NA	480V	NA	NA	¥
Services of the last	RECT		1 HP	1 HP	10 HP	1 HP	1 HP	1 HP	1 HP	NA	150 Amps	NA	NA	NA
MOTTAL	COOLING REQ (BTU/HE)	¥	¥	N	NA	NA	NA	NA	NA	NA	AA	NA	NA	NA
EQUIPMENT DESCRIPTION	AIR REQ-		NA	NA	NA	NA	NA	NA	NA	5	NA	NA	NA	NA
EQUIPM	REQ.	NA	NA	N	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
	MATERIAL	OPVC	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	316L Stainless Steel	Steel	Steel	316L Stainless Steel	316L Stainless Steel
THE PERSON	CAPACITY/ DUITY (Mote 5)	_	S GPM	S GPM	60 GPM	3 СРМ	3 GPM	3 GPM	3 СРМ	S S GPM	225 Ampere	317 GAL	2500 GAL	2500 GAL
THE PERSON NAMED IN	EQUIPMENT DESCRIPTION	Used for Tote/Drum Unloading	Pump Used to Transfer Concentrated Boric Acid to TK- 720	Pump Used to Transfer Concentrated Boric Acid to TK- 720	Pump Used to Transfer Concentrated Boric Acid to SB- 205	Pump Used to Supply Boric Acid Strip Solution to CSSX Contactors	Pump Used to Supply Boric Acid Strip Solution to CSSX Contactors	Pump Used to Supply Caustic Scrub Solution to CSSX Contactors	Pump Used to Supply Caustic Scrub Solution to CSSX Contactors	Pump Used to Empty Contents of NGS Building Sumps	Supplies 120V to Misc Loads	Bladder type used for Fire Protection Surge Suppression	Tank, Used to Receive/Store Concentrated Boric Acid	Tank, Used for Make-Up of Dilute Boric Acid for Strip Feed
THE RESIDENCE	EQUIPHENT NAME	Boric Acid Addition Pump	Boric Acid Strip Transfer Pump	Boric Acid Strip Transfer Pump	Boric Acid Strip Charge Pump	Boric Acid Strip Feed Pump	Boric Acid Strip Feed Pump	Caustic Scrub Feed Pump	Caustic Scrub Feed Pump	NGS Sump Pump	208Y/120V Panel	Fire Protection Water Surge Tank	Boric Acid Strip Receipt Tank	Boric Acid Strip Feed Tank
EQUIPMENT IDENTIFICATION NUMBER	SEQ NUMBER	3002	710A	7108	711	720A	7208	730A	7308	740	346	014	710	720
	FUNC	d.	۵	۵	۵	۵	۵	۵	۵	۵	PNL	¥	¥	¥
	BUDG	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63	221-63
	DESTGN	Z	14	14	14	41	14	14	74	Z.	7.	4	4	14
	SITE	^	^	٦	^	^	^	~	^	2	^	^	^	^
	DISCIPLINE	Process	Process	Process	Process	Process	Process	Process	Process	Process	Electrical	Fire Protection	Engineering Mechanics	Engineering Mechanics

M-DS-J-00430

M-M5-3-0020

GS-2

P.

08652

NA

316L Stainless Steel

730